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Abstract

Interpretable and efficient statistical approaches for biomedical data

by

Xiao Li

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Bin Yu, Co-chair

Assistant Professor William Fithian, Co-chair

Statistics and machine learning have achieved remarkable successes in solving data problems in-
cluding driving new biomedical discoveries. In particular, prediction and hypothesis testing are
two important applications of statistics and machine learning to biomedical data. In this disser-
tation, we will investigate how appropriate interpretations of prediction algorithms, and scrutiny
of efficiency of hypothesis testing techniques can help us extend the capability of statistical and
machine learning approaches in biomedical science.

Chapter 1 of this dissertation provides an overview of the topics covered, as well as the back-
ground information for the rest of the dissertation. Chapters 2 and 3 introduce the applications
of an interpretable machine learning prediction pipeline for two biomedical problems: drug re-
sponse prediction, and molecular partner prediction in clathrin-mediated endocytosis. In the drug
response prediction task, our predictive and stability-driven pipeline achieves the state-of-the-art
performance in identifying stable, predictive -omics features for drug response. In the molecular
partner prediction task, we developed a interpretable deep learning model that achieves state-of-
the-art accuracy in predicting whether a clathrin-coated pit is abortive or valid.

Chapter 4 focuses on the interpretation of a specific algorithm: random forest. Random forest
has witnessed numerous applications in biomedical sciences, and its interpretation has become an
important topic of research. We derived the first finite sample bound on the bias of Mean Decrease
Impurity, one of the most widely used measure of feature importance. To reduce this bias, we
proposed a new feature importance measure, called MDI-oob. MDI-oob achieves state-of-the-art
performance in feature selection from random forest in biology inspired simulations.

Chapters 5 and 6 aim to provide a more comprehensive understanding of some of the most pop-
ular high dimensional tests for biomedical data. Of particular interest is the comparison between
special-purpose tests with the Bonferroni correction (or the closely associated max test in global
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testing), a simple and transparent test whose Type-I error (false positive) is robust to arbitrary
dependence between p-values of univariate null hypotheses. In the context of global testing, we
showed that the max test is optimal for detecting sparse signals, provided that the distribution of the
signals has Gaussian or heavier tails. We also derived the first general negative results for knockoff
methods. We give realistic conditions on the covariance matrix of the design matrix under which
the true positive rate of the best achievable knockoff method must converge to zero, even when the
true positive rate of Bonferroni correction converges to 1.
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Chapter 1

Overview

Statistics and machine learning have been powerful tools to drive breakthroughs in biomedical
sciences. While the scope of their applications to biomedical sciences has been greatly extended
in recent years, a significant proportion of these applications can be classified into the following
two categories:

1. Prediction of a biologically meaningful target, such as the prediction of 3D protein structure
[110] based on sequences of amino acids, and the prediction of individual response to anti-
cancer drugs [11] based on the patient’s genomic profile

2. Statistical hypothesis testing, often of many hypothesis, whose applications include genome-
wide association studies (GWAS), PheWAS [33], burden tests [72], and so on.

Although voluminous literature has been published in each category, we want to emphasize
some desiderata in these applications that we believe deserve further attention. First, we want to
stress the importance of building interpretation pipelines of predictive models in biomedical appli-
cations. Interpretation of a machine learning model is the extraction of relevant knowledge from
the model [91]. These knowledge can offer new insights to the domain problem, and provide guid-
ance for follow-up lab experiments. For example, interpreting a drug response prediction model
can help identify predictive disease biomarkers, which could potentially be used as therapeutic
targets of precision medicine. Appropriate interpretation can thus utilize machine learning models
to a greater extent, and build trust with domain experts.

Turning to the hypothesis testing front, we note that although an increasing number of testing
approaches for large biomedical data become available, the two types of error (false positive and
false negative) of these approaches are usually only investigated under stylized statistical models.
In practice, the assumptions underlying these models are usually not, and sometimes could not be
checked. As such, it is a crucial task to examine the performance of these approaches when the
true model deviates from these idealized models, and identify scenarios where these approaches
may fail.

These desiderata serve as an important guideline for the work in this dissertation. Our results
will be presented under three thrusts. The first thrust consists of Chapters 2 and 3. In this thrust, we
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showcase two examples of interpretable machine learning pipelines for problems arising in drug
response prediction and molecular partner prediction, respectively. The data used for drug response
prediction is provided by Dr. Jean-Pierre A. Kocher and Xuewei Wang from the Mayo clinic,
and the data for molecular partner prediction is provided by Professor Srigokul Upadhyayula and
his colleagues at the Advanced Bioimaging Center, UC Berkeley. We interact closely with these
domain experts when working on the provided data. The second thrust comprises Chapter 4. In
the second thrust, we study the interpretation of Random Forest, a machine learning method that
has wide ranging application in biomedical problems such as GWAS [34] and recovering gene
regulatory networks [58]. We quantify the “bias” of Mean Decrease Impurity, one of the most
popular way to interpret a random forest, in terms of the hyperparameters of the random forest,
and suggest a way to reduce this bias. The final thrust consists of Chapters 5 and 6. In this thrust,
we investigate the performance of some popular high dimensional testing techniques, and identify
realistic scenarios where special-purpose tests such as the high criticism tests and the knockoff
filter must have trivial power, even when the power of the Bonferroni correction approaches 1.

The remainder of this introductary chapter provides a more detailed overview on the back-
ground of these thrusts and the contributions of this thesis.

1.1 Thrust I: Interpretable prediction pipelines for biomedical
data

Interpretable, stability-driven drug response production
Modern cancer -omics and pharmacological data hold great promise in precision cancer medicine
for developing individualized patient treatments. However, high heterogeneity and noise in such
data pose challenges for predicting the response of cancer cell lines to therapeutic drugs accurately.
As a result, arbitrary human judgment calls are rampant throughout a predictive modeling pipeline.

We developed a transparent stability-driven pipeline for drug response interpretable predic-
tions, or staDRIP, which builds upon the PCS framework for veridical data science [135] and
mitigates the impact of human judgment calls. Here we use the Predictability, Computability and
Stability (PCS) framework for the first time in cancer research to extract proteins and genes that
are important for predicting the drug responses and are stable across appropriate data and model
perturbations. StaDRIP consists of three steps. In the first step, we fit many models , including
those that are state-of-the-art in the literature, to predict drug sensitivity, and filter out models with
poor prediction accuracy. Then, for each model with high prediction accuracy, we perturb the data
by generating different bootstrap samples, and evaluate the stability of different predictors under
this data perturbation. Finally, we extract proteins and genes that are the most stable and important
across all models with high prediction accuracy.

We tested our staDRIP pipeline using data from the Cancer Cell Line Encyclopedia (CCLE).
Out of the 24 most stable proteins we identified, 18 have been associated with the drug response
or identified as a known or possible drug target in previous literature, demonstrating the utility of
our PCS-driven pipeline for knowledge discovery in cancer drug response prediction modeling.
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Interpretable deep learning for accurate molecular partner prediction in
clathrin-mediated endocytosis
Understanding clathrin-mediated endocytosis (CME) is a crucial question in cell biology. One
major challenge with analyzing CME is the ability to distinguish whether a clathrin-coated pit is
abortive or valid. In this thesis, we address this challenge in two steps. First, we use a secondary
marker, auxilin 1, to identify valid events. Second, we build a predictive pipeline using a Long
Short Term Memory (LSTM) neural network to predict whether a CME event is abortive or valid.
On tracks with lifetime greater than 15 seconds, our LSTM network achieves 84.1% prediction
accuracy, which is a 5% improvement upon previous state-of-the-art method. Furthermore, we also
proposed an interpretation pipeline that identifies the segments of the tracks that are informative of
the network’s prediction. We found that gradual accumulation of clathrin towards the peak clathrin
signal, and quick fall after the peak both contribute to the prediction of an valid event. Our pipeline
potentially obviates the need for the secondary marker (thus simplifying the experimental setup)
and/or for manual annotation of events. More generally, the same framework can be used to predict
the presence/absence of other molecular partners. All code and models are made openly available
on github.1

1.2 Thrust II: Understanding the bias of MDI feature
importance of random forest

Tree ensembles such as Random Forests (RF) [19] have achieved impressive empirical success
across a wide variety of applications. To understand how RF models make predictions, people
routinely turn to feature importance measures calculated from tree ensembles. One of the most
widely used measures of feature importance is the Mean Decrease Impurity (MDI). MDI computes
the total reduction in loss or impurity contributed by all splits for a given feature. This method is
computationally efficient and has been widely used in a variety of applications [107, 58]. However,
theoretical analysis of MDI, especially finite sample analysis, has remained sparse in the literature
[64]. It has long been known that MDI tends to incorrectly assigns high importance to noisy
features, leading to systematic bias in feature selection. In Chapter 4, we address the feature
selection bias of MDI from both theoretical and methodological perspectives. Based on the original
definition of MDI by Breiman et al. [20] for a single tree, we derive a tight non-asymptotic bound
on the expected bias of MDI importance of noisy features, showing that the bias of MDI importance
is inversely proportional to the minimum leaf node size of random forest. As such, deep trees have
higher (expected) feature selection bias than shallow ones. However, it is not clear how to reduce
the bias of MDI using its existing analytical expression. We derive a new analytical expression
for MDI, and based on this new expression, we are able to propose a new MDI feature importance
measure using out-of-bag samples, called MDI-oob. For both the simulated data and a genomic

1All code for reproducing, using, and adapting the pipeline here is made available at github.com/Yu-Group/auxilin-
prediction, along with data and pre-trained models.

https://github.com/Yu-Group/auxilin-prediction
https://github.com/Yu-Group/auxilin-prediction
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ChIP dataset, MDI-oob achieves state-of-the-art performance in feature selection from Random
Forests for both deep and shallow trees.

1.3 Thrust III: Towards a better understanding of popular
high-dimensional testing techniques

Optimality of the max test for detecting sparse signals with Gaussian or
heavier tail
A fundamental problem in high-dimensional testing is that of global null testing: testing whether
the null holds simultaneously in all of n hypotheses. The max test, which uses the smallest of
the n marginal p-values as its test statistic, enjoys widespread popularity for its simplicity and
robustness. However, its theoretical performance relative to other tests, such as the higher criticism
and Berk-Jones tests Donoho and Jin [35], has been called into question. In a nutshell, the higher
criticism and Berk-Jones tests compare the largest deviation between the empirical distribution of
marginal p-values and the theoretical distribution. In the Gaussian sequence version of the global
testing problem, Donoho and Jin [35] discovered a so-called “weak, sparse” asymptotic regime in
which the higher criticism and Berk-Jones tests achieve a better detection boundary than the max
test when all of the nonzero signal strengths are identical.

We study a more general model in which the non-null means are drawn from a generic distribu-
tion, and show that the detection boundary for the max test is optimal in the “weak, sparse” regime,
provided that the distribution’s tail is no lighter than Gaussian. Further, we show theoretically and
in simulation that the modified higher criticism of Donoho and Jin [35] can have very low power
when the distribution of non-null means has a polynomial tail.

Demystifying fixed-X knockoff
Knockoff filter is a framework [9] originally proposed as a variable selection procedure control-
ling the FDR in the statistical linear model. A core strength of knockoff methods is their virtually
limitless customizability, allowing an analyst to exploit machine learning algorithms and domain
knowledge without threatening the method’s robust finite-sample false discovery rate control guar-
antee. While several previous works have investigated regimes where specific implementations of
knockoffs are provably powerful, negative results are more difficult to obtain for such a flexible
method. In this work we recast the fixed-X knockoff filter for the Gaussian linear model as a con-
ditional post-selection inference method that adds user-generated Gaussian noise to the ordinary
least squares estimator β̂ to obtain a “whitened” estimator β̃ with uncorrelated entries, and per-
forms inference using sgn(β̃j) as the test statistic for Hj : βj = 0. We prove equivalence between
our whitening formulation and the more standard formulation based on negative control predictor
variables, showing how the fixed-X knockoffs framework can be used for multiple testing on any
problem with (asymptotically) multivariate Gaussian parameter estimates. Relying on this per-
spective, we obtain the first negative results that universally upper-bound the power of all fixed-X
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knockoff methods, without regard to choices made by the analyst. Our results show roughly that,
if the leading eigenvalues of Var(β̂) are large with dense leading eigenvectors, then there is no way
to whiten β̂ without irreparably erasing nearly all of the signal, rendering sgn(β̃j) too uninforma-
tive for accurate inference. We give reasonable and easy-to-check conditions under which the true
positive rate (TPR) for any fixed-X knockoff method must converge to zero even while the TPR
of Bonferroni-corrected multiple testing tends to one, and we explore several examples illustrating
this phenomenon.
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Chapter 2

A stability-driven protocol for drug
response interpretable prediction (staDRIP)

2.1 Introduction
A critical goal in precision medicine oncology revolves around predicting a patient’s response to
therapeutic drugs given the patient’s unique molecular profile [104, 67]. Accurate personalized
drug response predictions can immediately shed light on therapies that are likely to be ineffective
or toxic and aid clinicians in deciding the most promising treatment for their patients [6]. More-
over, interpreting these drug response prediction models can help to improve recommendations of
compounds and target genes to prioritize in future preclinical research [26].

While several community-wide, public efforts [11, 32] and many other works have made
progress towards improving the predictive accuracy of drug response predictions, identifying the
important disease signatures (i.e., proteins, genes, and other biomarkers) that drive the drug re-
sponse prediction models has received less attention. To date, previous works have typically fo-
cused on feature selection within one specific model such as elastic nets [60, 11] and random
forest [102]. However, because molecular profiling data is often heterogeneous, noisy, and high-
dimensional, these results are highly sensitive to modeling decisions made by humans including
the type of model, the amount of training data, and the choice of algorithm.

In this work, we focus on this goal of detecting stable, interpretable, and predictive -omic sig-
natures that drive a cell line’s drug response. To overcome the aforementioned challenges, we
develop a transparent stability-driven pipeline for drug response interpretable prediction called
staDRIP that is rooted in the PCS framework for veridical data science [135]. At its core, the
PCS framework builds its foundation on three principles: predictability as a reality check, com-
putability as an important consideration in algorithmic design and data collection, and stability
as an overarching principle and minimal requirement for scientific knowledge extraction. These
principles were motivated by extensive interdisciplinary research such as Wu et al. [132], which
analyzed the gap-gene network of Drosophila, and Basu et al. [12], which discovered stable tran-
scription factor interactions in Drosophila embryos. Since its conception, the PCS framework has
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further demonstrated a strong track record of driving many scientific discoveries including novel
gene-gene interactions for the red-hair phenotype [15] and clinically-interpretable subgroups in a
randomized drug trial [38].

Here, using integrative -omics and drug response data from the Cancer Cell Line Encyclopedia
(CCLE) [11], we employ the PCS framework to develop staDRIP and provide extensive documen-
tation of our modeling choices to arrive at stable biological discoveries of proteins and genes that
are predictive of cancer drug responses. Unlike previous works whose results depend heavily on
human decisions, staDRIP finds predictive -omic features that are stable across various models and
data perturbations, thus mitigating the impact of human judgment calls. We further show that 18
of the top 24 -omic features identified by staDRIP have been previously implicated in the scientific
literature, and in doing so, hint at novel candidates for future preclinical research.

2.2 The Cancer Cell Line Encyclopedia (CCLE) dataset
To begin building the personalized drug response models, we leverage data from a panel of 397
human cancer cell lines that have both high-throughput molecular profiling and pharmacological
data for 24 anticancer drugs from the Cancer Cell Line Encyclopedia (CCLE) project [11]. Specif-
ically, -omics data from the CCLE was downloaded from DepMap Public 18Q3 1. These cell lines
encompass 23 different tumor sites and have been profiled for gene expression, microRNA expres-
sion, DNA methylation, and protein expression. Note that though the CCLE contains data from
947 cell lines, only 397 of these cell lines had data from all four molecular profiles of interest and
pharmacological profiling.

In addition to the molecular profiles, we obtained pharmacological profiling of 24 chemother-
apy and target therapy drugs from the CCLE [11]. For each cell line-drug combination, the CCLE
incorporated a systematic framework to measure molecular correlates of pharmacological sensitiv-
ity in vitro across eight dosages. We refer to Barretina et al. [11] for details on this procedure, but
given the fitted dose-response curves of growth inhibition from these experiments, we took the ac-
tivity area, or AUC, to be the primary response of interest in this work. The AUC is defined as the
area between the response curve and 0 (i.e., the no response reference level) and is a well-accepted
measure of drug sensitivity [60, 11]. In this case, the AUC is measured on an 8-point scale with 0
corresponding to an inactive compound and 8 corresponding to a compound with 100% inhibition
at all 8 dosages.

In Figure 2.1, we provide a graphical summary of the raw molecular and pharmacological
profiling data sets.

Data preprocessing

Given the raw data described above, there are a couple areas of initial concern that warrant pre-
processing. First, the cancer cell lines encompass 23 different tumor sites, and cell lines from the
same tumor site tend to have more similar expression profiles than cell lines from different sites.

1https://depmap.org/portal/download/

https://github.com/Yu-Group/staDRIP
https://github.com/Yu-Group/staDRIP
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Figure 2.1: A graphical overview of the raw CCLE molecular profiling data sets, which are used to predict
the drug responses of 24 therapeutic drugs, as measured via the drug response AUC.

See Table 2.1 for the frequency of cell lines from each tumor site. To illustrate, we observe clusters
of cell lines by tumor site when performing both hierarchical clustering and PCA on the RNASeq
profile in Figure 2.2. Due to these inherent differences between tumors, we chose to omit the cell
lines from tumor sites with < 8 cell lines. This reduces our sample size to 370 cell lines from 16
tumor sites. Here, we chose the threshold 8 to ensure we have at least 2 cell lines from each tumor
site in each of the training, validation, and test splits (using a 50-25-25% partitioning scheme).

In addition to reducing the number of samples in our analysis, we reduced the number of
features to more manageable sizes before continuing with our analyses. Originally, the molecular
profiling data consisted of 734 miRNAs, 50114 genes, 20192 TSS, and 214 proteins. With only
370 cell lines, we aggressively preprocessed the number of genes and TSS by taking the top 10%
of genes (or 5000 genes) and top 20% of TSS (or 4000 TSS) with the highest variance. We also
transformed the miRNA and RNASeq expression values using the log-transformation log(x+1) in
order to mitigate potential problems with highly skewed positive count values.

We recognize however that there were many other reasonable ways to preprocess this data.
For instance, we could have taken the top 20% of genes and top 40% of TSS with the highest
variance. Another common alternative would have been to filter features using marginal corre-
lations with the response or using a multivariate prediction model (e.g., the Lasso). To assess
robustness to these choices, we reran our prediction analysis using these alternative preprocessing
procedures and saw that the prediction accuracies are higher using the variance-filtering prepro-
cessing pipelines, as compared to the correlation-filtering and Lasso-filtering pipelines (see PCS
documentation). Further, the smaller variance-filtered model gives similar prediction accuracies
as the larger variance-filtered model. Thus, for simplicity moving forward, we use and focus pri-
marily on the initially proposed variance-filtering procedure as it is less computationally expensive

https://github.com/Yu-Group/staDRIP
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Table 2.1: Frequency of cell lines from each tumor site

Tumor Site # of Cell Lines

Lung 72
Haematopoietic and lym-
phoid tissue

58

Skin 36
Breast 26
Central nervous system 23
Ovary 22
Large intestine 21
Pancreas 20
Endometrium 15
Stomach 14
Oesophagus 13
Liver 12
Urinary tract 12
Autonomic ganglia 9
Soft tissue 9
Bone 8
Kidney 7
Upper aerodigestive tract 6
Thyroid 5
Pleura 4
Prostate 3
Biliary tract 1
Salivary gland 1

than the model with twice as many features and maintains similarly high accuracy.
To summarize, after this preprocessing, we have 370 cell lines with data across the four molec-

ular profiles of interest with 734 miRNAs (log-transformed), 5000 genes (log-transformed), 4000
TSS, and 214 proteins and pharmacological data, measured via the AUC drug response scores, for
24 anticancer compounds. We provide a visual summary of the preprocessed data and plot the
overall distribution of features in the four molecular profiles as well as the distribution of the 24
drug responses in Figure 2.3.
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Figure 2.2: We apply (A) PCA and (B) hierarchical clustering (with Ward’s linkage) to the log-transformed
RNASeq data set and color the samples by their tumor site. For simplicity, we use color to distinguish
between five prominent tumor sites and show the remaining tumor sites in grey. We also show the proportion
of variance explained by each principal component in the subplot titles of (A). In both the PC plots and the
hierarchical clustering dendrogram, we can see clusters of tumor sites, illustrating the inherent differences
between tumor sites.

2.3 Prediction methods and evaluation metrics

Prediction Models
Like in data preprocessing, human judgment calls play a significant role in the modeling stage,
including the decision of which methods to fit. Ideally, the chosen methods should have some jus-
tified connection to the biological problem at hand, but in our case, it is unclear which models or
assumptions best fit the biological drug response mechanism a priori. Nevertheless, we have rea-
sons to believe that the Lasso, elastic net, RF, and kernel ridge regression are particularly appealing
fits for this problem.

First, the Lasso assumes a sparse linear model, meaning that the effect of each feature is ad-
ditive and only a sparse number of the features contribute to the drug sensitivity. The simplicity
and interpretability of the Lasso makes it a popular tool for bioinformatics prediction tasks, so
we choose to use the Lasso as a baseline model for our analysis. The elastic net is perhaps even
more popular than the Lasso in drug response prediction studies [60, 11]. Similar to the Lasso, the
elastic net assumes linearity and some sparsity but is also able to better handle correlated features.
Beyond linearity, kernel ridge regression with a Gaussian kernel allows for more flexible, but less
interpretable, functional relationships that are not necessarily linear. Kernel methods have been ap-
plied in previous case studies with great success [32] and are hence promising candidates for our
study as well. Lastly, random forest can be viewed as a collection of localized, non-linear thresh-
olded decisions rules (like on-off switches), which are well-suited for many biological processes
that match the combinatorial thresholding (or switch-like) behavior of decision trees [93]. Random
forests are also invariant to the scale of the data. This is especially advantageous for integrating
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Figure 2.3: Left: Distribution of features in each of the four molecular profiles. Right: Distribution of the
drug responses for each of the 24 drugs.

different data sets with varying scales and domain types (e.g., count-valued RNASeq expression,
proportion-valued methylation data, continuous-valued protein expression).

In addition to fitting the aforementioned methods on each of the molecular profiles separately,
we also tried fitting various data integration methods since incorporating multiple sources of -
omics data can sometimes result in more accurate predictions than models built using only a single
-omics sources [32, 48, 113]. The most natural integration idea is to concatenate the -omics data
sets together and to fit a single model (e.g., the elastic net) on the concatenated data. When fitting
models like the Lasso, elastic net, and kernel ridge regression which are not scale-invariant, the
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molecular profiles are scaled to have columns with mean 0 and variance 1 to allow for fair com-
parisons between molecular types. We refer to this method as the concatenated data approach and
use this as a baseline for evaluating data integration methods. More sophisticated methodology has
also been proposed to integrate -omics data, including recent work using the X-VAE, a variational
autoencoder for cancer data integration [113], and the BMTMKL, a Bayesian multitask multiple
kernel learning method which won the NCI-DREAM 7 challenge [32].

Note that though an alternative approach would have been to develop new methodology, we
instead leverage these existing machine learning methods that have been rigorously vetted and
have been shown to work well in many related problems. In fact, by examining the stable properties
across these existing methods, we obtain high-quality scientific findings, as made evident by the
abundance of supporting literature (see Table 2.5).

Model hyperparameters

To select hyperparameters in each of these methods, we use 5-fold cross validation, where the
folds are stratified by tumor type. We also investigate using the estimation stability cross validation
(ESCV) metric for selecting the Lasso’s hyperparameter. This ESCV metric combines a stability
measure within the cross-validation framework to yield more stable estimation properties with
minimal loss of accuracy when using the Lasso [74].

For the X-VAE model, we adapt an X-shaped network architecture to train a variation autoen-
coder that learns joint representation of the RNAseq and protein data. In particular, we take the
2,000 RNAseq features with highest variance, since the number of cell lines is too small compared
with the original number of RNAseq features. In our experiment, both the encoder and the encoder
have one hidden layer. There are 128 neurons corresponding to the RNAseq protein in the hidden
layer of the encoder and the decoder, and 32 neurons corresponding to the protein features. The
latent representation has a dimension of 32. The dimension of the hidden layers and the latent rep-
resentation are based on the recommendation of [113], and are not tuned. We used ELU activation
and employed batch normalization and a dropout component with rate 0.2, as recommended by
[113]. The models were trained for 500 epochs using an Adam optimizer with a learning rate of
0.001.

Evaluation metrics

We primarily consider two evaluation metrics for prediction accuracy as each captures a different
aspect of prediction - 1)R2 value and 2) probabilistic concordance-index (PC-index). R2 is defined
as 1 − MSE(Y,Ŷ )

Var(Y )
, where Var(Y ) denotes the variance of the observed responses, and MSE(Y, Ŷ )

denotes the mean sum of squared errors between the predicted responses Ŷ and observed responses
Y . R2 is a rescaling of the MSE that accounts for the amount of variation in the observed response
and thus allows us to easily compare accuracies between drug response models with different
amounts of variation in the observed response, but as with the MSE, R2 can be heavily influenced
by outliers. PC-index is a measure of how well the predicted rankings agree with the true responses.
This metric takes into account the variance of the drug responses but it also assumes that the drug
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responses follow a Gaussian distribution, which may not be true in some cases. We consider this
metric because it is the primary method of evaluation in the NCI-DREAM 7 competition [32].
Given the large scale and breadth of this challenge, we compare our results to this work. For
further details on the PC-index, we refer to Costello et al. [32].

In each of the evaluation metrics above, we receive a separate score for each of the 24 drug
response models. It may also be beneficial to aggregate the 24 scores into a single number for
concrete evaluation. In particular, Costello et al. [32] used a weighted average of the PC-indices
to compare various models and referred to this evaluation metric as the weighted PC-index (WPC-
index). To compare our results with the benchmark in Costello et al. [32], we also consider the
WPC-index in evaluating our models.

2.4 Results on Prediction Accuracy
Building on the PCS framework, staDRIP first uses predictive accuracy as a reality check to filter
out models that are poor fits for the observed data before turning to our primary goal of identifying
important biomarkers for drug response prediction. For each of the available 24 anticancer drugs,
we divide the data into a 50-25-25% training-validation-test split and use the training data to fit
(1) an elastic net tuned with cross-validation (CV), which has been widely used and advocated
by previous studies [11, 60], (2) Lasso tuned with CV, (3) Lasso tuned with ESCV, an alternative
CV metric that incorporates stability to yield more stable estimation properties with minimal loss
of accuracy [74], (4) Gaussian kernel ridge regression, and (5) random forest to predict the drug
response given the miRNA, RNASeq, methylation, and protein expression profiles separately. We
also fit several data integration methods including concatenated versions of the aforementioned
methods, the recently proposed X-shaped Variational Autoencoder (X-VAE) [113], and the winner
of the DREAM 7 challenge,2 the Bayesian multi-task multiple kernel learning method (BMTMKL)
[32].

For each of these fits, we report in Table 2.2 the average validation accuracy across all 24 drugs
as measured by the R2 value and the WPC-index, a weighted probabilistic concordance index,
which has been used in previous studies and measures how well the predicted rankings agree with
the true responses [32]. From Table 2.2, we see that kernel ridge regression trained only on the
RNASeq data yields the best predictive performance. However, considering that our primary goal
is not purely prediction, the differences between model prediction accuracies shown in Table 2.2
are relatively small from a practical viewpoint. In our inferential procedure discussed next, we
will see that leveraging the stability across these methods with similar predictive accuracies is
key to our staDRIP pipeline for identifying genes and proteins that are stable predictive features
underlying the drug response models.

Nonetheless, for completeness, we report the test accuracy from the best model, the RNASeq-
based kernel ridge regression, to have an R2 (±1SD) of 0.204 (± 0.038) and WPC-index of 0.620
(± 0.0075) across the 24 drugs.

2The DREAM 7 challenge was a public competition where teams were tasked to integrate multiple –omics mea-
surements and predict drug sensitivity in cancer cell lines.
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In Tables 2.3 and 2.4, we provide additional insights into the drug response prediction accura-
cies at the individual drug level. In Table 2.3, we see that the best model depends on the particular
drug, but the kernel ridge regression model works best on average. In Table 2.4, we show the test
errors from the kernel ridge regression fit for each drug separately.

Table 2.2: Validation WPC-index and average R2 across all 24 drug response models for various methods
trained on each molecular profile separately and together. Higher values of R2 and WPC-index indicate
better fits.

Validation Set WPC-Index Validation Set R2

Methyl. miRNA Protein RNASeq Integrated Methyl. miRNA Protein RNASeq Integrated

Kernel Ridge 0.600 0.603 0.617 0.631 0.624 0.111 0.104 0.168 0.231 0.200
Elastic Net 0.602 0.606 0.608 0.626 0.625 0.102 0.124 0.126 0.183 0.162
Lasso 0.597 0.605 0.609 0.620 0.620 0.117 0.105 0.121 0.172 0.176
Lasso (ESCV) 0.600 0.601 0.609 0.623 0.618 0.114 0.113 0.129 0.195 0.141
RF 0.599 0.594 0.606 0.626 0.622 0.124 0.088 0.123 0.214 0.196
X-VAE – – – – 0.617 – – – – 0.188
BMTMKL – – – – 0.613 – – – – 0.179

Table 2.3: For each molecular profile (or the integrated profile) used for training, we count the number of
drugs (out of 24) for which each method performed the best and gave the highest validation R2 compared
to its six other competitors.

Methyl. miRNA Protein RNASeq Integrated

Kernel Ridge 7 5 16 12 6
RF 9 5 2 6 5
Elastic Net 1 8 1 1 2
Lasso (ESCV) 4 4 3 4 0
Lasso 3 2 2 1 5
X-VAE – – – – 2
BMTMKL – – – – 2

2.5 Identifying predictive -omic features with PCS inference
Beyond predictability, the PCS framework emphasizes stability throughout the data science life
cycle so as to reduce reliance on particular human judgment calls. Accordingly, we leverage
and quantify the stability of important features under numerous data and model perturbations in
staDRIP as follows: for each of the 24 drugs separately,

1. Use predictability as reality check: select a setM of models with high predictive accuracy
across a variety of metrics on the validation data.
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Table 2.4: Test error for each drug using the RNASeq-based kernel ridge regression model

Drug R2 PC-Index

17-AAG 0.000 0.574
AEW541 0.034 0.558
AZD0530 0.037 0.560
AZD6244 0.425 0.675
Erlotinib 0.254 0.615
Irinotecan 0.307 0.644
L-685458 0.210 0.624
LBW242 -0.001 0.511
Lapatinib 0.208 0.607
Nilotinib 0.258 0.590
Nutlin-3 0.022 0.549

PD-0325901 0.543 0.701
PD-0332991 0.218 0.596
PF2341066 0.091 0.564

PHA-665752 0.115 0.559
PLX4720 0.305 0.585
Paclitaxel 0.369 0.670

Panobinostat 0.446 0.679
RAF265 0.215 0.625
Sorafenib 0.242 0.567
TAE684 0.024 0.576
TKI258 0.183 0.585

Topotecan 0.240 0.630
ZD-6474 0.155 0.591

2. Compute stability of predictive features across data perturbations: for each model M ∈
M, refit the model M to B bootstrap replicates of the data, and compute the stability score
of each feature as the proportion of B bootstrap samples where the feature is selected. Let
FM denote the subset of features with high stability scores (e.g., top 10).

3. Select predictive features that are stable across model perturbations: take the intersec-
tion ∩M∈MFM as the stable predictive -omic features across data and model perturbations.

In our work, we are primarily interested in identifying proteins and genes that are predic-
tive of drug responses as many drugs are directly related to known proteins and genes. Hence,
considering the five models trained on the RNAseq and protein data separately, we take M =
{RF,Lasso (ESCV),Elastic Net}. Note that while kernel ridge has the highest accuracy, it is omit-
ted fromM since there is no straightforward, computationally efficient method to select features
from kernel ridge to the best of our knowledge. We also omit the Lasso fromM as it generally
has the worst predictive accuracy. For each remaining model in M, we then take FM to be the
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Table 2.5: Most stable protein associated with each drug, as identified by staDRIP, along with literature that
supports the association between the protein and drug sensitivity.

Drug Protein Supporting Literature Drug Protein Supporting Literature

17-AAG Bax He et al. [51] PD-0332991 Bcl-2 Chen and Pan [30]
AEW541 Akt Attias-Geva et al. [5] PF2341066 c-Met Camidge et al. [25]
AZD0530 p38 Yang et al. [133] PHA-665752 MEK1 –
AZD6244 PI3K-p85 Balmanno et al. [7] PLX4720 MEK1 Emery et al. [40]
Erlotinib EGFR McDermott et al. [85] Paclitaxel Src Le and Bast [70]
Irinotecan MDMX MDM4 Ling et al. [75] Panobinostat VEGFR2 Strickler et al. [116]
L-685458 YAP – RAF265 PI3K-p85 Mordant et al. [87]
LBW242 ASNS – Sorafenib Bcl-2 Tutusaus et al. [124]
Lapatinib HER2 Esteva et al. [41] TAE684 PTEN –
Nilotinib STAT5 Warsch et al. [127] TKI258 CD49b –
Nutlin.3 Bcl-2 Drakos et al. [37] Topotecan – –

PD-0325901 MEK1 Henderson et al. [53] ZD-6474 c-Kit Yang et al. [134]

10 features with the highest stability scores 3 and list those genes and proteins in the top 10 most
stable features across all three models in Table 2.6.

In Table 2.5, we provide our main evidence for the utility of staDRIP, listing the single most sta-
ble protein for each drug along with independent publications that support these findings. Specif-
ically, of the 24 proteins identified as most stable by staDRIP, 18 have been associated with the
drug sensitivity or identified as a known or possible drug target in prior preclinical studies.

Now in contrast to staDRIP, which finds stable predictive features across models with similar
predictive accuracies, previous state-of-the-art methods [11, 60] use only an elastic net to identify
predictive -omics features of drug responses. To compare staDRIP to this elastic net approach, we
extract the proteins with the highest stability score for each drug when takingM = {Elastic Net}.
Repeating the same literature search procedure as we did for the proteins identified by staDRIP,
we found only 14 of the 24 proteins identified by the elastic net are known from previous clinical
studies (see Table 2.7). We now discuss in detail the disease signatures identified by staDRIP, and
compare them with those identified by elastic net.

Discussion on the disease signatures identified by the staDRIP pipeline

In Table 2.6, we list the proteins and genes which we found to be stable and among the top 10
features for all three methods. Among these stable features, we list them in decreasing order by
the sum of stability score rankings. Though we identify fewer stable genes, this is most likely
due to two reasons. First, there are 5000 genes in the model, compared to only 214 proteins,
so thresholding at the top 10 genes is extremely conservative. Secondly, the average correlation
between genes is higher than that between proteins, adding to the instability.

3The stability scores are computed as follows. For each feature Xj from either the protein or RNAseq data set,
let ω(b)

j be defined in the following way: for the Lasso and elastic net, ω(b)
j = 1 if the coefficient of Xj is non-zero,

and ω(b)
j = 0 otherwise; for the random forest, ω(b)

j is the MDI feature importance of Xj . We then define the stability

score sta(Xj) of each feature Xj as sta(Xj) =
1
B

∑B
b=1 ω

(b)
j
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Table 2.6: Stable protein and RNAseq signatures. A feature is included if it is among the top 10 most stable
features under 3 different machine learning models (i.e., elastic net, Lasso (ESCV), and random forests). The
stability of the features are computed from the PCS inference framework in staDRIP. Blank cells indicate
that no features appeared among the top 10 most stable features for all three models.

Drug name Protein signature RNAseq Signature

17-AAG Bax, p53, Caspase-7, eIF4E CTD, AP2S1, BZW2
AEW541 Akt, Smad1, p27, PTEN, RAD51 B4GALT3, SEMA3B
AZD0530 p38, c-Kit HPGD
AZD6244 PI3K-p85, TFRC, Bax SPRY2, RP11, LYZ, DUSP6, PRSS57
Erlotinib EGFR, Beclin, P-Cadherin PIP4K2C, SEC61G
Irinotecan MDMX MDM4, Src
L-685458 YAP, VEGFR2, Src
LBW242 ASNS MRPL24
Lapatinib HER2, HER3, EGFR, Rab25, Heregulin STARD3
Nilotinib STAT5, c-Kit, SHP-2, Src, p27
Nutlin.3 Bcl-2, Bax

PD-0325901 MEK1, Bax, TFRC, PI3k SPRY2, DUSP6, ETV4
PD-0332991 Bcl-2, MDMX MDM4, Src
PF2341066 c-Met CAPZA2

PHA-665752 MEK1, c-Met FMNL1
PLX4720 MEK1, Bax, PREX1, Beclin FABP7
Paclitaxel Src, beta-Catenin ORMDL2

Panobinostat VEGFR2, Src
RAF265 PI3K-p85, FOXO3a, eEF2K RETN
Sorafenib Bcl-2, Src
TAE684 PTEN, Akt, p70S6K, Bcl-2 H1FX
TKI258 CD49b, C-Raf

Topotecan c-Met OSGIN1
ZD.6474 c-Kit, STAT5-alpha

With regards to the identified protein signatures, we can roughly classify them into three cate-
gories. The first category contains those that are known targets of the corresponding target therapy
drugs. For example, Erlotinib is a medication used to treat non-small cell lung cancer (NSCLC)
and pancreatic cancer. It is an EGFR inhibitor and is specifically used for NSCLC patients with
tumors positive for EGFR exon 19 deletions (del19) or exon 21 (L858R) substitution mutations.
Correspondingly, EGFR is ranked in the top ten stable proteins in all three models. Other such
examples include the drug Lapatinib and its target HER2, PD-0325901 and its target MEK, PHA-
665752 and its target c-Met, and ZD-6474 and its target c-Kit.

The second category contains those that are not known to be direct targets of the drug but have
been shown in preclinical studies to be potential therapeutic targets or are associated with drug re-
sistance. For example, Ling et al. [75] identified a potential application of the drug Irinotecan as an
MdmX inhibitor for targeted therapies, and in our pipeline, MdmX had the highest stability score
for all three models. As another instance, we identified MEK1 as a top protein signature, ranked
by stability score, for the drug PLX4720 while Emery et al. [40] showed that MEK1 mutations
confer resistance to PLX4720.

The third category are proteins that do not belong to the two categories above. Still, these
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Table 2.7: Most stable protein associated with each drug, as identified by the elastic net, along with preclin-
ical evidence that supports the association between the listed protein and drug sensitivity.

Drug Protein Supporting Literature Drug Protein Supporting Literature

17-AAG p53 Naito et al. [92] PD-0332991 Bcl-xL Chen and Pan [30]
AEW541 Akt Attias-Geva et al. [5] PF2341066 PEA15 –
AZD0530 p38 Yang et al. [133] PHA-665752 MEK1 –
AZD6244 CD20 – PLX4720 MEK1 Emery et al. [40]
Erlotinib P-Cadherin – Paclitaxel Src Le and Bast [70]
Irinotecan RAD51 Shao et al. [111] Panobinostat Src –
L-685458 VEGFR2 – RAF265 PI3K-p85 Mordant et al. [87]
LBW242 Caspase-7 – Sorafenib 14-3-3 epsilon Wu et al. [131]
Lapatinib HER2 Esteva et al. [41] TAE684 Akt –
Nilotinib p27 Liu et al. [77] TKI258 14-3-3 epsilon –
Nutlin.3 Bcl-2 Drakos et al. [37] Topotecan 14-3-3 epsilon –

PD-0325901 MEK1 Henderson et al. [53] ZD-6474 c-Kit Nishioka et al. [96]

biomarkers are predictive of the drug response under various model and data perturbations. Given
the evidence in the scientific literature that supports many of our identified features, the proteins in
this category may be potential candidates for future preclinical investigation.

Among the list of overlapping stable features in Table 2.6, we list in Table 2.5 the one with the
highest stability score ranking along with recent biomedical publications, supporting the associa-
tion between the protein and the drug. The procedure of this literature search is as follows: we first
searched for papers where the protein and the drug co-occurs. Then for each paper, we read the
introduction section to understand their main conclusions. Each of the 18 papers listed in Table
2.5 includes sentences such as “our findings suggest that the over-expression of this protein will
increase drug sensitivity/resistance” or “this protein is a potential (or known) therapeutic target for
the drug”. Out of the 24 predictive protein signatures that we identify as most stable, 18 of them
have existing preclinical studies that confirm the effectiveness of our stability analysis.

In Table 2.7, we list the protein with the highest stability score when fitting an elastic net to 100
bootstrap samples of the training data for each of the 24 drugs. This approach of finding predictive
-omics features was previously used in [11, 60]. Compared with staDRIP, which searches for
stable features across different models, this approach only uses a single model (i.e, an elastic net)
for feature selection. We repeat the same literature search procedure as we did for our findings and
found that among the 24 most stable protein features identified by elastic net, only 14 are known
from previous clinical studies. For 10 drugs, the most stable protein from elastic net and that from
staDRIP is the same, and among these 10 proteins, 9 are implicated in the existing literature. For
the other 14 drugs, 5 proteins identified by elastic net are implicated in the existing literature, while
9 protein features identified by staDRIP are implicated in the existing literature.

2.6 Conclusion
Rooted by the PCS framework, we emphasize the importance of predictability, (computability),
and stability as minimum requirements for extracting scientific knowledge throughout the staDRIP
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pipeline. We show that, guided by good prediction performance, incorporating a number of sta-
bility checks and extracting the stable parts of top-performing models can help to avoid the poor
generalization exhibited by existing methods and can successfully identify candidate therapeutic
targets for future preclinical research. We also acknowledge that while many stability considera-
tions are built into staDRIP, there are inevitably human judgment calls that still impact our analysis.
For example, we make a number of judgement calls in the data preprocessing stage. Additionally,
many other reasonable models such as ridge regression and gradient boosting could be considered
in the staDRIP pipeline. We thus provide transparent and extensive documentation here to justify
these decisions using domain knowledge when possible.

https://github.com/Yu-Group/staDRIP
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Chapter 3

Interpretable deep learning for accurate
molecular partner prediction in
clathrin-mediated endocytosis

3.1 Introduction
The interaction between molecular partners, such as proteins which cooperate in a biological path-
way, is fundamental to many biological processes. In studying these interactions, computational
tools such as machine learning algorithms can complement wet-lab biochemical experiments, due
to their ability to make fast and accurate predictions. In this paper, we propose a pipeline which
uses a deep neural network to accurately predict the activity of one protein from its molecular
partner, and test our pipeline extensively in the context of clathrin-mediated endocytosis (CME).

Clathrin-mediated endocytosis is the process by which a cell absorbs metabolites, hormones,
proteins, or other materials through its cell membrane using clathrin-coated vesicles. It is fun-
damental to neurotransmission, signal transduction and the regulation of many plasma membrane
activities and is thus essential to higher eukaryotic life [86]. Understanding clathrin-mediated en-
docytosis (CME) is a crucial question in cell biology [66], and many questions about this process
remain unanswered [63]. One major challenge with analyzing CME is the ability to readily dis-
tinguish between abortive coats (ACs) and valid clathrin-coated pits (CCPs). Doing so enables
better understanding of the mechanisms governing CCP dynamics and progressions. Previous ap-
proaches have largely relied on relatively simple thresholds of the clathrin fluorescence images,
based on lifetime and intensity [1, 62]. However, recent studies have suggested that these features
alone may be insufficient to discern CCPs [52, 126].

Here, we resolve ACs from CCPs by predicting the recruitment of two molecular partners of
clathrin, auxilin and dynamin, from fluorescence imaging of CCP activity. It is known that CCPs
lose their clathrin lattice within seconds of pinching off, through the action of the Hsc70 “uncoating
ATPase”, recruited by auxilin 1 (Aux1) and auxilin 2 (GAK). Aux1 and GAK appear on coated
vesicles immediately after dynamin-mediated membrane scission has released the vesicle from the
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Figure 3.1: Pipeline for molecular partner prediction. A Cells tagged with markers for clathrin, auxilin,
and dynamin are imaged. B Potential CME events are detected and tracked, yielding fitted amplitudes over
the course of each event. C A data-selected threshold identifies many of the abortive events. D A neural
network classifies the remaining events with longer lifetimes, which we refer to as the “difficult” region. E
Interpretation techniques elucidate how the neural network makes its predictions.

.

plasma membrane [52]. As such, the detection of auxilin and dynamin can be used as validation
of productive CCPs.

Our pipeline can be summarized in three steps. First, we use additional markers, such as auxilin
1 (AUX), auxilin 2 (GAK) and dynamin, to track the formation of CCPs. Using a combination of
automatic rules and manual annotation, we curate a dataset of cells and whether their clathrin-
coated structures (CCSs) are valid or abortive. Second, we develop a predictive pipeline (see
Figure 3.1) to identify whether a CCS is valid, based only on imaging clathrin. In new data,
this pipeline enables identifying CCPs without the need for additional markers, enabling simpler
experimental setups. Third, we build an interpretation pipeline that aims at elucidating the elements
in CCP progression used by the neural network in resolving ACs from CCPs.

The fitted model achieves a test accuracy of 92% on all events. Notably, our pipeline is accu-
rate in predicting longer-lived events, where distinguishing ACs from CCPs is known to be more
difficult. In particular, for events with lifetime greater than 15, our pipeline achieve an accu-
racy of 84.1%, which represents a 5% improvement over DASC [126], the current state-of-the-art
technique. It also yields uncertainty measures which can be used to selectively predict only on
high-confidence tracks. The fitted model is robust to reasonable perturbation of experiment condi-
tions. For example, the accuracy on events with lifetime greater than 15 only reduces by 1% when
the data sampling rate (Hz) is three times lower. We also show that the model transfers to new
datasets collected at various settings.

In addition to developing an accurate neural network model for molecular partner prediction in
CME, our paper also provides a comprehensive investigation of a wide ranging computational ap-
proaches on this problem. We examine the performance of an extensive list of pre-processing pro-
cedures, feature engineering techniques, classification algorithms, and deep learning architectures.
We hope that this paper will help guide machine-learning applications in similar molecular-partner
prediction problems in the future.
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Related Work
One line of work aims to identify successful CCPs without the use of an additional marker. Initial
attempts, before the maturation of detection/tracking used statistics to deconvolve and classify us-
ing lifetimes [78]. Later works [1, 62] used tracking + detection along with thresholds on lifetime
and intensity. [56] trains a support vector machine to distinguish CCPs, although the features were
still based mostly on lifetime/intensity thresholds. [126] use a thermodynamics-inspired method to
resolve ACs from CCPs based on single channel fluorescent movies, which they term Disassem-
bly asymmetry score classification (DASC). Alternatively, one can use the internalization of pH
sensitive-cargo [122] to identify successful CCPs, although this requires more labeling and a more
complicated experimental set up. A recent study introduces DEEPCLA [136], a method which
combines convolutional neural networks and LSTMs to identify clathrin directly from videos.

However, clathrin alone is often insufficient to identify productive CCPs. More related to
the work here are studies which use second markers to help identify abortive from productive
events. Two studies [47, 39] study the recruitment of dynamin. Most related to the work here
is one study, which analyzes the dynamics of auxilin 1 / GAK in clathrin-mediated traffic [52].
While previous works typically rely on a handful of manually engineered features or a particular
prediction algorithm, our paper examines a wide array of engineered features and machine learning
models. We further show that our proposed neural network model outperforms previous state-of-
the-art method in identifying valid CCPs, and in doing so, demonstrate the capacity of machine
learning in molecular partner prediction.

3.2 Results

Data and lifetimes
Figure 3.2 provides an introduction into the data collected here. In particular, Figure 3.2A shows
6 representative events, with varying lifetime and amplitude. More events are shown in Figure in
the appendix. Figure 3.2B shows the raw videos of 2 events in Figure 3.2A, where the signals
are circled out. Figure 3.2C shows the distribution of lifetime and max fitted amplitude for all the
events in the dataset. While valid events tend to be longer-lived and have a higher max amplitude, it
is also clear from this figure that using the lifetime and max fitted amplitude alone are not sufficient
to separate abortive events from valid ones. This fact was noted by Wang et al. [126], who proposed
a set of thermodynamics-inspired features of the tracks, known as the DASC. However, we find
that various machine-learning models trained on the DASC features do not perform favorably to
neural network models trained directly on the tracks, which we introduce in the sequel.

The data is collected in a variety of different conditions. Table 3.1 shows the datasets collected
in a handful of various settings. In particular, the bolded dataset “clath aux dynamin” contains all
3 markers and has the most number of events, and will be used as the main dataset for training and
evaluation. The other 5 supporting datasets only have clathrin and auxilin markers. ”Short” events
refers to those with lifetime smaller than 15 (excluding the buffer frames). We find that over 90%
of these events are abortive, consistent with previous literature [1].
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Figure 3.2: CME event examples and distribution. A Examples of amplitude traces for events that vary in
lifetime and amplitude. Dark shaded areas around the trace are estimated uncertainties for detected intensity
(s.d.), and light shaded areas are significance threshold above background (2 s.d.). Dashed lines show the
5 frames buffers before and after the tracked event. B Cropped frames from raw videos for two different
events. For chosen time points in the course of the event, we plot a 15-by-15 square around the detected
position of the event. Darker color indicates stronger signal. C Distribution of events based on lifetime and
clathrin max amplitude: valid events tend to be longer and have a higher max amplitude. Total number of
events is 210,587.

Dataset markers Partition Total Difficult Difficult valid Short Short valid

clath aux dynamin CLTA-TagRFP EGFP-Aux1-GAK-F6
Dyn2-Halo-E1-JF646

test 45061 8457 2920 36604 2205
train 102712 20617 7050 82095 4977

clath aux+gak CLTA-TagRFP; EGFP-GAK-F6 test 1551 494 264 1057 96
train 5783 1750 1054 4033 464

clath aux+gak a7d2 CLTA-TagRFP; EGFP-Aux1-A7D2
EGFP-GAK-F6

test 2448 1018 439 1430 73
train 7245 2979 1523 4266 212

clath aux+gak a7d2 new CLTA-TagRFP EGFP-Aux1-A7D2
EGFP-GAK-F6

test 16893 1495 978 15398 2157
train 49743 7029 4900 42714 9591

clath aux+gak new CLTA-TagRFP EGFP-Aux1
EGFP-GAK-F6

test 4040 633 211 3407 183
train 16250 2922 1515 13328 1548

clath gak CLTA-TagRFP EGFP-GAK-A8 test 5189 1319 628 3870 378
train 12938 3165 1288 9773 749

Table 3.1: Data summary. “Difficult” refers to events with lifetime > 15, whereas “Short” refers to tracks
with lifetime ≤ 15.
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Predictive modeling
The modeling pipeline begins with a threshold which classifies all events with lifetime below 15 as
abortive (this threshold is chosen to maximize the total accuracy across the entire dataset). For the
points with lifetimes above this threshold, we construct a model to predict whether events will be
abortive or valid using the processed data. The best-performing model is a long short-term memory
neural network network [54] which takes 40-dimensional input and has a hidden-state size of 20.

We also extensively consider an alternative approach which engineers predictive features from
the tracks using domain knowledge and data-driven feature extraction. For example, the lifetime,
the maximum clathrin intensity, derivatives of the track, information about the local maxima and
minima, and the maximum rise and fall of the track. In addition, we add in a couple features about
the motion of the pit (e.g. tracking the mean squared distance traveled by the center of the tracked
pit, and the final distance traveled). We also consider many more engineered features, such as
those obtained by coding the tracks using sparse coding or non-negative matrix factorization, but
we omit these as they do not improve performance. We also try a variety of modeling techniques
including linear models, random forests, multilayer perceptrons, convolutional neural networks,
and support vector machines.

Figure 3.3 shows predictive results for our LSTM model and two other models on the difficult
tracks, for cells imaged under 6 different conditions. We note that our LSTM in general has
substantially higher prediction accuracy than the baseline DASC model, and also outperforms the
gradient boosting model with hand-engineered features. This pattern is stable across different
cells. In addition, the LSTM model has higher accuracy on cells with dynamin markers than on
other cells. This is expected since there are more cells imaged under the same condition as the
cells with dynamin markers in the training data. Detailed classification and regression accuracy of
different methods are given in Table 3.2 in the appendix. These results confirm that the LSTM is
the best-performing model across various metrics.

As the size of the training data gets smaller, the gradient-boosting model starts to outperform
the LSTM model (Figure 3.3D).

We also conduct a series of analyses suggesting that the predictive performance here is limited
by noise in the data (see Sec 3.5). shows closest matches using dynamic time warping [68, 106],
with the constraint that the lifetimes are within seven frames of one another

We find that the LSTM model is stable to various judgment calls made during modeling. We
downsample the tracks such that all the tracks have length 20, 40 and 100. In addition, we also
tried padding zeros at the beginning instead of padding the zeros at the end, if the length of the
original track is shorter than the targeted length. These perturbations lead to 6 different models.
Fig 3.9 in the appendix shows the classification accuracy of these 6 models on different datasets.
We find that although downsampling the tracks to length 20 leads to slightly degraded prediction
performance, the LSTM model is quite stable to other perturbations.
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Figure 3.3: Performance of LSTM and competing models. A Cumulative accuracy with or without the
(LSTM) model. Shows the overall performance for the model over entire dataset, including points with very
short lifetimes. The model yields a predicted probability from 0-1, which we can use as its uncertainty.
LSTM provides a significant improvement. The region to the right of the black vertical line corresponds to
the “difficult region”, and all other subparts of this figure examine the test accuracy of this region. B Com-
parison between classification accuracy of LSTM and DASC and C gradient boosting with hand-engineered
features on the test set. In both figures, each point corresponds to a cell. Cells with dynamin markers are
colored in pink, and are imaged under the same condition. Cells without dynamin markers are colored in
green, and are imaged under 5 different conditions. The sizes of different points are proportional to the num-
ber of difficult clean tracks in the corresponding cell. For reference, we also plot y = x as a dashed line. D
Prediction accuracy of gradient-boosting and LSTM models when training on different number of samples.
When data is limited, LSTM no longer has an advantage over gradient-boosting. When data downsampling
rate is k, we randomly split all training data into k folds, and train on each of the k folds to obtain k different
models. E When we sample the data at a different rate, performance degrades but not dramatically so. F
Accuracy breakdown by lifetime.
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Figure 3.4: Scatter plots of model predictions of auxilin signal strength with different key features. Auxilin
signal strength is defined as the mean fitted amplitude of significant fits to the auxilin signal. A Predictions
for aux+ grow with both lifetime and maximum clathrin amplitude. B Predictions do not vary much with
total displacement. C Predictions correlate with DASC features. F Note that mean total displacement is
divided by lifetime, so larger total displacement is not the same as larger mean displacement.

Interpretation
In this section, we interpret the model to audit and understand what it has learned, focusing only
on the test set of one of the datasets (clath gak aux test). Figure 3.4 shows the predictions as a
function of some key features. The model is trained to predict the peak amplitude of auxilin. This
prediction is higher as an event’s lifetime increases, it’s max clathrin amplitude increases, or it’s
DASC feature increases.

The errors the model makes appear to be understandable (Figure 3.5). False negatives (Fig-
ure 3.5A) frequently occur for tracks which have short lifetimes, low clathrin amplitudes, and no
clear spike at the errors the model makes; despite this lack of indicators, auxilin still occasion-
aly spikes, account for 7.3% of difficult tracks. On the other hand, false positive clathrin tracks
(Figure 3.5B), display large clathrin amplitudes and have a distinctive amplitude drop but no cor-
responding auxilin spike.

Understanding the predictive model requires going beyond simply visualizing tracks based on
their predictions. We would also like to identify the patterns a model uses to make its predictions.
One approach to identifying such patterns is to assign feature importances to the inputs to the
model. However, assigning feature importances to individual time points is relatively uninforma-
tive (e.g. see LIME [101] and SHAP [82] interpretations: Figure 3.10). This is because it is the
trends/interactions between time points which drive the prediction, not time points by themselves.

In order to understand the interactions between time points, we use contextual decomposi-
tion [90, 114], a recent method which can score any interaction in a neural network prediction. We
then devise an algorithm that succinctly summarizes the main interactions of an input sequence as
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Figure 3.5: Model error examples. A False negative examples tend to have short lifetimes, low clathrin
amplitudes, and no clear spike. B False positive examples display large clathrin amplitudes and have a
distinctive amplitude drop but no corresponding auxilin spike.

a sequence of important segments. We also introduce a fast dynamic programming algorithm to
quickly compute this segmentation (details in Sec 3.4).

3.3 Discussion
The particular model we develop is specific to CME and will not work if data is drastically different
from the dataset here. Thus, judgement should be used when checking whether this model will
work. However, this approach of molecular partner prediction can potentially be generalized to
other scenarios.

One promising direction for future work would enable direct prediction from video rather than
using a hand-engineered tracking step. This could potentially perform tracking in a more refined
manner, better learning how to detect activity amid noise. We make a first pass at this, by using
an architecture that predicts directly from video. The architecture is similar to that proposed in
a previous work [136], but currently fails to outperform the combination of tracking and LSTM
modeling. Future work could better enable video understanding through improved architectures.

3.4 Materials and methods

Processing
Tracking We use tracking code from previous work on 2D tracking [1] (which was later extended
to 3D [2]). The tracking fits a Gaussian curve to the images (with standard deviation given by the
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Figure 3.6: Importances of different parts of the clathrin track to predictions made by the neural network. A
The most negative predictions see negative contributions due to their short lifetime (end of track) and lack of
peaks near the end of the track. B The most positive predictions see their largest contributions at the highest
amplitudes and after falling from a large peak. C Some neutral predictions made by the neural network.
More examples in Figure 3.12.

camera parameters). When the fit to the first channel (i.e. clathrin) is significant1, the track is
recorded and a fit is forced to the second channel (i.e. auxilin). The amplitudes of each track are
plotted over time in Figure 3.1B.

Preprocessing After running the tracking we exclude unclear tracks from our analysis. This
includes tracks which start before the recording session / end after the recording session. We
further exclude any tracks with a lifetime less than 3 frames.

We also identify “hotspots” - areas where there are multiple spikes and omit them. Since we
are imaging a 3-dimensional volume in 2 dimensions, there are some pixels that correspond to
multiple vesicles.

Defining the outcome For classification groundtruth, we manually defined the outcome using
both the clathrin and auxilin. To begin with, we set all events as abortive. Then, we label an event
as successful if its max auxilin amplitude is above a manually specified threshold of 973 or there

1Here, significant is defined to be p-value less than 0.05, but the results are not sensitive to this precise threshold.
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are consecutive significant values in the auxilin fit. Then, curves are manually inspected to relabel.
For regression, we take the mean of the significant auxilin observations.

Modeling
In the first step, the authors use a lifetime threshold, corresponding to a 95% threshold on classifi-
cation accuracy. This results in all tracks with lifetime less than 16 being classified as abortive.

We then build a regression model to predict the mean amplitude of the significant auxilin obser-
vations. Once the regression model is fitted, we threshold the predicted outcome at zero to obtain
the predicted class (i.e. abortive or valid).

We use a variety of machine-learning approaches, combined with feature-engineering ap-
proaches using appropriate domain knowledge. Features are normalized to have mean zero and
standard deviation one before model fitting. Many machine-learning models are tried including
Random Forests [21], SVMs, multi-layer perceptrons (i.e. fully connected neural networks), etc.
More modeling approaches were tried but did not improve the results (see Sec 3.5). The model is
also calibrated using some held-out data.

Interpretation
We introduce an algorithm to succinctly summarize interactions in the form of a segmentation.
The algorithm works using scores for interactions (here contextual decomposition scores [90])
and aggregates them in order to identify key interactions (similar to the hierarchical procedure
introduced by Singh, Murdoch, and Yu [114]). We assume we are given a sequence of inputs
x1, x2, ..., xp and an interaction-scoring function score(s, e), s < e which returns the interaction
score for a model using the inputs xs, xs+1, ..., xe−1. Then the algorithm returns a segmentation
(si, ei) for i = 0, ...,m where m is a variable number of segments. The segments are non-empty
(ei > si), non-overlapping (si > si−1) and cover the segment (∀j ∃i s.t. j ∈ [si, ei)). The heuristic
objective to optimize is then

max
∑
i

|score(si, ei)| (3.1)

This objective aims to summarize interactions, i.e. when an interaction between two terms
increases their score beyond the sum of the two terms, this objective will favor merging the terms
into a segment.

Optimizing this difficult can be difficult (exponential in p), but using dynamic programming,
we are able to compute it in only p2 time. The dynamic programming algorithm starts at t = 1 and
computes the values of the objective Eq (3.1). Then, t is increased from t = 1 to t = p, where each
value of t uses the cached values of the objective for all t′ < t.
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Figure 3.7: Model predictions are reasonably well-calibrated. Larger predictions by the model (of the fitted
mean of the significant fitted amplitudes of the auxilin signal) correspond to true higher probabilities of
valid events. Size of points correspond to number of points in each bin. Corresponds to the LSTM model’s
performance on the “difficult region” whose accuracy is given in Figure 3.3.

3.5 Supplementary tables and figures

Model performance and extended validation
In Figure 3.3, we show that the LSTM model is well-calibrated. In Table 3.2, we show the detailed
classification and regression prediction accuracy of different methods, evaluated on all datasets.
We see that the LSTM model is the overall best-performing model in terms of both classification
and regression. Figure 3.8 shows the predicted and observed outcome for the regression task,
where we predict the mean amplitude of the significant auxilin observations. In Figure 3.9, we
show that the predictive accuracy of the model is robust to judgment calls made during modeling.

Interpretations continued
We compare the interpretation of the LSTM of different methods. Figure 3.10 and 3.11 show the
pointwise of LIME and SHAP respectively. Figure 3.12 shows the interpretation of our pipeline
for more tracks. We find that the interpretation made by our pipeline is more informative than
those by LIME and SHAP.

Alternative modeling
Unsupervised learning We tried some approaches to learn features directly from tracks. These
included sparse coding and non-negative matrix factorization, as shown by 3.13. However, we
found that these features did not lead to higher prediction accuracy.
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Figure 3.8: Prediction plots on test datasets for the LSTM model in FigureFigure 3.3 on ‘difficult tracks’ for
all datasets.

Dataset metric GB RF SVM DASC(SVM) lstm

clath aux+gak

accuracy 0.744 0.763 0.748 0.725 0.769
roc auc 0.840 0.831 0.832 0.789 0.845
r2 0.408 0.396 0.387 0.271 0.438
corr 0.643 0.632 0.628 0.536 0.663

clath aux+gak a7d2

accuracy 0.700 0.700 0.700 0.709 0.704
roc auc 0.788 0.788 0.790 0.773 0.785
r2 0.274 0.265 0.240 0.248 0.228
corr 0.525 0.520 0.513 0.506 0.507

clath aux+gak a7d2 new

accuracy 0.714 0.727 0.713 0.683 0.716
roc auc 0.830 0.825 0.830 0.771 0.843
r2 0.415 0.403 0.395 0.287 0.442
corr 0.648 0.638 0.639 0.559 0.665

clath aux+gak new

accuracy 0.804 0.785 0.804 0.758 0.825
roc auc 0.883 0.877 0.887 0.847 0.889
r2 0.381 0.341 0.354 0.289 0.388
corr 0.618 0.587 0.604 0.556 0.625

clath aux dynamin

accuracy 0.817 0.805 0.823 0.799 0.841
roc auc 0.896 0.886 0.891 0.878 0.899
r2 0.383 0.366 0.347 0.308 0.392
corr 0.622 0.605 0.615 0.579 0.627

clath gak

accuracy 0.752 0.757 0.767 0.735 0.760
roc auc 0.840 0.837 0.843 0.808 0.841
r2 0.303 0.291 0.289 0.215 0.290
corr 0.552 0.542 0.555 0.484 0.556

Table 3.2: Classification and regression results for different datasets on “hard tracks”. Best accuracy in each
row is bolded. LSTM model generally outperforms all competing models. Extended version of Figure 3.3.
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Figure 3.9: Investigating the robustness of LSTM prediction accuracy to various modeling judgement calls.
Plotted are the test accuracy of 6 different models index by (k, padding), for k ∈ {20, 40, 100} and
padding ∈ {’beginning’, ’end’}. The parameter k is the length of tracks after downsampling, and the
parameter padding indicates whether we pad zeros at the beginning or end of the track.
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Figure 3.10: SHAP pointwise interpretations. Both for A aux- events and B events predictions, importances
seem to be highest near the end of the track and have the same sign as the prediction. Corresponds to the
interpretations of the LSTM model in Figure 3.6.
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Figure 3.11: LIME pointwise interpretations. Both for A aux- events and B events predictions, importances
seem to be highest near the beginning of the track and have the opposite sign as the prediction. Corresponds
to the interpretations of the LSTM model in Figure 3.6.

Neural networks We tried a handful of neural network architectures. In all cases, tracks were
resampled to have a length of 40 points. We began with fully connected neural networks using the
ReLU nonlinearity. We also tried convolutional neural networks, GRUs, and LSTMs [54], among
other architectures. We also tried a linear model on top of learning single convolutions. Of all the
architectures tests, the LSTM network has the lowest validation error and is therefore selected.

DASC baseline DASC does a reasonable job separating the classes in Figure 3.14.

Model limits
Dynamic time warping Figure 3.15 shows closest matches using dynamic time warping [68,
106], with the constraint that the lifetimes are within seven frames of one another.

Further data description
There is some distribution shift between different datasets. See Figure 3.16.
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Figure 3.12: Importances of different parts of the clathrin track to predictions made by the neural network.
A The most negative predictions see negative contributions due to their short lifetime (end of track) and
lack of peaks near the end of the track. B The most positive predictions see their largest contributions at the
highest amplitudes and after falling from a large peak.
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is some level of stochasticity in the auxilin spike that cannot be predicted from the clathring track alone.
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Chapter 4

A Debiased MDI Feature Importance
Measure for Random Forests

4.1 Introduction
Understanding how a machine learning (ML) model makes predictions is important in many sci-
entific and industrial problems [91]. Appropriate interpretations can help increase the predictive
performance of a model and provide new domain insights. While a line of study focuses on in-
terpreting any generic ML model [120, 101], there is a growing interest in developing specialized
methods to understand specific models. In particular, interpreting Random Forests (RFs) [18] and
its variants [79, 119, 117, 118, 13, 69] has become an important area of research due to the wide
ranging applications of RFs in various scientific areas, such as genome-wide association studies
(GWAS) [34], gene expression microarray [71, 103], and gene regulatory networks [58].

A key question in understanding RFs is how to assign feature importance. That is, which fea-
tures does a RF rely on for prediction? One of the most widely used feature importance measures
for RFs is mean decrease impurity (MDI) [20]. MDI computes the total reduction in loss or im-
purity contributed by all splits for a given feature. This method is computationally very efficient
and has been widely used in a variety of applications [107, 58]. However, theoretical analysis of
MDI has remained sparse in the literature [64]. Assuming there are an infinite number of sam-
ples, Louppe et al. [81] characterized MDI for totally randomized trees using mutual information
between features and the response. They showed that noisy features, i.e., features independent of
the outcome, have zero MDI importance. However, empirical studies have shown that MDI sys-
tematically assigns higher feature importance values to numerical features or categorical features
with many categories [118]. In other words, high MDI values do not always correspond to the
predictive associations between features and the outcome. We call this phenomenon MDI feature
selection bias. Louppe [80] studied this issue and demonstrate via simulations that early stopping
mechanisms (e.g., limited depth and larger leaf sizes) are effective to reduce the feature selection
bias.

In this paper, using the original definition of MDI, we analyze the non-asymptotic behavior
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of MDI and bridge the gap between the population case and the finite sample case. We find
that under mild conditions, if the samples used for each tree are i.i.d, then the expected MDI
feature importance of noisy features derived from any tree ensemble constructed on n samples
with p features is upper bounded by dn log(np)/mn, where mn is the minimum leaf size and dn
is the maximum tree depth in the ensemble. In other words, deep trees with small leaves suffer
more from feature selection bias. Our findings are particularly relevant for practical applications
involving RFs, in which scenario deep trees are recommended [18] and used more often. To reduce
the feature selection bias for RFs, especially when the trees are deep, we derive a new analytical
expression for MDI and then use this new expression to propose a new feature importance measure
that evaluates MDI using out-of-bag samples. We call this importance measure MDI-oob. For both
regression and classification problems, we use simulated data and a genomic dataset to demonstrate
that MDI-oob often achieves 5%–10% higher AUC scores compared to other feature importance
measures used in several publicly available packages including party [27], ranger [130], and
scikit-learn [100].

Related works
In addition to MDI [128, 83], some other feature importance measures have been studied in the
literature and used in practice:

• Split count, namely, the number of times a feature is used to split [118], can be used as a
feature importance measure. This method has been studied in [119, 13] and is available in
XGBoost [31].

• Mean decrease in accuracy (MDA) measures a feature’s importance by the reduction in the
model’s accuracy after randomly permuting the values of a feature. The motivation of MDA
is that permuting an important feature would result in a large decrease in the accuracy while
permuting an unimportant feature would have a negligible effect. Different permutation
choices have been studied in [119, 61].

Recently, Lundberg et al. [83] show that for feature importance measures such as MDI and split
counts, the importance of a feature does not always increase as the outcome becomes more de-
pendent on that feature. To remedy this issue, they propose the tree SHAP feature importance,
which focuses on giving consistent feature attributions to each sample. When individual feature
importance is obtained, overall feature importance is straightforward to obtain by just averaging
the individual feature importances across samples.

While our paper focuses on interpreting trees learned via the classic RF procedure, there is
another line of work that focuses on modifying the tree construction procedure to obtain better
feature importance measures. Hothorn et al. [57] introduced cforest in the R package party that
grows classification trees based on a conditional inference framework. Strobl et al. [118] showed
that cforest suffers less from the feature selection bias. Sandri and Zuccolotto [107] proposed to
create a set of uninformative pseudo-covariates to evaluate the bias in Gini importance. Nembrini
et al. [94] gave a modified algorithm that is faster than the original method proposed by Sandri
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and Zuccolotto [107] with almost no overhead over the creation of the original RFs and available
in the R package ranger. In a very recent paper, Zhou and Hooker [137] proposed to evaluate
the decrease in impurity at each node using out-of-bag samples. However, our implementation is
different from that in [137] and MDI-oob enjoys higher computational efficiency.

In Section 4.4, we will compare MDI-oob with all the aforementioned methods except the split
count, for which we did not find a package that implements it for RFs.

Organization
The rest of this paper is organized as follows. In Section 4.2, we provide a non-asymptotic anal-
ysis to quantify the bias in the MDI importance when noisy features are independent of relevant
features. In Section 4.3, we give a new characterization of MDI and propose a new MDI feature
importance using out-of-bag samples, which we call MDI-oob. In Section 4.4, we compare our
MDI-oob with other commonly used feature importance measures in terms of feature selection
accuracy using the simulated data and a genomic ChIP dataset. We conclude our work and discuss
possible future directions in Section 4.5.

4.2 Understanding the feature selection bias of MDI
In this section, we focus on understanding the finite sample properties of MDI importance and why
it may have a significant bias in feature selection. We first briefly review the construction of RFs
and introduce some important notations. Then, using the original definition of MDI, we give a
tight upper bound to quantify the expected bias of MDI importance for a noisy feature. This upper
bound is tight up to a log n factor where n is the number of i.i.d. samples.

Background and notations
Suppose that the data set D contains n i.i.d samples from a random vector (X1, . . . , Xp, Y ), where
X = (X1, . . . , Xp) ∈ Rp are p input features and Y ∈ R is the response. The ith sample is denoted
by (xi, yi), where xi = (xi1, . . . , xip). We say that a feature Xk is a noisy feature if Xk and Y are
independent, and a relevant feature otherwise. Note that this definition of noisy features has also
been used in many previous papers such as [81, 109]. We denote S ⊂ [p] as the set of indexes of
relevant features. We are particularly interested in the case where the number of relevant features is
small, namely, |S| is much smaller than p. For any number m ∈ N, [m] denotes the set of integers
{1, . . . ,m}. For any hyper-rectangle R ⊂ Rp, let 1(X ∈ R) be the indicator function taking value
one when X ∈ R and zero otherwise.

RFs are an ensemble of classification and regression trees, where each tree T defines a mapping
from the feature space to the response. Trees are constructed independently of one another on a
bootstrapped or subsampled data setD(T ) of the original dataD. Any node t in a tree T represents a
subset (usually a hyper-rectangle)Rt of the feature space. A split of the node t is a pair (k, z) which
divides the hyper-rectangle Rt into two hyper-rectangles Rt ∩ 1(Xk ≤ z) and Rt ∩ 1(Xk > z),
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corresponding to the left child tleft and right child tright of node t, respectively. For a node t in a tree
T , Nn(t) = |{i ∈ D(T ) : xi ∈ Rt}| denotes the number of samples falling into Rt and

µn(t) :=
1

Nn(t)

∑
i:xi∈Rt

yi (4.1)

denotes their average response.
Each tree T is grown using a recursive procedure which proceeds in two steps for each node

t. First, a subset M ⊂ [p] of features is chosen uniformly at random. Then the optimal split
v(t) ∈M, z(t) ∈ R is determined by maximizing:

∆I(t) := Impurity(t)− Nn(tleft)

Nn(t)
Impurity(tleft)− Nn(tright)

Nn(t)
Impurity(tright) (4.2)

for some impurity measure Impurity(t). The procedure terminates at a node t if two children
contain too few samples, i.e., min{Nn(tleft), Nn(tright)} ≤ mn , or if all responses are identical.
The threshold mn is called the minimum leaf size. If a node t does not have any children, it is
called a leaf node; otherwise, it is called an inner node. We define the set of inner nodes of a tree
T as I(T ). We say that T ′ is a sub-tree of T if T ′ can be obtained by pruning some nodes in T .

Some popular choices of the impurity measure Impurity(t) include variance, Gini index, or
entropy. For simplicity, we focus on the variance of the responses, i.e.,

Impurity(t) =
1

Nn(t)

∑
i:xi∈Rt

(yi − µn(t))2, (4.3)

throughout the paper unless stated otherwise. Later we show that this definition of impurity is
equivalent to the Gini index of categorical variables with one hot encoding (see Remark in Section
4.3)

The Mean Decrease Impurity (MDI) feature importance of Xk, with respect to a single tree
T (first proposed by Breiman et al. in [20]) and an ensemble of ntree trees T1, . . . , Tntree , can be
written as

MDI(k, T ) =
∑

t∈I(T ),v(t)=k

Nn(t)

n
∆I(t) and MDI(k) =

1

ntree

ntree∑
s=1

MDI(k, Ts), (4.4)

respectively. This expression is the best known formula for MDI and was analyzed in many papers
such as Louppe et al. [81].

Finite sample bias of MDI importance for Random Forests
Given the set S of relevant features and a tree T , we denote

G0(T ) =
∑
k/∈S

MDI(k, T ) (4.5)
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as the sum of MDI importance of all noisy features. Ideally, G0(T ) should be close to zero with
high probability, to ensure that no noisy features get selected when using MDI importance for
feature selection. In fact, Louppe et al. [81] show that G0(T ) is indeed zero almost surely if we
grow totally randomized trees with infinite samples. However, G0(T ) is typically non-negligible
in real data, and finite sample properties of G0(T ) are not well understood. In order to bridge
this gap, we conduct a non-asymptotic analysis of the expected value of G0(T ). Our main result
characterizes how the expected value of G0(T ) depends on mn, the minimum leaf size of T , and
p, the dimension of the feature space. We start with the following simple but important fact.

Fact 1. If T ′ is a sub-tree of T , then MDI(k, T ′) ≤ MDI(k, T ) for any feature Xk.

This fact naturally follows from the observation that by definition, ∆I(t) ≥ 0 for any node
t. Since the impurity decrease at each node is guaranteed to be non-negative, G0(T ) will never
decrease as T grows deeper, in which case the minimum leaf size mn will be smaller. Indeed, if
T is grown to purity (mn = 1), and all features are noisy (S = ∅), then G0(T ) would simply be
equal to the sample variance of the responses in the data D(T ). How fast does G0(T ) increase as
the minimum leaf size mn becomes smaller? To quantify the relation between G0(T ) and mn, we
need a few mild conditions which we now describe. Let

yi = φ(xi,S) + εi, i = 1, . . . , n (4.6)

for some unknown function φ : R|S| → R, where εi are i.i.d zero-mean Gaussian noise. We make
the following assumptions.

(A1) Xk ∼ Unif[0, 1] for all k ∈ [p]. In addition, the noisy features {Xk, k ∈ [p]\S} are
mutually independent, and independent of all relevant features. Here S denotes the set of relevant
features.

(A2) φ is bounded: supx∈[0,1]|S| |φ(x)| ≤M for some M > 0.
The Assumptions (A1) and (A2) are weaker than the assumptions usually made when studying

the statistical properties of RF. The marginal uniform distribution condition in (A1) is common in
the RF literature [109], and can be easily satisfied by transforming the features via its inverse CDF.
Since we are interested in characterizing the MDI of noisy features, we do not require the relevant
features to be independent of each other. We do require that noisy features are independent of
relevant features, which is a limitation of Theorem 1 below. Correlated features are commonly
encountered in practice and difficult for any feature selection method.

We now state our first main result which provides a non-asymptotic upper and lower bound for
the expected value of the maximum of G0(T ) over all tree T with minimum leaf size mn.

Theorem 1. Let Tn(mn) denote the set of decision trees whose minimum leaf size is lower bounded
by mn, and Tn(mn, dn) ⊂ Tn(mn) denote the subset of Tn(mn) whose depth is upper bounded by
dn. Under Assumptions (A1) and (A2), there exists a positive constant C such that,

EX,ε sup
T∈Tn(mn,dn)

G0(T ) ≤ C
dn log(np)

mn

. (4.7)
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In addition, when f = 0 and mn ≥ 36 log p+ 18 log n,

EX,ε sup
T∈Tn(mn)

G0(T ) ≥ log p

Cmn

. (4.8)

We give the proof in the Appendix. To the best of our knowledge, Theorem 1 is the first
non-asymptotic result on the expected MDI importance of tree ensembles. In particular, the upper
bound can be directly applied to any tree ensembles with a minimum leaf size mn and a maxi-
mum tree depth dn, including Breiman’s original RF procedure, if subsampling is used instead of
bootstrapping.

Proof Sketch. Every node t in a tree T ∈ Tn(mn, dn) corresponds to an axis-aligned hyper-
rectangle in [0, 1]p which contains at least mn samples and is formed by splitting on at most dn
dimensions consecutively. Therefore, bounding the supremum of impurity reduction for any po-
tential node in Tn(mn, dn) boils down to controlling the complexity of all such hyper-rectangles.
Two hyper-rectangles are considered equivalent if they contain the same subset of samples, since
the impurity reductions of these two hyper-rectangles are always the same. Up to this equivalence,
it can be proved that the number of unique hyper-rectangles of interest is upper bounded by (np)dn ,
which corresponds to the dnlog(np) term in the upper bound. The final result is obtained via union
bound.

In the upper bound, each node t is obtained by splitting on at most dn features. In practice,
dn is typically at most of order log n. Indeed, if the decision tree is a balanced binary tree, then
dn ≤ log2 n. Therefore, for balanced trees, the upper bound can be written as

EX,ε sup
T∈Tn(mn,dn)

G0(T ) ≤ C
dn log(np)

mn

≤ C
(log n)2 + log n log p

mn

, (4.9)

and the theorem shows that the sum of MDI importance of noisy features is of order log p
mn

, i.e.,

sup
φ:‖φ‖∞≤M

EX,ε sup
T∈Tn(mn)

G0(T ) ∼ log p

mn

, (4.10)

up to a log n term correction, which is typically small in the high dimensional p � n setting. If
all features Xj are categorical with a bounded number of categories, then the upper bound can be
improved to

EX,ε sup
T∈Tn(mn,dn)

G0(T ) ≤ C
dn log p

mn

, (4.11)

which shows that the MDI importance of noisy features can be better controlled if the noisy features
are categorical rather than numerical. That is consistent with the previous empirical studies because
the number of candidate split points for a numerical feature is larger than that for a categorical
feature.

Theorem 1 shows that the supremum of MDI importance of noisy features over all trees with
minimum leaf size mn is, in expectation, roughly inversely proportional to mn. In the Appendix
Fig. 4.4, we show that the inversely proportional relationship is consistent with the empirical
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G0(T ) on a simulated dataset described in the first simulation study in Section 4.4. Therefore,
to control the finite sample bias of MDI importance, one should either grow shallow trees, or
use only the shallow nodes in a deep tree when computing the feature importance. In fact, since
G0(T ) depends on the dimension p only through a log factor log p, we expect G0(T ) to be very
small even in a high-dimensional setting if mn is larger than, say,

√
n. For a balanced binary tree

grown to purity with depth dn = log2 n, this corresponds to computing MDI only from the first
dn/2 = (log2 n)/2 levels of the tree, as the node size on the dth level of a balanced tree is n/2d.

Fact 1 implies that the MDI importance of relevant features might also decrease as mn in-
creases, but we will show in simulation studies that they will decrease at a much slower rate,
especially when the underlying model is sparse.

4.3 MDI using out-of-bag samples (MDI-oob)
As shown in the previous section, for balanced trees, the sum of MDI feature importance of all
noisy features is of order log(p)

mn
if we ignore the log(n) terms. This means that the MDI feature

selection bias becomes severe for trees with smaller leaf size mn, which usually corresponds to a
deeper tree. Fortunately, this bias can be corrected by evaluating MDI using out-of-bag samples.
In this section, we first introduce a new analytical expression of MDI as the motivation of our new
method, then we propose the MDI-oob as a new feature importance measure. For simplicity, in
this section, we only focus on one tree T . However, all the results are directly applicable to the
forest case.

A new characterization of MDI
Recall that the original definition of the MDI importance of any feature k is provided in Equation
(4.4), that is, the sum of impurity decreases among all the inner nodes t such that v(t) = k.
Although we can use this definition to analyze the feature selection bias of MDI in Theorem 1, this
expression (4.4) gives us few intuitions on how we can get a new feature importance measure that
reduces the MDI bias. Next, we derive a novel analytical expression of MDI, which shows that
the MDI of any feature k can be viewed as the sample covariance between the response yi and the
function fT,k(xi) defined in Proposition 1. This new expression inspires us to propose a new MDI
feature importance measure by using the out-of-bag samples.

Proposition 1. Define the function fT,k(·) to be

fT,k(X) =
∑

t∈I(T ):v(t)=k

{
µn(tleft)1(X ∈ Rtleft) + µn(tright)1(X ∈ Rtright)− µn(t)1(X ∈ Rt)

}
.

Then the MDI of the feature k in a tree T can be written as:

1

|D(T )|
∑
i∈D(T )

fT,k(xi) · yi, (4.12)
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We give the proof in the Appendix. The proof is just a few lines but it requires a good un-
derstanding of MDI. Although we have not seen this analytical expression in the prior works,
we found that the functions fT,k(·) have been studied from a quite different perspective. Those
functions were first proposed in Saabas [105] to interpret the RF predictions for each individual
sample. According to this paper, fT,k can be viewed as the ”contribution” made by the feature k
in the tree T . For any tree, those functions fT,k can be easily computed using the python package
treeinterpreter.

It can be shown that
∑

i∈D(T ) fT,k(xi) = 0. That implies 1
|D(T )|

∑
i∈D(T ) fT,k(xi)·yi is essentially

the sample covariance between fT,k(xi) and yi on the bootstrapped dataset D(T ). This indicates a
potential drawback of MDI: RFs use the training data D(T ) to construct the functions fT,k(·), then
MDI uses the same data to evaluate the covariance between yi and fT,k(xi) in Equation (4.12).

Remark: So far we have only considered regression trees, and have defined the impurity at a
node t using the sample variance of responses. For classification trees, one may use Gini index as
the measure of impurity. We point out that these two definitions of impurity are actually equivalent
when we use a one-hot vector to represent the categorical response. Therefore, our results are
directly applicable to the classification case. Suppose that Y is a categorical variable which can
take D values c1, c2, . . . , cD. Let pd = P(Y = cd). Then the Gini index of Y is Gini(Y ) =∑D

d=1 pd(1 − pd). We define the one-hot encoding of Y as a D-dimensional vector Ỹ = (1(Y =
c1), . . . ,1(Y = cD)). Then

Var(Ỹ ) = ‖Ỹ − EỸ ‖2
2

=
D∑
d=1

(EỸ 2
i − (EỸi)2)

=
D∑
d=1

(EỸi − (EỸi)2)

=
D∑
d=1

pd(1− pd) = Gini(Y ),

(4.13)

thereby showing that Gini index and variance are equivalent.

Evaluating MDI using out-of-bag samples
Proposition 1 suggests that we can calculate the covariance between yi and fT,k(xi) in Equation
(4.12) using the out-of-bag samples D\D(T ):

MDI-oob of feature k =
1

|D\D(T )|
∑

i∈D\D(T )

fT,k(xi) · yi. (4.14)
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In other words, for each tree, we calculate the fT,k(xi) for all the OOB samples xi and then compute
MDI-oob using (4.14). Although out-of-bag samples have been used for other feature importance
measures such as MDA, to the best of the authors’ knowledge, there are few results that use the
out-of-bag samples to evaluate MDI feature importance. A naive way of using the out-of-bag
samples to evaluate MDI is to directly compute the impurity decrease at each inner-node of a tree
using OOB samples. However, this approach is not desirable since the impurity decrease at each
node is still always positive unless the responses of all the OOB samples falling into a node are
constant. In this case, an argument similar to the proof of Theorem 1 can show that the bias of
directly computing impurity using OOB samples could still be large for deep trees. The idea of
MDI-oob depends heavily on the new analytical MDI expression. Without the new expression, it
is not clear how one can use out-of-bag samples to get a better estimate of MDI. One highlight of
the MDI-oob is its low computation cost. The time complexity of evaluating MDI-oob for RFs is
roughly the same as computing the RF predictions for |D\D(T )| number of samples.

4.4 Simulation experiments
Simulated study on the effect of minimum leaf size and the tree depth

In this simulation, we investigate the empirical relationship between MDI importance and the
minimum leaf size. To mimic the major experiment setting in the paper [118], we generate the
data as follows. We sample n = 200 observations, each containing 5 features. The first feature is
generated from standard Gaussian distribution. The second feature is generated from a Bernoulli
distribution with p = 0.5. The third/fourth/fifth features have 4/10/20 categories respectively
with equal probability of taking any states. The response label y is generated from a Bernoulli
distribution such that P (yi = 1) = (1 + xi2)/3. While keeping the number of trees to be 300, we
vary the minimum leaf size of RF from 1 to 50 and record the MDI of every feature. The results are
shown in Fig. 4.1. We can see from this figure that the MDI of noisy features, namely X1, X3, X4
and X5, drops significantly when the minimum leaf size increases from 1 to 50. This observation
supports our theoretical result in Theorem 1. Besides the minimum leaf size, we also investigate
the relationship between MDI and the tree depth. As tree depth increases, the minimum leaf size
generally decreases exponentially. Therefore, we expect the MDI of noisy features to become
larger for increasing tree depth. We vary the maximum depth from 1 to 20 and record the MDI of
every feature. The results shown in Fig. 4.2 are consistent with our expectation. MDI importance
of noisy features increase when the tree depth increases from 1 to 20. Fig. 4.3 shows the MDI-oob
measure and it indeed reduces the bias of MDI in this simulation.

Noisy feature identification using the simulated data
In this experiment, we evaluate different feature importance measures in terms of their abilities
to identify noisy features in a simulated data set. We compare our method with the following
methods: MDA, cforest in the R package party, SHAP[83], default feature importance (MDI)
in scikit-learn, the impurity corrected Gini importance in the R package ranger, UFI in
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Figure 4.1: MDI against min leaf
size.

Figure 4.2: MDI against tree depth. Figure 4.3: MDI-oob against min
leaf size.

[137], and naive-oob, which refers to the naive method that evaluates impurity decrease at each
node using out-of-bag samples directly. To evaluate feature importance measures, we generate the
following simulated data. Inspired by the experiment settings in Strobl et al. [118], our setting
involves discrete features with different number of distinct values, which poses a critical challenge
for MDI. The data has 1000 samples with 50 features. All features are discrete, with the jth feature
containing j + 1 distinct values 0, 1, . . . , j. We randomly select a set S of 5 features from the
first ten as relevant features. The remaining features are noisy features. Choosing active features
with fewer categories represents the most challenging case for MDI. All samples are i.i.d. and all
features are independent. We generate the outcomes using the following rules:

• Classification: P (Y = 1|X) = Logistic(2
5

∑
j∈S Xj/j − 1).

• Regression: Y = 1
5

∑
j∈S Xj/j + ε, where ε ∼ N (0, 100 · Var(1

5

∑
j∈S Xj/j)).

Treating the noisy features as label 0 and the relevant features as label 1, we can evaluate a feature
importance measure in terms of its area under the receiver operating characteristic curve (AUC).
Note that when a feature importance measure gives low importance to relevant features, its AUC
score measure can be smaller than 0.5 or even 0. We grow 100 trees with the minimum leaf size
set to either 100 (shallow tree case) or 1 (deep tree case). The number of candidate features mtry

is set to be 10. We repeat the whole process 40 times and report the average AUC scores for each
method in Table 4.1. The boxplots For this simulated setting, MDI-oob achieves the best AUC
score under all cases.

Noisy feature identification using a genomic ChIP dataset

To evaluate our method MDI-oob in a more realistic setting, we consider a ChIP-chip and ChIP-seq
dataset measuring the enrichment of 80 biomolecules at 3912 regions of the Drosophila genome
[28, 84]. These data have previously been used in conjunction with RF-based methods, namely
iterative random forests (iRF) [13], to predict functional labels associated with genomic regions.
They provide a realistic representation of many issues encountered in practice, such as heterogene-
ity and dependencies among features, which make it especially challenging for feature selection
problems. To evaluate feature selection in the ChIP data, we scale each feature Xj to be between
0 and 1. Second, we randomly select a set S of 5 features as relevant features and include the rest
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as noisy features. We randomly permute values of any noisy features to break their dependencies
with relevant features. By this means, we avoid the cases where RFs ”think” some features are
important not because they themselves are important but because they are highly correlated with
other relevant features. Then we generate responses using the following rules:

• Classification:P (Y = 1|X) = Logistic(2
5

∑
j∈S Xj − 1).

• Regression: Y = 1
5

∑
j∈S Xj + ε, where ε ∼ N (0, 100 · Var(1

5

∑
j∈S Xj)).

All the other settings remain the same as the previous simulations. We report the average AUC
scores for each method in Table 4.1. The standard errors and the beeswarm plots of all the methods
are included in the Appendix. Naive-oob, namely, the method that directly computes MDI using
the out-of-bag samples is hardly any better than the original gini importance. MDI-oob or UFI
usually achieves the best AUC score in three out of four cases, except for shallow regression trees,
when all methods appear to be equally good with AUC scores close to 1. Although UFI and MDI-
oob use out-of-bag samples in different ways, their results are generally comparable. We also note
that increasing the minimum leaf size consistently improves the AUC scores of all methods.

Another observation is that MDA behaves poorly in some simulations despite its use of a val-
idation set. This could be due to the low signal-to-noise ratio in the simulation setting. After we
train the RF model on the training set, we evaluated the model’s accuracy on a test set. It turns out
that the accuracy of the model is quite low. In that case, MDA struggles because the accuracy dif-
ference between permuting a relevant feature and permuting a noisy feature is small. We observe
that the MDA gets better when we increase the signal-to-noise ratio.

The computation time of different methods is hard to compare due to a few factors. Because
the packages including scikit-learn and ranger compute feature importance when con-
structing the tree, it is hard to disentangle the time taken to construct the trees and the time taken to
get the feature importance. Furthermore, different packages are implemented in different program-
ming languages so it is not clear if the time difference is because of the algorithm or because of
the language. We implement MDI-oob in Python and for our first simulated classification setting,
MDI-oob takes ∼ 3.8 seconds for each run. To compare, scikit-learn which uses Cython (A
C extension for Python) takes ∼ 1.4 seconds to construct the RFs for each run. Thus, MDI-oob
runs in a reasonable time frame and we expect it to be faster if it is implemented in C or C++.

4.5 Discussion and future directions
Mean Decrease Impurity (MDI) is widely used to assess feature importance and its bias in feature
selection is well known. Based on the original definition of MDI, we show that its expected bias
is upper bounded by an expression that is inversely proportional to the minimum leaf size under
mild conditions, which means deep trees generally have a higher feature selection bias than shallow
trees. To reduce the bias, we derive a new analytical expression for MDI and use the new expression
to obtain MDI-oob. For the simulated data and a genomic ChIP dataset, MDI-oob has exhibited
the state-of-the-art feature selection performance in terms of AUC scores.
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Table 4.1: Average AUC scores for noisy feature identification

Deep tree (min leaf size = 1) Shallow tree(min leaf size = 100)
Simulated ChIP Simulated ChIP
C R C R C R C R

MDI-oob 0.76 0.52 0.87 0.98 0.75 0.58 0.94 0.98
UFI 0.72 0.54 0.88 0.99 0.75 0.56 0.94 0.98
naive-oob 0.18 0.10 0.67 0.71 0.60 0.39 0.89 0.97
SHAP 0.55 0.33 0.82 0.96 0.68 0.46 0.91 0.97
ranger 0.56 0.50 0.73 0.97 0.55 0.49 0.76 0.99
MDA 0.49 0.51 0.54 0.97 0.50 0.58 0.50 0.99
cforest 0.65 0.50 0.79 0.93 0.70 0.49 0.90 0.98
MDI 0.12 0.09 0.60 0.71 0.63 0.40 0.88 0.97

”C” stands for classification, ”R” stands for regression. The column maximum is bolded.

Comparison to SHAP. SHAP originates from game theory and offers a novel perspective to
analyze the existing methods. While it is desirable to have ‘consistency, missingness and local
accuracy’, our analysis indicates that there are other theoretical properties that are also worth taking
into account. As shown in our simulation, the feature selection bias of SHAP increases with the
depth of the tree, and we believe SHAP can also use OOB samples to improve feature selection
performance.

Relationship to honest estimation. Honest estimation is an important technique built on the
core notion of sample splitting. It has been successfully used in causal inference and other areas
to mitigate the concern of over-fitting in complex learners due to usage of same data in different
stages of training. The proposed algorithm MDI-oob has important connections with ”honest sam-
pling” or ”honest estimation”. For example, in Breiman’s 1984 book [20], he proposed to use a
separate validation set for pruning and uncertainty estimation. In [125], each within-leaf prediction
is estimated using a different sub-sample (such as OOB sample) than the one used to decide split
points. Theoretical results of these papers and Proposition 1 of our paper convey the same mes-
sage, that finite sample bias is caused by using the same data for growing trees and for estimation,
and the bias can be reduced if we leverage OOB data. We believe the theoretical contributions of
those papers can also help us analyze the statistical properties (such as variance) of the MDI-oob.

Future directions. Although the MDI-oob shows promising results for selecting relevant fea-
tures, it also raises many interesting questions to be considered in the future. First of all, how can
MDI-oob be extended to better accommodate correlated features? Going beyond feature selection,
can importance measures also rank the relevant features in a reasonable order? Finally, can we
use the new analytical expression of MDI to give a tighter theoretical bound for MDI’s feature
selection bias? We are exploring these interesting questions in our ongoing work.
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4.6 Proofs
Proof of Theorem 1. To state the proof of the theorem, we need to define more notations. For a
generic set A ⊂ [0, 1]p, with slight abuse of notations, let Nn(A) =

∑
i 1(xi ∈ A) be the number

of samples with input features in A, and

µn(A) =

∑
xi∈A yi

Nn(A)

be the average response of those samples. For any feature Xk and z ∈ (0, 1), let ∆I(A, (k, z)) be
the impurity decrease when splitting A into A ∩ {Xk ≤ z} and A ∩ {z < Xk}, and ∆I(A, k) =
sup0≤z≤1 ∆I(A, (k, z)).

The proof of the theorem proceeds in three parts. First, we prove a lemma which gives a tail
bound for ∆I(A, k). Second, we use the lemma and union bound to derive the upper bound for
the expectation of G0(T ). Finally, we use a separate argument based on Gaussian comparison
inequalities to obtain the lower bound.

Lemma 1. For any axis-aligned hyper-rectangle A ⊂ [0, 1]p, k /∈ S and δ > 0, we have

PX,ε(∆I(A, k) ≥ δ
∣∣Nn(A)) ≤ 4Nn(A)e

− δNn(A)

4(M+1)2 .

Proof of Lemma 1. We suppose without loss of generality that x1, . . . ,xNn(A) ∈ A. For any z ∈
[0, 1], we let

Aleft = A ∩ {0 ≤ Xk ≤ z}, Aright = A ∩ {z < Xk ≤ 1},

and introduce the shorthands

pleft =
Nn(Aleft)

Nn(A)
, pright =

Nn(Aright)

Nn(A)
, µleft = µn(Aleft), µright = µn(Aright).
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Then

∆I(A, (k, z)) =
1

Nn(A)

∑
xi∈A

(yi − µn(A))2 − 1

Nn(A)

∑
xi∈A

(yi − µn(Aleft))2 1(xik ≤ z)

− 1

Nn(A)

∑
xi∈A

(yi − µn(Aright))2 1(xik > z)

=
1

Nn(A)

∑
xi∈A

y2
i − µn(A)2 − pleft(

1

Nn(A)pleft

∑
xi∈A

y2
i 1(xik ≤ z)− (µleft)2)

− pright(
1

Nn(A)pright

∑
xi∈A

y2
i 1(xik > z)− (µright)2)

= pleft(µleft)2 + pright(µright)2 − µn(A)2

= (pleft(µleft)2 + pright(µright)2)(pleft + pright)− (pleftµleft + prightµright)2

= pleftpright(µleft − µright)2

≤ 2pleftpright[(µleft − µ)2 + (µright − µ)2]

≤ 2pleft(µleft − µ)2 + 2pright(µright − µ)2,

where
µ = E[Y |X ∈ A] = E[φ(X)|X ∈ A].

Now suppose without loss of generality that x1k < x2k < · · · < xnk (otherwise we can reorder the
samples by Xk). Since k /∈ S, Xk is independent of XS and therefore independent of Y . Thus the
distribution of (y1, . . . , yn) does not change after the reordering, i.e.,

yi
i.i.d∼ (φ(X)|X ∈ A) + ε.

Note that

sup
z

pleft(µleft − µ)2 ≤ sup
1≤m≤Nn(A)

m

Nn(A)

(
1

m

m∑
i=1

yi − µ

)2

.

Note that Y is sub-Gaussian with parameter M + 1. Therefore, for each 1 ≤ m ≤ Nn(A), by
Hoeffding bound,

P

 m

Nn(A)

(
1

m

m∑
i=1

yi − µ

)2

≥ δ

∣∣∣∣Nn(A)

 ≤ 2e−(M+1)2δNn(A)2/m ≤ 2e
− δNn(A)

(M+1)2 .

Therefore

P
(

sup
z
pleft(µleft − µ)2 ≥ δ

∣∣∣∣Nn(A)

)
≤ 2Nn(A)e

− δNn(A)

(M+1)2 .
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By symmetry, the same bound holds for pright(µright − µ)2. Therefore

P(∆I(A, k) ≥ δ
∣∣Nn(A))

≤P
(

sup
z
pleft(µleft − µ)2 ≥ δ/2

∣∣Nn(A)

)
+ P

(
sup
z
pright(µright − µ)2 ≥ δ/2

∣∣Nn(A)

)
≤4Nn(A)e

− δNn(A)

4(M+1)2 ,

and the lemma is proved.

Proof of the upper bound in Theorem 1
Without loss of generality, assume that when we split on feature k, the cut is always performed

along the direction of k at some data point (and that data point falls into the right sub-tree). Suppose
that εi has unit variance for all i. Let C = 2 max{256, 16(M + 1)2}. We also assume, without
loss of generality, that mn ≥ 8dn. Otherwise, since G0(T ) is, by definition, upper bounded by the
sample variance of y, we have

EX,ε sup
T∈Tn(mn,dn)

G0(T ) ≤ Var(Y ) ≤M2 + 1 ≤ 16(M + 1)2dn log np

mn

.

To simplify notation, we define xn+1 = (0, . . . , 0) and xn+2 = (1, . . . , 1). For any V ⊂
[p],L,R ∈ [n+ 2]|V |, let

A(V,L,R) = {X = (X1, . . . , Xp) : xLi,Vi ≤ XVi < xRi,Vi , 1 ≤ i ≤ |V |, 0 ≤ Xk ≤ 1, k /∈ V }

be the random axis-aligned hyper-rectangle obtained by splitting on features in V , where the left
and right endpoints of the ith feature Vi are determined by xLi,Vi and xRi,Vi . Note that in this
definition, we treat xi as random variables rather than fixed, and A(V,L,R) can be the empty set
with non-zero probability. Let

A(V ) = {A(V,L,R)|L,R ∈ [n+ 2]|V |}

be all axis-aligned hyper-rectangles obtained by splitting on features in V . For any d ≤ dn, let

Ad = ∪|V |=dA(V )

be the collection of all possible subsets of [0, 1]p obtained by splitting on d features.
Fix δ > 96M2dn

mn
. We will first show that

PX,ε
(
∃A ∈ Ad, k /∈ S : ∆I(A, k) ≥ mnδ

Nn(A)
and Nn(A) ≥ mn

)
≤ 5(np)d+1 exp

(
− δmn

max{256, 16(M + 1)2}

)
.

(4.15)
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Note that for any two events C1 and C2, the inequality P(C1 ∩ C2) ≤ P(C1|C2) always holds.
Therefore, for any hyper-rectangle A, we have

PX,ε
(

∆I(A, k) ≥ mnδ

Nn(A)
and Nn(A) ≥ mn

)
≤PX,ε

(
∆I(A, k) ≥ mnδ

Nn(A)

∣∣∣∣Nn(A) ≥ mn

) (4.16)

To simplify notation, we will drop the conditional event Nn(A) ≥ mn in the remainder of the
proof of the upper bound, unless stated otherwise.

Fix V ⊂ [p],L,R ∈ [n + 2]|V |, and k /∈ S. Conditional on samples in L and R, we would
like to apply Lemma 1 to A(V,L,R) and k. The only problem is that there are now samples on
the boundary of A(V,L,R), namely those in L and R. Let xL = {xi}i∈L and xR = {xi}i∈R.
Conditional on xL, xR and Nn(A(V,L,R)), and on the random variable X ∈ A(V,L,R), X is
uniformly distributed in A(V,L,R). For a set A, we let A◦ be the interior of A and let Ā be the
boundary of A. Since mn ≥ 8dn,

Nn(A◦(V,L,R))

Nn(A(V,L,R))
≥ mn − 2dn

mn

≥ 3

4
.

By Lemma 1, we have

PX,ε
(

∆I(A
◦(V,L,R), k) ≥ mnδ

3Nn(A(V,L,R))

∣∣∣∣xL,xR, Nn(A(V,L,R))

)
≤ 4Nn(A◦(V,L,R)) exp

(
− δmnNn(A◦(V,L,R))

12(M + 1)2Nn(A(V,L,R))

)
≤ 4n exp

(
− δmn

16(M + 1)2

) (4.17)

for large n. Since the right hand side does not depend on xL,xR, Nn(A(V,L,R)), we can take
expectation with respect to them, and obtain

PX,ε
(

∆I(A
◦(V,L,R), k) ≥ mnδ

3Nn(A(V,L,R))

)
≤ 4n exp

(
− δmn

16(M + 1)2

)
(4.18)

On the other hand, we have the inequality

∆I(A(V,L,R), k) ≤ ∆I(A
◦(V,L,R), k) +

∑
i∈L,R(yi − µn(A(V,L,R)))2

Nn(A(V,L,R))

≤ ∆I(A
◦(V,L,R), k) +

∑
i∈L,R 2(y2

i + µn(A(V,L,R))2)

Nn(A(V,L,R))
.

(4.19)
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We have

PX,ε
( ∑

i∈L,R 2y2
i

Nn(A(V,L,R))
≥ mnδ

3Nn(A(V,L,R))

)
≤P
(∑

i∈L,R 4(f 2(xi) + ε2i )

Nn(A(V,L,R))
≥ mnδ

3Nn(A(V,L,R))

)
≤P
(∑

i∈L,R 4(f 2(xi) + ε2i )

mn

≥ δ

3

)
≤P
(∑

i∈L,R 4M2 + 4ε2i
mn

≥ δ

3

)
≤P
(∑2dn

i=1(ε2i − 1)

mn

≥ δ

16Nn(A◦(V,L,R)
)

)
≤ exp(−δmn

256
),

(4.20)

for large n, where the fourth inequality holds because δ ≥ 96M2dn/mn, and the last inequality
follows from the well-known tail bound

P
(∣∣∣∣1dχ2

d − 1

∣∣∣∣ ≥ δ0

)
≤ 2e−dδ

2
0/8

for χ2
d random variable and δ0 < 1. To upper bound µn(A(V,L,R)), note that

P

(∑
i∈L,R 2µn(A(V,L,R))2

Nn(A(V,L,R))
≥ mnδ

3Nn(A(V,L,R))

)

≤P

(
|µn(A(V,L,R))| ≥

√
δmn

6dn

)

≤P

∣∣∣∣∣∣ 1

Nn(A(V,L,R))

Nn(A(V,L,R))∑
i=1

εi

∣∣∣∣∣∣ ≥
√
δmn

6dn
−M


≤ 2 exp

(
−1

2
mn(

√
δmn

6dn
−M)2

)

≤ 2 exp

(
−δmn

4

)
,

(4.21)

where the last inequality follows from mn ≥ 8dn and δ ≥ 96M2dn/mn. Combining Equations
(4.18), (4.19), (4.21), we have

PX,ε
(

∆I(A(V,L,R), k) ≥ mnδ

3Nn(A(V,L,R))

)
≤ 5n exp

(
− δmn

max{16(M + 1)2, 256}

)
(4.22)

for any V ⊂ [p], |V | = d,L,R ∈ [n+ 2]|V |, and k /∈ S. Note that the set Ad has cardinality

|Ad| =
(
p

d

)
(2(n+ 2))d ≤

(pn
d

)d
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for large n. Therefore by union bound,

P
(
∃A ∈ Ad, k /∈ S : ∆I(A, k) ≥ mnδ

Nn(A)

)
≤ 5np|Ad| exp

(
− δmn

max{256, 16(M + 1)2}

)
≤ 5(np)d+1 exp

(
− δmn

max{256, 16(M + 1)2}

)
.

(4.23)
Suppose that ∆I(A, k) ≥ mnδ

Nn(A)
for all A ∈ ∪d≤dnAd and k /∈ S, then for any T ∈ Tn(mn, dn),

G0(T ) ≤
∑

t:v(t)/∈S

Nn(t)

n

mnδ

Nn(t)
≤ δ

mn|I(t)|
n

≤ δ,

where the last inequality follows since |I(t)| + 1 is the total number of leaf nodes in T , and each
leaf node contains at least mn samples. Therefore

PX,ε

(
sup

T∈Tn(mn,dn)

G0(T ) ≥ δ

)
≤

dn∑
d=1

P
(
∃A ∈ Ad, k /∈ S : ∆I(A, k) ≥ mnδ

Nn(A)

)

≤
dn∑
d=1

5(np)d+1 exp

(
− δmn

max{256, 16(M + 1)2}

)
≤ 10(np)dn+1 exp

(
− δmn

max{256, 16(M + 1)2}

)
(4.24)

for any δ > 96M2dn
mn

. Recall that C = 2 max{256, 16(M + 1)2}. Note that Cdn log(np)
mn

≥ 96M2dn
mn

for
large n. Integrating over δ, we have

EX,ε

[
sup

T∈Tn(mn,dn)

G0(T )

]

≤ 3dn log(np)

2mn

+ EX,ε

[
sup

T∈Tn(mn,dn)

G0(T )1(δ ≥ 3dn log(np)

2mn

)

]

≤ 3dn log(np)

2mn

+

∫ ∞
3dn log(np)

2mn

PX,ε

(
sup

T∈Tn(mn,dn)

G0(T ) ≥ δ

)
dδ

≤ Cdn log(np)

mn

.

(4.25)

This completes the proof of the upper bound.
Proof of the lower bound in Theorem 1
For the lower bound, let

dn = max{d : 2d+1mn < n}, (4.26)

and consider a balanced, binary decision tree T constructed in the following way:
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1. At each node on the first dn− 1 levels of the tree, we split on feature X1, at the mid-point of
X1’s side of the rectangle corresponding to the node.

2. At each node on the dnth level, we look at the remaining p − 1 features, and split on the
feature that maximizes the decrease in impurity.

In the following proof, we will lower bound G0(T ) by the sum of impurity reduction on the
dnth level alone. For t = 1, . . . , 2dn−1, let

Rt =

{
t− 1

2dn−1
≤ X1 <

t

2dn−1

}
.

be the hyper-rectangle corresponding to the tth node on the dnth level. Applying Chernoff’s in-
equality, we have

P
(∣∣∣∣Nn(Rt)

n
− 1

2dn−1

∣∣∣∣ ≥ 1

3 · 2dn−1

)
≤ 2 exp

(
− n

27 · 2dn−1

)
.

Let

B1 =

{∣∣∣∣Nn(Rt)

n
− 1

2dn−1

∣∣∣∣ ≤ 1

3 · 2dn−1
for all t

}
be the event that each node on the dnth level contains at least

2

3

n

2dn−1
, but no more than

4

3

n

2dn−1

samples. Then

P(Bc
1) ≤

2dn−1∑
t=1

P
(∣∣∣∣Nn(Rt)

n
− 1

2dn−1

∣∣∣∣ ≥ 1

3 · 2dn−1

)
≤ 2dn exp

(
− n

27 · 2dn−1

)
, (4.27)

and conditional on B1,

8

3
mn ≤

2

3

n

2dn−1
≤ Nn(Rt) ≤

4

3

n

2dn−1
≤ 32

3
mn. (4.28)

We define

Rl
t(k) = Rt ∩

{
0 ≤ Xk <

1

2

}
and

Rr
t (k) = Rt ∩

{
1

2
≤ Xk < 1

}
and use Rl

t, R
r
t as shorthand when k is fixed. For each t = 0, 1, . . . , 2d − 1, by Equation

∆I(Rt, k) ≥ ∆I(Rt, (k, 1/2)) =
Nn(Rl

t)

Nn(Rt)

Nn(Rr
t )

Nn(Rt)
(µn(Rl

t)− µn(Rr
t ))

2

Let
ηk = µn(Rl

t)− µn(Rr
t )
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Conditional on Nn(Rl
t) and Nn(Rr

t ), η = (η2, . . . , ηp) are jointly Gaussian with zero mean. To
lower bound the impurity decrease at the tth node on the dnth level, we use a Gaussian comparison
argument to obtain a lower bound for supk |ηk|, which requires us to calculate the covariance matrix
of η. For any 2 ≤ k1, k2 ≤ p, let us further define

Rll
t (k1, k2) = Rt ∩

{
0 ≤ Xk1 <

1

2

}
∩
{

0 ≤ Xk2 <
1

2

}
;

Rlr
t (k1, k2) = Rt ∩

{
0 ≤ Xk1 <

1

2

}
∩
{

1

2
≤ Xk2 < 1

}
;

Rrl
t (k1, k2) = Rt ∩

{
1

2
≤ Xk1 < 1

}
∩
{

0 ≤ Xk2 <
1

2

}
;

Rrr
t (k1, k2) = Rt ∩

{
1

2
≤ Xk1 < 1

}
∩
{

1

2
≤ Xk2 < 1

}
.

As before, we write Rll
t , R

lr
t , R

rl
t and Rrr

t as shorthand when k1, k2 are fixed. Conditional on
Nn(Rt), the samples falling into the hyper-rectangle Rt are uniformly distributed in Rt. Therefore
we know from Chernoff’s inequality that

P
(∣∣∣∣Nn(Rll

t )

Nn(Rt)
− 1

4

∣∣∣∣ ≥ 1

16

)
≤ 2 exp

(
− Nn(Rt)

48

)
for any k1 and k2, and that the same results hold for Rlr

t , R
rl
t and Rll

t as well. Let

B2 =

{
max

ω∈{ll,lr,rl,rr}

∣∣∣∣Nn(Rω
t (k1, k2))

Nn(Rt)
− 1

4

∣∣∣∣ ≤ 1

16
, for all 1 ≤ t ≤ 2dn−1, 2 ≤ k1 < k2 ≤ p

}
.

Then

P(Bc
2) ≤ 2dnp2 exp

(
− Nn(Rt)

48

)
, (4.29)

and

P(B1 ∩B2) ≥ 1− 2dn+1p2 exp

(
− Nn(Rt)

48

)
≥ 1− 2dn+1p2 exp

(
− mn

18

)
≥ 8

9
(4.30)

for n large enough (under the condition that mn ≥ 36 log p + 18 log n). Conditional on the event
B2,

Nn(Rl
t) ≥ Nn(Rll

t ) +Nn(Rlr
t ) ≥ 3

16
Nn(Rt) +

3

16
Nn(Rt) ≥

3

8
Nn(Rt),

for any 1 ≤ t ≤ 2dn−1 and 2 ≤ k ≤ p, and the same holds for Nn(Rr
t ). Therefore,

Var(ηk) =
1

Nn(Rl
t)

+
1

Nn(Rr
t )
≥ 3

4Nn(Rt)
(4.31)
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Cov(ηk1 , ηk2) =
1

Nn(Rll
t )

+
1

Nn(Rrr
t )
− 1

Nn(Rlr
t )
− 1

Nn(Rrl
t )
≤ 1

4Nn(Rt)
. (4.32)

Consider η̃2, . . . , η̃p with

Eη̃k = 0,Var(η̃k) =
3

4Nn(Rt)

and
Cov(η̃k1 , η̃k2) =

1

4Nn(Rt)
.

Then conditional on B1 ∩B2, by Sudakov-Fernique lemma, we have

Eε[max
k
ηk|B1 ∩B2] ≥ Emax

k
η̃k ≥

√
log p

Nn(Rt)
≥
√

3 log p

32mn

,

and the lower bound
min{Nn(Rl

t), Nn(Rr
t )} ≥

3

8
Nn(Rt) ≥ mn,

for any k, t. where the last inequality follows from Equation (4.28). Therefore, conditional on
B1 ∩B2 the minimum leaf size is lower bounded by mn. Finally

EX,ε

[
sup

T∈Tn(mn)

G0(T )

]
≥ EX,ε

[
sup

T∈Tn(mn)

G0(T )1B1∩B2

]

≥ EX

[∑
t

Nn(Rt)

n
Eε
[
max
k

∆I(Rt, k)1B1∩B2

]]

≥ EX
∑
t

Nn(Rt)

n
(
3

8
)2(Eε max

k
η2
k1B1∩B2)

≥ 9

64

3 log p

32mn

P(B1 ∩B2)

≥ 1

80

log p

mn

(4.33)

when n is large enough, and the lower bound is proved. This concludes the whole proof.

Proof of Proposition 1. For simplicity, here we only present the proof for a single tree T . The case
of multiple trees is straightforward. Recall that tleft and tright are the left and right children of the
node t. Based on (4.4), MDI at the node t is

Nn(t)

|D(T )|
∆I(t) =

1

|D(T )|
∑
i∈D(T )

[yi − µn(t)]21(xi ∈ Rt)

− [yi − µn(tleft)]21(xi ∈ Rtleft)− [yi − µn(tright)]21(xi ∈ Rtright).

(4.34)
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Because 1(xi ∈ Rt) = 1(xi ∈ Rtright) + 1(xi ∈ Rtleft), the above term becomes

1

|D(T )|
∑
i∈D(T )

(
(yi − µn(t))2 − (yi − µn(tleft))2

)
1(xi ∈ Rtleft)

+
(
(yi − µn(t))2 − (yi − µn(tright))2

)
1(xi ∈ Rtright)

=
1

|D(T )|
∑
i∈D(T )

(µn(tleft)− µn(t))(2yi − µn(t)− µn(tleft))1(xi ∈ Rtleft)

+ (µn(tright)− µn(t))(2yi − µn(t)− µn(tright))1(xi ∈ Rtright). (4.35)

Since
∑

i∈D(T ) yi1(xi ∈ tleft) = Nn(tleft)µn(tleft), we know∑
i∈D(T )

(yi − µn(tleft))1(xi ∈ Rtleft) = 0.

Similar equations hold for the right child tright, too. Then (4.35) reduces to

1

|D(T )|
∑
i∈D(T )

(µn(tleft)− µn(t))(yi − µn(t))1(xi ∈ Rtleft) (4.36)

+ (µn(tright)− µn(t))(yi − µn(t))1(xi ∈ Rtright) (4.37)

Because of the definitions of µn(tleft), µn(tright), and µn(t), we know

Nn(tleft)µn(tleft) +Nn(tright)µn(tright) = Nn(t)µn(t). (4.38)

That implies∑
i∈D(T )

(µn(tleft)− µn(t))1(xi ∈ Rtleft) + (µn(tright)− µn(t))1(xi ∈ Rtright) = 0.

Using this equation, (4.37) can be written as

1

|D(T )|
∑
i∈D(T )

(µn(tleft)− µn(t))yi1(xi ∈ Rtleft) + (µn(tright)− µn(t))yi1(xi ∈ Rtright). (4.39)

In summary, we have shown that:

Nn(t)

|D(T )|
∆I(t) (4.40)

=
1

|D(T )|
∑
i∈D(T )

(µn(tleft)− µn(t))yi1(xi ∈ Rtleft) + (µn(tright)− µn(t))yi1(xi ∈ Rtright). (4.41)
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Since the MDI of the feature k is the sum of Nn(t)

|D(T )|∆I(t) across all inner nodes such that
v(t) = k, we have∑

t∈I(T )

Nn(t)

|D(T )|
∆I(t)1(v(t) = k)

=
∑

t:v(t)=k

1

|D(T )|
∑
i∈D(T )

(µn(tleft)− µn(t))yi1(xi ∈ Rtleft) + (µn(tright)− µn(t))yi1(xi ∈ Rtright)

=
1

|D(T )|
∑
i∈D(T )

[ ∑
t:v(t)=k

(µn(tleft)− µn(t))1(xi ∈ Rtleft) + (µn(tright)− µn(t))1(xi ∈ Rtright)
]
yi

=
1

|D(T )|
∑
i∈D(T )

fT,k(xi)yi.

That completes the proof.

4.7 Supplementary Table and Figures

Figure 4.4: MDI against inverse min leaf size. This is coherent with our theoretical analysis as MDI is
proportional to the inverse of minimum leaf size.
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Figure 4.5: The beeswarm plots for different simulation settings.
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Deep tree (min leaf size = 1) Shallow tree(min leaf size = 100)
Simulated ChIP Simulated ChIP

C R C R C R C R

MDI-oob 0.762(.019) 0.519(.018) 0.865(.015) 0.980(.006) 0.748(.019) 0.581(.019) 0.939(.011) 0.983(.007)
SHAP 0.548(.023) 0.325(.028) 0.821(.023) 0.963(.009) 0.677(.021) 0.462(.025) 0.912(.015) 0.972(.009)
ranger 0.555(.034) 0.496(.019) 0.726(.038) 0.974(.007) 0.549(.034) 0.487(.022) 0.755(.045) 0.985(.004)
MDA 0.493(.019) 0.507(.022) 0.542(.025) 0.966(.007) 0.500(.000) 0.577(.018) 0.498(.006) 0.986(.006)
cforest 0.649(.029) 0.499(.020) 0.788(.023) 0.929(.026) 0.701(.033) 0.488(.026) 0.900(.024) 0.979(.007)
MDI 0.118(.009) 0.092(.008) 0.597(.023) 0.706(.019) 0.632(.022) 0.397(.025) 0.877(.020) 0.971(.009)

”C” stands for classification, ”R” stands for regression.

Table 4.2: Average AUC scores and standard deviations for noisy feature identification.
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Chapter 5

Optimality of the max test for detecting
sparse signals with Gaussian or heavier tail

5.1 Introduction

Sparse signal detection
Closely related to multiple testing is the problem of testing the global null or intersection null,
which asserts that all of n univariate null hypotheses are true; this is sometimes called the signal
detection problem, since it amounts to asking whether there is any signal at all. One strategy, popu-
lar among methodologists and practitioners alike for its simplicity, transparency, and robustness, is
to reject when the largest univariate test statistic is above a critical threshold, or equivalently when
the smallest univariate p-value is below an appropriately corrected significance level. This method,
called the max test, is closely associated with the multiple testing procedure that rejects individual
hypotheses with p-values below the same threshold, which is 1− (1− α)1/n if the p-values are in-
dependent (called the Šidák correction), or α/n if the dependence structure is completely unknown
(the Bonferroni correction), and may be obtained by simulation in other cases [112]. Because the
associated multiple testing procedure controls the familywise error rate (FWER), the max test can
be tacked on as a logical deduction about the global null, incurring no additional FWER.

However, the adequacy of the max test for signal detection has been placed in doubt because
it does not always achieve an optimal detection boundary in the Gaussian sequence model where
we observe X ∼ Nn(µ, In), a canonical testing ground for high-dimensional statistical methods.
In certain sparse asymptotic regimes of this model, the max test is outperformed by more sophis-
ticated special-purpose tests of the global null H0 : µi = 0 for all i, against H1 : µi 6= 0 for some
i.

Most notably, Donoho and Jin [35, 36] compared the max test to the higher criticism (HC) test,
which rejects the global null for large values of Tukey’s higher criticism statistic

HCn = sup
1≤ i≤n/2

√
n(i/n− p(i))√
p(i)(1− p(i))

= sup
0≤ t≤ 1/2

√
n(F̂n(t)− t)√
t(1− t)

,
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where p(1) ≤ · · · ≤ p(n) are the ordered p-values and F̂n(t) is their empirical distribution function.
They also studied two related tests: the modified higher criticism test, which rejects for large
values of

mHCn = sup
1/n≤ t≤ 1/2

√
n(F̂n(t)− t)√
t(1− t)

,

and the Berk-Jones test, which rejects for large values of

BJn = max
1≤ k≤n/2

(2n)1/2

{
k

n
log

(
k

np(k)

)
+

(
1− k

n

)
log

(
n− k

n(1− p(k))

)}1/2

.

They showed, in a model where all nonzero µi take the same value, that the higher criticism,
modified higher criticism, and Berk-Jones tests all achieve the optimal detection boundary in the
sparse asymptotic regime where the number n1 of nonzero signals grows more slowly than n1/2

(for denser signals, the χ2 test is typically much more powerful than all tests under comparison
here). By contrast, the max test falls short unless n1 = O(n1/4). In light of these results, it has
been widely accepted as a stylized fact that these special-purpose tests dominate the max test for
sparse signal detection.

While [35] provide a remarkably detailed and complete picture of global testing in the asymp-
totic regime they study, it is natural to ask how the story might change if we relax the rather
restrictive assumption that all of the nonzero signals have identical strength, since in real applica-
tions we would expect these to vary in magnitude. This article considers a more general setting
where the non-null signals are instead drawn from a distribution Gn:

{µi}ni=1
i.i.d∼ (1− πn)δ0(·) + πnGn(·), πn = n−β, 0 < β < 1. (5.1)

This model was previously studied by Cai and Wu [24], who showed under certain regularity
conditions in the sparse regime β > 1/2 that the higher criticism test achieves the optimal detection
boundary in the signal sparsity parameter β. In particular we will be interested in the case where
all Gn come from a common scale family with scale parameter σn. The regime of [35] is a special
case where Gn = δσn for σn =

√
2r log n.

Interestingly, we find that relaxing the assumption of identical non-null signals shows the max
test in a considerably better light. Our main results are summarized in the last three rows of Ta-
ble 5.1. Essentially, if the tails of Gn are at least as heavy as Gaussian, the max test achieves
optimal performance throughout the sparse regime, i.e. β > 1/2. Furthermore, if Gn has polyno-
mial tails, we find that the max test asymptotically dominates the modified higher criticism test; the
higher criticism and Berk-Jones tests remain competitive but only because of their similarity to the
max test. We give explicit formulae for the detection threshold when Gn has Gaussian, exponen-
tial, and polynomial tails and confirm our results with numerical experiments. We find empirically
that a hybrid test combining the max test and χ2 test is a practical choice with high power across
all sparsity levels.

We hope that our results will help to rehabilitate the max test, which enjoys many practical
advantages over its special-purpose competitors in settings where asymptotic results are equivocal:
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Asymptotic parameters Achieves optimal asymptotic behavior

Alternative distribution σn β Max test Higher criticism Modified HC

Point mass r
√
logn

(1/2, 3/4) 7 X X
(3/4, 1) X X X

Gaussian r (1/2, 1) X X X

Exponential
r√

2 logn
(1/2, 1) X X X

Student’s tν
r
√
2 logn

n(1−β)/ν (1/2, 1) X X 7

Table 5.1: Optimality of different tests for special cases of our asymptotic regime, where σn is calibrated so
that the problem is barely solvable. For the point mass, Gaussian and exponential distribution, a checkmark
Xindicates that the test achieves the optimal “detection boundary” for the parameter r. For Student’s tν ,
there exists no sharp “detection boundary” for r, and a checkmark Xindicates that the test has full asymptotic
power as r →∞. These results are proved in Theorems 2–3 and Corollary 1.

First, its Type I error control is fairly robust to incorrect specification of the dependence between
p-values; by contrast, the higher criticism test can be highly anticonservative even with very slight
correlations between p-values. Second, when the max test rejects, the logical and mathematical
basis for rejection is extremely simple and transparent: namely, that one |Xi| value was too large.
This simplicity confers a form of scientific robustness, allowing non-expert users to more easily
interrogate how modeling assumptions contribute to the scientific conclusion. Third, beyond the
multiple testing interpretation giving rise to the max test, we can also easily invert it to obtain
a simple rectangular confidence region for µ ∈ Rn giving simultaneous confidence intervals for
every µi; the totality of these inferences is much more informative than a binary accept/reject
decision about the global null. By contrast, for the other tests, there is a more complex relationship
between rejecting the global null and making inferences about individual µi values. Fourth, the
modified higher criticism test cannot reject unless the fifth-largest |Xi| is quite large; as a result, it
is essentially powerless in the sparsest setting, where there are one or two extremely large signals.
Finally, the max test is computationally cheap while the others require lengthy simulations.

Related work
Some recent theoretical work on global testing has relaxed the assumption of identical non-null
means. Cai, Jessie Jeng, and Jin [22] considered the case where the non-null means are sampled
from a Gaussian distribution N(An, σ

2) where the variance σ2 is fixed and An =
√

2r log n for
some r ∈ (0, 1). Under this model, they showed that the higher criticism test achieves optimal
asymptotic behaviour for β ∈ (0, 1). Although different from a point mass, the model resembles
the one in Donoho and Jin [35]: since σ2 is fixed as n → ∞, the non-null means still concen-
trate around

√
2r log n, leading to qualitatively similar limiting behavior as a point mass. Cai and

Wu [24] expanded this analysis to the more general model (5.1), proving optimality in certain
conditions for the higher criticism test but not discussing the power of the commonly used max
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test.
The higher criticism’s favorable theoretical performance has led to many efforts to generalize

it beyond the model with independent errors studied here. One line of theoretical work has focused
on studying the properties of higher criticism type tests when observations are correlated. Hall and
Jin [50] gave a detailed discussion of related issues. They showed that the null distribution of higher
criticism changes dramatically under weak dependence. In contrast, the max test is more robust to
dependence, and the Type-I error can be controlled under arbitrary dependence. Hall, Jin, et al. [49]
later proposed the innovated higher criticism to deal with the case of known covariance matrix with
polynomially decaying off-diagonal elements. However, the innovated higher criticism can only be
used if the covariance matrix of observations can be estimated reasonably well. Statisticians have
also proposed various extensions of higher criticism type tests for more general settings, such as
ANOVA [3], time-frequency analysis [23], genetic association studies [10], multi-sample analysis
[29], and polynomial tailed noise distributions [4], etc. It is an interesting question for future work
whether the max test or generalizations thereof might perform equally well.

There has also been a lot of work that studies higher criticism type tests from a computational
perspective. In practice, the cutoff and p-values of higher criticism type statistics is often obtained
by Monte Carlo simulation. An alternative approach for small sample size via numerical recursion
was given by Noé [97], Owen [98] and further developed by Moscovich, Nadler, and Spiegelman
[89], Moscovich and Nadler [88] and Li and Siegmund [73]. Li and Siegmund [73] showed that
their approximations for the p-value of higher criticism type statistics are reasonably accurate, even
for small p-values and large samples.

Most papers on the global testing problem focus on the performance of the higher criticism or
related statistics. Our contributions differ from these in that we show the max test enjoys many of
the same theoretical advantages despite its simple form, and has similar finite sample power as the
higher criticism test in a wide range of settings.

5.2 Main results

The critical sparsity level
We consider the following sequence of alternatives

Hn
1 : µi

i.i.d∼ (1− πn)δ0(·) + πnGn(·), (5.2)

where the expected proportion of nonzero means is

πn = n−β, 0 < β < 1

and Gn(µ) is the distribution of the nonzero means. With slight abuse of notation, we will also use
Gn to denote the cumulative distribution function of the distribution. The alternative hypothesis in
Donoho and Jin [35] is a special case of this model taking Gn as the point mass at

√
2r log n, for

0 < r ≤ 1. Following most previous literature on this topic, we restrict our attention to the sparse
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regime with β < 1/2; otherwise the χ2 test is potentially much more powerful than other tests. For
simplicity, we drop the superscript on H1 when the dimension n is clear.

The total variation (TV) distance between two probability measures Q1 and Q2 is defined as
dTV (Q1, Q2) = supA |Q1(A)−Q2(A)|. For any test that tries to distinguish Hn

1 from Hn
0 , the sum

of its Type I and Type II error is lower bounded by

1− dTV(Hn
0 , H

n
1 ),

where we write dTV(Hn
0 , H

n
1 ) as a shorthand for

dTV (Hn
0 , H

n
1 ) = dTV(Φn, ((1− πn)Φ + πn(Gn ∗ Φ))n) .

By the Neyman-Pearson lemma [95], the likelihood ratio test is uniformly most powerful for
testing Hn

1 against Hn
0 . Indeed, the above lower bound is achieved if we reject Hn

0 when the
likelihood ratio is greater than 1. Therefore, the TV distance dTV(Hn

0 , H
n
1 ) tightly characterizes

the hardness of the testing problem.
For any sequence Gn, the TV distance dTV(Hn

0 , H
n
1 ) is non-increasing in β for each n, with

larger values of β making the testing problem harder. Following [24], we introduce the concept of
the critical sparsity level, which is a value β∗ that demarcates a sharp transition from asymptotic
consistency to asymptotic powerlessness:

Definition 1. Fixing the sequence {Gn}, we define

β∗ = sup
{
β ≥ 0 : lim

n
dTV(Hn

0 , H
n
1 ) = 1

}
; and β̄∗ = inf

{
β ≤ 1 : lim

n
dTV(Hn

0 , H
n
1 ) = 0

}
.

When β∗ = β̄∗, we denote the common value as β∗, and call it the critical sparsity level corre-
sponding to {Gn}.

If a critical sparsity level β∗ exists for a sequence {Gn} (i.e., if β∗ = β̄∗), it follows from
Definition 1 that

• If β > β∗, then limn→∞ EHn
1
[φn(X)]→ α for any sequence of level-α tests φn, and

• If β < β∗, then limn→∞ EHn
1
[φLRT (X)]→ 1 for the level-α likelihood ratio test φLRT .

We say that a sequence of level-α tests φn is asymptotically consistent on the sequence {Hn
1 }

if limn→∞ EHn
1
[φn(X)] → 1 for any α, and asymptotically powerless on the sequence {Hn

1 } if
limn→∞ EHn

1
[φn(X)] → α for any α. We say that the sequence achieves the optimal critical

sparsity level for the sequence {Gn} if it has full asymptotic power whenever β < β∗.
It will often be natural to parameterize the tail of Gaussian distribution as

√
2δ log n ≈ zn−δ ,

the upper n−δ quantile of the standard normal distribution. If we define

τn(δ) = logn Pµ∼Gn(X >
√

2δ log n) (5.3)

as the tail probability of a single non-null observation, [24] proved sufficient conditions for opti-
mality of the higher criticism test in the sparse regime:
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Proposition 2. Suppose that {τn(δ)}∞n=1 converges uniformly for all δ ∈ [0, 1]. Then the sequence
of alternatives in (5.2) has a critical sparsity level β∗, and if β∗ > 1/2 then the level-α higher
criticism test has full asymptotic power whenever β < β∗.

While [24] only explicitly proved this for the higher criticism test, one can slightly modify their
proof to show that this proposition holds for the modified higher criticism test and the Berk-Jones
test as well (the proof is deferred to the supplementary material). In this paper, we are interested
in the following question: for which distributions Gn does the max test achieve the same critical
sparsity level β∗? [35] showed that this is true when Gn is a point mass and β∗ ≥ 3/4, which is
by far the best-known result for this problem. We will show that under a mild regularity condition,
when β∗ > 1/2, the max test also achieves the optimal critical sparsity level.

Optimality of the max test
To formally state our main result, we first need to introduce regularly varying functions. Following
[17], we say that a function Q : (0,∞)→ (0,∞) is a regularly varying function if the limit

gQ(t) = lim
x→∞

Q(tx)

Q(x)

is finite and nonzero for all t > 0. For any regularly varying function Q, it was shown in [45] that
the limit gQ(t) has the form

gQ(t) = tγ

for some value γ ∈ (−∞,∞), which is called the index of regular variation of Q.
Among distributions with unbounded support, we consider those for which

−max{log(1−G(θ)), logG(−θ)} is a regularly varying function.

As noted by [4], this class of distributions extended the definition of generalized Gaussian models,
which are commonly used as benchmarks in this line of work. It covers the cases where log(1 −
G(θ)) = logG(−θ) ∼ −θa(log θ)b, a > 0, b ∈ R. The index γ corresponds to the tail of the
distribution Q, with smaller γ indicating heavier tails. In particular, γ = 2 corresponds to a
Gaussian tail, and γ = 1 to an exponential tail.

Our main result shows essentially that the max test achieves the optimal detection boundary as
long as β ≥ 3/4 or the tail of G is no lighter than Gaussian:

Theorem 2. Under the assumptions of Proposition 2, suppose that either
(A1) β∗ > 3/4, or
(A2)Gn is a scale family withGn(µ) = G(µ/σn) for some sequence σn, where−max{log(1−

G(θ)), logG(−θ)} is a regularly varying function with index of regular variation γ ≤ 2.
Then if β∗ > 1/2, the level-α max test φMax has full asymptotic power whenever β < β∗.
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We will provide intuition for Theorem 2 and a partial proof in Section 5.2, deferring a key tech-
nical lemma to the supplementary material. The regularly varying assumption cannot be removed
for β∗ < 3/4; see the supplementary material for a counterexample where G is stochastically
larger than an exponential distribution but the max test is not optimal. Finally, note that neither
Proposition 2 nor Theorem 2 characterizes what occurs at the boundary where β = β∗; we discuss
this boundary regime in the polynomial tail case in Section 5.2.

Viewing the results of Donoho and Jin [35] in light of Theorem 2, we see that the suboptimality
of the max test in their asymptotic regime is a result of the assumption that all nonzero µi are
identical. As a direct corollary of Theorem 2, we can derive explicit formulae for the critical
sparsity levels of densities with polynomial tails, exponential tails, and Gaussian tails respectively:

Corollary 1. Suppose that Gn belong to a scale family with Gn(µ) = G(µ/σn), for some distri-
bution G with density function g(θ).

(1) If g(θ) = Θ(θ−ν−1) for some ν > 0, and σn ∼ nρ with ρ > −(2ν)−1, then the critical
sparsity level is

β∗(ρ) = νρ+ 1.

(2) If g(θ) = Θ(e−θ) and σn = r(2 log n)−1/2 with r >
√

2/(
√

2− 1), then

β∗(r) =

(
1− 1

r

)2

.

(3) If g(θ) = Θ
(
e−

(θ−γ)2
2

)
for some γ ∈ R, and σn = r with r > 1, then

β∗(r) =
r2

r2 + 1
.

[24] derived the critical sparsity level when the alternative means follow the generalized Gaus-
sian distribution, and Part (2) and (3) of this corollary are special cases of such distribution. In these
two scenarios, Theorem 2 shows that the likelihood ratio test, the max test and the higher criticism
test are asymptotically consistent when β < β∗(r), and asymptotically powerless when β > β∗(r).
As such, the critical sparsity level produces a sharp detection boundary for the scale parameter r.
For example, if g(θ) = Θ(e−θ) and σn = r(2 log n)−1/2, then all three tests are asymptotically
consistent if r > r∗(β) := (1 −

√
β)−1, and asymptotically powerless if r < (1 −

√
β)−1. Thus,

the desired sharp detection boundary is r∗(β) = (1 −
√
β)−1. Part (1) of this corollary exhibits a

different regime: when the alternative means follow a t distribution, there does not exist a sharp
detection boundary for a scale parameter r. Instead, there is a sharp detection boundary in the
growth rate ρ if we set σn = nρ. We explore the boundary regime of the polynomial tail case
further in Section 5.2.

Proving Theorem 2 using excess tail values
In this section, we will explain the mathematical intuition behind Theorem 2, and provide a sketch
of its proof. We begin by introducing a useful transformation of the empirical distribution of Xi
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values, in terms of the tail parameter δ. Defining N(δ) = #
{
i : |Xi| >

√
2δ log n

}
, the higher

criticism statistic may be rewritten as

HCn = sup
δ≥0

N(δ)− E0N(δ)√
Var0N(δ)

≈ sup
δ>0

N(δ)− n1−δ

n(1−δ)/2 ,

where the approximation holds for large n, if the supremum is not achieved too close to δ = 0.
Roughly speaking, then, the higher criticism test will have high power when the number of excess
tail values is much larger than n(1−δ)/2, for some δ > 0. By contrast, the max test rejects roughly
when N(1) > 0.

Under the alternative, the most likely source of these excess tail values is the nπn non-null
observations. We quantify their contribution as N1(δ) = #

{
i : µi 6= 0, |Xi| >

√
2δ log n

}
, and

define
λn(δ) = logn E1N1(δ) = 1− β + τn(δ), (5.4)

where τn is defined in Equation 5.3. Continuing our intuition from above, we expect that the higher
criticism test will have high power when λn(δ) > 1−δ

2
for any δ ∈ (0, 1], while the max test will

have high power when λn(1) > 0 in the limit.
Suppose that {τn(δ)}∞n=1 converges uniformly for all δ ∈ [0, 1]. This is the same condition as

Proposition 2 and Theorem 2. Under this condition, we denote

τ ∗(δ) = lim
n→∞

τn(δ), and λ∗(δ) = lim
n→∞

λn(δ).

We can formalize the above heuristic characterization in Proposition 3:

Proposition 3. Suppose that β > 1/2. Then

(a) If

sup
δ∈(0,1]

[
λ∗(δ)− 1− δ

2

]
< 0,

then dTV(Hn
0 , H

n
1 )→ 0.

(b) If

sup
δ∈(0,1]

[
λ∗(δ)− 1− δ

2

]
> 0,

then the likelihood ratio test, the higher criticism test, modified higher criticism test, and Berk-
Jones tests all enjoy full asymptotic power.

(c) The max test is asymptotically powerless if λ∗(1) < 0, and enjoys full asymptotic power if
λ∗(1) > 0.

The proof of part (a) of Proposition 3 is given in [24]. Cai and Wu [24] also proved that the
higher criticism test enjoys full asymptotic power under the condition of Part (b). For the modified
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higher criticism test and Berk-Jones tests, the proof is similar and is given in the supplemen-
tary material for completeness. Part (c) follows directly from the first and second Borel-Cantelli
Lemma.

Proposition 3 leaves open the question of what happens in the boundary regime where the
supremum converges to 0. Indeed, Section 5.2 studies a natural regime with polynomial tails
where λn(1) → 0 and the modified higher criticism test is powerless in the limit even while the
other tests enjoy full asymptotic power.

Note further that the sufficient condition in Theorem 3 for the max test to have full asymptotic
power is more restrictive than the sufficient condition for the other three. This analysis suggests
a disadvantage for the max test, which we illustrate in Figure 5.1 showing four different λ curves
plotted against 1−δ

2
. The black curve takes Gn as a point mass, and shows a bad case for the

max test: it rises above 1−δ
2

for a range of δ values that exclude 1. The other three curves, however
(takingGn as Gaussian, exponential, and Cauchy), all show cases where the supremum is achieved
at δ = 1, so that all of the tests enjoy high power.

Roughly speaking, max test achieves the optimal critical sparsity level if the supremum of

λ∗(δ)− 1− δ
2

is achieved at δ = 1. The following technical lemma connects this supremum with
the tail property of Gn, and is essential in the proof of Theorem 2.

Lemma 2. (a) For any β > 1/2 and sequence {Gn},

sup
δ∈(0,1]

[
λ∗(δ)− 1− δ

2

]
≤ max

{
λ∗(1),

3

4
− β

}

(b) Under Assumption (A2) of Theorem 2,

sup
δ∈(0,1]

[
λ∗(δ)− 1− δ

2

]
≤ max

{
λ∗(1),

1

2
− β

}
.

The proof of the lemma is given in Section 5.5. Theorem 2 is then a direct result of Lemma 2
and Proposition 3.

Proof of Theorem 2. First, if β < β∗, then by definition of β∗,

sup
δ∈(0,1]

[
λ∗(δ)− 1− δ

2

]
≥ β∗ − β > 0. (5.5)

Suppose that β∗ > 3/4 and β < β∗. Since the power of the max test is non-increasing in β,
we can assume without loss of generality that β > 3/4. Since 3/4− β < 0, we can combine (5.5)
with part 1 of Lemma 2 to conclude that λ∗(1) > 0, implying that the max test has full asymptotic
power. If Assumption (A2) of Theorem 2 holds, then we can repeat the same argument replacing
3/4 with 1/2 and applying part 2 of Lemma 2 instead of part 1.
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Figure 5.1: λn(δ) curves plotted against 1−δ
2 for four different tests, for λn(δ) as defined in (5.4). If a curve

rises above 1−δ
2 for some values of δ that exclude 1, then the likelihood ratio test has full asymptotic power,

while the max test does not. The black curve, which takes Gn as a point mass, shows this scenario. The
other curves show case where the supremum λn(δ) − 1−δ

2 of is achieved at δ = 1, so that the max test, the
higher criticism test and the likelihood ratio test all enjoy full asymptotic power.

Power analysis for polynomial tails
Theorem 2 does not characterize the power of different tests in the boundary regime. We now
study a natural regime with polynomial tails, with β = β∗. The boundary regime with polynomial
tails is more interesting because we have shown in Corollary 1 that there is not a sharp detection
boundary for a scale parameter, but rather in the growth rate ρ where σn = nρ.

In this section we explore a sequence of alternative distributions growing at the critical rate ρ,
and parameterized by a scale parameter r. Under this sequence of alternatives, we will show that
the asymptotic power of level-α max test is a smooth function of r ∈ (0,∞), and converges to
1 as r → ∞. In addition, we will show that the modified higher criticism test is asymptotically
powerless no matter what r is.

Suppose thatGn(µ) = G(µ/σn), whereG is the t distribution with ν degrees of freedom. Then
the density function g(θ) = Θ(θ−ν−1).Recall from Corollary 1 that if lim infn logn σn > (β−1)/ν,
then the max test and higher criticism test both have full asymptotic power. If lim supn logn σn <
(β−1)/ν, then both tests are powerless. Therefore, to study the boundary regime, we are interested
in the case where limn logn σn = (β − 1)/ν. Fix β ∈ (1/2, 1), and let

σn =
r
√

2 log n

n(1−β)/ν
, r ∈ (0,∞).

Then it can be verified that the power of the max test has smooth transition from α to 1 as r goes
from 0 to∞. The higher criticism test also shares this smooth transition behavior, as the rejection
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threshold for p(1) in the higher criticism statistic is very close to α/n. Perhaps surprisingly, the
modified higher criticism test is asymptotically powerless in this case, as detailed by the following
theorem.

Theorem 3. Suppose that G satisfies limµ→∞(1 − G(µ))µν = limµ→∞G(−µ)µν = C with tail

index ν > 0, and σn =
r
√

2 log n

n(1−β)/ν
for some β ∈ (1/2, 1). Then β∗ = β, and

1. the asymptotic power of the level-α max test, is

lim
n→∞

PH1(reject H0) = 1− e−2Crν+log(1−α).

In particular, the power tends to 1 as r →∞.

2. for any r ∈ (0,∞), the modified higher criticism is asymptotically powerless.

We note that for fixed r, the power of the max test as n goes to infinity does not depend on the
sparsity parameter β. This is because σn is a decreasing function of the sparsity level β, thereby
implicitly adjusting for the sparsity level.

Compared to the original higher criticism test, the modified higher criticism test was designed
to ignore p−values smaller than 1/n. These small p-values cause the original higher criticism
statistics to have a heavy right tail under the null distribution, and the modified higher criticism test
is considered in [35] as a refined test with potentially better finite sample performance. However,
this modification also makes the modified higher criticism test powerless in situations where the
smallest p-values provide the best evidence against the null. Recall that λn(δ) is defined as the log
of the expected number of non-null observations that are greater than

√
2δ log n. In Theorem 3’s

setting, the proof of Corollary 1 shows that λ∗(δ) = 0 for all δ ∈ (0, 1]; as a result λ∗(δ) < (1−δ)/2
for all δ < 1. In other words, evidence against the null is only present in the number of tail
values exceeding

√
2 log n, which is roughly the Bonferroni threshold. Because the p values of

these observations are smaller than 1/n, they are effectively truncated by the modified higher
criticism test, making it asymptotically powerless. The original higher criticism test, however, is
still powerful because, like the max test, it can reject on the strength of the largest p-value alone.
A full proof of Theorem 3 is given in Section 5.5.

5.3 Numerical results
We now provide simulation results showing that the max test has similar power as the higher
criticism test when the distribution of non-null signals has Gaussian or heavier tails. We generate
data under the following alternative:

Xi
ind∼ N(µi, 1), µi

i.i.d.∼ Gn, for i = 1, . . . , n1

Xi
ind∼ N(0, 1), for i = n1 + 1, . . . , n.
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In this section, we consider the case where Gn has either exponential or Cauchy tail. In the sup-
plementary material, we provide additional simulation results for other distributions Gn, including
the Gaussian distribution. We take n = 50, 000 and n1 = bn1−βc, where the sparsity parameter β
ranges from 0.1 to 0.9. We compare the power of the following 6 tests: the max test, the higher
criticism test, the modified higher criticism test, the Berk-Jones test, the χ2 test and a hybrid test
which combines the max test and the χ2 test. The rejection region of the level α hybrid test has the
form {

max
i
|Xi| > m(n, α/2)

}
∪

{∑
i

X2
i > c(n, α/2)

}
,

where m(n, α/2) and c(n, α/2) are the 1− α/2 quantiles of maxi |Xi| and
∑

iX
2
i under the null.

For all 6 tests, we control Type-I error at α = .05. For the first five tests, we use the empirical 95%
percentile of the test statistics under the null distribution as the cutoff value; for the hybrid test, we
use the empirical 97.5% percentile of maxi |Xi| and

∑
iX

2
i to estimate the threshold m(n, α/2)

and c(n, α/2). Our results are summarized below.

When Gn has exponential tail In particular, we choose Gn = Laplace(0, r). The power of all
six tests are shown in Figure 5.2. First, we found that when β ≤ 0.3, the χ2 test (yellow curve)
outperforms all five others, and the max test is least powerful due to relatively dense signals.
Second, the modified higher criticism test has very low power when β > 0.5. Since the modified
higher criticism test does not use the p-values smaller than 1/n, it performs subpar in the sparse
regime where the max test and the higher criticism test reject the null based on those p-values.
Third, when β > 0.5 the power of the max test, the higher criticism test and the Berk-Jones test
are very similar. This finding agrees with our Theorem 1, which states that the max test achieves
the optimal critical sparsity level for exponentially distributed alternatives when β > 0.5. Finally,
the hybrid test, which combines the max test and the χ2 test, performs on par if not better than the
higher criticism under all sparsity regimes.

When Gn has polynomial tail In particular, we chooseGn =Cauchy
(

0,
r
√

2 log n

n(1−β)

)
. Recall that

according to Theorem 3, under this setting the max test and the higher criticism should have very
high power when r is big, while modified higher criticism should have little power. Indeed, the
max test, the higher criticism test, the Berk-Jones test and the hybrid test have almost identical
power for all combinations of (β, r), and the modified higher criticism performs worst among all
tests. All of these findings are consistent with our Theorem 2. We also notice that for fixed r value,
the power of max test, higher criticism and Berk-Jones are almost constant for different parameter
β. This finding also agrees with the asymptotic power of max test in Theorem 3.

Section 5.6 in the supplementary material gives analogous simulations for Gaussian, logistic,
χ2(1), t3, and t5 distributions, with qualitatively similar results. Overall, our simulation confirms
that the higher criticism test does not have better finite sample power than the max test when the
max test achieves the optimal critical sparsity level. On the other hand, when the higher criticism
does have better power over the max test, the non-null signals are likely dense enough such that
the χ2 test is even more powerful.
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Figure 5.2: Comparison of power for different tests: the max test (red curve), the higher criticism test (light
blue curve), the modified higher criticism test (grey curve), the Berk-Jones test (green curve) ,the χ2 test
(yellow curve) and the hybrid test (purple curve). Here n = 50, 000 with n1 = bn1−βc non-null means
drawn from Laplace(0, r). The horizontal axis shows the value of r while the vertical axis shows power.

5.4 Discussion
We have shown, theoretically and numerically, that the max test has optimal asymptotic behavior
in the sparse regime, provided that the distribution of non-null signals has a tail no lighter than
Gaussian. In addition, the max test dominates the modified higher criticism test when the distri-
bution of nonzero signals has polynomial tails. We believe our results complicate the conventional
wisdom that the max test is a substandard test for the purpose of signal detection and suggest that
in many applied settings practitioners will not suffer low performance by using the max test. In
these settings, the max test can be derived as a “free” (incurring no additional FWER) deduction
from simultaneous confidence intervals for the coordinates of µi.

The higher criticism has been generalized to many interesting statistics problems beyond the
signal detection problem studied here. It is an interesting question for future work whether in
many of these cases it may be possible to find an analogous generalization of the max test whose
performance matches the higher-criticism-type test.

Like other papers in this line of research, our paper did not address the “weak, dense” regime,
where the sparsity parameter β is smaller than 1/2. It is well known that in the dense regime, the
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Figure 5.3: Comparison of power for different tests, where n = 50, 000 with n1 = bn1−βc non-null means
drawn from Cauchy(0, r

√
2 log nn−(1−β)). The horizontal axis shows the value of r while the vertical axis

shows power.

χ2 test has higher power than the higher criticism and max test when the distribution of non-null
means is a point mass. We have suggested a hybrid test based on combining the p-values of the χ2

and the max test, and shown numerical evidence that it performs well throughout the sparse and
dense regimes. By inverting this hybrid test, we can obtain a joint confidence region for µ ∈ Rn

that is the union of an `2 ball and an `∞ ball around the observed X , simultaneously giving short
intervals for coordinates of µi and reasonable intervals for all linear combinations of µ. Finding
a test that achieves the optimal critical sparsity level under the general model in this regime is a
interesting direction for future research.

5.5 Proofs of main results
We begin by proving the following result on the tail probability of X ∼ N(µ, 1), where µ is gen-
erated from some distribution Gn. This is a standard result and is repeated here for completeness
of the proof.
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Lemma 3. Let Ḡn(θ) = 1−Gn(θ). Under the alternative hypothesis (5.2), we have

τn(δ) = sup
0≤t≤1

−Qn(t
√

2δ log n)

log n
− δ(1− t)2 +O

(
log log n

log n

)
,

where Qn(θ) = −max{log Ḡn(θ), logGn(−θ)} and the O
(

log logn
logn

)
term is uniform over all

δ ∈ [0, 1].

Proof. For any 0 ≤ t, δ ≤ 1, we have

Pµ∼Gn
(
X ≥

√
2δ log n

)
≥ Pµ∼Gn

(
X ≥

√
2δ log n, µ ≥ t

√
2δ log n

)
= Pµ∼Gn

(
µ ≥ t

√
2δ log n

)
Pµ∼Gn

(
X ≥

√
2δ log n | µ ≥ t

√
2δ log n

)
≥
(

1−Gn(t
√

2δ log n)
)(

1− Φ((1− t)
√

2δ log n)
)

≥ 1

6
√

2 log n
exp

{
log Ḡn

(
t
√

2δ log n
)
− (1− t)2δ log n

}
,

where the last inequality follows from the fact that 1−Φ(x) ≥ 1
3(x+1)

e−x
2/2 for any x > 0. Taking

the supremum over t ∈ [0, 1], we have

Pµ∼Gn
(
X ≥

√
2δ log n

)
≥ 1

6
√

2 log n
exp

{
sup

0≤t≤1
log Ḡn

(
t
√

2δ log n
)
− (1− t)2δ log n

}
.

On the other hand, Fubini’s theorem yields

Pµ∼Gn
(
X ≥

√
2δ log n

)
= −

∫ ∞
−∞

Φ̄(
√

2δ log n− µ)dḠn(µ)

= −
∫ 0

−∞
Φ̄(
√

2δ log n− µ)dḠn(µ)−
∫ √2δ logn

0

Φ̄(
√

2δ log n− µ)dḠn(µ)

−
∫ ∞
√

2δ logn

Φ̄(
√

2δ log n− µ)dḠn(µ) (5.6)

For the first and third terms of Equation 5.6, we have

−
∫ 0

−∞
Φ̄(
√

2δ log n− µ)dḠn(µ) ≤ n−δḠn(0) (5.7)

and
−
∫ ∞
√

2δ logn

Φ̄(
√

2δ log n− µ)dḠn(µ) ≤ Ḡn(
√

2δ log n). (5.8)
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For the second term, we have

−
∫ √2δ logn

0

Φ̄(
√

2δ log n− µ)dḠn(µ)

≤ −
∫ √2δ logn

0

e−
1
2

(
√

2δ logn−µ)2dḠn (5.9)

= − Ḡn(µ)e−
1
2

(
√

2δ logn−µ)2
∣∣∣∣µ=
√

2δ logn

µ=0

+

∫ √2δ logn

0

(
√

2δ log n− y)Ḡn(y)e−
1
2

(
√

2δ logn−y)2dy

(5.10)

= n−δḠn(0)− Ḡn(
√

2δ log n) +

∫ 1

0

(2δ log n)(1− t)Ḡn(t
√

2δ log n)e−
1
2

(
√

2δ logn(1−t))2dt

(5.11)

≤ n−δḠn(0)− Ḡn(
√

2δ log n) + (2 log n) exp

{
sup

0≤t≤1
log Ḡn(t

√
2δ log n)− (1− t)2δ log n

}
.

(5.12)

where Equation 5.9 is obtained by Gaussian tail bounds, Equation 5.10 by integration by parts,
Equation 5.11 by changing of variables, and Equation 5.12 by taking the supremum of the integrand
over t ∈ [0, 1]. Combining Equations 5.6, 5.7, 5.8, and 5.12, we have

Pµ∼Gn
(
X ≥

√
2δ log n

)
≤ (2 log n+ 2) exp

{
sup

0≤t≤1
log Ḡn(t

√
2δ log n)− (1− t)2δ log n

}
.

Therefore,

1

6
√

2 log n
exp

{
sup

0≤t≤1
log Ḡn

(
t
√

2δ log n
)
− (1− t)2δ log n

}
≤ Pµ∼Gn

(
X ≥

√
2δ log n

)
≤ (2 log n+ 2) exp

{
sup

0≤t≤1
log Ḡn

(
t
√

2δ log n
)
− (1− t)2δ log n

}
.

(5.13)

Similarly, we have

1

6
√

2 log n
exp

{
sup

0≤t≤1
logGn

(
−t
√

2δ log n
)
− (1− t)2δ log n

}
≤ Pµ∼Gn

(
X ≤ −

√
2δ log n

)
≤ (2 log n+ 2) exp

{
sup

0≤t≤1
logGn

(
−t
√

2δ log n
)
− (1− t)2δ log n

}
.

(5.14)
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Combining the two equations above, we have

1

3
√

2 log n
exp

{
sup

0≤t≤1
−Qn

(
t
√

2δ log n
)
− (1− t)2δ log n

}
≤ Pµ∼Gn

(
|X| ≥

√
2δ log n

)
≤ (4 log n+ 4) exp

{
sup

0≤t≤1
−Qn

(
t
√

2δ log n
)
− (1− t)2δ log n

}
.

(5.15)

Taking logn on both sides, we have

− log(3
√

2 log n)

log n
≤ τn(δ)−

[
sup

0≤t≤1
−Qn(t

√
2δ log n)

log n
− δ(1− t)2

]
≤ log(4 log n+ 4)

log n
.

We conclude that

τn(δ) = − sup
0≤t≤1

Qn(t
√

2δ log n)

log n
− δ(1− t)2 +O

(
log log n

log n

)
,

where the O
(

log logn
logn

)
term is uniform over all δ ∈ [0, 1]

We are now ready to restate and prove Lemma 2:

Lemma 2. (a) For any β > 1/2 and sequence {Gn},

sup
δ∈(0,1]

[
λ∗(δ)− 1− δ

2

]
≤ max

{
λ∗(1),

3

4
− β

}

(b) Under Assumption (A2) of Theorem 2,

sup
δ∈(0,1]

[
λ∗(δ)− 1− δ

2

]
≤ max

{
λ∗(1),

1

2
− β

}
.

Proof. Define

gn(δ, t) = −Qn(t
√

2δ log n)

log n
+ δ

[
1

2
− (1− t)2

]
, and hn(δ) = sup

0≤t≤1
gn(δ, t).

Applying Lemma 3, we have

hn(δ) = τn(δ) +
δ

2
+O

(
log log n

log n

)
= λn(δ)− 1− δ

2
+ β − 1

2
+O

(
log log n

log n

)
.
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To prove part (a), it suffices to show that

hn(δ) ≤ max{hn(1), 1/4}, for all δ ∈ (0, 1).

We prove this claim by supposing that hn(δ) > max{hn(1), 1/4} for some δ < 1, and deriving
a contradiction.

Let δ∗n and t∗n be values that jointly maximize gn(δ, t) over 0 ≤ δ, t ≤ 1. By assumption,

1

4
< gn(δ∗n, t

∗
n) ≤ δ∗n

[
1

2
− (1− t∗n)2

]
, (5.16)

so we must have δ∗n > 1/2 and t∗n > 1/2, and also

1

4δ∗n
<

1

2
− (1− t∗n)2.

Further, because gn(δ∗n, t
∗
n) > hn(1), we also have

0 < gn(δ∗n, t
∗
n)− gn(1, t∗n

√
δ∗n)

< δ∗n

(
1

2
− (1− t∗n)2

)
−
(

1

2
−
(

1− t∗n
√
δ∗n

)2
)
,

which leads to

δ∗n

(
1

2
− (1− t∗n)2

)
−
(

1

2
−
(

1− t∗n
√
δ∗n

)2
)
> 0

⇐⇒ 1

2
δ∗n − δ∗n + 2t∗nδ

∗
n − δ∗n(t∗n)2 − 1

2
+ 1 + δ∗n(t∗n)2 − 2t∗n

√
δ∗n > 0

⇐⇒ 1

2
− 1

2
δ∗n + 2t∗nδ

∗
n − 2t∗n

√
δ∗n > 0

⇐⇒ 2t∗n
√
δ∗n(
√
δ∗n − 1) >

1

2
(
√
δ∗n − 1)(

√
δ∗n + 1)

⇐⇒ 2t∗n
√
δ∗n <

1

2
(
√
δ∗n + 1)

⇐⇒ 1

4δ∗n
>

(
2t∗n −

1

2

)2

.

Combining the two equations above, we have

1

2
− (1− t∗n)2 >

(
2t∗n −

1

2

)2

,

a contradiction for t∗n > 1/2.
Turning to part (b), suppose that Qn(θ) = Q(θ/σn) for some sequence σn, where Q(θ) is a

regularly varying function with gQ(a) ≤ a2. We consider the following two scenarios.



CHAPTER 5. OPTIMALITY OF THE MAX TEST FOR DETECTING SPARSE SIGNALS
WITH GAUSSIAN OR HEAVIER TAIL 80

(i) lim sup
√

2 log nσ−1
n <∞.

Since the distribution G has unbounded support, and

lim sup
√

2 log nσ−1
n <∞,

Q(
√

2 log nσ−1
n )

is bounded. Therefore

lim
n

Q(
√

2 log nσ−1
n )

log n
= 0,

and

λ∗(δ)− 1− δ
2

= lim
n
hn(δ) +

1

2
− β = sup

0≤t≤1
δ

[
1

2
− (1− t)2

]
+

1

2
− β =

δ

2
+

1

2
− β.

Hence the supremum of λ∗(δ)− 1−δ
2

on δ ∈ [0, 1] is attained at δ = 1.

(ii) lim sup
√

2 log nσ−1
n =∞.

Note that the limit λ∗(δ) exists for any δ. Therefore, by considering the sub-sequence of σn
with

√
2 log nσ−1

n → ∞, we can assume without loss of generality that
√

2 log nσ−1
n → ∞.

To prove the desired inequality, it suffices to show that, for any ε > 0, there exists n̄(ε) ∈ N
such that

hn(δ) ≤ max{hn(1), 0}+ ε, for all δ ∈ (0, 1), n > n̄(ε).

Fix ε > 0. Like part (a), we will prove this by supposing that hn(δ) > max{hn(1), 0} + ε
for all n and some δ, and deriving a contradiction. Suppose that for any N > 0, there exists
n > N and (δ∗n, t

∗
n) ∈ [0, 1)× [0, 1] such that

gn(δ∗n, t
∗
n) > max{ε, hn(1) + ε}.

To make use of the regularly varying property, we need to first obtain upper and lower bound
for t∗n

√
δ∗n. Since

gn(δ∗n, t
∗
n) = δ∗n

[
1

2
− (1− t∗n)2

]
−
Q(t∗n

√
2δ∗n log nσ−1

n )

log n
> ε (5.17)

and Q is non-negative, we have δ∗n > 2ε and t∗n > 1−
√

2/2 > 1/4. Therefore

1

2t∗n
√
δ∗n

<

√
2

ε
.

On the other hand, we have gn(δ∗n, t
∗
n) > hn(1) + ε ≥ gn(1, 1/2) + ε, that is,

δ∗n

[
1

2
− (1− t∗n)2

]
−
Q(t∗n

√
2δ∗n log nσ−1

n )

log n
>

1

4
+ ε−

Q(1
2

√
2 log nσ−1

n )

log n
. (5.18)
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Following the first claim (see Equation 5.16), we have

δ∗n

[
1

2
− (1− t∗n)2

]
≤ 1

4
<

1

4
+ ε.

Comparing the two equations above and noting that Q is non-decreasing, we have

Q(t∗n
√

2δ∗n log nσ−1
n )

log n
≤
Q(1

2

√
2 log nσ−1

n )

log n
.

Therefore
t∗n
√
δ∗n ≤

1

2
.

Using properties of regularly varying functions [17], we know that

lim
s→∞

sup
a∈Γ

∣∣∣∣Q(as)

Q(s)
− a2

∣∣∣∣→ 0

for any compact set Γ. Therefore, for any c0 > 0 there exists S > 0 such that

Q(as)

Q(s)
≤ a2 + c0

for any s > S and a ∈
[
1,
√

2
ε

]
. Take s = t∗n

√
2δ∗n log nσ−1

n . Since
√

2 log nσ−1
n → ∞, we

know that for large enough n,

Q(1
2

√
2 log nσ−1

n )

Q(t∗n
√

2δ∗n log nσ−1
n )
≤ 1

4t∗2n δ
∗
n

+ c0. (5.19)

Combining Equations 5.17, 5.18 and 5.19, we have(
1

4t∗2n δ
∗
n

+ c0

)
δ∗n

[
1

2
− (1− t∗n)2

]
>

1

4
+ ε.

Since c0 is arbitrary, we can take c0 < ε. It follows that

ε > c0t
∗2
n δ
∗
n > c0δ

∗
n

[
1

2
− (1− t∗n)2

]
,

and the above equation yields

1

t∗2n

[
1

2
− (1− t∗n)2

]
> 1,

a contradiction, and the second claim is proved.
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Proof of Corollary 1
Proof. Recall the definition of λn. For the first part, it suffices to notice that

lim
n
λn(1) = lim

n
sup

0≤t≤1
−ν log(t

√
2 log nσ−1

n )

log n
− (1− t)2 + 1− β

= lim
n

sup
0≤t≤1

−ν log(σ−1
n )

log n
− (1− t)2 + 1− β

= νρ+ 1− β.

Therefore β∗(ρ) = νρ+ 1.
For the second part, note that

lim
n
λn(1) = sup

0≤t≤1
−2at

r
− (1− t)2 = sup

0≤t≤1
−[t− (1− a

r
)]2 + (1− a

r
)2 − β.

Since 0 < 1− a
r
< 1, it follows that

lim
n
λn(1) = (1− a

r
)2 − β > 0 ⇐⇒ r >

a

(1−
√
β)
.

Therefore
β∗(r) = (1− a

r
)2.

For the third part, by Lemma 3,

lim
n
λn(1) = lim

n→∞
sup

0≤t≤1

log[1− Φ(t
√

2 log nr−1 − µ)]

2 log n
− (1− t)2 + 1− β.

Using properties of Gaussian tail probability, it can be easily verified that

lim
n→∞

log
(
1− Φ(t

√
2 log nr−1 − µ)

)
2 log n

= − t2

σ2r2
uniformly on t ∈ [0, 1].

Therefore

lim
n→∞

λn(1) > 0 ⇐⇒ sup
0≤t≤1

−
[
t2

r2
+ (1− t)2

]
> 1− β,

and β∗(r) = r2

r2+1
.

Proof of Theorem 2
Next, we restate and prove Theorem 3:

Theorem 3. Suppose that G satisfies limµ→∞(1 − G(µ))µν = limµ→∞G(−µ)µν = C with tail

index ν > 0, and σn =
r
√

2 log n

n(1−β)/ν
for some β ∈ (1/2, 1). Then β∗ = β, and
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1. the asymptotic power of the level-α max test, is

lim
n→∞

PH1(reject H0) = 1− e−2Crν+log(1−α).

In particular, the power tends to 1 as r →∞.

2. for any r ∈ (0,∞), the modified higher criticism is asymptotically powerless.

Proof. We first improve on Lemma 3 and derive a tighter bound on the tail probabilities of the
alternative distribution. For any 0 < δ ≤ 1, we have

Pµn∼Gn(X ≥
√

2δ log n) =

∫ ∞
−∞

(
1−G

(√
2δ log n− z

σn

))
φ(z)dz.

=

∫ √2δ logn−1

−∞

(
1−G

(√
2δ log n− z

σn

))
φ(z)dz

+

∫ ∞
√

2δ logn−1

(
1−G

(√
2δ log n− z

σn

))
φ(z)dz

(5.20)

Because σn → 0, the tail approximation for 1−G(µ) holds uniformly for µ > 1/σn. Thus, we
can approximate the first term in (5.20) as∫ δn

−∞

(
1−G

(√
2δ log n− z

σn

))
φ(z)dz

/∫ δn

−∞
C

(
σn√

2δ log n− z

)ν
φ(z)dz → 1,

as n→∞, where δn =
√

2δ log n− 1. It is also straightforward to show that, as n→∞,∫ −(2δ logn)1/4

−∞

( √
2δ log n√

2δ log n− z

)ν
φ(z)dz

≤
( √

2δ log n√
2δ log n+ (2δ log n)1/4

)ν
Φ(−(2δ log n)1/4) → 0,

∫ (2δ logn)1/4

−(2δ logn)1/4

( √
2δ log n√

2δ log n− z

)ν
φ(z)dz → 1, and

∫ √2δ logn−1

(2δ logn)1/4

( √
2δ log n√

2δ log n− z

)ν
φ(z)dz ≤

(√
2δ log n

)ν (
1− Φ((2δ log n)1/4)

)
→ 0.

As a result, we have∫ √2δ logn−1

−∞
C

(
σn√

2δ log n− z

)ν
φ(z)dz

/(
C

(r/
√
δ)ν

n1−β

)
→ 1. (5.21)

Let ε0 = min{β/2− 1/4, 1/2− β/2}. Turning to the second term in (5.20), we have

0 ≤
∫ ∞
√

2δ logn−1

(
1−G

(√
2δ log n− z

σn

))
φ(z)dz ≤ 1−Φ

(√
2δ log n− 1

)
≤ 1

nδ−ε0
. (5.22)
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Combining (5.20)–(5.22) and recalling the definition of σn, we have

(1 + o(1))C
(r/
√
δ)ν

n1−β ≤ Pµn∼Gn(X ≥
√

2δ log n)

≤ (1 + o(1))C
(r/
√
δ)ν

n1−β +
1

nδ−ε0

(5.23)

For δ > 1− β + ε0 we have(
1

nδ−ε0

)/(
C

(r/
√
δ)ν

n1−β

)
= O

(
n1−β−δ+ε0

)
→ 0.

Therefore for δ > 1− β + ε0,

Pµn∼Gn(Xn ≥
√

2δ log n)

/(
C

(r/
√
δ)ν

n1−β

)
→ 1.

Similarly,

Pµn∼Gn(Xn ≤ −
√

2δ log n)

/(
C

(r/
√
δ)ν

n1−β

)
→ 1.

Therefore for δ > 1− β + ε0,

Pµn∼Gn(|Xn| ≥
√

2δ log n)

/(
2C

(r/
√
δ)ν

n1−β

)
→ 1. (5.24)

Suppose that the 1− α quantile of maxi |Xi| under the null is m(n, α). Then the level-α max test
rejects the null when maxi |Xi| > m(n, α). Since m(n, α)/

√
2 log n→ 1, we have

Pµn∼Gn(|Xn| ≥ m(n, α))

/(
2C

(r/
√
δ)ν

n1−β

)
→ 1

and
n1−βPµn∼Gn(|Xn| ≥ m(n, α))→ 2Crν .

Hence the level-α max test satisfies

PH1(reject H0)

=1−
(
1− (1− n−β)P(|N(0, 1)| ≥ m(n, α))− n−βPµn∼Gn(|Xn| ≥ m(n, α))

)n
=1−

(
1− (1− n−β)(1− (1− α)1/n)− n−βPµn∼Gn(|Xn| ≥ m(n, α))

)n
→1− e−2Crν+log(1−α), as n→∞,

(5.25)

and the first part of the proposition is proved.
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Next we show that modified higher criticism is asymptotically powerless. For modified higher
criticism, the critical value of the test b(n, α) ∼

√
2 log log n. Let pi = P(|N(0, 1)| ≥ |Xi|), i =

1, . . . , n be the p-values. Suppose that under H1, the p-values are i.i.d with distribution function
Fn. Let

F̂n(t) =
1

n

n∑
i=1

1(pi≤t),

be the empirical distribution of {pi}, i = 1, . . . , n. Let p̃i = Fn(pi), and

F̃n(t) = F̂n(F−1
n (t)) =

1

n

n∑
i=1

1(Fn(pi)≤t) =
1

n

n∑
i=1

1(p̃i≤t),

Then p̃i
i.i.d.∼ Unif[0, 1], and {F̃n(t), 0 ≤ t ≤ 1)} follows the same distribution as the empirical

distribution of {pi}, i = 1, . . . , n under the null. Note that the higher criticism statistics can be
decomposed as

sup
1/n<t<1/2

√
n(F̂n(t)− t)√
t(1− t)

= sup
Fn(1/n)<t<Fn(1/2)

√
n(F̂n(F−1

n (t))− F−1
n (t))√

F−1
n (t)(1− F−1

n (t))

= sup
Fn(1/n)<t<Fn(1/2)

√
n(F̃n(t)− F−1(t))√
F−1
n (t)(1− F−1

n (t))

= sup
Fn(1/n)<t<Fn(1/2)

(√
t(1− t)

F−1
n (t)(1− F−1

n (t))

√
n(F̃n(t)− t)√
t(1− t)

+

√
n(t− F−1

n (t))√
F−1(t)(1− F−1

n (t))

)
.

We denote

An(t) :=

√
t(1− t)

F−1
n (t)(1− F−1

n (t))
,

Bn(t) :=

√
n(t− F−1

n (t))√
F−1
n (t)(1− F−1

n (t))

and

Wn(t) :=

√
n(F̃n(t)− t)√
t(1− t)

.

Note that by Taylor expansion,

An(Fn(t))− 1 ≤ 1

2

Fn(t)− t
t

, for any t > 0.
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Let D(t) = Fn(t) − t = n−β (Pµn∼Gn(|Xn| ≥ Φ−1(1− t/2))− t) and qn = (log n)3/2n. Let
δ0 = 1− ε for ε > 0 small enough. Then for large enough n, by Equation 5.24

n sup
1/n≤t≤qn

D(t) ≤ n1−β
(
Pµn∼Gn

(
|X| ≥

√
2δ0 log n

))
→ 2Crνδ

−ν/2
0 ≤ 4Crν .

For large enough n, we have

sup
Fn(1/n)<t<Fn(qn)

An(t) ≤ 1 +
n

2
sup

1/n≤t≤qn
D(t) ≤ 2Crν

and
sup

Fn(1/n)<t<Fn(qn)

Bn(t) ≤ n sup
1/n≤t≤qn

D(t) ≤ 4Crν .

Note that 1/n ≤ Fn(1/n) and

Fn(qn) ≤ qn +D(qn) ≤ qn + 4Crν/n ≤ qn + (log n)3/2n = (log n)3/n.

Lemma 3 and 4 in Jaeschke [59] implies that

sup
Fn(1/n)<t<Fn(qn)

Wn(t)/
√

2 log log n ≤ sup
1/n<t<(logn)3/n

Wn(t)/
√

2 log log n
p→ 0.

Therefore

P

(
sup

Fn(1/n)<t<Fn(qn)

An(t)Wn(t) +Bn(t) > b(n, α)

)
= 0.

Write t = 2(1 − Φ(
√

2δ log n)) for 0 < δ < 1. Then t ∼ n−δ up to log n factors. Recall that
ε0 = min{β/2− 1/4, 1/2− β/2}. It can be easily verified from Equation 5.23 that

Fn(t)− t ≤


(1 + o(1))C( r√

δ
)νn−1 for 1− β + ε0 ≤ δ < 1,

n−(β+δ−ε0) for ε0 < δ < 1− β + ε0,
n−β for δ < ε0,

Let q∗n = 2(1−Φ(
√

2(1− β + ε0) log n)). Then t ≥ n−δ−ε0 , and it follows that for some constant
C0,

sup
F (qn)<t<F (1/2)

(An(t)− 1)

≤max

{
sup

qn<t<q∗n

An(Fn(t))− 1, sup
q∗n<t<1/2

An(Fn(t))− 1

}

≤max

{
C0

(log n)3
, n−β+2ε0

}
= O

(
(log n)−3

)
.
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Similarly we have

sup
Fn(qn)<t<Fn(1/2)

Bn(t)

≤max

{
sup

qn<t<q∗n

Bn(Fn(t)), sup
q∗n<t<1/2

Bn(Fn(t))

}

≤max

{
C0

(log n)3/2
, n−

1
2
β+ 1

4

}
= O

(
(log n)−3/2

)
.

Therefore by Theorem 1 in Jaeschke [59], for large enough n we have

P

(
sup

Fn(qn)<t<Fn(1/2)

An(t)Wn(t) +Bn(t) > b(n, α)

)

≤P

(
sup

Fn(qn)<t<Fn(1/2)

Wn(t) > b(n, α)− C0(b(n, α) + 1)

(log n)3/2

)

≤P

(
sup

0<t<Fn(1/2)

Wn(t) > b(n, α)− 1

log n

)
→ α,

and the proof is complete.

5.6 Supplementary results

Counterexample showing that the condition in Theorem 2 is almost
necessary
Suppose that σn = r/

√
2 log n, r > 0 and G(θ) is the distribution with P(θ = 3m) = e−3m ,m =

1, 2, . . . , and P(θ = 0) = 1 −
∑∞

m=1 e
−3m . Let β = 0.52 and nk = e5·3k , k = 1, 2, . . . . Then we

have

P
(
µnk =

√
2 · (0.2 · 3mr)2 log nk

)
= n

−(0.52+0.2·3m)
k ,m = −k, . . . ,−1, 0, 1, . . . .

For m ≥ 1, the probability is less than n−1.1
k , and the corresponding signal can not be used for

detection. For m ≤ 0, we have 0.52 + 0.2 · 3m ≤ 0.72 < 0.75. Therefore for max test to have full
asymptotic power, we need

(0.2 · 3mr)2 >
(

1−
√

1− (0.52 + 0.2 · 3m)
)2

for some integer m ≤ 0⇒ r > 2.354.

For the higher criticism to have full power [35], we need

(0.2 · 3mr)2 > 0.52 + 0.2 · 3m − 0.5 for some integer m ≤ 0⇒ r > 2.345.

Since 2.345 < 2.354, the detection boundary for higher criticism is smaller than that of max test
despite F being exponential.
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Proof of Propositions 2 and 3(b) for the modified higher criticism and
Berk-Jones tests
Since Proposition 2 is a directly corollary of Proposition 3, we will only provide the proof of Part
(b) of Proposition 3 for the modified higher criticism and Berk-Jones tests.

Proof. Under the condition of Part (b), there exists δ0 ∈ (0, 1) and constant c0 > 0 such that

lim
n→∞

λn(δ0)− 1− δ0

2
= 2c0 > 0 for large enough n. Let t = Φ̄(2δ0 logn) < n−δ0 . Recall that Fn is

the empirical distribution of p-values. Therefore nFn(t) = N(δ0) follows a binomial distribution
with

EH1N(δ0) = nt(1− n−β) + nλn(δ0) ≥ nt(1− n−β) + n
1−δ0

2
+c0 ≥ nt+

1

2
n

1−δ0
2

+c0 .

for large enough n, and

VarH1N(δ0) = EH1N(δ0)

(
1− EH1N(δ0)

n

)
Therefore, by Chebyshev’s inequality,

PH1 [N(δ0) < nt+ n
1−δ+c0

2 ] ≤ VarH1N(δ0)(
EH1N(δ0)− nt− n

1−δ0+c0
2

)2

≤ EH1N(δ0)(
EH1N(δ0)− nt− n

1−δ0+c0
2

)2

≤ 1

EH1N(δ0)− nt− 2n
1−δ0+c0

2

≤ n−
1−δ0+c0

2

for large enough n. Therefore, for the modified higher criticism statistics, we have

PH1(mHCn ≥ 2
√

log log n) ≥ PH1

(√
n(Fn(t)− t)√
t(1− t)

≥ 2
√

log log n

)

≥ PH1

(
N(δ0)− nt√
nt(1− t)

≥ 2
√

log log n

)
≥ 1− PH1

[
N(δ0) < nt+ n

1−δ+c0
2

]
→ 1

as the n→∞, where the last inequality holds for large enough n. Now we turn to the Berk-Jones
statistics. First, it can be easily verified that log(x + 1) > x/2 for x ∈ (−1/2, 1/2). Without
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loss of generality, suppose that 2c0 < (1 − δ0)/2, then EH1N(δ0)/nt → 1, and Fn(t)/t
p→ 1. If

1/2 < Fn(t)/t < 3/2, then

2n

[
Fn(t) log

Fn(t)

t
+ (1− Fn(t)) log

(1− Fn(t))

(1− t)

]
≥ nFn(t)

(
Fn(t)

t
− 1

)
+ n(1− Fn(t))

(
(1− Fn(t))

(1− t)
− 1

)
=
n(Fn(t)− t)2

t(1− t)
.

Therefore

lim
n→∞

PH1(BJn ≥ 2
√

log log n) ≥ lim
n→∞

PH1

(
n(Fn(t)− t)2

t(1− t)
≥ 4 log log n

)
= 1,

which completes the proof.

Additional simulation results
We provide additional simulation results whereG is the Gaussian (Figure 5.4), logistic (Figure 5.5),
chi-squared (Figure 5.6), t5 (Figure 5.7), and t3 (Figure 5.8) distribution, and Gn = rG. In each
simulation, n = 50, 000 and there are n1 = bn1−βc non-null means drawn fromGn. We find that in
all settings, the power of max test is similar to the power of the higher criticism test when β > 1/2.
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Figure 5.4: Comparison of power for different tests, where n = 50, 000 with n1 = bn1−βc non-null means
drawn from N(0, r2).
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Figure 5.5: Comparison of power for different tests, where n = 50, 000 with n1 = bn1−βc non-null means
drawn from r ∗ Logistic(0, 1).



CHAPTER 5. OPTIMALITY OF THE MAX TEST FOR DETECTING SPARSE SIGNALS
WITH GAUSSIAN OR HEAVIER TAIL 92

0.00
0.25
0.50
0.75
1.00

0.0 0.2 0.4 0.6
r

po
w

er

beta=0.1, n1=16946

0.25
0.50
0.75
1.00

0.00 0.25 0.50 0.75 1.00
r

po
w

er
beta=0.2, n1=5743

0.00
0.25
0.50
0.75
1.00

0.0 0.5 1.0
r

po
w

er

beta=0.3, n1=1946

0.25
0.50
0.75
1.00

0.0 0.5 1.0 1.5
r

po
w

er

beta=0.4, n1=659

0.25
0.50
0.75
1.00

0.0 0.5 1.0 1.5 2.0
r

po
w

er

beta=0.5, n1=223

0.25
0.50
0.75
1.00

0.0 0.5 1.0 1.5 2.0 2.5
r

po
w

er

beta=0.6, n1=75

0.25
0.50
0.75
1.00

0 1 2 3
r

po
w

er

beta=0.7, n1=25

0.2
0.4
0.6
0.8

0 1 2 3 4
r

po
w

er

beta=0.8, n1=8

0.2

0.4

0.6

0 2 4 6
r

po
w

er

beta=0.9, n1=2

method Max test
Higher Criticism

Modified HC
Berk−Jones

Chi−squared
Hybrid

Figure 5.6: Comparison of power for different tests, where n = 50, 000 with n1 = bn1−βc non-null means
drawn from r ∗ χ2(1).
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Figure 5.7: Comparison of power for different tests, where n = 50, 000 with n1 = bn1−βc non-null means
drawn from r ∗ t5.
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Figure 5.8: Comparison of power for different tests, where n = 50, 000 with n1 = bn1−βc non-null means
drawn from r ∗ t3.
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Chapter 6

Whiteout: when do fixed-X knockoffs fail?

6.1 Introduction

The knockoff filter in the Gaussian linear model
Knockoff methods are a flexible framework for multiple testing in supervised learning problems,
that operate by introducing a “negative control” for each predictor variable in the model and testing
an algorithm’s ability to distinguish the true variables from the controls. In particular, the fixed-X
knockoff filter introduces extra predictor variables in a Gaussian linear model whose joint corre-
lation structure with each other and with the true predictors makes them appear indistinguishable
from true predictors whose regression coefficients are zero. In this model we observe a fixed design
matrix X ∈ Rn×d and response

y = Xβ + ε, where εi
i.i.d.∼ N (0, σ2), i = 1, . . . , n,

where σ2 > 0 and β ∈ Rd are unknown parameters, and the goal is to test each null hypothesis
Hj : βj = 0 against the two-sided alternative, for j = 1, . . . , d. Following Barber, Candès, et al.
[9], we assume throughout that X has full column rank with 2d ≤ n.

The uniformly most powerful unbiased (UMPU) test of Hj is the two-sided t-test that rejects
for extreme values of the t-statistic Tj = β̂j/

√
σ̂2Σjj , where Σ = (XTX)−1 and β̂ and σ̂ are

respectively the OLS estimator

β̂ =
(
XTX

)−1
XTy ∼ Nd

(
β, σ2Σ

)
and the residual variance σ̂2 = ‖y − Xβ̂‖2/(n − d). Taken together, these two estimators are a
complete sufficient statistic for the model. Let pj denote the p-value for the two-sided t-test on Hj .

The standard approach for multiple testing would operate on the t-test p-values for these tests,
correcting for multiplicity. If R is the number of rejected hypotheses from a multiple testing
procedure and V is the number of rejected true null hypotheses (false discoveries), [16] define
the false discovery proportion as FDP = V/max{R, 1}, and the false discovery rate (FDR) as
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its expectation FDR = EFDP. While the Benjamini–Hochberg (BH) procedure of [16] is not
known to control the FDR in this problem unless Σ is diagonal (i.e., unless the columns of X are
orthogonal), recent methods can directly adjust BH for the multivariate Gaussian dependence [43].
The FDR criterion relaxes the more conservative family-wise error rate FWER = P(V ≥ 1), the
probability of making any false rejections, which we can control using the conservative Bonferroni
correction that rejects Hj when pj ≤ α/m.1

The knockoff filter of Barber, Candès, et al. [9] takes a radically different approach, bypassing
the t-test p-values entirely. The method begins by augmenting the design matrix X with a second
matrix X̃ ∈ Rn×d of negative control or knockoff variables, constructed to satisfy

X̃TX̃ = XTX, and X̃TX = XTX −D,

for some diagonal matrix D � 2XTX , where � denotes the positive semidefinite ordering. As we
will see, a larger entry of Djj preserves more signal for the inference on Hj , but in general it is not
possible to maximize all Djj simultaneously.

Knockoffs then calculates so-called W -statistics W1, . . . ,Wd satisfying two properties:

1. Sufficiency Wj depends on [X X̃] and y only through the Gram matrix [X X̃]T[X X̃] and
[X X̃]Ty, and

2. Antisymmetry Swapping any variable Xj with its knockoff X̃j would flip the sign of Wj and
leave every other Wk fixed. That is, if Swapj([X X̃]) is the augmented design matrix with
these variables swapped, then

Wk(Swapj([X X̃]), y) =

 −Wk([X X̃], y) k = j

Wk([X X̃], y) k 6= j
.

The absolute values |W | = (|W1|, . . . , |Wd|) determine a data-adaptive hypothesis ordering,
with larger values assigned higher priority. As we will see, the sufficiency and antisymmetry prop-
erties along with the model assumptions ensure that, conditional on |W |, sgn(W1), . . . , sgn(Wd)
are mutually independent, and under Hj , sgn(Wj) is a Rademacher random variable (without loss
of generality we can assume all Wj 6= 0 by construction). Once the W -statistics are calculated,
the knockoff filter applies an ordered multiple testing method called selective SeqStep [9] treating
each sgn(Wj) as a “binary p-value” for Hj . To control the false discovery rate (FDR) at level α,
the knockoff+ method rejects all hypotheses Hj for which Wj exceeds the adaptive threshold t̂:

t̂ = min
{
t : F̂DP

kn
t ≤ α

}
, where F̂DP

kn
t =

1 + #{j : Wj ≤ −t}
#{j : Wj ≥ t}

.

The fixed-X knockoff filter is a highly versatile method that offers the user flexibility at two
stages of the procedure: first, in choosing the matrix D from among the many matrices satisfying

1A more accurate FWER correction would apply the closure of the max-t test: if S is the maximal set for which
‖TS‖∞ is below its 1− α quantile under HS : βS = 0, then we can reject Hj for j /∈ S; see [55] for more details.
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D � 2XTX , and second, in choosing how to define the W -statistics. Spector and Janson [115]
show the importance of choosing D well and discuss ramifications on the procedure’s power, and
various other works detail myriad ways to tailor the W -statistics using machine learning methods
that exploit structural assumptions or other prior beliefs about the coefficients. In particular, at
either stage the analyst can choose to favor some hypotheses over others by increasing their values
of Djj or |Wj|. This flexibility poses a major challenge if we wish to upper-bound the method’s
power universally over the analyst’s entire choice set, since it gives well-informed analysts ample
opportunities to stack the deck in their own favor.

In light of this tremendous flexibility, it may come as a surprise to discover regimes where
no knockoffs method — even one designed with full knowledge of the true regression coeffi-
cients — can achieve nontrivial power, even while Bonferroni-corrected inference achieves near-
perfect power. To explain where knockoffs can go wrong, the next Section 6.1 formally recasts the
knockoff filter as a conditional post-selection inference method with an unrestricted exploratory
stage followed by a prescribed confirmatory stage. The key quantity is a randomized estimator
β̃ = β̂ + ω, where ω is user-generated Gaussian noise in the style [123], with Var(ω) crafted
to make Var(β̃) diagonal. Section 6.1 shows the two formulations are equivalent, building off a
conditioning argument introduced in the Supplement of Barber, Candès, et al. [8].

Knockoffs as conditional inference on a whitened estimator
We now give an alternative but equivalent account of the knockoff filter without W -statistics,
without sufficiency and antisymmetry properties, and indeed without any negative control variables
at all. Instead, we view the method as conditional post-selection inference, where the key step is
to construct a whitened estimator β̃ with diagonal covariance. If ∆ ∈ Rd×d is any diagonal matrix
with ∆ � Σ = (XTX)−1, let

β̃ = β̂ + ω ∼ Nd
(
β, σ2∆

)
, where ω ∼ Nd

(
0, σ2(∆− Σ)

)
(6.1)

is noise generated by the user, independently of β̂. We will see in Section 6.1 that even when σ2 is
unknown, ω can be carved out of σ̂2 as long as n ≥ d+ r, where r = rank(∆− Σ) ≤ d.

By whitening the estimator, we buy independence of the coordinates at the price of increasing
their variance, since ∆jj ≥ Σjj . However, this price is recouped by an exploratory analysis using
the statistic

ξ = XTXβ̂ −∆−1β̃ ∼ Nd
(
Aβ, σ2A

)
, where A = XTX −∆−1 � 0. (6.2)

ξ carries the information lost by whitening since β̂ = (XTX)−1(ξ + ∆−1β̃), and is independent of
β̃ since

Cov(ξ, β̃) = (XTX) Cov(β̂, β̂ + ω)−∆−1 Cov(β̃, β̃) = σ2 − σ2 = 0.

In terms of ω, β̃ and ξ, the fixed-X knockoff filter can be equivalently defined as follows:



CHAPTER 6. WHITEOUT: WHEN DO FIXED-X KNOCKOFFS FAIL? 98

Stage 1 (whitening). For any ∆ � Σ, generate noise ω ∼ Nd(0, σ2(∆− Σ)) independently of β̂.

Stage 2 (exploratory analysis). Observe ξ and |β̃| and use them to order the d hypotheses for
Selective SeqStep as H[1], . . . , H[d], where [1] indexes the first hypothesis in order and [d] the
last.

In addition, select a one-sided alternative for each Hj . Let ψj = +1 if the right-tailed
alternative is selected, and ψj = −1 for the left-tailed alternative.

Stage 3 (confirmatory analysis). Using Selective SeqStep, test the hypotheses in order using
sgn(β̃j) as the test statistic for βj . The signs are conditionally independent given ξ and
|β̃|, with

logit P
(

sgn(β̃j) = +1
∣∣ ξ, |β̃|) =

2 |β̃j|
σ2∆jj

· βj, where logit p = log
p

1− p
. (6.3)

The equivalence between this formulation and the standard formulation of knockoffs given
in Section 6.1 is formally stated and proven in Section 6.1. Because sgn(β̃j) is conditionally a
Rademacher random variable if βj = 0, and is stochastically increasing in βj , the conditional p-
value p̃j is 1/2 when sgn(β̃j) = ψj , and 1 when sgn(β̃j) = −ψj . To be fully explicit, Stage 3
rejects H[j] if j ≤ k̂ and p̃[j] = 1/2, where

k̂ = max
{
k : F̂DP

wh
k ≤ α

}
, with F̂DP

wh
k =

1 +
∑k

j=1 1{p̃[j] = 1}∑k
j=1 1{p̃[j] = 1/2}

.

Given ξ and |β̃|, the p-values are valid and independent, satisfying the requirements for Selec-
tive SeqStep, so the method described above controls the directional FDR, both conditionally and
marginally.

The exploratory analysis is defined vaguely because the analyst can use ξ and |β̃| however
they like, provided they have not yet observed anything else about y.2 It is in this unrestricted
stage that knockoffs can exploit prior information and structural assumptions. When all goes well,
the ordering is highly informative, effectively reducing the multiplicity in Stage 3 by focusing
inferential power on the first few hypotheses. In many problems, a good exploratory analysis can
more than compensate for the additional noise and binarization of the confirmatory test statistics,
helping knockoffs to outperform less flexible methods like BH.

However, this formulation also exposes an important vulnerability of the method. When the
eigenstructure of Σ is unfavorable, the price of whitening can be devastating, dooming the confir-
matory analysis before the exploratory analysis even begins. Roughly, when Σ has large leading
eigenvalues and dense leading eigenvectors, we will necessarily have ∆jj � Σjj for most of the
variables, rendering the conditional distribution of sgn(β̃j) nearly uninformative about βj even in
regimes where Bonferroni inference enjoys full asymptotic power. In short, we cannot whiten the
estimator without totally obscuring the signal.

2While the sufficiency property of Barber, Candès, et al. [9] also regulates the analyst’s use of the fixed design
matrix X , we will see in Section 6.1 that this restriction can be relaxed.
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Equivalence of the two formulations
Next we will show that the two formulations of knockoffs in Sections 6.1 and 6.1, which we will
respectively call the standard method and the whitening method, are essentially equivalent. In
the standard method, an implementation of the knockoff filter is fully defined by a valid knockoff
matrix X̃ and a recipe for computing W -statistics satisfying the sufficiency and antisymmetry
properties. In the whitening method, an implementation is fully defined by a diagonal matrix
∆ � (XTX)−1 and a recipe for computing a hypothesis ordering and ψj values from |β̃| and ξ. We
will show that the implementations of each method are essentially in one-to-one correspondence
with each other, using a coupling between [X X̃]Ty and ω.

To begin our analysis, assume that X̃ is a valid knockoff matrix with XTX̃ = XTX − D,
which can be constructed for any D � 2XTX [9], and assume all Djj > 0. Set ∆ = 2D−1, so
A = XTX −∆−1 = XTX − 1

2
D.

Following a conditioning argument in Barber, Candès, et al. [8], if we add and subtract X̃Ty
from XTy we obtain a useful 2d-variate Gaussian statistic whose mean and covariance matrix can
be calculated from y ∼ Nn(Xβ, σ2In):(X + X̃)Ty

(X − X̃)Ty

 = N2d

2Aβ

Dβ

 ,

4σ2A 0

0 2σ2D

 . (6.4)

It is suggestive that by rescaling the second component in (6.4) we obtain D−1(X − X̃)Ty ∼
Nd(β, σ2∆), which is the desired distribution for β̃. Pursuing this ansatz, set

ω = D−1(X − X̃)Ty − β̂ ∼ Nd
(
0, σ2(∆− Σ)

)
. (6.5)

In the model where σ2 is known, ω is ancillary and β̂ complete sufficient, so ω is independent
of β̂ by Basu’s Theorem. As a result we have β̃ = D−1(X − X̃)Ty and

ξ = XTXβ̂ −∆−1β̃ = XTy − 1

2
(X − X̃)Ty =

1

2
(X + X̃)Ty.

Next we relate the whitening method’s exploratory stage to a slightly weakened substitute for
the sufficiency and antisymmetry properties.

Proposition 4. For j = 1, . . . , d define

W ∗
j ([X X̃], y) = sgn

(
(Xj − X̃j)

Ty
)
·Wj([X X̃], y). (6.6)

If W satisfies the sufficiency and antisymmetry properties, then W ∗ depends on y only through
the unordered pairs {XT

1 y, X̃
T
1 y}, . . . , {XT

d y, X̃
T
d y}. In terms of the coupling defined by (6.5), if

W satisfies the sufficiency and antisymmetry properties then W ∗ depends on y only through ξ and
|β̃|.
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Proposition 4 is proven in Barber, Candès, et al. [8] but we provide a proof here for complete-
ness.

Proof. By the sufficiency property, W only depends on y through (X + X̃)Ty and (X − X̃)Ty, so
the same is true of W ∗. By the antisymmetry property we have

W ∗
j (Swapj([X X̃]), y) = sgn

(
(X̃j −Xj)

Ty
)
·Wj(Swapj([X X̃]), y)

= sgn
(
−(Xj − X̃j)

Ty
)
·
(
−Wj([X X̃], y)

)
= W ∗

j ([X X̃], y),

so W ∗
k (Swapj([X X̃]), y) = W ∗

k ([X X̃], y) for all k including k = j.
Since W ∗ is invariant to flipping the sign of any (Xj − X̃j)

′y, it actually depends on y only
through (X + X̃)Ty and |(X − X̃)Ty|, i.e., only through the unordered pairs {XT

j y, X̃
T
j y}, for

j = 1, . . . , d.
For the coupling in (6.5), we have 2ξ = (X + X̃)Ty and Dβ̃ = (X − X̃)Ty. Hence, observing

ξ and |β̃| is the same as observing (X + X̃)Ty and |(X − X̃)Ty|, which is the same as observing
the unordered pairs.

We will say that W satisfies the unordered pair property if W ∗ depends on y only through
{XT

j y, X̃
T
j y} for j = 1, . . . , d. This amounts to a slight relaxation of the sufficiency and anti-

symmetry properties because it allows for W ∗ to have unrestricted dependence on the fixed matrix
[X X̃]. With these relationships established, we are now prepared to prove formal equivalence.

Theorem 4. Assume that n ≥ 2d and let X̃ be a knockoff matrix with XTX̃ = XTX − D. Let
∆ = 2D−1 and define ω as in (6.5). Then

(a) For any implementation of the whitening method, we can construct W -statistics satisfying the
unordered pair property so that the two methods give identical rejection sets.

(b) For any W -statistics satisfying the unordered pair property with |W1|, . . . , |Wd| almost surely
positive with no ties, we can construct an implementation of the whitening method so that the
two methods give identical rejection sets.

Proof. For (a), takeW[j] = (d+1−j) · ψ[j] · sgn(β̃[j]), for j = 1, . . . , d. W satisfies the unordered
pair property because W ∗

[j] = (d+ 1− j) · ψ[j] depends on y only through ξ and |β̃|, and the same
is true for the ordering indices [j].

For (b), because the method depends on |W | only through the ordering of its coordinates, we
can assume without loss of generality that |W | is a permutation of {1, . . . , d}. Take [j] to be the
index of the jth largest |Wj| value, so that |W[j]| = d + 1 − j, and set ψj = sgn(W ∗

j ), which is a
function of ξ and |β̃|. As a result, we again have W[j] = (d+ 1− j) · ψ[j] · sgn(β̃[j]).
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To see why these two methods return the same rejection sets when W[j] = (d+ 1− j) · ψ[j] ·
sgn(β̃[j]), note first that p̃j = 1/2 ⇐⇒ sgn(β̃j) = ψj ⇐⇒ Wj > 0. As a result

F̂DP
wh
k =

1 +
∑d

j=1 1{p̃[j] = 1, [j] ≤ k}∑d
j=1 1{p̃[j] = 1/2, [j] ≤ k}

=
1 +

∑d
j=1 1{W[j] ≤ −(d+ 1− k)}∑d
j=1 1{W[j] ≥ d+ 1− k}

= F̂DP
kn
d+1−k.

For other values of t ∈ (0, d + 1], F̂DP
kn
t = F̂DP

kn
dte, where dte is the integer ceiling of t.

Therefore, t̂ = d+ 1− k̂ and the rejection sets are the same.

Because the whitening method controls FDR, Theorem 4 implies that the unordered pair prop-
erty is a sufficient condition for the standard knockoff filter to control FDR as well, relaxing the
sufficiency and antisymmetry properties. The requirement in (b) that all |Wj| be positive and dis-
tinct is not really necessary: we could break ties or generate “signs” at random, or generalize the
whitening method so that F̂DP

wh
k is only calculated for a subset of k = {1, . . . , d} corresponding

to the indices where |W[k]| is positive and decreases. We ignore these generalizations for the sake
of brevity.

Knockoffs without knockoffs: implementing the whitening method
While the coupling in Section 6.1 gives a recipe for generating ω using a knockoff matrix X̃ , we
can alternatively skip creating X̃ and instead generate the noise directly using the sample variance
σ̂2. We can relax the usual dimension requirement, that n ≥ 2d, and require only that n ≥ d + r
where r = rank(∆−Σ) ≤ d. In that case let M ∈ Rd×r be any fixed matrix with MMT = ∆−Σ,
and set

ω =

√
(n− d)vσ̂2

‖z‖2
· Mz, for z ∼ Nr(0, Ir) and v ∼ Beta

(
r

2
,
n− d− r

2

)
, (6.7)

or v = 1 if n = d+ r. z and v are auxiliary random variables generated independently of the data
and each other. Lemma 4 shows ω has the desired distribution; furthermore it is independent of β̂
because σ̂2 is.

Lemma 4. Define z, v, and ω as in (6.7). Then (n− d)vσ̂2 ∼ σ2χ2
r , and ω ∼ Nr(0, σ2(∆− Σ)).

Proof. If n = d+r and v = 1 then (n−d)vσ̂2 ∼ σ2χ2
n−d is immediate. If n > d+r, independently

generate a1 ∼ χ2
r = Gamma

(
r
2
, 2
)

and a2 ∼ χ2
n−d−r = Gamma

(
n−d−r

2
, 2
)
. Then it is a standard
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fact that the ratio v = a1
a1+a2

∼ Beta
(
r
2
, n−d−r

2

)
is independent of a1 + a2 ∼ χ2

n−d. As a result,

v · (n− d)σ̂2 D
= v · (a1 + a2)σ2 = σ2a1 ∼ σ2χ2

r.

Similarly, z/‖z‖ ∼ Unif(Sr−1) is independent of ‖z‖2 ∼ χ2
r . As a result,√

(n− d)vσ̂2 · z

‖z‖
D
=
√
σ2‖z‖2 · z

‖z‖
∼ Nr(0, σ2Ir).

Because any implementation of knockoffs in its standard formulation can be viewed as an
implementation of the whitening method by taking ω as in (6.5) and using the construction in The-
orem 4(b), state-of-the-art knockoff implementations such as those in the knockoff package [99]
can also be deployed as implementations of the whitening method.

In addition the whitening method may be a fruitful starting point for generalizing knockoffs,
for example by altering what information is available in Stage 2, or by replacing Selective SeqStep
with a different multiple testing method in Stage 3. Fithian, Sun, and Taylor [44]

One immediate generalization when n > d+ r is involves the “left-over” variance estimator

σ̃2 =
(n− d)(1− v)

n− d− r
σ̂2 ∼ σ2

n− d− r
χ2
n−d−r.

It is easily shown that β̂, ω, and σ̃2 are mutually independent, and ξ and β̃ depend only on β̂ and
ω, so allowing the analyst to use σ̃2 in Stage 2 has no effect on the conditional inference in Stage
3.

The analogous quantity in the standard implementation is σ̃2 = 1
n−d−r‖y − ŷ‖

2, where ŷ is the
projection of y on the columns of [X X̃]. Because σ̃2 is independent of [X X̃]Ty, the unordered
pair property could be immediately relaxed to a requirement thatW ∗ be a function of the unordered
pairs and σ̃2 without affecting the FDR control proof. One use for σ̃2 could be as an input to
generalized cross-validation [46].

Instead of pursuing methodological generalizations, we focus our attention for the remainder
of this work on using the whitening method as a lens through which to gain a better theoretical
understanding of knockoffs.

Related work
The whitening method presented in Section 6.1 is presaged in several prior works. Most notably,
an argument in the Supplement of Barber, Candès, et al. [8] conditions on (X + X̃)Ty and |(X −
X̃)Ty| to prove knockoffs control the directional FDR, a more stringent version of FDR where the
analyst must draw a conclusion about sgn(βj) when rejecting Hj . An analogous argument to theirs
shows that the whitening method controls the directional FDR as well: because p̃j is also a valid
conditional p-value for the data-dependent one-sided null Hψj

j : ψjβj ≤ 0, the rejections in Stage
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3 can be viewed as concluding that sgn(βj) = ψj , yielding directional FDR control conditional on
ξ and |β̃j|, and therefore also marginally.

Likewise, assumingA = 2(XTX)−D is nonsingular Sarkar and Tang [108] considerD−1(X−
X̃)Ty and A−1(X + X̃)Ty (equivalent to β̃ and A−1ξ in our notation) as two independent unbiased
estimators of β, taking this perspective as a starting point from which to derive hybrid multiple
testing procedures blending the knockoff filter with the BH procedure.

There has been limited work on the power of knockoff filters. When studying the TPP-FDP
tradeoff on the Lasso path, it is frequently assumed that there exists a constant fraction of non-zero
coefficients and the coefficients are sampled from a fixed distribution [14, 121]. In addition, it is
often assumed that n/p→ δ for some positive constant δ. Under this low-dimensional linear spar-
sity regime, [129] used results from [14] to derive the asymptotic TPP-FDP tradeoff of knockoff
filters under i.i.d Gaussian design. [76] studied the power of knockoff under correlated design in
the low dimensional setting, and showed that the knockoff filter has full asymptotic power when
the precision matrix has vanishing diagonal entries. Going beyond the aforementioned linear spar-
sity assumptions, [42] studied the power of the oracle knockoff filter (assuming that the oracle
covariance structure of the variables is known). They assumed that the coefficients are fixed and
relatively large, and showed under certain regularity conditions that the oracle knockoff filter is
consistent.

Recently, [115] showed that the SDP Knockoff can be asymptotically powerless for equicorre-
lated Gaussian design with correlation ρ ≥ 0.5, due to the strong joint dependencies in the distribu-
tion of [X, X̃]. They proposed the minimum variance-based reconstructability (MVR) knockoffs,
and showed that the TPR of the MVR knockoff converges to 1 under regularity conditions. How-
ever, it can be proved that the TPR of the Bonferroni correction also converges to 1 under the
same set of conditions. [65] analyzed the phase diagram of the SDP knockoff, but their results are
restricted to block-equicorrelated correlation structure with block size 2.

To the best of our knowledge, there has been no formal theoretical results comparing the asymp-
totic power of knockoff to that of other baseline FDR controlling techniques. When p < n, a crude
baseline is to perform Bonferroni correction or the Benjamini-Yekutieli procedure on the p values
from OLS. The main contribution of this paper is to identify failure mode of the knockoff filter
relative to this baseline.

6.2 Finite sample upper bounds on the power of knockoff filter

Oracular ordering and the knockoff* procedure
We now turn our attention to the analyst’s situation after Stage 1 of the fixed-X knockoff filter,
to determine the best achievable knockoff method. Conditional on ξ and |β̃|, the best possible
ordering of variables is according to their conditional likelihood of resulting in a small p-value.



CHAPTER 6. WHITEOUT: WHEN DO FIXED-X KNOCKOFFS FAIL? 104

Assuming that ψj = sgn(βj) for all j ∈ Hc
0, the log-odds of observing a small p-value is

ηj = logitP(p̃j = 1/2 | C) =
2|β̃j|
σ2∆jj

· |βj|. (6.8)

As such, the best possible ordering of predictor variables — achievable only by an analyst with
knowledge of βj — is to order them in decreasing order of ηj , with ties broken arbitrarily. Define
the knockoff* procedure as the procedure that correctly predicts all βj , and orders the variables in
decreasing order of ηj .

Next, for 0 < p < q < 1, define the random walk

Sp,qk =
k∑
j=1

p− Zk, where Z1, Z2, . . .
i.i.d.∼ Bern (q) .

Let F ( · ; p, q) represent the distribution function of max{k : Sp,qk ≥ 1 − p}, the last time the
random walk exceeds 1 − q. It can be easily shown by Chernoff’s inequality that the expectation
of max{k : Sp,qk ≥ 1− p} is bounded.

Assume the η values are ordered as

η(1) ≥ η(2) ≥ · · · ≥ η(d).

Proposition 5. If η(1) < − logα, then the number of rejections for any knockoff procedure at FDR

significance level α is stochastically smaller than F
(
· ; α

1+α
, e

−η(1)

1+e
−η(1)

)
.

In any asymptotic regime where η(1)
p→ 0, the number of rejections for any knockoff procedure

at any significance level is Op(1) with limiting distribution function stochastically smaller than
F
(
·, α

1+α
, 1

2

)
.

Proof. Let p = α
1+α

, q = e
−η(1)

1+e
−η(1) , ζj = e−η(j) and Z ′j = 1{pj = 1} ind∼ Bern

(
ζj

1+ζj

)
. Then

Ak =
k∑
j=1

Z ′j, and Rk = k − Ak =
k∑
j=1

1− Z ′j.

The number of knockoff rejections is Rk̂ ≤ k̂, where k̂ is the largest index k with

F̂DPk =
1 + Ak
Rk

≤ α ⇐⇒ 1 ≤ αRk − Ak =
k∑
j=1

α− (1 + α)Z ′j.

If we define Zj
i.i.d.∼ Bern

(
ζ1

1+ζ1

)
and construct Z ′j so that Z ′j ≤ Zj almost surely, then

αRk − Ak ≤ (1 + α)Sp,qk =
∑
j

(α− (1 + α)Zj) ,

and k̂ is almost surely no larger than the last time Sk exceeds 1
1+α

= 1− p.
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Proposition 5 gives us a tool for proving negative results that hold uniformly over all possible
methods for calculating knockoff W -statistics, including methods that exploit informal prior in-
formation. It characterizes the regime where even an omniscient analyst cannot possibly order the
hypotheses well enough to achieve nontrivial power, because there is simply not enough informa-
tion available after conditioning on C. Naturally, less-than-omniscient analysts may still struggle
due to the difficulty of ordering the predictor variables even when the knockoff* procedure has
high power.

Proposition 5 assumes that all the log-odds are bounded away from infinity. As such, even for
the variables ordered at the front of the list, the probability of observing a large p-value becomes
nontrivial. The next proposition generalize Proposition 5 under the regime where there are no more
than k∗ “large” log-odds. We show that we can expect no more than O(k∗) rejections from any
knockoff method.

Proposition 6. Fix a significance level α > 0. If

η(k∗) < − log(α + δ), δ > 0

then the expected number of rejections for any knockoff procedure at FDR significance level α is
upper bounded by C1(δ)k∗ + C2(δ), where

C1(δ) = max

{
1,

4α(1 + α + δ)

δ

}
+ 1, and C2(δ) = O

(
1

δ2

)
.

In particular, if
η(bcdc)

p→ 0, for all c > 0,

then the expected number of rejections for any knockoff procedure at any FDR significance level is
o(d).

We defer the proof of this proposition to Section 6.4, where we also give a more precise bound
on the constant C2(δ). For example, when α = 0.1 and δ ≤ α, it can be shown that C2(δ) ≤ 5δ−2.
We note that the constant 5 is not optimal and better bounds could be obtained by simulation.

Whereas Proposition 6 gives us a way to bound the power of a knockoff procedure in terms of
the information left over after the whitening step, the next section analyzes when it is impossible
to carry out the whitening step without dramatic information loss. We will show that this loss
is determined by the eigen-decomposition of Σ = (XTX)−1, the covariance matrix of the OLS
estimate, and characterize how large the signal must be to overcome this information loss and
achieve nontrivial TPR, and illustrate our analysis with examples.

Upper bounding the power
The power of any knockoff procedure can be upper bounded by the knockoff* procedure intro-
duced in the previous section. Therefore, Proposition 4 gives us a tool to prove negative results
of any knockoff procedure, by calculating the odds ratio for hypothesis after the initial whitening
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step. Specifically, we want to answer the following question: when will the initial whitening step
destroy almost all the signals in z, such that the TPR of any knockoff procedure must converge
to 0, even for effect sizes large enough that the TPR of the Bonferroni procedure converges to
1? Throughout this section, we assume that the covariance matrix (of β̂) Σ = (XTX)−1 has unit
diagonal entries.

Roughly speaking, we find that knockoffs fail when the leading eigenvalue λ1 of Σ is much
larger than (log d)2, and the leading eigenvector u1 is dense, in a sense we will define later. Under
these conditions, the diagonal matrix ∆ can only dominate the covariance matrix Σ when the
diagonal entries of ∆ are much larger than (log d)2, so that the variance of the added artificial noise
is more than (log d)2 times larger than the variance of the observed Gaussian vector. Recall that
when the non-null means are equal to σ

√
2(1 + r) log d, with r > 0, the TPR of the Bonferroni

procedure will converge to 1. However, under the same conditions, we will show that both the
mean and standard deviation of the log odds ηj in equation (6.8) will converge to 0 at a faster rate
than 1/ log d, leaving essentially no information for the inference stage.

Most notably, when Σ has a factor model structure, the leading eigenvalue of Σ is typically on
the order of d, and the leading eigenvector is spread more or less evenly. Our main result shows
that the any knockoff procedure is powerless in this regime unless the signal is extremely strong
(roughly on the order of

√
d).

We pause to note that this should not be confused with the case where the design matrix X
in linear regression has a factor model structure. Since the test statistics (the OLS estimate) β̂
has covariance matrix (XTX)−1 rather than XTX , our results would not generally apply. To
illustrate the difference between these two cases, consider the equicorrelated Gaussian design with
correlation ρ, which we will use as a running example throughout this section. When the covariates
are positively correlated (ρ > 0), 1

n
XTX ≈ diag(1−ρ)+ρ1d1

T
d , so that λ1 ≈ ρd and u1 ≈ 1d/

√
d,

but the first eigenvalue of
(

1
n
XTX

)−1 is not too large. This regime has been studied is several
previous works, especially Spector and Janson [115], but is not the focus of our results. By contrast,
if the covariates are negatively correlated (ρ < 0), then (XTX)−1 may have a very large eigenvalue,
possibly making knockoff inference powerless. A concrete example is the problem of testing for
an effect of multiple treatments measured against a common control, which we describe next:

Example 1 (Multiple comparisons to control). Assume that we observe a continuous response on
m units under each of several treatments, where yj,i represents the ith response under treatment
j = 0, 1, . . . , d, where j = 0 corresponds to the control condition. We can represent this as a
linear model by writing y0,i = β0 + ε0,i for the control group, and

yj,i = β0 + βj + εj,i

for the jth treatment group, so that βj corresponds to the differential effect of treatment j relative
to control. If we compose a vector y = (yT0 , y

T
1 , · · · , yTd )T, we obtain a standard linear regression

problem with intercept β0 and can perform multiple testing on the coefficients β1, . . . , βd.
Under this model, the OLS estimator for βj with j > 0 is of the form

β̂j = ȳj − ȳ0, where ȳk =
m∑
i=1

yk,i,
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so that corr(β̂j, β̂k) = 0.5 for distinct j, k > 0.

With these examples in mind, let us go back to investigate how the leading eigenvalue and
eigenvector of Σ affect how much information is destroyed in the whitening step. Recall that
∆ must satisfy ∆ � Σ, and let λ1 be the leading eigenvalue of Σ, and u1 be the corresponding
eigenvector. Without loss of generality, suppose that ∆11 ≤ · · · ≤ ∆dd, and let u2

1,(1) ≤ · · · ≤ u2
1,(d)

be the order statistics of (u2
1,1, . . . , u

2
1,d). For any subset S ⊂ {1, . . . , d}, we have

∑
j∈S

∆jju
2
1,j = uT1,S∆S,Su1,S ≥

L∑
`′=1

λ`′(u
T
`′,Su1,S)2 ≥ λ1‖u1,S‖4

2.

Therefore
‖u1,S‖2

2 max
j∈S

∆jj ≥
∑
j∈S

∆jju
2
1,j ≥ λ`‖u1,S‖4

2,

and we have
max
j∈S

∆jj ≥ λ1‖uS,1‖2
2. (6.9)

The above equation relates the amount of noise added in the whitening step with the eigen-
decomposition of Σ. The following theorem combines the above argument with Proposition 4.
It shows that we can determine an upper bound on the power of any knockoff procedure by in-
specting the eigen-decomposition of Σ.

Theorem 5. Let λ1 ≥ λ2 ≥ . . . λd ≥ 0 be the eigenvalues of Σ = (XTX)−1, and u1, . . . , ud be
the corresponding eigenvectors. Let β2

(1) ≥ · · · ≥ β2
(d) be the order statistics of (β2

1 , . . . , β
2
d). For

1 ≤ ` ≤ d, let u2
`,(1) ≤ · · · ≤ u2

`,(d) be the order statistics of (u2
`,1, . . . , u

2
`,d). For any targeted FDR

level α > 0, let kd,α be the smallest integer k such that

max
1≤`≤d

λ`

k∑
j=1

u2
`,(j) >

32 log d

(logα)2

β2
(k)

σ2
(6.10)

Then there exists constant Cα such that the expected number of rejections for any knockoff proce-
dure at FDR level α is upper bounded by Cαkd,α.

Theorem 5 provides a finite-sample, deterministic upper bound on the number of rejections to
be expected from any knockoff procedure, without regard to choices made by the analyst. Equation
6.10 provides a condition that practitioners can check to ascertain the smallest detectable SNR
βj/σ. Although the left hand side of Equation 6.10 may seem complicated at first sight, we point
out that it is simply a generalization of the term in Equation 6.9. Indeed, we can easily generalize
Equation 6.9 to show that

max
j∈S

∆jj ≥ λ`‖uS,`‖2
2. (6.11)

for any 1 ≤ ` ≤ d. Let `∗ = arg max1≤`≤d λ`
∑k

j=1 u
2
`,(j). If we take ` = `∗ and S = bkc,

then the right hand side in the above equation will coincide with the left hand side of Equation
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6.10. Therefore, Equation 6.10 and 6.9 together provide a lower bound on the amount of extra
noise added in the whitening step. Recall that the eigenvectors ui, 1 ≤ i ≤ d have unit length.
Therefore, when the terms in u1 are roughly evenly spread, λ1

∑k
j=1 u

2
1,(j) approximately scales as

kλ1/d. In that case, the above theorem implies that the expected number of rejections is on the

order of
d log dmaxj β

2
j

λ1

.

As a running example, let us consider the case where Σ is an equi-correlated matrix with off-
diagonal entry ρ > 0. Recall that in the Gaussian linear regression setup, this is the case where
XTX is an equi-correlated matrix with off-diagonal entry ρ′ < 0. For the equi-correlated matrix Σ
with Σjj = 1 and Σij = ρ, i 6= j, its largest eigenvalue is λ1 = (d− 1)ρ− 1 and the corresponding
eigenvector is u1 = 1√

d
1T. Thus, the term λ1

∑k
j=1 u

2
1,(j) scales as O(k). Therefore, the expected

number of rejections is on the order of log dmaxj µ
2
j , regardless of the actual number of non-nulls.

The above theorem establishes the limit on the number of rejections any knockoff filter can
have. However, it leaves open a couple questions which will be answered in the corollary below.
First, the theorem does not provide a direct upper bound on the TPR of knockoff, and its compar-
ison to the TPR of Bonferroni correction. To bound the TPR of knockoff, we need not only an
upper bound on the number of rejections, but also a model on the distribution of the means µj .
In this line of work, it is frequently assumed that dπd non-null positions are chosen uniformly at
random from {1, . . . , d}, with the non-null proportion πd > 0. We adopt a similar condition in
the following corollary. Second, this theorem shows that, in addition to a large leading eigenvalue,
the power of knockoff will be negatively affected when u1 does not have too many “small” en-
tries. However, this property of u1 is not made precise in the above theorem. When studying the
power of FDR controlling methods, it is frequently assumed that the covariance matrix Σ has a
limiting distribution [76, 129]. Here, to characterize the property of u1, we will use a similar but
less stringent condition. Let

νd(|u1|, c) =
1

d

d∑
j=1

1(
√
d|u1,j| < c), c > 0

be the empirical distribution function of the terms in the (scaled) leading eigenvector
√
du1. We

will assume that νd(|u1|, ·) has a limiting distribution F (·).
The following corollary shows that, under relatively weak conditions on µ and F (·), any knock-

off procedure will have zero asymptotic TPR when the leading eigenvector λ1 is much larger than
log(d)2.

Corollary 2. Suppose that

1. νd(|u1|, ·) has a distribution limit F (·) which does not have a point mass at 0, i.e. F (0) = 0.

2. All but a uniformly drawn subset of dπd entries from the coefficient vector β are zero, where
πd > 0 and dπd →∞. The non-zero means all equal to

√
2r log d with some r > 1.

Then
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1. the TPR of Bonferroni correction always converges to 1;

2. the TPR of any knockoff procedure must converge to 0 if λ1/(log d)2 →∞,

where the expectation is taken over both the coefficient β and the Gaussian error ε.

To the best of our knowledge, this is the first result that shows knockoff can have zero asymp-
totic TPR when the TPR of knockoff converges to 1. Going back to the equi-correlated design
example, we note that the empirical distribution of the entries in

√
du1 has a point mass at 1. As

such, the first condition of the corollary is satisfied with F (·) = δ1. In addition, recall that the
leading eigenvalue λ1 = (d − 1)ρ − 1, where ρ is the off-diagonal entry. Therefore, we have
λ1/(log d)2 →∞ and it follows that the TPR of any knockoff procedure must converge to 0.

Compared to prior works on the negative results of knockoff, which are limited in both the
covariance structure and the knockoff test statistics considered, our result here makes a number
of unique and important contributions. First, prior works typically study a particular realization
of the knockoff framework. For example, [65] and [76] study only lasso-type type statistics, and
[115] only shows negative results for SDP-knockoff. By contrast, the result here applied to any test
statistics and any strategy to create the knockoff matrix. Second, the covariance structure studied
here is much more general than the equi-correlated block-diagonal matrices studied in [65] and
[115]. Third, We note that although most prior works assume that there are a polynomial number
of non-nulls (i.e. πd ∼ d−β for some 0 ≤ β < 1), our result does not require any assumptions
on the sparsity parameter πd, except that the expected number of true non-nulls dπd converges
to infinity. Finally, in the OLS setup, results in [76] and [42] rely on conditions of the covariance
matrix of the augmented matrix (X, X̃). In contrast, our conditions is stated in terms of the original
covariance matrix, and can be checked without creating the knockoff matrix.

6.3 Numerical results

Fixed knockoff for Gaussian linear model
In this section, we use simulations studies under the Gaussian linear model setup to illustrate
scenarios where the TPR of any knockoff method is close to zero. For the design matrix X ∈ Rn×d,
we generate random matrices whose rows are generated i.i.d from N(0, K), K ∈ Rd×d. We
consider the following two regimes:

(a) Positively equi-correlated OLS estimator K−1 is an equicorrelation matrix with correlation
ρ = 0.2, i.e. K−1

ii = 1, 1 ≤ i ≤ d, and K−1
ij = 0.2, 1 ≤ i < j ≤ d;

(b) Positively equi-correlated covariatesK is an equicorrelation matrix with correlation ρ = 0.2.

In regime (a), the columns of X are negatively correlated and the OLS test statistics are positive
correlated, and we expect that any knockoff methods will have trivial power. In regime (b), the
columns of X are positively correlated and the OLS test statistics are negatively correlated.
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We choose n = 3000 and d = 1000. For each K, we fix one realization of the random matrix,
and then normalize its columns to obtain the design matrix X. Next, we generate the response
Y ∈ Rd as follows. First, to define β, we choose s = 30 coefficients uniformly at random and
let βj = 5 for each of the selected coefficients. We then generate Y = Xβ + ε, where εi are i.i.d
standard normal errors. The above data generating procedure is repeated 600 times for each K.

For each design matrix X, we generate the knockoff matrix X̃ using the Equicorrelated-
knockoff and SDP-knockoff algorithms [9]. For each instance of (X, X̃, Y ), we first consider the
knockoff* procedure introduced in Section 6.2. The knockoff* procedure is the best achiveable
knockoff method in terms of TPR, and can only be carried out with oracular knowledge about the
true coefficients β. Next, we consider a practically feasible knockoff method which uses the maxi-
mum lasso penalty level as test statistic. Finally, we consider the BH procedure and the Bonferroni
test on OLS p-values for baseline comparison. Note that the BH procedure is not guaranteed to
control the FDR at the desired level when K is an equicorrelation matrix with ρ = 0.2.

Overall, the performance of knockoff shows stark contrast under these two regimes, while the
performance of BH and Bonferroni appear to be much more stable. Figure 6.1 shows the power of
the BH, the Bonferroni and the oracular knockoff tests. We see that when the OLS test statistics are
positively correlated, the TPRs of both oracular knockoff tests (i.e. knockoff*) are close to zero.
Table 6.1 shows the FDR and TPR of all methods for targeted FDR level α = 0.1 and 0.2. We find
that the TPR of the best knockoff method is smaller than 0.02 when controlling the FDR at 0.2.

Recall that when the covariance matrix of the test statistics has factor model structure, the
whitening step of knockoff destroys virtually all the information, and the log-odds of observing
small p-values in the inference stage becomes small. This is again confirmed by Figure 6.2, which
shows the average of the s = 30 largest log-odds across different trials. The rest of the log-odds are
zero since the corresponding coefficient βj is zero. In particular, we find that most of the log-odds
are smaller than − logα with α = 0.1. Thus by Proposition 6, the number of rejections of any
knockoff methods must be small.

Knockoff for multivariate Gaussian statistics
In Section 6.1, we reinterpreted the knockoff method and generalized the fixed-X knockoff proce-
dure to multivariate normal test statistics. Here we use simulations to investigate the performance
of different methods for testing the means of multivariate normal, and hint at the possible use cases
and limitations of knockoffs for such problems.

We generate d = 1000 dimensional multivariate Gaussian vectors µ̂ ∼ N(µ,K). The mean
vector µ is generated in the same way as the linear coefficient β in the previous simulation, except
that the non-zero means µj are set to 3.5. We consider two types of covariance matrices:

(a) K has factor model structure. In particular, we let

K = Id + λ
k∑
`=1

u`u
T
` , (6.12)

where u` are drawn independently from the uniform sphere.
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(b) K−1 has factor model structure, i.e.

K−1 = Id + λ

k∑
`=1

u`u
T
` , (6.13)

In particular, we choose k = 2 and λ ∈ {20, 100}. We normalize the covariance matrix K such
that K has unit diagonal entries. After normalization, the largest eigenvalue of K is approximately
19 and 75 for λ = 20 and 100, respectively (the sum of all eigenvalue is d = 1000). For each
setup, we consider one fixed realization of the random matrix K. In each trial of our simulation,
we first generate the mean vector µ and then the multivariate normal vector µ̂.

For each matrix K, we repeat the above data generating procedure N = 600 time. Again,
we consider both the SDP knockoff and the equi-correlated knockoff to create the diagonal matrix
D that satisfies D � K. For each diagonal matrix D, we first implement the oracular ordering
and the associated knockoff* procedure defined in Section 6.2. We consider For each observed
µ̂ ∼ N(µ,K), we can generate an artificial design matrix X ∈ R2d×d, where the first d rows of X
equal to K−1/2, and the last d rows are filled with zero. We can then generate an response vector
y ∈ R2d as y = ((K−1/2µ̂)T, εd+1, . . . , ε2d)

T, where εd+1, . . . , ε2d are i.i.d standard Gaussian noise.
As such, y −XTµ ∼ N(0, I2d×2d), and we can use the fixed-X knockoff on the pair (X, y).

In addition, we also apply the Bonferroni-BH procedure proposed by Sarkar and Tang [108],
with the diagonal matrix D created via SDP-knockoff.

Table 6.2 shows the FDR and TPR of different methods for α = 0.2. As expected, we found that
the power of even the best achieveable knockoff method is less than that of Bonferroni when the
covariance matrix K has a factor model structure with reasonably large leading eigenvalue. This
suggests that knockoff-type approaches suffer from severe power loss when applied to general test
statistics with factor model structure. However, when the precision matrix K−1 has a factor model
structure, it maybe possible to use the knockoff framework procedure to design a test with superior
TPR than baseline methods such as the BH. We leave this for future research.

6.4 Proofs

Proof of Proposition 6
For any α and δ, we define

p =
α

1 + α
, qδ =

α + δ

1 + α + δ
.

We will now prove the following proposition, which is stronger and more precise than Proposition
6.

Proposition 7. Suppose that
η(k∗) < − log(α + δ), δ > 0,
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(a) Positively equi-correlated OLS estimator (b) Positively equi-correlated covariates

Figure 6.1: TPR of different tests under different target FDR levels. Given the knockoff matrix, he knockoff*
test is the best achievable knockoff method. “Equi” stands for equi-correlation knockoffs, while “SDP”
stands for the SDP knockoffs. In Figure (a), the covariates in the design matrix are positively correlated with
correlation approximately 0.2. In Figure (b), the covariates in the design matrix are negatively correlated,
and the entries of the OLS estimate β̂ are positively correlated with correlation approximately 0.2.
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Figure 6.2: The log-odds of observing a small p-value in the inference stage. The log-odds are computed
as Equation 6.8. Only the s = 30 non-zero log odds are shown in both figures. η(k) denotes the kth largest
log-odd and η(k) = − log 0.1 is shown in the dashed black line.
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SDP knockoff Equicorrelated knockoff Other methods

Knockoff* Maximum penalty level Knockoff* Maximum penalty level BH Bonferroni

α = 0.1
FDR 0.00 0.00 0.00 0.00 0.09 0.01
TPR 0.00 0.00 0.00 0.00 0.65 0.35

α = 0.2
FDR 0.00 0.01 0.00 0.00 0.18 0.02
TPR 0.03 0.00 0.04 0.01 0.76 0.42

(a) Positively equi-correlated OLS estimator
SDP knockoff Equicorrelated knockoff Other methods

Knockoff* Maximum penalty level Knockoff* Maximum penalty level BH Bonferroni

α = 0.1
FDR 0.06 0.07 0.05 0.07 0.10 0.01
TPR 0.96 0.41 0.96 0.41 0.68 0.36

α = 0.2
FDR 0.16 0.17 0.15 0.17 0.19 0.01
TPR 0.97 0.73 0.97 0.74 0.78 0.43

(b) Positively equi-correlated covariates

Table 6.1: FDR and TPR of different methods under different target FDR levels.

SDP knockoff Equicorrelated knockoff Other methods

Knockoff* Maximum penalty level Knockoff* Maximum penalty level Sarkar-Tang BH Bonferroni

λ = 20
FDR 0.00 0.04 0.02 0.03 0.19 0.19 0.01
TPR 0.52 0.17 0.58 0.21 0.03 0.77 0.42

λ = 100
FDR 0.00 0.02 0.00 0.00 0.00 0.18 0.01
TPR 0.21 0.05 0.13 0.04 0.01 0.77 0.41

(a) When K has factor model structure
SDP knockoff Equicorrelated knockoff Other methods

Knockoff* Maximum penalty level Knockoff* Maximum penalty level Sarkar-Tang BH Bonferroni

λ = 20
FDR 0.18 0.17 0.18 0.19 0.20 0.19 0.02
TPR 1.00 0.67 0.99 0.68 0.40 0.76 0.41

λ = 100
FDR 0.18 0.12 0.17 0.17 0.19 0.19 0.02
TPR 0.99 0.39 0.99 0.47 0.49 0.77 0.41

(b) When K−1 has factor model structure

Table 6.2: FDR and TPR of different methods for testing means of multivariate Gaussian with correlation
matrix K defined in Equations 6.12 and 6.13. Target FDR level α = 0.2. ”Maximum Penalty Level”
refers to the method where we first generate artificial design matrix and response (X, y), and then apply the
fixed-X knockoff.
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where k∗ ≥ 1/α. Define

C1(α, δ) = max

{
1,

4α(1 + α + δ)

δ

}
+ 1,

and

C2(α, δ) = 5.142C(p, qδ)
−3/2 (1 + α)9/2(α + δ)

α3/2

(
1 + α + δ

δ

)2

,

where

C(p, qδ) = 1 + max

{
0,min

{
5

3p
− 2qδ

3p2
,

1

qδ

}}
≥ 1.

Then the expected number of rejections for any knockoff procedure at FDR significance level α is
upper bounded C1(α, δ)k∗ + C2(α, δ).

Proof. Consider the random walk

Sk =
k∑
j=1

(p− Zj), where Zj
ind∼ Bern (qj) , p =

α

1 + α
, qj =

e−η(j)

1 + e−η(j)
.

Then for any knockoff procedure, the number of rejections R is upper bounded by

max

{
k : Sk ≥

1

1 + α

}
≤ max {k : Sk ≥ 0} .

Consider another random walk

S̃k =
k∑
j=1

(p− Z̃j), where Z̃j
i.i.d.∼ Bern (qδ) , qδ =

α + δ

1 + α + δ
≤ q(k∗)

Note that

Sk =
k∗∑
j=1

(p− Zj) +
d∑

j=k∗

(p− Zj) ≤ pk∗ +
d∑

j=k∗

(p− Zj).

Since q1 ≤ q2 ≤ ..., we know that
∑d

j=k∗(p−Zj) is stochastically smaller than
∑d

j=k∗(p− Z̃j),

where Z̃j
i.i.d.∼ Bern

(
q(k∗)

)
. Therefore Sk is stochastically smaller than pk∗ + S̃k−k∗ . Therefore

E[R] ≤ E[max {k : Sk ≥ 0}]

≤ E
[
max

{
k : S̃k−k∗ ≥ −pk∗

}]
= k∗ + E

[
max

{
k : S̃k ≥ −pk∗

}]
.

(6.14)

Define
p(r)

∆
= P

(
max

{
k : S̃k ≥ −pk∗

}
= r

)
.
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Let Cm = max{4
(
qδ
p
− 1
)−1

, 1}, and then

E
[
max

{
k : S̃k ≥ −pk∗

}]
=

∞∑
r=1

rP
(

max
{
k : S̃k ≥ −pk∗

}
= r
)

≤ Cmk
∗ +

∞∑
r=Cmk∗+1

rP
(

max
{
k : S̃k − pk∗

}
= r
)

= Cmk
∗ +

∞∑
r=Cmk∗+1

rp(r).

(6.15)

Therefore, combining Equations 6.15 and 6.14, we have

E[R] ≤ k∗ + E
[
max

{
k : S̃k ≥ −pk∗

}]
≤ k∗ + Cmk

∗ +
∞∑

r=Cmk∗+1

rp(r)

= (Cm + 1)k∗ +
∞∑

r=Cmk∗+1

rp(r).

Recalling the definitions of Cm and q(k∗), we have

4

(
qδ
p
− 1

)−1

= 4

(
(α + δ)(1 + α)

1 + α + δ
− 1

)−1

=
4α(1 + α + δ)

δ
.

Therefore we have Cm + 1 ≤ C1(α, δ). Turning to the second term, by Lemma 7 we have

∞∑
r=Cmk∗+1

rp(r) ≤ eqδ

p(1− qδ)π
√
p(1− p)

(p− qδ)
∞∑

r=Cmk∗+1

√
re−chr. (6.16)

Note that we can bound the summation
∑∞

r=Cmk∗+1

√
re−chr by (note that Cmk∗ + 1 ≥ 1/α + 1)

∞∑
r=1/α+1

√
re−chr ≤

√
1 + α

∞∑
r=1/α+1

√
r − 1e−chr

≤
√

1 + α

∫ ∞
1/α

√
re−chrdr

≤
√

1 + α

∫ ∞
0

√
re−chrdr,

(6.17)
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where ∫ ∞
0

√
re−chrdr =

∫ ∞
0

2(2ch)
−3/2y2e−

y2

2 dy

= (2ch)
−3/2

∫ ∞
−∞

y2e−
y2

2 dy

=
√

2π(2ch)
−3/2

The first equality above is obtained by change of variable r = y2/2ch. Therefore,

∞∑
r=Cmk∗+1

√
re−chr ≤

√
1 + α

√
2π(2ch)

−3/2

Note that

ch =
1

2
t2∗C(p, qδ) =

9(p− qδ)2

32
C(p, qδ).

Thus,

∞∑
r=Cmk∗+1

rp(r) ≤ e

2
√
π

(
32

9

)3/2 √
1 + α

(p− qδ)2

qδ

p(1− qδ)
√
p(1− p)

≤ 5.142C(p, qδ)
−3/2

(p− qδ)2

qδ
√

1 + α

p(1− qδ)
√
p(1− p)

.

Turning to the term (p− qδ)2 in the denominator, we have

(p− qδ)2 =

(
α

1 + α
− α + δ

1 + α + δ

)2

=

(
δ

(α + 1)(1 + α + δ)

)2

.

Therefore
1

(p− qδ)2

qδ

p(1− qδ)
√
p(1− p)

=
(1 + α)4(α + δ)

α3/2

(
1 + α + δ

δ

)2

.

Combining the three equations above, we have

d∑
r=Cmk∗+1

re−chr ≤ C2(α, δ),

and the proposition is proved.
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Proof of Theorem 5 and Corollary 2
Theorem 5. Let λ1 ≥ λ2 ≥ . . . λd ≥ 0 be the eigenvalues of Σ = (XTX)−1, and u1, . . . , ud be
the corresponding eigenvectors. Let β2

(1) ≥ · · · ≥ β2
(d) be the order statistics of (β2

1 , . . . , β
2
d). For

1 ≤ ` ≤ d, let u2
`,(1) ≤ · · · ≤ u2

`,(d) be the order statistics of (u2
`,1, . . . , u

2
`,d). For any targeted FDR

level α > 0, let kd,α be the smallest integer k such that

max
1≤`≤d

λ`

k∑
j=1

u2
`,(j) >

32 log d

(logα)2

β2
(k)

σ2
(6.10)

Then there exists constant Cα such that the expected number of rejections for any knockoff proce-
dure at FDR level α is upper bounded by Cαkd,α.

Proof. By Proposition 6, it suffices to show that η(kd,α) < −C logα for constant C < 1. Note that
by Equation 6.8, this is equivalent to showing that

2 max
j≥kd,α

|β̃j||βj|∆−1
jj < −Cσ2 logα.

Recall that ∆ must satisfy ∆ � (XTX)−1. We have shown in Equation 6.9 that

max
j∈S

∆jj ≥ λ`‖uS,`‖2
2.

Let kd,α be the integer defined in the statement of the theorem. Suppose that

`∗ = arg max
1≤`≤d

λ`

k∑
j=1

u2
`,(j).

Without loss of generality, suppose that ∆11 ≤ · · · ≤ ∆dd. If we take S = [kd,α], then we have

∆kd,α,kd,α ≥ λ`∗‖u`∗,S‖2
2 ≥ λ`∗

kd,α∑
j=1

u2
`∗,(j) ≥

32 log d

(logα)2

β2
(kd,α)

σ2
.

Therefore, for any j ≥ kd,α, if β2
j ≤ β2

(kd,α), then

2∆−1
jj β

2
j ≤

(logα)2σ2

32 log d
.

Since β2
(kd,α) is the kd,αth largest element in (β2

1 , . . . , β
2
d), we know that

|{j ≥ kd,α : β2
j > β2

(kd,α)}| ≤ kd,α

Therefore, if we denote Iα as

Iα =

{
j : 2∆−1

jj µ
2
j ≤

(logα)2σ2

16 log d

}
,
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i.e. the collection of indices j such that 2∆−1
jj β

2
j <

(logα)2σ2

16 log d
, then we must have

|Icα| ≤ kd,α + |{j ≥ kd,α : β2
j > β2

(kd,α)}| ≤ 2kd,α.

Note that 2β̃jβj∆
−1
jj ∼ N (2∆−1

jj β
2
j , 4∆−1

jj β
2
jσ

2), where maxj∈Iα 2∆−1
jj β

2
j ≤

(logα)2σ2

16 log d
, so that

2|β̃jβj∆−1
jj | is stochastically smaller than

(logα)2σ2

16 log d
+

√
(logα)2σ4

8 log d
|N (0, 1) |.

As a result,

max
j∈Iα

2|β̃j||βj|∆−1
jj <

(logα)2σ2

16 log d
+

√
(logα)2σ4

8 log d

√
4 log d <

−σ2 logα

8
+
−σ2 logα√

2
(6.18)

for d > α−1 with probability 1−O(d−1). Note that we have proved that |Icα| ≤ 2kd,α. As such,

η(2kd,α) ≤ 2 max
j∈Iα

|β̃j|∆−1
jj

σ2
· |µj| < −

(
1√
2

+
1

8

)
logα < −0.9 logα

with probability 1 − O(d−1). Let δ(α) = α0.9 − α. Then we have η(2kd,α) < − log(α + δ) =
−0.9 logα. It follows from proposition 7 that the expected number of rejections is upper bounded
by 2C1(α, δ(α))kd,α+C2(α, δ(α)) ≤ C∗αkd,α, whereC∗α = 2C1(α, δ(α))+C2(α, δ(α)) is a constant
that depends only on α. Therefore, the expected number of rejections

E[R] = E
[
R|η(2kd,α) < −0.9 logα

]
P
(
η(2kd,α) < −0.9 logα

)
+ E

[
R|η(2kd,α) > −0.9 logα

]
P
(
η(2kd,α) > −0.9 logα

)
≤ 2C∗αkd,α + dO(d−1)

≤ Cαkd,α,

where Cα is a constant that depends only on α.

Corollary 2. Suppose that

1. νd(|u1|, ·) has a distribution limit F (·) which does not have a point mass at 0, i.e. F (0) = 0.

2. All but a uniformly drawn subset of dπd entries from the coefficient vector β are zero, where
πd > 0 and dπd →∞. The non-zero means all equal to

√
2r log d with some r > 1.

Then

1. the TPR of Bonferroni correction always converges to 1;
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2. the TPR of any knockoff procedure must converge to 0 if λ1/(log d)2 →∞,

where the expectation is taken over both the coefficient β and the Gaussian error ε.

Proof. The first part of Corollary follows directly from the fact that the p-value for each hypothesis
is smaller than 1/dwhen the SNR is larger than

√
2 log d. To prove the second part of the Corollary,

it suffices to show that the expected number of rejections E[R] = o(dπd), where the expectation is
taken over both µ and z. By Proposition 6, it suffices to show that all but a vanishing proportion of
the log-odds at the dπd non-null positions must converge in probability to zero, i.e.

η(2cπdd)
p→ 0 (6.19)

for any c > 0. The rest of the proof proceeds in two steps. First, using Theorem 5, we will establish
an intermediate result: all but cd diagonal entries of D−1 must be prohibitively large. As such, all
but cd log-odds must converge to zero. Then, using the fact that the dπd non-null positions are
chosen at random, we will show that among these cd positions where D−1 could be small, only
cdπd are true non-nulls. As such, there could only be O(cdπd) rejections on average. Since c is
arbitrary, the desired result will follow.

To prove the aforementioned intermediate result, we will use the first condition that the limiting
distribution of the entries in u1 does not have a point mass. By assumption, there exists constant
ε > 0 such that F (ε) < c. for large enough d, we have

νd(|u1|, ε) ≤ c/2.

Therefore for large enough d, √
d|u1,(cd/2)| ≥ ε.

Therefore,
cd∑
j=1

u2
1,(j) ≥

cd

2
(u1,(cd/2))

2 ≥ cd

2

ε

d
≥ cε

2
.

Hence, for any α < 1, Equation 6.10 is satisfied with kd,α = cd when d is large enough. Therefore,
by Equation 6.18,

2 max
j≥cd

|β̃j|∆−1
jj

σ2
· |βj|

p
< −0.9 logα.

for any α < 1. Take α→ 1, we know that

max
j≥cd

|β̃j|∆−1
jj

σ2
· |βj|

p→ 0.

This finishes the first step of the proof.
Turning to the second step, note that we always have

|β̃j|∆−1
jj

σ2
· |βj| = 0
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when βj = 0. Therefore it follows that for the set Aj = {j : j ≥ cd} ∪ {j : j ≤ cd, βj = 0}, we
also have

max
j∈Aj

|β̃j|∆−1
jj

σ2
· |mβj|

p→ 0.

That is, all the log-odds at the positions in Aj must converge to 0. Therefore, in order to show
the desired inequality 6.19, it suffices to show that there are (with probability going to 1) no more
than 2cdπd indices outside the setAj . Since the non-null positions are chosen at random, we apply
Hoeffding’s bound (for sampling without replacement) again and obtain

P
( |Acj|
cd

> 2πd

)
= P

(
#{j ≤ cd : βj 6= 0}

cd
> 2πd

)
→ 0.

This proves the Corollary.

Proof of technical lemmas
Lemma 5. For any q, δ ∈ (0, 1), we have

q log(1− δ)
log(1− qδ)

− 1 ≥ (1− q)
2

δ.

Proof. For any q ∈ (0, 1), let

f(δ) =
(1− q)

2
δ log(1− qδ) + log(1− qδ)− q log(1− δ).

It suffices to show that f(δ) ≥ 0 for δ ∈ (0, 1). First, note that f(0) = 0. We will now show that
the derivative of f w.r.t to δ is always positive when δ > 0. In fact, we have

f ′(δ) =
(1− q)

2

(
log(1− qδ)− qδ

1− qδ

)
− q

1− qδ
+

q

1− δ

=
(1− q)

2

(
log(1− qδ) +

qδ(1 + δ)

(1− δ)(1− qδ)

)
.

Note that

log(1− qδ) = − log
1

(1− qδ)
≥ −

(
1

(1− qδ)
− 1

)
=
−qδ

1− qδ
.

Therefore

f ′(δ) =
(1− q)

2

(
log(1− qδ) +

qδ(1 + δ)

(1− δ)(1− qδ)

)
≥ (1− q)

2

(
−qδ

1− qδ
+

qδ(1 + δ)

(1− δ)(1− qδ)

)
=
q(1− q)δ2

1− qδ
≥ 0,

and the lemma is proved.
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Lemma 6. Consider a random walk St =
∑t

i=1 ζt where S0 = 0 and ζt are i.i.d Bernoulli variables
with P(ζt = 1) = 1− q and P(ζt = −1/α) = q. Let p = α/(1 + α) and suppose that q > p. Then

P(max
t≥1

St < 0) ≤ 2q(p− q)
p(1− q)

.

Proof. We begin by identifying the martingale associated with the moment generating function of
St. Let ψ0 > 0 be a positive value that satisfies

Eeψ0ζ1 = qeψ0 + (1− q)e−ψ0
1
α = 1. (6.20)

We will prove later that such ψ0 exists and is unique. It follows that eψ0St is a martingale, since

E[eψ0St+1|St] = eψ0StEeψ0ζ(t+1) = eψ0St .

For any value M > 0, let τ be the first time when the random walk leaves (−M, 0], i.e.

τ = min
t≥1

: Sτ > 0 or Sτ ≤ −M.

Then τ is a stopping time, and St∧τ is bounded for all t ≥ 1. Therefore, by the optional stopping
theorem,

1 = Eeψ0Sτ = p0(M)E[eψ0Sτ |Sτ > 0] + (1− p0(M))E[eψ0Sτ |Sτ ≤ −M ],

where p0(M) is the probability that St reaches (0,∞) before it reaches (−∞,−M). Since St can
increase no more than 1 at a time, we have Sτ ≤ 1. Therefore

E[eψ0Sτ |Sτ > 0] ≤ eψ0 .

On the other hand, we have
E[eψ0Sτ |Sτ ≤ −M ] ≤ e−ψ0M .

Therefore

1 = p0(M)E[eψ0Sτ |Sτ > 0] + (1− p0(M))E[eψ0Sτ |Sτ ≤ −M ]

≤ p0(M)eψ0 + (1− p0(M))e−ψ0M ,

and it follows that

p0(M) ≥ 1− e−ψ0M

eψ0 − e−ψ0M
.

Let p0 be the probability that St ≥ 0 for some t. Since Eζ1 < 0, St → −∞ almost surely, and
τ <∞ almost surely. As such, p0 ≥ p0(M). Take M →∞, we obtain

p0 ≥ e−ψ0 .
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Let λ = e−ψ0 ∈ (0, 1). Then by Equation 6.20, we know that λ is the solution (in (0, 1)) to the
following equation

λ = 1− q + qλ1+α−1

. (6.21)

We pause to prove the above equation of λ has a unique solution on (0, 1). To see this, let g(λ) =
qλ1+α−1 − λ + 1 − q. Then g(0) > 0 and g(1) = 0. In addition, g′(λ) = (1 + α)λ1/α/qα − 1.
Let λ0 = exp

(
α log α

(1+α)q

)
. Then g′(λ0) = 0. In addition, g′(λ) > 0 for λ ∈ (0, λ0) and

g′(λ) < 0 for λ ∈ (λ0, 1). As such, the function g(λ) is monotonically decreasing from (0, λ0) and
monotonically decreasing from (λ0, 1). Thus, g(λ) = 0 has a unique solution on (0, 1).

We now return to the proof of the lemma. Since by definition p0 ≥ λ, we have

P(max
t≥1

St < 0) = 1− p0 ≤ 1− λ.

Thus, the proof boils down to bounding the difference between λ and 1. Let 1 − λ = qδ. Then
Equation 6.21 can be expressed as

1− δ = (1− qδ)α−1+1. (6.22)

Taking the log on both sides, we have

(α−1 + 1)q =
q log(1− δ)
log(1− qδ)

.

We are mainly interested in the case where q is close to 1/(α−1 + 1), in which case the left hand
side of the above equation would be close to 1. On the other hand, the right hand side approaches
1 as δ → 0 and diverges to infinity as δ → 1. As such, in order for the above equation to hold, δ
can not be too large. Using Lemma 5, we get

(α−1 + 1)q − 1 ≥ (1− q)
2

δ.

Therefore, δ ≤ 2((α−1+1)q−1)
1−q , and we conclude that

P(max
t≥1

St < 0) ≤ 1− λ ≤ 2q((α−1 + 1)q − 1)

1− q
=

2q(q − p)
p(1− q)

.

Lemma 7. Consider the following random walk defined in the proof of Proposition 6:

S̃k =
k∑
j=1

(p− Z̃j), Z̃j
i.i.d.∼ Bern (qδ) ,

where qδ > p. Define

t∗ =
3(p− qδ)

4
< 0, and ch =

1

2
C(p, qδ)t

2
∗,
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where

C(p, qδ) = 1 + max

{
0,min

{
5

3p
− 2qδ

3p2
,

1

qδ

}}
≥ 1.

Then for any

r > 4k∗
(
qδ
p
− 1

)−1

,

we have

p(r)
∆
= P

(
max

{
k : S̃k ≥ −pk∗

}
= r

)
≤ qδ
p(1− qδ)

e

π
√
rp(1− p)

(qδ − p)e−chr

Proof. Define events

A1 =

{
r∑
j=1

Z̃j = bpr + pk∗c

}
,

and

A2 =

{
max
k≥1

r+k∑
j=r+1

(p− Z̃j) ≤ 0

}
.

We will show that {
max

{
k : S̃k ≥ −pk∗

}
= r

}
⊂ A1 ∩ A2.

First, note that max
{
k : S̃k ≥ −pk∗

}
= r implies the following three conditions:

(1)S̃r ≥ −pk∗, (2)S̃r+1 ≤ −pk∗, and (3) max
k≥1

(S̃r+k − S̃r) ≤ 0.

Recalling the definition of S̃r, conditions (1) and (2) are equivalent to

pr + pk∗ + p− 1 ≤
r∑
j=1

Z̃j ≤ pr + pk∗.

Since
∑r

j=1 Z̃j is an integer, one of the following two events must happen: (a) there exists no

integer between pr + pk∗ and pr + pk∗ + p − 1. In this case,
{

max
{
k : S̃k ≥ −pk∗

}
= r

}
is

an empty set; (b) there exists exactly one integer between pr + pk∗ and pr + pk∗ + p− 1. Then it
follows that

∑r
j=1 Z̃j = bpr + pk∗c. In either case, we have shown that{

max
{
k : S̃k ≥ −pk∗

}
= r

}
⊂ A1.

In addition, condition (3) is equivalent to event A2. Therefore, we have shown that{
max

{
k : S̃k ≥ −pk∗

}
= r

}
⊂ A1 ∩ A2.
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Note that A1 only depends on Z̃j, j ≤ r and A2 only depends on Z̃j, j > r. Since {Z̃j} is a
sequence of i.i.d Bernoulli variables, A1 and A2 are independent. Therefore

p(r) ≤ P (A1)P (A2).

We now bound P (A1) and P (A2) separately. First,

P (A1) = Binom(r, qδ; bpr + pk∗c).

where Binom(r, qδ; bpr + pk∗c) is the probability of the binomial distribution Binom(r, qδ; ·) at
bpr + pk∗c. Let m = bpr + pk∗c, we have

Binom(r, qδ; bpr + pk∗c) =
r!

m!(r −m)!
em log qδe(r−m) log(1−qδ).

Using Sterling’s lemma, we obtain

r!

m!(r −m)!
≤ e

2π

√
r

m(r −m)
er log r−m logm−(r−m) log(r−m)

Since m ≥ pr, we know that √
r

m(r −m)
≤

√
1

rp(1− p)

Therefore

Binom(r, qδ;m) ≤ e

2π

√
r

m(r −m)
exp

(
m log

rqδ
m

+ (r −m) log
r(1− qδ)
r −m

)
.

First, for any x < 0, log(1 + x) ≤ x− 1
2
x2. Therefore,

(r −m) log
r(1− qδ)
r −m

≤ r(1− qδ)− (r −m)− 1

2

(m− rqδ)2

r −m

≤ r(1− qδ)− (r −m)− 1

2

(m− rqδ)2

r
.

Next, since log(1 + x) ≤ x and log(1 + x) ≤ x− 1
2
x2 + 1

3
x3 for any x > −1, we have

m log
rqδ
m
≤ rqδ −m+ min

{
0,−1

2

(rqδ −m)2

m
+

1

3

(rqδ −m)3

m2

}
Combining the above two equations, we have

m log
rqδ
m

+ (r −m) log
r(1− qδ)
r −m

≤ −1

2

(m− rqδ)2

r

(
1 + max

{
0,

5r

3m
− 2r2qδ

3m2

})
.
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Since rp ≤ m ≤ rqδ, we must have

5r

3m
− 2r2qδ

3m2
≥ min

{
5

3p
− 2qδ

3p2
,
1

q

}
,

where the two terms on the right hand side is obtained by takingm = rp andm = rqδ respectively.
Therefore,(

1 + max

{
0,

5r

3m
− 2r2qδ

3m2

})
≥ 1 + max

{
0,min

{
5

3p
− 2qδ

3p2
,

1

qδ

}}
:= C(p, qδ).

Note that for

r > 4k∗
(
qδ
p
− 1

)−1

,

we have
rqδ −m > t∗r.

Therefore, taking the above Equations together, we have

−1

2

(m− rqδ)2

r

(
1 + max

{
0,

5r

3m
− 2r2qδ

3m2

})
≤ −1

2
t2∗C(p, q)r.

Therefore
P (A1) ≤ e

2π
√
rp(1− p)

e−chr.

Now we bound the probability of event A2. Using Lemma 6 with N = 1/α, we get

P (A2) ≤ 2qδ
p(1− qδ)

(qδ − p).

Therefore
p(r) ≤ P (A1)P (A2) ≤ qδ

p(1− qδ)
e

π
√
rp(1− p)

(qδ − p)e−chr.

The proof is now complete.
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[112] Zbynek Šidák. “On multivariate normal probabilities of rectangles: their dependence on
correlations”. In: The Annals of Mathematical Statistics 39.5 (1968), pp. 1425–1434.

[113] Nikola Simidjievski et al. “Variational Autoencoders for Cancer Data Integration: Design
Principles and Computational Practice”. In: BioRxiv (2019), p. 719542.

[114] Chandan Singh, W James Murdoch, and Bin Yu. “Hierarchical interpretations for neural
network predictions”. In: arXiv preprint arXiv:1806.05337 (2018).

[115] Asher Spector and Lucas Janson. “Powerful Knockoffs via Minimizing Reconstructabil-
ity”. In: arXiv preprint arXiv:2011.14625 (2020).

[116] John H Strickler et al. “Phase I study of bevacizumab, everolimus, and panobinostat (LBH-
589) in advanced solid tumors”. In: Cancer chemotherapy and pharmacology 70.2 (2012),
pp. 251–258.

https://doi.org/10.1152/physiolgenomics.00167.2007
https://doi.org/10.1152/physiolgenomics.00167.2007
http://dx.doi.org/10.1152/physiolgenomics.00167.2007
http://dx.doi.org/10.1152/physiolgenomics.00167.2007
http://blog.datadive.net/interpreting-random-forests/%20http://blog.datadive.net/random-forest-interpretation-with-scikit-learn/
http://blog.datadive.net/interpreting-random-forests/%20http://blog.datadive.net/random-forest-interpretation-with-scikit-learn/
http://blog.datadive.net/interpreting-random-forests/%20http://blog.datadive.net/random-forest-interpretation-with-scikit-learn/
https://arxiv.org/abs/1405.2881


BIBLIOGRAPHY 134

[117] C Strobl, A L Boulesteix, and T Augustin. “Unbiased Split Selection for Classification
Trees Based on the Gini Index”. In: Computational Statistics {&}Data Analysis 52 (2007).
DOI: 10.1016/j.csda.2006.12.030. URL: http://dx.doi.org/10.1016/
j.csda.2006.12.030.

[118] Carolin Strobl et al. “Bias in Random Forest Variable Importance Measures: Illustrations,
Sources and a Solution”. In: BMC Bioinformatics 8 (2007). DOI: 10.1186/1471-
2105-8-25. URL: http://dx.doi.org/10.1186/1471-2105-8-25.

[119] Carolin Strobl et al. “Conditional variable importance for random forests”. In: BMC Bioin-
formatics 9.1 (2008), p. 307. ISSN: 1471-2105. DOI: 10.1186/1471-2105-9-307.
URL: http://dx.doi.org/10.1186/1471-2105-9-307.
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