
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
A tale of two testing tools

Permalink
https://escholarship.org/uc/item/1vq6p23d

Author
Chen, Robert Chang-che

Publication Date
2008

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1vq6p23d
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

A Tale of Two Testing Tools

A Thesis submitted in partial satisfaction of the

requirements for the degree Master of Science

in

Computer Science

by

Robert Chang-che Chen

Committee in charge:

Professor William E. Howden, Chair
Professor Walter Burkhard
Professor Joseph Pasquale

2008

Copyright

Robert Chang-che Chen, 2008

All rights reserved.

The Thesis of Robert Chang-che Chen is approved, and

it is acceptable in quality and form for publication on

microfilm:

Chair

University of California, San Diego

2008

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . v

Abstract . vii

I Introduction . 1

II Jtest . 3
1. Test Generation . 7

A. Types, Constructors, and Test Generation 7
B. Default Values . 10
C. Coverage and Test Generation . 11
D. Generation Mechanism . 22

2. Oracles . 34
A. Annotations . 34
B. Manual Evaluation . 40

3. Static Analysis . 41
A. Rule Sets . 41
B. Management of False Positives . 41

III Agitator . 44
1. Test Generation . 46

A. Types, Constructors, and Test Generation 46
B. Default Values and Random Tests . 49
C. Coverage and Test Generation . 53

2. Observations and Oracles . 67
A. Types of Observations . 67
B. Using Observations . 71
C. Advanced Observations . 73
D. Test Management . 80

3. Static Analysis . 80

IV Summary and Conclusions . 82
1. Commonalities . 82
2. Differences . 83
3. Recommendation . 84

References . 86

iv

LIST OF FIGURES

II.1: The Eclipse IDE with Jtest plug-in. 3
II.2: The configuration menu with “Run Test” button to start testing. 4
II.3: Window displaying results of a test run. 5
II.4: A sample [filename]Test.java file. 6
II.5: Red and blue marks indicate uncovered and covered lines, respec-

tively. 7
II.6: An example of classes with no constructors, and generated test

code. 9
II.7: An example of Jtest generating values for the incrementor in a

loop. 12
II.8: An example of Jtest producing input for a loop stopping condition. 13
II.9: An example of Jtest fully covering a complex loop expression. . . 14
II.10: An example of Jtest trying to cover a very simple condition within

a loop. 15
II.11: An example using float and double types, and generated test code. 16
II.12: An example of string test generation. 17
II.13: An example of exponentiation with an integer type, and generated

test code. 19
II.14: An example of string concatenation using the “+” operator, and

generated test code. 20
II.15: An example of algebraic complexity using the double type, and

generated test code. 21
II.16: An example of simple integer type analysis, and generated test

code. 23
II.17: An example of simple integer type analysis. 25
II.18: An example of multiple algebraic expressions with integer type. . 27
II.19: An example of an arithmetic expression with Jtest boundary values

not allowed. 29
II.20: An example where all boundary values are denied, and 402 is de-

nied. 31
II.21: An example of an infeasible path. 33
II.22: An example of Jtest generating test data which satisfies only the

pre-condition, and generated test code. 35
II.23: An example of Jtest post-condition usage, and generated test code. 37
II.24: The resulting warning of an unsatisfied post-condition. 38
II.25: An example of Jtest assertion usage, and generated test code. . . 39
II.26: An example of source code receiving multiple warnings per line. . 42

III.1: Agitator “Snapshots” window. 45
III.2: An example of a class with no constructor, but class variables are

referenced. 47

v

III.3: An example of a “set” method changing the class variable values. 48
III.4: An example of “surrounding” default test values. 49
III.5: An example of string concatenation with the “+” operator. 51
III.6: An example of string concatenation with the “concat()” method. 52
III.7: An example of nested “if” logic. 54
III.8: An example of “for” loop stopping condition generation. 56
III.9: An example of “for” loop incrementor generation. 58
III.10: An example of double and float types in a nested “if” structure. 60
III.11: An example of algebraic complexity with float and double types. 61
III.12: An example of algebraic complexity with exponents. 62
III.13: An example of an expression relying purely on variables and no

constants. 63
III.14: An example of a complex polynomial expression uncovered by Ag-

itator. 64
III.15: An example of Agitator struggling to solve exponentiation. 66
III.16: An example of basic class variable observations. 68
III.17: An example of basic method observations. 70
III.18: An example of promoting observations to assertions using the code

example in Figure 17. 72
III.19: An example of a simple mathematical expression. 74
III.20: An example of observations for dependent methods. 75
III.21: An example of observations for a more complex dependent method. 77
III.22: An example of observations with method dependencies and multi-

ple inputs. 79

vi

ABSTRACT OF THE THESIS

A Tale of Two Testing Tools

by

Robert Chang-che Chen

Master of Science in Computer Science

University of California, San Diego, 2008

Professor William E. Howden, Chair

In today’s software world, the increasing number of software products

creates an equivalently increasing number of software bugs. Software engineers

counter this by writing tests to check the functionality of their programs. How-

ever, as programs become increasingly complex, the process of writing tests be-

comes lengthened, tedious, and arduous. In response, certain products have been

developed to automatically generate and run tests for software engineers. This

study explores two such programs, Jtest and Agitator. Given a software program,

these tools automatically generate and run tests for the programmer. This study

attempts to show the effectiveness of these tools by feeding them sample programs,

and observing the types of tests produced. At the end, the tradeoffs between these

tools are compared.

vii

I

Introduction

One of the goals of software testing is to build tools that can automatically

generate and run tests and then validate results. In general, we know that it is not

possible to generate tests that will find all bugs, but the goal is to be as effective

as possible.

In this work we examine the capabilities of two commercial Java testing

tools: Jtest and Agitator. Both are oriented to the testing of class methods, as

opposed to systems testing. The tools will take a class C, and then test its methods

m() by generating test data for C’s class variables and m()’s parameters.

For each tool we consider: user interface features, test generation, oracles,

test management, and static analysis.

With respect to test generation we consider:

1. Will the tool generate tests automatically for all types, including both prim-

itive and non-primitive?

2. What is/are its test completeness measure(s)? e.g. branch coverage

3. Analyzing control flow which involves different types of data?

4. Complex control flow structure. What will it do if the method you are testing

calls other methods?

1

2

5. Are we able to guess properties of the (proprietary) generation mechanisms

from the examples we analyzed?

6. How are the tests specified? For example, can the tool generate JUnit test

classes for its tests?

With respect to test oracles we considered:

1. Oracle construction

2. Manual test evaluation

In answer to the question “which tool is best” we hope the information

will assist developers in making the best decision for themselves.

II

Jtest

Jtest is an Eclipse plug-in developed by Parasoft, which markets a suite of

development tools. The user typically enters code into the integrated development

environment (IDE) and clicks “Run” to perform testing, as shown in Figure 1 and

Figure 2.

Figure II.1: The Eclipse IDE with Jtest plug-in.

Figure 2 shows the configuration menu. This allows control of coding

standards to be checked; a choice of line or branch coverage; and which folders to

3

4

Figure II.2: The configuration menu with “Run Test” button to start testing.

execute from, among other features. When the testing is finished, the IDE will

display a window stating the percentage of code covered, shown in Figure 3.

5

Figure II.3: Window displaying results of a test run.

It also generates a slightly more detailed HTML report which shows num-

bers of tests run and numbers of positive or negative outcomes. Jtest generates

testing code via the JUnit testing framework. Each time a source file is tested,

a file of JUnit test code is generated in a separate source tree, with file names

“[originalfilename]Test.java”. Figure 4 shows a typical JUnit test file.

6

Figure II.4: A sample [filename]Test.java file.

Furthermore, the IDE displays red and blue marks for uncovered and

covered lines of code, respectively, seen in Figure 5.

7

Figure II.5: Red and blue marks indicate uncovered and covered lines, respectively.

In the following, we will consider test generation, the oracle problem, test

management, and static analysis.

II.1 Test Generation

II.1.A Types, Constructors, and Test Generation

Jtest can generate tests for all primitive types. The number and kinds

of tests depends on its coverage attempts, which are discussed below. Java de-

fines several primitive types, such as string, int, float, double, etc. Non-primitive

types include user-defined classes. A method m() may have a non-primitive type

parameter.

When a method m() from a class C is tested, we need to also consider the

class variables for C and whether they are primitive. In addition, it is necessary

8

to consider if C has constructors, and if so, how many.

When a method m() in a class C is tested, the testing is preceded by a

call to one of Cs constructors (if it has one). If C has no constructor, then Jtest

will assign default values for the primitive type class variables. If C has a non-

primitive class variable of type D, then Jtest is unable to generate instances of D.

In general, Jtest does not fully specify what the instance of a containing class is

for a test of a method, so it is necessary to do some analysis to determine what

the default settings are for class variables when there is not a constructor. Figure

6 illustrates what occurs when no constructors are present.

9

Figure II.6: An example of classes with no constructors, and generated test code.

10

Only the method “compare intQ” is tested. The test for “compare intP”

fails because Jtest cannot generate an object which is a member variable of another

object. Instead, a null object is generated. One can see from the Jtest output that

the test for “compare intP” failed because of a null pointer exception.

In the case where the method m() is in a class C that has a constructor,

then Jtest will call the constructor and generate test values for both the constructor

and the method parameters.

Subject to the above limitations, Jtest will generate a wide range of test

values for different primitive types.

II.1.B Default Values

There are several kinds of default values. In the case discussed above,

where a class C has no constructor, default values need to be assigned to class

variables before proceeding with a testing. There is a single default value for each

type:

int = 0

string = “0”

float/double = 0.0

When Jtest is testing a method m() it was observed to use the default

values 0 for integers, 0.0 and 7.0 for float and double parameters, and “0” for

strings.

Jtest will also choose additional kinds of relative “default” values when

testing methods. If a method m() contains an integer constant k, then it will use

k-1, k and k+1 for integer input method parameters. It does not do the same

thing for float/analysis constants. For string constants k occurring in a method,

it will use k as an input value for string input parameters.

11

II.1.C Coverage and Test Generation

According to Parasofts advertisement, Jtest, “[monitors] test coverage

and achieves high coverage using branch coverage analysis.” [Parasoft (2008)] In

theory, it is impossible to know if all possible coverable branches have been tested

by a test set T. Hence, it is necessary for Parasoft to use the cautious claim high

coverage. However, in order to achieve high branch coverage, the tool should be

performing some form of analysis. We did not know the inner workings of the tool,

so the following comments were based on our own speculations, working backward

from numerous examples.

Automated coverage analysis involves examining the conditional branches

that occur along a path in the code, and then determining inputs that will cause

that path to be followed. We considered different levels of complexity:

1. method control flow structure

2. types

3. expressions

Analysis and Control Complexity

Jtest is very proficient in performing analysis of “if” statements. There

were no significant limitations in generating test data for “if” control blocks. Al-

though failures occurred when dealing with complex arithmetic expressions and

certain data types, we will address this issue in the next section.

An intriguing aspect of Jtest is its ability to handle “for” and “while”

loops. Both are handled in the same manner, so examples presented will only

feature the “for” loop. The analytical problem which comes to mind in dealing

with loops is whether Jtest performs any analysis on a loop and make a prediction

of what it will do. If the incrementing statement of a “for” loop is used as an

input to a function, it is difficult for Jtest to generate a proper incrementing value.

12

As seen in Figure 7, Jtest is unable to cover the “if” statement because it only

generates an input of a = 1000.

Figure II.7: An example of Jtest generating values for the incrementor in a loop.

13

Jtest also has difficulty determining a reasonable stopping condition for

a loop. Figure 8 shows a situation where the stopping condition of a loop is an

input to a function. Jtest was only able to generate 0 as the input. An input of

800 would have produced full coverage.

Figure II.8: An example of Jtest producing input for a loop stopping condition.

14

It is also interesting to see that certain complex “for” loops are fully

covered by Jtest. In an experiment in which the initial value and incrementing

value are modified, Jtest is able to perform some basic analysis on these values.

Figure 9 shows an example where Jtest is able to generate a test value of 347,

which is the value of “i” after the first iteration of the loop.

Figure II.9: An example of Jtest fully covering a complex loop expression.

15

Yet, for a very simple program like the one seen in Figure 10, Jtest is

unable to generate tests which cover all paths. In the case of Figure 10, only the

value of 0 is generated for “x”. A value of 342 would have been sufficient for full

coverage.

Figure II.10: An example of Jtest trying to cover a very simple condition within a

loop.

16

Analysis and Types

Jtest was able to analyze paths and most mathematical expressions in-

volving integers. Integer expressions involving exponentiation could not be ana-

lyzed, but this is an understandable limitation. Jtest also does not appear to carry

out analysis for float/double precision. Consider Figure 11, where only the values

0.0 are generated and the tests only cover return value 3.

Figure II.11: An example using float and double types, and generated test code.

17

In the case of strings, Jtest is able to carry out very simple analysis. Here,

in Figure 12, all branches are covered with test data of “string1”, “string2”, and

“0”.

Figure II.12: An example of string test generation.

18

Analysis and Expression Complexity

At some level, expression complexity limits the possible analysis for all

types, regardless of the complexity of the control structure. This is to be expected,

since there are no expression solution algorithms for higher order expressions, such

as integer equations and inequalities of order higher than 4. Also, it may be

non-economic to develop solution procedures for a data type such as strings, even

when the expressions are limited to something relatively simple such as nested

concatenation.

In the following we show examples of varying degrees of complexity for

the three types: int, string and float/double. Each example is a limiting case,

where the expression complexity blocked Jtest from producing tests needed to

ensure branch coverage. In Figure 13, one can see that Jtest only generated a test

value of 0 for the exponentiation example code. This does not cover all branches

of evaluation.

19

Figure II.13: An example of exponentiation with an integer type, and generated

test code.

20

In Figure 14, one can see that Jtest only generated a null string as input

into the “string concat” method. Because this does not cover all the branches

possible, it seems that Jtest is limited in its ability to generate tests for string

input.

Figure II.14: An example of string concatenation using the “+” operator, and

generated test code.

21

In Figure 15, Jtest only generates a test value of 0.0 for the method. Not

all branches are covered in this example. It appears that Jtest may have some

limitations when attempting to generate tests for the double type.

Figure II.15: An example of algebraic complexity using the double type, and gen-

erated test code.

22

II.1.D Generation Mechanism

Analysis Process

The details of how Jtest actually generates automatic test data are propri-

etary. There are several approaches to this problem, including symbolic evaluation

[Howden (1977)] in conjunction with a standard inequality package, different forms

of interval analysis [DeMillo and Offutt (1991); Offutt et al. (1999)], and conver-

gence methods [Korel (1990)]. We examine some of the tests that were generated

to see if it is possible to guess the process.

Because Jtest generates a set of default test values, it was important to

determine whether achieving coverage was just a coincidence, or the product of per-

forming some actual analysis. Recall that for an integer type variable, the default

value is 0. In addition to the default value, Jtest generates a set of “boundary” val-

ues for a given program. Every analysis sample results in using standard boundary

values which correspond to the constants. For a constant “k” in a program, the

possible boundary values generated are k-1, k, and k+1. In the following example,

a boundary value -1 is generated, in addition to -2. Figure 16 shows the results of

this program.

23

Figure II.16: An example of simple integer type analysis, and generated test code.

24

In Figure 16, there are two constants in the program, 0 and 2. The

possible boundary values choose from would be -1, 0, 1, 2, and 3. The default

value for y would be 0. Jtest seems to choose test data from the set of boundary

and default values. Yet, the choice of -2 demonstrates some sort of analysis was

performed determine this unique test datum.

In order to see if the analysis goes beyond using default and boundary

values, we constructed examples such that choosing the default and boundary

values would not satisfy all paths. In Figure 17, which contains the condition x+5

< 37, Jtest generates values 31 and 32 and satisfies all paths despite our efforts to

fool it.

25

Figure II.17: An example of simple integer type analysis.

26

In this case, the default values of 0 and 37 would have traversed both

logical branches, but Jtest seemed to perform analysis and used non-default and

non-boundary values instead. A typical approach to this case would be to simplify

the expression to x < 32, and then use boundary testing to determine the values

31, 32, and 33. The fact that the suggested values are so close to the actual values,

leads us to believe that this is Jtests actual methodology. Now, consider Figure 18

in which there are two branches, x+5 < 37 and x+5 < 35. For the sake of saving

space, the corresponding generated JUnit code is removed from Figures 18-20, and

the results are described in text.

27

Figure II.18: An example of multiple algebraic expressions with integer type.

28

In this case, Jtest generates input values of x as 30 and 29. This indi-

cates that Jtest chooses boundary values for simple linear inequalities, and then

checks them against the other forms for validity. However, in more complex cases

involving the programmer denying Jtest of the use of its default and boundary

values, interesting values are generated. Figure 19 is an example where default

and boundary values with simple analysis do not work because the inequalities

prevent the use of such values.

29

Figure II.19: An example of an arithmetic expression with Jtest boundary values

not allowed.

30

In Figure 19, the test values generated are 57, 58, and 102. The same

102 value is generated when a similar condition is used with if(x > 56 && x != 55

&& x != 56 && x != 57). If the expression is increased to if(x > 305 && x != 304

&& x != 305 && x != 306), Jtest generates 305, 306, and 402 as test values. This

indicates that if Jtest is prevented from using boundary values, then it chooses

a value at the “next hundred plus two”. The same effect occurs with negative

numbers. Even more interesting is if the programmer denies 402, Jtest tries 502,

seen in Figure 20.

31

Figure II.20: An example where all boundary values are denied, and 402 is denied.

32

For very large inequalities like if(x > 400,000,000) and with boundary

value denial, Jtest fails to generate input in the form of 400,000,102. This results

in a failure to test all logical branches. Branch coverage seems to work for an

inequality like if(x > 900) with boundary value denial. However, if(x > 1000)

with boundary value denial fails to achieve full coverage. This behavior indicates

that Jtest is performing a search procedure which starts with normal default and

boundary values, and then uses a predetermined set of values (e.g. +/- 102, +/-

202, . . . , +/-1002) as extreme backup test values in case all other values fail.

In general, the exact details of Jtests test data generation scheme cannot

be determined without access to the source code. However, the evidence shows

that it uses a simple boundary testing approach, with limited extreme bounds for

emergency situations.

Infeasible Paths

The solver also seems to be able to deal with infeasible paths. Consider

the following example in Figure 21, containing an assignment and branch condition.

33

Figure II.21: An example of an infeasible path.

34

There is no integer solution to the “return 2” side of the branch. While

the solver does not find a solution (which is expected due to soundness), it does

not freeze or fail to terminate.

II.2 Oracles

After running tests, it is important to verify the results of test cases run.

Any methodology for verifying the results of tests is called an oracle. Jtest has

two main methods: the use of annotations, and the use of manual evaluation.

II.2.A Annotations

Jtest allows the user to insert annotations in the style of Javadoc com-

ments. Among others, there exist pre-condition, post-condition, invariant, throws

or exceptions, and assert expressions in the annotation syntax. In the case of pre-

conditions, they are taken into account during the analysis used to generate test

data. If a pre-condition exists in the code, Jtest will only generate test data which

does not violate the pre-condition. Figure 22 shows an example where only values

of “x” which are less than one are generated because the pre-condition must be

satisfied.

35

Figure II.22: An example of Jtest generating test data which satisfies only the

pre-condition, and generated test code.

36

In this case, Jtest generates a value of “-1” to satisfy the pre-condition of

x < 0. Unfortunately, this pre-condition forces the function to run only one branch

within its body.

Post-conditions function as oracles indicating a valid or invalid result in

the console output. The previous example is modified with a post-condition, as

shown in Figure 23. Jtest generates a warning in Figure 24 because a value of x =

-1 was generated for the function foo(). This does not satisfy the post-condition

of x > 9.

37

Figure II.23: An example of Jtest post-condition usage, and generated test code.

Note that the warning tells the user which test case in which the post-

condition failed. In Figure 24, the post-condition failed during the execution of

“testFoo1”. The Jtest user can then open the “annotationTest.java” file and find

the “Foo1” test and observe its input. This feature can be quite helpful in tracking

down code inconsistencies.

In addition, intermediate assertions could be inserted in methods in order

to carry out intermediate validation. First, it is noted that the assertion is not a

38

Figure II.24: The resulting warning of an unsatisfied post-condition.

general assertion that holds for all paths reaching some return value. It is a local

assertion of the type assert(k = value), where “value” is a constant and “k” is a

method input or class variable. The assertion is only valid at its position within

the code. If the assertion fails, the rest of the code in the method is not executed

in the test. Figure 25 illustrates these aspects of assertions.

39

Figure II.25: An example of Jtest assertion usage, and generated test code.

40

In Figure 25, Jtest generates values of 0 and 456 for input x. The first

assertion of y > 122 is always true because the class variable is defined as y = 123.

The second assertion fails when the input x = 0. Hence, the “else” branch in the

“foo” method is never executed. It is interesting to note that Jtest generates a test

input of x = 456. This behavior indicates the use hard-coded values in the source

as inspiration for test values.

Parasoft has another related product called JContract. JContract is able

to analyze annotations and determine program feasibility at runtime. The mecha-

nism which allows this feature is the use of Javadoc annotations within the code.

Jtest is able to use these same annotations to create test cases.

II.2.B Manual Evaluation

Jtest provides the source files for JUnit code it generates, so one can

observe the test cases being run. One JUnit test file is provided per source file

being tested. However, the tool does not automatically provide final values of class

variables used in testing.

A user interface is provided for defining stubs. It will also automatically

generate generic stubs that return default type values for the I/O library and

Enterprise Java Beans server side applications.

Finally, the user can generate his or her own tests with two methods. One

can simply alter the JUnit testing code produced by Jtest, or define test objects in

an object repository. A user can create any instance of a class with Jtests object

repository. Given a class, the user can specify the values of class variables to any

degree. The user would then run Jtest on the class with the user-defined objects

created. In this case, Jtest would not automatically generate any data because the

user has defined the data to be tested already.

41

II.3 Static Analysis

Because Jtest is an extension of the Eclipse IDE, the code is statically

checked while the user types. It catches any errors deemed worthy by Sun [Sun

(1999)]. These coding conventions help to avoid syntax errors, check for unused

variables, and match file names to class names, among other conventions. Eclipses

static checker allows for a more proper and standardized coding format.

II.3.A Rule Sets

Before running a test, the user may choose which advanced coding stan-

dards to follow in the test configuration window. Jtest provides 522 extra coding

standards for users to choose from. These standards stem from the practices of

other software engineers and books written on proper coding technique. There are

also options to run tests based solely on the practices of certain software engineers

and books.

Jtest documentation states that the user may also create user-defined

rules. However, this is misleading because these user-defined rules can only be

created from combinations of existing coding standards in Jtest. A user can choose

which rules to use in a “rulesmap”. Perhaps the most important use of user-defined

coding standards is the ability to specify the severity of a rule. By lowering the

severity of a rule, the user can essentially turn off the rule, and vice versa when

increasing the severity.

II.3.B Management of False Positives

After the user has chosen a set of coding standards, Jtest will relentlessly

check for violations of these standards. While the warnings given by this static

checking do not harm the execution of the program, the user may be blindsided

with multiple incursions of warnings, shown in Figure 26.

42

Figure II.26: An example of source code receiving multiple warnings per line.

43

Thankfully, Jtest allows for suppression of instances of warnings. In fu-

ture runs, the same warning will no longer be displayed with the results of the test

run. Instead, the suppressed warnings are saved elsewhere for the user to review.

III

Agitator

Agitator is a tool which has capabilities similar to those of Jtest, as well

as additional novel features. We first consider the features discussed above for

Jtest, in the same order, and then discuss some of its novel features. The tool is

produced by Agitar, a new company founded in 2002.

One main difference from Jtest is Agitators test oracle. After any run

of tests, Agitator does not generate a JUnit test file containing test cases or test

input. Instead, Agitator provides a “snapshot window”, which contains a sample

of the test input generated and corresponding method results, seen in Figure 1.

44

45

Figure III.1: Agitator “Snapshots” window.

46

Each “snapshot” window contains at most one hundred test cases gener-

ated by Agitator. Every test case presented is a test for a specific method within

a class. The test cases are ordered one per column, and contain information such

as the return value for that particular case; the state of the class variables; and

the input values. For the sake of clarity, further references to snapshot windows

will be in a tabular format, and not that of a screenshot.

III.1 Test Generation

III.1.A Types, Constructors, and Test Generation

Agitator is capable of generating tests for all the basic types. In the case

where a method m() from a class C is tested, and C does not have a constructor,

Agitator generates simple default values for class variables with primitive types.

For the double type it is 0.0, for strings it is null, for char it is \u0000, and for

integers it is 0. Figure 2 contains a code sample illustrating the behavior of a class

with no constructor defined, and a subset of the output from Agitator tests. Only

the path with a return value of 6 is ever reached. Note how the class variable

values obtain default values for all test cases.

47

Figure III.2: An example of a class with no constructor, but class variables are

referenced.

48

If there exists a “set” method instead of a constructor, Agitator initiates

the class variables with the default values. Set methods are identified in Agitator

by any method name prefixed with the string “set*”. Subsequent calls to the “set”

method change the values of the class variables according to random Agitator

input. The “set” method is used to create appropriate test environments for other

methods. In Figure 3, the try anything() method is fully tested with different class

variable values. Note how the class variable values change with different test cases.

Figure III.3: An example of a “set” method changing the class variable values.

49

III.1.B Default Values and Random Tests

Like Jtest, Agitator chooses relative “surrounding” values based on con-

stants appearing in a methods code. For example, if two hard coded values, 94833

and 832, are present in a method, Agitator generates 94833, 94832, 94834, 832,

831, and 833 as testing input. Figure 4 shows a subset of the generated tests for

the example method.

Figure III.4: An example of “surrounding” default test values.

50

An interesting feature to note is that Agitator generates test values based

on all hard coded values within a method. In the int example() method, although

the value 94833 has no influence on the control flow of the method, 94833 and its

surrounding values were generated as test input. This may be because Agitator

does not discriminate the usefulness or influence of variables when performing its

analysis.

Agitator also uses random generation to construct test inputs. From

the example in Figure 4, other random test values are generated such as 52, 6,

-10, -100, and 925, among others. Unique numbers are also randomly generated.

Numbers like pi and natural log are occasionally generated for the float and double

types.

The user can specify one of three test generation modes: aggressive, ex-

tended and normal. These modes delineate the overall number of tests to run, with

normal being the least number of tests, and aggressive being the most. Larger

numbers of tests add a stress testing element to Agitator, in the sense that when

a method is tested many times, it will stress the retained state properties.

Agitators string type input generation seems to be performed in the same

manner as integer, float, and double types. For hard coded strings in a method,

Agitator generates the same hard coded strings as test input, shown in Figure 5.

51

Figure III.5: An example of string concatenation with the “+” operator.

52

In the string cat() method in Figure 5, Agitator generates strings of “le”

and “apple” as test values. It also generates null and other random strings like

“abcdefghijklmnopqrstuvwx{z” and “CfO~z B7SnV(K8Bt\$%vEr^N^s}”. It does

not appear that Agitator can determine that the “correct” input to this string

concatenation method is “app”. For a similar string, the concat() method is used

to yield the same input values in Figure 6. Again, the “correct” input values are

not generated.

Figure III.6: An example of string concatenation with the “concat()” method.

53

III.1.C Coverage and Test Generation

In the advertising for Agitator, the vendor states:

To really unit-test code, every line, every branch, and every outcome must

be tested. Thats a daunting combinatorial problem. Its not practical to create such

thorough tests manually. The test code is usually longer than the code being tested,

and time spent writing it is a direct tradeoff against time spent implementing

necessary features. Agitator automatically creates dynamic test cases, synthesizes

sets of input data, and analyzes the results.

The implication is that Agitator carries out analysis to determine data

that will cause branches in the code to be tested on at least one test. Analysis of

the tests that are generated indicates that there are special values specific to the

coverage of branches that do not look like default or random tests.

Analysis and Control Complexity

As in the case of Jtest, the tool can deal with complex control structures

during test generation. Agitator seems to traverse possible conditional branches

by looking at values in conditional statements and generating test data to satisfy

the conditions. For the large set of “if” conditions in Figure 7, Agitator is able

to generate all the possible combinations of integers which result in all possible

return values.

54

Figure III.7: An example of nested “if” logic.

55

If one considers the “e” value in Figure 7, Agitator generates “e” as: 432,

433, -432, 1, 9, 1000, and more. Various other values are generated for the other

input variables to the function. Agitator is able to generate input which reaches

every branch in the method.

Agitator is also able to generate test cases for complex “for” loops. Figure

8 shows a method whose input is the stopping condition of a “for” loop. The loop

increments a variable “y” by 2, and later, “y” is checked for a certain value, 41.

In some test cases, Agitator is able to generate the correct stopping condition of x

= 20.

56

Figure III.8: An example of “for” loop stopping condition generation.

57

The value of x = 20 seems to be generated occasionally. This is most likely

because it is a random value generate by Agitator for the purpose of robustness

testing, and not a standard value generated by analysis. As a result, it takes several

runs for Agitator to achieve coverage of the if(y==41) line.

Another interesting loop test is to make the incrementor value an input

to the method. Agitator seems to handle this well also. Figure 9 shows a “for”

loop whose incrementor value needs to be 51 in order to achieve full coverage.

Agitator seems to be able to obtain full coverage of this method consistently by

generating x = 51 during some test runs. It is not clear whether this coverage is

due to analysis or Agitators own random input generation process.

58

Figure III.9: An example of “for” loop incrementor generation.

59

For all normal “if” logic and most normal loop logic, Agitator performs

well and attains full coverage. It is not clear whether Agitator is performing

analysis on loops because full coverage is not always attained when a method

contains a loop stopping condition as input. In the case of loop logic, we use “for”

loops as the primary example. “While” loops also exhibit the same behavior, but

it would be redundant to show those examples as well.

Analysis and Types

Agitator was able to determine coverage oriented tests for not only inte-

gers, but also floating point, and doubles. In Figure 10, one can see nested “if”

statements with double and float types required. All branches were reached for

the example in Figure 10.

60

Figure III.10: An example of double and float types in a nested “if” structure.

61

Analysis and Expression Complexity

Agitator was able to deal with more complex expressions than Jtest. For

integer expressions occurring in branching conditions, it could solve for values for

involving exponentiation, which is a level above Jtests capability. The tool could

also perform analysis involving floating point and double precision expressions.

The example in Figure 11 shows that Agitator can solve complex algebra and

expressions as well.

Figure III.11: An example of algebraic complexity with float and double types.

62

Agitator was able to generate tests to cover all branches for the example

in Figure 11. Somehow, it is able to solve a linear equation involving a double

type. Figure 12 shows the capability for determining a basic cube root for a float

type. All branches in Figure 12 were covered.

Figure III.12: An example of algebraic complexity with exponents.

63

Agitator is also able to generate interesting data for methods without

explicit constants. Figure 13 shows a method whose conditional statements rely

purely on input variables with no constants within the code. Both branches are

covered in this example.

Figure III.13: An example of an expression relying purely on variables and no

constants.

64

Limitations

Some expressions and situations are difficult for Agitator to cover. For

example, the very complex polynomial expression seen in Figure 14 involves taking

the cube of “y” and dividing the result by the “y”. The “true” branch is never

covered in various Agitator test runs of the code in Figure 14.

Figure III.14: An example of a complex polynomial expression uncovered by Agi-

tator.

65

If a value of 1000 or greater were generated for “y”, then all branches of

this method would have been evaluated. However, no values of 1000 or greater

are generated in all of the runs attempted. It seems that Agitator encounters a

numerical limitation, generating values less than 1000, when dealing with polyno-

mials. Furthermore, it seems that Agitator does not attempt to solve expressions

involving polynomials. In Figure 15, only the precise value of 500 for “y” will

cause the code to evaluate the “true” branch. This behavior is expected because

automatically solving polynomial expressions is quite difficult for mere humans.

66

Figure III.15: An example of Agitator struggling to solve exponentiation.

67

III.2 Observations and Oracles

Like Jtest, Agitator also contains the normal Eclipse-based oracle of green

and red highlighted lines of code, respectively indicating covered and non-covered

lines. However, Agitator provides a new oracle mechanism called “observations”.

These observations are guesses at simple relationships about class variables and

method outcomes after each set of test runs. For example, Agitator can observe

that a certain integer class variable is always equal to five, or the method foo()

always returns a value of six. Agitator displays statistics on how often each obser-

vation was true or false. After each set of test runs, the user can decide to promote

any observations into assertions which will be automatically checked on subsequent

runs. Although these observations may not conform to a real functional oracle,

they may perform the useful function of assisting the tester in understanding the

code under test.

III.2.A Types of Observations

Agitator can make observations about class variables and methods. For

class variables, Agitator attempts to determine the class invariants by guessing the

typical values of class variables. Figure 16 contains a class with a constructor and

a method which alters the class variables. After a run of tests, involving automatic

test case construction, the “observations” in the table are produced.

68

Figure III.16: An example of basic class variable observations.

69

For the class variables “a”, “b”, “c”, and “x”, Agitator generates a variety

of values and observes that each variable could lie between ranges of possible

values. The variable “d” remains constant after the instantiation of the class and

is observed to have a relatively unchanging value of 12345. The “True” and “False”

statistics indicate the number of tests for which an observation was true or false.

In addition to class observations, methods have their own individual ob-

servations. Namely, Agitator tries to determine the values of inputs to methods,

the values of class variables before and after a method is run, the return value

of the method, and the return expression of a method. Figure 17 shows these

various observation types for a method that performs simple comparisons of class

variables.

70

Figure III.17: An example of basic method observations.

71

Observations 2, 5, and 6 describe observed properties of the test input

parameter values for the simple method(). These numbers are generated solely

by Agitator without programmer alteration. Observations 1, 3, and 4 are ranges

of values for the class variables before the method was run for each test. These

values are determined by the parameters to the constructor upon the instantiation

of each test, and by other methods whose test execution could result in changing

the values. Observation 7 is the range of return values of the simple method() call.

Notice that observations 1 through 7 all contain no false results from tests run;

this is because Agitator is merely stating the hard values of the tests it generated.

In contrast, observations 8 through 10 have some counts of false tests observed.

These observations are more generalized, and attempt to guess the relationships

between the input parameters and class variables. Each of these observations is

stated as a general expression, which leads to a mixture of true and false test cases.

III.2.B Using Observations

The value of Agitators observations is twofold. It provides insight into

the kinds of tests that have been run. In addition, if the programmer determines

that an observation is a correct invariant, the programmer can promote it to an

assertion to be checked upon each test run. Figure 18 shows certain observations

promoted. Simple method() is rerun to determine whether the assertions hold true

in testing.

72

Figure III.18: An example of promoting observations to assertions using the code

example in Figure 17.

73

The observations promoted to assertions are distinguished by check

marks. One can see that the return value assertion is confirmed to be true (green)

on test runs. This is rather trivial because simple method() can only return 1,

2, 3 or 4, so the range of return values must be between 1 through 4, inclusive.

The assertions made about the relationships between the class variables and input

parameters are confirmed as false (red). Again, this result is expected because this

example does not restrict the input of the method to conditions of a == i, b >

j, or c < k. Note that a camera icon appears to the right of the assertions which

failed. Clicking on this camera icon allows the user to see snapshots of test cases

which caused the assertion to fail.

The usefulness of some of Agitators observations is doubtful. A user may

not need or care to know the range of input values, or return values of a method.

In this case, the user can simply create new assertions using a special syntax and

assertion editor. In fact, Agitators automatically generated assertions can also be

altered in an editor.

III.2.C Advanced Observations

When exploring more complex programs, Agitators ability to generate

useful observations becomes more limited. To begin with, a relatively simple math-

ematical expression is shown in Figure 19, and produces interesting observations

from Agitator.

74

Figure III.19: An example of a simple mathematical expression.

75

Figure 19 shows two interesting return value observations. Observation

1 is the original expression given directly in the return statement code, while

observation 2 is an algebraically simplified version of the return statement code.

The presence of observation 2 shows that Agitator is performing some sort of

analysis in an attempt to create useful observations. The next example in Figure

20 complicates the expression.

Figure III.20: An example of observations for dependent methods.

76

The table in Figure 20 describes the observations for the method an-

other expression(). Again, the 5-x return value is seen in observation 2, but the

other return value in observation 1 is different. Observation 1 indicates that the

mult two() method must be called prior to executing the another expression()

method. While this statement is true, it is not the most optimal or human-readable

observation which could be made. Observation 1 in Figure 20 is a more obfuscated

version of observation 1 in Figure 19. Yet, in both Figures, the most simplified

observation of 5-x is identified.

There are a couple interesting features of the observations seen in Figures

19 and 20. Observation 3 in each of the figures shows that Agitator constructs

observations for raw output values. It attempts to guess the actual numerical

values which will be returned. Furthermore, Agitator seems uses any “return x”

statement as a template for generating the corresponding method observation. In

observation 1 of Figure 20, Agitator is unable to determine that mult two(x) is

actually the expression x*2, and merely inserts @PRE(this.mult two(x)) into the

observation. Although this observation is correct, it is not entirely useful to the

programmer. Next, in Figure 21, the same code with one more added layer of

complexity produces fewer observations than before.

77

Figure III.21: An example of observations for a more complex dependent method.

78

The table in Figure 21 describes the observations for the

yet another expression() method. The “return x” line adds one more level of indi-

rection between the return statement and the target mathematical expression by

assigning the expression to its own variable “x”. This results in one fewer obser-

vation generated by Agitator, but still yields the important simplified form of the

return value, 5-x. One can begin to see here that adding a level of indirection

decreases the number of observations Agitator can make. In Figure 22, it becomes

apparent that using a layer of indirection with multiple inputs results in useless

observations.

79

Figure III.22: An example of observations with method dependencies and multiple

inputs.

80

From Figure 22s observations, like that of the more complex expression()

method, there is no return expression observation seen in the previous Figures 19

through 46. In addition to the “return x” level of indirection, there is the added

complexity of calling a function on a second input parameter “y”. It seems like

Agitators ability to create return expression observations appears to be limited to

one input parameter.

III.2.D Test Management

One of the nicer features of Agitators oracle, is that it shows you the test

cases (at most 100) in detail. For every test it shows you the inputs and results

from the method, as well as the final of the class variables. As in the case of Jtest,

users of Agitator are presented with coverage descriptions. It also tells you how

many times it ran each line of code, which goes beyond simple coverage indicators.

Agitator, is not a JUnit-oriented tool. It does not appear to generate

observable files of JUnit classes for running future tests. The point of view taken

in Agitator is if you exit a session, it will regenerate the tests for a subsequent

session. This may be inefficient for large applications with many tests. However,

users can define and save mock objects for further reuse.

Mock objects are instances of classes in which the user defines the values

of class variables. The user can command Agitator to use the mock objects as test

cases in addition to the automated tests generated by Agitator.

III.3 Static Analysis

In addition to Eclipses compile-on-the-fly checker, Agitator contains 138

coding rules for the programmer to use. Most of the built-in code rules check for

coding style and format. The programmer can also create his or her own code rules

using the CheckStyle 4.1 API. This is an open-source, Java code rules checker with

81

its own rule specification language. Agitator does not make any claim to a source

or reference for the origins of their built-in code rules. However, a look at the

CheckStyle website shows a great similarity between default CheckStyle rules and

Agitators built-in rules.

Upon agitating the code, the static checker checks all lines of code for

violations of the selected rules. When the agitation is finished, rules violations

are reported in the Eclipse IDE as error marks beside the corresponding lines of

code. Additionally, each violation is reported in a separate Experts window where

the programmer can double-click on the violation and the IDE displays the line

of code in violation.

IV

Summary and Conclusions

In this section, the similarities and differences between Jtest and Agitator

are laid out. The benefits and drawbacks of each tool are considered, and a final

opinion is offered on the preferred tool.

IV.1 Commonalities

Jtest and Agitator seem to have the same types of overall testing harness

design. Each tool is implemented as a plug-in for the Eclipse IDE. The user writes

code in the IDE and can observe the static checker marking violations of coding

standards on-the-fly. Then, the user activates the testing mechanism to generate

test cases and run the code with the generated input. Both tools show whether

each line of code was covered during testing; lines marked green are covered, while

lines marked red are not covered.

Another important similarity is their method for generating test data.

Each tool has default values for primitive data types. Furthermore, each tool

utilizes the hard-coded constants within code to generate boundary test cases. If

a constant “k” is present in the users code, both Jtest and Agitator generate test

inputs of “k+1” and “k-1”, hoping to traverse all possible branches.

82

83

IV.2 Differences

The test oracles for Jtest and Agitator differ significantly. Jtest provides

the complete JUnit code generated for all tests. This sort of documentation pro-

vides the exact input and output for all tests. These tests are saved and organized

into Java files; one file is generated for every file tested. In contrast, Agitator only

provides a snapshot of up to one hundred test inputs and results. These snapshots

can only be seen in the Eclipse IDE, and are not saved in files. Snapshots only

represent a portion of the actual number of tests generated. Typically, Agitator

generates thousands of tests.

In the static analysis arena, Jtest provides more options than Agitator.

Jtest is able to check 522 different built-in coding rules, while Agitator only con-

tains 138 built-in coding rules. However, Agitator allows the user to create new

coding rules with the CheckStyle syntax.

Agitator seems to fare better in testing data types and complex expres-

sions. Jtest is unable to generate meaningful test data for float, double and string

types, while Agitator succeeds admirably. Additionally, Agitator successfully cov-

ers all branches for certain expressions containing polynomials. Yet, Jtest only

generates default values for polynomial expressions, resulting in poor coverage of

branches.

A further advantage in Agitator is its numerous and repeated generation

of random input for each run. During a run, Agitator performs a kind of stress

testing which repeatedly calls methods with random input. A method can be

tested nearly two thousand times in one run. Each run is different because new

random values are generated every time. This helps in determining the robustness

of code. On the other hand, Jtest has no such facility. In every run of Jtest on a

specific piece of code, the user will receive the same set of tests every time. The

set of tests is also much smaller; only enough to obtain the maximum amount of

branch coverage possible. It does seem that stress or robustness testing is part of

84

Jtests features.

Finally, Agitators observations are arguably its most novel contribution to

the tool. Agitator creates observations to show the user certain “invariants” about

the behavior of the code. Testing is an iterative process that involves feedback

from the testing tool and the programmers capability to adjust to that feedback.

Observations make this interaction more interesting and meaningful. The user can

turn these observations into assertions which are checked on subsequent runs.

IV.3 Recommendation

In the end, there is no clear winner between the capabilities of Jtest and

Agitator. If a decision needs to be made about which tool is better, one can only

determine the better tool based on the needs of the software being developed and

the set of tradeoffs associated with each tool.

For the case of Jtest, its main advantage is its test oracle. Every test is

well documented in a generated JUnit code file. In todays corporate world where

accountability is in high demand, these generated files function as a method for

tracing test cases back to requirements. However, Jtest fails to generate sufficient

test cases for float, double, and string types. It may be that these data types are

not the most prevalent among modern software, but the gap in coverage remains.

At the price of coverage, Jtest provides reasonable accountability.

Agitator has several advantages. It is able to obtain more complete cov-

erage because it generates test data for float, double, and string types. It also goes

beyond the call of duty of mere branch coverage, and generates extra random test

inputs. It runs each method hundreds to thousands of times to test for robustness.

Through its observations, it is capable of telling the programmer what the software

is supposed to do. For all of Agitators coverage capability, its shortcoming may

be its oracle facility. The user can only view a snapshot of one hundred test cases,

and even this snapshot is not saved. Although this is understandable, because Ag-

85

itator generates thousands of tests which would take a sizeable chunk of memory

to save, a programmer is not able to trace test cases back to requirements. In

certain software engineering disciplines, it is required to correlate all requirements

with tests. However, at the unit testing level, for which Agitator is intended, this

traceability may not be important.

References

1999: Code Conventions for the Java Programming Language. Sun Microsystems.

Agitar, 2008: http://www.agitar.com.

Checkstyle4.4, 2008: http://checkstyle.sourceforge.net.

DeMillo, R., and Offutt, J., 1991: Constraint-based automatic test data generation.
IEEE Transactions on Computers, 17(9).

Eclipse, 2008: http://www.eclipse.org.

Ernst, M., Cockrell, J., Griswold, W., and Notkin, D., 2001: Dynamically discover-
ing likely program invariants to support program evolution. IEEE Transactions
on Software Engineering, 27(2).

Ernst, M., Perkins, J., Guo, P., McCamant, S., Pacheco, C., Tschantz, M., and
Xiao, C., 2007: The daikon system for dynamic detection of likely invariants.
Science of Computer Programming, 69(1–3).

Howden, W., 1975: Methodology for the generation of program test data. IEEE
Transactions on Computers, 24(5).

Howden, W., 1977: Symbolic testing and the dissect symbolic evaluation system.
IEEE Transactions on Software Engineering, 3(4).

Howden, W., 1978: Algebraic program testing. Acta Informatica, 10(1).

Javadoc, 2008: http://java.sun.com/j2se/javadoc/.

JUnit4.4, 2008: http://www.junit.org.

Korel, B., 1990: Automated software test data generation. IEEE Transactions on
Software Engineering, 16(8).

Offutt, J., Jin, Z., and Pan, J., 1999: The dynamic domain reduction approach to
test data generation. Software-Practice and Experience, 29(2).

Parasoft, 2008: http://www.parasoft.com.

86

