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ABSTRACT OF THE THESIS
A Tale of Two Testing Tools
by
Robert Chang-che Chen
Master of Science in Computer Science
University of California, San Diego, 2008

Professor William E. Howden, Chair

In today’s software world, the increasing number of software products
creates an equivalently increasing number of software bugs. Software engineers
counter this by writing tests to check the functionality of their programs. How-
ever, as programs become increasingly complex, the process of writing tests be-
comes lengthened, tedious, and arduous. In response, certain products have been
developed to automatically generate and run tests for software engineers. This
study explores two such programs, Jtest and Agitator. Given a software program,
these tools automatically generate and run tests for the programmer. This study
attempts to show the effectiveness of these tools by feeding them sample programs,
and observing the types of tests produced. At the end, the tradeoffs between these

tools are compared.

vil



Introduction

One of the goals of software testing is to build tools that can automatically
generate and run tests and then validate results. In general, we know that it is not
possible to generate tests that will find all bugs, but the goal is to be as effective
as possible.

In this work we examine the capabilities of two commercial Java testing
tools: Jtest and Agitator. Both are oriented to the testing of class methods, as
opposed to systems testing. The tools will take a class C, and then test its methods
m() by generating test data for C’s class variables and m()’s parameters.

For each tool we consider: user interface features, test generation, oracles,
test management, and static analysis.

With respect to test generation we consider:

1. Will the tool generate tests automatically for all types, including both prim-

itive and non-primitive?
2. What is/are its test completeness measure(s)? e.g. branch coverage
3. Analyzing control flow which involves different types of data?

4. Complex control flow structure. What will it do if the method you are testing

calls other methods?



5. Are we able to guess properties of the (proprietary) generation mechanisms

from the examples we analyzed?

6. How are the tests specified? For example, can the tool generate JUnit test

classes for its tests?
With respect to test oracles we considered:
1. Oracle construction
2. Manual test evaluation

In answer to the question “which tool is best” we hope the information

will assist developers in making the best decision for themselves.
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Jtest

Jtest is an Eclipse plug-in developed by Parasoft, which markets a suite of

development tools. The user typically enters code into the integrated development

environment (IDE) and clicks “Run” to perform testing, as shown in Figure 1 and

Figure 2.

i Deling_System_gnefokdar pest
5 Jiest_banch 222 16
3 ookl
B
‘abstiact_clacs_benchjava
iava

java
- berch ava
1 ), JRE Spstem Librery[1 2}
53 Jieat_bench_2_22 U6 et

=
= Jiest Exanle
o dies Exame et

Bl e el
U ni_testaava | )] misc eiTertava.

rt jave.lang.

class loop beach

¢

i

4

i
class ¥ill run tests for this =st of benclhoatks.

* This

£
ine

tivaid ions (ine 1, ime

e

£/ lcop_dssce: on lacalvar: = new loap_discontinuatioa();
£/ leealvari.step in for(parapeteri):

£/ Mocalvari.stop_in forspecific(parsmetsri):

£/ lcealvari.step in cumslarivefor (pacameters);

"

wlass losp discentinuation

i
* Thiz class shall contain methods vhich test vhether a loop can be properly snalyzed and interrupted by Jt

2,

woid stop in for(int x)

Figure II.1: The Eclipse IDE with Jtest plug-in.

Figure 2 shows the configuration menu. This allows control of coding

standards to be checked; a choice of line or branch coverage; and which folders to



Figure I1.2: The configuration menu with “Run Test” button to start testing.

execute from, among other features. When the testing is finished, the IDE will

display a window stating the percentage of code covered, shown in Figure 3.
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Figure I1.3: Window displaying results of a test run.

It also generates a slightly more detailed HTML report which shows num-
bers of tests run and numbers of positive or negative outcomes. Jtest generates
testing code via the JUnit testing framework. Fach time a source file is tested,
a file of JUnit test code is generated in a separate source tree, with file names

“[originalfilename|Test.java”. Figure 4 shows a typical JUnit test file.
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Figure I1.4: A sample [filename]Test.java file.

Furthermore, the IDE displays red and blue marks for uncovered and

covered lines of code, respectively, seen in Figure 5.
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Figure I1.5: Red and blue marks indicate uncovered and covered lines, respectively.

In the following, we will consider test generation, the oracle problem, test

management, and static analysis.

II.1 Test Generation

II.1.A Types, Constructors, and Test Generation

Jtest can generate tests for all primitive types. The number and kinds
of tests depends on its coverage attempts, which are discussed below. Java de-
fines several primitive types, such as string, int, float, double, etc. Non-primitive
types include user-defined classes. A method m() may have a non-primitive type
parameter.

When a method m() from a class C is tested, we need to also consider the

class variables for C and whether they are primitive. In addition, it is necessary



to consider if C has constructors, and if so, how many.

When a method m() in a class C is tested, the testing is preceded by a
call to one of Cs constructors (if it has one). If C has no constructor, then Jtest
will assign default values for the primitive type class variables. If C has a non-
primitive class variable of type D, then Jtest is unable to generate instances of D.
In general, Jtest does not fully specify what the instance of a containing class is
for a test of a method, so it is necessary to do some analysis to determine what
the default settings are for class variables when there is not a constructor. Figure

6 illustrates what occurs when no constructors are present.



clazzs P{

int a;
t
class Qf

it 1

P sample P,
b

class PQ Driver{
boolean compare intQ(Q inputQy{
ifinputQri = 0){

return true;
b
elzef

return false;
b

b

boolean comnpare rtPIQ mputQ )
1finput Q. sample Pa=0}{
return true,

elzef
return false;

H

Figure I1.6: An example of classes with no constructors, and generated test code.

o

* Test for method: compare_mntP ()
* [@throws Threwable Tests may throw any Throwabls
* (@eee PO Driverdfcompare_intP(())
* @author Parasoft Jtest 7.0
*
public void testCotnpare_intP 1() throws Throwable {
Object THIS = JT. create Object(
Class forName("PQ_Driver"),
new Object[] {1,
new Class[] {});
if jtest_tested_rmethod
boolean RETVAL = ({(Boolean) IT mvoke(
Class.forlName("PQ_Drver™,
THIZ,
"compare_intP",
new Object[] { null 3,
new Class[] { Q.class })) bocleanValue();
i FullPoanterException thrown, oniginator 15 arg 1 to <dethod
PO _Driver compare_intP(LO)Z>
i at PQ_Driver. compare_intP{ronstructor_bench java:113)
if jtest_unvenfied
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Only the method “compare_intQ” is tested. The test for “compare_intP”
fails because Jtest cannot generate an object which is a member variable of another
object. Instead, a null object is generated. One can see from the Jtest output that
the test for “compare_intP” failed because of a null pointer exception.

In the case where the method m() is in a class C that has a constructor,
then Jtest will call the constructor and generate test values for both the constructor
and the method parameters.

Subject to the above limitations, Jtest will generate a wide range of test

values for different primitive types.

I1.1.B Default Values

There are several kinds of default values. In the case discussed above,
where a class C has no constructor, default values need to be assigned to class
variables before proceeding with a testing. There is a single default value for each
type:

int =0

string = “0”

float/double = 0.0

When Jtest is testing a method m() it was observed to use the default
values 0 for integers, 0.0 and 7.0 for float and double parameters, and “0” for
strings.

Jtest will also choose additional kinds of relative “default” values when
testing methods. If a method m() contains an integer constant k, then it will use
k-1, k and k+1 for integer input method parameters. It does not do the same
thing for float/analysis constants. For string constants k occurring in a method,

it will use k as an input value for string input parameters.
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I1.1.C Coverage and Test Generation

According to Parasofts advertisement, Jtest, “[monitors| test coverage
and achieves high coverage using branch coverage analysis.” [Parasoft (2008)] In
theory, it is impossible to know if all possible coverable branches have been tested
by a test set T. Hence, it is necessary for Parasoft to use the cautious claim high
coverage. However, in order to achieve high branch coverage, the tool should be
performing some form of analysis. We did not know the inner workings of the tool,
so the following comments were based on our own speculations, working backward
from numerous examples.

Automated coverage analysis involves examining the conditional branches
that occur along a path in the code, and then determining inputs that will cause

that path to be followed. We considered different levels of complexity:

1. method control flow structure
2. types

3. expressions

Analysis and Control Complexity

Jtest is very proficient in performing analysis of “if” statements. There
were no significant limitations in generating test data for “if” control blocks. Al-
though failures occurred when dealing with complex arithmetic expressions and
certain data types, we will address this issue in the next section.

An intriguing aspect of Jtest is its ability to handle “for” and “while”
loops. Both are handled in the same manner, so examples presented will only
feature the “for” loop. The analytical problem which comes to mind in dealing
with loops is whether Jtest performs any analysis on a loop and make a prediction
of what it will do. If the incrementing statement of a “for” loop is used as an

input to a function, it is difficult for Jtest to generate a proper incrementing value.
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As seen in Figure 7, Jtest is unable to cover the “if” statement because it only

generates an input of a = 1000.

void incrementfortest(int a){ ke

int 1, * Test for method: incrementfortest{int)
for(i=0; 1 < 1000, i +=a){ * (@throws Throwable Tests may throw any Throwable
ifii= 3 3 * (@eee loop_dizcontimiationdfincrementforte stint)
1=1000; * (@author Parasoft Jtest 7.0
B *
: public veid testncrementfortest]1() throws Throwable {
} Object THIS =TT create Object(
Class forMame("loop_ discontinuation™),
new Object[] {},
new Class[] {});
if jtest_tested_mmethod
JT inwokel
Class. forMame("loop_ discontinuation™),
THIZ,
"mcrementfortest”,
new Object[] { new Integer(1000) 3,
new Class[] { Integer TYPE });
i Mo ezception thrown
if jtest_unverified

Figure I1.7: An example of Jtest generating values for the incrementor in a loop.
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Jtest also has difficulty determining a reasonable stopping condition for
a loop. Figure 8 shows a situation where the stopping condition of a loop is an
input to a function. Jtest was only able to generate 0 as the input. An input of

800 would have produced full coverage.

mt stoppingfortest(int a){ TE
it 1 * Test for method: stoppingfortest{int)
for(i=0,1<a i+ } * @throws Throwable Tests may throw any Throwable
ifii =200 * @eee loop_discontinuation#stoppingfortest(int)
return 1, * @author Parasoft JTtest 7.0
} ¥
elsef public void testStoppingfortast1() throws Throwable {
retum 2, Obiject THIS =TT create Object(
L Class forMame("loop_discontinuation"),
B new Object[] {},

new Class[] {3,
if jtest_tested_method
int RETWVATL = ({Integer) JT.awvole(
Class forMame("loop_discontinuation™),
THIZ,
"stoppingfortest”,
new Object[] { new Integer(0) },
new Class[] { Integer. TYPE })).mtValue(),
assertEquals(2, RETVALY, /f jtest_unverfied
ff Mo exception thrown
i fest_unverified

Figure I1.8: An example of Jtest producing input for a loop stopping condition.
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It is also interesting to see that certain complex “for” loops are fully

covered by Jtest. In an experiment in which the initial value and incrementing

value are modified, Jtest is able to perform some basic analysis on these values.

Figure 9 shows an example where Jtest is able to generate a test value of 347,

which is the value of

void hardestfortest(int =){

itit 1,

forii =342; 1 < 1000, 1+=5){

1fid

i

Figure 11.9: An example of Jtest fully covering a complex loop expression.

=i
i=1000,

wn
1

after the first iteration of the loop.

’I’DOCDOC

* Test for method: hardestfortest(int)

* @ithrows Throwable Tests may throw any Throwable
* [@see loop_discontimationsthardestfortesting)

* (@anthor Parasoft Ttest 7.0

*

public voud testHardestfortest1() throws Throwable {

Object THIS =TT createCbject(

Class forMame("loop_discontinuation™),
new Object] {1,
new Class[] {13,
ff jest_tested method
IT inwolee(

Class forMame("loop_discontinuation”),
THIZ,
“hardestfortest’,

new Object]] { new Integer(247) },

new Class[] { Integer. TYPE });
i Mo exception thrown
{f jtest_unverffied
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Yet, for a very simple program like the one seen in Figure 10, Jtest is

unable to generate tests which cover all paths. In the case of Figure 10, only the

value of 0 is generated for “x”. A value of 342 would have been sufficient for full

coverage.

voud simplefortest(nt x){ i

it 1 * Test for method: simplefortestiint

for(i=0, i < 1000; i++){ * @throws Throwable Tests may throw any Throwable
ifi =342 * @see loop_discontinuation#simplefortest(int)
1=1000; * @author Parasoft Jtest 7.0
} *
public veid testSunplefortest1() throws Throwable {
B Obiject THIS =T createObject(
Class forMame("loop_discontinuation”),
new Object[] {3},
new Class[] {17,
ff jrest_tested method
TT invole(
Class forMame("loop_discontinuation”),
THIZ,
"simplefortest”,
new Object]] { new Integer(0) },

new Class[] { Integer TYPE 1),
i Mo exception thrown

ff jrest_unverified

Figure I1.10: An example of Jtest trying to cover a very simple condition within a
loop.
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Analysis and Types

Jtest was able to analyze paths and most mathematical expressions in-
volving integers. Integer expressions involving exponentiation could not be ana-
lyzed, but this is an understandable limitation. Jtest also does not appear to carry
out analysis for float/double precision. Consider Figure 11, where only the values
0.0 are generated and the tests only cover return value 3.

int test fd(float x, double y){ e

ifiz <-1.00f * Teat for method: test fd(float, double)
return 1, * (@throws Throwable Tests may throw any Throwable
} * @see quick_stuffitest fdifloat,double)
* (@awthor Parasoft Ttest 7.0
ifiy > 10) *
retumn 2, public void testTest fd1{) throws Throwable {
K Obiject THLS = JT. create Object(
elsef Class forlame("quick_stuff"),
return 3, new Object[] {},
1 new Class[] (3,
B i ftest_tested method

mt EETVAL = ((Integer) JT invoke(
Class forMame(" quick_stuff"),
THIZ,
“test_fd",
new Object[] { new Float(0.000000f), new
Double(0.0) 1,
new Class[] { Float TYPE, Double TYPE
1.mtValue(),
assertEquals(3, RETVALY, /f jtest_unverfied
ff Mo exception thrown
I fest unverfied

Figure I1.11: An example using float and double types, and generated test code.
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In the case of strings, Jtest is able to carry out very simple analysis. Here,

in Figure 12, all branches are covered with test data of “stringl”, “string2”, and

“()”
Ak

* Test for method: xy_eq nested(java lang String java.lang String)
* @throws Throwable Tests may throw any Throwable

* @see quick stufffry eq nested(java lang String,java.lang String)
* @author Parasoft Jtest 7.0
*f
public void testiy eq nested2() throws Throwable {
Object THIS =T . createObject(
Class fordame(" quick_stuff"),
new Object]] { },
e Class[] {3
ff jtest tested method
hoolean RETV AT = (B oolean JT inv okel,
Class forMame(" quick stuff"),
THIS,
"xy eq nested",
new Object[] { "stringl", "0" },
new Class[] { String.class, String.class }).booleanValue(),
assertEquals(false, RETVALY, // jtest unverified
/Mo exception thrown
#f ftest unwerified

}
Aok

* Test for method: xy_eq nested(java lang String java.lang String)
* @throws Throwable Tests may throw any Throwable
* @see quick_stufffry eq nested(java lang String,java.lang String)
* @author Parasoft Jtest 7.0
*f
public void testiy eq nested3() throws Throwable {
Object THIS =T . createObject(
Class fordame(" quick_stuff"),
new Object]] { },
rew Class[] {3
ff jtest tested method
boolean RETV AL = (B ooleany JT . inv olel,
Class forMame(" quick stuff"),
THIS,
"wy eq nested",
new Object[] { "stringl", "strmg 2" },
new Class[] { String.class, String.class }).booleanValue(),
assertEqualsttrue, RET VALY, // jtest unverified
/Mo exception thrown
#f ftest unwerified

boolean xy_eq nested(String x, Strng v){

i = "sring 1)
ifty = *sring 2°)(
return true,
¥
elsef
return false;
)
}
elsef
return false;
¥

Figure I1.12: An example of string test generation.



18

Analysis and Expression Complexity

At some level, expression complexity limits the possible analysis for all
types, regardless of the complexity of the control structure. This is to be expected,
since there are no expression solution algorithms for higher order expressions, such
as integer equations and inequalities of order higher than 4. Also, it may be
non-economic to develop solution procedures for a data type such as strings, even
when the expressions are limited to something relatively simple such as nested
concatenation.

In the following we show examples of varying degrees of complexity for
the three types: int, string and float/double. Each example is a limiting case,
where the expression complexity blocked Jtest from producing tests needed to
ensure branch coverage. In Figure 13, one can see that Jtest only generated a test
value of 0 for the exponentiation example code. This does not cover all branches

of evaluation.



boeclean int_cubed eq 10G0(nt v){ e
i Aath pow (v, 3) = 1000 * Test for method: mnt_cubed_eq 100000t
return true, * (@ithrows Throwable Tests may throw any Throwable
1 * (@see algebraic_complemty benchifing cubed eq 1000(nt)
elsef * @author Parasoft Ttest 7.0
return false; *
B public void testInt_cubed_eq 100010 throws Throwable {
Object THIS =TT createCbiject(
Class.forMame{"algebraic_complexity_bench"),
new Object[] (3,
new Class[] {}7;
ff ftest_tested method
boolean RETWATL = ((Boclean) JT involee(

Class.forMame("algebraic_complexty bench"),
THIS,

"int_cubed_eq 1000
new Cbject[] { new Integer(0) },

new Class[] { Integer TYPE 1) booleanValue();
assertEquals(false, RETWVAL); /f jtest_unvenfied
# Mo exception thrown
ff jrest_unverified

Figure I1.13: An example of exponentiation with an integer type, and generated

test code.

19



20

In Figure 14, one can see that Jtest only generated a null string as input
into the “string_concat” method. Because this does not cover all the branches
possible, it seems that Jtest is limited in its ability to generate tests for string

input.

boolean string_concat(String x){ =+

z=x+"ple", * Test for method: string_concat{java.lang String)

iz ="apple"}{ * @throws Throwable Tests may throw any Throwable
return true, * (@eee quick_stuffffetring concat(java lang String)

1 * (@author Parasoft Ttest 7.0

elsa{ *
return false, public veid testString concat1() threws Throwable {

3 Object THIS = IT create Object(

B Class forMame("quick_stuff"™),

new Object[] {3},
new Class[] {13,
if jtest_tested_methad
boolean RETVAL = ((Boclean) JT.mvoke(
Class forMame("quick_stuff™),
THIZ,
"string concat",
new Object[] { null },
new Class[] { String class } 1) booleanValue(),
assertBquals(false, RETWVALY, /f jtest_unvenfied
I o exception thrown
I jtest_unverified

Figure I1.14: An example of string concatenation using the “+” operator, and

generated test code.
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In Figure 15, Jtest only generates a test value of 0.0 for the method. Not
all branches are covered in this example. It appears that Jtest may have some
limitations when attempting to generate tests for the double type.

boolean d_add2 greatlO(double x){  /**

ifim+2 2 10) * Test for method: d_add2_great10(double)
returmn trie; * (@threws Throwable Tests may throw any Threwable
+ * @eee quck_stuff#d_add2_great10(double)
else{ * {@author Parasoft Ttest 7.0
return falsa, *f
5 public veid testD_add2_great101() throws Throwable {
B CObject THIZ = IT create Object(

Class forMame("quick_stuff"),
new Object[] {},
new Class[] {10;
/i jtest_tested_methed
boolean RETVAL = ((Boclean) JT inwole(
Class forMame("quick_stuff"),
THIZ,
"d_add2_great10",
new Object]] { new Deouble(0.0) },
new Class[] { Double. TYPE } ). booleanValue(),
assertBauals(false, RETWVALY, /f jtest_unverified
N Mo ezception thrown
I jtest unverified

Figure I1.15: An example of algebraic complexity using the double type, and gen-

erated test code.
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I1.1.D Generation Mechanism
Analysis Process

The details of how Jtest actually generates automatic test data are propri-
etary. There are several approaches to this problem, including symbolic evaluation
[Howden (1977)] in conjunction with a standard inequality package, different forms
of interval analysis [DeMillo and Offutt (1991); Offutt et al. (1999)], and conver-
gence methods [Korel (1990)]. We examine some of the tests that were generated
to see if it is possible to guess the process.

Because Jtest generates a set of default test values, it was important to
determine whether achieving coverage was just a coincidence, or the product of per-
forming some actual analysis. Recall that for an integer type variable, the default
value is 0. In addition to the default value, Jtest generates a set of “boundary” val-
ues for a given program. Every analysis sample results in using standard boundary
values which correspond to the constants. For a constant “k” in a program, the
possible boundary values generated are k-1, k, and k+1. In the following example,
a boundary value -1 is generated, in addition to -2. Figure 16 shows the results of

this program.



JE

boolean it add2_great Ofint ¥){
* Test for method: int add2 great O(int)

iy+a = 0){
* @throws Throwable Tests may throw any Throwable return trae;
* @seealgebraic complexity bench#int add2 great O(int) }
* @author Parasoft Jtest 7.0 elsef
*f return false;
public void testint add2 great 010 throws Throwable { }

Object THIS =JT . createObject(
Class forName("algebraic_complexity bench"),
new Object(] {},
new Class[] {3,

f{ jtest tested method

boolean RETV AL = (B ooleany JT 1nv olel,

Class forName("algebraic_complexity bench"},
THIS,

“int add? great 0",

new Object[] { new Integer(-1) },

new Class[] { Integer TYFE HbooleanValue(),
assertEqualstrue, RET VALY, / jtest unverified
Mo exception thrown
#f jtest unverified

H

JHE

* Test for method: int add2 great O(int)
* @throws Throwable Tests may throw any Throwable
* @seealgebraic complexity bench#int add2 great O(int)
* @author Parasoft Jtest 7.0
*f
public void testint_add2_great 020 throws Throwable {
Object THIS =JT . createObject(
Class forName("algebraic_complexity bench"),
new Object]] {},
new Clasa(] {1
f{ jtest tested method
boolean RETV AL = ((Boolean) JT .inv oke(

Class forName(" algebraic_complexity bench'},
THIS,

“int add? great 0",

new Object[] { new Integer(-2) },

new Class] { Integer TYFE H).booleanValue()
assertEquals(false, RETVALY, /¥ jtest unverified
/Mo exception thrown
#f jtest unverified

Figure I1.16: An example of simple integer type analysis, and generated test code.
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In Figure 16, there are two constants in the program, 0 and 2. The
possible boundary values choose from would be -1, 0, 1, 2, and 3. The default
value for y would be 0. Jtest seems to choose test data from the set of boundary
and default values. Yet, the choice of -2 demonstrates some sort of analysis was
performed determine this unique test datum.

In order to see if the analysis goes beyond using default and boundary
values, we constructed examples such that choosing the default and boundary
values would not satisfy all paths. In Figure 17, which contains the condition x+5
< 37, Jtest generates values 31 and 32 and satisfies all paths despite our efforts to

fool it.



Pl int easy_pathiint i) {

* Test for method: easy_path(int) iz + 5 < 37

* @throws Throwable Tests may throw any Throwable return 1;
* @see quick stuffffeasy path(int) }

* @author Parasoft Jtest 7.0 else{

*f return 2,
public void testEasy_path 10 throws Throwable { }

Object THIS =JT . createObject(

Class fortlame(" quick_stuff"),
new Object(] {},
new Class[] {3,
ff jtest tested method
int RETVAL = ((Integer) JT.mnvoke(
Class forbame(" quick_stuff"),
THIS,
"easy_path",
new Object[] { new Integer(31) },
new Class] { Integer TYPE }1)intValue();
assertEquals(l, RETVAL), / jtest unverified
Mo exception thrown

#f jtest unverified
}

JHE

* Test for method: easy_path(int)
* @throws Throwable Tests may throw any Throwable
* @see quick stuffffeasy path(int)
* @author Parasoft Jtest 7.0
*f
public void testEasy_path2() throws Throwable {
Object THIS = JT.createObject(
Class forMame(" quick_stuff"},
new Object]] {},
new Clasa(] {1
f{ jtest tested method
int RETVAL =((Integer) IT .invoke(
Class forbame(" quick_stuff"),
THIS,
"easy_path",
new Object[] { new Integer(32) },
new Class] { Integer TYPE }).intValue();
assertEquals(2, RETVAL), / jtest unverified
/Mo exception thrown
#f jtest unverified

Figure I1.17: An example of simple integer type analysis.
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In this case, the default values of 0 and 37 would have traversed both
logical branches, but Jtest seemed to perform analysis and used non-default and
non-boundary values instead. A typical approach to this case would be to simplify
the expression to x < 32, and then use boundary testing to determine the values
31, 32, and 33. The fact that the suggested values are so close to the actual values,
leads us to believe that this is Jtests actual methodology. Now, consider Figure 18
in which there are two branches, x+5 < 37 and x+5 < 35. For the sake of saving
space, the corresponding generated JUnit code is removed from Figures 18-20, and

the results are described in text.



int harder path(int 3{
iz +5 <37 && g+ 5235
return 1,
}
else{
return 2,

b

Figure I1.18: An example of multiple algebraic expressions with integer type.
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In this case, Jtest generates input values of x as 30 and 29. This indi-
cates that Jtest chooses boundary values for simple linear inequalities, and then
checks them against the other forms for validity. However, in more complex cases
involving the programmer denying Jtest of the use of its default and boundary
values, interesting values are generated. Figure 19 is an example where default
and boundary values with simple analysis do not work because the inequalities

prevent the use of such values.
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it deny_defaults(int 13{
i =57 && x1=56 && x1=57 && x|=58){
return 1,
b

else
return 2,

Figure I1.19: An example of an arithmetic expression with Jtest boundary values

not allowed.
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In Figure 19, the test values generated are 57, 58, and 102. The same
102 value is generated when a similar condition is used with if(x > 56 && x != 55
&& x 1= 56 && x |=57). If the expression is increased to if(x > 305 && x |= 304
&& x 1= 305 && x = 306), Jtest generates 305, 306, and 402 as test values. This
indicates that if Jtest is prevented from using boundary values, then it chooses
a value at the “next hundred plus two”. The same effect occurs with negative
numbers. Even more interesting is if the programmer denies 402, Jtest tries 502,

seen in Figure 20.
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int deny_defaults(int 1{
iz = 305 && x1=304 & & x1=305 && x1=306 && x1=402)
return 1,
¥

else
return 2,

Figure I11.20: An example where all boundary values are denied, and 402 is denied.
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For very large inequalities like if(x > 400,000,000) and with boundary
value denial, Jtest fails to generate input in the form of 400,000,102. This results
in a failure to test all logical branches. Branch coverage seems to work for an
inequality like if(x > 900) with boundary value denial. However, if(x > 1000)
with boundary value denial fails to achieve full coverage. This behavior indicates
that Jtest is performing a search procedure which starts with normal default and
boundary values, and then uses a predetermined set of values (e.g. +/- 102, +/-
202, . . ., +/-1002) as extreme backup test values in case all other values fail.

In general, the exact details of Jtests test data generation scheme cannot
be determined without access to the source code. However, the evidence shows
that it uses a simple boundary testing approach, with limited extreme bounds for

emergency situations.

Infeasible Paths

The solver also seems to be able to deal with infeasible paths. Consider

the following example in Figure 21, containing an assignment and branch condition.



int infeasible path(int x){ s
int y=14586%x + 552 - x; * Teat for method: I¥feasible pathiin)
* (@throws Threwable Tests may throw any Throwabls

ifify = 3 * @see quick_stuffiNfeasible_pathiint)
refum 1, * (@author Parasoft Jtest 7.0
} *f
elsef public veoid testINfeasible path1() throws Throwable |
refu 2, Object THIS = JT. create Object(
1 Class Forlame("quicle_stult"),
K new Obiect[] {1,

new Class[] {});
il jtest_tested method
mt EETVAL = {(Integer) JT invoke(
Class forlName("quicle_stuff™),
THIZ,
"TMfeasible_path",
new Object]] { new Integer(D) },
new Class[] { Integer. TYPE 1)) intValue();
assertEquals(l, RETVAL), /f jtest_unverified
i Mo exception thrown
if jtest_unvenfied

Figure I1.21: An example of an infeasible path.
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There is no integer solution to the “return 2”7 side of the branch. While
the solver does not find a solution (which is expected due to soundness), it does

not freeze or fail to terminate.

I1.2 Oracles

After running tests, it is important to verify the results of test cases run.
Any methodology for verifying the results of tests is called an oracle. Jtest has

two main methods: the use of annotations, and the use of manual evaluation.

II.2.A Annotations

Jtest allows the user to insert annotations in the style of Javadoc com-
ments. Among others, there exist pre-condition, post-condition, invariant, throws
or exceptions, and assert expressions in the annotation syntax. In the case of pre-
conditions, they are taken into account during the analysis used to generate test
data. If a pre-condition exists in the code, Jtest will only generate test data which
does not violate the pre-condition. Figure 22 shows an example where only values
of “x” which are less than one are generated because the pre-condition must be

satisfied.
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[ @prex <0 e
boolean foolint x){ * Test for method: fool(int)
ifiz =3 * @throws Throwable Tests may throw any Throwable
return falss, * @see annotationd#foo(int)
i * @author Parasoft Jtest 7.0
else{ ES
return true, public void testFool() throws Throwable {
1 Object THIS = TT.create Object(

Class forlName("annotation"),
new Object[] {3,
new Class[] {});
i jtest tested method
boolean RETVAL = ((Boolean) JT involee(
Class forName("annotation"),
THIZ,
"foo",
new Cbject[] { new Integer(-1) },
new Class[] { Integer TYPE 1)) booleanValue();
assertEquals(true, EETVAL), /f jtest unverfied
/i Mo exception thrown
if jtest_unverified

Figure 11.22: An example of Jtest generating test data which satisfies only the

pre-condition, and generated test code.
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In this case, Jtest generates a value of “-1” to satisfy the pre-condition of
x < 0. Unfortunately, this pre-condition forces the function to run only one branch
within its body.

Post-conditions function as oracles indicating a valid or invalid result in
the console output. The previous example is modified with a post-condition, as
shown in Figure 23. Jtest generates a warning in Figure 24 because a value of x =
-1 was generated for the function foo(). This does not satisfy the post-condition

of x> 9.
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[ @prex <0 e
/** @postx =9 ¥ * Test for method: foolint)
boolean foolint x){ * @throws Throwable Tests may throw any Throwable
ifiz = 3 * @see annotation#foo(int)
refirn false * @author Parasoft Jtest 7.0
h M
elsef public woid testFoo 10} throws Throwable |
return true, Object THLS = IT.create Object(
g Class forName(" annotation"),
B new Object[] {3,

new Class[] {1);
I jtest_tested method
boolean RETWVATL = ((Boolean) JT inwolee(
Class forName(" annotation"),
THIZ,
"foo",
new Cbject[] { new Integer(-1) },
new Class[] { Integer TYPE } 1) booleanValue();
N joentract PostEzception thrown
I at annotation foofdbcbpost{annotation. java: 3)
I at annotation foo(annotation java 13)
If jtest_unverified

Figure 11.23: An example of Jtest post-condition usage, and generated test code.

Note that the warning tells the user which test case in which the post-
condition failed. In Figure 24, the post-condition failed during the execution of
“testFool”. The Jtest user can then open the “annotationTest.java” file and find
the “Fool” test and observe its input. This feature can be quite helpful in tracking
down code inconsistencies.

In addition, intermediate assertions could be inserted in methods in order

to carry out intermediate validation. First, it is noted that the assertion is not a



38

B& “ialsiern
=48 jceriract PosiException
= ] [ annation jave
B@ [Lree 5 jeoelract PoslEsceplion: [<3 3]

| st snnctaton teofdbe oot armatalian javas]
@] at anctarion feojannotation jiva:1 )
| H o onTest
=& iR e Ui T o i

(2 [270] Review Unverfied Oucames

Figure I1.24: The resulting warning of an unsatisfied post-condition.

general assertion that holds for all paths reaching some return value. It is a local
assertion of the type assert(k = value), where “value” is a constant and “k” is a
method input or class variable. The assertion is only valid at its position within
the code. If the assertion fails, the rest of the code in the method is not executed

in the test. Figure 25 illustrates these aspects of assertions.
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£ class annotation{
* Tezt for method: foolint) ity =123
* @throws Throwable Tests may throw any Throwable
* (@see annotation#oo(nt) boolean foofint 21{
* @author Parasoft Jlest 7.0 ** @asserty > 122 %
*/ [ @assert x =456 ¥/
public void testFoo1() throws Throwable { ifix = 3){
Object THIS =JT . createObject( return false;
Clazs fortame" annotation", i
new Object[] {3}, elsef
new Class[] {3, return true,
# jtest tested method ¥
boolean RETV AL = (B ooleany JT 1nv olel, }
Class fortame annotation", )
THIS,
"foo",

new Object][] { new Integer(d) },
new Class] { Integer TYFE H)booleanValue(),
{{ jeontract AssertException thrown
{/ at annotation foolannotation java:7)
#f jtest unwerified
b

JHE
* Tezt for method: foolint)
* @throws Throwable Tests may throw any Throwable
* @see annotation#oo(nt)
* @author Parasoft Jtest 7.0
*f
public void testFoo2() throws Throwable {
Object THIS =JT . createObject(
Class forMame annotation",
new Object]] {},
new Clasa(] {1
f{ jtest tested method
boolean RETV AL = ((Boolean) JT .inv oke(
Class fortame annotation",
THIS,
"foo",

new Object[] { new Integer(456) },

new Class[] { Integer TYFE H).booleanValue(),
assertEquals(false, RETVALY, /¥ jtest unverified
/Mo exception thrown
#f jtest unverified

Figure I1.25: An example of Jtest assertion usage, and generated test code.
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In Figure 25, Jtest generates values of 0 and 456 for input x. The first
assertion of y > 122 is always true because the class variable is defined as y = 123.
The second assertion fails when the input x = 0. Hence, the “else” branch in the
“foo” method is never executed. It is interesting to note that Jtest generates a test
input of x = 456. This behavior indicates the use hard-coded values in the source
as inspiration for test values.

Parasoft has another related product called JContract. JContract is able
to analyze annotations and determine program feasibility at runtime. The mecha-
nism which allows this feature is the use of Javadoc annotations within the code.

Jtest is able to use these same annotations to create test cases.

11.2.B Manual Evaluation

Jtest provides the source files for JUnit code it generates, so one can
observe the test cases being run. One JUnit test file is provided per source file
being tested. However, the tool does not automatically provide final values of class
variables used in testing.

A user interface is provided for defining stubs. It will also automatically
generate generic stubs that return default type values for the I/O library and
Enterprise Java Beans server side applications.

Finally, the user can generate his or her own tests with two methods. One
can simply alter the JUnit testing code produced by Jtest, or define test objects in
an object repository. A user can create any instance of a class with Jtests object
repository. Given a class, the user can specify the values of class variables to any
degree. The user would then run Jtest on the class with the user-defined objects
created. In this case, Jtest would not automatically generate any data because the

user has defined the data to be tested already.
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II.3 Static Analysis

Because Jtest is an extension of the Eclipse IDE, the code is statically
checked while the user types. It catches any errors deemed worthy by Sun [Sun
(1999)]. These coding conventions help to avoid syntax errors, check for unused
variables, and match file names to class names, among other conventions. Eclipses

static checker allows for a more proper and standardized coding format.

I1.3.A Rule Sets

Before running a test, the user may choose which advanced coding stan-
dards to follow in the test configuration window. Jtest provides 522 extra coding
standards for users to choose from. These standards stem from the practices of
other software engineers and books written on proper coding technique. There are
also options to run tests based solely on the practices of certain software engineers
and books.

Jtest documentation states that the user may also create user-defined
rules. However, this is misleading because these user-defined rules can only be
created from combinations of existing coding standards in Jtest. A user can choose
which rules to use in a “rulesmap”. Perhaps the most important use of user-defined
coding standards is the ability to specify the severity of a rule. By lowering the
severity of a rule, the user can essentially turn off the rule, and vice versa when

increasing the severity.

I1.3.B Management of False Positives

After the user has chosen a set of coding standards, Jtest will relentlessly
check for violations of these standards. While the warnings given by this static
checking do not harm the execution of the program, the user may be blindsided

with multiple incursions of warnings, shown in Figure 26.
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Figure I1.26: An example of source code receiving multiple warnings per line.
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Thankfully, Jtest allows for suppression of instances of warnings. In fu-
ture runs, the same warning will no longer be displayed with the results of the test

run. Instead, the suppressed warnings are saved elsewhere for the user to review.
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Agitator

Agitator is a tool which has capabilities similar to those of Jtest, as well
as additional novel features. We first consider the features discussed above for
Jtest, in the same order, and then discuss some of its novel features. The tool is
produced by Agitar, a new company founded in 2002.

One main difference from Jtest is Agitators test oracle. After any run
of tests, Agitator does not generate a JUnit test file containing test cases or test
input. Instead, Agitator provides a “snapshot window”, which contains a sample

of the test input generated and corresponding method results, seen in Figure 1.
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Figure III.1: Agitator “Snapshots” window.
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Each “snapshot” window contains at most one hundred test cases gener-
ated by Agitator. Every test case presented is a test for a specific method within
a class. The test cases are ordered one per column, and contain information such
as the return value for that particular case; the state of the class variables; and
the input values. For the sake of clarity, further references to snapshot windows

will be in a tabular format, and not that of a screenshot.

III.1 Test Generation

III.1.A Types, Constructors, and Test Generation

Agitator is capable of generating tests for all the basic types. In the case
where a method m() from a class C is tested, and C does not have a constructor,
Agitator generates simple default values for class variables with primitive types.
For the double type it is 0.0, for strings it is null, for char it is \u0000, and for
integers it is 0. Figure 2 contains a code sample illustrating the behavior of a class
with no constructor defined, and a subset of the output from Agitator tests. Only
the path with a return value of 6 is ever reached. Note how the class variable

values obtain default values for all test cases.
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class undef nocosntr refinmeth{
mt a;
int b
char class_char,
Btring class_string,

int ref method(3{
iffa =0 && b =00 && class char ="00000" && class string=—

il
return &,
?
ifta =188){
return 1,
1
else ifith = 9%){
return 3;
b
else if{class_char=—T.}{
return 2
b
else if{class_string = "black"}{
return 3,
elsef
return 4,
?
b
t
Variables 1 2 3 4 5 5
@RETURN g g ; ; ; g
this.a 0 i ] ] 0 i
this.b 0 i i 0 i i
this.class char “w0oon ‘w0000 “w0ooo’ ‘w0000 ‘w0000 “w0ooo
this clas s:string null null mill null null Mull

Figure II1.2: An example of a class with no constructor, but class variables are

referenced.
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If there exists a “set” method instead of a constructor, Agitator initiates
the class variables with the default values. Set methods are identified in Agitator
by any method name prefixed with the string “set*”. Subsequent calls to the “set”
method change the values of the class variables according to random Agitator
input. The “set” method is used to create appropriate test environments for other
methods. In Figure 3, the try_anything() method is fully tested with different class
variable values. Note how the class variable values change with different test cases.

class undef nocosntr setinmeth
(.

mt a;

mt b

char class_char,

Btring class_string,

int set_method(int x, int y, char z, String zz){
a=x,
b=y,
class char=z;
class string =zz,
return O,

b

int try_anything(int =, int v, char z, String zz){

ifla =%}
ift =)
ifficlass char=z){
ifclass_string = zz){
return 1;
b
else
return 2,
I
else
retum 3,
'
alze
return 4
3
else
return 5,
}
}
Variables 1 2 % 4 5
@RETURN 5 3 5 5 4
this.a -1 -1 -1 53 0
thizs.b 32 32 32 59 0
this.class_char | ‘3’ 37 ‘3 “upooy uteleleley
this.class string | “” 2 e g Null
x 3 -1 5] 2 0
i 1 32 3 2 4
it £t ¥ o 00002’ wo00g’
7z £ null 2 @ “

Figure I11.3: An example of a “set” method changing the class variable values.
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I11.1.B Default Values and Random Tests

Like Jtest, Agitator chooses relative “surrounding” values based on con-
stants appearing in a methods code. For example, if two hard coded values, 94833
and 832, are present in a method, Agitator generates 94833, 94832, 94834, 832,
831, and 833 as testing input. Figure 4 shows a subset of the generated tests for

the example method.

boolean int_examplelint )

int v = 94833,
if(s > 832
return true,
¥
elsaq
refurn talse
b
}
Variables 1 2 3 4 5
@RETURN | True False False True True
X 833 832 -24833 290 833

Figure I11.4: An example of “surrounding” default test values.
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An interesting feature to note is that Agitator generates test values based
on all hard coded values within a method. In the int_example() method, although
the value 94833 has no influence on the control flow of the method, 94833 and its
surrounding values were generated as test input. This may be because Agitator
does not discriminate the usefulness or influence of variables when performing its
analysis.

Agitator also uses random generation to construct test inputs. From
the example in Figure 4, other random test values are generated such as 52, 6,
-10, =100, and 925, among others. Unique numbers are also randomly generated.
Numbers like pi and natural log are occasionally generated for the float and double
types.

The user can specify one of three test generation modes: aggressive, ex-
tended and normal. These modes delineate the overall number of tests to run, with
normal being the least number of tests, and aggressive being the most. Larger
numbers of tests add a stress testing element to Agitator, in the sense that when
a method is tested many times, it will stress the retained state properties.

Agitators string type input generation seems to be performed in the same
manner as integer, float, and double types. For hard coded strings in a method,

Agitator generates the same hard coded strings as test input, shown in Figure 5.



boolean string_cat(String x){
ifzt"le" = "apple"){

return true,
}
else{
refum false,
3
b
Varigbles 1 2 3 4 5
@RETURN | False False False False False
X “abcdefehijklmnopgrstivwayz” | null “ “apple” | “le

Figure IT1.5: An example of string concatenation with the “4” operator.

o1
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In the string_cat() method in Figure 5, Agitator generates strings of “le”
and “apple” as test values. It also generates null and other random strings like
“abcdefghijklmnopqrstuvwx{z” and “C£f0~z B7SnV(K8Bt\$%4vEr~"N~s}”. It does
not appear that Agitator can determine that the “correct” input to this string
concatenation method is “app”. For a similar string, the concat() method is used
to yield the same input values in Figure 6. Again, the “correct” input values are

not generated.

boolean string concat(Btring x){
if(s concat(" 1e") = "apple" }{

retum true;
b
alsef
returmn falss,
}
K
Variables 1 2 3 4 5
@RETURN | False False False False False
X “pple” . “apple” “le “r

Figure II1.6: An example of string concatenation with the “concat()” method.
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II1.1.C Coverage and Test Generation

In the advertising for Agitator, the vendor states:

To really unit-test code, every line, every branch, and every outcome must
be tested. Thats a daunting combinatorial problem. Its not practical to create such
thorough tests manually. The test code is usually longer than the code being tested,
and time spent writing it is a direct tradeoff against time spent implementing
necessary features. Agitator automatically creates dynamic test cases, synthesizes
sets of input data, and analyzes the results.

The implication is that Agitator carries out analysis to determine data
that will cause branches in the code to be tested on at least one test. Analysis of
the tests that are generated indicates that there are special values specific to the

coverage of branches that do not look like default or random tests.

Analysis and Control Complexity

As in the case of Jtest, the tool can deal with complex control structures
during test generation. Agitator seems to traverse possible conditional branches
by looking at values in conditional statements and generating test data to satisfy

)

the conditions. For the large set of “if” conditions in Figure 7, Agitator is able
to generate all the possible combinations of integers which result in all possible

return values.



it intint 8 nest TF(nt a, intb, nt ¢, int d, int e){

if(a < 10)
ifh > 1000)
iffc = 500)
ifid <43y
ifle = 437
return 1;
else
return 2,
else
return 3,
else
return 4,
else
return 3,
alse
return 6,
’
Varighles 1 2 3 4 5
@RETURN |5 10 10 2 2
this.a -3 3437 501 -0 9
this.b 3436 3437 4 432 100
this.c 501 3437 4 432 2
this.d 2 3437 4 432 2
this.e 433 337 501 S0 4
this.f 33 3437 4 -5 -8
this.g o 337 501 4 2
thish 999 3437 4 432 2
this 7 37 4 432 2

Figure II1.7: An example of nested “if” logic.
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If one considers the “e” value in Figure 7, Agitator generates “e” as: 432,
433, -432, 1, 9, 1000, and more. Various other values are generated for the other
input variables to the function. Agitator is able to generate input which reaches
every branch in the method.

Agitator is also able to generate test cases for complex “for” loops. Figure
8 shows a method whose input is the stopping condition of a “for” loop. The loop
increments a variable “y” by 2, and later, “y” is checked for a certain value, 41.

In some test cases, Agitator is able to generate the correct stopping condition of x

= 20.



void stopping loop(int x){

nty=1,
forfint i=1; 1 <% 1++5{
y+=2,
X
ifily =41){
refurm;
b
}
Variables 1 2 3 4 5
fid 100 41 1 41 20

Figure II1.8: An example of “for” loop stopping condition generation.
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The value of x = 20 seems to be generated occasionally. This is most likely
because it is a random value generate by Agitator for the purpose of robustness
testing, and not a standard value generated by analysis. As a result, it takes several
runs for Agitator to achieve coverage of the if(y==41) line.

Another interesting loop test is to make the incrementor value an input
to the method. Agitator seems to handle this well also. Figure 9 shows a “for”
loop whose incrementor value needs to be 51 in order to achieve full coverage.
Agitator seems to be able to obtain full coverage of this method consistently by
generating x = 51 during some test runs. It is not clear whether this coverage is

due to analysis or Agitators own random input generation process.



void incrementor_loop(int 53
int 1,

forfi=0, 1< 103 i +=x3

i
i1 =15253)
returmn,
}
Variables 1 2 3 4 5
¥ -5253 5253 1 341 a1

Figure I11.9: An example of “for” loop incrementor generation.
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For all normal “if” logic and most normal loop logic, Agitator performs
well and attains full coverage. It is not clear whether Agitator is performing
analysis on loops because full coverage is not always attained when a method
contains a loop stopping condition as input. In the case of loop logic, we use “for”
loops as the primary example. “While” loops also exhibit the same behavior, but

it would be redundant to show those examples as well.

Analysis and Types

Agitator was able to determine coverage oriented tests for not only inte-
gers, but also floating point, and doubles. In Figure 10, one can see nested “if”
statements with double and float types required. All branches were reached for

the example in Figure 10.



double dd 8 nest TF(double a, double b, float ¢, double d, float e){

ifta < 10.973)
ifb > 1000.823)
iffe > 500.623)

ifid <43.5)
ifie > 432.14463)
return 1;
else
return 2,
else
return 3,
else
return 4,
else
return 3,
alse
return 6,
’
Varighles 1 2 3 4 5
@RETURN | 4.0 5.0 &0 5.0 5.0
Thiz.a -1000.0 30 432.0 2.0 9,973
This.b 1032.57268872527216 |30 432.0 5.0 432.0
Thiz.c -1000.0 11.0 4990 500.0 34.0
This.d -5.0 -904.0 ERY] 5.0 4.0
Thiz.e Q03.0 -100.0 4990 42.42 -904.0

60

Figure I11.10: An example of double and float types in a nested “if” structure.
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Analysis and Expression Complexity

Agitator was able to deal with more complex expressions than Jtest. For
integer expressions occurring in branching conditions, it could solve for values for
involving exponentiation, which is a level above Jtests capability. The tool could
also perform analysis involving floating point and double precision expressions.
The example in Figure 11 shows that Agitator can solve complex algebra and

expressions as well.

boolean d_lin 529(double y3{
if(y*7 + 3 =529

return true,
K
elsef
refur false,
i
b
Varighle 1 2 % 4
@RETURN |False false | true True
T 42 96307275795496 | 3.0 | 75.14285714285714 | 75142857 14285714

Figure II1.11: An example of algebraic complexity with float and double types.
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Agitator was able to generate tests to cover all branches for the example

in Figure 11. Somehow, it is able to solve a linear equation involving a double

type. Figure 12 shows the capability for determining a basic cube root for a float

type. All branches in Figure 12 were covered.

boolean £ cubed eq 1000(float ){
if(ath pow Gz, 3) = 1000){

returmn true,
b
alsef
returmn falss,
}
K
Variables 1 2 3 4 5
@RETURN | False False False False False
X 520.0 1.0 0.0 -399.0 5.0

Figure I11.12: An example of algebraic complexity with exponents.



63

Agitator is also able to generate interesting data for methods without
explicit constants. Figure 13 shows a method whose conditional statements rely
purely on input variables with no constants within the code. Both branches are

covered in this example.

it many vars(int %, int v, int z, int Q3{
iftytz = Qo

return 1,
:
alseq
return 2,
b
}
Variables 1 2 3 4 5
@RETURN |2 1 2 1 1
hs 2 2 1 5 -100
T -5 2 1 5 6]
& 4 2 0 1 E
Q 832 2 1 100 -124

Figure I11.13: An example of an expression relying purely on variables and no

constants.
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Limitations

Some expressions and situations are difficult for Agitator to cover. For
example, the very complex polynomial expression seen in Figure 14 involves taking
the cube of “y” and dividing the result by the “y”. The “true” branch is never

covered in various Agitator test runs of the code in Figure 14.

boolean int divz great 999999(nt y){
if(Math pow Gy, 30y = 9999953

return true,
b
elsef
refur false,
I
b
Varighles 1 2 3 4 5
@RETURN | False False False False False
T 820 1 8] 100 522

Figure I11.14: An example of a complex polynomial expression uncovered by Agi-

tator.
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If a value of 1000 or greater were generated for “y”, then all branches of
this method would have been evaluated. However, no values of 1000 or greater
are generated in all of the runs attempted. It seems that Agitator encounters a
numerical limitation, generating values less than 1000, when dealing with polyno-
mials. Furthermore, it seems that Agitator does not attempt to solve expressions
involving polynomials. In Figure 15, only the precise value of 500 for “y” will
cause the code to evaluate the “true” branch. This behavior is expected because

automatically solving polynomial expressions is quite difficult for mere humans.



boolean int_sq 250000(int v){
if(dath. pow (y, 2) = 250000

return true,
K
else{
refum false,
}
b
Variables 1 2 3 4 5
@RETURN | False False False False False
T 4 1 0 2 890

Figure II1.15: An example of Agitator struggling to solve exponentiation.
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II1.2 Observations and Oracles

Like Jtest, Agitator also contains the normal Eclipse-based oracle of green
and red highlighted lines of code, respectively indicating covered and non-covered
lines. However, Agitator provides a new oracle mechanism called “observations”.
These observations are guesses at simple relationships about class variables and
method outcomes after each set of test runs. For example, Agitator can observe
that a certain integer class variable is always equal to five, or the method foo()
always returns a value of six. Agitator displays statistics on how often each obser-
vation was true or false. After each set of test runs, the user can decide to promote
any observations into assertions which will be automatically checked on subsequent
runs. Although these observations may not conform to a real functional oracle,
they may perform the useful function of assisting the tester in understanding the

code under test.

I11.2.A Types of Observations

Agitator can make observations about class variables and methods. For
class variables, Agitator attempts to determine the class invariants by guessing the
typical values of class variables. Figure 16 contains a class with a constructor and
a method which alters the class variables. After a run of tests, involving automatic

test case construction, the “observations” in the table are produced.



class test class{

int a;
float b,
denbile ¢
int d;
char x;,

test class(int aa, float bb, double cc, char xx){

a=aa,
b =bb;
c=cc
d=12345
X=X
i
voud alter vars(int 1, fleat 5, double k, char I){
ey
b =j;
ke e
bl
i
b
alter varsQ
Value True |False
1 | thizd =12345 1827 0
2 | 0000 <=thisx <=/ 1827 |0
3| -1 8300087999665 M4R16 <=thisc <=9 170147243831789E13 1827 0
4 | -12347 <=this a <= 12426 1827 |0
5 1827 0

-12362.369F <=thisb <= 12561.532F

Figure I11.16: An example of basic class variable observations.

68
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For the class variables “a”, “b”, “c”, and “x”, Agitator generates a variety
of values and observes that each variable could lie between ranges of possible
values. The variable “d” remains constant after the instantiation of the class and
is observed to have a relatively unchanging value of 12345. The “True” and “False”
statistics indicate the number of tests for which an observation was true or false.

In addition to class observations, methods have their own individual ob-
servations. Namely, Agitator tries to determine the values of inputs to methods,
the values of class variables before and after a method is run, the return value
of the method, and the return expression of a method. Figure 17 shows these
various observation types for a method that performs simple comparisons of class

variables.



class test class{
int a;
tloat b,
double ¢
int d;
char x;

test class(int aa, float bb, double ce, char xx){

a=aa,
b =tb;
c=cc,
d=12345,
X =XX;
:
int simple method(int 1, float j, doublel){
ifa =1){
ifb > )
il < k)
returm 1;
:
else
returmn 2,
1
alze
return 3;
3
elsze
return 4,
b
}
simple method()
Value True |Falze
1 | -12345 <= @PRE( thisa ) <= 12457 249 0
2 | -12345 <=1 <=13306 Q49 0
3 | -12345.(F <= @PRE(this b ) <= 12440.494F 349 0
4 | -4.435025056432724E15 <= @PRE( this.c ) <= Q49 o]
3.3215518154990392E18
5 -4 436025056432815E15 <=k <=3.6361175908822359E18 249 0
6 | -551.7054F <=1 <= 13625.859F 349 0
7 1 <= @RETURN <=4 Q49 0
8 | @PRE(thisa)=1 572 217
9 | @PRE(thish ) > 495  |454
10 | @PRE(thisc )<k 496 453

Figure I11.17: An example of basic method observations.
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Observations 2, 5, and 6 describe observed properties of the test input
parameter values for the simple_method(). These numbers are generated solely
by Agitator without programmer alteration. Observations 1, 3, and 4 are ranges
of values for the class variables before the method was run for each test. These
values are determined by the parameters to the constructor upon the instantiation
of each test, and by other methods whose test execution could result in changing
the values. Observation 7 is the range of return values of the simple_method() call.
Notice that observations 1 through 7 all contain no false results from tests run;
this is because Agitator is merely stating the hard values of the tests it generated.
In contrast, observations 8 through 10 have some counts of false tests observed.
These observations are more generalized, and attempt to guess the relationships
between the input parameters and class variables. Each of these observations is

stated as a general expression, which leads to a mixture of true and false test cases.

I11.2.B Using Observations

The value of Agitators observations is twofold. It provides insight into
the kinds of tests that have been run. In addition, if the programmer determines
that an observation is a correct invariant, the programmer can promote it to an
assertion to be checked upon each test run. Figure 18 shows certain observations
promoted. Simple_method() is rerun to determine whether the assertions hold true

in testing.



72

ZIME o= @PAE e a o= AN
| TIMEAF em GFRE i | om 13357 TIF
IR I e jen ITIRIERE
e

Figure II1.18: An example of promoting observations to assertions using the code

example in Figure 17.
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The observations promoted to assertions are distinguished by check
marks. One can see that the return value assertion is confirmed to be true (green)
on test runs. This is rather trivial because simple_method() can only return 1,
2, 3 or 4, so the range of return values must be between 1 through 4, inclusive.
The assertions made about the relationships between the class variables and input
parameters are confirmed as false (red). Again, this result is expected because this
example does not restrict the input of the method to conditions of a ==1i, b >
j, or ¢ < k. Note that a camera icon appears to the right of the assertions which
failed. Clicking on this camera icon allows the user to see snapshots of test cases
which caused the assertion to fail.

The usefulness of some of Agitators observations is doubtful. A user may
not need or care to know the range of input values, or return values of a method.
In this case, the user can simply create new assertions using a special syntax and
assertion editor. In fact, Agitators automatically generated assertions can also be

altered in an editor.

I11.2.C Advanced Observations

When exploring more complex programs, Agitators ability to generate
useful observations becomes more limited. To begin with, a relatively simple math-
ematical expression is shown in Figure 19, and produces interesting observations

from Agitator.



class math_class{
int expression(int =3{
refu ¥ - 2FE + 5,

b
}
expressioni)
Value True False
1 | @RETURN = ((x—-(2*z))+5) 527 0
2 |@RETURN—(5-x%) 527 |0
3 -95 <= @RETURN <= 105 527 o]

Figure I11.19: An example of a simple mathematical expression.
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Figure 19 shows two interesting return value observations. Observation
1 is the original expression given directly in the return statement code, while
observation 2 is an algebraically simplified version of the return statement code.
The presence of observation 2 shows that Agitator is performing some sort of
analysis in an attempt to create useful observations. The next example in Figure

20 complicates the expression.

class math_class{
int mult twolntz){
B
returm

b

int another expression(int =
return ¥ - mult_two(x) + 5,
1

another expression()
Value True | False
1 | @RETUEN = ( (£ - @PRE(thismult two) ) 1+5) 707 0
2 |@RETURN— (5 -x) 707 |0
3 | -95 <=@RETURN <= 105 707 0

Figure II1.20: An example of observations for dependent methods.
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The table in Figure 20 describes the observations for the method an-
other_expression(). Again, the 5-x return value is seen in observation 2, but the
other return value in observation 1 is different. Observation 1 indicates that the
mult_two() method must be called prior to executing the another_expression|()
method. While this statement is true, it is not the most optimal or human-readable
observation which could be made. Observation 1 in Figure 20 is a more obfuscated
version of observation 1 in Figure 19. Yet, in both Figures, the most simplified
observation of 5-x is identified.

There are a couple interesting features of the observations seen in Figures
19 and 20. Observation 3 in each of the figures shows that Agitator constructs
observations for raw output values. It attempts to guess the actual numerical
values which will be returned. Furthermore, Agitator seems uses any “return x”
statement as a template for generating the corresponding method observation. In
observation 1 of Figure 20, Agitator is unable to determine that mult_two(x) is
actually the expression x*2, and merely inserts @PRE(this.mult_two(x)) into the
observation. Although this observation is correct, it is not entirely useful to the
programmer. Next, in Figure 21, the same code with one more added layer of

complexity produces fewer observations than before.



class math_class{
int mult twolint =)
Sl
return =,

b

mnt yet another expression(int x)
% -=rmult twol(z) + 5,

return x,
b
j
vet another expressiont)
Value True | False
1 |@RETURN=—(5-%) 708 |0
2 | -105 <=@RETURN <= 95 708 8]

7

Figure II1.21: An example of observations for a more complex dependent method.
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The table in Figure 21 describes the observations for the
yet_another_expression() method. The “return x” line adds one more level of indi-
rection between the return statement and the target mathematical expression by
assigning the expression to its own variable “x”. This results in one fewer obser-
vation generated by Agitator, but still yields the important simplified form of the
return value, 5-x. One can begin to see here that adding a level of indirection
decreases the number of observations Agitator can make. In Figure 22, it becomes

apparent that using a layer of indirection with multiple inputs results in useless

observations.



class math_class{
nt mult twolntz){
b Sl
return x,

b

int more_complex expression(int x, int y){
% +=mult_twoly),

refum x,
b
}
moare cotnplex_expression()
Value True | False
1 [-l00 <=y <=100 Fivs] 0
2 | -299 =g =199 705 8]
3 [ -300 <=@RETURN <= 300 Fivs] 0

79

Figure II1.22: An example of observations with method dependencies and multiple

inputs.
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From Figure 22s observations, like that of the more_complex_expression()
method, there is no return expression observation seen in the previous Figures 19
through 46. In addition to the “return x” level of indirection, there is the added
complexity of calling a function on a second input parameter “y”. It seems like

Agitators ability to create return expression observations appears to be limited to

one input parameter.

II1.2.D Test Management

One of the nicer features of Agitators oracle, is that it shows you the test
cases (at most 100) in detail. For every test it shows you the inputs and results
from the method, as well as the final of the class variables. As in the case of Jtest,
users of Agitator are presented with coverage descriptions. It also tells you how
many times it ran each line of code, which goes beyond simple coverage indicators.

Agitator, is not a JUnit-oriented tool. It does not appear to generate
observable files of JUnit classes for running future tests. The point of view taken
in Agitator is if you exit a session, it will regenerate the tests for a subsequent
session. This may be inefficient for large applications with many tests. However,
users can define and save mock objects for further reuse.

Mock objects are instances of classes in which the user defines the values
of class variables. The user can command Agitator to use the mock objects as test

cases in addition to the automated tests generated by Agitator.

II1.3 Static Analysis

In addition to Eclipses compile-on-the-fly checker, Agitator contains 138
coding rules for the programmer to use. Most of the built-in code rules check for
coding style and format. The programmer can also create his or her own code rules

using the CheckStyle 4.1 API. This is an open-source, Java code rules checker with
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its own rule specification language. Agitator does not make any claim to a source
or reference for the origins of their built-in code rules. However, a look at the
CheckStyle website shows a great similarity between default CheckStyle rules and
Agitators built-in rules.

Upon agitating the code, the static checker checks all lines of code for
violations of the selected rules. When the agitation is finished, rules violations
are reported in the Eclipse IDE as error marks beside the corresponding lines of
code. Additionally, each violation is reported in a separate Experts window where
the programmer can double-click on the violation and the IDE displays the line

of code in violation.



IV

Summary and Conclusions

In this section, the similarities and differences between Jtest and Agitator
are laid out. The benefits and drawbacks of each tool are considered, and a final

opinion is offered on the preferred tool.

IV.1 Commonalities

Jtest and Agitator seem to have the same types of overall testing harness
design. Each tool is implemented as a plug-in for the Eclipse IDE. The user writes
code in the IDE and can observe the static checker marking violations of coding
standards on-the-fly. Then, the user activates the testing mechanism to generate
test cases and run the code with the generated input. Both tools show whether
each line of code was covered during testing; lines marked green are covered, while
lines marked red are not covered.

Another important similarity is their method for generating test data.
Each tool has default values for primitive data types. Furthermore, each tool
utilizes the hard-coded constants within code to generate boundary test cases. If
a constant “k” is present in the users code, both Jtest and Agitator generate test

inputs of “k+1”7 and “k-1", hoping to traverse all possible branches.

82
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IV.2 Differences

The test oracles for Jtest and Agitator differ significantly. Jtest provides
the complete JUnit code generated for all tests. This sort of documentation pro-
vides the exact input and output for all tests. These tests are saved and organized
into Java files; one file is generated for every file tested. In contrast, Agitator only
provides a snapshot of up to one hundred test inputs and results. These snapshots
can only be seen in the Eclipse IDE, and are not saved in files. Snapshots only
represent a portion of the actual number of tests generated. Typically, Agitator
generates thousands of tests.

In the static analysis arena, Jtest provides more options than Agitator.
Jtest is able to check 522 different built-in coding rules, while Agitator only con-
tains 138 built-in coding rules. However, Agitator allows the user to create new
coding rules with the CheckStyle syntax.

Agitator seems to fare better in testing data types and complex expres-
sions. Jtest is unable to generate meaningful test data for float, double and string
types, while Agitator succeeds admirably. Additionally, Agitator successfully cov-
ers all branches for certain expressions containing polynomials. Yet, Jtest only
generates default values for polynomial expressions, resulting in poor coverage of
branches.

A further advantage in Agitator is its numerous and repeated generation
of random input for each run. During a run, Agitator performs a kind of stress
testing which repeatedly calls methods with random input. A method can be
tested nearly two thousand times in one run. Each run is different because new
random values are generated every time. This helps in determining the robustness
of code. On the other hand, Jtest has no such facility. In every run of Jtest on a
specific piece of code, the user will receive the same set of tests every time. The
set of tests is also much smaller; only enough to obtain the maximum amount of

branch coverage possible. It does seem that stress or robustness testing is part of
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Jtests features.

Finally, Agitators observations are arguably its most novel contribution to
the tool. Agitator creates observations to show the user certain “invariants” about
the behavior of the code. Testing is an iterative process that involves feedback
from the testing tool and the programmers capability to adjust to that feedback.
Observations make this interaction more interesting and meaningful. The user can

turn these observations into assertions which are checked on subsequent runs.

IV.3 Recommendation

In the end, there is no clear winner between the capabilities of Jtest and
Agitator. If a decision needs to be made about which tool is better, one can only
determine the better tool based on the needs of the software being developed and
the set of tradeoffs associated with each tool.

For the case of Jtest, its main advantage is its test oracle. Every test is
well documented in a generated JUnit code file. In todays corporate world where
accountability is in high demand, these generated files function as a method for
tracing test cases back to requirements. However, Jtest fails to generate sufficient
test cases for float, double, and string types. It may be that these data types are
not the most prevalent among modern software, but the gap in coverage remains.
At the price of coverage, Jtest provides reasonable accountability.

Agitator has several advantages. It is able to obtain more complete cov-
erage because it generates test data for float, double, and string types. It also goes
beyond the call of duty of mere branch coverage, and generates extra random test
inputs. It runs each method hundreds to thousands of times to test for robustness.
Through its observations, it is capable of telling the programmer what the software
is supposed to do. For all of Agitators coverage capability, its shortcoming may
be its oracle facility. The user can only view a snapshot of one hundred test cases,

and even this snapshot is not saved. Although this is understandable, because Ag-
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itator generates thousands of tests which would take a sizeable chunk of memory
to save, a programmer is not able to trace test cases back to requirements. In
certain software engineering disciplines, it is required to correlate all requirements
with tests. However, at the unit testing level, for which Agitator is intended, this

traceability may not be important.
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