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Finite elastic wrinkling deformations of incompressible fiber-
reinforced plates
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Abstract

A two-dimensional plate theory, valid for finite elastic deformations with small strains, is derived 

for incompressible, fiber-reinforced materials. Single-layer plates and two-layer laminates are 

considered. Numerical simulations illustrate the substantial effect that fiber reinforcement has on 

wrinkling patterns in the sheet.
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1. Introduction

The nonlinear elastic response of thin sheets is of great significance in technology and 

biology. For example, the mitral valve of the heart may be viewed as a thin bio-elastic sheet 

with fairly complex mechanical properties conferred by a fibrous, laminated substructure in 

which each lamina is reinforced by one or two families of fibers (Wenk et al., 2012; Zhang 

et al., 2016). This structure is the subject of considerable current research (Grashow et al., 

2006a,b; Ayoub et al., 2016; Sacks and Yoganathan, 2007), which, however, is typically 

based on modeling that appears to us to be somewhat ad hoc by the standards of the 

Mechanics community. This circumstance furnishes impetus for the present work, concerned 

with the careful development of a two-dimensional framework for thin, fiber-reinforced, 

incompressible elastic sheets.
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We begin in Section 2 with a review of the constitutive structure of three-dimensional 

elasticity for incompressible materials and its specialization to the small-strain, finite-

deformation regime where contact is made with Spencer’s formulation (Spencer, 1984) for 

transversely isotropic and orthotropic materials. These model materials are reinforced, 

respectively, by either one family of fibers or by two families of initially orthogonal fibers. A 

two-dimensional strain energy is then derived in Section 3, for both single laminae and for 

two-ply laminates, by an asymptotic analysis of the three-dimensional energy for a thin 

sheet. This is used in Section 4 to derive the equilibrium theory for thin plates on the basis of 

a virtual-power postulate. The formal similarity of the present theory to the theory of 

second-grade elasticity is emphasized to aid in its interpretation. In Section 5, we outline a 

computational procedure, used in a related work (Taylor et al., 2014) concerned with the 

wrinkling of isotropic plates, for solving the relevant equilibrium equations. For the sake of 

brevity and to avoid duplication, we confine ourselves to a description of this method and 

refer the interested reader to that work for a full exposition. Finally, in Section 6 we discuss 

a number of examples intended to highlight the effects of fiber reinforcement. These 

illustrate the substantial effect of anisotropy on wrinkling patterns in thin sheets. Indeed, 

plate wrinkling is currently an active field of research, albeit typically limited to isotropic 

materials, e.g., (Puntel et al., 2011; Nayyar et al., 2011; Healey et al., 2013; Taylor et al., 

2014; Qin et al., 2014; Taylor et al., 2015; Fu et al., 2019; Wang et al., 2019), with notable 

exceptions including studies of orthotropic sheets using finite elements (Woo et al., 2004; 

Gerngross and Pellegrino, 2009; Deng and Pellegrino, 2012) and an extended finite Föppl-

von Kármán model (Sipos and Fehér, 2016). Our main objective in the present work is to 

expand the scope of this field to encompass certain types of anisotropy in a framework 

derived from three-dimensional elasticity.

Standard notation is adopted throughout. Thus, we use bold face for vectors and tensors and 

indices to denote their Cartesian components. Latin indices take values in {1,2,3}; Greek in 

{1,2}. The latter are associated with surface coordinates and associated vector and tensor 

components, and the usual summation convention for repeated subscripts is adopted. The 

notation ⊗ identifies the standard tensor product of vectors and a dot between bold symbols 

is used to denote the Euclidean inner product. Thus, if A1 and A2 are second-order tensors, 

then A1 ⋅ A2 = tr(A1A2
t ), where tr(⋅) is the trace and the superscript t is used to denote the 

transpose. The norm of a tensor A is ∣ A ∣ = A ⋅ A and its determinant is det A. Its inverse A
−1 exists and is unique if and only if det A ≠ 0. The notation SymA, DevA and SphA is used 

to denote the symmetric, deviatoric and spherical parts of A, respectively, whereas Sym, Dev 
and Sph are the linear spaces of symmetric, deviatoric and spherical tensors. If ℳ is a 

fourth-order tensor, then ℳ[A] is the second-order tensor with Cartesian components 

ℳiA jBA jB. We use Div to denote the three-dimensional divergence operator, and div to 

denote its two-dimensional counterpart. For example, DivA = AiA,Aei and divA = Aiα,αei, 

where {ei} is an orthonormal basis in which subscripts preceded by commas are used to 

denote partial derivatives with respect to Cartesian coordinates, and the unit vector k = e3 

identifies the orientation of the plate midplane prior to deformation. We also use ∇ to denote 

the two-dimensional gradient on this plane. Finally, FA stands for the tensor-valued 

derivative of a scalar-valued function F(A) with respect to its tensor argument.
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2. Three-dimensional constitutive theory

We consider hyperelastic materials endowed with strain-energy functions of the form W(F; 

x), where x is the position of a material point in a reference configuration κ of the body and 

F is the gradient of the deformation χ(x). Here, the explicit dependence of W on x 
accommodates a possible non-uniformity of the material due, for example, to a spatial 

distribution of reinforcing fibers.

The 1st Piola-Kirchhoff stress P is given by

P = WF − pF∗, (1)

where F* = JF−t is the cofactor of F, J = det F and p is a Lagrange multiplier associated with 

the constraint of incompressibility (J = 1). Here, for the purpose of calculating the derivative 

WF, W is regarded as a smooth extension of the strain-energy function from the constraint 

manifold defined by J = 1 to the set defined by det F > 0; the derivative is then evaluated on 

the manifold. It is well known that the strain-energy function is frame-invariant if and only if 

it depends on F through the Cauchy-Green deformation tensor C = FtF or, equivalently, 

through the Lagrange strain E = 1
2 (C − I), where I is the identify for 3-space; we write W(F; 

x) = U(E; x). This furnishes the 2nd Piola-Kirchhoff stress S, related to P by

P = FS . (2)

Thus,

S = UE − pC−1, (3)

where, again, U is a smooth extension from the manifold defined by det(I + 2E) = 1 and the 

derivative is evaluated, post facto, on the manifold.

It is well known (Steigmann, 2017) that the difference of the derivatives of two extensions of 

the energy is orthogonal to the local tangent space to the constraint manifold and may 

therefore be absorbed into the Lagrange multiplier. Thus any one extension may be used 

without loss of generality.

Consider a one-parameter family χ(x; ϵ) of deformations. This induces the one-parameter 

families F(x;ϵ) and E(x;ϵ). We differentiate the equation W = U with respect to the 

parameter, on the constraint manifold, obtaining

WF ⋅ Ḟ = UE ⋅ Ė, with Ė = Sym(FtḞ), (4)

or, equivalently,

WF ⋅ Ḟ = F(UE) ⋅ Ḟ, (5)

in which F
.
 is restricted by the requirement J

.
= 0. With JF = F* the latter implies that
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F* ⋅ Ḟ = 0 (6)

and F
.
 is otherwise arbitrary.

A further differentiation yields

WFF[Ḟ] ⋅ Ḟ + WF ⋅ F̈ = UEE[Ė] ⋅ Ė + UE ⋅ Ë, with Ë = ḞtḞ + Sym(FtF̈), (7)

or, equivalently,

WFF[Ḟ] ⋅ Ḟ + WF ⋅ F̈ = FtḞ ⋅ UEE[FtḞ] + F(UE) ⋅ F̈ + UE ⋅ ḞtḞ, (8)

in which the minor symmetries of UEE have been used, all derivatives are evaluated on the 

constraint manifold, and F̈ is restricted by the requirement J̈ = 0, i.e.

F* ⋅ F̈ + FF*[Ḟ] ⋅ Ḟ = 0. (9)

The 4th-order tensor FF
∗ is given, in terms of the Cartesian components FiA of F, by 

(Steigmann, 2017)

J ∂FiA* / ∂F jB = FiA* F jB* − F jA* FiB* . (10)

With J = 1, this furnishes

FF*[Ḟ] = (F* ⋅ Ḟ)F* − FiB* F jA* Ḟ jB, (11)

which combines with (6) and (9) to give

F* ⋅ F̈ = FiB* F jA* Ḟ jBḞiA, (12)

whereas the part of F̈ orthogonal to F* is arbitrary.

Consider the rank-one form F
.

= p ⊗ q. This yields F∗ ⋅ F̈ = (p ⋅ F∗q)2, which vanishes 

because

p ⋅ F*q = 0 (13)

in accordance with (6). Because of (5) and (6), we then have

WF ⋅ F̈ = F(UE) ⋅ F̈ (14)

and (8) reduces to

WFF[p ⊗ q] ⋅ p ⊗ q = Ftp ⊗ q ⋅ UEE[Ftp ⊗ q] + p 2q ⋅ (UE)q . (15)
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The strong-ellipticity condition is

WFF[p ⊗ q] ⋅ p ⊗ q>0 (16)

for all p ⊗ q ≠ 0 subject to (13) (Fosdick and MacSithigh, 1986). Accordingly, if the 

deformation is such that the strong-ellipticity condition is satisfied, then the right-hand side 

of (15) is positive with the same proviso. Supposing strong ellipticity to be satisfied at the 

undeformed state F = I, and that UE vanishes at E = 0, we then have

p ⊗ q ⋅ 𝒞[p ⊗ q] > 0 (17)

for all p ⊗ q ≠ 0 subject to p ⋅ q = 0, where 𝒞 = UEE(0) is the classical elasticity tensor. This 

makes sense because p ⊗ q vanishes if and only if Sym(p ⊗ q) vanishes. Conventionally, 

(17) is ensured by requiring that 𝒞 be positive definite in the sense that

A ⋅ 𝒞[A] > 0 (18)

for all non-zero symmetric A with trA = 0. This in turn follows from the inequality Ü > 0, 

evaluated at F = I, with UE = 0 at E = 0 and with SymF
.

= A restricted in accordance with (6), 

i.e. I ⋅ A = 0.

For small strains of incompressible materials, it is well known that E is deviatoric at leading 

order. This follows by expanding J2 = det(I + 2E) with J = 1, yielding

trE = E 2 − (trE)2 − 4 det E, (19)

which implies that E = DevE + SphE with |SphE| = O(|E|2). The leading-order small-strain 

approximation to the strain energy is then given by

U(E) = Q(DevE) + o( E 2), (20)

with

Q(E) = 1
2E ⋅ 𝒞[E] . (21)

The latter expression furnishes the obvious extension of the leading-order energy Q(DevE) 

for use in computing the derivative UE.

In the present work we consider materials reinforced by a single family of fibers and by two 

families of initially orthogonal fibers with distinct mechanical properties. The first of these 

types is transversely isotropic, with (Spencer, 1984)

𝒞[E] = 2μTE + 2(μL − μT)(Ea ⊗ a + a ⊗ Ea) + β(a ⋅ Ea)a ⊗ a, (22)

where a is the unit-tangent field to the fiber trajectories in κ. The moduli μT and μL 

respectively are the shear moduli for shearing in planes transverse and parallel to the fibers, 
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and β contributes to the extensional stiffness along the fibers. The second type of material is 

orthotropic, with (Spencer, 1984)

𝒞[E] = 2μE + 2μa(Ea ⊗ a + a ⊗ Ea) + 2μb(Eb ⊗ b + b ⊗ Eb)
+ (βaa ⋅ Ea + βabb ⋅ Eb)a ⊗ a + (βaba ⋅ Ea + βbb ⋅ Eb)b ⊗ b, (23)

where a and b, with a ⋅ b = 0, are the unit-tangent fields to the two fiber families. Here μ, μa 

and μb are shear moduli, and we refer to Spencer (1984) for interpretations of these and of 

βa, βb and βab in terms of the conventional engineering moduli.

We have

UE = 𝒞[E] + o( E ), (24)

and with C−1 = I + O(|E|), the leading-order approximation to the stress S is

S ≃ 𝒞[DevE] − pI, (25)

in which we have evaluated the derivative UE on the constraint manifold, as required by (3). 

The latter is approximated at leading order by its tangent space at E = 0, i.e. by the linear 

space Dev. Of course the spherical part of 𝒞[DevE] may be absorbed into the multiplier p, 

but it is quite unnecessary to do so. The expression (25) for the stress coincides precisely 

with that given in Spencer (1984).

In this work we take the fibers to lie parallel to a fixed plane with unit normal k, so that a ⋅ k 
= 0 and b ⋅ k = 0. With A = Sym(p ⊗ q) and p ⋅ q = 0, the strong-ellipticity condition (17) 

for transversely isotropic materials becomes

0 < μT p 2 q 2 + (μL − μT)[ p 2(q ⋅ a)2 + q 2(p ⋅ a)2] + 1
2 β(p ⋅ a)2(q ⋅ a)2 ⋅ (26)

To derive necessary conditions, we choose q = k with p = paa + pbb, obtaining

μLpa
2 + μT pb

2 > 0 (27)

for all pa, pb with pa
2 + pb

2 > 0; thus,

μL > 0 and μT > 0. (28)

In the case of orthotropy, after some calculation we find that (17) becomes

0 < μ p 2 q 2 + μa[ p 2(q ⋅ a)2 + q 2(p ⋅ a)2] + μb[ p 2(q ⋅ b)2 + q 2(p ⋅ b)2]

+ 1
2 βa(p ⋅ a)2(q ⋅ a)2 + 1

2 βb(p ⋅ b)2(q ⋅ b)2 + βab(p ⋅ a)(q ⋅ a)(p ⋅ b)(q ⋅ b) .
(29)

Choosing q and p as before, we derive
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(μ + μa)pa
2 + (μ + μb)pb

2 > 0 (30)

and conclude that

μ + μa > 0 and μ + μb > 0. (31)

Of course the necessary conditions (28) and (31) are not sufficient for strong ellipticity, but 

they do suffice for our purposes. Detailed discussions of strong ellipticity for transversely 

isotropic and orthotropic materials are given in Payton (1983); Merodio and Ogden (2003) 

and Aguiar (2019), respectively. We discuss inequality (18) for the two material types in 

Section 3.2.

3. Asymptotic derivation of the leading-order plate energy for combined 

bending and stretching

3.1. Descent from three dimensions to two

Position in the reference placement of the plate may be written

x = u + ςk, (32)

where u ∈ Ω, Ω is the midplane of the plate, ς ∈ [−h/2, h/2] is a through-thickness 

coordinate and h is the plate thickness, assumed to be much smaller than the next smallest 

length scale, l say, in a given problem. We simplify the notation by adopting l as the unit of 

length (l = 1); then, the dimensionless thickness h << 1.

The strain energy associated with a given deformation is

ℰ = ∫
κ

U(E(x))dv = ∫
Ω
∫

−h/2

h/2
U(E(u + ςk))dςda, (33)

where E(x) is the three-dimensional strain. If this is sufficiently smooth, then by Leibniz’ 

Rule and Taylor’s Theorem, applied to h (Shirani and Steigmann, 2019), we find that the 

areal energy density on Ω is given, for small h, by

∫
−h/2

h/2
U(E(u + ςk))dς = hU + 1

24h3U″ + o(h3), (34)

where primes are used to denote derivatives with respect to ς, E(u) = E ∣ Ω is the midplane 

strain, U is evaluated at E(u) and, by the chain rule,

U′ = UE ⋅ E′ and U″ = UEE[E′] ⋅ E′ + UE ⋅ E″ (35)

in which the derivatives UE and UEE are evaluated at E(u), and
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E(n) = E ς = 0
(n) . (36)

Here, we assume that there is no variation of material properties in the direction orthogonal 

to Ω, so that U depends on ς only implicitly, via E(x). The material moduli, the thickness h, 

and the fiber directions a and b may, however, depend on u ∈ Ω.

If F(x) is the gradient of the three-dimensional deformation χ(x), then

F = ∇ χ + χ′ ⊗ k, (37)

where ∇ is the (two-dimensional) gradient with respect to u on Ω. Its first and second 

derivatives with respect to ς are

F′ = ∇ χ′ + χ″ ⊗ k and F″ = ∇ χ″ + χ‴ ⊗ k, (38)

and these reduce, on the midplane, to

F = ∇r + d ⊗ k, F′ = ∇d + g ⊗ k, and F″ = ∇g + h ⊗ k, (39)

where

r(u) = χ Ω (40)

is the midplane deformation, and

d(u) = χ ∣ Ω′ , g(u) = χ ∣ Ω″ and h(u) = χ ∣ Ω‴ . (41)

are independent functions of u. These are the coefficient vectors in the order - ς3 expansion

χ(u + ςk) = r(u) + ςd(u) + 1
2ς2g(u) + 1

6ς3h(u) + … . (42)

Here, r(u) is the position of a material point on the deformed image ω of the midplane Ω; its 

gradient ∇r maps the translation space Ω′ of Ω to the tangent plane Tω to the surface ω at 

the material point u. The functions d(u), g(u) and h(u) provide information about the three-

dimensional deformation in the vicinity of the midplane.

Further, in (34) and (35) we have (compare (4)2, (7)2)

E = 1
2(FtF − I), E′ = Sym(FtF′) and E″ = (F′)tF′ + Sym(FtF″), (43)

in which F, F′ and F″ are restricted by bulk incompressibility, i.e. by the constraints J = 1, 

J′ = J″ = 0. In particular, we may use J = Fk ⋅ F*k with the Piola-Nanson formula F*k = 

αn, where n is the unit normal to Tω and α = |F*k| is the areal stretch of Ω, together with J = 

1 and (39)1, to conclude that (Steigmann, 2017)

Taylor et al. Page 8

Int J Eng Sci. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



d = α−1n + (∇r)e, (44)

for some 2-vector e ∈ Ω′. Here we note that F*k = Fe1 × Fe2 = (∇r)e1 × (∇r)e2, where {eα} 

is any orthonormal basis for Ω′ such that e1 × e2 ⋅ k = 1. Thus, d is determined by ∇r and e.

In the same way, we use 0 = J′ = F* ⋅ F′ with (39)2, concluding that g ⋅ n = −α−1F* ⋅ ∇d 
and hence that

g = (∇r)f − α−1(F* ⋅ ∇d)n (45)

for some 2-vector f ∈ Ω′. A similar procedure may be used to derive a representation for h, 

etc., if desired.

Corresponding to (44), the Cauchy-Green deformation tensor C = FtF is

C = c + ce ⊗ k + k ⊗ ce + (α−2 + e ⋅ ce)k ⊗ k, where c = (∇r)t(∇r) (46)

is the surfacial Cauchy-Green deformation tensor; this has the property

det c = α2 . (47)

The associated strain is

E = ε + Sym(γ ⊗ k) + Ek ⊗ k, (48)

where

γ = ce, E = 1
2(α−2 − 1 + e ⋅ ce) and ε = 1

2(c − 1) (49)

is the surface strain, in which

1 = I − k ⊗ k (50)

is the projection onto Ω′ and γ is evidently the transverse shear strain. Accordingly, for 

small |E|, incompressibility yields Ē = −trε + O(|E|2), so that DevE = Ē + O(|E|2), with

E = ε − (trε)k ⊗ k + Sym(γ ⊗ k) . (51)

We are interested in applications involving finite deformations with small-to-moderate 

midplane strains. This suffices for most engineering applications (Koiter, 1960, 1966; 

Ciarlet, 2005). Further applications of contemporary interest in biomechanics include mitral 

heart valves, which typically experience principal stretches that are close to unity (Grashow 

et al., 2006a,b). In such circumstances, it is appropriate to adopt an estimate of the energy 

(34) in which the separate order - h and order - h3 terms are replaced by their leading-order 

approximations for small |E| . For example, in (34) we have
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U = Q(E) + o( E 2), (52)

where Ē is given by (51). Similarly, from (24) we have UE = 𝒞[E] + o( ∣ E ∣ ) = O( ∣ E ∣ ), 

whereas UEE = 𝒞 + O( ∣ E ∣ ). From (35)2 we then have U″ = E′ ⋅ 𝒞[E′] + O( ∣ E ∣ ), in which 

E′ - given by (43)2 - is estimated by observing that the right-stretch factor U in the polar 

decomposition F = RU of the deformation gradient, in which R is a rotation, satisfies U = I 
+ O(|E|). Then,

E′ = Sym(RtF′) + O( E ), (53)

yielding

U″ = RtF′ ⋅ 𝒞[RtF′] + O( E ) . (54)

Combining this with (33) and (34), we obtain

ℰ = E + o(h3), (55)

where

E = ∫
Ω

W da, (56)

with

W ≃ hQ(E) + 1
12h3Q(RtF′), (57)

in which both terms are valid to leading order in |E|.

Note that tr(RtF′) = R ⋅ F′ = R* ⋅ F′, where R* is the cofactor of R; this coincides with R 
because R is a rotation. Then, because F* = R*U*, and with U* = I + O(|E|), we have R* = 

F* + O(|E|), yielding tr(RtF′) = O(|E|) on account of F* ⋅ F′(= J′) = 0. Thus RtF′ is 

deviatoric at leading order, i.e. at order unity. Because Ē is also deviatoric, this means that 

the plate energy W is fully specified by (21), in which 𝒞[DevE] is given by (22) or (23) as 

appropriate.

The energy W involves the vector fields d and g via (39)1,2. These in turn involve the 2-

vectors e and f, which at this stage are kinematically independent of the midplane 

deformation r. This suggests a strategy whereby we attempt to render the energy stationary 

with respect to these fields a priori. For example, E is stationary with respect to e at fixed ∇r 
and f if and only if

hQE(E) ⋅ (E)⋅ + O(h3) = 0, (58)

where the superposed dot refers to a variational derivative, and (cf. (51))
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(E)⋅ = Sym(γ̇ ⊗ k), with γ̇ = cė . (59)

Dividing (58) by h and passing to the limit, we obtain

γ̇ ⋅ (𝒞[E])k = 0 (60)

at leading order, in which γ. ∈ Ω′ is arbitrary. Thus,

1(𝒞[E])k = 0, (61)

where 1 is the projection onto Ω′.

For transversely isotropic materials, (22) is used to reduce this to

μTγ + (μL − μT)(a ⋅ γ)a = 0 . (62)

Decomposing γ in the basis {a, b}, with b = k × a, and invoking the strong-ellipticity 

inequalities (28), we conclude that γ = 0. Moreover, a further consequence of strong-

ellipticity is that this solution is energetically optimal (Steigmann, 2017; Shirani and 

Steigmann, 2019).

For orthotropic materials, (23) is used to reduce (61) to

(μ + μa)(a ⋅ γ)a + (μ + μb)(b ⋅ γ)b = 0, (63)

and the strong-ellipticity conditions (31) again yield γ = 0, which again is energetically 

optimal. Then, because c is positive definite, it follows from (49)1 that e = 0, yielding

E = ε − (trε)k ⊗ k (64)

and

d = λ n, with λ = α−1 . (65)

Thus, we have derived the well known Kirchhoff-Love hypothesis with thickness distension 

as the asymptotic leading-order approximation. Further, Q(Ē) is then determined entirely by 

∇r. We combine (44) and (49)2, reaching

1
2(λ2 − 1) = E = − trε + O( E 2) . (66)

Accordingly λ should be replaced by unity in the coefficient of h3 in the energy (57).

To elaborate, from (39)2 and (65) we have that

F′ = λ ∇n + n ⊗ ∇ λ + g ⊗ k, (67)
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where ∇n is the referential gradient, defined by dn = (∇n)du. Let b be the curvature tensor 

of the deformed surface ω; this is the symmetric 2-tensor, defined by dn = −bdr, that maps 

the tangent plane Tω at a particular material point to itself. Thus,

∇n = − b(∇r) . (68)

In the course of arriving at (57), to be consistent with (53), we have approximated F by R. 

To this order of approximation, E vanishes and λ = 1. Moreover, with

R = R1 + Rk ⊗ k, (69)

the same approximation, in combination with (39)1, gives

R1 ≃ ∇r and Rk = n . (70)

Then the consistent-order approximation to RtF′ is

RtF′ ≃ κ + k ⊗ ∇ λ + Rtg ⊗ k, (71)

where

κ = − (∇r)tb(∇r) (72)

is a symmetric 2-tensor on Ω′.

Recalling that consistency of (59) with bulk incompressibility requires that RtF′ be 

deviatoric at leading order, we impose tr(RtF′) = 0 and conclude that

k ⋅ Rtg ≃ − trκ . (73)

This agrees with the consistent-order approximation to (45) on noting that F* ⋅ ∇d = F*1 ⋅ 
∇d with F* ≃ R; namely,

n ⋅ g ≃ − R1 ⋅ (∇n + n ⊗ ∇ λ), (74)

in which R1 ⋅ n ⊗ ∇λ = n ∇ (∇r)∇λ vanishes because (∇r)∇λ ∈ Tω. Writing

Rtg = 1(Rtg) + (k ⋅ Rtg)k, (75)

we then have

RtF′ ≃ κ − (trκ)k ⊗ k + k ⊗ ∇ λ + 1(Rtg) ⊗ k . (76)

The energy (57) involves only the symmetric part:

Sym(RtF′) ≃ κ − (trκ)k ⊗ k + Sym(μ ⊗ k), (77)

where
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μ = 1(Rtg) + ∇ λ . (78)

This has a structure similar to (51).

Proceeding as in the foregoing, we seek 1(Rtg) (equivalently, f) that renders the energy 

stationary at fixed ∇r and e. With reference to (60), this implies that at leading order the 

former should satisfy

μ̇ ⋅ (𝒞[RtF′])k = 0 (79)

for all μ. ∈ Ω′; i.e.,

1(𝒞[RtF′])k = 0, (80)

which is easily seen to reduce to (62) or (63), with γ replaced by μ, for transversely isotropic 

or orthotropic materials respectively. We conclude that μ = 0, and again strong ellipticity 

implies that this solution is energetically optimal (Steigmann, 2010). Thus,

Sym(RtF′) ≃ κ − (trκ)k ⊗ k, (81)

and the strain energy (57) reduces to

W = hQ*(ε) + 1
12h3Q*(κ), (82)

where, for any symmetric 2-tensor α on Ω′,

Q*(α) = Q(α − (trα)k ⊗ k) . (83)

This is an additive decomposition of the strain energy into pure membrane and bending 

energies, as in Koiter’s well established model (Koiter, 1960, 1966) for isotropic materials 

undergoing finite deformations with small midplane strains. Indeed, (82) provides the 

extension of Koiter’s energy to incompressible transversely isotropic or orthotropic 

materials. It is determined entirely by the 1st and 2nd gradients of the midsurface 

deformation r(u).

Remark: Our procedure for eliminating e and f relied on asymptotic estimates of the 

associated stationarity conditions at leading order in h and at fixed midplane deformation. 

On the other hand, the leading-order stationarity condition for the energy (82) furnishes 

membrane theory, which is known to be ill-posed as a minimization problem due to the 

failure of Q*(ε) to satisfy the operative Legendre-Hadamard necessary condition. This in 

turn is due to the presence of compressive in-plane 2nd Piola-Kirchhoff stresses in the 

stress-deformation relation derived from Q*(ε) (Steigmann, 1986; Shirani and Steigmann, 

2019). In this case a well-posed formulation is achieved on replacing Q*(ε) by its 

quasiconvexification (Pipkin, 1994; Dacarogna, 1989; Le Dret and Raoult, 1996), which 

automatically furnishes equilibria having no compressive stress. These equilibria also 
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furnish the least possible membrane energy that can be attributed to a given midplane 

deformation. This model was adapted to anisotropic membranes in Pipkin (1994) and further 

specialized to orthotropic bio-elastic membranes in Atai and Steigmann (2014). However, 

the relaxed membrane problem lacks the intrinsic length scale h required to resolve the 

spatial distribution of wrinkle patterns. For this reason we retain the full energy (82) in the 

ensuing variational treatment. In Section 5, we show that this procedure also yields an 

effective regularization of membrane theory.

For transversely isotropic laminae, (22) and (83) may be used to obtain

Q*(α) = μT[α ⋅ α + (trα)2] + 2(μL − μT)αa ⋅ αa + 1
2 β(a ⋅ αa)2 . (84)

The derivative Qα
∗, needed in Section 4, is

Qα* = 2μT[α + (trα)1] + 2(μL − μT)(αa ⊗ a + a ⊗ αa) + β(a ⋅ αa)a ⊗ a . (85)

For orthotropic laminae, we find, using (23), that

Q*(α) = μ[α ⋅ α + (trα)2] + 2μaαa ⋅ αa + 2μbαb ⋅ αb + 1
2 βa(a ⋅ αa)2

+ 1
2 βb(b ⋅ αb)2 + βab(a ⋅ αa)(b ⋅ αb),

(86)

with derivative

Qα* = 2μ[α + (trα)1] + 2μa(αa ⊗ a + a ⊗ αa) + 2μb(αb ⊗ b + b ⊗ αb)
+ [βa(a ⋅ αa) + βab(b ⋅ αb)]a ⊗ a + [βab(a ⋅ αa) + βb(b ⋅ αb)]b ⊗ b . (87)

3.2. Positive-definiteness conditions

Inequality (18), combined with (83), implies that Q*(α) is positive definite. This in turn 

imposes restrictions on the moduli, which we pause to derive here. To this end we 

decompose α in the form

α = αaaa ⊗ a + αbbb ⊗ b + αab(a ⊗ b + b ⊗ a) . (88)

We combine this with (84) and (85) to deduce, after some some algebra, that for both the 

transversely isotropic and orthotropic laminae,

Q*(α) = Aαaa
2 + Bαbb

2 + 2Cαaaαbb + Dαab
2 , (89)

where A − D depend only on the moduli. This is sum of two independent quadratic forms. 

Accordingly, Q*(α) is positive definite if and only if both quadratic forms are positive 

definite. Necessary and sufficient conditions are

AB − C2 > 0, B > 0 and D > 0 . (90)
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For transversely isotropic laminae, we derive

A = 2μL + 1
2 β, B = 2μT, C = μT and D = 2μL, (91)

and Q*(⋅) is then positive definite if and only if

μT > 0, β > μT − 4μL and μL > 0 . (92)

For orthotropic laminae, we find that

A = 2(μ + μa) + 1
2 βa, B = 2(μ + μb) + 1

2 βb, C = μ + 1
2 βab and D

= 2(μ + μa + μb),
(93)

and Q*(⋅) is positive definite if and only if

μ + μa + μb > 0, 4(μ + μb) + βb > 0 and [4(μ + μa) + βa][4(μ + μb) + βb]

> 4(μ + 1
2 βab)

2
.

(94)

3.3. Laminated plates

Our framework may be used to construct a two-dimensional model of laminates. The utility 

of such models in structural mechanics is of course well known, but the model is also 

applicable to the mitral valve, for example, which is thought to have a layered structure 

(Wenk et al., 2012; Zhang et al., 2016). We confine attention to laminates consisting of two 

laminae of the kind considered in the foregoing, and identify the plane Ω, on which ς = 0, 

with the interface between them. The upper lamina occupies the interval ς ∈ (0, ηh] and the 

lower lamina the interval ς ∈ [−(1 − η)h, 0), where η ∈ [0,1] is a fixed constant and h is 

again the thickness of the laminate. The areal energy density on Ω is then given by (compare 

(34))

∫
0

ηh
U+(E+(u + ςk))dς + ∫

−(1 − η)h

0
U−(E−(u + ςk))dς

= h[ηU+ + (1 − η)U−] + 1
2h2[η2U+′ − (1 − η)2U−′ ]

+ 1
6h3[η3U+″ + (1 − η)3U−″ ] + o(h3),

(95)

where again Leibniz’ Rule has been combined with a Taylor expansion in each integral 

(Steigmann, 2012) and the subscripts ± pertain to the upper and lower laminae respectively.

Estimating the coefficients of h, h2 and h3 at leading order in |E+| in the upper lamina and |E

−| in the lower lamina, we arrive at (56), with
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W = h[ηQ+(E+) + (1 − η)Q−(E−)] + 1
2h2

{η2𝒞+[E+] ⋅ R+
t F+′ − (1 − η)2𝒞−[E−] ⋅ R−

t F−′ }

+ 1
3h3[η3Q+(R+

t F+′ ) + (1 − η)3Q_(R−
t F−′ )],

(96)

where

E± = ε − (trε)k ⊗ k + Sym(γ± ⊗ k) (97)

and

Sym(R±
t F±′ ) = κ − (trκ)k ⊗ k + Sym(μ± ⊗ k) . (98)

Here, we assume the laminae to be perfectly bonded at the plane Ω, each then having a 

common interfacial deformation r(u) = χ± ∣ Ω. This implies that ε and κ, which are 

determined by the derivatives of r(u), are also common to the two laminae.

The leading-order asymptotic analysis culminating in (60), (79) may be applied to the fields 

γ±(= ce±) separately to conclude, as there, that γ± (and hence e±) vanish, yielding Ē± = Ē, 

given by (64). Thus the restriction of the strain to Ω is the same for both laminae. In view of 

the structure of (84) and (86), and because the fiber axes a± and b± are assumed to be 

orthogonal to the unit normal, k, to Ω′, it follows that 𝒞±[E‒±] ⋅ R±
t F±′  do not involve μ±. 

Accordingly, the asymptotic procedure culminating in (80) applies here as well, and with the 

same conclusion; namely, that μ± vanish. Finally, the areal energy density reduces to

W = h[ηQ+(E) + (1 − η)Q−(E)] + 1
2h2{η2𝒞+[E] − (1 − η)2𝒞_[E]} ⋅ Sym(RtF′)

+ 1
3h3[η3Q+(RtF′) + (1 − n)3Q_(RtF′)],

(99)

where Ē and Sym(RtF′) are given respectively by (64) and (81). This energy is again fully 

specified by the derivatives of the deformation r(u) of the interfacial plane. It may be 

expressed in terms of the reduced energy Q* defined in (83); thus,

W = h[ηQ+*(ε) + (1 − η)Q*(ε)] + 1
2h2{η2𝒞+[E] − (1 − η)2𝒞_[E]} ⋅ Sym(RtF′)

+ 1
3h3[η3Q+*(κ)(1 − η)3Q*(κ)] .

(100)

The coefficient of h2 in this expression couples the extensional and bending strains ε and κ. 

It vanishes if the laminate is apportioned to both laminae equally (η = 1/2), and if they have 

identical properties; the energy reduces, in this case, to (82), as expected.
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4. Equilibrium

Consider a one-parameter family r(u; ϵ) of deformations and let v(u) = r. , where 

r. = ∂r(u; ϵ) ∂ϵ ∣ ϵ = 0; this is the virtual velocity field. We identify equilibria with those 

deformations r(u) = r(u;0) that satisfy the virtual-power statement

Ė = P (101)

for all kinematically admissible v, where E is the strain energy (56) and

Ė = ∫
Ω

Ẇ da (102)

in which the superposed dot is the derivative with respect to ϵ at the equilibrium state ϵ = 0; 

and P, the form of which is made explicit below, is the virtual power supplied by an external 

agency. The meaning of kinematic admissibility in this context is discussed below. Here we 

observe, from (49)3, (81) and (82) or (100), that the strain energy W depends on the 

deformation through its first and second spatial derivatives on Ω. Therefore, plate theory is 

subsumed under second-grade elasticity theory (Toupin, 1962, 1964). Indeed, this 

circumstance affords a much clearer conceptual framework for plate theory than is typically 

found in the text and monograph literatures.

To elaborate, we adopt a Cartesian-coordinate parametrization of Ω. Thus, with u = uαeα, 

where uα are the coordinates, we have r(u) = ri(uα)ei, where ri(uα) = ei ⋅ r(uβeβ), and

∇r = aα ⊗ eα, with aα = ri, αei; (103)

and, from (49)3,

ε = εαβeα ⊗ eβ, with εαβ = 1
2(aαβ − δαβ), (104)

where aαβ = ri,αri,β is the metric induced by the (convected) coordinates on ω; here δαβ is 

the Kronecker delta. The metric furnishes the representation

c = aαβeα ⊗ eβ (105)

of the surface Cauchy-Green tensor via (46)2, and this is positive definite on Ω′ by virtue of 

the positive definiteness of the three-dimensional Cauchy-Green tensor (46)1. The matrix 

(aαβ) is accordingly positive definite.

From the Gauss and Weingarten equations of differential geometry (Flügge, 1972), we also 

have

ri; αβ = nibαβ, (106)

where ni are the components of the unit normal n to Tω, bαβ are the components of the 

curvature tensor thereon, and
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ri; αβ = ri, αβ − Γαβ
μ ri, μ (107)

is the covariant derivative on ω, in which Γαβ
μ  are the Christoffel symbols, given by

Γαβ
λ = 1

2aλμ(aαμ, β + aβμ, α − aαβ, μ), (108)

with (aλμ) = (aλμ)−1. The curvature tensor is b = bαβaα ⊗ aβ, where aα = aαβaβ, and the 

surface normal may be computed from the deformation using the formula ϵαβn = aα, × aβ, 

where ϵαβ = aeαβ in which a = det(aαβ) and eαβ is the permutation symbol (e12 = −e21 = 1, 

e11 = e22 = 0). From (106), (107) and niri,α = 0 we have

bαβ = niri, αβ, (109)

and (72), (103) combine to give

κ = − bαβeα ⊗ eβ . (110)

Recall that the strain energy is a function, F say, of the components ri,α and ri,αβ. Then,

Ẇ = Niαvi, α + Miαβvi, αβ, (111)

with

Niα = ∂F / ∂ri, α and Miαβ = Miβα = ∂F / ∂ri, αβ . (112)

We define a 2-vector φ with components

φα = T iαvi + Miαβvi, β, where T iα = Niα − Miαβ, β . (113)

Then,

Ẇ = φα, α − viT iα, α, (114)

and it follows from the Green-Stokes theorem that

Ė = ∫
∂Ω

φαναds − ∫
Ω

viT iα, αda, (115)

where να is the rightward unit normal to the edge ∂Ω, traversed counter-clockwise.

Let uα(s) be the arclength parametrization of ∂Ω. The unit tangent to ∂Ω is the vector with 

components τα = duα/ds, and να = eαβτβ. We use these with δαβ = τατβ + νανβ to 

decompose the derivatives vi,β(= vi,αδαβ) on ∂Ω in the form
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vi,β = Tβvi′ + νβvi, ν, (116)

where vi′(s) = ταvi, a = dvi(u(s)) ds and vi,ν(s) = ναvi,α respectively are the independent 

tangential and normal derivatives of vi on ∂Ω. Substituting into (113)1 and (115), we find 

that

∫
∂Ω

φαναds = ∫
∂Ω

{(T iανα − (Miαβνατβ)′)vi + Miαβνανβvi, ν}ds

− ∑
n

[Miαβνατβ]
(n)

vi(n),
(117)

where the square bracket refers to the forward jump as a corner of the boundary is traversed. 

Thus, [⋅] = (⋅)+ − (⋅)−, where the subscripts ± identify the limits as a corner located at 

arclength station s is approached through larger and smaller values of arclength, respectively. 

The sum accounts for the contributions from all corners. Here we assume the boundary to be 

piecewise smooth in the sense that its tangent τ is piecewise continuous.

It follows from (101) that admissible virtual powers have the form

P = ∫
Ω

givida + ∫
∂Ωt

tivids + ∫
∂Ωm

mivi, νds + ∑
*

f i(n)vi(n), (118)

where gi, ti, mi and fi(n) respectively are the distributed force, the edge traction, the double 

force, and the corner force. The notion of double force figures prominently in 2nd-grade 

elasticity theory (Toupin, 1962, 1964). Here, ∂Ωt and ∂Ωm respectively are parts of ∂Ω where 

ri and ri,ν are not assigned, and the starred sum includes only the corners where position is 

not assigned. We suppose that ri and ri,ν are assigned, and hence that vi and vi,ν vanish, on 

∂Ω \ ∂Ωt and ∂Ω \ ∂Ωm, respectively, and that position is assigned at the corners not included 

in the starred sum, so that vi(n) vanishes there. For our present purposes, these restrictions on 

the virtual velocity constitute the definition of kinematic admissibility. The fundamental 

lemma then yields the Euler-Lagrange equations

T iα, α + gi = 0 in Ω , (119)

and

ti = T iανα − (Miαβνατβ)′, mi = Miαβνανβ and f i(n) = − [Miαβνατβ](n) (120)

on ∂Ωt, ∂Ωm and at the nth corner, respectively.

In conventional plate theory, it is customary to specify a couple c on part of the boundary. 

This is related to the double force by c = r,ν × m (Steigmann, 2018), where r,ν = ri,νei and 

m = miei. The couple and double force are not equivalent, however, because the former is 

sensitive only to the part of the latter that is perpendicular to r,ν. It follows that, in general, 

specification of the couple is not consistent with the variational statement (101).
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We use (82) to deduce the structure of the response functions Niα and Miαβ for a single 

lamina. Thus,

Ẇ = hQε* ⋅ ε̇+ 1
12h3Qκ* ⋅ κ̇ . (121)

Equivalently,

Ẇ = ∑αβ ε̇αβ + Mαβḃαβ, (122)

where

∑αβ = hQε* ⋅ eα ⊗ eβ and Mαβ = − 1
12h3Qκ* ⋅ eα ⊗ eβ . (123)

and the derivatives Qε
∗, Qκ

∗ are given by (85) or (87). Here we use (104)2 to compute the 

variation

ε̇αβ = 1
2(ri, αvi, β + vi, αri, β) . (124)

To compute the variation b
.
αβ, we first take the variation of (106), reaching

vi, αβ = Γαβ
μ vi, μ + Γ̇αβ

μ ri, μ + bαβṅi + ḃαβni, (125)

and then contract with ni to obtain

ḃαβ = ni(vi, αβ − Γαβ
μ vi, μ) . (126)

Because the energy (82) is valid to leading order in the strain, we adopt the consistent-order 

approximation (aαβ)−1 = δαβ + O(|ε|). From (108) we then have

Γαβ
μ = Γμαβ + O( ε ), (127)

where

Γμαβ = εαμ,β + εβμ,α − εαβ, μ . (128)

To the same order of approximation, the unit normal n = nkek to the deformed surface is 

given by

eαβnk = ei jkri, αr j, β, (129)

where eαβ and eijk respectively are the two- and three-dimensional permutation symbols. 

Combining these results with (111) and (122), we arrive at
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Miαβ = niMαβ and Niα = ri, β∑βα − Miβμ Γαβμ , (130)

in which the non-standard term Miβμ Γ‒αβμ arises from the use of partial derivatives rather 

than the customary covariant derivatives (see (107)) on the deformed surface (Ciarlet, 2005). 

We note that it is a purely nonlinear term and hence absent in linear plate theory.

The reduction of laminate theory proceeds along entirely similar lines and is therefore not 

made explicit. The only adjustments to the foregoing are that the definitions of Σαβ and Mαβ 
are to be based on (100) rather than (82).

Eqs. (103) may be substituted into (113)2, (119) and (120) to derive expressions for the 

distributed force, the traction, the double force and the corner forces. In particular, the 

double force assumes the form

mi = Mni, with M = Mαβνανβ . (131)

This implies that the edge couple, c = r,ν × m, is tangential to the deformed surface, and that 

it vanishes if and only if the double force vanishes.

5. Gradient flow and dynamic relaxation

We apply the foregoing to the analysis of problems in which there is no distributed load over 

the surface of the plate (gi = 0) and parts ∂Ωc and ∂Ωf of the boundary are either clamped (ri 

and ri,ν assigned) or free (ti = 0 and mi = 0), respectively. In all cases the corners of the plate 

are the endpoints of clamped segments, so that ri are assigned there. The normal-tangential 

decomposition (116) implies that the full gradient ri,α, is effectively assigned on a clamped 

boundary. This follows from the fact that the specification of ri(s) yields the tangential 

derivatives ri′(s). The specification of the normal derivatives ri,ν(s) may be interpreted in 

terms of an assigned position field in a narrow seam of width w, say, welded to the 

boundary. If ν is the normal coordinate on the edge, then ri(s, ν) = ri(s) + νri,ν(s) + o(ν) for 

0 ≤ ν ≤ w. Dividing by ν and passing to the limit, we conclude that specification of the 

normal derivative furnishes the leading-order model for the specification of position ri(s,ν) 

in the adjoining seam.

With the foregoing conditions in effect, the virtual-power statement (101) reduces simply to 

E
.

= 0. Moreover, the problem is trivially conservative, with E playing the role of the 

potential energy. According to the energy criterion for conservative problems, stable 

equilibria r(u) may be identified with minimizers of this energy.

An effective method for treating problems of this kind is the so-called gradient-flow 
algorithm, in which the stationarity condition E

.
= 0 is replaced by the following artificial 

first-order dynamical problem, with v(u, ϵ) = ∂r(u; ϵ)/∂ϵ:

cvi = T iα, α in Ω , (132)
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and

−cvi = T iανα − (Miαβνατβ)′ on ∂ Ω f , and − cvi, ν = Miαβνανβ on
∂ Ω f , (133)

with c a positive constant and with vi = 0 and vi,α = 0 on ∂Ωc = ∂Ω \ ∂Ωf. With reference to 

(115) and (117), this yields

∂
∂ϵ E[r(u; ϵ)] = − c−1(∫

Ω
g 2da + ∫

∂Ω f
t 2ds + ∫

∂Ω f
m 2ds), (134)

where the components of g, t and m are given respectively by (119) and (120)1,2.

Thus, ∂E[r(u; ϵ)]/∂ϵ ≤ 0, with equality (and hence E stationary) if and only if the 

equilibrium conditions are satisfied. Forward integration of (132) and (133) in ‘ϵ - time’ 

with arbitrary initial conditions thus generates an energy-minimizing sequence rn(u) = r(u; 

ϵn), where ϵn are discrete values of ϵ; that is, E[rn+1(u)] < E[rn(u)]. This sequence converges 

to a minimizer provided that the energy is lower semi-continuous. This in turn is guaranteed 

by the condition of quasiconvexity of the areal strain-energy function W with respect to the 

2nd gradient ri,αβ (Ball et al., 1981). The relevant term is Q*(κ), in which κ depends on 

ri,αβ, linearly (cf. (109) and (110)). Thus W is a non-negative, quadratic and hence convex 

function of ri,αβ. It is not strictly convex, however, because while Q* is a positive-definite 

function of κ, the latter is insensitive to the part of ri,αβ orthogonal to ni. Nevertheless, 

convexity is sufficient for quasiconvexity and hence for lower semicontinuity, which in turn 

ensures the convergence of the gradient-flow algorithm. It is in this sense that plate theory 

furnishes a regularization of pure membrane theory.

The foregoing statements are not sufficiently precise to be entirely equivalent to what has 

been proved. We refer to Ball et al. (1981) for detailed statements and proofs of the relevant 

theorems.

In practice, the rate of convergence of the gradient-flow algorithm is rather slow. To address 

this, we instead use the dynamic relaxation method (Shugar, 1990; Topping and Khan, 1994; 

Rezaiee-pajand et al., 2011), which entails the addition of an artificial inertia to (132). This 

is motivated by the fact that, in the linear theory of damped vibrations, inertia hastens the 

transient response of the system and its approach to equilibrium. Thus we replace (132) by

ρv̇i + cvi = T iα, α in Ω , (135)

where v. (u, ϵ) = ∂2r(u; ϵ) ∂ϵ2 and ρ is a positive constant. If the latter is interpreted as a 

referential mass density, and if the artificial viscosity c vanishes, then (135) furnishes an 

appropriate dynamical extension of the equilibrium equation. A physical viscosity may be 

included in the constitutive equations for Tiα, but this is of no consequence here as (135) is 

intended solely to expedite the computation of equilibria.

Using (133) and (135) in (115) and (117), we obtain
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∂
∂ϵ {E[r(u; ϵ)] + K[v(u; ϵ)]} = − c∫

Ω
v 2da − c−1(∫

∂Ω f
t 2ds + ∫

∂Ω f
m 2ds), (136)

where

K[v(u; ϵ)] = 1
2∫

Ω

ρ v
2
da (137)

is the kinetic energy of the surrogate dynamical system and t, m respectively are again 

defined by (120)1,2. Thus the total mechanical energy E + K decays on solution trajectories 

of the dynamical system. Numerical integration of (133) and (135) again yields a 

minimizing sequence rn(u) = r(u; ϵn), whose limit minimizes E.

To implement this method, we discretize (135) and the edge conditions (133) in space using 

an adaptation of a finite-difference mesh based on a discrete version of the Green-Stokes 

theorem with hour-glass control (Silling, 1988; Last and Harkness, 1989); and in ϵ - time 

using conditionally stable explicit central differences with zero initial velocity and initial 

positions with randomly distributed out-of-plane displacements. Finite difference methods 

based on a contour integral technique, such as what we use here, utilize approximations 

similar to those of four-node quadrilateral finite elements with reduced integration 

(Belytschko et al., 1982). Stable simulations are achieved by adjusting the artificial mass 

density and viscosity and repeating the computations, as needed, using successively smaller 

time steps, until the (non-dimensionalized) norms of the right-hand sides of (133) and (135) 

fall below a specified tolerance. A related procedure involving kinetic damping (Rezaiee-

pajand et al., 2011) in lieu of viscous damping was used in Taylor et al. (2014) to simulate 

the nonlinear response of isotropic plates. The present problem is identical with respect to 

the implementation of the foregoing algorithm and, accordingly, we refer the interested 

reader to Section 3 of that work for a detailed exposition of the numerical solution scheme.

6. Numerical examples and discussion

We close with descriptions of a number of examples that highlight the effects of anisotropy 

on predicted deformations and wrinkle patterns. All simulations pertaining to transverse 

isotropy were conducted using the moduli β = 5 kPa, μL = 1 kPa and μT = 0.5 kPa based on 

the study of fibrin gel by Namani et al. (2012). Those pertaining to orthotropy are based on 

the moduli (in units of kPa) μ = 1, μa = 2, μb = 1, βa = 10, βb = 5 and βab = 2.5, chosen to be 

on the order of the fibrin gel but with one fiber orientation stiffer than the other. In the case 

of laminates, we take the laminae to be transversely isotropic with β± = 5, μL± = 1, and μT± 

= 0.5 (in kPa), i.e. two layers of the fibrin gel material. These moduli satisfy inequalities 

(92) or (94), as appropriate. Figures 1–3 depict the deformed configurations of initially 

rectangular thin sheets having dimensions 10cm × 25cm with a total thickness of 0.01cm. 

Converged solutions were obtained using a regular 200 × 500 mesh. The vertical sides are 

free and the top and bottom edges are clamped at a relative separation of 1.2 times the initial 

value. The arrows in the figures indicate the orientations of the fibers on the reference plane 

and the vertical color scales show the distribution of out-of-plane displacement associated 
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with the wrinkling patterns. The crests of the wrinkles are oriented vertically in the case of 

isotropy (Taylor et al., 2014; Wang et al., 2019), whereas our simulations reveal a deviation 

from verticality due either to asymmetry in fiber orientation, to differing moduli for the two 

fiber families in the case of orthotropy, or to lamination with fibers oriented differently in 

laminae of various thicknesses. We see that the wrinkles orient themselves towards the 

direction of strongest fiber reinforcement. In In Figure 3, and subsequent figures involving 

transverse isotropy, a light arrow indicates the fiber direction in the thinner lamina and the 

heavier arrow the fiber direction in the thicker lamina.

Figures 4–6 show the deformed configurations of a very thin initially square sheet of side 

50cm and thickness 0.0001cm in which the corners are displaced diagonally by different 

asymmetric amounts, indicated in the figure captions. This example is inspired by 

experiments conducted by Wong and Pellegrino (2006), albeit on isotropic sheets. All sides 

are free except for short vertical and horizontal segments of length 1.5cm, adjoining the 

corners, where the sheet is clamped. The upper panel of Figure 4 (a–c) illustrates the 

significant effect of fiber orientation on the predicted deformation pattern at fixed diagonal 

displacement; the lower panel (d-f) illustrates the effect of varying diagonal displacements 

with a given fiber orientation. With a fiber orientation of 45°, the sheets display wrinkle 

patterns akin to those found by Wong and Pellegrino (2006) in an isotropic polyimide film at 

various ratios of asymmetric corner stretch. However, the patterns corresponding to 

orientations of 0° and 90° are quite different. The effects of fiber orientation in orthotropic 

and laminated plates, with laminae of equal thickness, are illustrated in Figures 5 and 6, 

respectively. Converged simulations were achieved using a regular 300 × 300 mesh.

Figures 7–9 pertain to an initially rectangular 38cm × 12.8cm sheet of thickness 0.0025cm. 

The vertical edges are free and the horizontal edges clamped, with the top edge displaced to 

the right uniformly by 0.256cm, and converged solutions were achieved using a regular 600 

× 200 mesh. This example also has an experimental counterpart, described in Wong and 

Pellegrino (2006), and was simulated in the case of isotropy in Taylor et al. (2014). Figure 7 

illustrates the strong effect of fiber orientation in the case of transverse isotropy, in both 

wrinkle magnitude and orientation, whereas Figures 8 and 9, respectively, indicate that the 

effect is less pronounced in the case of orthotropy or lamination when the laminae have 

equal thickness.

In Figures 10–12, we display an annular sheet subjected to azimuthal shear. The initial inner 

and outer diameters are 4cm and 10cm and the thickness is 0.005cm. The circular 

boundaries are clamped with the outer boundary fixed at its initial configuration and the 

inner rotated counter-clockwise by 10°. Converged solutions were obtained using a polar 

mesh consisting of 60 radial nodes and 360 circumferential nodes biased logarithmically 

towards the central hub. Figure 10, pertaining to transverse isotropy, demonstrates the strong 

effect of fiber orientation. In the top panel the fibers are oriented horizontally or vertically. 

The deformation pattern exhibits reflection symmetry with respect to either axis, with one 

pattern corresponding, as expected, to a 90° rotation relative to the other. The bottom panel 

indicates that significant differences in the patterns of wrinkling occur in annuli with fibers 

oriented radially and azimuthally. These, however, exhibit rotational symmetry in the sense 

that the predicted pattern, though clearly varying with radius, does not vary with azimuth. 
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Figures 11a,b, pertaining to orthotropy, indicate that the deformation pattern reflects the 

four-fold symmetry of the underlying fiber orientation. Rotation of this orientation is seen to 

produce a corresponding rotation of the deformation pattern. The situation is naturally 

different in the case of fibers oriented radially and circumferentially (Fig. 11c), with the 

deformation pattern again exhibiting rotational symmetry in this case. Similar conclusions 

apply to laminated annuli consisting of equal-thickness laminae (Fig. 12).

Finally, Figures 13–15 depict the response of an initially rectangular 12.5cm × 5cm sheet of 

thickness 0.001cm with a central circular hole of radius 1.5cm. The vertical edges and the 

edge of the hole are free, while the horizontal edges are clamped and displaced to 1.10 times 

their initial separation distance. Converged solutions were obtained using a polar mesh with 

100 radial nodes and 400 circumferential nodes. Figure 13 illustrates the symmetric 

deformation patterns produced when the fibers are oriented parallel to the initial edges of the 

sheet, whereas asymmetry is observed when the fibers are orientated at 45° to these axes. 

Wrinkling is widespread, and we observe small triangular floppy zones adjoining the hole 

boundary where the sheet is lightly stressed. Similar patterns may be observed in desk-top 

experiments on hand-held sheets of rubber. In Figure 14a we, observe a symmetric 

deformation pattern in the case of orthotropy with the fibers aligned initially with the edges 

of the sheet. A slight asymmetry is observed for fibers oriented at 45° and 135°, (Fig. 14b) 

due to differences in the moduli associated with the two fiber families. Figures 15a,c exhibit 

symmetric deformation patterns in laminates composed of laminae of equal thickness having 

the same material properties, with fibers either aligned with the edges of the rectangle or 

symmetrically disposed with respect to them. The effect of different laminae thicknesses is 

to produce a slight asymmetry in the deformation pattern, depicted in Figure 15b.
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Figure 1: 
Axial stretch of a fibrin gel sheet reinforced with a single family of fibers oriented at (a) 0°, 

(b) 45°, and (c) 90° to the horizontal axis. Non-dimensionalized by sheet height (L = 25cm)
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Figure 2: 
Axial stretch of an orthotropic gel sheet reinforced with two families of fibers oriented at (a) 

0°/90° and (b) 45°/135°. Non-dimensionalized by sheet height (L = 25cm)
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Figure 3: 
Axial stretch of a two-layer fibrin gel laminate with upper/lower surface fiber orientations of 

(a) 0°/90° (η = 0.5), (b) 45°/135° (η = 0.25), (c) 45°/135° (η = 0.5), and (d) 45°/135° (η = 

0.75). Non-dimensionalized by sheet height (L = 25cm)
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Figure 4: 
Square transversely isotropic fibrin gel sheet with asymmetric tensile corner displacements. 

Upper right and bottom left corner stretched diagonally by a factor of 1.01. (a-c) Opposing 

corners stretched by a factor of 1.1 with fiber orientations of 0°, 45°, and 90°, respectively. 

(d-f) Fiber orientation fixed at 45° but with opposing corners stretched by factors of 1.05, 

1.15, and 1.2, respectively. Non-dimensionalized by sheet height (L = 50cm)
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Figure 5: 
Square orthotropic gel sheet with asymmetric tensile corner displacements. Upper right and 

bottom left corner stretched diagonally by a factor of 1.01; opposite corners stretched by a 

factor of 1.1. (a) Fiber families oriented at 0° and 90°. (b) Fiber families oriented at 45° and 

135°. Non-dimensionalized by sheet height (L = 50cm)
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Figure 6: 
Square two-layer fibrin gel laminate with asymmetric tensile corner displacements. Upper 

right and bottom left corner stretched diagonally by a factor of 1.01; opposite corners 

stretched by a factor of 1.1. Fiber families oriented at 0° (upper layer) and 90° (lower layer) 

with (a) η = 0.5 and (b) η = 0.25. Non-dimensionalized by sheet height (L = 50cm)
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Figure 7: 
Fibrin gel sheet in shear for fiber families of (a) 0°, (b) 45°, and (c) 90°. Non-

dimensionalized by sheet width (L = 38cm)
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Figure 8: 
Shearing of orthotropic gel sheet with fibers families of (a) 0° /90° and (b) 45°/135°. Non-

dimensionalized by sheet width (L = 38cm)
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Figure 9: 
Shearing of a two-layer fibrin gel laminate with fiber families of (a) 0° (upper layer) & 90° 

(lower layer) and (b) 45° (upper layer) & 135° (lower layer). Non-dimensionalized by sheet 

width (L = 38cm)
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Figure 10: 
Annular fibrin gel sheet with inner hub twisted 10° counter-clockwise for fiber families 

oriented (a) at 0°, (b) at 90°, (c) radially, and (d) circumferentially. Non-dimensionalized by 

outer diameter (L = 10cm)
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Figure 11: 
Annular orthotropic gel sheet with inner hub twisted 10° counter-clockwise for fiber families 

oriented (a) at 0°/90°, (b) at 45°/135°, and (c) radially/circumferentially. Non-

dimensionalized by outer diameter (L = 10cm)
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Figure 12: 
Annular two-layer fibrin gel laminate with inner hub twisted 10° counter-clockwise for fiber 

families oriented (a) at 0°/90° and (b) radially/circumferentially. Non-dimensionalized by 

outer diameter (L = 10cm)
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Figure 13: 
Axial stretch of a fibrin gel sheet with traction-free central hole reinforced with a single 

family of fibers oriented at (a) 0°, (b) 45°, and (c) 90° to the horizontal axis. Non-

dimensionalized by sheet height (L = 12.5cm)
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Figure 14: 
Axial stretch of an orthotropic gel sheet with traction-free central hole reinforced with two 

families of fibers oriented at (a) 0°/90° and (b) 45°/135°. Non-dimensionalized by sheet 

height (L = 12.5cm)
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Figure 15: 
Axial stretch of a two-layer fibrin gel laminate with traction-free central hole with upper/

lower surface fiber orientations of (a) 0°/90° (η = 0.5), (b) 45°/135° (η = 0.25), and (c) 45°/

135° (η = 0.5). Non-dimensionalized by sheet height (L = 12.5cm)
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