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Abstract 

Significance: Patients with worsening sepsis on general hospital wards are at high risk 

for clinical deterioration, unplanned admission to the intensive care unit, and death. 

Many hospitals have begun to employ early warning systems (EWSs) to alert nurses 

and providers that a patient is predicted to deteriorate. Multiple papers in the rapid 

response team (RRT) and sepsis literature describe typical problems leading to an EWS 

alert (e.g., systemic inflammatory response syndrome, low blood pressure) as well 

recommended interventions such as intravenous fluid bolus, antibiotics, and transfer to 

the intensive care unit (ICU). Despite the evidence base, it remains unclear which 

actions following an EWS alert might improve 30-day survival.  

Methods: 1) We performed a systematic review of the evidence of advanced early 

warning systems detecting patient deterioration risk using multivariate regression or 

machine learning vs. point-score systems. We then systematically quantified results of 

model performance (e.g., area under the curve, sensitivity, PPV) and alerts generated 

per positive case. 2) We conducted two rounds of clinical chart reviews evaluating 

patient characteristics (e.g., severity of illness, comorbidities), clinical notes and process 

markers of early sepsis care following a clinical deterioration alert including Do Not 

Resuscitate (DNR) order time; fluid bolus therapy; new antibiotics; and transfer to the 

intensive care unit. 3) Using a retrospective matched pair cohort design, we evaluated 

the impact of sepsis interventions following a clinical deterioration alert on sepsis 

survival in patients who were admitted in stable condition to general medical wards of 

Kaiser Permanente hospitals with an advanced EWS. Using a pool of hospitalized 

patients, we investigated whether specific fluid bolus processes (Time from EWS alert 
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to fluid bolus administration and total 24h fluid bolus volume) occurred more frequently 

in survivors.  

Results: 1) Advanced EWSs using multivariate regression or machine learning had 

better prognostic accuracy than point-score EWSs and decreased the RRT and 

hospitalist evaluation workload substantially. 2) The advanced EWS alert frequently 

occurred within hours after hospital admission, requiring exclusion of the time period 

with therapeutic overlap with the initial bundle of sepsis interventions. DNR order 

change occurred frequently before death, making it an unsuitable exclusion criterion for 

“expected death” in hospital populations. 3) More sepsis survivors received additional 

antibiotics, and often before the alert. Decedents received more than twice as much 

fluid bolus therapy following the alert; had more vital sign documentations and 

laboratory orders following the alert; more transfers to ICU; and more DNR or comfort 

care orders following the alert. Some proportion of decedents may have been on a fixed 

end-of-life trajectory. 

Discussion: This dissertation offers a novel approach to characterizing and measuring 

the impact of fluid bolus therapy on sepsis survival and has the potential to improve 

outcomes among sepsis patients outside the ICU. Early additional antibiotic coverage 

may aid survival. Fluid bolus therapy does not appear to aid survival. Measuring 

expected vs. unexpected mortality in future research may offer additional insights into 

the treatments effects of sepsis interventions relative to the alert.  
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Statement of the Problem 

Hospitalized patients with worsening sepsis on general wards are at high risk for 

clinical deterioration, unplanned admission to the intensive care unit, and death (Angus 

et al., 2001; Rivers et al., 2001a; Rivers et al., 2001b; Martin, Mannino, Eaton, & Moss, 

2003; Dombrovskiy, Martin, Sunderram, & Paz, 2007; Gaieski et al., 2010; O'Neill, 

Morales, & Jule, 2012; Pastores, Dakwar, & Halpern, 2012; Liu, Morehouse, Soule, 

Whippy, & Escobar, 2013; Institute of Medicine, 2015; Park et al., 2017; Prasad et al., 

2017). An estimated 900,000 to 3 million patients are diagnosed with sepsis in the 

United States annually (Gaieski, Edwards, Kallan, & Carr, 2013), and an estimated 

180,000 to 750,000 patients die of sepsis each year (Gaieski et al., 2013; Epstein, 

Dantes, Magill, & Fiore, 2016). Evidence suggests that over 50% of all patient deaths 

following hospitalization may be due to sepsis (Engel et al., 2007; Liu et al., 2014). 

Sepsis costs the U.S. health system an estimated $14 billion annually (Healthcare Cost 

Utilization Project, 2008). For health care delivery systems, unrecognized worsening 

sepsis may result in higher treatment costs and longer stays with net loss due to 

bundled payments in the diagnosis-related group (DRG) payment model.  

New or worsening sepsis is defined as signs of systemic inflammatory response 

plus acute organ dysfunction (Levy et al., 2003). Prior studies suggest that patients who 

receive early sepsis interventions have better survival outcomes (Levy et al., 2003; 

Dellinger et al., 2008; Liu, Whippy, & Morehouse, 2015). For example, the 2012 

Surviving Sepsis guidelines recommend fluid resuscitation of a minimum of 30ml/kg of 

crystalloid intravenous fluid completed within 3 hours and to consider additional fluid 

bolus therapy until hemodynamic stability is reached. In deteriorating sepsis patients, 
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the goal of timely fluid bolus therapy is to replenish volume because in the 

pathophysiological cellular inflammatory response of sepsis, volume from the blood 

vessels moves into the surrounding tissue (Dellinger et al., 2013; Glassford, Eastwood, 

& Bellomo, 2014). Multiple papers in the sepsis literature describe both typical problems 

of worsening sepsis (e.g., systemic inflammatory response syndrome and acute organ 

dysfunction such as respiratory distress or low blood pressure), as well as what should 

be done (e.g., fluid bolus, intravenous antibiotics, transfer to ICU) (Levy et al., 2003; Liu 

et al., 2013; Kramer, Cooke, Liu, Miller III, & Iwashyna, 2015; Fielding-Singh, Greene, 

Baker, Escobar, & Liu, 2016). It is known that the timing and volume of fluid bolus may 

be associated with better odds of surviving sepsis (Levy et al., 2003; Liu et al., 2013; Liu 

et al., 2014). Consequently, the Centers for Medicare and Medicaid Services core 

measure SEP-1 mandates the reporting of sepsis bundle compliance, also referred to 

as Early Goal Directed Therapy (Pepper et al., 2018). The measurement of sepsis 

bundle compliance includes two fluid bolus processes (FBPs): Time from presentation 

of sepsis to administration and total volume administered (Rhodes et al., 2017). These 

measures do not capture how hospitals facilitate the timely administration of fluid bolus 

therapy in patients with worsening sepsis, and how decompensation risk is identified. 

Both of these factors are crucially important for the effective delivery of sepsis care and 

will be discussed in the following paragraph. 

Though not federally mandated, hospitals typically invest in clinical resources, 

such as rapid response teams (RRTs), to deliver the sepsis bundle on inpatient wards in 

a timely manner. Studies have documented that patients who experience worsening 

sepsis outside the intensive care unit (ICU) have worse outcomes than patients directly 



Chapter 1: Introduction 
 

	 4 

admitted to intensive care. In acute care, there are two sepsis response options for 

patients facing clinical deterioration from worsening sepsis: 

1. Rapid response team (RRT) activation: Typically staffed at minimum with an 

experienced critical care nurse, RRTs evaluate patients at-risk for worsening 

sepsis using a variety of strategies (e.g., proactive rounding or evaluating 

patients flagged by screening tools). 

2. Code sepsis: A critical care team that includes RRT, physician and pharmacy 

responds to a positive sepsis screen indicating acute organ dysfunction. The 

team then delivers a bundle of sepsis interventions at optimal speed. 

The evidence regarding the value of RRTs in averting clinical deterioration and 

unforeseen death is weak. Traditional RRT approaches are problematic because 

interventions may often not begin until a patient is already demonstrating an acutely 

worsening condition. The ongoing problem is not only failure to rescue sepsis patients 

who deteriorate on general hospital wards, but also failure to recognize early and 

scattered clues of worsening sepsis, so that clinical deterioration may be prevented 

entirely.  

To that end, there is potential for early warning systems (EWSs) to support RRTs 

by identifying risk and by triggering sepsis evaluations and interventions earlier than 

traditionally possible. (Escobar et al., 2012b; Bates, Saria, Ohno-Machado, Shah, & 

Escobar, 2014; Linnen, 2016). EWSs are known under several other terms, including 

“track and trigger systems” (Smith, Prytherch, Meredith, Schmidt, & Featherstone, 2013) 

and “sniffers” (Herasevich, Pieper, Pulido, & Gajic, 2011). Historically, EWSs were 

paper-based point score instruments designed for fast manual calculation. Clinical 
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variables were typically limited to vital sign data (heart rate, respiratory rate, systolic 

blood pressure, SpO2, temperature), presence of oxygen support and level of 

consciousness. With point-score EWSs, most of the literature regarding their ability to 

improve survival has been inconclusive given their limited precision and because they 

may produce a large number of false positive alerts (Gao et al., 2007; McNeill & Bryden, 

2013; Smith et al., 2014).  

Alternatively, advanced EWSs, which we define as those using multivariate 

regression models or machine learning algorithms, use more complex data and more 

sophisticated analytic methods to quantify deterioration risk. Using modern data 

technology, these EWSs can compute risk scores in near real-time, and they can detect 

more subtle signs and trends of worsening sepsis and clinical deterioration. Research 

has demonstrated better discrimination and calibration performance in detecting patient 

deterioration risk up to 12 hours before a potential acute event (Escobar et al., 2012a; 

Escobar & Dellinger, 2016; Granich et al., 2016). However, despite knowing that 

advanced EWSs can facilitate a timelier identification of risk, it is not clear whether they 

also facilitate a better RRT response and whether such a response would improve 

sepsis survival. To date, no sepsis studies have investigated whether (or which) fluid 

bolus processes may improve sepsis survival relative to an advanced EWS alert. Such 

a gap is concerning given that health care delivery systems may expend large amounts 

of resources on these innovative analytic solutions and require value confirmation for 

adoption at scale.  
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Study Purpose  

The purpose of the dissertation was to evaluate the predictive and clinical utility 

of advanced EWS and to evaluate whether there were differences in alert-driven sepsis 

interventions between sepsis survivors and decedents. The remainder of this chapter 

describes the research aims, hypotheses, theoretical framework, and significance of the 

dissertation study. Beyond this general introduction chapter, the organization of the 

dissertation is as follows. Chapter 2 presents results from a systematic review of the 

advanced EWS literature. Chapter 3 describes results from clinical chart reviews of 

alerted sepsis patients after admission to a general hospital ward in stable condition. 

Chapter 4 reports results of a retrospective matched pair cohort study that aimed to 

statistically quantify the impact of alert-driven FBPs performed by RRTs on survival 

outcomes. Chapter 5 offers a summary and synthesis of all results and discusses 

implications for future research. 

Research Aims 

This dissertation study had the following specific aims: 

Aim 1) Conduct Chart Reviews of Electronic Health Records to Categorize Fluid 

Bolus Processes (FBPs) and other RRT Sepsis Interventions Relative to the 

Alert  

 The purpose of expert chart reviews was to 1) examine the RRT response after 

(and possibly before) the EWS alert; 2) locate discrete FBP data and other 

sepsis intervention data in the electronic health record; and 3) categorize fluid 

bolus processes in terms of elapsed time from EWS alert to bolus and total 24-

hour bolus volume. 
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Aim 2) Characterize and Compare Sepsis Survivors and Decedents Admitted in 

Stable Condition and Evaluate the Impact of Fluid Bolus Processes on 30-

day Survival in a Cohort of Patients in Hospitals with an advanced EWS 

Among sepsis patients with a positive EWS alert, I conducted a retrospective 

matched pair cohort study using multivariate pair matching of identified 

decedents and matched survivors; I performed descriptive statistics and 

quantified the between-group differences of FBPs in survivors and decedents. 

Hypotheses 

By delivering sepsis interventions faster, the hypothesis was that clinical patient 

trajectories and sepsis survival would improve. The specific alternative hypotheses (p < 

0.05) were: 

H1:   Elapsed time from EWS alert to administration of IV fluid bolus will be shorter in 

survivors compared to decedents, after pair-matching adjusted for patient age, 

sex, EWS score, patient comorbidity [COmorbidity Point Score version 2 

(COPS2)], and severity of illness [LAboratory-based acute Physiology Score 

(LAPS2)]. 

H2:  Total 24-hour fluid bolus volume following an alert will be larger in survivors 

compared to decedents, after pair-matching adjustment for patient age, sex, 

EWS score, length of stay, patient comorbidity (COPS2), and severity of illness 

(LAPS2). 
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Theoretical Framework 

Underlying the study’s hypotheses is a theoretical hybrid model (Figure 1: Petri 

Dish Model, Linnen, 2017), which combines Population Ecology Theory (Hannan & 

Freeman, 1977) and Human Factors Theory (Reason, 1995). Following is a brief 

description of each of these theories and a discussion of their merits, gaps and 

application to the phenomenon of alert-driven RRT sepsis interventions. 

Population Ecology Theory (PET) aims to explain organizational growth rates 

and organizational behavior (strategic decisions and business behavior) in the context 

of survival in a competitive market. Due to a variety of constraining forces, organizations 

are described as exhibiting structural inertia, which is a conservative and innovation-

averse stance. The theory can be aptly used to describe the underlying motivations of 

healthcare delivery systems to withhold investments in patient safety innovations such 

as an advanced EWS. Still, because of patient safety mandates, healthcare delivery 

systems are also known to expend resources despite their unclear benefit (e.g., RRT). 

PET does not attempt to reconcile this contradiction in its framework.  

Human Factors Theory (HFT) has seen wide adoption in the healthcare domain 

of patient safety. HFT is a theory of accident causation and posits that medical errors 

(here: not recognizing worsening sepsis) are the result of four failure modes (fallible 

board decision and policy, line management problems, psychological precursors to 

unsafe acts, and unsafe acts). While HFT can explain why clinicians may not recognize 

worsening sepsis preemptively, it cannot explain how external and strategic forces 

might contribute to such a state.  
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The Petri Dish Model and Alert Driven Rescue 

Both Population Ecology Theory and Human Factors Theory can be used to 

describe the context of RRT interventions in admitted sepsis patients with a positive 

EWS alert. However, to bridge the explanatory gaps of each theory, we developed the 

Petri Dish Model (Figure1, Linnen, 2017), which combines key aspects of these two 

theories and expands two interrelated organizational needs of survival in the market 

(cost) and optimal patient safety (quality).  

 

Figure 1: The Petri Dish Model: Combining Population Ecology Theory and Human 
Factors Theory to Describe Value Return of Patient Safety Investments in Health 
Systems (Linnen, 2018) 
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The Petri Dish Model explains that care delivery systems (or “health systems”) 

are contained in a larger competitive macro environment of the U.S. healthcare system. 

At the meso level, the care delivery system provides the funding and allocates 

resources to facilitate the deployment of the EWS and RRTs. Acute care delivery 

departments staff the RRTs (micro level). EWS alerts and FBPs occur at the nano level 

of the individual acute care clinician and the patient. While it may appear that a value 

case could be made for tools improving early detection of worsening sepsis, it is 

unknown whether combining an advanced EWS with RRT has a meaningful impact on 

sepsis survival. To improve its survival stance in the market, the health system would 

require a value confirmation of such an investment. An econometric value confirmation 

would be achieved when the intervention benefits (in $) outweigh implementation and 

maintenance costs. Qualitatively, “value” may also be achieved if care delivery system 

leaders believe that the patient safety intervention has a probable, but immeasurable,  

benefit, for example by facilitating a selection advantage with insurance brokers.  

The decentralized nature of hundreds of sepsis interventions occurring at 

multiple sites with varying personnel may result in variation in the delivery of fluid bolus 

processes. Hence, this dissertation aimed to aggregate fluid bolus processes, to 

describe how they were performed across KPNC hospitals with an advanced EWS, and 

to evaluate their impact on sepsis survival. For health systems, such information is 

important because it allows the meso-level business leaders to benchmark sepsis 

performance in the context of organizational targets and regulatory expectations (e.g., 

mortality). This new data-driven awareness closes the feedback loop (value 

confirmation) as these targets can now be measured in a more standardized and 
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reliable fashion, ultimately informing investment success of the EWS. In the Petri Dish 

Model, this knowledge may give the health system a selection advantage in the context 

of competitor performance and the wider market place.  

Finally, the performance feedback loop starts over by allowing health systems to 

improve the intervention based on observed vs. expected outcome measurements, 

process measurements, and feedback from clinical staff. The Petri Dish Model predicts 

that the interrelated mechanisms of patient safety investment and value confirmation 

would motivate the use of an advanced EWS across the health system, and, long-term, 

across most hospitals in the U.S. This outcome could be measured by number of EWS 

deployment sites and annual deployment rates, though that is beyond the scope of this 

dissertation. 

Significance of the Dissertation 

The rescue of sepsis patients who are at risk of clinical decompensation on 

medical wards is hampered by a number of factors including the late detection of such 

risk using traditional screening methods resulting in delayed RRT interventions. 

Currently, at least in part because of a delayed RRT response, the evidence base for 

the impact of more timely administration of fluid bolus therapy on sepsis survival is 

weak. To date, no study has used an advanced EWS alert as a marker of Time Zero. 

This research is significant because it fills a critical gap in the literature. By being first to 

incorporate an advanced EWS alert and by categorizing fluid bolus processes and 

comparing survival outcomes, this dissertation study improved the empiric evidence 

base regarding the effective delivery of fluid bolus therapy and has the potential to 

inform clinical practice standards.  
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Abstract 

Background: The clinical deterioration of patients admitted in stable condition to 

general medical-surgical hospital wards is a vexing patient safety issue. Few early 

warning systems (EWSs) can identify patients before clinical decline has ensued. 

Objectives: We aimed to evaluate the literature regarding prognostic test accuracy and 

clinical evaluation workloads generated by advanced EWSs using multivariate 

regression or machine learning techniques vs. points-score tools to detect clinical 

deterioration risk in hospitalized adult patients on general wards.  

Methods: We searched PubMed, CINHAL, and Google Scholar databases using terms 

that described clinical deterioration and use of advanced EWS model. The outcome was 

clinical deterioration of adult patients on general hospital wards (the composite of 

transfer to ICU and/or mortality). We included studies published in peer-reviewed 

journals from 2012 to 2017. Of 295 articles, we excluded 290 studies (different setting, 

population, or method). We selected 5 studies reporting model performance of EWSs 

using multivariate regression or machine learning. We used 2015 PRIMSA systematic 

review protocol guidelines and 2015 TRIPOD criteria for predictive model evaluation 

and the Cochrane Collaboration guidelines to assess the studies' methodological rigor 

and bias risk. We reported measures of model performance across studies, calculated 

pre-test probability, adjusted positive predictive value (PPV), and conducted simulations 

of workup-to-detection ratios. We then calculated means and graphed results of model 

performance between point-score tools and advanced EWSs and synthesized study 

results. 
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Results: Of the 5 studies, 4 were of good quality and employed rigorous measurement 

and modeling techniques. All advanced EWSs appeared to perform better at identifying 

patients at risk for clinical deterioration than point-score EWSs (mean AUC 0.80 vs 

0.72). In adjusted analysis, advanced EWSs generated 5.4 alerts per hospital per day, 

compared to 8.0 alerts per hospital per day in point-score EWSs. The delta of 2.6 alerts 

per hospital per day equals a nearly 50% relative increase in RRT workload using point-

score EWSs.  

Conclusion and Implications: This systematic review is the first to evaluate the 

performance of advanced EWSs. The evidence is limited to a few studies. Compared to 

traditional point-score tools, advanced EWSs consistently demonstrated superior 

prognostic performance both in terms of accuracy and RRT workup demands. A 

standardized approach to reporting EWS model performance is needed, including pre-

test probability, observed and adjusted PPV, alerts generated to find 1 true positive 

case, and alerts generated per 100 patients per day. 
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Introduction 

Ensuring the delivery of safe and cost-effective care is the core mission of the 

U.S. acute care delivery system (National Academy of Medicine formerly the Institute of 

Medicine, 1999). Nearly 90% of all unplanned patient transfers to critical care may be 

the result of a new or worsening condition (Bapoje, Gaudiani, Narayanan, & Albert, 

2011). For example, estimates suggest that nearly 200,000 patients suffer a cardiac 

arrest (Merchant et al., 2011) and 1,000,000 patients die of severe sepsis in U.S. 

hospitals annually. The combined national costs for the treatment of sepsis, respiratory 

failure and arrest are estimated to be $30.7 billion (8.1% of national costs) (Torio, 2015). 

As many as 44% of adverse events, and the associated costs of treatment in the 

intensive care unit (ICU), may be avoidable (Levinson & General, 2010).  Clinical 

deterioration requires life supporting interventions by a rapid response team (RRT) or 

code blue team (Bellew, Cabrera, Lohse, & Bellolio, 2016) and transfer to the ICU. 

These interventions, however, may often be reactive and begin once a patient is already 

in acute distress, which is often too late. Evidence suggests that many hospitalized 

patients presenting with rapid decline showed warning signs 24-48 hours before the 

event (McGaughey et al., 2007). These signs may be subtle, making it difficult for 

nurses and physicians to recognize and synthesize their meaning leading up to a 

deterioration event (Silber, Williams, Krakauer, & Schwartz, 1992; Escobar et al., 2016; 

Hu, Bai, & Salas-Boni, 2016b). 

Acute deterioration of patients admitted to general wards in stable condition may 

result in transfer to the intensive care unit (ICU), longer length of stay, and increased 

mortality risk (Escobar et al., 2012; Dahn et al., 2016). Life support, ICU stay and longer 
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hospitalization time also expose patients to additional iatrogenic risks, such as 

nosocomial infections (Richards, Edwards, Culver, & Gaynes, 2015), medical errors, 

hospital acquired pressure ulcers (Coyer & Tayyib, 2017), falls with injury (Bouldin et al., 

2013), and ICU psychosis (Wolters et al., 2014). Across the over 5,500 hospitals in the 

U.S. (American Hospital Association, 2018), late recognition of impending deterioration 

may further result in financial burden due to longer hospital stays (Barwise et al., 2016), 

the high costs of critical care (Pastores, Dakwar, & Halpern, 2012), and litigation 

(Pascall, Trehane, Georgiou, & Cook, 2015).  

 Hospitals began staffing rapid response teams (RRTs) as an answer to these 

challenges. RRTs perform patient rounding, fulfill requests by staff nurses to evaluate 

patients, and respond to EWS alarms and acute deterioration events (Escobar & 

Dellinger, 2016). Still, two systematic reviews regarding the effectiveness of RRTs on 

patient outcomes reported inconclusive results (McGaughey et al., 2007; Winters et al., 

2013). This may be at least in part because RRTs often respond to, rather than 

preempt, clinical deterioration.  

 As early as 1997, hospitals have used early warning systems (EWSs) to identify 

at-risk patients and to proactively inform clinicians (Morgan, Williams, & Wright, 1997). 

These EWSs, which can be automated in the electronic medical record, screen for 

deterioration risk in entire hospital populations (Dummett et al., 2016). There are two 

main types of EWS: 1) point-score EWSs and 2) EWSs that use computational methods 

of multivariate regression or machine learning (we will refer to the latter as “advanced” 

EWSs). Point-score EWSs identify patient deterioration risk using simple addition of a 

few clinical parameter scores, including vital signs and level of consciousness. 
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However, the lack of risk adjustment with point-score EWSs may produce a high false 

positive alarm rate (Romero-Brufau et al., 2014). Moreover, as these point-score EWSs 

become better at finding all true positive cases, they also increase the overall number of 

cases needed to evaluate. This is problematic because: 1) RRTs may be a costly 

resource; 2) RRTs do not have the capacity to evaluate a large number of false positive 

patients (which may take up to 30 minutes in total) on a routine basis; and 3) a high 

proportion of false positive alarms may cause alarm fatigue (Guardia-Labar, Scruth, 

Edworthy, Foss-Durant, & Burgoon, 2014). A systematic review (Smith, Chiovaro, & 

O'Neil, 2014a) found that too little is known regarding the effect of pairing point-score 

EWSs on clinical deterioration outcomes and RRT staffing costs. In contrast, advanced 

EWSs use computational methods to predict risk (Bates, Saria, Ohno-Machado, Shah, 

& Escobar, 2014) by adjusting for many clinical covariates and thereby reducing the 

degree of unexplained variance. While they are thought to be more precise and to 

generate fewer false positive alarms (Escobar et al., 2012; Churpek, Yuen, Park, 

Gibbons, & Edelson, 2014; Churpek et al., 2016; Kipnis et al., 2016), no review to date 

has synthesized and compared their performance against point-score EWSs 

systematically.  To provide safe, timely and cost-effective care, health systems need to 

have a better understanding of how to precisely identify patients, who are at risk for 

clinical deterioration, while minimizing RRT evaluation workloads.  

Purpose 

To that end, the purpose of this systematic review was to evaluate the literature 

regarding prognostic test accuracy and RRT workloads generated by advanced EWSs 
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using multivariate regression or machine learning techniques vs. points-score systems 

to detect clinical deterioration risk in hospitalized adult patients on general wards. 

Methods 

Search Strategy  

 We searched the published peer-reviewed literature in PubMed, CINAHL and 

Google Scholar, as well as the gray literature (Agency for Healthcare Research and 

Quality and Institute for Healthcare Improvement websites) published in English and 

German language between January 1, 2012 and November 1, 2017. We selected this 

time frame because, compared to point-score EWSs, advanced EWSs using electronic 

medical record data are comparably new approaches. An expert PhD researcher 

independently confirmed the search results in a blinded search. Table 1 describes the 

search terms and search details. A search for “early warning score OR early warning 

system AND deterioration OR predict transfer ICU” returned 227 peer-reviewed articles. 

We then removed psychology references from the detailed search, resulting in 117 

articles. A separate search in CINAHL using the same filters and query returned 175 

academic journal articles, of which no additional articles met inclusion criteria. A Google 

Scholar search using the key terms “early warning score early warning system 

deterioration predict transfer ICU” returned 4,530 articles, and we deemed this query 

too broad. Narrowing the search to “early warning score early warning system 

deterioration predict transfer ICU regression machine learning” returned 295 results. Of 

these, we identified no additional journal articles.  
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Inclusion and Exclusion Criteria  

 Figure 1 shows the search strategy and study selection, following PRISMA 

protocol guidelines for systematic reviews. We included peer-reviewed journal articles 

that reported models predicting transfer to ICU and mortality, because these are the two 

most common proxies for clinical deterioration on wards (patients either die on the ward 

or get transferred to ICU). We included articles if they reported model performance of an 

advanced EWS for hospitalized adult patients on general medical-surgical wards (see 

Table 1), using the area under the receiver operator curve (AUC) (Zweig & Campbell, 

1993) or the equivalent c-statistic (Romero-Brufau, Huddleston, Escobar, & Liebow, 

2015). These are measures of model discrimination, and they compare a model’s false 

positive rate (1-specificity) against its true positive rate (sensitivity). Our search did not 

require additional parameters of model performance (sensitivity, specificity, positive 

predictive value [PPV], model calibration, coefficient of determination [R2] or work-up to 

detection ratio), but we captured or calculated them for analysis. Please see the 

appendix for detailed results.  

 Of the 295 articles, we excluded 281 in the initial abstract screen, and 9 

additional articles during full-text review. We excluded studies if they only reported on a 

paper-based EWS or point-score EWS or if they used physiological monitor data 

because monitor use is ubiquitous in critical care and step-down units, but not general 

wards. We excluded pediatric and obstetric patient populations, as well as patients in 

intensive care units, emergency rooms, or specialty oncology units, and outcomes 

unrelated or only partially related to clinical deterioration. Of 4 reports published in 

conference proceedings, we excluded 3 machine learning papers because they 
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analyzed physiological patient monitor data and/or occurred in a critical care setting 

(Clifton, Clifton, Watkinson, & Tarassenko, 2011; Mao et al., 2012; Yoon, Alaa, Hu, & 

Van Der Schaar, 2016). The fourth conference report in the proceedings of the 2012 

International Conference on Knowledge Discovery and Data Mining (Mao et al., 2011) 

did not meet the inclusion criterion of peer-reviewed journal publication. In total, 5 peer-

reviewed research reports met eligibility criteria in this systematic review. A review of 

the reference lists of these 5 studies did not yield additional reports for inclusion in this 

review.  

Data Abstraction 

Following the TRIPOD guidelines for the transparent reporting of predictive 

models (Collins, Reitsma, Altman, & Moons, 2015), and the PRISMA and Cochrane 

Collaboration guidelines for systematic reviews (Moher, Liberati, Tetzlaff, Altman, & 

Group, 2009; Higgins, 2011), our data abstraction had three aims: 1) summarize the 

studies’ basic characteristics; 2) compare EWS model performance using a systematic 

and transparent approach; and 3) assess bias and the level of scientific evidence.  

Of the 5 number of studies reviewed, we extracted the following data:  

1. Study Characteristics (Table 2): Year published, country, location and setting, 

study purpose, theoretical framework, research design, study time frame, sample 

size and attrition, and sample characteristics. Since heterogeneity of the studies is 

an important criterion when assessing the strength of the evidence, we captured 

how the studies differed in their design and sample selection (Polit & Beck, 2012). 

2. Predictive Model Characteristics and Performance (Appendix Table 2 and 3): 

Surveillance method; predictors; reference standard; model performance [AUC/c-
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statistic, sensitivity, specificity, positive predictive value (PPV), pre-test probability, 

model calibration]; workup-to-detection ratio, relevant findings, strengths, and 

limitations. We chose these measures to compare the predictor variables in each of 

the early warning system computer models and to facilitate a systematic comparison 

of EWS models. 

3. Level of Scientific Evidence and Risk of Bias Assessment (Appendix Table 4): 

We compiled a scoring table assessing each study’s level of scientific evidence. 

Factors included research design, measurement bias, detection bias, missing data 

bias, threats to external validity and total bias score (derived by summing the equally 

weighted sub-scores of each factor). We adapted these criteria from the Cochrane 

Collaboration's tool for assessing risk of bias in systematic reviews (Higgins et al., 

2011) to minimize subjective interpretation of results. We used these scores to 

identify both the overall strength of the evidence and to identify common bias across 

studies.  

Measures of Model Discrimination 

 The Area Under the Receiver Operator Curve (AUC) (Zweig & Campbell, 1993), 

also referred to as the c-statistic, plots a model’s false positive rate (x-axis) and true 

positive rate (y-axis), with an ideal scenario of very high y-values and very low x-values 

(Hanley & McNeil, 1982). Models can be calibrated to produce fewer alarms at the 

tradeoff of identifying fewer true positive cases (and vice versa). Therefore, AUC alone 

is not a meaningful measure of model performance (Romero-Brufau et al., 2015) 

because it does not measure a model’s RRT workup-to-detection ratio (WDR), or 

patient evaluation workload to find one true positive case. It is known that a population’s 
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outcome prevalence (or pre-test probability) influences a model’s positive predictive 

value (PPV) (Altman & Bland, 1994) and reciprocally WDR, which equals !
""#. This 

makes it challenging to compare models systematically across varying research 

populations. However, PPV/NPV can be standardized using a simulated pre-test 

probability across studies. To standardize PPV (percent of true positive alerts among all 

alerts), we simulated a pre-test probability of 2% (Romero-Brufau et al., 2015) across 

studies. We did not capture or adjust Negative Predictive Value (NPV; detecting true 

negative tests among all negative tests) (Bewick, Cheek, & Ball, 2004) because the 

principal utility of EWSs is to find true cases, not true negatives.  

 Additionally, we captured sensitivity (the model’s ability to detect a true positive 

case among all cases), and specificity (the model’s ability to detect a true non-case 

among all non-cases (Bewick et al., 2004)). Because sensitivity and specificity describe 

characteristics of the test, rather than the outcome, AUROC/c-statistic are not 

influenced by pre-test outcome probability. Such measures of model discrimination are 

important because they answer how useful a model is at “finding cases.” For example, if 

a model is not very sensitive (not good at recognizing true positive cases among all 

cases), it will have low practical utility for busy clinicians. Equally, if a model has low 

specificity (not good at detecting true negatives among all non-cases) it results in 

excessive alarming, wasteful RRT deployment, and alarm fatigue (Kho et al., 2007). 

Finally, we abstracted the models’ reference standard (or “gold standard”) to accurately 

identify a true case; the coefficient of determination (R2), which is the percent variance 

explained by the model (Nagelkerke, 1991); and measures of model calibration, which 
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determine a model’s observed performance against its expected score (e.g., the 

Hosmer-Lemeshow Goodness of Fit test (Steyerberg et al., 2010)).  

Results 

Following is an examination of the 5 advanced EWS studies meeting inclusion 

criteria.  

Study Characteristics 

There were a number of similarities across the selected studies (see Table 2). All 

reported on research conducted in the United States; all compared their model’s 

performance against at least one point-score EWS model (Escobar et al., 2012; Alvarez 

et al., 2013; Churpek et al., 2014; Churpek et al., 2016; Kipnis et al., 2016); all used 

retrospective cohort/nested case-control designs; none of the studies reported a 

theoretical framework, though all studies discussed the significance and background in 

regard to patient safety, limited predictive capabilities of point-score EWS, or alarm 

fatigue. Of the 5 studies, 1 (Alvarez et al., 2013) took place in a single hospital; 2 

(Churpek et al., 2014; Churpek et al., 2016) pooled data from 5 hospitals; and 2 

(Escobar et al., 2012; Kipnis et al., 2016) occurred in a large integrated health care 

delivery system using data from 14 and, subsequently, 21 hospitals. Only 1 study 

(Alvarez et al., 2013) did not report sample demographics. The 4 studies using data 

from more than one medical center also had the longest timeframes, ranging from 3 to 4 

years, compared to 11 months in the single center study. Studies reported the units of 

analysis heterogeneously, including hospitalizations, hospital episodes, and admitted 

patients. The largest study (Kipnis et al., 2016) had nearly 650,000 hospital episodes, 

while the smallest study (Alvarez et al., 2013) reported slightly less than 7,500 patient 



Chapter 2: Systematic Review	

	 	 	
	 	 	
	 	 30 

admissions. Of the 5 studies, 4 used multivariate regression (Escobar et al., 2012; 

Alvarez et al., 2013; Churpek et al., 2014; Kipnis et al., 2016), and 1 study used 

machine learning techniques for outcome prediction (Churpek et al., 2016). 

Outcome Variables 

 The primary outcome of interest was clinical deterioration.  At minimum, all 

selected studies measured this outcome via the composite of transfer to ICU and some 

measure of mortality. This means, if patients on general hospital wards had a transfer to 

ICU or they died, they had the outcome, else they did not. Churpek et al. (2014) and 

Churpek at al. (2016) also included cardiac arrest, and Alvarez et al. (2013) included 

respiratory compromise in their outcome composite (though, clinically, these are 

contained in ICU transfer or death). In the interest of a systematic analysis, we 

compared the most frequently reported model outcome: transfer to ICU and mortality. 

Researchers used different definitions of mortality and varied in their conceptual view of 

when a patient death should or should not be counted as an outcome event. Definitions 

included “death outside the ICU in a patient whose care directive was “full code” 

(Escobar et al., 2012; Kipnis et al., 2016); “death on the wards without attempted 

resuscitation” (Churpek et al., 2014; Churpek et al., 2016); or “an in-hospital death in 

patients without a DNR order at admission that occurred on the medical ward or in ICU 

within 24 hours after transfer”. All studies conceptualized death as a potentially 

appropriate outcome (e.g., given a patient’s disease burden or end-of-life trajectory) and 

only included patients with a “Full Code” designation at the time of death on the ward. 
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Predictor Variables 

 We observed a broad assortment of predictor variables across studies. All 

models included vital signs (heart rate, respiratory rate, blood pressure, oxygen 

saturation, and mental state), laboratory data, age, and sex. Additional variables 

included comorbidity; shock index $ %&'()	(')&
+,+)-./0	1.--2	3(&++4(&5 (Berger et al., 2013); a severity 

of illness score; length of stay; event time of day; season; admission category; and 

length of stay (Escobar et al., 2012; Kipnis et al., 2016); prior ICU stay (Churpek et al., 

2014; Churpek et al., 2016); and “stat” orders (Alvarez et al., 2013), i.e., physician 

orders to be instantiated immediately. 

Model Performance 

All studies reported their EWS model’s AUC or c-statistic (see Table 3 and Figure 

2) as a minimum inclusion criterion for this systematic review. Overall, AUC values 

ranged from 0.77 to 0.85 (weighted mean = 0.80) in advanced EWSs indicating good 

model discrimination. Point-score EWS AUC’s ranged from 0.70 to 0.76 (weighted 

mean = 0.72) indicating fair model discrimination.  

The models’ sensitivity ranged from 0.49 to 0.54 (weighted mean = 0.50) for 

advanced models and 0.39 to 0.50 (weighted mean = 0.42), though it is important to 

note that these results were based on chosen alert volume cutoffs. For example, Kipnis 

et al. (2016) selected a detection threshold that would not generate more than 1 alert 

per 35-bed hospital unit per day, while Churpek et al. (2016) reported various sensitivity 

and specificity results at different detection cutoffs. As such, it is incorrect to assume 

that a given model produces only one sensitivity result; for systematic comparison, we 

therefore selected the “overall” result or results in the 50% sensitivity range. Specificity 
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ranged from 0.90 to 0.94 (weighted mean = 0.92) in advanced EWS models, compared 

to 0.83 to 0.93 (weighted mean = 0.90) in point-score EWS models. Positive Predictive 

Value (PPV) ranged from 0.16 to 0.42 (mean = 0.21) in advanced models and 0.15 to 

0.28 (mean = 0.15) in point-score EWS models. After adjustment for a simulated pre-

test outcome probability (or prevalence) of 2% across studies (see Table 3), PPV 

ranged from 0.10 to 0.15 (mean = 0.11) in advanced EWS models vs 0.06 to 0.10 

(weighted mean = 0.08) in point-score EWS models. 

None of the studies reported a reference standard for the definition of a true 

positive, and none of the studies reported the coefficient of determination (R2). Of the 5 

studies, all studies reported adequate fit in their final models. Only two studies (Escobar 

et al., 2012; Kipnis et al., 2016) reported the workup-to-detection (WDR) metric (alerts 

generated to identify one true positive case). One study evaluating machine learning 

methods (Churpek et al., 2014; Hu, Wong, Correa, Li, & Deng, 2016a) did not report the 

Workup-to-Detection Ratio, but an “early warning score efficiency curve,” which plots 

the percent of positive screens against sensitivity. To make results comparable across 

studies, we adjusted RRT workload estimates by mean hospital count, weighted mean 

study timeframe (in months), and set a fixed outcome prevalence of 2%, a fixed 

sensitivity of 0.50 and observed specificity of 0.92 (weighted mean) in advanced EWS 

models vs a fixed sensitivity of 0.50 and assumed specificity of 0.87 in point-score 

EWSs. Using these (conservative) assumptions, advanced EWSs generated 5.4 alerts 

per hospital per day, and point-score EWS generated 8.0 alerts per hospital per day. 

The delta of 2.6 alerts per hospital per day equals a nearly 50% relative increase in 

RRT workload using point-score EWSs (Figure 3). 
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Risk of Bias Assessment 

We examined potential threats to validity and reliability and assessed other 

sources of bias. Evidence-based practice relies on the strength of research findings to 

inform clinical practice standards (Polit & Beck, 2012). The evidence hierarchy places 

systematic reviews of randomized and nonrandomized trials at the top, however we 

cannot perform RCTs to answer whether EWSs and RRTs improve survival, as it would 

be unethical. The 5 selected studies were all situated in Level 4 (single observational 

study). Consequently, this systematic review appears to offer the highest attainable 

level of evidence. 

Appendix Table 4 shows the bias assessment adopted from the Cochrane 

Collaboration tool for assessing risk of bias (Higgins et al., 2011). Of the 5 studies, 4 

received total scores between 1.0 - 2.0 (indicating relatively low bias risk), and 1 study 

had a score of 3.5 (indicating higher bias risk). Low bias studies (Escobar et al., 2012; 

Churpek et al., 2014; Churpek et al., 2016; Kipnis et al., 2016) used large samples 

across multiple hospitals, discussed the choice of predictor variables and outcomes 

more precisely, and reported their measurement approaches and analytic methods in 

more detail, including imputation of missing data and model calibration.  

One study (Alvarez et al., 2013) used a small sample from a single medical 

center, thereby introducing threats to external validity. While all selected studies had 

good face validity, this study also introduced detection bias and threats to measurement 

validity by defining the concept of clinical deterioration more broadly. In other words, 

Alvarez et al. (2013) may have had apparently better model performance because of 

more liberal outcome definitions (i.e., casting a wider net). This study (Alvarez et al., 
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2013) also tolerated 2 alert-driven RRT calls per department per day, which may not be 

a manageable caseload for RRT, and included patients with “do not resuscitate” or 

“comfort care” orders in the “unexpected death” numerator. This approach is 

problematic because it includes patients for whom death may have been expected or 

considered probable. Evaluating such patients on a routine basis adds to RRT and 

hospitalist workloads without improving rescue. 

Discussion 

 This systematic review assessed the predictive ability of advanced EWS models 

vs. point-score tools to detect clinical deterioration risk in hospitalized adults on general 

wards. From 2007 to 2017, at least 5 systematic reviews have examined point-score 

EWSs in adult inpatient settings (Subbe, Williams, Fligelstone, & Gemmell, 2005; 

Johnstone, Rattray, & Myers, 2007; McNeill & Bryden, 2013; Smith et al., 2014a; Smith 

et al., 2014b). No systematic review, however, has synthesized the evidence of 

advanced EWS models using regression techniques and machine learning algorithms. 

Our analysis suggests that advanced EWS models perform substantially better than 

point-score EWSs, and they generate considerably fewer alerts for RRTs to evaluate to 

identify a positive case. In fact, if one would extrapolate the absolute reduction in RRT 

workload of 2.6 fewer RRT evaluations per hospital per day across the ~5,500 U.S. 

hospitals (American Hospital Association, 2018), advanced EWSs would eliminate over 

5 million unnecessary evaluations by RRT and the attending hospitalist. This efficiency 

benefit would save nearly $350 million in wasted clinician time annually , assuming 30 

minutes per workup and a mean hourly wage of $35.36 for a registered RRT nurse 
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(Bureau of Labor Statistics, 2017b) and $101.63 for a hospitalist (Bureau of Labor 

Statistics, 2017a).  

Favorable Properties of Advanced EWS Models 

 All studies included in this review demonstrated superior model performance of 

the advanced EWS compared to a point-score EWS, and at least 4 of the 5 studies 

employed high rigor in design, measurement, and analytic method. The AUC absolute 

difference between advanced EWSs and point-score tools was about 10% overall, 

moving model performance from fair to good (see Table 3). Given the concern that 

point-score EWSs are crude tools and often derived with questionable rigor (Smith et 

al., 2014a), results from our review appear to agree that advanced EWS models predict 

clinical deterioration risk with better precision. This is an important finding for three 

reasons: 1) Earlier Rescue: Better risk prediction can facilitate a speedier activation of 

rescue; 2) Less waste: Given federal mandates to maintain quality while curbing 

spending, the elimination of wasteful processes in health care is one chief strategy of 

high value care (Berwick & Hackbarth, 2012); and 3) Reduced workloads and less 

cognitive burden:	Sikka, Morath, and Leape (2015) posited that Berwick and colleagues’ 

Triple Aim of high value care should be expanded to account for the wellbeing of 

clinicians (the Quadruple Aim). Advanced EWSs appear to support clinicians by 

reducing unnecessary evaluation workloads and time pressures, which are associated 

with professional burnout (Maslach, Schaufeli, & Leiter, 2001). Further, advanced EWSs 

support clinicians by reducing alarm fatigue (alert desensitization) (Guardia-Labar et al., 

2014; Ruskin & Hueske-Kraus, 2015). Finally, more precise alerting reduces 
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interruptions and the cognitive burden placed on clinicians, which are known 

antecedents to medical errors (Reason, 1995 2000).  

Limitations of advanced EWS models 

 Even the most advanced EWS models appear to identify only about half of all 

positive cases (assuming manageable RRT workloads). Consequently, advanced EWS 

models can at best augment and support, but not replace, RRT rounding, physician 

workup, and vigilant frontline staff. To facilitate the best possible rescue response, RRT 

rounding and advanced EWSs are complementary solutions; sometimes advanced 

EWSs will identify patient risk before RRTs, while at other times frontline staff and RRT 

are the first to detect patient risk. 

Another limitation of advanced EWSs lies in their measurement of an expected 

death. All advanced EWSs excluded deaths without resuscitation (DNR) to adjust for 

those patients for whom aggressive life supporting interventions would not have been a 

“good” outcome. For example, in the context of existing DNR status, an end-of life 

trajectory, or severe terminal illness, clinical deterioration may be expected. 

Nevertheless, it is unknown what might define a “good death after alert” in the context of 

patient preferences regarding intensity of treatment and palliative care (Granich et al., 

2016) and knowing that not all patients who can be rescued may want to be rescued 

(Escobar & Dellinger, 2016). Instead, the National Academies of Medicine’s (formerly 

the Institute of Medicine) report Dying in America (Institute of Medicine, 2015) stressed 

the need for palliative care teams to support patient-centered end-of-life issues in all 

care settings. In the future, advanced EWSs could not only facilitate faster RRT rescue 
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processes but also enable palliative care team referrals so that they may address 

patient-centered end-of-life decisions and patient comfort. 

Comparison of Results with Prior Evidence 

While this systematic review focused on advanced EWS models, the results 

agreed with several prior systematic reviews investigating point-score EWSs (Subbe et 

al., 2005; Johnstone et al., 2007; McNeill & Bryden, 2013; Smith et al., 2014a; Smith et 

al., 2014b). Both point-score EWSs and advanced EWSs succeed in their task of 

automating the identification of at–risk patients, but point-score EWSs generate more 

workload to identify such patients. Previously reported AUC results for the death 

outcome were better for point-score EWSs (AUC range 0.88 to 0.93) than results 

included in this systematic review (AUC range 0.77 to 0.85). However, these point-score 

models tolerated higher false positive rates or did not adjust for manageable 

RRT/hospitalist evaluation workloads. This means that predictive models cannot be 

judged purely on AUC (in fact, it would be ill-advised), but instead by their clinical utility. 

Precision is not meaningful if it comes at the expense of unmanageable evaluation 

workloads. 

Limitations 

 Findings from this systematic review are subject to several limitations. Not all 

mortality definitions accounted for the reality that a patient death may be an appropriate 

outcome, assuming it was in concordance with a patient’s treatment wishes in the 

context of severe illness or an end-of-life trajectory (Kim et al., 2016). However, past 

studies of point-scores EWSs did also not account for this nuance, and our review 

suggests that predictive analytics EWSs perform better than point-score EWSs, 
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meaning they identify patient risk prospectively and generate fewer alerts for evaluation 

while demonstrating greater precision.  

 Because of the relative dearth of current evidence, it was not possible to 

investigate specific hospital ward types, such as surgical wards or step-down units, 

individually. However, the feasibility and practicality of ward-specific risk models is 

questionable, given that there may be substantial variability across such wards across 

institutions and because hospital systems must invest considerable resources to 

develop, deploy and maintain even one EWSs.  

 We excluded studies using streaming data from physiological monitors, despite 

notable work in this field (Mao et al., 2011; Mao et al., 2012; Bai et al., 2015; Bai et al., 

2016; Hu et al., 2016b). The use of streaming monitor data restricts model use to ICU 

and other monitored wards. The aim of this review, however, was to determine the 

capabilities of advanced EWSs as an evaluation tool for RRT on general hospital wards 

so that at-risk patients can be identified hours before they would acutely deteriorate. 

Conclusion 

Results from this systematic review point to three main areas of need for the field 

of predictive EWS and RRT research: 1) a standardized set of RRT rescue outcome 

measures; 2) a standardized set of RRT workup and alarm frequency measures; and 3) 

cost estimates of RRT workloads with and without advanced EWS deployment. In the 

future, EWS research may achieve a stronger evidence base by using standardized 

outcome measures (Amarasingham et al., 2016). Given the present divergence of 

outcome definitions, it appears that EWS research would benefit from a common 

“clinical deterioration” outcome standard, including transfer to ICU, inpatient/30-day/90-
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day mortality, and death with DNR, comfort care or hospice. Finally, the field is lacking a 

standardized RRT work-up measure, such as workup-to-detection ratio and RRT 

evaluations per hospital per day. Clinically, our review suggests that health systems 

must scrutinize the workload implications of EWSs carefully, beyond focusing on AUC. 

Given the pressing issues of waste in health care, alert fatigue, clinician burnout and 

cognitive load, predictive models should be chosen for both their precision and resource 

efficiency. 

By using predictive analytics, health systems may be better able to achieve the 

dual goals of high-value care (Berwick & Hackbarth, 2012) and patient safety (Linnen, 

2016; Liu et al., 2016; Parikh, Kakad, & Bates, 2016) in support of the Quadruple Aim 

(Sikka et al., 2015). The advent of more sophisticated computational methods for 

outcome prediction appears to enable the use of very large datasets in real-time to 

develop more precise and efficient identification of patients at risk for clinical 

deterioration. Still, gaps in knowledge exist regarding the measurement of RRT 

processes triggered by EWSs, clinical outcomes, RRT workloads, and costs vs. 

benefits. Future research should employ a pair-matching design to study the balanced 

treatment effects of RRT interventions between decedents and survivors and 

investigate RRT process times relative to the time of an advanced EWS alert in the 

electronic medical records. In addition to reducing unexpected patient mortality and 

more effectively directing hospital resources, advanced EWS systems may also serve to 

prompt needed end-of-life discussions (Picker et al., 2017).  
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Tables and Figures 

Figure 1. PRISMA Flow Diagram of Study Selection 

 

Note. Adopted from Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, 
Stewart LA. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 
2015 statement. Syst Rev. 2015;4(1):1. doi: 10.1186/2046-4053-4-1 
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Table 1. Screening Inclusion and Exclusion Criteria 
 
Selection Criterion Included Excluded 

 
Research Population Hospitalized adults  

(≥18 years)  
Adults under observation 
status 
Children and adolescents 
 

Setting General Medical-Surgical 
wards 
Step-Down wards  

Intensive care unit 
Emergency room 
Labor & delivery 
Operating room 
Oncology ward 
Primary care 
 

Timeframe January 2012- November 
2017 
 

Prior to 2012 
 

Method Quantitative  Mixed method 
Qualitative 
Case reports 
Commentaries 
 

Model EMRa-based  
Multivariate regression 
Machine learning 
 

Paper-based 
Point-score EWSb only 

Predictors Vitals signs 
Laboratory values 
Severity of illness scores 
Comorbidity scores 
Code Status and others 
 

Monitor data (wave forms) 

Outcome Composite of ICUc transfer 
and mortality 

RRTd activation 
Sepsis 
Cardiac arrest 
Mortality 
 

Model Performance AUCe (required) 
Sensitivity 
Specificity 
Positive Predictive Value 
RRTd workload (workup to 
detection ratio) 
 

Risk ratios 
Odds ratios 
Chi Square 
ANOVA or other comparison of 
groups 
 

 
Note.  
a Eletronic Medical Record 
b Early Warning System 
c Intensive Care Unit 
d Rapid Response Team 
e Area Under the [Receiver Operator] Curve	  
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Table 3. Early Warning System Model Performance in 4 Studies Using Multivariate 
Regression or Machine Learning vs Point Scores Published Between 2012 and 2017 
	

 

Advanced Early Warning Systems                
 

 

 
Kipnis et al. 

(2016) 
Churpek et 
al. (2014) 

Churpek et 
al. (2016) 

Alvarez et 
al. (2013) 

Total or 
Weighted 

mean 
 

 Hospitalizations (n) 649,418 299,999 299,999 7,466 1,256,882  
 Cases (n) 19,153 16,452 16,452 585 52,642  
 Outcome probabilitya 0.03 0.045 0.061 0.078 0.04  
 Hospitals (n) 21 5 5 1 32  
 Time (months) 48 51 51 11 49  
 Cases per hospital 

per day 0.6 2.2 2.2 1.8 1.4  
 AUCb (95% CI) 0.82 (0.81-

0.83) 
0.77 (0.76-

0.77) 
0.8 (0.80-

0.80) 
0.85 (0.82-

0.87) 0.8   
Sensitivity 0.49 0.54 0.5 0.52 0.5  

 Specificity 0.92 0.9 0.93 0.94 0.92  
 PPVc 0.16 0.2 0.32 0.42 0.21  
 Workup:Detection 

Ratio (WDR)d 6.3 4.9 3.2 2.4 4.7  
 RRTe workload per 

hospital per day 4 10.6 6.8 4.2 6.6  
 Adjustedf PPV 0.11 0.1 0.13 0.15 0.11  
 Adjustedf WDR 9 10.1 7.9 6.7 9  
 Adjustedf RRT 

workload per hospital 
per day 

3.9 7.9 6.2 3 5.4  

 
        

 
Point-Score Early Warning Systems 

  

 
Kipnis et al. 

(2016) 
Churpek et 
al. (2014) 

Churpek et 
al. (2016) 

Alvarez et 
al. (2013) 

Total or 
Weighted 

mean 
 

Simulated 
point 

score EWS 
estimateg  

Hospitalizations 649,418 299,999 299,999 7,466 1,256,882  1,256,882 
Cases 19,153 16,452 16,452 585 52,642  52,642 
Outcome probabilitya 0.03 0.045 0.061 0.078 0.04  0.04 
Hospitals 21 5 5 1 32  32 
Time (months) 48 51 51 11 49  49 
Cases per hospital 
per day 0.6 2.2 2.2 1.8 1.4  1.4 

AUCb (95% CI) 0.71 (0.70-
0.72) 

0.76 (0.75-
0.78) 

0.7 (0.70-
0.70) 

0.7 (0.70-
0.70) 0.72  0.72 

Sensitivity 0.395 0.39 0.5 0.42 0.42  0.5 

Specificity 0.93 0.9 0.83 0.91 0.9  0.87 

PPVc 0.15 0.16 0.16 0.28 0.15  0.14 
WDRd 6.7 6.4 6.2 3.5 6.5  7.4 
RRTe workload per 
hospital per day 4.3 13.9 13.4 6.3 9.1  10.4 

Adjustedf PPV 0.1 0.07 0.06 0.09 0.08  0.07 
Adjustedf WDR 9.7 13.6 17.7 11.5 12.8  14.7 
Adjustedf RRT 
workload per hospital 
per day 

4.2 10.6 13.9 5.2 6.9  8 

	



Chapter 2: Systematic Review	

	 	 	
	 	 56 

Note. 
a The outcome prevalence among the sample = !	#$%&#'()

!	*#)+,%-.,/-%,#!)
 

b Area Under the [Receiver Operator] Curve 
c Positive Predictive Value (PPV/precision): true positive cases among all positive EWS alerts; PPV 
changes as pre-test probability changes.  

PPV =
)(!),%,3,%4	∗	+6(3-.(!&(

)(!),%,3,%4	∗	+6(3-.(!&(	7	(9:)+(&,;,&,%4)	∗	(9:+6(3-.(!&()
  

From: Altman, D. G., & Bland, J. M. (1994). Diagnostic tests 2: Predictive values. BMJ : British 
Medical Journal, 309(6947), 102. 

d Workup-to-Detection Ratio (WDR): the RRT evaluation workload generated to find one true positive 
case (WDR = 9

@@A
); WDR changes as pre-test probability changes 

To make results comparable, we adjusted Positive Predictive Value (Precision) for an outcome 
prevalence (pretest-probability) of 2% 
e Rapid Response Team 
f To make results comparable, we adjusted WDR for an outcome prevalence (pretest-probability) of 
2% across studies 
g We adjusted final point score EWS model workload results for a fixed outcome probability of 2%, 
fixed sensitivity of 50% (the mean of advanced model sensitivities), and specificity of 87%, The 
simulated/assumed specificity is a conservative estimate based on reported AUC graphs or reported 
model cutoffs. 
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Figure 2. Summary Results of 5 Studies Reporting Area Under the Curve (AUC) of 
Advanced Early Warning System Models vs Point-score Models from 2012 to 2017 
	

	
	
Note. AUC describes the models’ ability to predict an outcome accurately, with 0.50 indicating no ability to 
predict an outcome. Mean summary values are weighted according to the studies’ sample size and time 
frame. 
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Figure 3. Adjusted Results of 5 Studies of Rapid Response Team (RRT) and Hospitalist 
Workload (Patient Evaluations per Hospital per Day) Generated by Advanced Early 
Warning System (EWS) Models vs Point-Score Tools from 2012 to 2017 
 

 
 

Note. Results show the number of RRT evaluations generated per hospital per day to find one 
deterioration case adjusted for a fixed outcome prevalence of 2%, a fixed sensitivity of 50%, weighted 
mean specificity of 0.92 for advanced EWSs and estimated specificity of 87% for point score EWSs. To 
minimize bias, the estimate adjusts for the weighted mean of sample size and study timeframes.  
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Appendix 
 
Table 1. Literature Search Keywords to Identify Early Warning System Studies Using 
Regression or Machine Learning for Inclusion in a Systematic Review (2012-2017) 
 

 
PubMed and CINAHL 

 
 
 “early warning score OR early warning system AND deterioration OR predict transfer ICU”  
 
Search details:		
(early[All Fields] AND warning[All Fields] AND score[All Fields]) OR (early[All Fields] AND 
warning[All Fields] AND system[All Fields]) AND deterioration[All Fields] OR (predict[All Fields] 
AND ("transfer (psychology)"[MeSH Terms] OR ("transfer"[All Fields] AND "(psychology)"[All 
Fields]) OR "transfer (psychology)"[All Fields] OR "transfer"[All Fields]) AND ("intensive care 
units"[MeSH Terms] OR ("intensive"[All Fields] AND "care"[All Fields] AND "units"[All Fields]) 
OR "intensive care units"[All Fields] OR "icu"[All Fields])) AND ("2012/01/01"[PDAT] : 
"2017/11/01"[PDAT])  
(227 results) 
 
After removal of “psychology” references: 
 
Search details:  
(early[All Fields] AND warning[All Fields] AND score[All Fields]) OR (early[All Fields] AND 
warning[All Fields] AND system[All Fields]) AND deterioration[All Fields] OR (predict[All Fields] 
AND "transfer"[All Fields]) AND ("intensive care units"[MeSH Terms] OR ("intensive"[All Fields] 
AND "care"[All Fields] AND "units"[All Fields]) OR "intensive care units"[All Fields] OR "icu"[All 
Fields]) AND ("2012/01/01"[PDAT] : "2017/11/01"[PDAT]) 
(117 results) 
 

 
Google Scholar 

 
“early warning system clinical deterioration”  
 
“early warning system clinical deterioration machine learning” 
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Table 2. Measures of Model Performance  
 

Measure 
Name 

Description Formula 

Pre-test 
probability 

Prevalence: % of those 
with the outcome 
among the sample 

 
cases

entire	sample
 

Pseudo-R2 a % of variation 
explained by the model 

 

Sensitivity % true positive cases 
among all positive 
cases 

 
true	positives

true	positives + false	negatives
 

 
Specificity % true negative cases 

among all negative 
cases 
 

 
true	negatives

true	negatives + false	positives
 

 
PPV % true positive cases 

among all positive 
tests 

 
true	positives

true	positives + false	positives
 

 
or 

 
sensitivity ∗ prevalence

sensitivity ∗ prevalence + (1 − specificity) ∗ (1 − prevalence)
 

 
AUC/c-stat True positive (TP) rate 

plotted against false 
positive (FP) rate 

	
Number	of	concordant	pairs

Total	number	of	pairs
+ 0.5 ∗

Number	of	tied	pairs

Total	number	of	pairs
	

 
Workup-to-
Detection 

Workload measure: 
Number needed to 
evaluate to find one 
positive case 

 
true	positives + false	positives

true	positives
 

 
or 
 
1

WDR
 

 
RRT 
evaluations 
per hospital 
per day 

Workload measure:  
The total number of 
patients RRTs need to 
evaluate 
 
 
  

 
WDR ∗

										cases										
hospitals
day

 

 
Note. 
 aLogistic regression does not use R2 but Likelihood ratio R2, Cox and Snell R2, Nagelkerke R2 or others. 
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Abstract 

Background: Advanced early warning systems (EWS) can detect worsening sepsis in 

hospitalized patients sooner than traditionally possible. The timing and scope of clinical 

sepsis interventions relative an advanced EWS alert, however, are not well understood.  

Objectives: To understand how sepsis decedents differed from survivors in terms of 

alert-driven receipt of fluid bolus therapy, new antibiotics, DNR status, and ICU transfer.  

Methods: We conducted electronic chart reviews of 68 sepsis patients with an EWS 

alert admitted to Kaiser Permanente Northern California hospitals. In round 1, we 

reviewed the charts of 21 sepsis patients admitted to 3 hospitals between 8/1/2016 and 

2/28/2017. In round 2, we reviewed charts of 47 patients admitted to 5 hospitals 

between 1/1/2017 and 7/31/2017. We abstracted demographic/clinical characteristics, 

and process measures of sepsis intervention, and performed summary statistics. 

Results: Sepsis decedents were older and sicker at admission and alert time. 

Decedents received 32% less total fluid bolus volume and received the first bolus 4.6 

hours later than survivors. Most first alerts occurred near admission; most sepsis 

interventions occurred before the first alert. Of 14 decedents, 12 (86%) had a DNR 

order before death. 

Discussion: Survivors received more total fluid bolus volume, and sooner. Though 

limited by sample size, our results are consistent with prior studies regarding the 

protective effect of timely fluid bolus therapy on sepsis survival. Fluid bolus therapy and 

new intravenous antibiotics frequently occurred before the alert suggesting a potential 

treatment overlap between sepsis care initiated in the ED and the first alert within a few 

hours after admission. Our findings may also reflect that some decedents were on a 
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palliative/end-of-life trajectory.  Demographics, clinical characteristics, sepsis 

interventions, and DNR orders of sepsis decedents differ from survivors, highlighting the 

need to adjust for these differences and other time process measures. Future research 

should exclude patients with a DNR order within the first 4 hours of admission and 

investigate the impact of RRT sepsis interventions on patient survival using adequately 

powered sample sizes and rigorous design and analytic methods. 
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Introduction 

In US hospitals, sepsis claims more lives than any other medical condition. An 

estimated 900,000 to 3 million patients are diagnosed with sepsis in the United States 

annually (Gaieski, Edwards, Kallan, & Carr, 2013), and an estimated 180,000 to 

750,000 patients die of sepsis each year (Gaieski et al., 2013; Epstein, Dantes, Magill, 

& Fiore, 2016). Evidence suggests that more than half of all inpatient deaths are the 

result of sepsis (Engel et al., 2007; Liu et al., 2014).  Sepsis costs the U.S. health 

system an estimated $14 billion annually (Healthcare Cost Utilization Project, 2008). 

Sepsis patients may be exposed to prolonged hospitalizations, which puts some at risk 

for hospital acquired conditions, including infections (Richards, Edwards, Culver, & 

Gaynes, 2015), pressure injuries (Coyer & Tayyib, 2017), falls with injury (Bouldin et al., 

2013), among others.  

To prevent clinical deterioration in sepsis patients, two fundamental elements are 

early recognition and rapid clinical evaluation and treatment (Rozen & Butt, 2016). 

Various methods of detecting and responding to worsening sepsis exist. Traditional 

sepsis screening tools, which are either paper-based or automated in the electronic 

medical record, have used a limited set of clinical variables, including systematic 

inflammatory response syndrome criteria and evidence of organ dysfunction (e.g., 

hypotension, altered mental status) (Levy et al., 2003).  Meeting such criteria may result 

in a “code sepsis” or activation of a rapid response team (RRT) to evaluate and treat the 

patient expediently.  However, relying on the presentation of organ dysfunction for 

screening is problematic because it delays the recognition of worsening sepsis until a 

patient’s condition has already deteriorated. Consequently, RRTs and the 
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recommended sepsis interventions may have limited potential to stall a patient’s clinical 

decline and death (Chan, Jain, Nallmothu, Berg, & Sasson, 2010; Solomon, Corwin, 

Barclay, Quddusi, & Dannenberg, 2016). 

In contrast, advanced early warning systems (EWSs) using multivariate 

regression or machine learning can detect deterioration risk preemptively (Escobar et 

al., 2012b; Churpek et al., 2014; Linnen, 2018), hours before a patient would present 

with overt signs of worsening sepsis. A major benefit of such EWSs is that these 

algorithms permit RRTs to intervene proactively. We have shown in previous work that 

advanced EWSs are more precise and reduce the RRT workload by generating fewer 

total alerts per day (Linnen, 2018).  

Current Surviving Sepsis guidelines (Dellinger et al., 2013) recommend an initial 

fluid resuscitation goal of 30ml/kg of intravenous crystalloids, such as Normal Saline or 

Lactated Ringer’s solutions, following the time when a patient’s clinical presentation 

suggests worsening sepsis. Early aggressive fluid bolus therapy may be associated with 

sepsis survival, although the evidence base is weak (Levy et al., 2003; Engel et al., 

2007; Dellinger et al., 2008; Liu et al., 2014). Other common sepsis interventions 

include prescription and administration of a new intravenous antibiotic, transfer to the 

intensive care unit (ICU), and intensified surveillance (e.g., vital sign measurements and 

laboratory tests). However, the evidence base for the impact of advanced EWS alerts 

combined with proactive RRT interventions on sepsis survival, too, is weak. In addition, 

not every patient can be or wants to be rescued (Escobar & Dellinger, 2016) in the 

context of terminal disease or end of life (Granich et al., 2016). Little is known about 

how such sepsis patients might be appropriately and reliably excluded from mortality 
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measurements and how to retain a clean denominator of “rescuable” patients to 

measure sepsis care quality. 

In this exploratory descriptive study, we summarize the results of two rounds of 

clinical chart reviews of the electronic medical records of hospitalized sepsis patients. 

Our study attempted to answer five questions to inform the design and methods of a 

quantitative study using a larger sample, which quantified the impact of EWS-based 

RRT interventions on sepsis survival: How do the demographics and clinical 

characteristics of sepsis decedents differ from those of survivors? How do sepsis 

interventions around the alert time differ in these groups? How frequently do RRT 

interventions occur before vs. after the alert? Could certain DNR order patterns be 

operationalized as a reliable exclusion criterion for “expected death” (i.e., where death 

was not a bad outcome)? Where are sepsis interventions and other process markers 

located in the electronic medical record for future data extraction? Finding answers to 

these questions is of twofold importance: First, gaining an understanding of the 

underlying data and the measurement concepts they represent, informs whether 

measurement approaches are valid and accurate. Second, the evidence base regarding 

whether (and which) specific alert-driven sepsis interventions may improve patient 

survival is very scarce. By examining measurement validity, chart reviews ensure that 

research findings in future studies do in fact produce the best attainable knowledge. 
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Methods 

Setting and sampling 

 We conducted two rounds of clinical chart reviews of adult patients with a 

positive EWS alert who were admitted with sepsis to a general hospital ward. We 

deemed these patients clinically stable by virtue of their ward admission. We elected to 

divide chart reviews into 2 rounds. We anticipated that, based on findings from the first 

round, data abstraction and the way we defined concepts would evolve. Nevertheless, 

the data abstraction process was standardized in both rounds of reviews, meaning that 

all information was captured uniformly for all patients in the samples. The setting was 

Kaiser Permanente Northern California (KPNC), a large integrated health system with a 

feature-rich electronic medical record deployed in all hospitals as previously described 

(Escobar, LaGuardia, Turk, Ragins, Kipnis, & Draper, 2012). Of the 21 hospitals in 

Northern California, we randomly selected patients from hospitals that had implemented 

the advanced early warning system, Advance Alert Monitor (Escobar et al., 2012a; 

Escobar & Dellinger, 2016; Granich et al., 2016). In round 1 of chart reviews, we 

randomly selected 10 survivors and 10 decedents per hospital from a pool of patients 

(n=60) who were admitted to one of 3 KPNC hospitals between August 1, 2016 and 

February 28, 2017. This sample included all admission diagnoses, of which we 

excluded non-sepsis admissions (n=30) before chart reviews. During chart reviews, we 

flagged an additional 9 patients with a false positive EWS alert and excluded them 

before analysis. We defined false positive alerts as those where clinical notes indicated 

no worsening of the patient’s condition and no sepsis interventions followed the alert. 

The final round 1 sample included 21 patients. In round 2, we randomly selected 5 
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survivors and 5 decedents with a sepsis admission diagnosis from 5 KPNC hospitals 

each (i.e., 10 patients per hospital) between January 1, 2017 and July 31, 2017. More 

hospitals had implemented the advanced EWS by that time. Of the 5 hospitals included 

in this time frame, 2 had fewer than 5 sepsis deaths; the final round 2 sample included 

47 patients (22 sepsis decedents and 25 survivors). 

 Inclusion criteria for both samples were age ≥ 18 years, a positive EWS alert, 

Kaiser Permanente membership (it is not always possible to capture 30-day mortality in 

non-members), a hospital stay of at least 24 hours, and admission to a general hospital 

ward. We excluded patients with overnight surgery stays and patients admitted to labor 

and delivery or the ICU. We flagged patient records if, upon the alert, clinicians 

described the patient’s condition as stable and no sepsis interventions followed. After 

data abstraction, we deemed these cases false positives and excluded them from 

analysis.  The Institutional Review Boards of Kaiser Permanente Northern California 

and the University of California, San Francisco approved this study. 

Composite measures 

 The study employed composite measures of severity of illness at admission 

[LAboratory-based acute Physiology Score (LAPS2)] (Escobar et al., 2012b) and 1-year 

comorbidity burden calculated one month prior to admission [COmorbidity Point Score 

version 2 (COPS2)] (Escobar, Gardner, Greene, Draper, & Kipnis, 2013). LAPS2 

measures a patient’s physiological state including laboratory tests, vital signs, and the 

shock index (heart rate ÷ systolic blood pressure) (Berger et al., 2013). Van Walraven, 

Escobar, Greene, and Forster (2010) validated LAPS2 in an external patient population. 

The COPS2 score is a measure of a patient’s comorbidity burden, defined as the 
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number of concurrent chronic health conditions documented in the previous 12 months. 

Stevens and Howell (2015) validated COPS2 externally. Previous health services 

studies have employed both LAPS2 and COPS2 scores (Escobar et al., 2012a; Escobar 

& Dellinger, 2016) and they appear to be valid and reliable measures of their respective 

constructs.  

Data abstraction 

 In both rounds of chart reviews, the principal outcome was 30-day survival vs. 

mortality following an admission for sepsis. We defined sepsis admissions as those with 

ICD-9 codes of sepsis (995.91), severe sepsis (995.92), septic shock (785.52), 

septicemia (038) or bacteremia (790.7). While, the measurement of sepsis cases using 

administrative data is variable and a source of debate among clinicians and scholars 

(Sprung & Trahtemberg, 2017), we deemed this definition adequate to identify the 

majority of inpatient sepsis admissions. In addition, given the absence of a gold 

standard definition (Angus et al., 2016), using the above codes allowed us to extract 

patient samples for which sepsis was defined relatively unambiguously. After patient 

selection, we extracted the following data electronically: Hospital ID, 30-day survival, 

medical record number, patient ID, timestamps for admission and EWS alert time, time 

from admission to alert, severity of illness score (LAPS2) at ward admission and at alert 

time, the difference between these two LAPS2 scores (LAPS2 delta), comorbidity score 

(COPS2) at admission, and admission diagnosis. A clinical content expert [DL] then 

conducted the clinical chart reviews and entered data using a standardized electronic 

data abstraction tool.  
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In round 1, we manually captured patient age, sex, Do Not Resuscitate (DNR) 

order time, narrative clinical notes by RRT and the attending physician, sepsis 

intervention types, and intervention time relative to the alert. We captured RRT sepsis 

interventions in binary form as given vs. not given starting at alert time and up to 24 

hours after the alert. In round 2, we evaluated time measures of sepsis interventions 

relative to alert time in continuous form. To account for all sepsis interventions that 

occurred in reasonable proximity to the alert, we included fluid bolus therapy and new 

intravenous antibiotic administrations within 12 hours before and 24 hours following the 

alert. We defined a new antibiotic as one that was not administered within 24 hours 

before the alert. In addition to the above variables, we abstracted time from alert to fluid 

bolus, total fluid bolus volume administered, new intravenous antibiotic administration, 

time from alert to new intravenous antibiotic administration, and time from alert to ICU 

transfer.  

Results 

Following are the results of round 1 and round 2 chart reviews. Table 1 

summarizes demographics and clinical characteristics of sepsis decedents and 

survivors.  

Round 1: Patient demographics and clinical characteristics 

 After we applied exclusions, 21 patients remained in the round 1 sample (14 

sepsis decedents and 7 survivors). Men were somewhat overrepresented among sepsis 

decedents and underrepresented among survivors (64.3% vs. 42.9%, respectively). 

Sepsis decedents were slightly older than survivors, with a mean age (in years) of 78.4 

vs. 75.0 and a median age of 82.5 vs. 81.0. Compared to survivors, decedents had 
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higher severity of illness scores (LAPS2) at admission and alert time (mean 125.9 vs. 

96.0 at admission, and 153.1 vs. 124.6 at alert). The median score difference (LAPS2 

delta) between these two measurements was higher in decedents (median LAPS2 delta 

of 22.5 vs. 12.0), though the mean LAPS2 was slightly higher in survivors (mean LAPS2 

delta 27.2 vs. 28.6). Patient comorbidity burden scores (COPS2) were higher in 

decedents than survivors (mean 82.9 vs. 51.4).  

Round 1: Sepsis interventions and DNR orders 

Table 2 summarizes RRT sepsis interventions and DNR order patterns across 

decedents and survivors. Among decedents, somewhat more time (in days) elapsed 

between admission and the first advanced EWS alert (mean 1.6 vs. 1.0), though the 

median time was similar between decedents and survivors (median 0.6 vs. 0.5). In 

round 1, we counted sepsis interventions exclusively if they followed the alert and did 

not include interventions that occurred before the alert. Using this methodology, 7 

decedents (50%) received a fluid bolus vs. none in the survivors. New antibiotic 

administration after the alert occurred in 1 decedent (7.1%) vs. in 2 survivors (28.6%). 

Transfer to the intensive care unit occurred in none of the decedents vs. in 2 survivors 

(28.6%). New intravenous antibiotic administrations documented in the electronic 

medication administration record were vancomycin, piperacillin-tazobactam, and 

ampicillin-sulbactam.  

Of the 14 sepsis decedents, 12 (85.7%) had a DNR order before death. Of those 

with a DNR order, 6 (50%) had an order in place before the alert fired, and 3 (25%) had 

a DNR order within 3 days after the alert (Figure 1). None of the survivors had a DNR 

order placed during their hospitalization. In sepsis decedents, the time from alert to 
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DNR order (in days) was 1.7 days (median 1.1), and the range was wide (about -2 days 

to 7 days relative to the alert). The mean time from DNR to death was 10.2 days 

(median 4.4), and the range was wide (less than 1 day to 30 days).  

Round 2: Patient demographics and clinical characteristics 

 In round 2, we reviewed the clinical charts of 43 patients (21 sepsis decedents 

and 22 sepsis survivors). Men were underrepresented among both decedents and 

survivors (42.9% vs. 36.4). Sepsis decedents were older, and the age differential was 

more pronounced than in round 1 (mean age 75.2 vs. 69.8). Similar to round 1, severity 

of illness scores (LAPS2) at admission and alert time, the LAPS2 delta, and comorbidity 

burden scores (COPS2) were higher in decedents compared to survivors (mean LAPS2 

of 115.6 vs. 88.1 at admission and 155.7 vs. 117.0 at alert; mean LAPS2 delta of 40.1 

vs. 28.9; mean COPS2 of 73.5 vs. 63.4). 

Round 2: Sepsis interventions 

The time from admission to first alert (in days) was similar to that observed in 

round 1 (mean 1.6 vs. 0.6; median 0.6 vs. 0.4). Of the 21 sepsis decedents, 14 (66.6%) 

received at least one fluid bolus compared to 17 survivors (77.3%). On average, the 

time from alert to the first fluid bolus was negative (i.e., it occurred before the alert). 

Fluid bolus administration began earlier in survivors than decedents, and frequently 

occurred before the alert (mean -5.3 hours in decedents vs. -9.9 hours in survivors). 

The mean time from alert to the second bolus (in days) was short in both groups, and it 

appeared that in at least half of survivors the 2nd fluid bolus preceded the alert. (0.4 vs. 

0.7). In total, sepsis decedents received a total of 23 liters of fluid bolus therapy vs. 37.5 

liters in survivors. 
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Nearly all patients received a new intravenous antibiotic within the alert time 

frame, and most received a new antibiotic before the alert. 17 sepsis decedents (81.0%) 

received a new antibiotic compared to 22 survivors (100.0%). The mean time from alert 

to new intravenous antibiotic (in hours) was -2.8 in decedents vs. -7.6 in survivors. 

Transfer from the ward to the intensive care unit occurred infrequently. Of the 21 sepsis 

decedents, we observed 6 transfers (28.6%) compared to 3 transfers in survivors 

(13.6%). The mean time from alert to transfer (in days) was 3.2 in decedents vs. 1.0 in 

survivors. 

Discussion 

Results of this clinical chart review study suggest that, on average, sepsis 

decedents are somewhat more frequently male, older, and present with higher severity 

of illness both at admission and alert time. LAPS2 scores suggest that decedents in this 

study were sicker at baseline and declined more rapidly; their presentation at admission 

time was about as severe or more severe than the presentation of survivors at alert 

time. Given that the median time from admission to alert was about 12 hours, it is 

conceivable that the higher severity of illness in sepsis decedents is at least in part the 

result of a longer duration of untreated sepsis before emergency department entry. The 

higher LAPS2 delta scores in decedents also suggest that their clinical decline may 

occur somewhat more rapidly. Sepsis decedents had substantially higher comorbidity 

burden scores (COPS2); a 46% relative median increase in decedents compared to 

survivors in round 1 and a 29% relative median increase in round 2. These findings are 

plausible and consistent with prior research demonstrating an association of comorbidity 

with sepsis mortality (Whiles, Deis, Miller, & Simpson, 2016). 
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Sepsis interventions 

Perhaps the most pronounced finding was that decedents received substantially 

less fluid bolus volume and that administration time occurred later, compared to 

survivors. In total, sepsis decedents received 32% less fluid bolus volume than 

survivors, though it is important to note that these results are unadjusted for potential 

differences between decedents and survivors. On average, decedents received the first 

fluid bolus 4.6 hours later than survivors, and the median time difference was 1.4 hours. 

Although at least some of the decedents may have been on a palliative end-of-life 

trajectory, this finding appears to agree with prior evidence regarding the protective 

effect of timely fluid bolus therapy on sepsis survival. 

Results from round 2 suggest that both fluid bolus therapy and new intravenous 

antibiotic administration frequently occur before the alert. This finding appears to 

contradict the main purpose of studying the impact of an advanced EWS, which is to 

predict deterioration risk prospectively, to alert clinicians, and to motivate additional 

sepsis interventions. Our results suggest that many first alerts on the ward occurred 

immediately following admission from the emergency department (see Figure 2). One 

explanation may be that newly admitted patients receive an alert after laboratory data 

become available for the first time. However, the initial bundle of sepsis treatment may 

have just occurred in the ED, a few hours before admission. It is known that the initial 

presentation of sepsis (and the first bundle of sepsis treatment) occurs in the 

emergency department, at times hours after ED entry because of an unclear clinical 

presentation (Villar et al., 2014). Thus, there may be a potential treatment overlap 

between sepsis treatment in the emergency department and the first alert within a few 
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hours after admission to the ward. To that end, in order to evaluate the impact of an 

EWS alert and the additional RRT sepsis interventions it may motivate, we recommend 

an alert exclusion time period of 12 hours following emergency department entry (see 

Figure 2). With regard to length of stay, our results suggest that measuring any 

occurrence of “worsening sepsis” relative to an advanced alert on any hospital day may 

introduce considerable measurement bias. For example, patients admitted with sepsis 

in stable condition with an alert on day 2 may present with a different clinical picture 

(worsening sepsis is an acute problem) than patients with an alert on day 7 (sepsis is a 

reoccurring problem).  

DNR order patterns 

We observed that nearly all decedents in round 1 received a DNR order before 

their death, and half of all decedents in round 1 had a DNR order in place before the 

alert. There was a wide range of alert-to-DNR and DNR-to death process measure 

times. While this range somewhat limits interpretability, it generally appeared that 

patients had a DNR order in close proximity to the alert time and then again 2 to 3 days 

after the initial alert (Figure 1). From a measurement perspective, it is desirable to 

exclude patients for whom death is expected because their treatment goals may be 

palliative in nature (Escobar & Dellinger, 2016) and because it is known that patients 

may be unclear about their treatment wishes before hospital admission (Stephens et al., 

2015; Stephens et al., 2018). In in the majority of decedents, clinicians appeared to 

address patient-centered decisions regarding code status and goals of care before 

death. Yet, knowing that nearly all decedents received a DNR order before death, an 

unrestricted exclusion of such patients would not result in a valid measure of “expected 
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death.”  However, it appears reasonable to exclude patients who received a DNR order 

within the first 4 hours following admission. 

Our study had several limitations. First, both chart review samples were small, 

and we did not intend or power them to detect statistically significant differences 

between decedents and survivors. The goal of this report was not to conduct statistical 

difference testing but to answer preliminary questions regarding sepsis interventions 

following the EWS alert and to inform the design of a quantitative study using a larger 

sample. Second, our results must be viewed with some caution because we did not 

employ methods to ensure alike cohorts. Decedents and survivors may have differed in 

terms of their severity of illness and comorbidity, among other factors. However, we 

employed random sampling to minimize selection bias and all patients were stable 

enough for admission to a general hospital ward. Third, we did not exclude patients for 

whom death may have been expected. This approach again limits the interpretation of 

our results because the decedent group may contain patients who did not wish to 

receive aggressive RRT interventions. However, one of our goals was to evaluate DNR 

order patterns relative to alert and death. In addition, measuring the quality of mortality 

and survival in acute care health services research is a vexing issue (Granich et al., 

2016) and not unique to this study. Fourth, our sampling strategy relied on common 

ICD-9 sepsis codes and may have not captured all true sepsis cases. The identification 

of sepsis patients using administrative data is known to be variable across studies 

(Jolley et al., 2015). Our sampling procedures yielded results for alerted patients with 

known or suspected sepsis, and results are limited to similar patient populations. Lastly, 

our results have limited applicability outside of large integrated health systems with an 
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advanced EWS using multivariate regression or machine learning plus rapid response 

teams. Advanced EWSs are known to generate fewer false positive alerts at 

comparable risk thresholds than basic point-score warning systems [e.g., Modified Early 

Warning Score, (MEWS)] (Linnen, 2018). Consequently, the RRT workload to find and 

treat a true positive case in health systems using a point-score system would likely be 

considerably higher than in our setting.  

Conclusion 

Our study addressed the novel combination of advanced EWSs and RRTs in the 

field of patient safety. Rather than responding to overt signs of clinical deterioration, an 

advanced EWS can preemptively determine worsening sepsis, which is among the chief 

precursors of inpatient and 30-day mortality in the U.S. We have demonstrated that 

clinical chart reviews are an essential step before conducting quantitative outcomes 

research. Chart reviews inform fundamental conceptual measurement questions, which 

ultimately reduces the potential for bias. To measure the impact of the EWS/RRT 

combination on sepsis survival of ward patients, we discovered important exclusion 

criteria for the first eligible alert (treatment overlap with emergency department care; 

see Figure 2), new worsening vs. reoccurring sepsis, as well as DNR status (patients for 

whom death was expected). For future data extraction, our chart reviews defined 

discrete locations of sepsis intervention data in the electronic medical record.  

This study also identified that the demographics, clinical characteristics, sepsis 

interventions, and DNR orders of sepsis decedents differ from those of survivors, 

highlighting the need to adjust for these differences. Future research should investigate 

the impact of RRT sepsis interventions on patient survival using adequately powered 
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sample sizes and a rigorous design and analytic methods. For example, a retrospective 

matched-pair cohort study can approximate conditions of a randomized controlled trial 

by comparing the between-group differences of sepsis interventions in like decedents 

and survivors. Such a study would fill an important gap in the sepsis literature and offer 

the highest attainable level of evidence. Currently, the evidence base for the benefit of 

pairing advanced EWSs with RRT interventions in terms of patient survival is weak, and 

a randomized controlled trial to study the impact of sepsis interventions in a no-

treatment group would be unethical. Future research should also evaluate timeline 

differences of hospitalization process times among sepsis decedents and survivors 

(e.g., emergency department entry, ward admission, alert time, intervention times, 

discharge and 30-day survival vs. death; see Figure 2) and evaluate whether the alert 

motivated closer surveillance (e.g., more vital signs measurements or laboratory 

orders), in addition to treatment. 
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Tables and Figures 

Table 1.  Sample Demographics and Clinical Characteristics of Sepsis Decedents and 
Survivors in Two Rounds of Clinical Chart Reviews 
 

 
Clinical Chart Reviews Round 1 

 Entire sample 
(n=21) 

Decedents  
(n=14) 

Survivors  
(n=7) 

Age, median, mean ±	$% 82.5 
77.1 ±	14.3 

82.5 
78.4 ±	9.9 

81.0 
75.0 ±	15.7 

Male, No. (%) 12 (57.1) 9 (64.3) 3 (42.9) 
Do Not Resuscitate, No. (%) 12 (40.0) 12 (85.7) 0 (0) 

Severity of illness score 
(LAPS2)a at ward admission, 
median, mean ±	$% 

109.0 
120.4±	35.8 

130.5 
125.9 ±	26.5 

106.0 
96.0 ±	21.7 

Severity of illness score 
(LAPS2)a at alert, median, 
mean ±	$% 

119.5 
145.1 ±	25.1 

159.5 
153.1 ±	25.2 

115.0 
124.6 ±	26.0 

LAPS2a delta, median, mean 
±	$% 

14.5 
24.7 ±	34.3 

22.5 
27.3 ±	21.4 

12.0 
28.6 ±	28.6 

Comorbidity Score at admission 
(COPS2)b, median, mean ±	$% 

34.0 
74.6 ±	32.0 

70.0 
82.9 ±	61.9 

48.0 
51.4 ±	35.6 

 
Clinical Chart Reviews Round 2 

 Entire sample 
(n=43) 

Decedents  
(n=21) 

Survivors  
(n=22) 

Age, median, mean ±	$% 78.0 
72.4 ±	16.0 

82.0 
75.2 ±	18.3 

71.0 
69.8 ±	13.1 

Male, No. (%) 17 (39.5) 9 (42.9) 8 (36.4) 
Severity of illness score 
(LAPS2)a at ward admission, 
median, mean ±	$% 

100.0 
101.5 ±	45.7 

123.0 
115.6 ±	47.8 

 

87.0 
88.1 ±	40.7 

Severity of illness score 
(LAPS2)a at alert, median, 
mean ±	$% 

126.0 
135.9 ±	41.2 

149.0 
155.7 ±	43.1 

114.0 
117.0 ±	28.8 

LAPS2a delta, median, mean 
±	$% 

20.0 
34.4 ±	39.6 

20.0 
40.1 ±	44.0 

21.0 
28.9 ±	36.4 

Comorbidity Score at admission 
(COPS2)b, median, mean ±	$% 

63.0 
68.3 ±	53.3 

74.0 
73.5 ±	50.8 

57.5 
63.4 ±	56.1 

 
Note. Excludes false positive alerts (i.e., the clinical notes did not indicate a concern for worsening 
sepsis). 
a LAboratory-based Acute Physiology Score (LAPS2) is a severity of illness instrument using laboratory 
values and vital signs 
b COmorbidity Point Score version 2 (COPS2 measures a patient’s 1-year comorbidity burden calculated 
one month prior to admission  
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Table 2. Summary of Sepsis Intervention Process Times Relative to an Advanced Early 
Warning System Alert between Sepsis Decedents and Survivors 
 

 
Sepsis Interventions (Round 1) 

 
 Entire sample 

(n=21) 
Decedents  

(n=14) 
Survivors 

(n=7) 
Time from admission to alert 
(days), median, mean ±	$% 

0.5 
1.4 ±	1.9 

1.6 ±	2.0 1.0 ±	1.6 

Time from alert to DNR 
(days), median, mean ±	$% 

- n=12 
1.7 ±	2.9 

- 

Time from DNR to death 
(days), median, mean ±	$% 

- n=12 
10.2 ±	12.6 

- 

Received fluid bolus after 
alert, No. (%) 

7 (33.3) 7 (50.0) 0 (0) 

Received new antibiotic after 
alert, No. (%) 

3 (14.3) 1 (7.1) 2 (28.6) 

Transfer to ICU, No. (%) 2 (9.5) 0 (0) 2 (28.6) 

 
Sepsis Interventions (Round 2) 

 
 Entire Sample 

(n=43) 
Decedents  

(n=21) 
Survivors  

(n=22) 
Time from admission to alert 
(days), median, mean ±	$% 

0.5 
1.1 ±	1.9 

0.6 
1.6 ±	2.6 

0.4 
0.6 ±	0.7 

Fluid Bolus administered, No. 
(%) 

31 (72.1) 14 (66.6) 17 (77.3) 

Time from alert to fluid bolus 1 
(hours), median, mean ±	$% 

-5.4 
-7.8 ±	7.1 

-5.1 
-5.3 ±	3.2 

-6.5 
-9.9 ±	8.9 

Fluid bolus 1 volume (liters), 
median, mean ±	$% 

1.3 
1.4 ±	0.8 

1.5 
1.3 ±	0.8 

1.0 
1.4 ±	0.8 

Time from alert to fluid bolus 2 
(hours), median, mean ±	$% 

0.2 
0.6 ±	5.5 

-0.2 
0.4 ±	4.0 

0.4 
0.7 ±	6.6 

Fluid bolus 2 volume (liters), 
median, mean ±	$% 

1.0 
0.9 ±	0.5 

0.5 
0.7 ±	0.3 

1.0 
1.0 ±	0.6 

New antibiotic administered, 
No. (%) 

39 (90.7) 17 (81.0) 22 (100.0) 

Time from alert to new IV 
antibiotic (hours), median, 
mean ±	$% 

-4.3 
-5.4 ±	14.5 

-1.1 
-2.8 ±	9.2 

-4.4 
-7.6 ±	17.7 

Transfer to ICU, No. (%) 9 (20.9) 6 (28.6) 3 (13.6) 

Time from alert to transfer to 
ICU (days), median, mean 
±	$% 

1.1 
2.5 ±	2.6 

2.6 
3.2 ±	2.9 

1.0 
1.0 ±	0.1 

 
Note. Excludes false positive alerts (i.e., the clinical notes did not indicate a concern for worsening 
sepsis). 
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Figure 1. Time of Do Not Resuscitate Order Relative to an Advanced Early Warning 
System Alert in Sepsis Decedents Admitted to a General Hospital Ward (n=12) 
 

 
 
Note. Includes true positive patients only; of 14 decedents, 12 had a Do Not Resuscitate order before 
death. 
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Figure 2. Timeline of Hospitalization Time Markers of Sepsis Patients with an Advanced 
EWSa Alert and Treatment Overlap Between Sepsis Care Started in EDb and Upon 
Ward Admission  
 
 

 
 
Note. Not to scale; for illustration purposes only.  
a Early Warning System 
b Emergency department 
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Abstract 

Background: Advanced early warning systems can predict deterioration risk, but few 

studies have evaluated the effects of sepsis interventions relative to an advanced early 

warning system alert. 

Objectives: To identify alert-driven interventions that impact survival, we quantified 

sepsis interventions between comparable groups of sepsis decedents and survivors and 

measured their differences. 

Methods: We employed pair-matching to derive two comparable groups of sepsis 

decedents and survivors among adults at 3 hospitals in Northern California between 

2016 and 2017 (n=1,767). We tested for differences in demographics and clinical 

characteristics, hospital transfer process times, sepsis interventions, vitals sign 

documentation, laboratory orders, and time of day (shift) when the alert occurred. 

Results: Matching procedures derived like pairs for 42 decedents and 92 survivors. 

Substantially more survivors than decedents received a new intravenous antibiotic 

within 6 hours before the alert (10.9% vs. 0.0%, p = 0.026). Decedents received more 

than twice as much fluid bolus therapy within 24 hours following the alert (2.1 liters vs. 

1.0 liters, p = 0.052), had a greater number of vital sign documentations (mean 86.3 vs. 

56.9, p = 0.011) and laboratory orders within 24 hours following the alert (15.4 vs. 11.0, 

p = 0.004), more transfers to ICU (42.9% vs. 29.6%, p = 0.005), and more DNR or 

comfort care orders after the alert (69.1% vs. 14.2 , p < 0.001).  

Discussion:  Although limited by sample size, out results suggest that earlier additional 

antibiotic coverage may lead to better survival. In alerted sepsis patients without receipt 

of new antibiotics, the alert could motivate clinicians to consider additional antibiotic 
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therapy. Intensification of fluid bolus therapy and other sepsis interventions in 

decedents may occur because they present with a more apparent downward trajectory 

at alert time. More than half of decedents (57%) succumbed to sepsis on the ward. 

Mortality outcomes may include patients for whom death was expected or unavoidable. 

Conclusion: Future research should validate findings in a larger cohort, control for 

outcome quality (expected vs. unexpected mortality) and clinical deterioration, and 

employ more computationally intensive matching procedures. 
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Introduction 

 As many as half of all hospital deaths occur in patients with sepsis (Engel et al., 

2007; Liu et al., 2014). The preemptive detection of clinical deterioration in hospitalized 

patients on general hospital wards has historically been challenging (Silber, Williams, 

Krakauer, & Schwartz, 1992; Silber et al., 2007). However, advanced early warning 

systems (EWSs) using multivariate regression or machine learning have recently 

emerged as promising tools (Churpek et al., 2016; Escobar et al., 2016; Kipnis et al., 

2016). Previous methods of identifying sepsis patients at risk for deterioration included 

basic point-score EWSs [e.g., Modified Early Warning Score (MEWS), National Early 

Warning Score (NEWS)] and sepsis “sniffer” tools—algorithms that use systemic 

inflammatory response syndrome criteria plus evidence of organ dysfunction, such as 

hypotension or hyperlactatemia, or the Sequential Organ Failure Assessment (SOFA) 

score. These tools have limited prognostic accuracy and predictive precision (Linnen et 

al., 2018) because they use only a limited set of input variables and because a positive 

screen depends on evidence of deterioration. Consequently, point-score EWSs and 

sepsis sniffers may only facilitate a clinical response, rather than prevention of a 

worsening condition (Chan, Jain, Nallmothu, Berg, & Sasson, 2010; Bellew, Cabrera, 

Lohse, & Bellolio, 2016; Escobar & Dellinger, 2016). Recent evidence suggests that 

more advanced EWSs using multivariate regression or machine learning can predict 

clinical deterioration risk with better precision, while creating less workload burden, and, 

consequently, facilitate a more efficient use of rapid response teams (RRTs) (Linnen et 

al., 2018). 
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 Since 2008, an international panel of experts has developed evidence-based 

treatment guidelines for Surviving Sepsis (Dellinger et al., 2008; Dellinger et al., 2013; 

Rhodes et al., 2017). These guidelines include the timely delivery of initial fluid 

resuscitation with 30ml/kg of intravenous crystalloids, followed by additional fluid bolus 

therapy (FBT) to maintain hemodynamic stability, and the timely administration of 

intravenous antibiotics. The evidence base for the impact of fluid bolus therapy on 

sepsis survival remains weak (Glassford, Eastwood, & Bellomo, 2014; Liu et al., 2014; 

Park et al., 2017), and evidence suggest that in patients with severe sepsis and septic 

shock, aggressive FBT of more than 5 liters of intravenous crystalloid solution may in 

fact be associated with increased mortality (Marik, Linde-Zwirble, Bittner, Sahatjian, & 

Hansell, 2017). Randomized controlled trials that could offer more definitive evidence 

would be unethical because they would require the withholding of FBT. However, 

observational designs using pair-matching can approximate conditions of a controlled 

trial (Staffa & Zurakowski, 2018). 

Many sepsis patients present with symptoms in the emergency department (ED) 

(Villar et al., 2014), and the initial sepsis bundle of care is measured relative to the Time 

Zero of ED entry time. However, on hospital wards —the setting of our study—such a 

clean time marker does not exist, and preemptively identifying and treating worsening 

sepsis would require the use of an advanced EWS alert. This approach holds promise, 

because it moves identification of worsening sepsis on the ward (Time Zero) several 

hours ahead—before a patient noticeably destabilizes. Currently, no studies have 

evaluated whether FBT and other sepsis interventions improve sepsis survival following 

an advanced EWS alert. However, Kaiser Permanente Northern California (KPNC), a 
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large integrated healthcare delivery system, is deploying an advanced EWS in 21 

hospitals (Dummett et al., 2016). In this study, we report early results from the first 3 

hospitals.  

 The purpose of this observational matched pair cohort study was to evaluate the 

treatment effects of FBT and other sepsis interventions following an EWS alert, that is, 

whether alert-driven interventions differed between sepsis survivors and decedents 

admitted from the ED in stable condition. By matching decedents and survivors on 

demographics and clinical characteristics, our design mimicked that of a randomized 

controlled trial and tested the treatment effects of alert-driven RRT sepsis interventions 

between two comparable groups.  

Methods 

Setting and Sample 

 Our research cohort consisted of patients admitted to a general ward in any of 3 

Kaiser Permanente community hospitals in Northern California (KPNC) between 

08/01/16 and 08/31/17 (13 months). KPNC is deploying an advanced EWS, called 

Advance Alert Monitor (AAM) (Escobar et al., 2016; Kipnis et al., 2016), to all of its 21 

hospitals. AAM uses a sophisticated multivariate regression algorithm to predict 

deterioration risk in patients on general wards up to 12hs before an acute event. After 

alert triage by a registered nurse in a remote regional surveillance unit (eHospital), the 

alert is routed to a hospital’s rapid response team. In this study, we report early results 

from the 3 hospitals in which KPNC deployed AAM. The Institutional Review Boards of 

Kaiser Permanente Northern California and the University of California, San Francisco 

approved the study.  
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Inclusion and Exclusion Criteria 

 The initial research population was 1,768 alerted adult patients admitted in stable 

condition to a general ward (any medical diagnosis). Inclusion criteria were age ≥18 

years, a positive AAM alert in a medical-surgical or step-down unit that occurred within 

12 hours after ED entry and 72 hours following admission. Because patients may 

transfer between KPNC hospitals, we combined related hospital encounters into one 

hospital episode as previously described (Escobar et al., 2011). We excluded patients 

with an alert in the first 12 hours following ED entry because the initial sepsis bundle 

(e.g., fluid bolus, intravenous antibiotics) in the ED may create a treatment overlap in 

the first hours of ward admission (i.e., in these patients it is not always clear whether 

additional FBT or antibiotics would be indicated). To mitigate this issue, we included 

alerts after the initial sepsis bundle could be considered complete.  

 We excluded the following patients (see Figure 1): those without KP plan 

membership (n=177), because it is not always possible to reliably collect 30-day 

mortality in non-members; direct admissions to the ward or ICU, because these hospital 

episodes started in a non-KPNC hospital (n=284); patients with a length of stay less 

than 24 hours, discharge under observation status, and overnight ambulatory surgery 

stays (n=157); patients without ICD-10 sepsis admission codes (see appendix) (n=519); 

and patients with a “do not resuscitate” (DNR) or “comfort care” order within 4 hours 

following admission (n=174), because death may have been imminent or was expected. 

After applying exclusions, a total of 517 patients remained in the sample, including 56 

sepsis decedents and 416 survivors. 
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Matching procedures 

 To minimize measurement bias, we created comparable groups of decedents 

and survivors using multivariate matching procedures in SAS (Kosanke & Bergstralh, 

2004). Given a specified set of matching criteria, the GREEDY algorithm (gmatch) 

identifies x matching controls for each case. A matching control (here: survivor) is 

identified by virtue of the sum of total differences of the covariates to a given case (here: 

decedent) (Bamman, 2016). GREEDY retains the first match it encounters. Matching 

criteria included age, sex, care directive at alert, AAM score (Escobar & Dellinger, 2016; 

Kipnis et al., 2016), a patient’s 12-month comorbidity burden (COmorbidity Point Score 

2 [COPS2]) (Escobar, Gardner, Greene, Draper, & Kipnis, 2013), severity of illness 

score (LAboratory-Based Acute Physiology Score 2 [LAPS2]) at admission (Escobar et 

al., 2012), and length of hospital stay. In total, we matched 42 decedents with 92 

survivors (2 to 3 matching survivors for each decedent; see the appendix for detailed 

matching results). We then assessed match quality via standardized difference scores 

using Stata14’s pbalchk program (Lunt, 2013). Standardized difference scores evaluate 

match quality (balance) and identify whether the covariates used for matching are stable 

between outcome groups (Garrido et al., 2014). 

 Of the 56 sepsis decedents and 461 survivors in our cohort, matching 

procedures derived like pairs for 42 decedents and 92 survivors. Matching occurred in 4 

steps using successively wider inclusion limits (see appendix). In step 1, we identified 

19 survivors matching on age within 5 years, sex, care directive at alert, AAM score 

within 10 points, LAPS2 score at admission within 10 points, COPS2 score within 10 

points, and length of stay at alert with 24 hours. In step 2, we dropped length of stay at 
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alert, which identified an additional 11 survivors. In step 3, we widened the inclusion 

limits for LAPS2 (within 15 points) and COPS2 (within 15 points), resulting in 21 

additional survivor matches. Finally, we widened age (with 10 years), LAPS2 (within 20 

points) and COPS2 (within 20 points), resulting in 41 additional survivor matches. We 

identified no matches for 14 sepsis decedents (25%) and 369 survivors (80%).   

Research Variables 

 The outcome variable was 30-day survival or death following admission. We also 

captured hospital mortality (death at discharge) for comparison. We extracted patient 

demographics and clinical data from the electronic medical record: age; sex; race; 

LAPS2 scores at admission and alert and the change in these two measurements; 

COPS2; hospital length of stay; length of stay at alert; admission type; care directive at 

alert, presence of hypotension or hyperlactatemia within 6 hours before the alert. We 

extracted relevant hospitalization process times: time from ED entry to admission; time 

from admission to alert; and time from alert to discharge. 

We also collected data on key sepsis intervention processes for FBT and 

antibiotics administered. These included elapsed time from alert to fluid bolus; total fluid 

bolus volume administered within 6 hours before and 24 hours after the alert; number of 

fluid bolus administrations; and number of administrations preceding the alert. Because 

we were concerned that in certain sepsis patients FBT may contraindicated, we flagged 

sepsis patients with potential fluid overload (an elevated brain natriuretic peptide level 

(BNP) >400 pg/mL within 12 hours before the alert and/or intravenous furosemide 

administration within 12 hours before and 2h after the alert. 
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We examined number of new intravenous antibiotic administrations (defined as 

an antibiotic not administered within 24 hours before the alert); and number of antibiotic 

administrations preceding the alert. 

Finally, we examined number of ICU transfers; number of Do Not Resuscitate 

(DNR) or comfort care orders after the alert; sepsis surveillance measures (number of 

vital signs, and laboratory orders within 24 hours after the alert), and characteristics of 

the work shift at alert time (night/day/evening shift; weekend shift).	

Statistical Analysis 

 We described the data and tested statistical differences between sepsis 

decedents and survivors using Stata14 (StataCorp. 2015. Stata Statistical Software: 

Release 14. College Station, TX: StataCorp LP). After confirming normality of 

continuous variables using histograms and p-norm/q-norm plots (Wilk & Gnanadesikan, 

1968; Filliben, 1975) (results omitted), we performed Student’s t-test for continuous data 

and Pearson’s chi-squared test for categorical data. Matching adjusted the treatment 

effects for age, sex, advanced EWS score, severity of illness at admission (LAPS2), 

patient comorbidity burden (COPS2), code status, and, in a subsample of matches, 

length of stay at alert. We deemed the groups of sepsis decedents and survivors 

independent, because it was implausible that sepsis interventions in a given decedent 

could influence those in a given survivor. 
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Results 

Comparison of matched vs. unmatched groups 

On average, compared to the matched groups, unmatched decedents were 

younger (mean age 69.2 years), sicker at admission (mean LAPS2 130.5) and at alert 

time (mean LAPS2 152.9), had a substantially higher comorbidity burden (COPS2 

110.4), higher AAM alert score (16.2), had fewer full code orders (78.6%), and had 

more hypotension within 6 hours before the alert (64.3%). Matching procedures 

dropped 369 survivors (80%), for which we could not identify a suitable pairing. 

Compared to the matched groups, these unmatched survivors were younger (mean age 

66.4), less sick at admission (mean LAPS2 101.2) and at alert time (mean LAPS2 

118.4), had had a lower comorbidity burden (mean COPS2 67.7), and fewer patients 

had hyperlactatemia within 6 hours before the alert (mean 14.3%). 

 Overall, standardized difference scores of the matching covariates showed good 

match quality, with difference scores ranging from 5% to 11% in 5 of the 7 covariates 

and 16-21% in the remaining 2 covariates (length of stay at alert, which we removed 

after the first round of matching, and AAM score; see Figure 2). The mean difference of 

AAM scores between matched decedents and survivors was marginal (13.7 vs. 12.5, p 

= 0.269), indicating reasonable match quality. The p-values of all between-group 

difference tests were also not statistically significant, ranging from 0.203 for length of 

stay at alert to 0.783 for age at admission (see Table 1). 

Cohort characteristics of matched decedents and survivors 

 Sepsis decedents did not statistically differ from survivors across any of the 

demographic variables or clinical characteristics. In addition to the matching variables, 



Chapter 4: Matched Pair Cohort Study 

	 	 104 

the matched decedents and survivors were alike in terms of race, LAPS2 delta (the 

difference between LAPS2 severity of illness score at alert vs. admission), admission 

type, and presence of hypotension or hyperlactatemia within 6 hours before the alert. All 

of the survivors and decedents had the correct 30-day mortality classification. Among 

the sepsis decedents (n=42), we observed in-hospital mortality in 25 cases (59.5%), 

and in 1 case (1.1%) among the survivors (n=92); this patient survived to 30 days after 

admission, but ultimately died in the hospital. 

Hospitalization process measures 

None of the hospitalization process times differed statistically between matched 

sepsis decedents and survivors (see Table 2). These included time from ED entry to 

ward admission (mean 8.8 hours in decedents vs. 7.6 hours in survivors, p = 0.233), 

time from hospital admission to alert (mean 17.0 hours vs. 13.6 hours, respectively, p = 

205), time from alert to discharge (mean 6.6 days vs. 7.8 days, p = 0.402), and hospital 

length of stay (mean 7.3 days vs. 8.4, p = 0.456).  

Sepsis interventions and surveillance 

 We did not detect statistically significant differences in time from alert to fluid 

bolus administration (174 minutes vs. 123 minutes, p = 0.714), percent of patients with 

at least one fluid bolus administration (42.9% vs. 32.6%, p = 0.251), percent of fluid 

bolus administrations preceding the alert (28.6% vs. 17.4%, p = 0.140), and total fluid 

bolus volume administered within 6 hours before the alert (0.7 liters vs. 0.7 liters, p = 

0.896). Decedents received more than twice as much fluid bolus volume within 24 hours 

following the alert (2.1 liters vs. 1.0 liters, p = 0.052). We performed a sensitivity 

analysis by excluding patients with potential evidence of fluid overload (high BNP or 
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furosemide administration). This approach dropped 25 cases. In the remaining cohort, 

decedents again received more fluid bolus volume within 24hs following the alert and 

the difference reached statistical significance (2.25 liters vs. 1.0 liter, p = 0.034). 

 Comparing decedents to matched survivors, a greater percentage of survivors 

received a new intravenous antibiotic, although the difference was not statistically 

significant (14.3% vs. 20.7%, p = 0.380). However, substantially more survivors 

received a new intravenous antibiotic within 6 hours before the alert (0.0% vs. 10.9%, p 

= 0.026). More sepsis decedents received a DNR or comfort care order after the alert 

(69.1% vs. 14.1%, p < 0.001) and experienced a transfer to ICU (42.9% vs. 19.6%, p = 

0.005). Sepsis decedents had more vital sign documentations within 24 hours after the 

alert (mean 86.3 vs. 56.9, p = 0.011), while the number of complete vital sign sets was 

not substantially different (5.7 vs. 5.2, p = 0.262). Decedents also had more laboratory 

orders within 24 hours following the alert (15.4 vs. 11.0, p = 0.004). 

Characteristics of the work shift at alert time 

 Finally, we did not detect a difference in regard to the alert’s shift type (p = 0.230 

across three shift types – day, evening, night). We did, however, observe a greater 

proportion of survivors with alerts on day shift (21.4% of decedents vs. 43.5% of 

survivors had an alert on day shift) and a greater proportion of decedents with alerts on 

evening shifts (31.0% of decedents vs. 12.0% of survivors had an alert on evening 

shift). Alerts on weekends were somewhat more frequent among survivors, although 

this difference, too, was not statistically significant (23.8% vs. 32.6%, p = 0.302). 
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Discussion 

Our study is among the first to evaluate whether sepsis interventions following an 

advanced EWS alert differ substantially between sepsis decedents and survivors. Our 

design mimicked that of a randomized controlled trial, in an effort to test the treatment 

effects of alert-driven sepsis RRT interventions between two comparable groups. We 

used a retrospective matched pair design, which is a useful and sound method of 

causal inference testing (Staffa & Zurakowski, 2018) when a comparison of treatment 

effects in an actual no-treatment group would be unethical. Our results suggest that we 

derived comparable groups of decedents and survivors. Because very few studies have 

investigated the impact of pairing an advanced EWS with RRT on sepsis survival, our 

analysis deliberately focused on sepsis patients who were admitted in stable condition 

(by virtue of admission to a ward, rather than ICU) with a positive deterioration alert 

within 3 days.  

 Consistent with a systematic review investigating the treatment effects of FBT on 

hemodynamic stability (Glassford et al., 2014) and the Surviving Sepsis guidelines 

(Rhodes et al., 2017), we hypothesized that survivors would receive earlier and more 

FBT (as well as antibiotics, transfer to ICU, and sepsis surveillance). However, our 

results suggest there is no difference in time from alert to fluid bolus between decedents 

and survivors, and that decedents received substantially more fluid bolus therapy 

(especially after excluding those for whom FBT may have been contraindicated), 

transfer to ICU, and DNR or comfort care orders following the alert. We also observed 

substantially more surveillance activity (vital sign measurements and laboratory tests) in 

sepsis decedents. These findings suggest a reverse causal path; rather than being 
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protective factors, the observed intensification of sepsis interventions is more 

pronounced in decedents because these patients may present with a more apparent 

downward trajectory. This explanation, then, raises the question: which mechanisms of 

sepsis deterioration may remain unmeasured after accounting for a large and nuanced 

portfolio of clinical characteristics? One plausible explanation is that the (unmeasured) 

pre-hospital sepsis exposure time may be longer in decedents, which then may worsen 

their overall clinical course. Even though sepsis decedents appeared clinically stable 

and comparable to sepsis survivors in the ED, the slope of their deterioration trajectory 

may have been steeper: The mean severity of illness scores (LAPS2) at alert time and 

LAPS2 delta score were more pronounced in decedents, and although not statistically 

significant at alpha = 0.05, these 2 markers appeared to be the least balanced between 

the two groups.   

 In this cohort of sepsis decedents with a mean age of 76.0 years, we observed 

higher ICU utilization (doubled in decedents compared to survivors) and more frequent 

DNR or comfort care orders (nearly 5-fold in decedents compared to survivors).  More 

than half of decedents (57%) succumbed to sepsis on the ward. These findings suggest 

that 1) patients may have chosen limited interventions in the context of terminal disease 

(e.g., cancer), and 2) transfer to ICU may have been the result of unclear treatment 

wishes leading to heroic, but ultimately unsuccessful, attempts of life support. This study 

did not aim to evaluate the quality of the observed outcomes (i.e., whether death was 

expected or unavoidable), but the observed ICU transfer and DNR order patterns 

appear to offer circumstantial support for the notion that death was an expected or 

unavoidable outcome. 
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 We found that substantially more survivors received a new intravenous antibiotic 

within 6 hours before the alert, with no difference in time from ED entry to admission 

and from admission to alert. Consistent with prior evidence (Rivers et al., 2001; Gaieski 

et al., 2010; Prasad et al., 2017), receiving antibiotic coverage early may have a 

favorable therapeutic effect. Our findings suggest that earlier additional antibiotic 

coverage may have a bigger impact on sepsis survival than FBT, which is an important 

discovery in the light of antibiotic stewardship (Pollack & Srinivasan, 2014). While the 

judicious prescription of antibiotics is an ever-present concern for clinicians, our results 

suggest that sepsis survival is improved with early additional coverage. This finding is 

consistent with the evidence regarding the treatment effect of early goal directed 

therapy. Given that fewer decedents received a new antibiotic, our results suggest that 

the alert time could be used to prompt the consideration for antibiotic coverage, if it did 

not occur in the hours before the alert.  

 Finally, though not statistically significant in this sample, we observed that 

decedents alerted more frequently during the evening shift and survivors alerted more 

frequently during day shift. The hospitals in this sample routinely staffed RRTs on both 

shift types and adhered to state-mandated nurse-to-patient staffing ratios (e.g., 1 

registered nurse for up to 5 patients on general wards). It is possible, though 

speculative, that the presence of fewer hospitalists on evening shift may result in 

different antibiotic prescription patterns after the RRT has responded. Given that the 

shift difference was not statistically significant in this study, confirmation would require 

follow-up analysis in a larger sample. 



Chapter 4: Matched Pair Cohort Study 

	 	 109 

We also wish to address the study’s limitations. First, the sample size of our 

cohort was relatively small, and matching procedures further reduced the pool of 

comparable decedents and survivors. This limitation could not be overcome, because a 

total of 3 KPNC hospitals had implemented an advanced EWS during the research 

timeframe and because the study’s matched pair design required rigorous exclusion 

criteria and matching procedures to minimize measurement bias. Despite limited power, 

our work found strong effects for a number of research variables. Second, our study 

was not powered to detect potential variation across hospitals or hospital-level effects 

because, again, a hierarchical analysis of treatment effects would require a larger 

number of hospitals. However, previous work has shown that KPNC hospitals are 

relatively alike across a wide range of characteristics (Linnen et al., 2018). That is, by 

belonging to an integrated health system, they may employ relatively similar clinical 

workflows, staffing practices, and clinical practice standards. Third, we acknowledge 

that by using GREEDY matching procedures, we could not identify a complete set of 

matches for all decedents and survivors. As a result, our findings have limited 

generalizability beyond sepsis patients who resemble the final matched groups. The 

GREEDY program identifies and keeps the first possible match, rather than the best 

possible one. This approach is similar to propensity score matching (Rosenbaum & 

Rubin, 1983), which also lacks the ability to control for imbalanced matching outputs. 

However, our matches appeared to be of suitable quality, as assessed by both 

standardized difference scores (Austin, 2009) and between-group difference testing. 

Fourth, while we excluded patients with an immediate DNR or comfort care order after 

admission, it is possible that some of the sepsis decedents with Full Code at admission 
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were on a fixed end-of-life trajectory. If death was foreseeable in such patients, their 

treatment focus may have been palliative, even as life-saving interventions continued 

(Kim et al., 2016). This measurement challenge is not unique to this study; it is known 

that elderly or terminally ill patients lack clarity regarding treatment wishes (Stephens et 

al., 2015), which then complicates a clear measurement of outcome quality. Finally, our 

analytic approach (between-group testing) may not have fully risk-adjusted for all 

potential effects between independent variables. However, we controlled for 

measurement bias by using externally validated risk-adjusted composite scores of 

severity of illness, comorbidity burden, and deterioration risk and by using multivariate 

matching. Our methods generated the closest achievable approximation of comparable 

groups. 

Conclusion  

While advanced EWSs aim to support clinical decision-making, it appears that 

death is often an unavoidable outcome after the identification of worsening sepsis, 

despite the alert-driven intensification of treatment. Our finding that substantially more 

survivors received a new intravenous antibiotic within 6 hours prior to the EWS alert is 

consistent with previous findings in its message—earlier additional antibiotics may lead 

to better survival and may be more important to surviving sepsis than fluid bolus 

therapy. Reliable methods of quality measurement of expected vs. preventable mortality 

are needed because these may influence the direction of treatment effects of sepsis 

interventions following an alert. Future research should aim to validate findings in a 

larger cohort (e.g., one that includes all admissions stratified by diagnostic groups) to 

overcome power limitations, derive and validate a regression model which adjusts and 
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controls for the slope of clinical deterioration between admission and alert time, and 

employ more computationally intensive matching procedures to overcome matching 

limitations. Such confirmatory analyses would provide more definitive answers. Given 

the strength of matched pair cohort studies, results have the potential to inform 

evidence-based guidelines for the treatment of worsening in-hospital sepsis, which 

remains the number 1 cause of death in U.S. hospitals. 
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Tables and Figures 

Table1. Demographic and Clinical Characteristics of a Cohort of Sepsis Patients 
Identified by an Advanced Early Warning System 
 
 Entire Cohort 

(n=517) 
Matched 

Decedents 
(n=42) 

Matched  
Survivorsa 

(n=92) 

 
P value 

Unmatched 
Survivors 
(n=369) 

Unmatched 
Decedents 

(n=14) 
Age at admission 
(years), median,  
mean ±SD 

70.0,  
68.4 ± 14.1 

76.0,  
74.1 ± 12.7 

74.5,  
73.5 ± 9.7 

0.783 68.0,  
66.4 ± 14.3 

81.0,  
69.2 ± 22.8 

Male, No. (%) 265 (51.3) 22 (52.4) 45 (48.9) 0.139 190 (51.5) 8 (57.1) 
Race 0.539  
  White, No. (%) 308 (59.6) 24 (57.1) 50 (54.4)  228 (61.8) 6 (42.9) 
  African American, 
No. (%) 

27 (5.2) 1 (2.4) 5 (5.4)  18 (4.9) 3 (21.4) 

  Asian, No. (%) 75 (14.5) 6 (14.3) 13 (14.1)  54 (14.6) 2 (14.3) 
  Hispanic, No. (%) 71 (13.8) 9 (21.4) 13 (14.1)  46 (12.5) 3 (21.4) 
  Other, No. (%) 36 (7.0) 2 (4.8) 11 (12.0)  23 (6.2) 0 (0.0) 
Admission Type 0.707  
  ED Surgical, No. 
(%) 

78 (15.1) 6 (14.3) 11 (12.0)  61 (16.5) 0 (0.0) 

  ED Medical, No. 
(%) 

439 (84.9) 36 (85.7) 81 (88.0)  308 (83.5) 14 (100.0) 

Full Code at alert, 
No. (%) 

505 (97.7) 41 (97.6) 91 (98.9) 0.567 362 (98.1) 11 (78.6) 

AAM scoreb  11.6,  
15.1 ± 10.7 

12.1,  
13.7 ± 5.7 

10.4,  
12.5 ± 5.6 

0.269 12.0,  
15.6 ± 11.1 

16.2,  
24.5 ± 23.3 

Severity of illness (LAPS2 score)c 

  At ward admission, 
median, mean ±SD 

105.0,  
105.9 ± 29.9 

121.0,  
118.3 ± 26.0 

115.5,  
115.6 ± 22.6 

0.541 100.0,  
101.2 ± 29.8 

131.5,  
130.5 ± 46.9 

  At alert, median, 
mean ±SD 

120,  
122.4 ± 29.3 

137, 
136.4 ± 29.9 

127.5, 
127.4 ± 23.0 

0.059 117, 
118.4 ± 29.1 

147.5, 
152.9 ± 35.3 

  LAPS2 delta, 
median, mean ±SD 

12, 
16.5 ± 21.6 

15, 
18.1 ± 21.4 

10.5, 
11.8 ± 19.3 

0.093 12, 
17.3 ± 21.7 

13,  
22.4 ± 29.8 

Comorbidity burden 
(COPS2 score)d, 
median, mean ±SD 

58.0,  
71.4 ± 55.9 

71.5,  
79.8 ± 45.7 

72.0,  
76.2 ± 44.2 

0.665 51.0,  
67.7 ± 58.6 

108.0,  
110.4 ± 66.5 

Length of stay 
(days), median, 
mean ±SD 

5.0,  
7.3 ± 7.6 

6.75, 
7.3 ± 4.4 

4.85, 
8.4 ± 9.5 

0.456 4.8, 
7.1 ± 7.5 

5.6, 
6.0 ± 4.3 

Length of stay at 
alert (hours), 
median, mean ±SD 

10.1,  
16.1 ± 20.5 

11.4,  
17.0 ± 16.3 

9.2,  
13.6 ± 13.5 

0.205 10.1,  
16.5 ± 22.1 

9.3,  
21.4 ± 24.6 

SBPe <100 within 
6hs before alert, No. 
(%) 

150 (29.0) 12 (28.6) 28 (30.4) 0.827 101 (27.4) 9 (64.3) 

Serum lactate ≥2.0 
within 6hs before 
alert, No. (%) 

60 (11.6) 9 (21.4) 17 (18.5) 0.698 32 (8.7) 2 (14.3) 

Hospital mortality, 
No. (%) 

 25 (59.5) 1f (1.1) n/a 3 (0.8) 11 (78.6) 

30-day mortality, No. 
(%) 

 42 (100.0) 0 (0.0) n/a 0 (0.0) 14 (100.0) 

 
Note.  
a Matching parameters were age, sex, care directive at alert, AAM score, COPS2 score, and LAPS2 score 
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b Advanced Alert Monitor score predicting clinical deterioration risk (a higher score indicates higher risk) 
c LAboratory-based Acute Physiology Score (LAPS2) is a severity of illness instrument using laboratory 
values and vital signs 
d COmorbidity Point Score version 2 (COPS2 measures a patient’s 1-year comorbidity burden calculated 
one month prior to admission 
e Systolic Blood Pressure (mmHg) 
f One matched survivor died in the hospital after 30 days 
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Table 2. Comparison of RRT Sepsis Interventions, Hospitalization and Alert Process 
Times, and Alert Shift Characteristics between Sepsis Decedents and Matched 
Survivors 
 
 Matcheda 

Decedents 
(n=42) 

Matcheda 
Survivors 

(n=92) 

 
P value 

Received fluid bolus, No. (%) 18 (42.9) 30 (32.6) 0.251 

Time from alert to fluid bolus (minutes), median, 
mean±SD 

-60 
174 ± 541 

-21 
125 ± 392 

0.714 

Fluid bolus precededd the alert, No. (%) 12 (28.6) 16 (17.4) 0.140 

Total fluid bolus volume 6 hours before alert (liters), 
median, mean±SD 

0.5 
0.7 ± 0.3 

0.5 
0.7 ± 0.3 

0.896 

Total fluid bolus volume 24 hours after alert (liters), 
median, mean±SD 

1.5 
2.1 ± 2.5 

0.75 
1.0 ± 0.7 

0.052 

Received new intravenous antibiotice, No. (%) 6 (14.3) 19 (20.7) 0.380 

Antibiotic precededd the alert, No. (%) 0 (0) 10 (10.9) 0.026 

Transfer to ICU, No. (%) 18 (42.9) 18 (19.6) 0.005 

Number of vital signs following alert, median, 
mean±SD 

51.5 
86.3 ± 81.1 

41.5 
56.9 ± 49.2 

0.011 

Number of vital sign setsc following alert, median, 
mean±SD 

6 
5.7 ± 2.4 

5 
5.2 ± 2.0 

0.262 

Number of lab orders following alert, median, 
mean±SD 

12 
15.4 ± 11.3 

9 
11.0 ± 5.7 

0.004 

DNRf or Comfort Care after alert, No. (%) 29 (69.1) 13 (14.1) < 0.001 

Time from EDb entry to ward admission (hours), 
median, mean±SD 

6.6 
8.8 ± 6.1 

6.2 
7.6 ± 4.6 

0.233 

Time from ward admission to alert (hours), median, 
mean±SD 

11.4 
17.0 ± 16.3 

9.1 
13.6 ± 13.5 

0.205 

Time from alert to discharge (days), median, 
mean±SD 

6.2 
6.6 ± 4.4 

4.3 
7.8 ± 9.4 

0.402 

Length of hospital stay (days), median, mean±SD 6.8 
7.3 ± 4.4 

3.3 
8.4 ± 9.5 

0.456 

Alert shiftg   0.230 

  Night, No. (%) 20 (47.6) 41 (44.6)  

  Day, No. (%) 9 (21.4) 40 (43.5) 

  Evening, No. (%) 13 (31.0) 11 (12.0) 

Alert on weekend, No. (%) 10 (23.8) 30 (32.6) 0.302 

 
Note. 
a Matching parameters were age, sex, care directive at alert, AAM (EWS) score, COPS2 score, and 
LAPS2 score 
b Emergency Department  
c Temperature, heart rate, blood pressure, respiratory rate, blood oxygen saturation level (SpO2); 
d Preceding the alert: Intervention occurred within 6hs before the alert 
e New antibiotic = not administered in the past 24 hours before the alert 
f Do Not Resuscitate 
g Shift times: night 00:00-07:59, day 08:00-15:59, evening 16:00-23:59;   
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Figure 1. Flow Diagram of Cohort Selection and Patient Exclusion Criteria in a 
Research Population of Patients on general wards (n=1,768) in 3 Community Hospitals 

Note. Alerted patients were those with an advanced EWS risk score above a predetermined threshold. 
This threshold was selected to generate no more than one alert per 35-bed unit per day; DNR = Do Not 
Resuscitate  
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Figure 2. Graph of Standardized Difference Scores of Matching Variables between 
Sepsis Decedents and Survivors after Matching Procedures 
 

 
 
Note. Stata14’a pbalchk program computes standardized difference scores to demonstrate the balance of 
covariates between two matched groups. Scores below 0.1 are desirable. There were no statistically 
significant differences in any of the matching covariates between decedents and survivors. Matching on 
AAM (EWS) score occurred within 10 points between decedents and survivors. We removed length of 
stay as a matching variable after the first round of matching did not yield an adequate number of pairs.  
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Appendix 
 
Table 1. List of ICD-10 Sepsis Codes Used for Inclusion of Patients for Matching 
Procedures 
 
ICD-10 code Description 

A40.0  Sepsis due to streptococcus, group A 
 A40.1 Sepsis due to streptococcus, group B 
 A40.3  Sepsis due to Streptococcus pneumoniae 
 A40.8  Other streptococcal sepsis 
 A40.9  Streptococcal sepsis, unspecified 
 A41.0  Sepsis due to Staphylococcus aureus 
 A41.02  Sepsis due to Methicillin Resistant Staphylococcus aureus 
 A41.2  Sepsis due to unspecified staphylococcus 
 A41.3  Sepsis due to Hemophilus influenza 
 A41.4  Sepsis due to anaerobes 
 A41.50  Gram-negative sepsis, unspecified 
 A41.51  Sepsis due to Escherichia coli 
 A41.52  Sepsis due to Pseudomonas 
 A41.53  Sepsis due to Serratia 
 A41.59  Other Gram-negative sepsis 
 A41.81  Sepsis due to Enterococcus 
 A41.89  Other specified sepsis 
 A41.9  Sepsis, unspecified organism 
 R65.20  Severe sepsis without septic shock 
 R65.21  Severe sepsis with septic shock 

  



Chapter 4: Matched Pair Cohort Study 

	 	 124 

Table 2. Standardized Difference Tests Between Matched Sepsis Decedents and 
Survivors Demonstrate Adequate Match Quality 
 

 Total 
(n=134) 

Matched 
Decedents 

(n=42) 

Matched 
Survivors 

(n=92) 

Standardized 
difference 

score 

 
P value 

Age at Admission 
[median, mean ± 
SD] 

75.0,  
73.7 ± 10.7 

76.0,  
74.1 ± 12.7 

74.5,  
73.5 ± 9.7 

0.049 0.783 

Male  
[n (%)] 

67 (50.0) 22 (52.4) 45 (48.9) 0.069 0.710 

Full Code at 1st 
Alert  
[n (%)] 

132 (98.5) 41 (97.6) 91 (98.9) -0.076 0.567 

AAM scorea 

[median, mean ± 
SD] 

10.6,  
12.9 ± 5.6 

12.1,  
13.7 ± 5.7 

10.4,  
12.5 ± 5.6 

0.206 0.266 

LAPS2 scoreb at 
HET [median, 
mean ± SD] 

117.0,  
116.4 ± 23.7 

121.0,  
118.3 ± 26.0 

115.5,  
115.6 ± 22.6 

0.111 0.541 

COPS2 scorec 

[median, mean ± 
SD] 

72.0,  
77.3 ± 44.5 

71.5,  
79.8 ± 45.7 

72.0,  
76.2 ± 44.2 

0.080 0.665 

Length of Stay at 
Alert (Hours)  
[median, mean ± 
SD] 

10.2,  
14.7 ± 14.4 

11.3,  
17.0 ± 16.3 

9.1,  
13.6 ± 13.5 

-0.155 0.203 

 
Note.   
a Advanced Alert Monitor score predicting clinical deterioration risk (a higher score indicates higher risk) 
bLAboratory-based Acute Physiology Score (LAPS2) is a severity of illness instrument using laboratory 
values and vital signs 
c COmorbidity Point Score version 2 (COPS2 measures a patient’s 1-year comorbidity burden calculated 
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Figure 1. Flow Diagram of the Matching Process to Derive Comparable Groups of 
Sepsis Decedents and Survivors 
 

 
  
Note. Advanced Alert Monitor score predicting clinical deterioration risk (a higher score indicates higher 
risk); LAboratory-based Acute Physiology Score (LAPS2) is a severity of illness instrument using 
laboratory values and vital signs; COmorbidity Point Score version 2 (COPS2 measures a patient’s 1-year 
comorbidity burden)	  
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Overview 

This final chapter offers a summary and synthesis of the dissertation’s findings, a 

description and interpretation of results, and a discussion of implications for research 

and practice. We conceived this dissertation to answer an important clinical question, 

which previous rescue research has not addressed: Do sepsis interventions by rapid 

response teams (RRTs) - relative to an advanced early warning system (EWS) alert - 

improve survival of sepsis? The dissertation had two primary aims: 1) to categorize fluid 

bolus processes (FBPs) and other sepsis interventions relative to an advanced EWS 

alert via chart reviews of electronic medical records; and 2) to characterize and 

compare alike sepsis survivors and decedents admitted in stable condition and to 

evaluate the impact of fluid bolus processes and other sepsis interventions on 30-day 

survival in hospitals with an advanced EWS.  

Fulfilling the first aim, we performed expert chart reviews to examine sepsis 

interventions performed by RRTs relative to EWS alert time, mapped the discrete 

locations of FBP data and other sepsis intervention data in the electronic medical 

record, and categorized FBPs in terms of elapsed time from EWS alert to bolus and 

total 24-hour bolus volume (see Chapter 3). In fulfillment of the second aim, we 

conducted a matched-pair cohort study using multivariate pair matching procedures of 

sepsis decedents and matched survivors, described the groups using summary 

statistics, and quantified the between-group differences of fluid bolus processes and 

other sepsis interventions in decedents and survivors (see Chapter 4).  
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We evaluated the following alternative hypotheses for statistical significance (p < 

0.05):  

H1:   Elapsed time from EWS alert to administration of IV fluid bolus will be 

shorter in survivors compared to decedents, after pair-matching adjusted for 

patient age, sex, EWS score, patient comorbidity [COmorbidity Point Score 

version 2 (COPS2)], and severity of illness [LAboratory-based acute Physiology 

Score (LAPS2)]. 

H2:  Total 24-hour fluid bolus volume following an alert will be larger in 

survivors compared to decedents, after pair-matching adjustment for patient age, 

sex, EWS score, length of stay, patient comorbidity (COPS2), and severity of 

illness (LAPS2). 

Summary of results 

 The following section will offer a summary and synthesis of the results of the 

three dissertation papers. 

Chapter 2: Systematic review of the advanced EWS literature 

Prior to conducting studies to quantify the impact of alert-driven sepsis 

interventions on patient survival, it was imperative to confirm whether advanced EWSs 

using multivariate regression or machine learning algorithms appear to demonstrate 

superior precision compared to traditional point-score EWS tools. Little benefit would 

come from this dissertation unless we could first determine that advanced EWSs are a 

sound patient safety investment for health systems, given that basic EWS tools are 

already in use in many hospitals. We systematically compared model performance of 

advanced EWSs vs. point-score EWSs. Then, we evaluated the models’ ability to 
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correctly identify cases and quantified the RRT workload to find (and treat) one positive 

case. 

We found that studies using advanced EWSs were relatively scarce. Ours is the 

first systematic review that compared the diagnostic performance of EWSs using 

multivariate regression or machine learning against point-score warning systems. Only 

5 studies met inclusion criteria, of which 1 demonstrated considerable threats to validity 

and lack of measurement rigor. The remaining 4 studies were of good quality; they used 

large sample sizes by pooling data from multiple hospitals, employed sophisticated 

modeling and model validation techniques, and used rigorous measurement methods.  

It is an illustration of the novelty of the field, that these 4 studies occurred at only 2 

research centers: The University of Chicago and the Kaiser Permanente Northern 

California (KPNC) Division of Research. 

Advanced EWSs have higher prognostic accuracy and appear to offer better 

case detection properties (precision) than point-score EWSs, while generating fewer 

alerts for RRTs to evaluate. Consequently, advanced EWSs may improve resource 

efficiency and appear to reduce clinical evaluation workloads by reducing false positive 

case identification. Our conservative estimate of waste reduction (fewer unnecessary 

patient evaluations by RRTs and hospitalists) is ~$65,500 per hospital per year, or 

nearly $350 million per year across the entirety of U.S. hospitals. This benefit offers 

indirect savings, because RRTs and hospitalists are staffed roles; however, their time 

may be better utilized by performing other essential functions, with less distraction and 

less risk for burnout. Despite these benefits, it is important to note that even advanced 
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EWSs are calibrated to detect about half of all actual cases. Therefore, they can at best 

augment and support, but not replace, clinical monitoring and vigilance. 

Chapter 3: Chart reviews 

 In Chapter 3, we reviewed the medical records of 68 sepsis patients admitted to 

Kaiser Permanente Northern California (KPNC) hospitals to evaluate how RRTs 

performed sepsis interventions relative to the alert and to ensure measurement rigor in 

the subsequent study. During two rounds of clinical chart reviews, we captured patient 

demographics, clinical patient characteristics of severity of illness (LAPS2) and 

comorbidity burden (COPS2), and the timing of intravenous antibiotics, transfer to ICU, 

and Do Not Resuscitate orders relative to the alert. We then summarized results using 

descriptive statistics and graphed results.  

Regarding the use of “DNR order before death” as an exclusion criterion for 

“expected death”, we found that a very large share of sepsis decedents (86%) had a 

DNR order in place before their death. As such, a DNR order before death did not 

appear to reflect the question whether a patient was on a fixed end-of-life trajectory.   

We also noted a second critical problem: In patients with an EWS alert immediately 

following admission, sepsis interventions tended to precede the alert. These patients 

often received the initial bundle of sepsis care in the emergency department (ED), 

meaning that additional sepsis interventions at alert time may not have been indicated 

again. Since the overall purpose of the dissertation was to quantify new interventions 

motivated by the alert, we elected to exclude patients with alerts within 12 hours after 

ED entry in the subsequent study.  
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Results from this study had important implications for the design and 

measurements of the subsequent study (Chapter 4). Our findings demonstrated the 

crucial importance of clinical chart reviews prior to embarking on data collection and 

analysis, and they contributed to the body of sepsis and RRT science by highlighting 

and proposing solutions to distinct challenges of measurement and patient selection.  

Chapter 4: Matched pair cohort study 

Satisfying Aim 2, the evaluation of the between-group differences of fluid bolus 

processes and other alert-driven sepsis interventions delivered a novel understanding of 

the impact of alert-driven FBPs on sepsis survival. By categorizing sepsis interventions 

and comparing sepsis survival outcomes, this dissertation study aimed to improve the 

empiric evidence base regarding the effective delivery of fluid bolus therapy. We 

ensured internal and external validity of measurements and results by using a rigorous 

sampling strategy, well circumscribed measurement definitions, sophisticated composite 

measurement tools with external validation, and by following a research plan that went 

through a total of three distinct development stages.  

Using a cohort of alerted patients admitted to general wards in 3 KPNC hospitals, 

we performed multivariate matching procedures to derive alike groups of sepsis 

decedents and survivors. We then statistically compared demographics, clinical patient 

characteristics, hospital transfer times, sepsis interventions, intervention times, and 

characteristics of the event shift between these two groups. Decedents and survivors 

were comparable across all demographics and clinical characteristics. All patients were 

admitted in stable condition, their EWS risk scores adjusted for severity of illness, and 

the mean EWS scores did not differ substantially.    
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We found that, after matching adjusted for patient demographics and clinical 

characteristics, sepsis decedents received statistically significantly more fluid bolus 

volume, more vital sign measurements, more laboratory tests, more transfers to the 

intensive care unit (ICU), and do not resuscitate (DNR) orders after the alert. Survivors 

received a new intravenous antibiotic earlier, and often before the alert. We did not 

detect statistically significant differences in terms of hospital transfer times from ED to 

alert to ward to discharge, timeliness of fluid bolus therapy, and characteristic of the 

alert shift.  

Given these early results, we failed to reject the dissertation’s null hypotheses of 

H1 (no difference in elapsed time from alert to fluid bolus administration between sepsis 

decedents and survivors) and H2 (no difference in total fluid bolus therapy within 24 

hours after alert between sepsis decedents and survivors). Because we adjusted for a 

wide range of clinical covariates during the matching procedures, including severity of 

illness, comorbidity, EWS alert score, among others, our findings are generalizable for 

similar patients, but not all patients on general wards. 

Interpretation of results 

 This dissertation offers important new insights for the field of predictive health 

analytics and data science in patient-centric outcomes research and patient safety. 

Advanced EWSs appear to possess favorable properties, including better prognostic 

precision, which translates into RRT and physician efficiencies. While we excluded 

patients for whom sepsis care in the ED may have created treatment overlap with 

sepsis interventions at the alert time, we were unable to confirm timelier or more 

complete alert-driven fluid bolus processes in survivors. Instead, we found that 
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decedents received more fluids overall and often before the alert, though not reaching 

statistical significance. Despite matching, the severity of illness score (LAPS2) at 

admission and alert time were higher in decedents. The 10-point difference in LAPS2 

scores between decedents and survivors (though not statistically significant at alpha of 

0.05) suggests that decedents were considerably sicker at the time of alert. Given that 

this difference was less pronounced between the groups at the time of admission, the 

severity of illness slope appears to be stepper in decedents. This would then explain, at 

least in part, their receipt of more fluid bolus therapy. Since statistical significance is 

influenced by sample size, it would be desirable to evaluate total fluid bolus volume 24 

hours after the alert and LAPS2 slopes in future research using a larger cohort. 

 Compared to 10 out of 92 survivors, none of the decedents received a new 

antibiotic before the alert (p = 0.026). This finding is congruent with prior evidence 

regarding the impact of timely antibiotic therapy on sepsis survival. We hypothesized 

that an advanced EWS would have the utility of motivating additional sepsis therapy 

following the alert; however, the protective effect of antibiotics appears to occur before 

the alert. Nevertheless, because we observed a protective effect of earlier antibiotic 

coverage and fewer new antibiotics in decedents overall, it would be reasonable to 

prompt clinicians to consider additional antibiotics at alert time.  

It appeared that many patients expired despite appropriate care and treatment 

intensification following the alert. Therefore, findings from this dissertation suggest that 

there may be unmeasured contexts that could explain the observed differences. For 

example, we did not account for the potential of longer sepsis exposure time before ED 

entry in decedents (because such an exposure measure is not reliably documented), or 
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the relative increase in illness severity following admission, and the degree to which a 

patient’s death may have been expected or could be considered unavoidable. These 

factors may confound or influence treatment intensification in decedents.  

In Chapters 3, 4, and 5, we discussed the dissertation’s limitations in detail. The 

greatest limitation for this dissertation study was the relatively small sample size; some 

treatment effects may prove to be statistically significant simply by having access to 

larger sample sizes in future research. For example, post-hoc power calculations 

showed that the treatment effect of total fluid bolus therapy (p = 0.052) would have 

reached statistical significance with only 4 additional decedents (needed n=46, had 

n=42). A second important limitation was the inability to measure mortality outcome 

quality. We excluded patients with a Do Not Resuscitate or Comfort Care order 

immediately following hospital admission and observed that nearly 70% of decedents 

had a DNR order in place after the alert. These results suggest that there may be 

additional unmeasured differences in decedents in terms of their potential 

predetermined end-of-life trajectory. In such patients, palliative care may be an equally 

important intervention. 

Implications for research and practice 

The dissertation marks an important foundational milestone, because no 

research to date has evaluated the impact of the pairing of RRTs and an advanced 

EWS alert on sepsis survival outcomes. We successfully addressed all aims and 

research questions. Nonetheless, the overall scientific objective of evaluating the impact 

of alert-driven RRT interventions has at least five future-facing implications. We will 

discuss these implications in the following section. 



Chapter 5: Conclusion 
	

	 135 

1. Outcome quality measurement 

Studies examining the quality of patient survival and mortality are needed in the 

field of alert-driven rescue, because an apparent outcome of lived vs. died may not 

necessarily reflect true outcome quality. Not every patient who survives sepsis returns 

to their baseline function (Iwashyna, Ely, Smith, & Langa, 2010) and not every patient 

who dies always experiences a “bad death” (Costello, 2006). Treatment concordance 

with the patient’s wishes and unfavorable sequela resulting from life support (e.g., 

disability) moderate the quality of survival and mortality (see Figure 1).  

For example, patient survival with long-term disability may be an unfavorable 

outcome if the patient’s treatment wishes were unclear or if the patient was terminally ill. 

Similarly, not every death is always a bad outcome, given treatment concordance with 

the patient’s wishes and presence of terminal illness. This lack of definitive 

measurement of outcome quality is problematic for two reasons: 1) the fundamental 

task of predictive early warning systems is to identify patients for rescue; and 2) value 

confirmation of alert driven rescue requires a reliable quantification of observed vs. 

expected outcomes. 

Clearly, a patient-centric approach to rescue would include consideration for the 

patient’s ultimate treatment wishes, although patients may not always define these 

wishes clearly or completely (Stephens et al., 2018). While patients may not forgo all 

therapy in the light of a worsening condition, alert-driven outcome measurement would 

be more complete if it included palliative care interventions and a marker for terminal 

disease, life expectancy, frailty and quality of life. 
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Figure 1. Patient Scenarios of Outcome Quality of Survival or Mortality Following an 

Advanced Early Warning System Alert and Clinical Rescue Interventions 
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2. Larger sample size 

This dissertation offered early results using a limited number of KPNC hospitals 

with a deployed advanced EWS. Once the EWS is fully implemented across the 

region’s 21 hospitals, future KPNC studies would benefit from this larger pool of 

hospitals. Additionally, by pooling data between institutions, collaborative studies could 

be performed that would increase the sample size and the number of the hospital 

clusters for hierarchical analysis. Such larger datasets would facilitate greater statistical 

power and may confirm subtle treatment effects of sepsis interventions on patient 

survival.  

3. Inclusion of additional diagnostic strata 

Rather than sepsis alone, it would be desirable to evaluate the impact of RRT 

interventions on patient survival in the general population of all alerted patients. By 

developing diagnostic strata (e.g., surgical, cardiac, respiratory, sepsis), such a study 

could facilitate a greater understanding of the areas of highest benefit and value of 

RRTs and predictive EWS in terms of patient safety.  

4. Hospital-level treatment effects and intra-system variation 

For quality measurement purposes, health systems would benefit from future 

health services research that examines the degree of outcome variation between 

hospitals. Such knowledge would be crucial as health systems are under the dual 

pressures of financial stewardship and quality improvement to maximize 

reimbursements and gain a market advantage. By adjusting for patient-level and 

hospital-level characteristics, such a study could identify “hospital fingerprints” and 

could motivate targeted performance improvement in outlier hospitals. 
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5. Value confirmation of Alert Driven Rescue 

The field of delivery science examines how research findings can be successfully 

implemented in a healthcare delivery system (Grant & Schmittdiel, 2015). Health 

systems engaging in this translational implementation of research are also called 

Learning Health Systems (Liu et al., 2016). This dynamic is consistent with the Petri 

Dish Model, which describes the dual mandates of organizational survival and 

safeguarding patient safety: Delivery science represents the information feedback loops 

that send value confirmation of locally deployed interventions upstream to the regional 

level. This function, ultimately, supports an organization’s efforts of achieving the 

quadruple aim of optimal patient experience, population health, cost-reduction, and 

workforce well-being (Sikka, Morath, & Leape, 2015). 

In this light, health economics studies investigating the costs, benefits, and return 

on investment (ROI) of advanced EWSs are needed. Findings from this dissertation 

could lead to additional econometric analyses. For example, to date, the financial value 

of predictive health analytics is not well-established, although notable use cases include 

the identification of readmission risk (tied to federal reimbursement penalties) and the 

identification of patients with patterns of high service utilization. Two main obstacles are  

large investments in, and maintenance of, electronic medical records and substantial 

up-front costs of computationally intensive analytic solutions. Health systems may have 

little motivation to invest in such analytic solutions unless they have a favorable ROI that 

goes beyond qualitative benefits or indirect costs saving. Future delivery science 

studies of the advanced EWS at KPNC could inform such an ROI, and thus more 

widespread adoption in other health systems.  
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Implications for Clinical Practice  

 To minimize treatment variation across clinicians, the ultimate goal of decision 

support tools is not only to alert, but also to advise. For RRTs, it would be desirable to 

derive specific algorithmic treatment recommendations following an alert (e.g., in 

patients with risk score of x, administer y ml of fluid within z minutes). Knowing that 

decedents did not receive any new antibiotics before the alert, the EWS could prompt 

an evaluation for new antibiotic coverage. This dissertation has produced early insights; 

what is needed now are confirmatory analyses that could lead to more prescriptive 

practice standards. Such work has the potential to advance the scientific evidence base 

of sepsis interventions and to standardize clinical practice and RRT workflows.   

Conclusion 

In closing, the use of advanced analytics using multivariate regression and 

machine learning to predict health outcomes has gained undeniable momentum. Many 

hospital-based “nurse-sensitive” outcomes (e.g., falls with injury, pressure injuries, 

catheter associated urinary tract infections, central line associated blood stream 

infection, patient satisfaction with nurse communication and pain management) are 

under the professional purview of nursing, in collaboration with the allied health 

professions of medicine, pharmacy and others. By lacking risk-adjustment and pattern 

detection, traditional methods of quality measurement and data analysis have limited 

ability to identify high-risk patients, or in health systems, to identify hospitals with outlier 

performance. Consequently, the sector needs clinical academicians who can traverse 

the domains of quantitative research, advanced computational methods, and health 

systems leadership. 

	  



Chapter 5: Conclusion 
	

	 140 

References 
 

Costello, J. (2006). Dying well: nurses’ experiences of ‘good and bad’deaths in hospital. 

Journal of Advanced Nursing, 54(5), 594-601.  

Grant, R. W., & Schmittdiel, J. A. (2015). Building a career as a delivery science 

researcher in a changing health care landscape: Springer. 

Iwashyna, T. J., Ely, E. W., Smith, D. M., & Langa, K. M. (2010). Long-term cognitive 

impairment and functional disability among survivors of severe sepsis. JAMA, 

304(16), 1787-1794.  

Liu, V., Morehouse, J. W., Baker, J. M., Greene, J. D., Kipnis, P., & Escobar, G. (2016). 

Data that drive: Closing the loop in the learning hospital system. J Hosp Med, 11 

Suppl 1, S11-s17. doi:10.1002/jhm.2651 

Sikka, R., Morath, J. M., & Leape, L. (2015). The Quadruple Aim: care, health, cost and 

meaning in work. BMJ Quality &amp; Safety. doi:10.1136/bmjqs-2015-004160 

Stephens, C. E., Hunt, L. J., Bui, N., Halifax, E., Ritchie, C. S., & Lee, S. J. (2018). 

Palliative care eligibility, symptom burden, and quality-of-life ratings in nursing 

home residents. JAMA Internal Medicine, 178(1), 141-142. 

doi:10.1001/jamainternmed.2017.6299 

 



	

  141 

Publishing Agreement 
 

It is the policy of the University to encourage the distribution of all theses, dissertations, 
and manuscripts. Copies of all UCSF theses, dissertations, and manuscripts will be 
routed to the library via the Graduate Division. The library will make all theses, 
dissertations, and manuscripts accessible to the public and will preserve these to the 
best of their abilities, in perpetuity.  

 

I hereby grant permission to the Graduate Division of the University of California, San 

Francisco to release copies of my thesis to the Campus Library to provide access and 

preservation, in whole or in part, in perpetuity.  

 

Author Signature_____________________________________ Date: 6/5/2018 

 

 

 




