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Evaluating hospital infection control measures for
antimicrobial-resistant pathogens using stochastic
transmission models: Application to vancomycin-
resistant enterococci in intensive care units

Yinghui Wei,' Theodore Kypraios,? Philip D O'Neill,?
Susan S Huang,® Sheryl L Rifas-Shiman* and Ben S Cooper®®

Abstract

Nosocomial pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-
resistant Enterococci (VRE) are the cause of significant morbidity and mortality among hospital patients.
It is important to be able to assess the efficacy of control measures using data on patient outcomes. In this
paper, we describe methods for analysing such data using patient-level stochastic models which seek to
describe the underlying unobserved process of transmission. The methods are applied to detailed
longitudinal patient-level data on vancomycin-resistant Enterococci from a study in a US hospital with
eight intensive care units (ICUs). The data comprise admission and discharge dates, dates and results
of screening tests, and dates during which precautionary measures were in place for each patient during
the study period. Results include estimates of the efficacy of the control measures, the proportion of
unobserved patients colonized with vancomycin-resistant Enterococci, and the proportion of patients
colonized on admission.
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1 Introduction

The emergence of antimicrobial-resistant pathogens such as methicillin-resistant Staphylococcus
aureus (MRSA) and vancomycin-resistant enterococci (VRE) during the past two decades is a
major clinical and epidemiological problem throughout the world. Understanding these
pathogens and assessing methods for their control continues to be an area of considerable
importance (see literature'™”). In this paper, we describe methods for analysing longitudinal
patient-level hospital data on nosocomial pathogens. The methods involve defining stochastic
models which describe how the pathogen spreads between individual patients. Specifically, we
build on the methods of Kypraios et al.* in which data on MRSA were analysed and extend this
approach to data on VRE. The focus of the earlier paper was towards clinical results, and in
particular, there was no detailed description of the statistical methods used. In contrast, here we
fully describe these methods and also develop methods for model comparison and model assessment
which were not in the earlier work.

The kind of data we consider typically consist of admission and discharge times for each patient
on a hospital ward, along with the times and results of screening tests for the pathogen in question.
There may also be other information, such as the times and types of infection control measures
administered, or treatments. Such dataare characterized by two aspects, namely that they arehighly
dependent (e.g. whether or not a patient is colonized with the pathogen in question depends on the
status of other patients) and that the process which generates the data, namely transmission, is
unobserved. Thisin turnimplies thatstandard statistical methodsforlongitudinal datasuchastime-
series methods or survival analysis methods are not usually natural in this setting. Instead, modelling
methods are more appropriate.

Various modelling approaches to analysing longitudinal epidemiological data on hospital
pathogens have been developed, typically applied to data on MRSA. These include fitting
deterministic models,” maximum-likelihood methods applied to Markov chain models,”® hidden
Markov models,” and non-parametric approaches for Markov process models.”’ All of these
methods involve simplifying assumptions of one kind or another which can be relaxed by using
individual-level stochastic models and a Bayesian framework. The latter approach, using Markov
chain Monte Carlo (MCMC) methods, is taken in literature*'' essentially by developing the ideas in
literature."”" This is the approach that we adopt in this paper. Since the underlying models
essentially describe the unobserved process of transmission between patients, the MCMC
methods involve augmenting the observed data with the transmission events themselves. The
appeal of this approach is that it is highly flexible, it usually avoids the need for simplifying
assumptions which are common in other methods, and can provide much richer inferential
information from the data than maximum likelihood methods.

In this paper, we analyse data on VRE, which are bacteria from the genus Enterococcus which
have acquired resistance to vancomycin. Enterococci also have intrinsic resistance to several classes
of antibiotics. They usually live harmlessly within the gastrointestinal tract or on the skin, but can
causeinfections, especially among those with weakened immune systems. In consequence, they can
produce disease in highly vulnerable hospital patients such as those in oncology wards or intensive
care units (ICUs). Changes in resistance patterns over time frequently mean that VRE strains are
resistant to most antimicrobial agents. VRE have been endemic in hospital settings in Europe and
the USA since the start of the 21st century and are a major problem in healthcare settings
throughout the world. In such environments, transmission of VRE between patients is believed to
occur indirectly, largely via healthcare workers and in particular by contamination of hands or
gloves."*"® Environmental contamination is also thought to be a possible transmission route.



For this reason, control strategies typically focus on activities such as hand-washing, barrier
precautions (glove and gown use), and environmental cleaning.

The paper is structured as follows. The data structure and transmission models are described in
sections 2 and 3, respectively. The MCMC methods are introduced in section 4 and applied to the
VRE data in section 5. We finish with some discussion in section 6.

2 Data structure

The individual patient data are taken from a 17-month longitudinal study in a hospital in Boston,
USA, involving over 8000 patients who were admitted to one of eight different ICUs during the
study period. The data consist of the dates on which each patient was admitted and discharged from
the ICU, the dates and results of any screening tests that took place, and any dates during which the
patient was placed under precautionary measures due to their being supposed to be colonized with
VRE. The precautionary measures consisted of glove and gown use by healthcare workers, and the
use of isolation rooms, and were the same for all patients concerned. Such data contain many
inherent dependencies: for instance, whether or not a patient becomes colonized could reasonably
be supposed to depend on the number of other currently colonized patients in the ICU. For this
reason, it is natural to analyse such data using a model-based approach which explicitly describes
how the pathogen can spread between patients over time.

Each patient may undergo a number (possibly zero for some patients) of screening tests, the
results of which are either positive (denoting colonization with the pathogen) ornegative. Note that
we take colonization to mean either asymptomatic carriage (i.e. the pathogen is present in the body
but has not caused clinical infection) or infection, and we do not distinguish between these two
states. Furthermore, for VRE the amount of pathogen shed by carriers or those infected is usually
similar, which further motivates this modelling assumption. Each patient may also be placed in
isolation during their stay in the ward, usually as a result of a positive test, or for other clinical
reasons. The exact meaning of isolation depends on the study in question, examples including
physical isolation in a single room, use of additional barrier precautions, etc. The models we
describe below assume that only one kind of isolation is adopted, although it would be
straightforward to relax this assumption.

3 Models

The data set of interest comprises eight different ICU wards. We analyse the data from each ICU
separately. This is motivated by the fact that the ICUs have different kinds of patients (e.g. medical/
surgical) and so there is no reason to suppose that parameters governing VRE transmission are
common across all wards. Furthermore, relatively few patients were admitted to more than one of
the ICUs.

In the following, we describe modelling approaches for data on patients in a single ICU. The
study period begins and ends at times Tsand Te, respectively. During the study period, the
admission and discharge times of all patients on the ward are recorded. Patients already present
in the ward at time Ts are deemed to have been admitted at Ts, and those in the ward at Tg are
deemed to have been discharged at Te. Patients might be re-admitted during the study period.

We consider three models for colonization, with the following common assumptions. First, at
each pointin time every patient in the ward is either susceptible or colonized and can be either in or
outofisolation. Second, the testresults are assumed tohave perfect specificity (so thata positive test



result can only arise if the patient really is colonized) and sensitivity px 100 % (so a colonized
patient has probability p of testing positive). The assumption of perfect specificity is natural in the
setting we consider, since screening tests are usually culture-based, and false positives canonly arise
via the rare event of contamination.'® However, this assumption can be easily relaxed within our
framework.

Third, if a patienthas a positive test, then they are assumed to remain colonized for the following
six months."”™ In particular, if a patient is re-admitted within six months of a positive test, then
they are said to be colonized on re-admission at the time of re-admission, and assumed to remain
colonized untilnext discharged. Conversely, if a patientis admitted to the ward withno positive test
result during the previous six months, which in many casesis simply because they have never been
previously admitted at all, then they are called a new admission at the time of admission. Each new
admission has a probability <P of being colonized on admission, independently of all other patients
and admissions. We refer to <P as the importation probability. New admissions are also formally
regarded in the model as being new patients, even if they have been previously admitted.
In particular, the term patient should be interpreted in this way in this section and the next.
Although the assumption that the same individual can be formally treated as two patients is
made largely for simplicity, it is often pragmatic in practice unless there are a large number of re-
admissions in the data.

The final component of the model is the mechanism for potential colonization of patients who are
not already colonized. We adopt the usual assumption from stochastic disease transmission
modelling that susceptible individuals are colonized according to a Poisson process whose rate
might depend on the numbers of existing colonized patients within the ward. In the context of
nosocomial pathogens, the transmission between patients is usually indirect, typically via
healthcare workers or the environment. We refer to patients who are colonized in this way as
colonized on the ward.

Specifically, each susceptible patient is, independently of other susceptibles, assumed to be
colonized at a time corresponding to the first point of a non-homogeneous Poisson process of
rate AdtP ::=0 at time t. We consider three possible models for Adtp. In order to investigate the
effectiveness of control measures, in each model we differentiate between isolated and non-
isolated patients.

3.1 Full model
This model is defined in Forrester et al.!* and assumes that
At ¥ 30 p 31 CotP p3,Qdth

where Q(t) and C(t) denote the number of colonized patients on the ward at time t who are in and
out of isolation, respectively. Here {3, represents a background rate of colonization which is
unaffected by the current prevalence on the ward, for instance arising due to medical staff who
service many wards and may act as vectors for the pathogen. Conversely, {3; and {3, represent rates
attributed to colonized patients. This way of modelling transmission is a natural generalization of
the usual mass-action assumption in standard epidemic models such as the SIR (susceptible-
infective-removed) epidemic model (see e.g. O’'Neill and Roberts'), which has itself been
extensively used to successfully describe pathogen transmission in many different settings.
Specifically, our approach assumes that each colonized individual with the same isolation status
(in or out) makes an equal and independent contribution to the overall colonization rate. This is a



very natural assumption with a clear epidemiological interpretation and also avoids the need to
specify more complex dependencies between individuals.

3.2 No-background transmission model

This model is a special case of the full model in which f3p is assumed to be close to zero with high
probability. In practice, this is achieved by assigning a suitable prior distribution to {3, as discussed
below. This model represents the hypothesis that transmission almost always occurs due to the
presence of colonized patients in the ward. As well as being of interest in its own right,
considering this model also allows us to assess the impact of assuming background transmission.

3.3 Non-linear model

Thismodel assumes thatitis only the presence of colonized patients, not theirnumber, which affects
the rate of new colonizations. In particular, it is not assumed that AdtP is linear in C(t) and Q(t), as in
the full model. Such a model is suitable if the amount of pathogen in the ward from one patient is so
great as to have a saturation effect. Specifically

AStP¥%1f30p f31X[ CEStDAOQ bf3 2Xpatpaog

where xa denotes the indicator function of the event A. In some sense this model provides an
extreme alternative to the mass-action type assumptions in the previous models, since now there
isnoincrease in colonization rate as the numbers of colonized individuals increase beyond one.

4 Inference methods
4.1 Notation and likelihoods

Let 8¥40p, <P, 30, {31, f32P denote the vector of model parameters. We denote all data (admission and
discharge times, times and outcomes of test results, times of patientisolation) by y, although as explained
above we only have a probability model for the colonization process and test sensitivity. Adopting a
Bayesian framework, our objective is to explore the posterior density nd8jypP. Now the likelihood ndyj8p
is intractable in practice, since its evaluation involves integrating over all possible unobserved
colonization times (cf. O'Neill and Roberts,” for the analagous situation for standard epidemic
models). Consequently, we augment the parameter space to include all colonization times, € say.

Under the assumption of perfect test specificity, ¢ includes the unobserved colonization time for
each patientwhoeverhasa positive testresult. Additionally, individuals who donothavea positive
testresult may still be colonized, their undetected status arising either because they never had a test
at all, or because any test was a false negative. The colonization times of such individuals are also
includedinc. Note also thatcis also assumed to describe which patients are colonized on admission
and whichare colonized onre-admission.

By Bayes’ Theorem,

ndg, cjyb /ndy, cj3Pnd8p

where nd8b denotes the prior density of 8. It remains to evaluate the augmented likelihood ndy, cj8p.
Letna denote the number of new admissions and nca denote the number of these who are colonized
on admission. Note that na is determined by the data y, but nca is determined by both y and c.



Define ntp and ney as the number of true-positive and false-negative test results. Under the
assumption of perfect specificity, ntp is determined by y. Conversely, since sensitivity need not be
perfect, ney is determined by y and c.

Define K as the set of patients who are colonized on the ward. For a typical patient in K, denoted
j say, define ncdjb and ngdjP as the numbers of patients who are respectively colonized and not
isolated, and colonized and isolated, at the time of j’s own colonization. Note that K, ncdjp and
nQd jb can all be determined from y and ¢, but none are known explicitly from justy.

The augmented likelihood for the full model takes the form

ndy, ¢ i§b/<P”°A61 —<BMN 5 p T 81— pbMen

X (f3o bncdjbf31pngdjbf3,
2K : o1p

Z 1,
xXexp - 0f30Satb p £3; CAtPSAtP b £3,Q3thPSAtP b dt
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where S(t) denotes the number of susceptible patients on the ward at time t. The likelihood can be
derived as follows. First, the terms involving <P account for the probability of nca patients being
colonized on admission and the remaining na — nca being not colonized on admission. Second, the
terms involving p give the probability of observing the true-positive and false-negative test results.
Note that since we keep track of each individual patient, for both the <P and p expressions we donot
require any combinatorial terms; for instance, we know exactly which patients are colonized on
admission, not just the number.

The remaining part of the likelihood arises from the colonization process. Recall that if a non-
homogeneousPoisson process withrate¢ dtPattimetisobserved duringatimeinterval%0,T],andm
points occur at times 0:st1 55 ... Sty s T, the likelihood is given by

! |
Yh Zt
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where ¢ 3ti-P denotes the rate justbefore time t;, see for example Daley and Vere-Jones,* Chapter 7.
The product term accounts for the points occurring and the exponential term accounts for the
absence of points at other times. In our setting, each susceptible patient is colonized according to
a Poisson process of rate AStP ¥ 3o p 31 Cotb p f32Q0tP at time t::= 0, and so the overall colonization
process (i.e. the process which counts colonization events but does not specify whichindividualsare
actually colonized) is a Poisson process of rate SOtPAGStP. Setting ¢ 8tb ¥4 SGtPAStP in (2) gives the
likelihood of this overall colonization process. However, we also know the identity of each
colonized patient, and since each susceptible patient is equally likely to be colonized at any given
time, the probability that a particular patient is colonized is 1=S6tP. Incorporating this probability
into the product term in (2) yields the product term in (1). Finally, the likelihood in (1) can also be
derived and expressed by purely thinking in terms of individual patients, which results in the integral
being expressed as a sum over patients, see Forrester et al."

Itis straightforward to modify (1) to obtain the corresponding likelihoods for the no-background
and non-linear models. Finally, we assign independent Beta prior distributions to p and <P, and
independentexponential prior distributions to the colonization rate parameters f3o, {3; and f3..



4.2 Markov Chain Monte Carlo algorithm

In order to explore ndg, ¢jyP, we use a Metropolis-Hastings MCMC algorithm which updates the
elements of 8 and the unknown colonization times ¢, as follows. First, it follows from (1) and our
choice of prior distributions that both p and <P have Beta-distributed full conditional distributions,
and hence can be updated according to Gibbs steps. Second, the colonization rate parameters {3, {31
and f3; can all be updated using a Gaussian random walk, where proposed negative values are
rejected immediately since the proposed likelihood is zero.

Third, updates for the colonization times ¢ are achieved via three possible steps, one of which is
chosen uniformly at random during each iteration of the MCMC algorithm. Recall that patients
who are colonized on re-admission are assumed to have a colonization time equal to their time of
admission. Since such re-admissions are determined directly by the data, the colonization times in
question are never updated in the MCMC algorithm.

Of the remaining patients, those with a positive test result are assumed to be definitely colonized,
and such patients therefore always have a colonization time. Denote the set of such patients P and
note that P is determined by the datay. All other remaining patients may or may not be colonized;
denote the set of those currently colonized by N 1 and those not by No. Thus, P, Ng and N1 have no
intersection and their union is the set of all patients other than those colonized on re-admission. Let
Nno, N1 and np denote the number of patients in No, N1 and P, respectively.

The three possible steps involved in updating the colonization times are as follows. We define a;,
djand ¢; as the admission, discharge and colonization times, respectively, of individual j.

1. Addinga colonization time: anindividualjis selected randomly from No. With probability <Po, ]
is proposed to be colonized on admission, so ¢;%aj; otherwise ¢j is sampled uniformly from
(aj, dj). Denoting & as the proposed new ¢ with ¢jadded, the move is accepted with probability

nodd; — a;Pndg, &jyP
01 —<PoPdn; p 1Pndsy, cjyp

N

if ¢j 2 da;, dj b, and
nondg, 6] yp
<Podn1 p1Pndg, cjyp

AN

if ¢;%sa;, where x*y denotes mindx, yp.
2. Deletinga colonization time: anindividual jis randomly selected from N1, and its colonization
time ¢jis removed from ¢ with probability

01 -<Pobnind8, ejyb
dno p 1P3d; — ajbndg, cjyb

N

if ¢j 2 daj, dj b, and

<Pomndg, ejyp
ong p 1Pndg, cjyp

if ¢;¥aj, where & denotes ¢ with ¢ removed.
3. Moving a colonization time: randomly select an individual j from N1 [ P. With probability <Py,
setthe proposed new colonization time as &;%4aj; otherwise, 6jis sampled uniformly from (aj, tj),



where t;%40;if j 2 N1 and t; is the time of J's first positive test if j 2 P. Thus the proposal density
of &jis
8
) < % ifej¥%aj
qdejjciP Yaqdeip ¥ T hcpy .

The new colonization time & is accepted with probability

108, 6iyPadcijeiP
nd8, cjyPqde;jcjp

where 6 denotes ¢ with ¢jreplaced by 6.

4.3 Model assessment

Althoughourmainfocusisnottoformally distinguish between competing models, itisnevertheless
of interest to perform a comparison. There is no canonical method to do this in our setting, and
different approaches have their own pros and cons. For simplicity, we used a form of deviance
information criterion (DIC*'). Since our setting involves missing data (namely, the unobserved
colonization times), we require a form of DIC which takes this into account and moreover which
can be readily calculated. We therefore used DICs from Celeux” defined by

DICs Y -4Eg cYslogndy, cj8P] p 2Eclogndy, cjé YPPiY, g yPl 33b

where ndy, cj8p is given by (1) and we set 8\0 yP to be the posterior mean of 8, as estimated
from our MCMC algorithm. In practice, DICs can be easily evaluated using MCMC output as
described in Celeux.? Although we used DIC¢ for convenience, it has been explored in a similar
context to ours by Worby” who found that it can be effective provided there are sufficient data
available.

Wealso consider two forms of model assessment, i.e. methods for exploring how well eachmodel
fitted the observed data. The first of these is a posterior predictive p-value* to assess the model fit to
data, specifically with the total number of detected colonizations as the discrepancy statistic to
measure the difference between the observed and simulated data. To implement this method, the
model parameters in question are first repeatedly sampled from their posterior distribution, i.e. from
the MCMC output. In practice we take every 100th sample from the chain. For each sampled set of
parameter values, the modelis then simulated forward in time to produce a possible realization. We
then calculate a p-value as the proportion of simulations in which the total number of detected
colonizations is greater or equal to that in the observed data. A p-value close to 0.5 indicates a good
fit to the data. In contrast, an extreme p-value (p>0.95 or p<0.05) indicates that the fitted model is
not appropriate for the data.

The second method of model assessment is to consider the predictive distribution of the number
of detected colonizations through time. Thisisimplemented by again sampling parameters from the
posterior distribution and simulating the model forward in time for each set of parameter values to
produce a large number of realizations of the whole process. We then graphically compare the
observed data with the mean and quantiles of the set of simulated realizations.



5 Application to data

5.1 Data

The data we consider were collected from eight 10-bed ICUs in a tertiary academic medical centerin
Boston, Massachusetts over a 17-month period. The ICUs comprised two medical wards (which we
denote M1, M2), two general surgical wards (GS1, GS2), and four specialty surgery wards
(551-S54). Routine rectal admission and weekly screening was carried out using swab tests, with
compliance around 90%. In addition, there was a protocol in which patients who were identified as
being VRE-positive were placed under contact precautions which consisted of gown and glove use
by healthcare workers, and use of single rooms.

Figure 1showsthenumber of firstdetected colonizations and total current detected colonizations
for one of the wards (medical ward M1) on a weekly basis during the observation interval.
Descriptive statistics of the individuals in ICUs are shown in Table 1. The relatively high values
for the standard deviation of length of stay reflect the fact that ICU patients typically have either
quite short or quite long stays. The median length of stay was around 3-6 days. On most wards,
patients have just over one swab test on average, and thus there are many patients in the data set
with only one (usually admission) swab test. Finally, around 5-10% of all patients in the study were
re-admitted during the study period.

5.2 Algorithm implementation

Before considering the data at hand, we first simulated data sets from each of the true models and
then used our MCMC algorithm to estimate the model parameters. The results indicated that our
methods could recover the true parameter values reasonably well. The MCMC algorithm was then
implemented separately for the eight wards for each of the three models under consideration, and
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Figure 1. Ward MI. Number of first detected colonizations, current total detected colonizations, and number of
patients on a weekly basis during the observation period. We also show the relationship between the number of first
colonizations and number of current colonizations.



Table 1. Summary statistics for VRE data.

Percent in Number of swab Number of VRE
Number of Length of stay contact tests per person pp swab tests per
Ward patients Mean (SD) precautions Mean (SD) person Mean (SD)
Ml 1293 3.4(4.7) 1.4 1.2(0.8) 0.2(0.8)
M2 1018 4.4(6.4) 19.1 1.4(1.1) 0.7(1.6)
GSlI 1227 3.4(5.2) 12.4 1.1(0.9) 0.3(0.9)
GS2 1030 4.0(8.3) 10.7 1.0(1.3) 0.1(0.7)
SSi 706 5.8(11.4) 12.5 1.4(1.6) 0.7(2.2)
$S2 888 4.9(9.7) 7.5 1.3(1.4) 0.3(1.8)
SS3 1097 3.8(6.4) 6.0 1.3(0.9) 0.1(0.6)
SS4 1263 3.6(5.2) 5.1 1.1(1.0) 0.1(0.5)

the DIC values computed. The model parameters were assigned uninformative independent prior
distributions. Specifically, <P,p " U380, 1P and f3o, f31,f32 ™ Expd10°P where ExpdAP denotes an
exponential distribution with mean A, with the exception that 3y ™ Expd10°% in the no-
background model. The algorithm was implemented by using Microsoft Visual Cpp 2010
Express software with double precision and the GSL Scientific Library. The Cpp code is
available upon request from the first author.

5.3 Results

5.3.1  Parameter estimates

Posterior medians of the model parameters are shown in Table 2. Estimates of both the importation
probability <Pand the test sensitivity pappearrobustto the choice of model, and both parametersare
estimated with reasonable precision. The importation probability is generally in the range 5-15%
other than medical ward M2 where it exceeds 20%. The test sensitivity is around 70% or higher,
with the striking exception of general surgery ward GS2, whereitis around 50%. These values for <P
and p are both reasonable in clinical terms.

The transmission rate parameter estimates exhibit clear variation between the models, whichis to
be expected due to the differences of the model assumptions themselves. The posterior standard
deviations are typically of the same order as the posterior median values, illustrating that there is
reasonable uncertainty in the posterior estimation of {3, {31 and 3,. This uncertainty is essentially
a consequence of the prevalence of VRE (discussed below): the majority of patients never have a
positive test which makes it harder to estimate transmission rate parameters accurately.

The background rate 3 is (in the full and non-linear models) invariably estimated to be higher
than f3; and f3,, often around twice as much or more. This can be interpreted as saying that the
background colonization rate is roughly equivalent to that due to two or three colonized patients on
the ward. Regarding estimation of such rates, note that any colonization event which occurs whilst
the ward contains no colonized patients must be attributable to the background rate, whereas
colonization events that occur with (as is typical) one or two colonized patients in the ward could
be due to background or transmission events. Thus, it is possible that, if we explicitly modelled the
‘source’ of each colonization event, more colonizations than not would be background colonization
events.



Table 2. Posterior median and standard deviation of all model parameters.

Ward <P p 30 31 32
Full model
MI 0.12 (0.02) 0.78 (0.03) 0.0084 (0.004) 0.0023 (0.002) 0.0025 (0.003)
M2 0.23 (0.02) 0.81 (0.02) 0.0093 (0.006) 0.0028 (0.002) 0.0029 (0.002)
GSI 0.12 (0.01) 0.78 (0.03) 0.0075 (0.005) 0.0057 (0.004) 0.0034 (0.003)
GS2 0.05 (0.01) 0.49 (0.05) 0.0082 (0.005) 0.0034 (0.003) 0.0037 (0.003)
SSI 0.13 (0.02) 0.84 (0.02) 0.0038 (0.004) 0.0014 (0.002) 0.0050 (0.003)
SS2 0.05 (0.02) 0.71 (0.05) 0.0088 (0.006) 0.0065 (0.004) 0.0059 (0.004)
SS3 0.10 (0.02) 0.66 (0.05) 0.0067 (0.004) 0.0029 (0.003) 0.0048 (0.004)
SS4 0.04 (0.01) 0.68 (0.06) 0.0042 (0.002) 0.0023 (0.003) 0.0069 (0.006)
No-background model
Ml 0.13 (0.01) 0.77 (0.03) 10482 x 10p 0.0066 (0.003) 0.0054 (0.003)
M2 0.23 (0.02) 0.81 (0.02) 104381 x 104p 0.0050 (0.003) 0.0056 (0.003)
GSI 0.13 (0.02) 0.77 (0.03) 10431 X 10*p 0.0099 (0.003) 0.0052 (0.003)
GS2 0.05 (0.01) 0.49 (0.05) 10481 x 10*p 0.0071 (0.004) 0.0079 (0.003)
SSI 0.13 (0.02) 0.84 (0.02) 104381 x 104p 0.0015 (0.002) 0.0069 (0.002)
SS2 0.05 (0.02) 0.71 (0.04) 10481 X 10*p 0.0087 (0.004) 0.0104 (0.005)
SS3 0.11 (0.02) 0.65 (0.05) 10481 x 10*p 0.0072 (0.003) 0.0060 (0.004)
SS4 0.05 (0.01) 0.65 (0.06) 10482 x 10 0.0073 (0.004) 0.0074 (0.006)
Non-linear model

Ml 0.12 (0.02) 0.77 (0.03) 0.0081 (0.004) 0.0040 (0.004) 0.0040 (0.004)
M2 0.23 (0.02) 0.81 (0.02) 0.0092 (0.006) 0.0050 (0.005) 0.0071 (0.006)
GSI 0.12 (0.01) 0.78 (0.03) 0.0113 (0.005) 0.0047 (0.005) 0.0048 (0.005)
GS2 0.05 (0.01) 0.49 (0.05) 0.0085 (0.005) 0.0061 (0.006) 0.0039 (0.004)
SSI 0.14 (0.02) 0.84 (0.02) 0.0048 (0.004) 0.0032 (0.004) 0.0069 (0.005)
SS2 0.05 (0.01) 0.71 (0.04) 0.0117 (0.007) 0.0081 (0.007) 0.0052 (0.006)
SS3 0.11 (0.02) 0.66 (0.05) 0.0071 (0.004) 0.0039 (0.004) 0.0057 (0.005)
SS4 0.04 (0.01) 0.68 (0.06) 0.0041 (0.002) 0.0028 (0.004) 0.0035 (0.004)

5.3.2  Unobserved carriage
Unobserved carriage arises in two ways, namely false-negative test results, or colonization which
occurs before any test is carried out. Thus unobserved carriage is a function of both the test
sensitivity and the frequency of testing. Our transmission models explicitly include all unobserved
colonization events, and soin particularitis possible forindividuals to be colonized but undetected.
The inference methods enable us to estimate the extent of this unobserved colonization directly.
Table 3 shows the observed mean monthly prevalence of VRE, calculated directly from the positive
test results in the data, and the median posterior prevalence as predicted by the full model (other
models gave similar results). It appears that the observed prevalence accounts for just over half of
the predicted prevalence.

Itis possible to derive more complex quantities which describe the extent of unobserved carriage.
In particular, we define Phiggen as the proportion of all colonized-patient-days which are unobserved
in the sense that a patient is colonized but not under precautions, and Puait as the proportion of all
colonized-patient-days during which a patient is pending knowledge of a positive test result and has
yet to be placed under precautions. Denote pj as the precaution time of individual j, with pj % 1 for



Table 3. Observed and predicted monthly VRE prevalence.

Ward Observed mean (SD) Predicted median (SD)
MI 14.8 % (2.9%) 23.3% (3.7 %)
M2 28.6 % (5.2%) 41.3% (5.0 %)
GSlI 18.2 % (2.8%) 22.8% (4.1 %)
GS2 9.9 % (2.9%) 15.6% (4.0 %)
SSl 18.9 % (7.6%) 26.4% (8.6 %)
S§S2 11.4 % (6.5%) 16.9% (5.5 %)
SS3 9.0 % (3.1%) 16.7% (2.8 %)
SS4 4.5 % (3.0%) 6.9% (4.7 %)

anindividual never placed under precautions, recall thatt;is the time of j's first positive test and set

tj %2 1 if j never has a positive test. It follows that P
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where ™ and __ denote min and max, respectively. To see that Pyait cannot exceed 1, note that any j
in the numerator sum has tj 5 1, and under the assumption of perfect specificity a; :s ¢j :s tj, and
thus j also appears in the denominator sum.

Figure 2 gives posterior median values of Phiggen and Pyait for all three models. The values appear
tobe robust across the models themselves. The apparently high values of Phiagen are not surprising in
view of the predicted prevalence values; in particular, each individual who is colonized but never
placed under precautions contributes the entire duration of their colonization to the numerator of
Phidden. Conversely, the low Pyait values indicate that patients who were detected were placed under
precautions swiftly.

5.3.3 Efficacy of precaution measures

The efficacy of the precaution measures in reducing transmission may be evaluated by comparing the
rate of f3; and 3, with f3; greater than 3, indicating a positive benefit. We specifically consider the
posterior probability PAf31 4 £32j yP and the posterior median value of f31=f3», as given in Figure 3. From
these values, thereisno compelling evidence to support the effectiveness of the precaution measures. The
probability P31 4 {3,j yb varies widely between wards, only once exceeding 0.8 (ward GS1) and with
most values in the range 0.45-0.65. One exception is the specialty surgery ward SS1 which has values of
0.16 and 0.08, providing some evidence to suggest that precaution measures had a negative impact under
the assumptions of the models in question (full model and no-background model).

The logdf31=f32P values give very similar conclusions, and in particular posterior point values
obtained by pooling estimates across all wards (using the inverse variance method as described in
Sutton et al.” (section 5.2) are all close to unity for each model. However, the posterior credible
intervals for logdf31=f32P indicate a high degree of posterior uncertainty for this quantity, which is
most likely inherited from the high posterior variances for f3; and 3>.

5.3.4  Model assessment

The posterior predictive p-values are given in Figure 4. There is no strong evidence to suggest that
the fitted models are inappropriate for the data, with one exception of ward SS3. Based on the
p-values, there is no clear indication that any model is preferred over the others.



04
5

03
1

Pwait
—a—
——
Phidden
55
=
——
]
e
=
—a—
——
——

. i i

~ L
S 2
IVi‘I l\/’l2 G’S1 G’SZ 5'51 S\"SZ S’SB S’S4 l\/'l1 l\/12 G!’S‘I G’SZ S\"S‘I S’SZ S’SB S’S4
Ward Ward
A Full model o No=—background model m Non=linear model

Figure 2. Posterior median and 95% credible intervals of the percentage of colonized-patient-days attributed to
undetected colonized patients (Phidden), and the percentage of colonized-patient-days attributed to colonized patients
who had been swabbed but were waiting for results (Pyai).

Figures5to 7 show the comparison between simulated and the observed epidemic data based on
the number of detected colonizations at 14-day intervals. The figures indicate that the number of
detected colonizations are reasonably well approximated by the simulated realizations, although the
models can fail to capture the occasional more extreme fluctuations in the data. Overall, there isno
clear indication that one model is to be preferred.

5.3.5 Model comparison

DIC values are given in Table 4. It is notable that the no-background model is preferred in the
medical and general wards, although in some cases the full model DIC values are very similar. This
suggests that the risk of new colonization events increases with the number of existing colonized
patients. In contrast, for all of the specialty surgery wards the non-linear model is favoured. This
suggests thatitis the presence of colonized patients, rather than the number, thatis the driving force
behind new colonizations in these wards.

5.3.6 Sensitivity analysis
In our primary analysis, we have used Expd10-b (mean 10°, variance 10'%) as the prior distribution
for each of f3¢, 31 and f3,. In particular, this means that the prior density for these parameters is
relatively flat in the region of interest, and so we expect the prior to have little impact on the
posterior distributions. To explore this assumption, we conducted a sensitivity analysis by first
using Expd10°p prior distributions and then Expd10%p prior distributions. In both cases, the
posterior estimates of model parameters were found to be very similar to those in the original
analysis.

We have assumed that patients remained colonization for six months after they became
colonized. We assessed the impact of this assumption on the posterior distribution by assuming



Ward Modal Prob(B > Baly) Log Risk Ratic (95% CI)
M1 1 048 -0.075 (-3.434, 3,108 ) o
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SS4 1 0.22 -1.002 (-4,787, 2.078) 5
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Figure 3. Assessment of precaution measures efficacy via P3f3; 4 3, yP and posterior median of logdf3,=f3;) with the
95% credible intervals. Each diamond box represents the overall precaution measures efficacy estimate from the
meta-analysis and its 95% confidence interval. Model indicators: | — Full model; 2 — No-background model; 3 — Non-
linear model.

that patients remained colonized for three months. Again, the results obtained were very similar to
those in the original analysis.

6 Discussion

We finish by discussing the results of the analysis of the VRE data set, and giving general comments
on our methods.
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Figure 4. Bayesian predictive posterior p-values based on number of detected colonizations. The horizontal lines
represent p ¥4 0:025,0:5,0:975 from the bottom to the top.

6.1 VRE study

Our results show that almost half of VRE prevalence was unobserved. This was true despite high
compliance admission rectal swabs for these ICU patients, suggesting that a single swab is
insufficient for adequate sensitivity, as has been previously suggested.” In addition, despite the
fact that weekly rectal screening for VRE was the standard of care in these ICUs, the short
average length-of-stay meant that most patients only received one swab. Relatively high
prevalence values are not unknown; for instance® reports that about 70% of swabs were found
tobe positive during a study in a UK haematology ward, while the prevalence estimated by Austin
etal.” also reaches 70%. Furthermore, neither of these studies took into account imperfect swab test
sensitivity aswehave done.

For the full and non-linear models we found that the background rate of colonization (f3o) was
typically two to three times higher of that the colonization rates attributed to colonized patients
(f31,f32), meaning that the background rate was roughly equivalent to that due to two or three
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colonized patients on the ward. Background contaminationis believed to be a possible route of VRE
and these findings give no evidence to the contrary. However, some care is
needed in interpreting f3p within our models, since it effectively models any colonization potential
which is not associated with colonized patients in the ward, and in particular is not restricted to
environmental contamination alone. We also found some pattern in the DIC values in table 4,
suggesting different kinds of transmission in the specialty surgery wards compared to the other

transmission

wards.

15,28,29
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Figure 6. No-background model. Number of detected colonizations at 14-day intervals. Solid lines — number of
detected colonizations in data; dashed lines — mean number of detected colonizations based on 2000 simulations from
the predictive distribution; shaded area — 2.5% and 97.5 % percentiles from the predictive distribution.

We found no evidence to suggest that the use of barrier precautions was effective in reducing
colonization. Broadly speaking, the colonization rates attributable to patients placed under
precautions were not significantly different to the colonization rates attributable to patients
who were not under precautions. One plausible explanation is that the barrier precautions
really were not discernably more effective than standard procedures, especially given that at
any one time there might only be one or two colonized patients on the ward, making any
true difference hard to detect.
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Figure 7. Non-linear model. Number of detected colonizations at 14-day intervals. Solid lines — number of detected
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6.2 Methods

We have described model-based methods for analysing patient-level data on nosocomial pathogens.
The methods work atan individual level by explicitly keeping track of the status of each patientand
assuming a mechanism by which patients may become colonized with the pathogen in question.
One appealing aspect of this kind of modelling is that it is often straightforward to adapt it to



Table 4. DIC values.

Full model No-background Non-linear
M 1696.88 1688.15 1716.30
M2 1990.56 1927.34 2104.64
GSI 1817.78 1815.50 1831.92
GS2 1260.86 1196.64 1343.36
SSI 948.46 955.94 939.00
SS2 1186.40 1193.44 11711
SS3 1498.58 1499.42 1460.34
SS4 417.64 567.82 356.66

Note: Bold values indicate the preferred model.

include additional model features, as motivated by both the available data and the scientific
questionsofinterest.

Our methods involved data augmentation, essentially providing estimates of quantities that
are not directly observed. Although this was primarily motivated by the fact that such missing
data enable us to calculate a likelihood, the fact that the missing data (namely, colonization
times) correspond to real-life events mean that they can be exploited to provide further
information. In our application we used them to estimate quantities that describe the impact
of unobserved carriage.

We have considered three possible models for the colonization process, based on widely used
natural assumptions for how the numbers of susceptible and colonized individuals affect the rate
of new colonizations. Our purpose in doing so was to both explore the impact of particular
assumptions regarding colonization, and to see how robust our general scientific conclusions
were (e.g. regarding the efficacy of control measures) to the particular choice of model.
However, it is clearly pgssible to develop other models. One example is to model colonization
rates in the form f3iCotP , i%1, 2, with 0:58;:s1 parameters to estimate (see e.g. O'Neill and
Wen™]), so that 8 %1 gives the full model assumption and 8 %0 gives the non-linear model
assumption. However, estimating &; accurately would require a substantial amount of data,
particularly if there are typically only a few colonized patients on the ward at any one time.
Another option is to use something closer to non-parametric modelling, in which the
colonization rate due to k colonized patients was f3k, either with or without constraints (e.g.
requiring that f3x increases with k).

Our approach considers each ward separately, motivated by the fact that there is no a priori
reason to assume common transmission parameters across wards. A natural way to relax this
assumption would be to use a hierarchical model in which within-ward parameters are themselves
sampled from some hyper-distribution, and all the data from all wards are analysed simultaneously,
although in practice the amount of data augmentation is likely to make the MCMC algorithm
infeasible. Alternatively, if data on staff movements between wards were available, it would then
be possible to model between-ward interactions in a more explicit manner.
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