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Simultaneous inversion of multiple microseismic data for event locations and velocity model with 
Bayesian inference
Zhishuai Zhang∗, James W. Rector, and Michael J. Nava, University of California, Berkeley

spaceSummary

We applied Bayesian inference for simultaneous inversion of multiple microseismic data for event locations and velocity models. The traditional
method of using a predetermined ve- locity model for event location is subject to large uncertainty if prior information of the velocity model is poor.
Our study shows that microseismic data can improve the velocity model, which is usually a major source of location uncertainty. Also, the developed
method can quantify the uncertainty of the mi- croseismic location estimation. Its successful application on both synthetic examples and Newberry
enhanced geothermal system (EGS) demonstrates its robustness over the traditional least-square traveltime inversion. Comparison with location
result of the traditional method shows that we can effectively improve the accuracy of microseismic event location thanks to the improved velocity
model.

Introduction

Traditional methods for microseismic event location include least-square traveltime inversion (Aki and Richards, 1980), co- herence scanning (Drew
et al., 2005; Duncan Peter and Eisner, 2010), double-difference (Waldhauser and Ellsworth, 2000), etc. Due to the lack of information on velocity
models and limited spatial coverage of monitoring stations, microseismic

spacemethod of treating parameters as a joint probability density, it has been very successful in model parameter estimation and
uncertainty analysis.

We applied the Bayesian inference for simultaneous veloc- ity inversion and event location using multiple microseismic event
data. Maximum A Posteriori (MAP) estimation is used to solve for posterior probability density. The successful ap- plication of
the developed method on synthetic and real micro-  seismic  survey  demonstrates  its  effectiveness  in  simultaneous  velocity
inversion and event location.

Theory

The central idea of Bayesian inference is representing all the information (forward model, observation, and prior informa- tion)
with probability densities and then using inversion theory to infer the posterior probability density of the model parame- ters we
would like to know.

Inverse problem thoery
We  can denote the model parameters and observable parame- ters (data) of a physical system as m and d, respectively. The
inverse problem theory (Tarantola, 2005) gives the joint poste- rior probability density:

ρD  (  d  )  ρ  M  (  m  )  θ     (  d  |  m  )  
spacelocation uncertainty can be significant (Eisner et al., 2009;
Maxwell, 2009; Hayles et al., 2011; Warpinski et al., 2009).
spaceσ (d, m) = k
space

µ  (d)
, (1)

spaceAs such, it is crucial to obtain a quantitative understanding  of microseismic event location uncertainty before drawing any further conclusions
on microseismic data.

Velocity  information is usually obtained independently from microseismic data,  such as from sonic logs,  active source sur-  vey,  or subsurface
calibration/perforation shots.  However,  in a realistic survey,  it can be challenging to build even a one- dimensional model due to lacked or poor
quality of informa- tion. On the other hand, the seismic waveform carries informa-

spacewhere ρD(d) is the probability density in data space represent- ing the information given by a measurement, ρM(m) is the
prior information on model parameters, θ (d|m) is the condi-
tional probability density of data d given model parameters
m, and µD(d) is the homogeneous probability density in data space.

The marginal probability density of model parameters m is the integration of the joint probability density over the entire data
space D:
spacetion on earth structure.  Given the abundance of microseismic
events in a normal survey, they are a good source of informa- tion to calibrate or even construct a velocity model for micro-

spaceσM(m) =
D

spacedd σ (d, m). (2)
spaceseismic location (Douglas, 1967).

Various techniques have been developed to improve a veloc- ity model with arrival times (Zhang and Thurber, 2003; Zhang et al., 2009; Zhou et al., 
2010; Li et al., 2013). Though ef- fective to a certain extent, these methods do not follow a rig- orous statistical framework. This makes the 
determination of various parameters, such as weighting and regularization, very challenging (Monteiller et al., 2005). Bayesian inference is a widely 
used algorithm in subsurface inverse problems (Oliver et al., 2008; Tarantola and Valette, 1982; Tarantola, 2005; Zhang et al., 2014). It provides a 
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good solution to earthquake loca- tion (Monteiller et al., 2005; Myers et al., 2007, 2009) and mi- croseismic event location problems (Poliannikov et 
al., 2014; Templeton et al., 2014; Zhang et al., 2015a,b). Thanks to its
spaceIf the model and data space of the system are both linear, under
Gaussian assumption, the posterior probability density of the model parameters can be expressed by

σM(m) = c exp[−O(m)], (3)

and

O(m) = 
1 

[g(m) − d ]TC−1[g(m) − d ]

2 obs D obs

+ 
1 

(m − m )TC−1(m − m ) (4)

2 prior M prior ,

where g(·) is the forward modeler for the prediction of observ-  able parameters from model parameters m. mprior  is the prior
information on the model parameters. The covariance matrix

spaceCD is the addition of observation uncertainty covariance ma- trix Cd  and theoretical uncertainty covariance matrix  CT.  CM is the covariance
matrix of the prior information uncertainty. c is a normalization constant. A derivation of equation 3 and equation 4 is presented by Tarantola (2005).

Maximum A Posteriori estimation
Both stochastic and deterministic approaches are considered in the literature for characterization of the resulting posterior probability density. Here,
we use the Maximum A Posteri- ori (MAP) estimation, which aims to estimate the mode of the posterior probability density:

mMAP = arg max σM(m). (5)
m

Or frequently minimizes equation 4. It provides incomplete, yet important characterization of the conditional parameter dis- tribution.

The above minimization can be implemented using the classi- cal Gauss-Newton method. Once the MAP estimate mMAP is found, the posterior
covariance matrix Cm,MAP can be approx- imated through linearization about the MAP estimate as

Cm,MAP =

CM − CMGT (GMAPCmGT + CD GMAPCM, (6)

spaceThe velocity model used for dataset construction is a multiple- layer model based on Matzel et al. (2014)’s interferometry
es- timation of the velocity model at Newberry EGS site (yellow line in Figure 1). P- and S-wave travel times are calculated for
each event station pair, and a Gaussian noise with standard deviation of 0.050 s is added as a representation of picking error. We
assume there is little prior information on microseis- mic event locations and velocity model parameters. A mul- tivariate normal
distribution with reasonable mean and suffi- ciently large standard deviation can approximate a null  proba- bility density for prior
information and initial model. The prior velocity model is represented by the red line in Figure 1.

The comparison between true microseismic locations and the estimated 50 % error ellipsoids is also shown in Figure 1. About half
of the true locations lie in the 50 % error ellipsoids. This verifies the effectiveness of both MAP estimation and uncer- tainty 
approximation. We can see from Figure 1 that the true velocity model can be successfully captured by simultaneous inversion 
using multiple microseismic data. The MAP esti- mated velocity model is much closer to the true one compared with the prior 
model.

The standard deviation of the misfits between observed and modeled arrival times is 0.049 s. This is very close to 0.050 s, which
is the Gaussian random noise standard deviation added to the true arrival times. This means the covariance matrix

spacewhere, G
space
MAP

spaceis the sensitivity matrix at the MAP point with
   ∂   g   
spaceCD is dominated by the observation error Cd. The theoretical uncertainty covariance matrix CT is very small compared with
spaceelements Gi j = spacei

∂ m j

spaceCd in this model. Therefore, it is reasonable to use a two-

spaceMultiple-event microseismic location implementation
We include the velocity model in the model space in addition to the origin coordinates and times of all microseismic events. The velocity model used
is a two-layer model with constant velocity gradient for each layer. The velocity model param- eters to be estimated include P-wave velocity at a
reference depth, P-wave velocity gradient for each of the two layers, the elevation of the two layers interface, and Vp/Vs. For the prior  information
on model parameters, we use a homogeneous probability density since the number of observable parameters is redundant compared with model
parameters. The measure- ment includes any available P- and/or S-wave arrival times for each event at each station. The forward model is for
calcula- tion of arrival time from microseismic event location to seis- mic station. The ray path between two points in a constant velocity  gradient
layer can be obtained analytically (Slawinski and Slawinski, 1999).  We  solve the two-layer problem semi- analytically by iterating for the ray
parameter that is common to the seismic rays in both layers.

MAP MAP

−

.
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Synthetic example

We begin with a synthetic model as shown in Figure 1. The dataset was constructed from 30 shallow borehole stations in three lines. The stations
spacing is 0.6 km in easting direc- tion and 2 km in northing direction. All the stations share a common elevation of 1.8 km. Microseismic events on
three horizontal planes at the elevations of -0.5 km, -1.0 km, and
-1.5 km were assumed. The areal coverage of the stations is approximately twelve times that of the microseismic events.
spacelayer model for the simultaneous inversion problem, and the theoretical uncertainty covariance matrix CT can be ignored in
this case.

Microseismic survey in Newberry EGS demonstration

We applied the developed simultaneous inversion algorithm on a microseismic data set from Newberry EGS demonstra- tion site.
Fluid injection for the hydroshearing purpose has induced microseismic events in this area. These event loca- tions have been
estimated by a contractor with P- and S-wave arrival times. With the same arrival time picking information, we relocated the
microseismic events with our developed al- gorithm.

Newberry EGS demonstration
The EGS system under study is located at the Newberry vol- cano in central Oregon. According to the plan (Petty et al., 2013;
Osborn et al., 2010, 2011), an existing well, NGC 55-29,  was  stimulated  with  hydroshearing  technique  due  to  the  high
temperature and lack of permeability of the nearby formation. The well NGC 55-29 has a total depth of 3066 m with an open hole
from 1790 m to its total depth. In contrast to the well- known hydraulic fracturing, the hydroshearing technique used in this
demonstration stimulated the formation below its min- imum principle stress. The stimulation induced shear failures of pre-
existing natural fractures in the target formation. The process was monitored with seismometers both on the  surface as well as in
shallow boreholes.

Microseismic survey

spaceThe survey was conducted with fifteen seismic stations, which include seven seismometers placed on the surface and eight placed in shallow
boreholes as shown in Figure 2. A permitting issue leads to the poor azimuthal coverage of shallow bore- hole stations. Surface stations provide
complimentary cover- age. The eight shallow monitoring holes were drilled to depths between 213 and 246 m. The primary objective is to reach be-
low the water table and highly attenuating cinders and debris flows (Cladouhos et al., 2013). The stimulation of NGC 55-29 began on October 17,
2012 and concluded December 7, 2012. The first microseismic event occurred on October 29, 2012. A total of 204 events with reasonably high S/N
were recorded until December 31, 2012.

To process the microseismic dataset, a contractor has picked P- and/or S-wave arrival times for all event-station pairs when- ever possible. They also
derived the 1D velocity model by con- ducting dedicated active source seismic survey (red line in Fig- ure 3). With the obtained velocity model, they
located the mi- croseismic events by minimizing the misfit between observed and modeled P- and/or S-wave arrival times. Figure 3 also shows the
velocity model constructed by Matzel et al. (2014) with interferometry.

Figure 2: Map of surface stations and shallow borehole sta- tions for microseismic monitoring. Surface stations provide complimentary coverage to
the shallow borehole stations.

Results and Discussion
Figure 3 shows our location result along with the result pro- cessed by the contractor. Both of the two results show two event clusters: the shallow
events above 0 km elevation, and the deep events near the open hole portion of the well. The tar- get zone of the stimulaton is the formation at the
depth of the open hole. However, we see much more microseismic events in the shallow area. Borehole television survey found it is a result of a
fluid loss from a cracked casing. Even though these two results share a similar microseismic distribution pattern, we find the microseismic event
locations provided by con-  tractor  (orange dots)  are  much more scattered than those esti-  mated by our  method (blue dots).  The contractor’s
traditional method even located some events above the surface (elevation
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spaceof 1.77 km). In addition, microseismic events estimated by our method are mostly confined within or below the unit of
mixed tuffs, rhyolites, and andesites which may act as a barrier to hydraulic fractures.

The right side of Figure 3 is the plot of the velocity models used by the contractor, estimated by our simultaneous inver- sion
using microseismic arrival times, and obtained with seis- mic interferometry by Matzel et al. (2014). From the compar- ison, we
find the velocity model estimated with our method matches the result of seismic interferometry very well. How- ever, the velocity
model used by the contractor is higher than these two results at the elevation interval between 0.5 km and
1.5 km. This is the reason for the unrealistic high elevation events estimated by the contractor.

Conclusions

We  built the framework for simultaneous inversion of multiple microseismic data for event locations and velocity model pa-
rameters with Bayesian inference. MAP estimation gives an efficient and reasonable approximation to the posterior prob- ability
distribution. Additionally, Bayesian inference enables the uncertainty to be quantified. The application of the devel- oped location
algorithm on  both  synthetic  example  and New- berry EGS data  successfully  estimated  microseismic event  lo-  cations  and
improved the velocity model. The Newberry mi- croseismic location result of the developed method is more consistent with
geology information compared with that from the contractor.
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space

Figure 1: Synthetic example. The comparison between the true locations and estimated ones verifies the effectiveness of both
MAP estimation and uncertainty approximation (left). The estimated two-layer velocity model can capture the trend of the true
multiple-layer model very well (right).
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Figure 3: Comparison between our simultaneous location result and that provided by the contractor. The simultaneous location
result is more clustered than the contractor’s result. It is well confined below the units interface at the elevation around 1.0 km.
The simultaneously inverted velocity model is very close to that obtained by seismic interferometry compared with the
contractor’s model.
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