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Abstract

Blood-based microarray studies comparing individuals affected with autism spectrum disorder 

(ASD) and typically developing individuals help characterize differences in circulating immune 

cell functions and offer potential biomarker signal. We sought to combine the subject-level data 

from previously published studies by mega-analysis to increase the statistical power. We identified 

studies that compared ex-vivo blood or lymphocytes from ASD-affected individuals and unrelated 

comparison subjects using Affymetrix or Illumina array platforms. Raw microarray data and 

clinical meta-data were obtained from seven studies, totaling 626 affected and 447 comparison 

subjects. Microarray data were processed using uniform methods. Covariate-controlled mixed-

effect linear models were used to identify gene transcripts and co-expression network modules that 
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were significantly associated with diagnostic status. Permutation-based gene-set analysis was used 

to identify functionally related sets of genes that were over- and under-expressed among ASD 

samples. Our results were consistent with diminished interferon-, EGF-, PDGF-, PI3K-AKT-

mTOR-, and RAS-MAPK-signaling cascades, and increased ribosomal translation and NK-cell 

related activity in ASD. We explored evidence for sex-differences in the ASD-related 

transcriptomic signature. We also demonstrated that machine-learning classifiers using blood 

transcriptome data perform with moderate accuracy when data are combined across studies. 

Comparing our results with those from blood-based studies of protein biomarkers (e.g., cytokines 

and trophic factors), we propose that ASD may feature decoupling between certain circulating 

signaling proteins (higher in ASD samples) and the transcriptional cascades which they typically 

elicit within circulating immune cells (lower in ASD samples). These findings provide insight into 

ASD-related transcriptional differences in circulating immune cells.

Additional Keywords

gene expression; microarray; immune system; machine learning

INTRODUCTION

The molecular bases of autism spectrum disorder (ASD) remain largely unresolved despite 

decades of research. This situation impedes progress toward biologically based risk 

assessment and diagnostic testing, early detection, and the identification or development of 

rationally selected therapeutics aimed at improving developmental trajectories and 

functioning. As such, the molecular correlates of ASD have been pursued at multiple levels. 

Both twin- and common variant SNP-based heritability studies suggest that a substantial 

proportion of risk for developing ASD appears to be mediated by genetic factors (Sandin et 

al., 2014; Gaugler et al., 2014). The largest meta-analytic genome wide association (GWA) 

study to date identified one signal that surpassed a genome-wide significance threshold for 

discovery (www.med.unc.edu/pgc/downloads); yet many others appear poised to rise to this 

level of significance with larger sample sizes. However, any given risk-associated common 

variants likely impart a relatively small (< 1%) increase in absolute risk. Alternatively, 

studies of rare variants (single nucleotide, structural and copy-number variants, or even 

larger chromosomal abnormalities) indicate that these variants may impart a considerably 

larger increase in an individual’s absolute risk for ASD (Levy et al., 2011; Sanders et al., 

2011, 2012). Some have suggested that hundreds of distinct rare variants may contribute to 

ASD risk in the population (Levy et al., 2011), but that any specific variant may be found in 

< 1 % of cases. Taken together, these data suggest that ASD arises from heterogeneous 

underlying architectures of genetic and environmental risk factors, with different genetic 

variants (common and rare) contributing to disorder in different individuals or combining in 

complex ways within and across individuals and via interactions with the broad range of 

non-genetic (i.e., environmental) factors, sometimes referred to as the ‘exposome’. In light 

of these observations, much effort has been made to identify whether the apparently distinct 

genetic risk factors tend to converge into one or more unifying pathophysiological 

mechanisms (De Rubeis et al., 2014; Geschwind, 2008), which could also assist in 

identification of candidate exposures (Stamova et al., 2011; Tian et al., 2011) that influence 
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those same molecular pathways. Examining aspects of biology lying downstream from both 

genetic and environmental factors – e.g., genome-wide gene expression levels 

(transcriptome) – may help provide a useful framework for understanding of the 

developmental pathophysiology of ASD.

In the past 15 years, the ASD transcriptome has received considerable attention with the 

emergence of microarrays that enable unbiased and simultaneous surveys of most human 

genes. Studies of post-mortem brain tissues are best suited to help us understand 

pathophysiology, but these have been relatively rare, often relied on a small number of 

samples, and they have examined various brain regions. Garbett et al. (2008) reported that 

transcriptomic differences in ASD temporal cortex were enriched with inflammatory activity 

(e.g. IL-1/2/6, toll-like receptors (TLRs), NF-κB), cell cycle and EGF receptor signaling 

cascades, among others; this analytical approach did not allow for directional conclusions to 

be made about the enriched ontologies. Voineagu et al. (2011) reported under-expression of 

frontal/temporal cortex transcriptional network modules enriched with genes involved in 

synaptic function, vesicular transport, and neuronal projection, as well as ASD candidate-

genes. They also reported over-expression of a module enriched with astrocyte and activated 

microglial markers, and genes involved in immune and inflammatory responses, among 

others; these authors suggested that inflammatory responses may be secondary to synaptic 

abnormalities. Chow et al. (2012) profiled prefrontal cortical tissues. Among samples from 

younger subjects (≤ 14 years), they identified dysregulation of genes enriched in DNA 

damage responses, cell cycle, neurogenesis and neurodevelopment, apoptosis, and 

inflammatory responses. Among samples from older subjects (>14 years), they observed 

enrichment for genes involved in cellular differentiation, development, mitogenic signaling, 

apoptosis, oxidative stress, and tissue repair and remodeling. Whether these emergent 

functions were predominantly over-expressed or under-expressed in ASD samples was 

difficult to discern based on the analytical approach, with apparent evidence for mixed 

effects among the gene transcripts. Ginsberg et al. (2012) profiled occipital cortex and 

reported under-expression of mitochondrial and protein synthesis genes. They also examined 

a subgroup of cerebellar samples, which showed differential expression of genes involved in 

NF-κB related inflammatory signal transduction, when compared with unaffected subjects; 

network-level analyses of cerebellar tissues also implicated groups of genes over-

representing functions including inflammatory and purinergic signaling, as well as 

myelination; these functional enrichment analyses did not support clear directional 

conclusions. Gupta et al. (2014) performed the largest published RNA sequencing study on 

samples of frontal, pre-frontal and occipital cortices; functional enrichment of dysregulated 

genes and ASD-associated network modules implicated over-expression of genes enriched 

with markers of the M2 microglial phenotype, cellular antiviral responses, and type I and II 

interferon signaling, as well as other down-regulated functions, including neurotransmission, 

GABAergic signaling and hormone signaling. Because studies of post-mortem brain samples 

typically reflect a range of ages and generally do not capture the early developmental time 

windows during which ASD-related differences in brain development are first occurring, it 

remains unclear whether these signals reflect causal aspects of ASD pathophysiology or 

instead reflect correlational signals secondary to pathophysiology or treatment. Collectively, 

these studies appear to support the idea that transcripts involved in immunologic functions 
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are over-expressed in the ASD brain, while transcripts involved in neurodevelopment and 

synaptic signaling are under-expressed.

Studies of blood have also been pursued in efforts to identify biomarkers using readily 

assessable tissue and to shed light on differences in the ASD immunologic milieu. Gregg et 
al. (2008) identified natural killer (NK)-cell cytotoxicity as an emergent function among 

dysregulated genes in whole blood samples from children with ASD. Enstrom et al. (2009) 

focused their analyses on ASD cases with high NK-cell gene expression, comparing them 

against typically developing children with low NK-cell gene expression, and found MHC 

class I-mediated antigen presentation as an enriched function among up-regulated genes, 

whereas down-regulated genes were enriched with ribosomal protein synthetic and cell 

metabolic functions. Alter et al. (2011) examined transcriptomic differences in isolated 

lymphocytes, reporting that the preponderance of dysregulated genes were down-regulated 

in ASD cases (and also in typically developing children with older fathers), as compared 

with younger-fathered comparison subjects, and were enriched for zinc-binding, 

transcription factor, and ubiquitin ligase activity. Kuwano et al. (2011) examined whole 

blood samples from young adults with ASD; qualitative functional analysis of the top hits 

implicated cell morphology, cellular assembly and organization, nervous system 

development and function. In a relatively large sample of children, Kong et al. (2012) 

identified dysregulation of genes subserving trophic (e.g. neurotrophins, EGF/ErbB and 

VEGF), inflammatory, and cytoskeletal signaling pathways; notably many of the pathways 

shared common members of the MAP kinase gene family. Glatt et al. (2012) identified 

functional enrichment of immunologic, hemoglobin complex, and nucleotide-binding genes 

among those selected by a machine-learning diagnostic classifier. A second study by Kong 

et al. (2013) primarily compared probands and unaffected siblings; they identified up-

regulation of ribosomal and spliceosomal gene-sets, and down-regulation of genes involved 

in neuroactive ligand receptor signaling, calcium signaling, and gap junctions. Differences in 

profiling, analytical approaches and reporting of results makes it challenging to infer 

whether emergent biological themes are consistently dysregulated across these studies, thus 

underscoring the need for systematic re-analysis.

Blood-based investigations could afford access to biomarker signals at critical postnatal 

developmental time points, (Glatt et al., 2012; Kong et al., 2012) yet these studies have 

typically (1) included subjects from a range of ages that extend beyond key developmental 

windows, (2) been underpowered to confidently detect dysregulated genes, and (3) have not 

consistently assessed directionality when examining dysregulated emergent functions. As 

such, two recent studies have sought to consolidate the knowledge of transcriptomic 

abnormalities in ASD via meta-analysis. Ning et al. (2015) applied uniform preprocessing 

methods to data reflecting blood and brain microarray studies and combined summary 

statistics across samples to identify dysregulated genes with improved confidence. Their 

enrichment analyses implicated ribosomal translation and gene transcription (and their 

regulation), as well as immunologic functions (MHC class I, T-cell selection and activation, 

cytokine signaling), fatty acid metabolism, and anti-apoptotic genes. While this study 

afforded improved statistical power, it did not model the effects of potentially influential 

covariates of gene expression, it provided relatively little insight into the directionality of 

changes in functional gene-sets, and did not specify whether effects were shared between 
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tissues or were tissue-specific. Ch’ng et al. (2015) also performed a well-powered meta-

analysis of array-based studies of blood, transformed lymphoblastoid cells, and brain. 

However, their conservative approach focused only on genes that showed a consistently 

significant effect across all constituent studies for a given tissue; as such, they did not 

identify significant functional enrichment among transcripts consistently dysregulated in the 

blood.

In comparison to meta-analysis, mega-analysis offers an alternative strategy for deriving 

consensus across multiple studies; this involves pooling of individual-level clinical and 

normalized biological data from multiple studies and modeling with appropriate correction 

for between-study variations (Seifuddin et al., 2013; Mistry et al., 2013), as well as 

statistical controls for factors that are consistently reported across studies (i.e., sex, age), the 

potential to control for latent covariance structures (i.e. surrogate variables) that may differ 

across studies or diagnostic groups (Leek and Storey, 2007; Stegle et al., 2012), and the 

ability to tolerate missing data (e.g., clinical covariates and genes reported in only a subset 

of studies). This approach also easily lends itself to gene co-expression network analyses 

(described below). We sought to mega-analyze microarray data generated on popular 

platforms (Illumina and Affymetrix), reflecting ex-vivo whole blood or non-transformed 

leukocytes from ASD-affected individuals and unrelated comparison subjects. We 

hypothesized that this approach would identify ASD-associated transcripts surpassing 

rigorous statistical correction and that co-expression network and ontology-based analyses 

would identify over-expression of groups of genes subserving immunologic and trophic 

signaling functions.

METHODS

Literature Search and Study Selection

The annotated MOOSE guidelines for this mega-analysis of observational studies are 

provided in Supplementary Table 1. Selected studies and respective clinical and 

demographic features are shown in Table 1; excluded studies (along with the rationale for 

exclusion) are shown in Supplementary Table 2. We performed a literature search 

(SCOPUS) and microarray database searches (NCBI GEO and EMBL-EBI ArrayExpress) 

for microarray-based studies of whole blood- or leukocyte-based gene expression in subjects 

with autism or ASD, and including a control group composed of typically developing, 

unrelated comparison subjects. For full search terms, see Supplementary Table 1. We only 

included studies that were generated on popular microarray platforms (Illumina and 

Affymetrix) in order to allow consistent pre-processing with publicly available software and 

reliable mapping of probes to HGNC symbols. We sought to characterize transcriptomic 

differences associated with ASD using only ex-vivo peripheral blood samples or isolated 

leukocyte samples derived from peripheral blood. We chose to exclude studies that examined 

transformed (i.e. lymphoblastoid) cell lines because it is unclear the extent to which these 

cells reflect features of the circulating immunologic milieu in living volunteers. We also 

chose to exclude studies that compared ASD cases with unaffected members of the same 

family, because of the possibility that heritable genetic factors, environmental risk factors 

and/or intermediate phenotypes (e.g., gene expression profiles, neurocognitive features, 
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personality features, etc.) may be shared among family members discordant for ASD 

diagnostic status, which might mask the detection of transcriptomic differences that would 

otherwise be observed when examining unrelated comparison subjects. Seven studies 

meeting these preliminary criteria were identified (Table 1). We obtained microarray and 

clinical covariate data from the corresponding authors of the original studies or from 

publicly available data repositories, ensuring to the best of our ability that no subjects were 

included in multiple studies. Because we wanted to maximize the sample size, we accepted 

the diagnostic criteria used by each individual study site, some of which were based on 

clinician assessments and others based on standardized screening tools. We did not apply 

any additional filtering of subjects based on medical comorbidities beyond what was 

described by the authors of the previous studies who provided the samples (see Table 1 for 

brief descriptions and full citations of the original publications).

Coding and Harmonization of Clinical and Demographic Information

We obtained clinical and demographic covariate data from public data repositories and, 

when necessary, from corresponding authors of the previously published articles. In order to 

facilitate explicit modeling of these effects, we sought to harmonize the clinical 

demographic information across different study sites through re-coding. A variable for Study 

ID was created and separate levels were created for instances where a single publication 

included data generated from two different array platforms (as displayed in Table 1). 

Diagnostic labels (as determined by the authors of the original studies, including autism, 

autism spectrum disorder, Asperger’s disorder, and pervasive developmental disorder not 

otherwise specified) were recoded as “ASD” and unaffected subjects were uniformly 

recoded as “Comparison”. This decision is in keeping with the latest revision of the 

nosology within the DSM-V (American Psychiatric Association, 2013). Age was recoded in 

number of years for all subjects. Sample type was coded as either “whole blood” or 

“lymphocytes”. Data related to self-reported ancestry, ethnicity, and nationality required 

multistep harmonization because different studies provided this information in different 

formats. Most studies included only one column of information. For single-column ancestry 

data, responses including “Caucasian” or the mention of a specific European nationality (e.g. 
“Irish”) were uniformly recoded as “European.” Using a similar approach, we examined 

whether broad categories of “Asian”, “Latin American” and “African” could be populated, 

but the resulting groups were observed to be relatively small in comparison to the 

“European” sample. The decision was made to preserve statistical power by combining these 

groups into a single category of “Non-European” ancestry. Subjects reporting a mix of both 

European and Non-European ancestry were recoded as missing data. Some studies reported 

two separate columns of ancestry-related information (e.g., reporting “Race” [Caucasian, 

Black, Asian] separately from “Hispanic” [yes vs no]. For this scenario, we encoded each 

column of data separately using previously described rules. We then condensed the two 

columns into a single column, such that subjects reporting a combination of European and 

Non-European ancestry were coded as missing data.

Microarray Data Processing and Quality Control

All data processing and analyses were performed within the R statistical computing 

environment. Data from each study were processed and normalized independently, and 
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received uniform quality control treatment. Affymetrix arrays underwent robust multi-array 

average (RMA) normalization(Irizarry et al., 2003), with additional GC-correction whenever 

possible (e.g., not compatible with Affymetrix Human Exon 1.0ST array) using the affy 
(Gautier et al., 2004), oligo (Carvalho and Irizarry, 2010), and gcrma (Wu and Irizarry, 

2016) packages. Illumina data were imported as background-corrected expression values 

using default Genome Studio (Illumina Inc.; San Diego, California) methods. All chip sets 

were quantile-normalized and log2 transformed. Principal components analysis was 

performed for each study separately; samples were plotted along the first three components, 

and outlier subjects were removed if they deviated beyond the 4 s.d. ellipsoid extended from 

the grand mean. For the studies that provided batch information, the microarray data were 

visually inspected and batch effects were removed using the ComBat function of the SVA 
package (Leek et al., 2012). We mapped microarray probes to HGNC gene symbols using 

biomaRt (Durinck et al., 2009) and AnnotationDbi (Pages et al., 2016) and collapsed 

expression values by taking the median when multiple probes mapped to the same HGNC 

symbol. Finally, for each gene within each individual study, expression values were z-

transformed in order to normalize the range and variance of expression across datasets 

generated on different array platforms. Z-transformed data from each study were then 

combined (based on common HGNC symbols) across studies to create one large matrix of 

expression and covariate data for mega-analysis (n = 1,073; as shown in Table 1).

Leukocyte Stratification Analysis

Complete blood cell counts with leukocyte differentials were not available for the subjects 

examined in our study. In order to explore potential ASD-related differences in the 

proportions of leukocyte subtypes between ASD cases and unaffected comparison subjects 

(which could influence the transcriptomic differences between diagnostic groups, due to the 

different transcriptomes of each cell type), we performed microarray de-convolution analysis 

using previously described methods (Gaujoux and Seoighe, 2013); this approach examines 

the expression of genes that are highly specific for each class of leukocyte and computes 

surrogate values for each subject. Diagnostic group differences in the surrogate values were 

compared using an independent samples t-tests with family-wise Bonferroni correction for 

multiple testing. However, because ASD-related differences in the proportion of circulating 

leukocyte subtypes could be an important driver of differences in the peripheral immune 

milieu, and because statistically controlling for such effects could undermine our ability to 

characterize ASD-related transcriptomic differences, we did not include the variables 

generated from de-convolution analysis as covariates in the linear models used to detect 

differential expression (described below).

Mixed-Effect Linear Models for Single-Gene Analyses

Mega-analysis was performed on the combined data matrix using mixed-effect linear 

modeling, as implemented within the lmerTest package (Kuznetsova et al., 2016). This 

approach subsets the data matrix for non-missing expression and covariate values and 

employs the Satterthwaite method to approximate the effective degrees of freedom for a 

linear combination of independent sample variances for each transcript. We examined the 

effect of diagnostic status (ASD, comparison), and included covariates for age (continuous), 

self-reported ancestry (European, Non-European), sex (female, male), and sample-type 
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(whole blood, lymphocytes). A random effect of study ID was included to control for study-

specific effects on expression. While modeling the expression of each transcript, step-wise 

removal of non-significant covariates (p > 0.10) was performed to maximize statistical 

power. A total of 21,968 gene-level mixed-effect models converged to produce valid 

statistical results in the full sample (n = 1,073). For multiple-test correction, we examined 

Bonferroni-corrected p-values in order to conservatively define differentially expressed 

genes. Additionally, we also utilized a more permissive False Discovery Rate (FDR) q-value 

(Storey, 2003) to control the family-wise error rate at 5%, in order to allow more transcripts 

to move forward for GWAS and candidate-gene enrichment analyses. For each gene, the 

effect sizes derived from these covariate-controlled mixed-effect models were supplied for 

permutation-based gene-set analysis (described below).

Secondarily, we also performed separate analyses for each sex, in order to explore sex-

differences in the blood transcriptomic signature of ASD. For the sex-specific single-gene 

analyses, similar mixed-effect models (without sex specified as a covariate) were used to 

identify dysregulated genes separately for females and males. Among females (nASD = 90, 

ncomparison = 117), 19,508 gene-level mixed-effect models converged to produce valid 

statistical results. Among males (nASD = 536, ncomparison = 330), 17,268 gene-level mixed-

effect models converged to produce valid results. All cross-sex comparisons of dysregulated 

genes (i.e., hypergeometric tests of gene-list overlap) were predicated on the common 

background of genes analyzed (genes = 17,268). For each gene, the effect sizes derived from 

these covariate-controlled mixed-effect models were supplied for permutation-based gene-

set analysis (described below).

Single-Gene Meta-Analysis and Sensitivity Analysis

For genes reaching a Bonferroni-corrected level of significance in the mega-analysis of the 

full sample, we performed traditional meta-analysis to explore heterogeneity across studies, 

as well as sensitivity analysis, to explore whether certain studies contributed 

disproportionately to the findings. The meta-analyses used linear modeling on each 

individual sample (as shown in Table 1), without mixed-effects and without step-wise 

removal of covariates. For each gene transcript, we performed inverse variance weighted 

meta-analysis using the meta package (Schwarzer, 2016) to combine single-study results and 

compare these with mega-analysis summary statistics. We created forest plots to depict this 

information. For heterogeneity analysis, we withheld each individual study and repeated the 

mixed-effect linear modeling. We describe these results briefly in the main text, with 

accompanying Supplementary Tables and Supplementary Figures.

Gene-Set Analysis based on Permutation of Single-Gene Statistics

Permutation-based gene-set analysis was performed using the Piano package (Väremo et al., 

2013); for this analysis we supplied the summary statistics from the covariate-controlled 

mega-analysis of the full sample (i.e., covariate-adjusted diagnostic group differences) to 

assess whether a-priori-defined gene-sets reflecting various functional and ontological 

themes show evidence of differential expression compared to randomly resampled gene-sets 

of equal size. This approach to functional enrichment analysis does not require an arbitrary 

gene-list threshold (typically based on p-value) and can identify over- and under-expressed 
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functional sets, even if the individual genes subserving those functions fail to reach a 

threshold of differential expression. Specifically, for each gene within each a-priori-defined 
gene-set, we assessed the covariate-adjusted diagnostic group mean difference and these 

values were combined using the arithmetic mean to derive an average ASD-related 

difference for the gene-set. This value was then compared against 1×106 randomly selected 

gene-sets of equal size in order to generate empirical p-values for tests of five distinct 

hypotheses. For the non-directional test of dysregulation, the mean p-value of the target set 

was compared to the mean p-value of the randomly permuted sets. For tests of an absolute 

directional hypotheses (i.e. all up-regulated and all down-regulated), the mean group 

difference of the target set was compared against the mean for permuted sets. For the test of 

a mixed directional hypothesis, each target gene-set was subset to include only genes with 

positive (i.e. for mixed up-regulated effects) or negative (i.e. for mixed down-regulated 

effects) diagnostic group mean differences; these values were compared against permuted 

mean differences drawn from the background reflecting all same-signed test statistics. Seven 

gene-set databases were obtained from the Molecular Signature Database (Broad Institute): 

H: hallmark gene-sets, C1: positional gene-sets, C2: curated gene-sets, C3: motif gene-sets, 

C5: GO gene-sets, and C6: oncologic signatures, and C7 immunologic signatures; together 

these sets capture collective knowledge of gene participation in functional pathways, known 

and predicted regulatory relationships, and chromosomal locations. The names of these gene 

sets (as shown in Supplementary Tables) can be queried within the Database’s website 

(http://software.broadinstitute.org/gsea/msigdb) in order to learn more about exactly how the 

gene-set was derived. Only gene-sets intersecting with the target list of test statistics (with 4 

to 500 genes) were analyzed. Multiple test correction was performed separately for each 

combination of database and test hypothesis using the Bonferroni method to control the 

database-wise error rate at 5%. For gene-sets where multiple test hypotheses were 

significant (i.e. non-directional, mixed-up-regulated and all up-regulated effects), we elected 

to report the directional effects, such that all up-regulated was given the highest preference. 

We also combined the results of mixed directional and absolute directional tests to facilitate 

cross-sex comparison. We observed no instances of conflicting directional tests (e.g. both 

up- and down-regulated hypotheses reaching significance). This analysis was repeated for 

using the results of each sex-specific covariate-controlled mega-analysis and ASD-

associated gene-sets were compared across sexes.

Gene Co-Expression Network Analyses

We used the weighted gene co-expression network analysis (WGCNA) package to assess 

networks of correlated genes (Langfelder et al., 2011). This analysis was performed on the 

subset of Z-transformed expression data reflecting genes that were reported across all studies 

(genes = 14,931). We utilized both network preservation-type and module eigengene-type 

approaches. Both types of WGCNA analyses are predicated on the assignment of individual 

gene transcripts to network modules (i.e., groups of transcripts whose expression levels are 

correlated across the samples). Networks modules were detected based on Pearson 

correlation coefficients for all pairs of genes using an unsigned approach; absolute 

correlation coefficients between all gene pairs were raised to the power β, which was 

selected as the lowest soft-threshold power that approximated a scale-free topology network 

(β = 6). Additionally, we set the following parameters to construct the networks (kept default 
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if not specified) within the blockwiseModules command: deepSplit = 3, TOMType = 

“unsigned”, minModuleSize = 60, minCoreKME = 0.5, minCoreKMESize = 20, 

minKMEtoStay = 0, reassignThreshold = 1×10−6, mergeCutHeight = 0.25, detectCutHeight 
= 0.995, and maxBlockSize = 5000.

For the preservation-type analysis, correlation structures are identified within a reference 

sample (e.g., unaffected comparison subjects), and then these relationships are tested for 

preservation within another sample (e.g., affected subjects), though this analysis can also be 

repeated in the opposite direction. The extent to which module correlation structure is 

preserved can be inferred from the z-summary statistic, with z-summary ≥ 10 generally 

considered highly preserved, 10 > z-summary ≥ 2 considered moderately preserved, and z-

summary < 2 considered poorly preserved. When a module is poorly preserved in the tested 

sample, it implies that the correlations among genes are different than those captured in the 

reference sample. Preservation analyses were run bi-directionally (i.e., two separate runs, 

specifying the comparison individuals, then the ASD-affected individuals, as the reference 

group).

We also performed a module eigengene analysis. This type of analysis assumes that the 

correlation structures are similar between the two groups, and it summarizes the expression 

levels for large sets of highly correlated genes as a module eigengene value (similar to a 

principal component score). These module eigengene values were calculated for each 

subject, and we sought to identify ASD-associated modules based on the covariate-

controlled mixed-effect models with step-wise removal of non-significant covariates 

(described previously for the single-gene analyses). For a given module, if the eigengene 

values show a significant between-group difference, it implies that the expression of genes 

included within the module, when examined together as a network function, show evidence 

for differential expression. Linear model test statistics were corrected for the total number of 

network modules using the Benjamini-Hochberg method and modules robustly associated 

with diagnostic status were further characterized. For ASD-associated modules, we 

identified highly connected hub genes and assessed functional and cell-type enrichment 

(described below). In order to explore sex-differences in ASD-related co-expression 

networks, we repeated both preservation and module eigengene analyses separately for 

females and males, comparing the findings across sexes.

Enrichment Analysis for Biological Annotations, Cell-Type Markers, and GWAS Signal

For gene lists corresponding to ASD-associated network modules, functional enrichment 

analysis was performed using hypergeometric tests to assess the degree of overlap between 

each gene list and the contents of the Molecular Signature Database (H, C1, C2, C3, C5, C6 

and C7) collections. When testing a given gene list, any gene-set that contained at least one 

overlapping gene was retained, and then family-wise BH p-value correction was applied for 

the total number of surviving gene-sets per collection. However, we only reported 

significantly enriched gene-sets (BH p < 0.05) sharing at least two genes with the target gene 

list. The same rules were applied when hypergeometric testing for enrichment of cell-

specific markers; these lists were created by combining those supplied within the CellMix 
package (Gaujoux and Seoighe, 2013) with those identified in an independent study 

Tylee et al. Page 10

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Watkins et al., 2009). In order to assess whether gene-lists or network modules were 

enriched with genome-wide association signal, we obtained the gene-level results from the 

recent Psychiatric Genomics Consortium (PGC) autism meta-analysis (Hailiang Huang, 

personal communication); these were generated for 18,533 genes using the FAST algorithm 

(Chanda et al., 2013), which uses a greedy search algorithm to aggregate linkage 

disequilibrium-independent signals and applies correction for gene length (Huang et al., 

2011). For qualitative reporting of PGC Autism GWAS hits within the gene lists resulting 

from our transcriptomic study, we highlight any gene that showed an uncorrected gene-level 

association of p-value < 0.05. Additionally, for each gene list of interest in the present study, 

we performed permutation-based testing to assess whether the lists showed quantitative 

evidence of enrichment with GWAS signal. For a given gene list, the aggregate PGC 

association signal was obtained by combining p-values across genes using Fisher’s method. 

We then randomly resampled equal-sized lists of genes 10,000 times and summarized 

association p-values for these genes. Empirical p-values were calculated for the target gene 

lists to assess whether GWAS signal was significantly enriched. Finally, gene lists of interest 

were also compared against the unfiltered list of 706 ASD candidate-genes curated from 

multiple sources by SFARIgene.org (obtained 12/01/2014). For the purpose of depiction in 

Figures and Supplementary Figures, genes meeting both criteria as a GWAS hit and a 

SFARIgene candidate were preferentially reported as GWAS hits; full information is 

reported in Supplementary Tables.

Additionally, we examined the lists of dysregulated genes detected in the full sample 

(thresholded at both FDR-q < 0.05 and Bonferroni p < 0.05), as well as the genes 

participating in the ASD-associated (Benjamini-Hochberg p < 0.05) network modules using 

Ingenuity Pathway Analysis (IPA) Software (Redwood City, California, USA). Each of these 

gene lists was overlaid with summary statistics (covariate-adjusted mean differences 

between diagnostic groups) and were submitted for IPA’s Core Analysis. We examined the 

Canonical Pathways enriched for each gene list and we identified pathways that showed 

consistent enrichment across all three gene lists. For Canonical Pathways of interest, we 

isolated the genes subserving these pathways. We then used the Molecule Activity Predictor 

(MAP) tool to predict and visualize the upstream and/or downstream effects based on the 

expression changes of genes in the pathway.

Machine Learning Classification using Blood Transcriptomic Data

We sought to construct and independently validate machine-learning classifiers using a 

custom-built R package (exprso; https://github.com/tpq/exprso), which integrates a number 

of existing packages, including e1071 (Meyer et al., 2015), limma (Ritchie et al., 2015), 
Matching (Sekhon, 2015), mRMRe (De Jay et al., 2013), nnet (Ripley and Venables, 2015), 
ROCR (Sing et al., 2005), pathClass (Johannes et al., 2011), penalizedSVM (Becker et al., 

2009) and sampling (Tillé and Matei, 2015). Code for our implementation of this 

classification pipeline can be shared upon request to the corresponding author. As in the 

network co-expression analysis, we utilized the set Z-transformed expression values for 

genes that were reported across all studies (genes = 14,931), to avoid problems created by 

missing data. All samples (n = 1,073) were pseudo-randomly divided into a training sample 

(67% of n); this sample was selected to have an equal number of affected and unaffected 
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subjects with, on average, similar age between groups (t-test p > 0.30). The counterpart 

validation sample contained the remaining 33% of subjects. All feature selection and model 

fitting was performed within the training sample. The best performing models were selected 

based on performance within the training sample and they were combined into ensembles, 

which were then evaluated in the withheld validation sample. This procedure was repeated 

20 times, averaging the accuracy measurements across each resulting validation set in order 

to ensure a robust estimate of classifier accuracy.

In order to select models that are robust, the training data were analyzed in a manner similar 

to nested 2-layer cross-validation. The training sample was pseudo-randomly bootstrapped 

five times, ensuring that at least 1 ASD-affected and 1 typically developing subject was 

included in each of the resulting partitions. Within each bootstrap, 67% of were samples 

randomly assigned for classifier fitting (boot67) and 33% were withheld from classifier 

fitting for the evaluation of generalizability (boot33). This created different versions of the 

boot67 sample across the 5 bootstraps. Within each boot67 sample, affected and unaffected 

subjects were compared for gene expression using various filter methods (t-test, 
Kolmogorov–Smirnov test, mRMRe [De Jay et al., 2013]) and the selected features were 

supplied to the machine learning algorithm. We employed support vector machines with 

linear kernels, random forests, and neural networks. Each feature selection method was 

paired with each learning machine over a grid of possible machine settings. Each model was 

evaluated using 10-fold cross-validation within boot67 (the sample used for model fitting) 

and was also evaluated based on the area under the receiver operating curve within the 

boot33 sample (withheld from classifier fitting). We evaluated the accuracy of models by 

combining the boot67 and boot33 accuracy measures as a multiplied product; this was done 

to provide an extra layer of protection against the selection of models over-fit to the boot67 

sample. For each type of learning machine, we selected the top 3 models from each 

bootstrap, regardless of the feature selection employed. These prediction models were 

combined to create an ensemble whose combined prediction probability was used to assign 

samples into a diagnostic group; this ensemble was then evaluated within the completely 

withheld validation sample. Because we observed that the maximum withheld sample 

classification accuracy varied across different pseudo-randomly selected training/validation 

sets, we repeated this procedure 20 times, each time selecting a new training/validation set, 

in order to ensure a robust point estimate of maximum generalizable classification. For the 

best performing ensembles, we reported the list of genes and the frequency at which they 

were selected across the 20 runs.

Surrogate Variable Analysis (SVA) for Single-Gene and Gene-Set Analyses

In transcriptomic studies, it is possible that inadequately controlled factors (e.g., RNA 

quality, stratification based on genetic ancestry or leukocyte subpopulations, history of 

recent infectious illness, etc.) could differ between cases and controls within or between 

studies, thus contributing to false positive findings of differentially expressed genes and their 

emergent functions. In order to guard against this possibility and ensure the robustness of the 

findings reported in the covariate-controlled mixed-effect mega-analysis, we sought to re-

analyze our data using a second strategy called Surrogate Variable Analysis (SVA; Leek et 

al., 2012). For this secondary approach, we examined the subset of our sample described 
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above for network-level and classification analyses (n = 1,073, genes = 14,931) in order to 

avoid problems posed by missing data. In order to be very conservative, we examined the 

full sample and performed principal components analysis; we identified an additional 40 

subjects that could be considered outliers based on their distance (> 4 s.d.) from the 

combined-sample mean for the first 5 principal components, leaving a total of 1,033 

samples. We then used the SVA package (Leek et al., 2012) with Leek’s method to identify 

the optimal number of surrogate variables (k = 4) while preserving the transcriptomic 

patterns related to diagnostic status. For each gene transcript, the effects of these 4 surrogate 

variables were removed from the expression values using linear model residuals. Single-

gene mega-analysis was then repeated using mixed-effect linear modeling, however only the 

random effect (study ID) and a single fixed effect (diagnostic status) were included in the 

models and no step-wise removal was performed. For each gene, the resulting effect sizes 

were supplied for permutation-based gene-set analysis as described previously. Full sets of 

results files, summary statistics, and R scripts can be provided upon request to the 

corresponding author.

RESULTS

Leukocyte Stratification Analysis

Because whole blood samples were used in the majority of studies, we examined whether 

expression differences in leukocyte subtype-specific markers differed between affected 

individuals and comparison subjects. The results of microarray deconvolution analysis were 

consistent with increased expression of genes specific to NK cells and T-helper cells, and 

decreased expression of genes specific to activated dendritic cells in ASD samples (t-test 

Bonferroni p < 0.03). These data suggest that ASD might feature differences in the 

abundance of these leukocyte subtypes, which typically reflect only a minority of circulating 

leukocytes; differential leukocyte counts were not available for our samples, so these 

findings could not be confirmed.

ASD-Associated Transcripts

Next we examined differential expression of single genes in association with diagnostic 

status. From our covariate-controlled linear mixed models, 90 transcripts were dysregulated 

at a conservative Bonferroni-corrected p < 0.05 (Supplementary Table 3, bold gene 

symbols); among these, 66 were over-expressed and 24 were under-expressed in ASD (two-

tailed sign test p < 5.4×10−6). A total of 1,572 reached a more liberal FDR q-value < 0.05, 

with 796 over-expressed and 776 under-expressed (Supplementary Table 3). Among these 

1,572 transcripts, we did not observe significant enrichment with gene-level GWAS signal 

using a permutation-based analysis (p = 0.092); eighty-four of these genes showed at least 

nominal GWAS association (gene-level uncorrected p < 0.05) in a recent GWAS meta-

analysis (Hailiang Huang, personal communication). Additionally, we identified forty as 

SFARIgene candidates; all GWAS hits and SFARI genes are indicated in Supplementary 

Table 3.

Mixed effect modeling was repeated to assess the effects of diagnostic status using data that 

was residualized for latent sources of variance. Using SVA-residualized expression values, 
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14,929 gene transcripts produced a valid statistical result (Supplementary Table 3). Among 

these, ninety-two reached a conservative Bonferroni p < 0.05 (corrected for 14,929 tests) and 

1,564 reached a more liberal FDR q-value < 0.05 (Supplementary Table 3). We then sought 

to examine the ninety genes that reached a Bonferroni-corrected p < 0.05 in the primary 

covariate-controlled analysis of non-residualized data to determine whether the effects were 

robust within the SVA-corrected re-analysis. Among the ninety genes, 52 were consistently 

reported across studies, thus were available for analysis in the SVA-residualized data 

(Supplementary Table 3), and among these, 100% showed significant association with 

diagnostic status at FDR q < 0.05 (mean uncorrected p-value = 2.4×10−5, maximum p-value 

= 5.3×10−4), and 75% showed a significant association after Bonferroni-correction for 

14,929 tests. All 52 genes showed a consistent direction of effect across both analyses. 

Similarly, among the 1,571 genes reaching an FDR q < 0.05 in the primary analysis, 1059 

were analyzed in the SVA-residualized data, with 75% also reaching an FDR q < 0.05 and 

all of these showing a consistent direction of effect when compared with the primary 

analysis.

Comparing Meta- and Mega-Analytic Single-Gene Results

Among the 90 genes reaching a Bonferroni-corrected level of significance in the covariate-

controlled mega-analysis, we performed heterogeneity analysis, which involved per-study 

linear modeling with inclusion of fixed effects (age, sex, diagnostic status); the beta 

coefficient and error estimates associated with diagnostic status were combined across 

studies using inverse variance weighted meta-analysis and forest plots were produced to 

explore each study’s contribution. Generally, the set of meta-analyzed test statistics tracked 

closely with those of the mega-analysis; for 87 of 90 genes, the estimates of the mega-

analyzed β fell within the meta-analytic 95% confidence intervals (Supplementary Table 4 

and Supplementary Figure 1). Notably, only thirty-nine of the 90 genes reached a 

Bonferroni-corrected p-value (for 21,968 genes) under meta-analytic modeling 

(Supplementary Table 4). Meta-analysis revealed heterogeneity among 26 of these 90 genes 

(uncorrected Q statistic p-value < 0.05), but the sizes of these effects were very small (I2 < 

0.01) compared to chance variability between studies (Supplementary Table 4). The forest 

plots for the five most significant transcripts (based on covariate-controlled mega-analysis) 

are shown in Supplementary Figure 1, with the full set of 90 transcripts available for 

download in the online Supplementary Materials. While many of these 90 transcripts 

showed consistent direction and magnitude of ASD-related effects across most or all of the 

study samples (e.g. LGAL3BP or KRLB1), there was a sizable minority of transcripts for 

which the effects appeared to be mediated by fewer well-powered studies (e.g. RPL21P2).

Sensitivity Analysis of Single-Gene Results

Sensitivity analysis was performed by iteratively leaving out each sample and repeating the 

mega-analysis (i.e., Jackknifing). We examined the p-values obtained from covariate-

controlled mixed-effect models for the 90 transcripts reaching Bonferroni-corrected 

significance in the full mega-analysis (Supplementary Table 5). Our results indicated that the 

largest studies (particularly the CHARGE Study and Glatt et al., 2012) may have contributed 

critically to the mega-analytic effects observed for twelve transcripts (C14orf28, FAUP1, 
HABP4, IGF2BP3, MAGOHB, MIR3198-2, MIR7112, MS4A2, NR3C2, RPL21P2, 
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RPL24P4, SNORD65); these transcripts no longer reached nominal significance when the 

CHARGE and Glatt et al., 2012 samples were withheld. More generally, the sensitivity 

analysis indicated that the removal of any data set substantially reduced the ability to detect 

differentially expressed transcripts at a threshold reflecting Bonferroni-correction for the 

total number of transcripts tested.

Comparison of Single-Gene Findings with Previously Published Meta-Analyses

For all 1,572 genes reaching an FDR q-value < 0.05 in the full covariate-controlled mega-

analysis, we also cross-referenced our results with those of recent meta-analyses (Ch’ng et 

al., 2015; Ning et al., 2015); this comparison is shown in Supplementary Table 3. We found 

three genes in common with Ning et al.; both studies reported under-expression of OR51F1 
and THOC6 in ASD samples. For LMBR1L, we observed over-expression, whereas Ning et 
al. reported under-expression in ASD samples. More generally, Ning et al. published only 

the 20 most significant over- and 20 most significant under-expressed genes, precluding a 

comprehensive comparison. The lack of replication and discrepancy could be related to 

differences between studies. Ning et al., combined gene-level summary statistics from 

multiple sample types (ex-vivo blood, transformed lymphoblastoid cell lines (LCL), and 

post-mortem brain). We also cross-referenced our results against a total of six dysregulated 

gene lists reported by Ch’ng et al. Among their over-expressed genes (as observed in LCL 

samples, non-LCL blood samples, and all samples combined), we also observed 28 of these 

genes to reach FDR q < 0.05 in our sample, and 25 were dysregulated in the same direction 

(Supplementary Table 3). Among their under-expressed genes, we observed ten of the same 

genes to be dysregulated in our sample; 8 showed the same direction of effect 

(Supplementary Table 3). Among our most significant findings which showed evidence of 

replication in previous meta-analyses was ASD-related over-expression of YES1. This 

proto-oncogene encodes a non-receptor tyrosine-protein kinase belonging to the src family; 

stimulation by receptor tyrosine kinases including EGRF, PDGFR, CSF1R, and FGFR leads 

to recruitment of YES1 protein to the phosphorylated receptor, and activation and 

phosphorylation of downstream substrates. It is involved in the regulation of cell growth and 

survival, apoptosis, cell-cell adhesion, cytoskeleton remodeling, and differentiation.

ASD-Associated Gene-Sets

Next, we examined whether functionally related sets of transcripts showed evidence of 

average differential expression as a group, compared to randomly selected gene-sets of equal 

size, using the covariate-controlled mega-analytic single-gene results. Gene-set analysis 

identified 716 sets (among 9249 examined) with at least one significant test hypothesis 

(Bonferroni p < 0.05; depicted in Figure 1, full details in Supplementary Table 6). One 

hundred and fifty-eight gene-sets were over-expressed; these implicated functions including 

aerobic energy production, protein metabolism (ribosomal translation, 3′-UTR regulation of 

translation, nonsense mediated decay at exonic boundaries), nucleotide metabolism (virus-

related transcription and life cycle, DNA repair), and genes shown to be over-expressed by 

up-regulated by MTOR inhibition and ERBB2 over-expression. The majority of gene-sets 

(525) were under-expressed among ASD cases; these implicated functions involved in innate 

and adaptive immunity (type I and II interferons, targets of IRSE, NOD-like receptor 

signaling, RIG1-MDA5-mediated induction if interferon, toll-like receptors 3 and 4, IL-1, 
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IL-6 via STAT3, IL-8 biosynthesis, TNF-α via NF-κB, B-cell receptor signaling, antigen 

presentation, and complement cascade), cell survival and signal integration (PI3K-AKT-

mTOR, KRAS, MAPK, ERK1 and 2), cell proliferation (G1-to-S transition, G2-M 

checkpoint, apoptosis, E2F Targets, mitosis), proteolysis, olfactory signal transduction, 

trophic signaling targets (EGFR, PDGFR), and other transcriptional targets.

We repeated these analyses using the diagnostic group mean differences for the 14,292 gene 

transcripts obtained using SVA-residualized data. Among a total 7,365 gene-sets evaluated, 

287 demonstrated significant effects after Bonferroni-correction for the number of gene-sets 

tested within each database (Supplementary Table 7). Among these, thirty-one showed 

evidence of over-expression among ASD cases, including sets reflecting ribosomal functions 

(translation and 3′UTR regulation of translation), influenza-life cycle and translation, and 

nonsense mediated decay enhanced by the exon junction. Additionally, 247 showed evidence 

of under-expression among ASD cases, including sets reflecting immunologic functions 

(type I and II interferon responses, RIG1-MDA5 signaling, double-stranded RNA-binding, 

ISRE-regulated transcripts, and TNF-α signaling via NF-kB), cell division (cell cycle, G2-M 

checkpoint, RB pathway, mitotic spindle, M-G1 transition, S-phase), cell signal integration 

(mTORC1), targets of transcription regulators (MYC, E2F), and genes involved in the 

response to DNA damage. Notably, the effects pertaining to members of the RAS-MAPK-

ERK signaling axis only emerged when less rigorous correction for family-wise testing was 

considered (Benjamini-Hochberg p < 0.05; Supplementary Table 8). Thus, many of the 

emergent functions reported in the covariate-controlled analysis showed evidence of 

replication within the SVA-residualized data.

ASD-Associated Gene Co-expression Network Modules

Network co-expression analyses were performed using non-residualized Z-scaled expression 

data for genes consistently reported across all studies (genes = 14,931). Plots displaying soft 

threshold selection criteria are provided in Supplementary Figure 2. We first sought to 

examine whether the global correlation structures found in the expression data were similar 

between ASD and controls. Network preservation analysis indicated that modules identified 

in comparison subjects were all strongly preserved (Z-summary > 10) in ASD samples, and 

the same was true for the reverse analysis (Supplementary Figure 3A). We then sought to fit 

co-expression networks within the full sample; block-wise gene clustering dendrograms are 

provided in Supplementary Figure 2. We sought to examine whether each module’s 

expression (summarized as module eigengene values) differed based on diagnostic status. 

Thirty network modules were identified within the full sample of cases and comparison 

subjects, and nine showed nominal associations with diagnostic status based on linear mixed 

models with stepwise removal of covariate effects; we further characterized five of these 

modules that met a corrected threshold of significance (BH p < 0.05) in terms of 

significantly enriched function, cell-type, and GWAS hits (depicted in Figure 2, with 

detailed functional and cell-type enrichment results in Supplementary Table 9). Because an 

unsigned network analysis allows for genes to load onto module eigengenes with both 

positive and negative correlation coefficients, we also report the number of positive and 

negative loadings for each module of interest (shown in Figure 2); all but two genes (Grey60 

module) loaded with positive signs. Additionally, for each module of interest, the most 
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highly inter-correlated genes are depicted as nodes (within Figure 2), and information 

regarding their ASD-related differential expression (taken from the covariate-controlled 

single-gene analysis) is depicted with color coding in the top-right quadrant of each node. 

Briefly, the sky blue module (73 genes) was over-expressed in ASD and was significantly 

enriched with NK-cell-related functions (among others) and GWAS signal (seven genes; 

permuted p < 0.04). The midnight blue module (130 genes) was also over-expressed in ASD 

and was significantly enriched with annotations related to ribosomal translation, viral life 

cycle, and transcription factor targets, as well as six GWAS hits (permuted p = 0.90, n.s.). 
The tan module (163 genes) was under-expressed in ASD and was enriched with annotations 

related to cell cycle progression, microtubules, mTOR signaling, estrogen responses, MHC 

class II-mediated antigen presentation, and targets of transcription factors; it also contained 

12 genes with GWAS signal (permuted p = 0.07). The green-yellow module (181 genes) was 

under-expressed in ASD and enriched with interferon-α and -γ, RIG1-MDA, and cytosolic 

DNA sensor signaling, as well as targets of many transcription factors and 12 GWAS hits 

(permuted p = 0.60, n.s.). The grey60 module (123 genes) was also under-expressed in ASD 

and enriched with annotations related to complement, interferon-γ, NOD-like receptor 

signaling, mTORC1 signaling, as well as several transcription factor targets, markers of the 

CD14+ monocyte lineage, and five GWAS hits (permuted p = 0.98, n.s.). The full list of 

functional annotations for ASD associated modules are provided in Supplementary Table 9. 

Additionally, for each of the 5 modules of interest, we plotted individual-level module 

eigengene values for the two diagnostic groups and we created heatmaps depicting gene 

expression values for each module (Supplementary Figure 4A through E).

Ingenuity Pathway Analysis of Dysregulated Genes and Networks

From the full covariate-controlled mega-analysis, we examined three gene lists of interest 

(dysregulated at FDR-q < 0.05, dysregulated at Bonferroni p < 0.05, and genes included in 

an ASD-associated network module at Benjamini-Hochberg p < 0.05). We interrogated these 

gene-lists using Ingenuity Pathway Analysis software’s Core Analysis under default settings 

and we focused on Canonical Pathways showing strong enrichment across all three lists of 

interest (Supplementary Table 10). For each selected pathway (EIF2 Signaling, Regulation 

of eIF4 and p70S6K Signaling, mTOR Signaling, and Interferon Signaling), we isolated the 

genes and overlaid information on diagnostic group expression differences in order to create 

color gradients, with red representing over-expression and green representing under-

expression in ASD (Supplementary Figure 5). Genes were automatically organized and 

depicted as mechanistic hypotheses based on IPA’s curated knowledgebase. Finally, the 

Molecule Activity Predictor (MAP) tool was used to make an inference on whether 

pathway-related emergent cell behavioral functions would be increased or reduced, based on 

the observed differences in transcript expression. This analysis suggested that protein 

translation would be increased (based on Regulation of eIF4 and p70S6K Signaling and 

mTOR Pathway; Supplementary Figure 5, Panels A and B, respectively), and more 

specifically that translation elongation would be increased, while initiation might be 

diminished (EIF2 Signaling; Supplementary Figure 5, Panel C). Furthermore, the analysis 

indicated that actin organization might be diminished (mTOR Pathway; Supplementary 

Figure 5, Panel B). Examination of the Interferon Signaling Pathway revealed reduced 

expression of intracellular mediators (STAT1, STAT2, IRF9), as well as the transcripts 
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whose expression would typically be increased by signaling through this cascade 

(Supplementary Figure 5, Panel D).

Blood-Based Transcriptomic Classification

We examined the best performing classification ensemble for each machine type. All 

machine types performed with relatively comparable accuracy in the training and withheld 

test samples (Table 2). Artificial neural networks achieved moderate accuracy in the 

withheld test sample (ROC AUC = 0.69 ± 0.02, sensitivity = 0.65 ± 0.02, specificity = 0.66 

± 0.04). Linear kernel support vector machines performed with similar accuracy (ROC AUC 

= 0.69 ± 0.02, sensitivity = 0.65 ± 0.05, specificity = 0.66 ± 0.05). Random forests 

performed with slightly lower accuracy (ROC AUC = 0.67 ± 0.03, sensitivity = 0.63 ± 0.04, 

specificity = 0.66 ± 0.05). In order to understand which genes facilitated diagnostic 

discrimination in the selected machines, we examined the frequency with which each gene 

appeared in the best performing ensembles (Supplementary Table 11A through C); as 

expected, these gene lists were highly enriched with those identified as differentially-

expressed in the single-gene analysis.

Sex-Specific Analyses and Cross-Sex Comparisons

Single-gene analysis—When data were analyzed separately for females (nASD = 90, 

ncomparison = 117), 19,508 covariate-controlled mixed-effect models produced valid results 

and 1,609 genes showed at least nominal evidence for dysregulation (uncorrected p < 0.05), 

with 802 over-expressed and 807 under-expressed in ASD, and none reached a corrected 

level of significance (FDR q < 0.05). Among males (nASD = 536, ncomparison = 330), 17,268 

gene-level models produced valid statistical results and 2939 showed at least nominal 

evidence for dysregulation (uncorrected p < 0.05), with 1338 over-expressed and 1601 

under-expressed in ASD, and 594 reached a corrected level of significance (FDR q < 0.05). 

When examining the intersection of nominally dysregulated gene lists (Supplementary 

Figure 6; center of Venn diagram), and accounting for the common background of genes 

analyzed, we observed significant cross-sex overlap of 489 dysregulated (hypergeometric p 
< 5.3×10−61), 233 over-expressed (p < 1.4×10−76) and 240 under-expressed genes (p < 

4.7×10−64). Interestingly, we observed a few genes showing apparently sex-discordant ASD-

related effects (Supplementary Figure 6). Also notably, when we compared the absolute 

values of the differences of least squared means among the top 1% of dysregulated genes for 

each sex, we observed larger magnitude ASD-related mean differences among females 

(mean |differencef| = 0.48 ± 0.06, mean |differencem| = 0.30 ± 0.03; p < 6.4×10−73) and 

larger F-values among males (mean Ff = 10.9 ± 2.4, mean Fm = 18.4 ± 4.6; p < 4.2×10−60); 

these differences could potentially be explained by differences and sample size and relative 

statistical power. Full lists of sex-specific summary statistics will be provided upon request 

to the corresponding author.

Gene-set analysis—Gene-set analysis was performed using the single-gene statistics 

derived from covariate-controlled mega-analysis within each sex (Supplementary Figure 6; 

side panels). Among the 7,350 sets assessed for females, 1,397 reached a liberal threshold of 

statistical significance (family-wise BH correction) and 368 reached a conservative threshold 

(family-wise Bonferroni correction). Among males, 7,358 gene-sets were assessed and 817 
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and 243 met liberal and conservative thresholds, respectively. We compared the results 

across sexes with respect to the common background of interrogated gene-sets, in order to 

identify transcriptomic effects that appear to be conserved across sexes; expectedly, many 

effects observed in the main analysis showed evidence for preservation in both females and 

males (Supplementary Figure 6; center of Venn diagram). We also highlight gene-sets that 

reached a conservative threshold for directional dysregulation in one sex, but that showed no 

evidence for dysregulation (either conservative or liberally-defined) in the opposite sex 

(Supplementary Figure 6; side panels); we further verified that no biologically similar (or 

semantically interchangeable) terms show evidence for dysregulation in the opposite sex. 

Potentially female-specific findings included over-expression of genes involved in DNA 

repair and under-expression of genes involved in heme metabolism, IL-2 signaling via 
STAT5, IL-15 signaling, transcriptional targets of MEK and miRNA species, and several 

chromosomal cytobands (Supplementary Figure 6, left panel). Potentially male-specific 

findings included over-expression of genes involved in O-linked glycosylation and 

transcriptional targets of MEK (Supplementary Figure 6, right panel). Full lists of sex-

specific gene-set summary statistics will be provided upon request to the corresponding 

author.

Gene co-expression network analysis—For each sex, we repeated network-level 

analyses using non-residualized Z-scaled expression data. Among females (nASD = 90, 

ncomparison = 117), modules were bi-directionally highly preserved between ASD affected 

and comparison subjects (two modules showed moderate preservation; Supplementary 

Figure 3B). When female cases and comparison subjects were analyzed together, we 

identified forty-one network modules; linear mixed models identified 8 as nominally 

associated with ASD, though none survived BH correction for multiple testing 

(Supplementary Figure 6, left side). Among males (nASD= 536, ncomparison = 330), modules 

are also bi-directionally highly preserved (Supplementary Figure 3C). When ASD affected 

and comparison subjects were analyzed together, we identified thirty-two modules, 8 of 

which were nominally associated with ASD, and 4 survived BH correction for multiple 

testing (Supplementary Figure 7, right side). On the whole, ASD-associated modules among 

females (composed of 1236 genes) shared a significant number of genes (299, 

hypergeometric p < 6.0×10−75) with those implicated among males (composed of 1208 

genes). Two ASD-associated modules among females (dark turquoise and midnight blue) 

did not show greater-than-chance over-representation of genes that were implicated in either 

the single-gene differential expression analysis or network analysis among males 

(Supplementary Figure 7, pink bracket). The dark turquoise module was diminished in 

affected females and was enriched with erythroblast markers and genes involved in heme 

metabolism, among other functions. The midnight blue module was enhanced in affected 

females and was enriched with CD4+ and CD+ T-cell-related functions, estrogen-responsive 

genes, cell proliferation and WNT-beta-catenin signaling. Among males, four modules that 

were diminished in ASD cases (cyan, dark turquoise, midnight blue, dark turquoise, and 

yellow) did not show greater-than-chance over-representation of genes that were implicated 

among female samples (Supplementary Figure 6, blue bracket). Notably, the midnight blue 

module was enriched with genes involved in neurotrophic signaling, cell adhesion, and B-

cell-related functions, and showed a trend toward enrichment with GWAS signal (permuted 
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p < .09). The dark turquoise module was also enriched with B-cell related functions and 

transcriptional targets of NKX2. The cyan module was enriched with genes involved in cell 

cycle, estrogen responses, MHCII antigen presentation, and several transcriptional targets, as 

well as GWAS signal (permuted p < 0.04). The large yellow module was enriched with 

genes involved in innate immune signaling functions, neurodevelopmental processes, 

neurotrophic signaling, glycerophospholipid metabolism, and numerous transcriptional 

targets. Full lists of sex-specific summary statistics and module enrichments will be 

provided upon request to the corresponding author.

DISCUSSION

Our study provides the best-available determination of dysregulated transcripts and 

characterization of their emergent functions in ex-vivo blood samples obtained from 

individuals with ASD and unrelated comparison subjects. Among the 90 genes reaching a 

Bonferroni-corrected level of significance based on the full mega-analysis, we found that 

test statistics tracked closely with those produced by our own corresponding meta-analysis. 

The top genes and emergent functions also showed similar patterns of dysregulation when an 

alternate strategy (surrogate variable analysis) was employed. The present findings help to 

clarify previously published meta-analyses by focusing on ex-vivo blood samples, and it 

extends upon previous studies by testing for directional dysregulation of functional gene-sets 

and co-expression modules. At the level of emergent function, many of the cell-types and 

signaling cascades implicated by our work have been associated with ASD previously; we 

provide an expanded review of these findings in the Supplementary Materials. Here, we 

focus on findings that have not been extensively discussed in previous work, but we feel may 

be poised to have a high impact on subsequent ASD research.

Despite evidence suggesting ASD-related increases in the abundance of certain leukocyte 

subclasses (T/NK-cells), the predominant signature observed in the ASD blood 

transcriptome was characterized by reduced expression of transcripts subserving innate 

immune and inflammatory signaling. Among these, type I (α/β) and type II (γ) interferon 

(IFN)-stimulated signaling cascades were strongly implicated in nearly every level of our 

analysis and were further supported by secondary re-analysis using Ingenuity Pathway 

Analysis software. We observed diminished expression of genes and gene expression 

networks subserving these functions in the blood of ASD cases. IFNs are small glycoprotein 

cytokines whose functions are primarily understood in the context of mounting 

immunological responses to infectious agents; both classes exert pleiotropic effects 

depending on the immunologic milieu, but the type I (INF-α/β) class are best understood as 

playing a central role in anti-viral responses (Theofilopoulos et al., 2005) and type II (IFN-

γ) are associated with inflammatory signaling and responding to a wider variety of 

intracellular microbes (Boehm et al., 1997; Schroder et al., 2004). The observation of 

reduced IFN-related gene expression in blood is surprising, particularly in the context of a 

recent meta-analysis which indicated higher levels of IFN-γ protein in ASD peripheral 

blood analytes (Masi et al., 2015); three studies found no difference in IFN-α protein levels. 

These data could be consistent with a decoupling or counter-regulation of IFN signaling in 

peripheral leukocytes, such that a relatively higher concentration of circulating IFN is 

eliciting a relatively weaker leukocyte transcriptional response in ASD-affected individuals 
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as compared with typically developing individuals. This interpretation might also be 

consistent with a small body of literature indicating a higher abundance of less effective NK 

cell in ASD (see Supplementary Materials for a review).

Notably, a relatively large brain-based RNA sequencing study implicated increased type I 

and II IFN-related signaling in ASD (Gupta et al., 2014), and a protein-based study of 

frontal cortex found higher levels of IFN-γ (Li et al., 2009). The present study robustly 

implicates a peripheral blood gene co-expression module featuring coordinate under-

expression of IFN-α/γ-regulated genes; within the same co-expression model, we find 

enrichment for several signaling cascades that play well-established roles in brain 

development and synaptic plasticity (e.g., AKT-mTOR, RAS-MEK-MAPK, and WNT 

signaling pathways; Gkogkas et al., 2013; Crino, 2011; Hoeffer and Klann, 2010; Brambilla 

et al., 1997; Budnik and Salinas, 2011; Oliva et al., 2013; Stornetta and Zhu, 2011; Sanchez-

Ortiz et al., 2014; Yang et al., 2013). Genetic mutations producing hyper-activity of these 

signaling cascades (i.e., mTOR and RAS) are well-known causes of neurodevelopmental 

syndromes comorbid with ASD (Hoeffer and Klann, 2010; Alfieri et al., 2014; Crino, 2011; 

Stornetta and Zhu, 2011; Kelleher and Bear, 2008), with suggestive evidence implicating 

others (Stornetta and Zhu, 2011; Kalkman, 2012; Levy et al., 2011). One previous study of 

cortical tissue from idiopathic ASD found reduced expression and activation of mTOR 

signaling pathway constituents (Nicolini et al., 2015), though less is known about RAS-

MAPK signaling axes in the idiopathic ASD brain. While we are not aware of established 

mechanisms linking IFNs to these pathways, we highlight another recent informatics study 

that identified inflammatory signaling integrators (NF-κB, JNK, MAPK, TNFs, TGFB1, and 

MYC) as central to ASD candidate-gene expression networks (Ziats and Rennert, 2011). We 

also highlight evidence from animal models that IFN-γ plays a role in regulating neuronal 

development (Li et al., 2010), and when introduced exogenously or up-regulated genetically, 

can alter synaptic plasticity and development of the visual system, hippocampus and 

cerebellum (Kim et al., 2002; Vikman et al., 2001; Brask et al., 2004; Ahn et al., 2015; 

Wang et al., 2004; Maher et al., 2006; Li et al., 2010; Barish et al., 1991). While several 

mechanisms are now being uncovered, we also suggest that IFN- and other cytokine-induced 

neuronal MHC class I expression could play a direct role in altering plasticity and brain 

development (Shatz, 2009; Victório et al., 2012; Gu et al., 2013; Chacon and Boulanger, 

2013; Li et al., 2010).

In reviewing our findings in the context of previous work (as detailed within the 

Supplementary Materials), we must consider a few possibilities: (1) ASD-related 

transcriptomic signals in leukocytes may be different than those of ASD in the brain (e.g., 
aerobic metabolism/mitochondrial genes, TNF-α via NF-kB, IFN-γ, and others). (2) ASD-

related transcriptomic signals in leukocytes may in fact be the opposite of what is seen at the 

level of circulating protein signal mediators (e.g., IFN-γ, IL-6, and IL-8 signaling). (3) 

Many of the cell surface receptors whose signaling was down-regulated in our analysis are 

known to exert their cellular and transcriptional effects through second messengers that are 

also down-regulated among our results (e.g., EGFR signaling via MAPK and PI3K-AKT). 

To more effectively convey these discrepancies we have attempted to collate our results with 

the findings of previous transcriptional and protein-based studies in human blood and brain 

tissues (Figure 3). In reviewing the literature, we noticed that post-mortem brain studies 
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have generally shown over-expression of transcripts subserving immunologic functions 

(Voineagu et al., 2011; Gupta et al., 2014), whereas our results clearly indicate the opposite 

pattern (reduced expression) in ASD blood samples. This observation could possibly be 

influenced by differences in the tissue localization of the originating inflammatory insult 

(e.g., if the inflammatory response originated in the brain), by post-mortem hypoxic damage 

to brain tissues, or by tissue-related differences in negative feedback response (e.g., if 
inflammation shows more pronounced transcriptional counter-regulation in leukocytes). 

Additionally, differences in the age of subjects (who tend to be older in post-mortem brain 

studies) or medication usage could contribute to these differences. With respect to the 

discrepancy between blood-based studies of signaling protein and transcriptional cascade, 

several phenomena could explain this pattern. One hypothesis might be that long-term over-

activity (at the level of circulating protein or intracellular protein expression/

phosphorylation/signaling activity), perhaps through feedback mechanisms, is accompanied 

by down-regulation of the transcripts coding for genes that subserve these signaling 

functions and of transcripts that are typically induced by these signaling cascades. A related 

hypothesis might be that ASD is characterized by decoupling between some circulating 

signaling molecules and their intracellular transcriptional effects. Future mechanistic and 

within-subject, cross-tissue studies could help shed light on these apparent discrepancies. A 

full discussion of the findings in our literature search is provided in the Supplementary 

Materials.

The scientific community has long recognized the concept of an adaptive immune system, 

classically including antigen-specific T-cells, B-cells, and circulating antibodies. However, 

we suggest that an expanded concept of immunoplasticity could also include other leukocyte 

subtype populations and the signaling set-points and feedback mechanisms that govern cell-

intrinsic responsivity, as well as the paracrine and hormonal signaling mechanisms that 

govern interactions between classes of leukocytes and between leukocytes and non-

leukocyte cells and tissues (MacGillivray and Kollmann, 2014). An emerging body of 

literature supports the idea that internal and external environmental factors (e.g., infection 

and toxicants) exert a persistent influence on later-life immunological milieu (Brodin et al., 

2015; Winans et al., 2011; Hansbro et al., 2014; Gbédandé et al., 2013; R. Dietert and Judith 

T. Zelikoff, 2015; Chen et al., 2011; Luan et al., 2015; Garay et al., 2013). With respect to 

the present study’s findings, we highlight evidence from the fields of immunology and 

infectious disease, indicating that down-regulation of IFN-γ-responsive genes is a well-

characterized phenomenon in chronic infections (Taylor and Mossman, 2013; Kim et al., 

2007). A growing literature of animal studies indicates that prenatal immune activation can 

cause behavioral and neurobiological phenotypes reminiscent of human disorders; as these 

models begin to reveal the roles of specific signaling molecules and their interactors in 

typical brain development, we will have a context for understanding how persistent 

dysregulation of these systems in human subjects might be poised to influence 

neurodevelopmental phenotypes like ASD. It is also important to recognize that relatively 

few individuals exposed to environmental risk factors develop ASD-like phenotypes; genetic 

vulnerabilities impacting immunologic and neurobiologic systems may help explain why 

only a minority are profoundly affected (Hsiao et al., 2012).
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We must recognize a number of limitations pertaining to this study. Our findings are strictly 

correlational, and as such we cannot infer whether these findings are related to the 

pathophysiology of ASD or arise in response to internal and external environmental factors 

or reflect epiphenomena of the syndrome or its treatment. We relied upon the diagnoses and 

exclusion criteria of the original study authors. We included subjects that would meet the 

DSM-IV criteria for autistic disorder, as well as those meeting criteria for PPD-NOS and 

Asperger’s Disorder. Thus, it is likely that our results are influenced by both phenotypic and 

genetic/biological heterogeneity among affected cases, which may diminish power. While 

we attempted to statistically control for effects related to the study site and demographic 

covariates shared across studies, a number of unmeasured factors could have influenced the 

results (e.g., suggestive evidence of stratification amongst leukocyte subclasses), though we 

attempted to address this concern through replication with the SVA-corrected data, which 

produced similar results. Another limitation of the present study was its use of an unsigned 

co-expression network construction approach, which allows for both positively and 

negatively correlated genes to load onto a given module eigengene; this approach might 

allow for negatively correlated transcriptomic processes to be grouped together in the same 

module (so long as they are highly correlated), but this feature can make it more challenging 

to interpret the meaning of ASD-related module eigengene differences. We found that nearly 

all genes contained within ASD-associated modules loaded with a positive sign (670 out of 

672 genes) and that an overlay of the single-gene differential expression information further 

facilitated directional interpretation of our unsigned network approach (Figure 2). However, 

in addition being more easily interpretable, some studies have suggested that signed 

networks are more likely to be enriched with protein-protein interaction partners and 

functional pathway relationships than unsigned networks (Ramani et al., 2008; Zhang and 

Horvath, 2005; Song et al., 2012). Yet another limitation of this study is that the female 

sample was relatively underpowered for discovery and this may contribute to the impression 

of sex-differences; future studies should seek to include more female subjects and explicitly 

examine sex-differences. A power calculation based on the observed characteristics for the 

top genes observed in the present female sample (β = 0.50 with s.d. = 0.01) suggests that a 

sample of at least 300 subjects would be sufficiently powered to detect dysregulated 

transcripts after Bonferroni correction for 20,000 genes (α = 2.5×10−6). Nonetheless, 

heterogeneity of genomic characteristics among patients could be the norm rather than the 

exception (Campbell et al., 2013; Diaz-Beltran et al., 2016). Despite these limitations, we 

feel this work makes a valid and valuable contribution to the transcriptomic characterization 

of the circulating immunologic milieu in ASD and highlights signaling mechanisms through 

which immunologic and neurobiological systems could interact.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Results of Permutation-Based Gene-Set Analysis.

Test statistics from the covariate-controlled single-gene mega-analysis (differences in 

diagnostic group means after adjustment for covariate effects) were supplied for 

permutation-based gene-set analysis. As described in the Methods section, this approach 

assesses whether a given a priori-defined set of genes, on average, shows more evidence of 

an ASD-associated expression difference than randomly selected gene-sets of equal size. 

Here we show results that reaches a Bonferroni-corrected p < 0.05. The functional themes of 

over-expressed gene-sets are shown within the red-colored upward-pointing arrow, and the 

functional themes of under-expressed gene-sets are shown within the green-colored 

downward-pointing arrow. P-values (Bonferroni-corrected for the number of sets per 

database) are displayed in parenthesis, and p-values < 1×10−6 (reflecting the minimum 

possible p-value based on the number of permutations) are denoted with **. Full results of 

this analysis are available in Supplementary Table 6 and gene-set names can be examined 

within the Molecular Signature Database for additional context.

Tylee et al. Page 30

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
ASD-Associated Gene Co-expression Network Modules.

Gene co-expression network analysis performed on non-SVA-corrected data identified thirty 

network modules when ASD cases and comparison subjects were analyzed together. ASD-

associated modules were identified using linear mixed models (as described in the single-

gene analysis) to predict module eigengenes; five modules showed a significant association 

with ASD (Benjamini-Hochberg-corrected p < 0.05). Modules with higher eigengene values 

among ASD cases are described as over-expressed (left side) and those with lower 

eigengene values among ASD cases are described as under-expressed (right side). Within 

each colored panel, we indicate the module color name, the threshold of its significance for 

association with ASD, the number of positively and negatively loading genes, and functional 

and cell-type enrichments based on hypergeometric test statistics (Benjamini-Hochberg p < 

0.05; Full Results in Supplementary Table 9). We also include the names of genes that 

showed ASD GWAS signal at an uncorrected gene-level p < 0.05 in a recent meta-analysis. 

The symbol * beside the number of GWAS signal genes denotes whether the network 

module showed significant GWAS signal enrichment based on a quantitative permutation 

testing (see Methods). We also indicate the identities of SFARIgene candidate-genes 

contained within each module. Beside each colored panel is a plot depicting the 25 most 

highly inter-correlated genes for that network module; the 5 most highly correlated “hub” 

genes are depicted in the center. Each gene is depicted as a small colored circle, with the top 

right quarter indicating the relative over- or under-expression of that gene in ASD cases 

based on the single-gene covariate-controlled mega-analysis analysis; dark red indicates 
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highly significant over-expression (FDR q < 0.05), while light red indicates nominal over-

expression (uncorrected p < 0.05). The same relationships can be understood for dark green 

and light green, with respect to under-expressed genes in ASD. For each gene, the bottom 

left quarter of its circle was colored pink to indicate a gene showing nominal GWAS signal.

Tylee et al. Page 32

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2018 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Summary of The Present Study’s Findings in Comparison with Previous Studies of Human 

Blood and Brain Tissues with Respect to ASDs.

We conducted a literature search and attempted to compare our blood transcriptomic 

findings for various biological functions against previous studies that reported on the 

expression of either RNA or protein markers relevant to those functions in human blood or 

brain tissue, comparing ASD samples (including genetic syndromes with high rates of ASD) 

with unaffected comparison samples. All enumerated references supporting this table can be 

found in Supplementary Table 12. With respect to protein markers, we considered studies 

that examined the measured levels of circulating protein (e.g., blood cytokine or growth 

factor studies) or the relative quantity of a protein in cell or tissue, or the relative activation 

of protein signaling (e.g., quantity or proportion of phosphorylated protein). When clear 

directional findings were apparent from the reviewed literature, we denoted the conclusions 

with up or down arrows (reflecting ASD samples relative to controls) and provide brief 

descriptions of what was show, with supporting citations. When the literature clearly 

supports the identification of both increased and decreased activity of a biological function 

in ASD, we denoted this by including both up and down arrows, and attempt to provide 

more information on factors that might account for these findings. When insufficient 

evidence was found to draw a conclusion, we denoted this with a question mark. All 

supporting citations are discussed more thoroughly in the Supplementary Materials.
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Table 2

Results of Machine Learning Classification Analysis.

Machine Type
Training Set (Boot67) 

Cross-Validation 
Accuracy

Validation Set Area 
Under ROC Curve Validation Set Sensitivity Validation Set Specificity

Linear Kernel SVM 0.72 ± 0.02 0.69 ± 0.03 0.65 ± 0.05 0.66 ± 0.05

Random Forests 0.71 ± 0.01 0.67 ± 0.03 0.63 ± 0.04 0.65 ± 0.04

Artificial Neural Networks 0.71 ± 0.02 0.69 ± 0.02 0.65 ± 0.05 0.66 ± 0.04
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