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ABSTRACT OF THE DISSERTATION

Local Causal Structure Learning

with the Coordinated Multi-Neighborhood Learning Algorithm

by

Stephen Vincent Smith

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2023

Professor Qing Zhou, Chair

Learning the structure of causal directed acyclic graphs is useful in many areas of machine

learning and artificial intelligence, with applications in fields such as robotics, economics, and

genomics. However, in the high-dimensional setting, it is challenging to obtain good empirical

and theoretical results without strong and often restrictive assumptions. Additionally, it

is questionable whether all of the variables purported to be included in the network are

appropriate. It is of interest then to restrict consideration to a subset of the variables for

relevant and reliable inferences. In fact, researchers in various disciplines can usually select

a set of target nodes in the network for causal discovery. This dissertation develops a new

constraint-based method for estimating the local structure around user-specified target nodes,

employing rules from the Fast Causal Inference algorithm to coordinate structure learning

between neighborhoods. Our method facilitates causal discovery without learning the entire

DAG structure. We establish consistency results for our algorithm with respect to the local

neighborhood structure of the target nodes in the true CPDAG. Empirical experimental results

show that our algorithm is more accurate in learning the neighborhood structures with much
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less computational cost than standard methods that estimate the entire DAG. An R package

implementing our algorithm may be accessed at http://github.com/stephenvsmith/CML.
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CHAPTER 1

Introduction

1.1 Preliminaries

In this chapter, we will consider some of the definitions and algorithms integral to coordinated

multi-neighborhood learning. Though the methods we discuss here are global in scope, the

principles contained therein are broadly applicable, including for the local setting. We will

also explore why these methods are insufficient or improperly posed for problems relevant to

researchers where a local approach is preferable. Specifically, this chapter will focus on the PC

and FCI algorithms, since they provide constraint-based approaches for skeleton recovery and

sound orientation rules under different sets of assumptions, such as the presence or absence

of latent nodes from the underlying network, which is relevant to the multi-neighborhood

setting where many nodes are intentionally removed from consideration.

1.1.1 Definitions

A graph G = (V,E) consists of a set of nodes, or vertices, V = {V1, . . . , Vp} and a set of edges

E ⊆ V × V with ordered pairs of distinct nodes. The nodes in the graph correspond to the

elements of a vector of random variables X = (X1, X2, . . . , Xp), and for convenience we also

write the set of nodes as V = [p], where [p] := {1, . . . , p}. Given a subset of nodes N ⊂ V ,

the induced subgraph of G over N is defined as GN = (N,EN ), where EN ⊆ E only contains

edges between nodes in N . For i, j ∈ V , if (i, j), (j, i) ∈ E, then i− j is an undirected edge

in G. A directed edge i → j is in G if (i, j) ∈ E but (j, i) /∈ E. If (i, j) ∈ E or (j, i) ∈ E,

1



then i and j are adjacent in G.

A path in G is a sequence of nodes π = ⟨V1, V2, . . . , Vq⟩ such that, for 1 ≤ i ≤ q − 1, Vi

and Vi+1 are adjacent. If each edge is oriented as Vi → Vi+1 on π, then this is called a directed

path from V1 to Vq. If there exists a directed path from Vi to Vj as well as a directed path

from Vj to Vi in G, then G contains a cycle.

A Directed Acyclic Graph (DAG) is a graph where all edges are directed and there are no

cycles. If there is a directed edge i→ j in graph G, then i is a parent of j and j is a child

of i. The parent set of node i is denoted paG(i), and the child set is denoted chG(i). The

adjacency set of i in G is the set of all nodes directly connected to i by an edge in G, and is

denoted adjG(i). A v-structure in a graph is an ordered triple of nodes (i, j, k) such that G

contains the directed edges i→ k and j → k, where i and j are not adjacent. A spouse of i

in G is a non-adjacent node which shares at least one child with i. The set of spouses of i in

G is denoted spG(i). If G contains the v-structure (i, j, k), then i ∈ spG(j) and j ∈ spG(i).

Given a DAG G, the causal relations among X are modeled via a structural equation

model (SEM),

Xi = fi(XpaG(i), εi), i = 1, . . . , p, (1.1)

where fi are deterministic functions, XpaG(i) are subvectors of X containing only the variables

corresponding to the nodes belonging to the parent set, and εi are independent background

variables. This implies that the joint distribution P (X) is Markov with respect to G, meaning

the probability distribution admits the factorization

P (X1, . . . , Xp) =
∏
i∈V

P (Xi | XpaG(i)), (1.2)

according to G, since each node is conditionally independent of its nondescendants given its

parents (Pearl, 2009). We say two variables X and Y are conditionally independent given Z,

if and only if P (X = x, Y = y | Z = z) = P (X = x | Z = z)P (Y = y | Z = z) for all values

x, y, z such that P (Z = z) > 0, where | represents conditioning. Following Dawid (1979), for

non-adjacent nodes i, j and set of nodes S, we denote conditional independence (CI) between
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their associated variables by Xi ⊥⊥ Xj | XS. Here, S is a separating set of nodes i and j in G,

which may be identified using the d-separation graphical criterion for reading probabilistic

CI relations from the graph.

Definition 1 (d-separation). A path π is said to be d-separated by a set of nodes S ⊂ V if

and only if

1. π contains a sequence i→ k → j or i← k → j such that k ∈ S, or

2. π contains a collider i→ k ← j such that k /∈ S and there exists no node m ∈ S such

that there is a directed path from k to m (i.e., no descendant of k is in S).

A set S ⊂ V d-separates A,B ⊂ V , A ∩ B = ∅, if and only if S blocks every path from a

node in A to a node in B (Spirtes et al., 2000; Pearl, 2009).

Along with the Markov conditions governing the relationship between the graph and the

probability distribution, many methods in the literature require an additional faithfulness

assumption to prove that their algorithms are sound and complete, since this ensures a tighter

relationship between the probability distribution and the structural features of the graph

(Pellet and Elisseeff, 2008).

Definition 2 (Faithfulness). A probability distribution P is said to be faithful to a DAG G

if, for any i, j ∈ V with i ̸= j and any set S ⊆ V \ {i, j},

Xi ⊥⊥ Xj | XS ⇐⇒ i and j are d-separated by S in G.

That is, P is faithful with respect to G when there is a one-to-one correspondence between

the CI relations of the distribution P and the d-separations in G (Kalisch and Bühlmann,

2007). Some refer to such a graph G as a perfect map of P (Pellet and Elisseeff, 2008).

The skeleton of a DAG, denoted skel(G) = (Vskel(G), Eskel(G)), removes all directionality

from the graph such that if (i, j) ∈ E, then (i, j), (j, i) ∈ Eskel(G). According to the pairwise
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Markov condition, non-adjacencies in a graph reveal CI relations between pairs of variables

conditioned on some subset of the remaining nodes. It is for this reason that the skeleton of

a DAG is an important object for structure recovery, though in practice this often is only

a first step before edge orientation. A partially directed acyclic graph (PDAG) is a graph

where some edges are directed and some are undirected, and no cycle may be traced following

the directed edges and either direction of the undirected edges.

For any probability distribution P , there is an equivalence class of DAGs such that P is

faithful with respect to each member of the class. Two DAGs are equivalent if and only if

they have the same skeleton and v-structures (Verma and Pearl, 1990; Kalisch and Bühlmann,

2007). On this basis, we can characterize a set of graphs which are equivalent to the DAG

by identifying adjacency sets for each node and the graph’s v-structures, along with any

other edges compelled by the acyclic constraint or to avoid adding any new v-structures.

Furthermore, the equivalence class may be uniquely represented by a completed PDAG

(CPDAG). In the literature, PDAGs are also called patterns (Spirtes et al., 2000), and

CPDAGs may also be called maximally oriented graphs (Meek, 1995) or essential graphs

(Andersson et al., 1997).

Definition 3 (CPDAG). A PDAG is complete and represents an equivalence class of DAGs

if

1. every directed edge in the CPDAG exists in every DAG belonging to the equivalence

class, and

2. for every undirected edge i− j in the CPDAG, there exists a DAG with i→ j and a

DAG with i← j in the equivalence class.

The features of the CPDAG encode the features commonly held by all members of a DAG

equivalence class.
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1.2 DAG structure learning

With respect to causal inference, the gold standard is learning with randomized and controlled

experimental data. However, there are numerous types of constraints—financial, ethical,

etc.—which render these data infeasible to obtain. Though more difficult, learning with

observational data is more common and largely free from the aforementioned constraints.

One paradigm of causal inference with observational data makes use of graphical models

as fundamental objects of learning, exploiting their facility for effectively representing the

probabilistic information of high-dimensional datasets and the graph theoretic tools which

may be applied to them for efficient inferential procedures.

With relatively easier access to observational data, the challenge of DAG structure learning

for causal inference comes from the size of the DAG space. The number of possible DAGs

scales super-exponentially with the dimension of the data, thus making DAG learning an

NP-hard problem (Chickering et al., 2004, 2012). Consequently, the initial task of structure

learning is to find a way to constrain or efficiently navigate the DAG space toward an

optimal solution. There are generally three approaches to accomplish this: score-based,

constraint-based, and hybrid learning.

Score-based algorithms use some measurable criterion to efficiently search the space of

DAGs for an optimal solution. Unlike constraint-based algorithms, which tend to propagate

their errors through the rest of the graph, score-based methods are more resilient to such

mistakes because they usually are contained to the local structure where they are made

(Bernstein et al., 2019). For a scoring measure to be useful for a search, it is critical that it gives

the same score to all networks which are equivalent. That is, since some network structures

represent the same set of distributions and are indistinguishable with respect to observational

data, a proper score should also refrain from distinguishing these structures (Chickering, 2002).

Many score-based methods are implemented in R, such as the methods in the sparsebn

package (Aragam et al., 2019), which use a regularized maximum likelihood estimate for
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applications with high-dimensional datasets. The ℓ1 penalty ensures a parsimonious solution

and computer tractability using coordinate descent algorithms for both continuous and

discrete data (Fu and Zhou, 2013; Aragam and Zhou, 2015; Gu et al., 2019).

For discrete data, some early attempts at the score-based approach include those of

Bouckaert (1993), who used minimum description length, and Chickering and Heckerman

(1997), who used BIC as their measure. However, due to the large size of the search space,

these scores are inefficient for high-dimensional graphs, especially because these measures do

not allow the use of gradient-based optimization procedures. Ensuing attempts sought to

correct this by using an augmented Lagrangian formulation for the score, relaxing the discrete

constraint to allow for continuous optimization. One such example may be found in the work

of Ng et al. (2019), where the algorithm uses a penalized MSE as the score. These algorithms,

however, are very computationally expensive and require significant storage overhead.

A critical advance came with the introduction of operators which can be scored locally. For

these scores, any change in a DAG’s score from a single alteration to the graphical structure

can be computed by the change in score for a subset of nodes local to where the change

took place, thus allowing for a faster greedy search (Chickering, 2002). These algorithms

traverse the DAG space with single edge alterations, using well-defined rules for retaining or

modifying the graph structure according to the changes in score.

The challenge with score-based algorithms is that the structure can, in a single iteration,

change such that established results from a previous state of the DAG can be reversed if

a DAG with a higher score is found later, which raises concerns about the robustness of

these methods. Moreover, in the case of missing variables, it is unclear how a search should

be structured or what kind of score could be used to determine the relative fitness of one

graphical structure compared to another.

On the other hand, constraint-based algorithms such as the PC algorithm (named after

its authors, Peter Spirtes and Clark Glymour) attempt to efficiently organize CI inferences

from data to search for structures consistent with that information (Spirtes et al., 2000). The
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CI results serve as constraints on the space of DAGs considered for the estimated equivalence

class, and the algorithm uses these constraints along with graphical techniques to recover as

much of the CPDAG as possible. Other constraint-based algorithms include the IC (Verma

and Pearl, 1990), the FCI (Spirtes et al., 2000), and the graphical lasso (Friedman et al.,

2007).

Hybrid methods include the Max-Min Hill-Climbing (MMHC) algorithm, which applies a

constraint-based procedure for local learning followed by a score-based hill-climbing procedure

for combining the local neighborhoods to recover the global structure (Tsamardinos et al.,

2006). Another method, Greedy Fast Causal Inference (GFCI), combines score-based solutions

with principles from the FCI algorithm to retain asymptotic guarantees of correctness even

while relaxing some of the restrictive assumptions usually made by score-based methods

(Ogarrio et al., 2016).

Due to their relevance to the Coordinated Multi-Neighborhood Learning algorithm, we

will discuss the PC and FCI algorithms in greater detail.

1.3 PC algorithm

Even with an infinite amount of observational data, we are unable to identify the entire

causal structure of a DAG through an inferential procedure since the CI information of the

distribution encoded in the correlation pattern of the observational data is compatible with

multiple DAGs. That is, the causal structure is underdetermined. The equivalence class

represents the upper limit of what can be recovered from a structure learning algorithm using

sample data, and thus the CPDAG serves as the objective of structure learning for problems

under standard assumptions. The PC algorithm is a constraint-based algorithm which

employs an efficient method to iteratively remove edges from a complete, undirected graph

using separating sets of increasing cardinality to obtain the graph skeleton, then identifying

v-structures and using Meek’s rules, illustrated in Figure 1.1, to complete the orientation
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Figure 1.1: Illustration of Meek’s rules. The dashed line in Rule 4 can be any kind of edge.

of the PDAG (Meek, 1995). In the population version, the algorithm returns the CPDAG,

and as such is a sound and complete method for DAG structure learning. The algorithm

uses inferential reasoning only in the recovery of the skeleton before using deterministic rules

for orienting the remaining edges. The skeleton recovery algorithm pseudocode is given by

Algorithm 1. For the population version of the algorithm, we use a CI oracle in Line 8,

but for the sample version we replace the CI oracle with an appropriately chosen CI test,

such as testing on Fisher’s z-transformation of the partial correlation for Gaussian data.

The separating sets for conditionally independent variables are stored in Line 9 in order to

identify v-structures during edge orientation. The edge orientation procedure is described in

Algorithm 2, beginning with v-structure identification and followed by recursive application

of Meek’s rules to compel the remaining edges which characterize the equivalence class.

Due to its efficiency in ordering CI tests and its positive theoretical results, the PC

algorithm is often used as a benchmark, especially for constraint-based algorithms. However,

the PC algorithm runs in exponential time complexity in the worst case, and in practical

settings it usually cannot handle more than a hundred variables well (Spirtes et al., 2000). Still,

despite these disadvantages, it is a popular algorithm and widely used in the high-dimensional

sparse setting due to its positive theoretical guarantees such as uniform consistency where the

network size is able to grow quickly relative to the number of sample observations (Kalisch

and Bühlmann, 2007).
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Algorithm 1 Population PC skeleton recovery
1: Input: vertex set V , CI oracle

2: Form a complete undirected graph C = (V,EC)

3: ℓ = 0

4: while ∃ at least one pair of adjacent nodes (i, j) with |adjC(i) \ {j}| ≥ ℓ do

5: for each adjacent pair of nodes (i, j) s.t. |adjC(i) \ {j}| ≥ ℓ do

6: while (i, j), (j, i) ∈ EC and there remains a potential separating set of size ℓ do

7: Choose new set k ⊆ adjC(i) \ {j} with |k| = ℓ

8: if Xi ⊥⊥ Xj | Xk then

9: Delete edge i− j from C; Save k in Sij, Sji

10: end if

11: end while

12: end for

13: ℓ = ℓ+ 1

14: end while

15: Output: estimated skeleton C and separation sets S

Algorithm 2 PC algorithm edge orientation
1: Input: undirected graph C, separation sets S

2: for pairs of nonadjacent nodes (i, j) with common neighbor k do

3: if k /∈ Sij then

4: Replace i− k − j in C with i→ k ← j

5: end if

6: end for

7: Use Meek’s Rules (see Figure 1.1) for further edge orientation

8: Output: CPDAG C
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1.3.1 Theoretical results

The PC algorithm is asymptotically consistent for the skeleton of sparse DAGs even in the

case where p ≫ n, where n is the number of observations in the sample dataset. This is

demonstrated in (Kalisch and Bühlmann, 2007) under the following assumptions.

Assumption 4 (PC consistency assumptions).

(A0) The data X1, . . . ,Xn ∈ Rpn are i.i.d. random vectors from distribution Pn, where

dimension pn is allowed to grow with the sample size.

(A1) Pn is multivariate Gaussian and faithful to Gn for all n.

(A2) The dimension pn = O(na) for some 0 ≤ a <∞.

(A3) The maximal number of neighbors in Gn is denoted qn = max1≤i≤pn |adjG(i)|, with

qn = O(n1−b) for some 0 < b ≤ 1.

(A4) For the partial correlations between Xi and Xj given Xk for some set k ⊆ [pn] \ {i, j},

denoted ρi,j|k, the absolute values have upper and lower bounds

inf
i,j,k
{|ρi,j|k| : ρi,j|k ̸= 0} ≥ cn,

sup
i,j,k
|ρi,j|k| ≤M < 1,

where c−1
n = O(nd) for some 0 < d < b/2 and 0 < b ≤ 1 as in (A3).

Assumption (A1) is a standard assumption constraining the class of probability distri-

butions we consider, while (A2) allows for high-dimensionality at a polynomial growth rate

with respect to the sample size. Assumption (A3) is a sparseness assumption and (A4) is a

regularity condition.

Recall that all inference is completed during the recovery of Gskel. If there are no errors

from the CI tests, then edge orientation will never fail (Meek, 1995). This is stronger than

saying the skeleton must be correct, because the proper orientation of the v-structures depends
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on correctly identifying separating sets for non-adjacent nodes. Using the assumptions given

above, Kalisch and Bühlmann (2007) prove skeleton estimation consistency. Since Meek’s

rules are sound and complete, we obtain asymptotic consistency for the CPDAG as well. The

sparsity assumption is crucial for statistical consistency and for computational feasability,

where the latter may be demonstrated by considering the number of potential separating sets

which could be considered in Line 6 of Algorithm 1.

1.3.2 Variations

There are numerous alterations to the PC algorithm attempting to address its shortcomings

or to make it suitable for different problems. Colombo and Maathuis (2014) pay special

attention to removing the order-dependence of the PC algorithm, or the consequence of the

structuring of the CI tests which makes the output of the algorithm depend on the order in

which the variables are considered. In the high-dimensional setting, this can lead to highly

variable results and additionally uncertain conclusions when using sample data. The PC

algorithm skeleton estimation procedure and the concomitant identification of separating sets

depend on the order in which node pairs are considered for CI tests. Because the candidate

nodes for a potential separating set are selected from the superset of the output’s skeleton at

each step of the algorithm (see Line 7 of Algorithm 1), which is dynamically altered by CI

results, earlier CI tests will affect subsequent tests and the potential separating sets used

for those tests. As a result, the authors propose the PC-stable algorithm, which retains

adjacency relations longer than in the original version after edges have been removed, thus

alleviating the issue of order-dependence. For potential v-structures, there are supplementary

rules taken from the conservative PC algorithm in the work of Ramsey et al. (2006) designed

to handle potential orientations while maintaining order-independence. The authors show

that this algorithm is sound and complete, and the consistency results from the work of

Kalisch and Bühlmann (2007) continue to apply.

In the work of Sondhi and Shojaie (2019), the reduced PC (rPC) algorithm is designed
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for biological systems with low average degree for most nodes, but with very high degree for

certain hub nodes. Additionally, to reduce the number of CI tests, Cai et al. (2022) proposed

the Pre-Processing Plus PC (P3PC) algorithm, which as its name suggests adds an initial

pre-processing step using large conditioning sets selected at random to remove some of the

edges from the original complete graph. Ha et al. (2016) introduced the PenPC algorithm for

estimating the skeleton in a two-step procedure, first by using an adapted Markov blanket

estimation method for each node followed by a modified PC-stable algorithm to remove

false positive edges. Also, Spirtes et al. (2000) proposed a modified PC algorithm for the

case where latent variables are present, which served as a prototype for the FCI algorithm.

Related to Markov blanket estimation, there is a variation of the IAMB algorithm including

a PC step after the initial growth phase to remove false positives with greater efficiency

(Tsamardinos et al., 2003b). Recently, Huang and Zhou (2022) introduced the partitioned PC

(pPC) algorithm, which improves the PC algorithm by using a p-value threshold to mitigate

issues related to multiple testing and by providing additional capacity for parallel processing.

Especially relevant to our discussion is a slight variation of the PC algorithm which places

a stopping condition on the size of potential separating sets. While Algorithm 1 will continue

until the size of ℓ exceeds the maximum size of any adjacency set in the estimated graph,

this “anytime” version of the PC algorithm will stop once ℓ reaches a specified value, usually

denoted m or ℓmax. Though this version is useful primarily for theoretical analysis, it also

appears in practical implementation as well.

1.4 Ancestral graphs

In many cases, we cannot expect to be able to measure every variable in the true DAG, nor

can we expect our dataset to be free from selection bias. In Spirtes et al. (2000), the authors

show that even correct causal inference algorithms fail when the observational data samples

are selected due to some of the variables under study. Cooper (1995) provided a similar result
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which shows that analogous errors occur when the DAG under consideration includes latent

or unmeasured variables. In this setting, the correlation structure among observed nodes can

be misleading due to latent confounders, leading to an observed association that is incorrect

(Spirtes et al., 2000). Consequently, structure learning methods confronting the assumption

of latent and selection variables must account for these challenges by remaining judicious in

their inferential reasoning and by using more flexible graphical structures to encode causal

relations.

A mixed graph G can possess three kinds of edges: directed (→), bi-directed (↔), and

undirected (−), and at most one edge between each pair of nodes. The two kinds of ends of

an edge, arrowheads (>) and tails (both ends of an undirected edge), are called marks or

orientations. An edge is into (out of) a node if the edge mark at the node is an arrowhead (a

tail).

We call i an ancestor of j and j a descendant of i if i = j or there is a directed path from

i to j. The set of ancestors of j in mixed graph G is denoted anG(j). If for any pair of nodes

i and j in G, i→ j and j ∈ anG(i), then we can say there is a directed cycle in G. Similarly,

if i↔ j and j ∈ anG(i), then we can say there is an almost directed cycle in G. A node i is a

collider on path π if two edges incident to i on π are both into i.

Ancestral graphs are a class of mixed graphs which can be used to encode certain causal

and CI features of a distribution.

Definition 5 (Ancestral graph). A mixed graph is ancestral if

1. there is no directed cycle;

2. there is no almost directed cycle;

3. for any undirected edge i− j, i and j have no parents or spouses.

Just as with DAGs, ancestral graphs can carry CI information from P which may be read

using a graphical criterion. With respect to causal representation, however, the interpretations
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of the markings for a causal ancestral graph differ from those of causal DAG markings. Edge

i→ j in G implies that i is a cause of j or a selection variable, but in this setting we refer

to a cause i of node j as corresponding to a directed path from i to j in the underlying

causal structure, which may include latent variables not present in the ancestral graph. The

same edge i → j also implies j /∈ anG(i), which simply means j is not a cause of i or of a

selection variable. Nodes i and j are siblings if i↔ j, which implies that neither variable is

the cause of the other or of a selection variable. The previous assertions considered together

demonstrate that arrowheads provide negative qualitative causal information, since they

imply the node into which the arrowhead directs does not cause the adjacent node. Assuming

the maximality of the ancestral graph, a bidirected edge also implies that the adjacent nodes

share a latent common cause, also known as a latent confounder. Undirected edges in the

causal ancestral graph point to the effect of selection bias on the adjacent nodes. More

precisely, an undirected edge implies that both of the nodes are either causes of the other or

of some selection variable. Due to the acyclicity constraint of the underlying DAG, this is

equivalent to saying that each node is the cause of some selection variable (Zhang, 2008a).

Taken together, these statements allow us to conclude that tails provide positive qualitative

causal information since they establish a causal relationship from the node which the edge is

out of to the adjacent node. In the case where selection bias is absent, the causal conclusions

are more straightforward since we may remove the further interpretive condition related to

selection variables for the aforementioned types of edges in an ancestral graph. Indeed, it is

this restraint and nuance in interpretation which makes ancestral graphs particularly useful,

since we cannot be too ambitious in causal and probabilistic reasoning when a graph contains

latent and selection variables.

We may further clarify the relationship between CI information in P and the struc-

ture of the ancestral graph by defining m-separation, the graphical criterion governing CI

interpretations of ancestral graphs.

Definition 6 (m-separation). In a mixed graph, a path π between nodes i and j is m-
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connecting given a set of nodes S if

1. every non-collider on π is a not a member of S, and

2. every collider on π has a descendant in S.

If there is no m-connecting path between i and j given S, then i and j are m-separated by S.

Similar to d-separation for DAGs, m-separation in a mixed graph implies CI among

observed variables via the global Markov property (Richardson and Spirtes, 2002). This

allows us to conceptually integrate CI information from the distribution and the structural

features of the ancestral graph. Under faithfulness, we can use CI information to constrain the

space of ancestral graphs for structure learning and set edge orientations according to sound

rules to obtain an equivalence structure, which is what we recover from the FCI algorithm.

However, it is important to note that ancestral graphs, unlike DAGs, may have pairs of

non-adjacent nodes which are not m-separated by any of the observed nodes, thus breaking

the pairwise Markov property.

Definition 7 (Inducing paths). A path is said to be inducing relative to set S if every node

not in S (excluding the endpoints) is a collider on the path and every collider is an ancestor

of a path endpoint. If S is empty, we simply call it an inducing path.

The lack of causal sufficiency and the presence of inducing paths for non-adjacent nodes

in ancestral graphs calls for the notion of maximality to further specify the graphical object

of interest for structure learning.

Definition 8 (Maximal ancestral graph). An ancestral graph is said to be maximal if

there is no inducing path between any two non-adjacent nodes. Accordingly, every pair of

non-adjacent nodes in a maximal ancestral graph (MAG) is m-separated by some subset of

nodes.
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It may be shown that, using a finite number of steps, any ancestral graph may be converted

to a structure where the pairwise Markov property holds, and such a structure is a MAG.

Similar to DAGs, multiple MAGs may encode the same set of m-separations and form an

equivalence class, which is represented by a partial ancestral graph (PAG). A PAG has

three possible kinds of marks, adding the circle (◦) along with the tail and the arrowhead.

Each circle mark corresponds to a variant mark and each non-circle mark is invariant in the

equivalence class of an MAG (Zhang, 2008b).

The PAG can contain valuable information about the causal relationships and the CI

relations of the marginal distribution over the observed variables (Spirtes et al., 2000). In

order for a PAG P to represent the equivalence class of the MAG G, P must have the same

set of adjacencies as each member of the equivalence class, and every non-circle mark in P

must correspond to an invariant mark common to every MAG in the equivalence class. Such

a PAG is called the maximally informative PAG for the equivalence class of G. This structure

corresponds to the CPDAG with respect to DAG structure recovery, and serves as the object

of interest for structure learning under the assumption of latent and selection variables in the

underlying causal graph. In the literature, some use a similar but less informative object of

interest referred to as the partially oriented inducing path graph (POIPG) (Spirtes et al.,

2000; Zhang, 2008b).

1.5 FCI algorithm

The Fast Causal Inference (FCI) algorithm is a constraint-based algorithm designed for causal

discovery in the presence of latent and selection variables (Spirtes et al., 2000). The algorithm

was designed according to the sufficient conditions for sound causal paths in the presence of

latent and selection variables (Spirtes et al., 1995). By convention, we partition the nodes of

the true DAG as V = O ∪ L ∪ S, where O is the set of observed variables, L is the set of

latent variables, and S is the set of selection variables. It is similar to the PC algorithm in
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that it consists of skeleton learning using CI tests followed by edge orientation using a set of

deterministic rules. The FCI algorithm modifies the PC algorithm to account for removing

the causal sufficiency assumption. In fact, it was originally conceived as an improvement to

the modified PC algorithm, since the structure of its tests are better suited to the richer

syntax of ancestral graphs (Spirtes et al., 2000).

The FCI algorithm is efficient in how it organizes CI information to avoid repetitive testing,

beginning with the same hierarchical testing strategy as found in Algorithm 1. Similar to the

PC, the FCI algorithm begins with a complete graph and iteratively removes edges based on

CI tests conditioned on potential separating sets of increasing cardinality. However, unlike the

PC, the graph produced by this step is only a preliminary skeleton, a superset of the skeleton

for the PAG we are recovering (Chen et al., 2023). This is due to the potential for latent

variables which, unobserved, do not separate pairs of nodes which should be non-adjacent

given the structure of the underlying causal graph. This is a critical difference between the

two algorithms, because the PC is able to reduce the number of required CI tests since,

for any pair of non-adjacent nodes i and j in G, they will be separated by either paG(i) or

paG(j). In the case of the FCI algorithm, however, we cannot guarantee paG(i) ⊆ O \ {i} or

paG(j) ⊆ O \ {j}.

To supplement the algorithm and ensure that it is sound in skeleton recovery, the authors

provided an additional step after v-structure orientation. For any pair of adjacent nodes i

and j, the d-separation set d-Sep(i, j) contains any node k belonging to a path between i

and j on which every node except the endpoints is a collider and is an ancestor of either i

or j. For each pair of nodes which are adjacent at this stage, the algorithm will search for

the d-separation set. That is, the algorithm searches for nodes belonging to inducing paths

between pairs of adjacent nodes, because a subset of this set will be sufficient to remove any

remaining edges which are incorrect. However, since we have incomplete edge orientation

at this stage of the algorithm, we relax the condition for inducing paths and consider only

a necessary condition for membership in the d-separation sets, using this criterion to form
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Algorithm 3 Population FCI
1: Input: observed vertex set O, CI oracle

2: Form a complete undirected graph C = (O,EC)

3: ℓ = 0

4: while ∃ at least one pair of adjacent nodes (i, j) with |adjC(i) \ {j}| ≥ ℓ do

5: for each adjacent pair of nodes (i, j) s.t. |adjC(i) \ {j}| ≥ ℓ do

6: while (i, j), (j, i) ∈ EC and there remain potential separating sets of size ℓ do

7: Choose new set k ⊆ adjC(i) \ {j} with |k| = ℓ

8: if Xi ⊥⊥ Xj | Xk then

9: Delete edge between i and j from C; Save k in Sij, Sji

10: end if

11: end while

12: end for

13: ℓ = ℓ+ 1

14: end while

15: Set each undirected edge i− j as i j and denote the new graph by P

16: Find v-structures using the same procedure as lines 2 to 6 of Algorithm 2

17: for every i j in P do

18: If there exists k ⊆ p-d-SepP(i, j) or k ⊆ p-d-SepP(j, i) such that Xi ⊥⊥ Xj | Xk, then

remove i j from P and store k in Sij, Sji

19: end for

20: Repeatedly apply R1-R10 until none apply

21: Output: estimated PAG P and separation sets S

supersets of the d-separation sets called the possible d-separation (p-d-Sep) sets over which

to search for remaining separating sets (Spirtes et al., 2000).

After the skeleton recovery procedure and v-structure orientation (R0), the first three

rules of the FCI’s edge orientation procedure (R1-R3) are essentially the same as Meek’s first
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three rules. The rule R4 is unique to MAGs with bi-directed edges. This set of rules (R0-R4)

was originally published with the algorithm and renders the method sound, but not complete.

That is, the rules could not, in principle, identify all non-variant marks in the equivalence

class of the MAG, which represents all causal information that is not underdetermined for the

observed variables. The rules are, however, arrowhead complete. Zhang (2008a) augmented

the rule set with R5-R10, which are necessary to pick up all of the invariant tails such that

the rule set is complete. Consequently, the output of the algorithm with a CI oracle (i.e.,

the population version) is the PAG representing the equivalence class of the true MAG. It is

worthy of note that R5-R7 are only relevant where selection variables are present, and may

be safely ignored in the case where selection variables are absent, which is the case for the

multi-neighborhood work presented in Chapter 3.

1.5.1 Theoretical results

In high-dimensional settings, the FCI algorithm is consistent but computationally expensive

(Colombo et al., 2012). In the worst case, the algorithm runs in exponential time in the

number of variables, even when the maximum number of adjacent nodes is held fixed (Spirtes

et al., 2000). Of particular note is the second stage of skeleton recovery, since the p-d-Sep sets

can be very large, requiring extensive searches for potential separating sets (Chen et al., 2023).

Moreover, the output is generally less informative when selection bias is present due to the

addition of undirected edges in the output (Spirtes et al., 1995). Assuming the reliability of

CI testing, the causal Markov condition, and causal faithfulness, the FCI algorithm is sound

with respect to the MAG equivalence class, constructing a PAG representing all invariant

common features (Spirtes et al., 1995; Zhang, 2008a). Faithfulness, however, is a restrictive

assumption, as shown in the work of Uhler et al. (2013).

Moreover, the work of Zhang (2008a) provides completeness results. Assuming that

we correctly recover the skeleton with accurate CI tests, then the orientation rules are

provably correct and obtain all of the invariant tails and arrowheads in the MAG equivalence

19



class. Using probabilistic and causal facts extracted from the data, the FCI algorithm,

using its augmented rule set, will recover the maximally oriented PAG under the causal

Markov and faithfulness assumptions. In summary, the orientation rules provide a complete

characterization of the invariant marks in the MAG equivalence class.

1.5.2 Variations

Some recent efforts have been made to improve the computational efficiency of the FCI

algorithm so that it is more practically useful (Colombo et al., 2012; Chen et al., 2023).

The “anytime” version of the FCI, like that of the PC, learns a skeleton only guaranteed

to be a superset of the ground truth skeleton even with a CI oracle, thereby making it less

informative than the FCI output as the price for the reduction in complexity (Spirtes, 2001).

This is due to adding a stopping condition on CI tests for potential separating sets over

a certain size. Despite its limitations, it is proven to be correct in the large sample limit

(Spirtes, 2001).

In the work of Colombo et al. (2012), the authors present the Really Fast Causal Inference

(RFCI) algorithm, which proposes multiple strategies for reducing the size of p-d-Sep sets

in the second phase of skeleton recovery, such as by intersecting the sets with bi-connected

components or by using conservative ordering rules. The RFCI output is also slightly less

informative than that of the FCI, but it is consistent and requires a weaker sparsity assumption

due to its lower complexity. The authors also modify the “anytime” algorithm with the

Adaptive Anytime FCI (AAFCI) algorithm, which adaptively changes the maximum potential

separating set taken as a subset of the p-d-Sep sets during the second phase of skeleton

recovery.

The local FCI (lFCI) algorithm is a recent attempt to deal with the presence of highly

connected hub nodes which, due to breaking the sparsity constraint, are very challenging to

deal with under the standard FCI procedure due to the computational requirements (Chen
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et al., 2023). These types of graphs appear regularly in practical networks such as in biological

models. To deal with this, the lFCI algorithm only considers CI tests with separating sets

composed of variables that are within a short distance to the node pair. In doing so, the

algorithm only requires a local-separation property, a reasonable assumption for a search

strategy based on the subgraph local to the pairs of nodes.

1.6 Conclusion

In this chapter we have introduced essential terminology and reviewed some of the literature

concerning constraint-based DAG structure learning, considering two popular algorithms

which are sound and complete for their respective tasks. The PC algorithm is important

because it serves as a standard against which most constraint-based algorithms are compared.

Moreover, its skeleton recovery procedure will serve as the basis for the first phase of skeleton

recovery for the method we develop in Chapter 3. With respect to the local learning problem,

the FCI algorithm is also of particular importance because it approaches structure learning

without the assumption of causal sufficiency. Due to our interest in local learning, which is of

a more narrow focus, certain variables in the true DAG will be removed from consideration.

Therefore, as we coordinate learning between multiple local neighborhoods, it is incumbent

upon us to organize the CI information in a manner similar to the FCI algorithm, including

using a subset of the FCI orientation rules.

Before we proceed to a proper introduction of the Coordinated Multi-Neighborhood

Learning algorithm in Chapter 3, we will first survey existing local learning algorithms in

Chapter 2 since these methods may be used to provide estimates of the target neighborhood

sets as the initial step of the algorithm. Following our presentation of the algorithm, we will

demonstrate its empirical benefits and unique contributions using synthetic and real-world

data in Chapter 4. Then, since this work is intended to aid researchers answer causal questions

in their respective fields, we provide implementation details and sample code for our R package
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in Chapter 5. Finally, we conclude with some final observations and future research directions

in Chapter 6.
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CHAPTER 2

Local Learning Methods

2.1 Introduction

Researchers in a variety of fields working with high-dimensional datasets seek to reduce the

size of large feature sets while retaining predictive power or preserving causal relationships

(Fu and Desmarais, 2010). Datasets in areas where such needs are common include gene

expression array studies, text analysis, image classification, business analytics, and many

others (Aliferis et al., 2010a). To address this problem, researchers look to leverage various

local learning methods for graphical modeling. In particular, a substantial amount of work

has been dedicated to estimating Markov blankets or the parent-child set, especially as such

methods relate to the feature selection problem (Aliferis et al., 2010a; Khan et al., 2023).

Some of these algorithms were developed to improve predictive models, since an accurate

understanding of the causal mechanisms of the data generating process should improve the

accuracy of predictions, particularly when the data undergoes an intervention of some kind

(Yu et al., 2020). Conceptually, variable or feature selection for predictive modeling aims to

select a subset of available variables for a classification or regression task, thereby minimizing

the problems of overfitting and computational overhead without sacrificing predictive power

(Aliferis et al., 2010a; Acid et al., 2013). In fact, it has been shown that the Markov blanket

is the theoretically optimal feature set for prediction in the case of a faithful distribution

(Koller and Sahami, 1996; Kohavi and John, 1997; Pellet and Elisseeff, 2008).

Markov blanket learning is useful beyond merely feature selection and prediction. Indeed,
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Markov blanket learning is an important task for causal discovery, whether exclusively for

local learning or as a step toward learning the entire DAG structure (Margaritis and Thrun,

1999). However, many recovery algorithms proceed no further than estimating the Markov

blanket set without distinguishing between parents, children, and spouses, though such

distinctions are often beneficial, such as in causal effect estimation. Though this is a frequent

shortcoming, there are some local methods which attempt to distinguish between the members

of the recovered set (Yu et al., 2020; Pellet and Elisseeff, 2008; Fang et al., 2022). In addition,

it should be noted that the use of non-causal feature selection algorithms for causal discovery

is not a sound approach, since these methods have a tendency to use highly predictive nodes

from all over the network (Aliferis et al., 2010a). This remark is reflected in the sections that

follow, where we will constrain our consideration to those algorithms that are appropriate for

causal discovery in the local setting.

2.2 Definitions

In the literature, the definition of the Markov blanket is sometimes broader than the one

which will be used in this work, and what we refer to as the Markov blanket is there labeled

the Markov boundary. In the broader conception, the Markov blanket for node i is any set

which renders Xi conditionally independent of the remaining variables represented in the

DAG. Following Margaritis and Thrun (1999) and others, we define the Markov blanket more

narrowly as follows.

Definition 9 (Markov blanket). The Markov blanket (Mb) of node i, mbG(i) ⊆ V \{i}, is the

minimal set for which Xi is rendered conditionally independent of the variables corresponding

to the graph’s remaining nodes. That is, none of the proper subsets of the Mb render Xi

conditionally independent of the remaining variables represented in the DAG.

Under the faithfulness assumption, we can identify the Mb as the union of a node’s

parents, children, and spouses, written as mbG(i) = paG(i) ∪ chG(i) ∪ spG(i) (Tsamardinos
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and Aliferis, 2003; Tsamardinos et al., 2003a). One may think of the Mb as containing

all information sufficient for the conditional distribution of node t, such that we can write

P (Xt | XV \{t}) = P (Xt | XmbG(t)) (Aliferis et al., 2010a). In the context of Mb learning

and local learning more generally, we define the target node as the node whose Mb we are

recovering. For the remainder of this work, we use Mb learning, Mb estimation, and Mb

recovery synonymously to refer to a method which aims to identify the Mb of a particular

target node or the Mbs of a set of target nodes. In addition, some of the algorithms we

discuss recover a subset of the Mb, namely the parent-child (P/C) set composed of the union

of the target’s parents and children.

2.3 Markov blanket learning approaches

As mentioned previously, Mb estimation is well-developed in the literature, especially as it

relates to the problem of feature selection since the procedure removes irrelevant variables

and improves the generalizability of predictive models (Fu and Desmarais, 2010; Khan et al.,

2023). For the feature selection problem, recovering the Mb is intuitively useful because it

ties together prediction and causality, especially as this improves interpretability and the

robustness of the predictive model (Ling et al., 2022a). To illustrate this, one could consider

a regression task where feature selection may be applied to reduce an excessively large feature

set and improve the interpretability of the model. Even without a priori knowledge of the

structural equation model, selecting only the most causally relevant features should provide

predictive benefits, especially since conditioning on these variables theoretically makes the

target independent of the rest of the feature set. This roughly corresponds to the concepts

“relevance” and “optimal feature subset” proposed by Kohavi and John (1997) for feature

selection. Additionally, many researchers may wish to pursue prediction in an experimental

context such that parts of the underlying network undergo interventions. Such decisions make

causal discovery of greater importance than merely identifying features for prediction since
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the causal properties of the Mb will assist with prediction tasks involving experimental data.

When considering Mb estimation algorithms from the perspective of feature selection,

algorithms may usually be categorized as wrappers or filters (Aliferis et al., 2010a). Wrapper

algorithms use a heuristic search across valid variable subsets, comparing candidate sets on

the basis of performance with respect to the classification or regression task. Filter algorithms

are task agnostic, instead applying statistical criteria to identify the most relevant features

to the target variable being modeled. Though there are some variations on these general

categories, these are the primary sets of algorithms for consideration.

In our case, since we are not interested in using the output of the algorithm for prediction,

we prefer to use filtering techniques for Mb recovery. Most of these methods are characterized

by some heuristic used to identify or remove features sequentially (Zhang et al., 2010). As

noted in the work of Aliferis and Tsamardinos (2003), Mb learning algorithms should have

well-defined properties with minimal assumption requirements to guarantee soundness, good

performance in practical application, and scalability with respect to running time. However, as

with other algorithms, choosing between methods entails choosing between various trade-offs.

Some algorithms are efficient in structuring the CI tests but are data inefficient because the

CI tests potentially require large conditioning sets. On the other hand, while some methods

can avoid this problem, doing so requires additional tests to ensure soundness, thus leading

to a higher false discovery rate in practice due to the multiple testing problem (Borboudakis

and Tsamardinos, 2019). A large number of statistical tests for selection using the same data,

often repeating CI queries which only vary by conditioning sets, entails that the test statistics

do not actually follow the claimed distribution, and thus the corresponding p-values are

too small (Hastie et al., 2009). Intuitively, multiple testing often leads to spurious relations

between variables simply because these pairs are given arbitrarily many chances to do so.

Though certain choices may mitigate the extent of the problem, multiple testing is a concern

for any local algorithm, particularly for high-dimensional or dense graphs (Aliferis et al.,

2010a).
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Mb learning consists of some score-based algorithms and the more common constraint-

based algorithms. Most of the state-of-the-art algorithms are constraint-based, but there

are some score-based algorithms which are worth considering. Similar to the measures used

for DAG learning, scoring functions should be decomposable, computing the global score by

aggregating local scores. Examples include K2, BDe, BDeu, BIC, AIC, and MIT. The BDeu

score, for instance, is a metric which uses a Bayesian paradigm, assigning a uniform prior

over the parameters for each configuration of a node and its parents in potential networks

such that a MAP network may be selected according to the input data (Scutari, 2018). The

Mutual Information Test (MIT) measures the mutual information between variables and

their parents in the network using a statistic which includes a penalizing term to take model

complexity and the input data into account (de Campos, 2006). This could be conceived

of as a penalized Kullback-Leibler divergence between the joint probability distribution of

the candidate network and the available dataset. Unlike BDeu, MIT is a score based on

information theory, which highlights the different considerations involved in choosing a metric.

Acid et al. (2013) developed DMB and RPDMB as score-based algorithms for local

structure learning. The former algorithm searches across the space of class-focused DAGs

(C-DAGs), a structure which only permits edges linked to the target node or its spouses in

candidate networks. Because this space still grows exponentially even with these constraints,

the DMB algorithm conducts a heuristic search across the C-DAG space using an appropriate

score. The operators used in the search to add or remove edges ensure that each iteration

produces another C-DAG. The second algorithm works similarly, but for Restricted PDAGs

(RPDAGs) and C-RPDAGs, which correspond to DAGs and C-DAGs in the previous discussion

but in the context of a class of PDAGs used in other score-based learning algorithms. The

RPDMB algorithm provides rules for a heuristic local search, iterating from one structure to

another based on score improvements until the final Mb is obtained. Both algorithms begin

with an empty graph and add edges until the scoring function no longer improves. However,

these algorithms produce a high number of false positives due to the expansive search space,
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which can be alleviated but only at the cost of greater efficiency. Though these and other

score-based methods may be useful for analysis and comparison, we will primarily direct our

focus to constraint-based learning algorithms in the following sections.

In addition to the various approaches for Mb or P/C recovery, some Mb learning algorithms

are designed not merely for local structure learning, but as the primary component for learning

the global network with greater efficiency. Learning the Mb as part of a divide-and-conquer

algorithm for estimating the identifiable structure of the entire network carries significant

benefits, since such a strategy combines quality performance with improved scalability

compared to other global learning methods, even in datasets with thousands of variables

(Aliferis and Tsamardinos, 2003; Meinshausen and Bühlmann, 2006). We will consider this

extension when we discuss the Grow-Shrink algorithm, because this approach combines

estimated local neighborhoods from different parts of the network and thus provides insight

into a potential strategy for addressing the multi-neighborhood learning problem.

2.4 Nodewise regression

A naïve approach to the Mb estimation problem is to regress the target node against the

remaining features, which seems to run afoul of the principle previously stated to avoid

employing a prediction-based feature selection procedure for causal discovery. Though this

procedure is more formally aligned with a wrapper algorithm, such an approach does in

fact contain some similarities with the other filtering algorithms we consider. In fact, this

approach is also called an embedded method, which combines the filter selection stage with

the learning step for optimizing an objection function (Guo et al., 2022). The basic idea

of this approach is to identify a parsimonious model from which we can form the Mb by

selecting features with non-zero or statistically significant coefficients. Dobra and West (2004)

used a similar idea in their global learning method by chaining together regression models

to form a structure by employing a stochastic method which maximizes a score for a DAG
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structure.

For this approach, including a lasso penalty is particularly useful since the optimal model

will be sparse due to the properties of the ℓ1 norm. In practice, however, this is too slow to

be feasible for a high-dimensional dataset. Algorithms such as the Least Absolute Shrinkage

and Selection Operator (LASSO) (Tibshirani, 1996), Least-angle Regression (LARS) (Efron

et al., 2004), and Orthogonal Matching Pursuit (OMP) (Pati et al., 1993) are different types

of penalized regression. Moreover, they may be formally compared to other Mb learning

algorithms, which are generally characterized by forward and backward steps in defining the

candidate Mb set. A forward step usually uses some statistical criterion to add a feature to the

candidate set, while a backward step prunes the feature set by removing false positives often

as a result of a CI test conditioned on the other variables in the candidate set. Borboudakis

and Tsamardinos (2019) provide a brief high-level overview of the similarities these embedded

algorithms share with other filtering algorithms.

2.5 Grow-Shrink algorithm

Other local learning algorithms directly search the feature space to obtain a candidate set of

variables relevant to the target according to statistical criteria and without consideration

of the regression or classification task. Koller and Sahami (1996) were the first to use the

Mb concept to learn a feature subset for a classifier. They proposed a greedy algorithm for

backward feature selection using cross-entropy, eliminating irrelevant features one at a time

from the full feature set. Singh et al. (1996) followed a similar approach but used forward

feature selection instead. Sierra and Larrañaga (1998) used a wrapper method within a

score-based algorithm for learning a network. Their search method is a genetic algorithm in

the space of DAGs, where all features must belong to the Mb of the class variable, and each

candidate network is evaluated by the accuracy of the classifier. However, these were early

attempts with significant deficiencies preventing their widespread use (Aliferis et al., 2003).
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The Grow-Shrink (G-S) algorithm is one of the fundamental algorithms for Mb recovery

and made significant improvements upon these earlier attempts, though it is not without

its own limitations (Aliferis and Tsamardinos, 2003). When introduced by Margaritis and

Thrun (1999), it was the first sound Mb estimation algorithm to be published, using a novel

structuring of independence tests and mutual information calculations for local discovery

(Gao and Ji, 2017). As indicated by its name, the algorithm is broken into two phases: a

growth phase and a shrinking phase. Algorithm 4 presents the structure of the algorithm,

which also serves as the basic template for many other algorithms following the same two-

phase procedure, also known as forward and backward selection. During the growth phase,

variables are added to a candidate Mb set based on sufficient dependence on the target node,

conditioned on the candidate set of the current iteration, until there are no more remaining

variables with sufficient conditional dependence. Then, during the shrinking phase, nodes are

removed from the candidate set based on CI results conditioned on the remaining nodes of

the candidate set, until there are none remaining which we can conclude are conditionally

independent. During the growth phase, it is possible to mistakenly add false positives to the

candidate set, which is the theoretical basis for adding the shrinking phase to remove them.

This algorithm is O(p) with respect to CI tests (Margaritis and Thrun, 1999). In practice,

variables are often ordered by similarity with the target before the growth phase in lines 3

to 5 for better efficiency and to reduce the number of tests required in the shrink phase of

lines 6 to 8. This will speed up runtime and improve data efficiency (Gao and Ji, 2017).

However, because this is a weak heuristic, the candidate set will grow more than necessary,

which exacerbates the problem of data inefficiency since the required sample size grows

exponentially with respect to the candidate size in order to obtain reliable CI test results.

The larger sample requirement follows from the degrees of freedom in the CI test, which are

exponential in the size of the conditioning set, and some of the tests will condition on the

entire Mb candidate set due to the structure of the algorithm (Peña et al., 2005; Aliferis and

Tsamardinos, 2003). This is a problem for smaller datasets which cannot compensate for the
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loss of power.

Algorithm 4 Basic G-S Mb estimation
1: Input: target t

2: m̂b(t)← ∅

3: while ∃ i ∈ V \ (m̂b(t) ∪ {t}) s.t. Xi ⊥̸⊥ Xt | Xm̂b(t) do

4: S ← S ∪ {i}

5: end while

6: while ∃ i ∈ m̂b(t) s.t. Xi ⊥⊥ Xt | Xm̂b(t)\{i} do

7: m̂b(t)← m̂b(t) \ {i}

8: end while

9: Output: m̂b(t)

This algorithm may also be extended to estimate the global structure. The steps for the

complete algorithm are found in Algorithm 5, along with orientation rules in Algorithm 6. In

the plain version, we begin by computing the Mb for all nodes in the graph. Then, adjacencies

within each Mb are determined using a CI test conditioned on the rest of the Mb, where

dependence entails adjacency and independence entails non-adjacency, thus preserving the

pairwise Markov property. This step produces an estimate of the skeleton, at which point

the algorithm begins orienting some of the edges by first identifying spouses. Between two

nodes in the same Mb, we test all possible subsets of the smaller of the Mbs of each node

as potential separating sets. Edges are then oriented based on a dependence rule, which

exploits the fact that two variables with a common descendant become dependent when

conditioning on a set that includes any such descendant. For a pair of adjacent nodes i and

j, we can determine whether j is a parent of i if there exists another node k adjacent to i

and non-adjacent to j such that any attempt to produce a CI relation between j and k by

conditioning on a subset of the Mb of j which includes i fails, assuming |Mb(j)| < |Mb(k)|. If

there is a v-structure (j, k, i) in the true DAG, then there should be no such subset, because

there is a permanent dependency path when conditioning on i. After this step, all cycles are
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removed from the graph by deleting edges that are involved in the most cycles until there are

no more cycles, then reinserting those edges with reversed orientation. In addition, if there is

a directed path from i to j and i and j are adjacent, then direct i→ j to preserve acyclicity.

Though these rules are fewer and Meek’s rules are complete, we argue that the application

of the global G-S extension steps to the multi-neighborhood problem is roughly equivalent

to applying the PC algorithm to each neighborhood individually after estimating the Mb of

each target node.

However, while this extension is valuable for us to consider as a possible approach to

the multi-neighborhood problem, it is limited in its utility. First, the orientation rules are

limited to identifying v-structures or preventing cycles. In the multi-neighborhood setting,

only the v-structure orientation rules are likely to be of use. Second, even with the addition

of Meek’s rules, this algorithm does not provide guidance for coordinating learning across

multiple neighborhoods. That is, the algorithm does not provide any means to take graph

topology into account without estimating the global structure. The global extension of G-S

provides a good first attempt toward addressing the multi-neighborhood problem by learning

the Mbs of multiple target nodes as well as the skeletons of the neighborhoods. However, the

inability to coordinate learning across the neighborhoods without estimating the entire DAG

structure is a significant liability.
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Algorithm 5 G-S complete DAG structure learning
1: Set G = (V, ∅)

2: for all i ∈ V do

3: Compute m̂b(i) using Algorithm 4

4: end for

5: for all i ∈ V and j ∈ m̂b(i) do

6: adjG(i)← adjG(i) ∪ {j}; adjG(j)← adjG(j) ∪ {i}

7: Let R be the smaller of m̂b(i) \ {j} and m̂b(j) \ {i}

8: for all S ⊆ R do

9: if Xi ⊥⊥ Xj | XS then

10: adjG(i)← adjG(i) \ {j}; adjG(j)← adjG(j) \ {i}

11: end if

12: end for

13: end for

14: for all i ∈ V and j ∈ adjG(i) do

15: for k ∈ adjG(i) \ (adjG(j) ∪ {j}) do

16: Orient j → i and k → i

17: Let Q be the smaller of m̂b(j) \ {k} and m̂b(k) \ {j}

18: for all S ⊆ (Q \ {i}) do

19: if Xj ⊥⊥ Xk | XS∪{i} then

20: Orient j − i and k − i

21: end if

22: end for

23: end for

24: end for

25: Complete edge orientation of G using Algorithm 6

26: Output: G
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Algorithm 6 G-S edge orientation
1: Input: Partially directed graph G = (V,EG)

2: R← ∅; multiset C ← ∅

3: for each directed path π = ⟨v1, v2, . . . , vq, v1⟩ in G do

4: for every k ∈ [q − 1] do

5: C ← C ∪ {(vk, vk+1)}

6: end for

7: C ← C ∪ {(vq, v1)}

8: end for

9: while there exists cycles in G do

10: Find (i, j) with multiplicity mC , currently the largest in C

11: EG ← EG \ {(i, j)}; R← R ∪ {(i, j)}

12: Remove all instances of (i, j) from C: C ← C \ {(i, j)mC}

13: end while

14: for all (i, j) ∈ R do

15: EG ← EG ∪ {(j, i)}

16: end for

17: for all i and j s.t. (i, j), (j, i) ∈ EG do

18: if ∃ a directed path from i to j then

19: Orient i→ j: EG ← EG \ {(j, i)}

20: end if

21: end for

With respect to the G-S algorithm for a single target node, though the algorithm is sound,

it also has deficiencies and shortcomings. The G-S algorithm works best when the largest

Mb is small, though in practice this is not always the case. Additionally, G-S is not reliable

in recovering the correct Mb with small datasets because of its inefficient heuristic. Rather

than dynamically ordering variables for inclusion based on target similarity conditioned on
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the updated candidate set during forward selection, G-S uses a static ordering from the first

step of the growth phase based on the strength of association of each node with the target

conditioned on the empty set (Aliferis and Tsamardinos, 2003). Since spouses are only weakly

associated with the target node when conditioned on the empty set, these nodes will not

be admitted to the candidate set until late in the growth phase. This permits more false

positives to enter the candidate set and makes some CI results unreliable much sooner.

Consequently, while G-S serves as a helpful starting point for our consideration as a sound

algorithm for Mb recovery, we must look elsewhere for further improvements to address the

inherent deficiencies in the method.

2.6 IAMB family

In the work of Tsamardinos et al. (2003b), the G-S algorithm is modified to produce

the Incremental Association Markov Blanket (IAMB) algorithm, which uses an improved

heuristic and an optional post-processing step to improve the scalability of the algorithm,

as demonstrated empirically with the Thrombin dataset and with other simulated datasets

(Aliferis et al., 2010a). The IAMB heuristic dynamically orders the variables according to

conditional dependence each time the Mb candidate set changes, thus reducing the number

of false positives in the growth phase and improving overall accuracy (Gao and Ji, 2017).

Additionally, this method is better suited than the G-S algorithm for working with smaller

datasets where the size of the neighborhood is large, since the latter suffers from data efficiency

problems due to larger conditioning sets (Tsamardinos et al., 2003b). For constraint-based

Mb recovery algorithms, IAMB is frequently used as a standard of comparison.

However, IAMB does not come without its shortcomings. Though it does improve upon the

G-S algorithm, IAMB can still be data inefficient, requiring a sample size at least exponential

in the size of the Mb. IAMB may require fewer tests than other methods, but since these

tests potentially condition on larger sets, we encounter the similar sample inefficiencies as the
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G-S algorithm (Băncioiu and Brad, 2022). These results were confirmed in the work of Fu

and Desmarais (2008), where various Mb algorithms were compared using a CI oracle instead

of a sample CI test. In their findings, IAMB performs well with respect to reducing CI tests,

but fails to produce similar improvements in data efficiency.

Further modifications were made to the IAMB algorithm, and these algorithms may

be jointly classified as members of the IAMB family of algorithms. In the initial paper,

Tsamardinos et al. (2003b) proposed some variants of the original algorithm: IAMBnPC,

interIAMB, and interIAMBnPC. These variants introduce combinations of two new concepts

to address sample inefficiency: an interleaving principle and a post-processing step with the

PC algorithm. The interleaving principle combines the forward and backward steps in each

forward iteration to keep the candidate Mb as small as possible. The post-processing step

exchanges the backward phase of the algorithm for the PC algorithm over the candidate

Mb, since the PC uses an efficient separating set search. While interIAMBnPC uses both

concepts, interIAMB and IAMBnPC use the interleaving principle and the post-processing

step, respectively. In addition to these, Peña et al. (2007) introduced the KIAMB algorithm,

which modifies the IAMB algorithm by using an improved heuristic that allows for a tradeoff

between greediness and randomness in its search. Other algorithms in the IAMB family

include FastIAMB (Yaramakala and Margaritis, 2005) and λ-IAMB (Zhang et al., 2010).

2.7 HITON family

In the work of Aliferis et al. (2003), the authors present HITON, named for its similarity

to the Greek word for “blanket,” as a sound and data efficient Mb learning algorithm which

has been used to diagnose melanoma (Sboner and Aliferis, 2005), to identify biomarkers for

cancer diagnosis (Statnikov et al., 2005), and for other applications (Aliferis et al., 2010a).

Unlike G-S and the IAMB family, the HITON algorithm breaks the problem of Mb estimation

into sequentially recovering the sets of a partition of the Mb, first finding the P/C set and
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then finding the spouses of the target node. The P/C identification step is similar to the

growth phase of G-S, since it adds variables to the candidate Mb set based on similarity

with the target variable according to an appropriate dependence measure. However, HITON

also employs an interleaving strategy in the P/C recovery step. As with interIAMB, the

interleaving strategy includes both inclusion and exclusion at each iteration of the growth

phase until a stopping criterion is reached. During each iteration of P/C recovery, HITON

removes nodes from the candidate set and from further consideration if there is a CI relation

between the node and the target conditioned on the rest of the candidate set. This subroutine,

concerned with P/C discovery, is denoted HITON-PC. After HITON-PC is applied to the

target node to obtain the candidate P/C set, it is sequentially applied to each of the members

of the candidate P/C set to obtain second-order candidate P/C sets. The initial candidate

Mb set for the remaining steps of the HITON algorithm, denoted HITON-MB, is the union

of the candidate P/C set and the second-order P/C sets. From there, a series of CI tests are

conducted to remove false positives using conditioning sets of increasing size until conditional

dependence is affirmed, in which case the node is retained in the candidate Mb set, or until a

CI relation is found, leading to removal of the node from the candidate set.

Due to the interleaving principle and the structure of the algorithm, HITON provides a

framework for scalable, data efficient Mb learning algorithms. However, in the work of Peña

et al. (2007), the authors identify a flaw in the soundness proof, meaning that HITON does

not produce the correct Mb, assuming a CI oracle, in all cases. It should be noted, however,

that HITON does include a post-processing wrapper algorithm which may, in principle,

remove these false positives (Aliferis and Tsamardinos, 2003). To address this issue, HITON

requires a “symmetry correction” such as the one proposed in the work of Tsamardinos et al.

(2006), where a node is only included in the output if its own HITON output includes the

target node.

Just as in the case with the IAMB algorithm, there are other algorithms structurally

similar to HITON which may be classified as part of the HITON family of algorithms.
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One such algorithm is PCMB, proposed by Peña et al. (2007), which corrects the errors

of HITON and MMMB, another algorithm with the same formal structure and symmetry

correction requirement. Just as in HITON, the PCMB algorithm finds the Mb by separating

its search into two tasks: first estimating the P/C set, then searching for the spouses of the

target node. This algorithm uses a min-max heuristic and an interleaving principle during

the growth phase, followed by a shrinking phase where false positives are removed. This

algorithm is more data efficient than IAMB because it takes graph topology into account,

leading to smaller conditioning sets for the CI tests, a result empirically demonstrated in its

improved accuracy (Peña et al., 2007; Băncioiu and Brad, 2022). Fu and Desmarais (2008)

also proposed the Iterative Parent-Child Based Search of Markov Blanket (IPC-MB), which

improves the efficiency of PCMB by ensuring that the first CI tests are performed with the

smallest conditioning sets, thereby removing false positives with data efficiency and leading

to an increase in accuracy (Fu, 2010; Băncioiu and Brad, 2022).

2.8 Recent algorithms

In addition to these popular families of algorithms, this section will cover other recent

methods.

Niinimäki and Parviainen (2012) presented a score-based learning algorithm (SLL) which

provides a soundness guarantee when the sample size approaches infinity. This is another

two-phased method with structural similarities to HITON, first identifying the P/C set before

identifying the rest of the spouses in the Mb. However, instead of using independence tests to

incrementally define the Mb, SLL instead obtains the Mb from optimal networks according

to the selected scoring metric. Though this method was accurate in the empirical study, it is

costly with respect to runtime.

Ling et al. (2022a) proposed two online local learning algorithms, the Online SimulTaneous

(O-ST) and the Online Divide-and-Conquer (O-DC) Mb learning algorithms. While the
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O-ST algorithm learns the entire Mb simultaneously, using tests conditioned on the current

candidate set to accept or reject nodes, the O-DC follows the HITON family by learning the

P/C and spouse sets sequentially. In most cases, the authors argue, it is more likely that

researchers will not be able to obtain the entire feature space in advance. This means that

variable sets arrive sequentially in time, providing a practical justification for their online

methods.

In Kaufmann et al. (2016), the authors introduced a Bayesian algorithm for learning

the Mbs of multiple targets in set T simultaneously without estimating the entire network,

using the blockwise decoupling in the factorization of the posterior distribution such that

the subgraph over the Mbs is conditionally independent of the rest of the network. This

algorithm is primarily for Gaussian data, employing a block Gibbs sampler for the posterior

distribution of the covariance matrix, assumed to follow the Wishart distribution, but with

a compound prior distribution to ensure sparsity. The authors prove that the resulting

posterior distribution of the Mb for a set of target nodes has an analytic form, independent

of a large portion of the network. This method may also be extended to include other kinds

of data, including discrete data and data which includes missing values. However, it is a

very computationally expensive algorithm where sampling from the posterior distribution is

O(|T |q3), where q = p− |T |.

Gao and Ji (2017) proposed the simultaneous Markov blanket (STMB) algorithm, an

efficient, topology-based Mb discovery algorithm which removes the symmetry correction

step required for algorithms such as HITON while following a similar divide-and-conquer

strategy. The algorithm avoids the computational cost of symmetry correction by exploiting

a coexistence property between spouses and descendants of the target node, which allows

the algorithm to properly identify false positives in the P/C set. The method is sound and

complete while reducing the number of tests required.

To improve computation time for the feature selection problem, Borboudakis and Tsamardi-

nos (2019) suggested an algorithm which uses multiple rounds of forward-backward selection
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with early dropping. Early dropping is a heuristic which speeds up forward selection without

sacrificing the quality of the estimated set by filtering out variables independent of the target

node conditioned on the iteration’s current candidate set. This is similar to the interleaving

principle, but is applied to nodes which may potentially be added to the candidate set. Rather

than only running the algorithm once, which would produce false negatives, the authors

propose running the algorithm up to K times, initializing each succeeding round of the algo-

rithm with the output set from the prior run. They call this method the Forward-Backward

selection with Early Dropping (FBEDK) algorithm. The authors note that usually only a

small value of K is actually necessary. Early dropping allows the FBEDK family of algorithms

to mitigate the inefficiency and multiple testing problems by reducing the pool of potential

variables at each step. Along with competitive empirical performance, the authors prove

that, if the distribution may be faithfully represented by a causal graph, FBEDK will identify

the Mb of the target.

In Guo et al. (2022), the authors designed their algorithm, Error-Aware Markov Blanket

(EAMB) learning, to deal with the problem of multiple testing. They develop two novel

subroutines, beginning with the Efficiently Simultaneous MB (ESMB) algorithm, which speeds

up computational efficiency of EAMB by using a “double-shrinking” strategy to reduce the

sizes of the conditioning set for the CI tests as well as the feature set pool simultaneously. The

second method, the Selectively Recover MB (SRMB) algorithm, uses a strategy to efficiently

identify the Mb among features discarded due to unreliable CI tests. During this second

step, the algorithm recovers missing spouses using a relaxed rule for symmetry correction.

This algorithm maintains a complexity comparable to other state-of-the-art algorithms while

improving data efficiency.

Finally, some recent work does not contribute new algorithms, but they do improve the

efficiency of existing methods. In the work of Srivastava et al. (2020), the authors propose

a parallel framework which allows for an efficient parallel version of any blanket learning

algorithm for a local-to-global approach, which can work for algorithms such as G-S, IAMB,

40



and interIAMB.

2.9 MMPC algorithm

Due to its previous implementation in R, we will take a closer look at the Max-Min Parent

Child (MMPC) algorithm because we use this algorithm in the empirical study of the multi-

neighborhood learning problem in Chapter 4. The MMPC algorithm is one of the subroutines

for the Max-Min Markov Blanket (MMMB) algorithm, a member of the HITON family.

The MMPC algorithm learns the P/C set of a target node using a max-min heuristic and a

similarity metric, provided in Algorithm 7, forming the P/C set using a grow-shrink method

followed by a symmetry correction step to avoid the same error we find in the HITON

algorithm (Tsamardinos et al., 2006; Peña et al., 2007). The heuristic selects the variable

that maximizes the minimum association with the target node relative to a subset of the

current candidate P/C set. Intuitively, the selected variable is included in the candidate P/C

set because it remains highly associated with the target node despite the “best effort” to

make the variable conditionally independent of the target node.

Algorithm 7 Max-Min heuristic
1: Input: target t, candidate parent-child set CPC ⊆ V \ {t}

2: assocF = maxi∈V MinAssoc(i; t | CPC)

3: F = arg maxi∈VMinAssoc(i; t | CPC)

4: Output: ⟨F, Fassoc⟩

Upon completion of the process outlined by the pseudocode in Algorithm 8, the algorithm

outputs the estimated P/C set for the target node (Tsamardinos et al., 2006). Lines 2 to 8

describe a greedy procedure to construct the candidate P/C set, which may lead to the

addition of false positives. Therefore, in lines 9 to 13 we search for any subset of the candidate

P/C set to identify and remove false positive nodes.

The pseudocode for the entire procedure may be found in Algorithm 9, which also
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Algorithm 8 MMPC

1: Input: target t

2: CPC = ∅

3: while CPC is still changing do

4: ⟨F, assocF ⟩ = MaxMinHeuristic(t, CPC)

5: if assocF ̸= 0 then

6: CPC ← CPC ∪F

7: end if

8: end while

9: for i ∈ CPC do

10: if ∃S ⊆ CPC s.t. Xi ⊥⊥ Xt | XS then

11: CPC ← CPC \ {i}

12: end if

13: end for

14: Output: candidate parent-child set CPC

includes the symmetry correction step to remove any remaining false positives and ensure

the correctness of the algorithm.

The MMPC algorithm improves the data efficiency of previous algorithms because, unlike

G-S and IAMB, the sample size requirements depend on the local topology instead of the

conditioning set (Gao and Ji, 2017). However, as Peña et al. (2007) note, the output of MMPC

must be further processed even after the symmetry correction, because the candidate P/C set

may contain some descendants of the target node other than its children. Notwithstanding

these issues, the MMPC and MMMB algorithms are still frequently used in practice and as a

benchmark for newer methods. In fact, MMMB serves as the underlying method for the global

Max-Min Hill Climbing (MMHC) algorithm, a hybrid method which conducts a score-based

search over the space of DAGs using the constraints provided by the Mbs recovered from

repeated application of MMPC over all the nodes. In the work of Tsamardinos et al. (2006),
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Algorithm 9 MMPC

1: Input: target t

2: CPC = MMPC(t)

3: for i ∈ CPC do

4: if t /∈MMPC(i) then

5: CPC ← CPC \ {i}

6: end if

7: end for

8: P̂/C(t)← CPC

9: Output: P̂/C(t), the estimated P/C set for node t

the authors find that this method is both scalable and attains a high standard of quality

compared to other global network learning algorithms (Aliferis et al., 2010a). However, due to

the nature of score-based algorithms, there is no clear framework for applying the principles

of MMHC to the multi-neighborhood problem without estimating the global structure.

2.10 Conclusion

The multi-neighborhood problem is fundamentally local in scope, and as such any suitable

approach depends on efficient and sound methods for recovering the Mbs of target nodes. In

this chapter, we considered different strategies and families of algorithms, any of which may,

in principle, be used for the first stage of the algorithm we introduce in the next chapter to

filter out irrelevant variables. In choosing such a method, it is of primary concern to address

the potential problems of overfitting due to multiple testing and data inefficiency, especially

for applications with smaller datasets. Moreover, we also observed that some algorithms

provide a framework for extending Mb recovery algorithms to estimate the global structure

of the network. However, none of these approaches are easily or efficiently adaptable to

learning the graphical structure in the multi-neighborhood setting without estimating the
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global structure. We will address such an extension that avoids the inefficiency of global

structure learning in the next chapter.
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CHAPTER 3

Coordinated Multi-Neighborhood Learning Algorithm

3.1 Preliminaries

In the previous chapters, we laid the groundwork for the Coordinated Multi-Neighborhood

Learning algorithm by defining terms and presenting algorithms which contain principles we

will be able to draw from and apply to our method. In this chapter, we will introduce and

motivate the multi-neighborhood problem, present the algorithm procedure, and examine

some of the algorithm’s theoretical properties and practical benefits.

3.2 Motivation

In recent years there has been increased development in structure learning algorithms for

directed acyclic graphs (DAGs) (Heinze-Deml et al., 2018; Vowels et al., 2022; Kaddour et al.,

2022). However, these algorithms are limited by strong assumptions and intractable practical

requirements which render them unreasonable or too restrictive for use in many applied

settings. Similarly, in empirical settings we observe the rapid deterioration of the speed and

accuracy of most algorithms as the size of the network increases even moderately (Gu and

Zhou, 2020). Moreover, in fields such as genomics, researchers are often interested in causal

discovery for only a few nodes in order to estimate their causal effects on other downstream

nodes. This can be particularly challenging, especially since datasets frequently have many

features and few observations (Friedman et al., 2000). In situations such as these, global

causal discovery methods suffer from the problems previously mentioned.
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In this work, we distinguish between local and global algorithms based on the proportion

of network variables included in the algorithm and its output. Global algorithms aim to

estimate features from the entire graph among all nodes, while local algorithms are limited to

estimation on a strict subgraph. It would be advantageous for a suitable algorithm to leverage

local knowledge of the causal structure to adequately and reliably answer causal inquiries at

a level at least commensurate with the performance of global algorithms. Referring again

to the field of genomics, for example, it may be of interest to consider only a few target

genes in a gene regulatory network and identify the causal effects of these on other genes

of interest. Indeed, many experiments are limited to only a few such nodes due to various

constraints (Michailidis and d’Alché Buc, 2013). Rather than focusing on estimating the

entire causal structure from data to answer causal questions related to only a select portion

of the features, we take a different approach. We aim to learn only the identifiable structure

on a subgraph sufficient for estimating causal effects of interest. Our local approach reflects a

priority to estimate the causal effects most relevant to researchers and pursue causal discovery

accordingly.

The basis for our algorithm rests on the observation that, in order to estimate causal

effects, we only need to estimate the local structure around the node whose causal effects

on other nodes we are seeking to estimate. Let X be a target node in a DAG G. If the

parent set of X is given, then one can calculate its causal effect on any other variable in the

DAG by the so-called back-door, or parent set, adjustment (Pearl, 2009). We now define

Z as the parent set of X in the causal graph. Our goal is to estimate the causal effect of

X on another node Y which, using Pearl’s atomic intervention notation, may be written as

p(y | do(X = x)). This can be calculated using the parent set adjustment as

p(y | do(X = x)) =

∫
z

p(y | do(x), z)p(z | do(x))dz (3.1)

=

∫
z

p(y | x, z)p(z)dz. (3.2)

From the last statement, we conclude that, in order to estimate the causal effect of X on Y
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using exclusively observational data, we only require knowledge of the parent set of X.

On this basis, we reason that local learning algorithms should be primarily focused

on estimating the neighborhood structure around the specified target nodes, particularly

to identify parents for the purpose of estimating causal effects. Indeed, it is this concept

which serves as the basis for the IDA and joint-IDA algorithms in the estimation of causal

effects, both of which assume parent sets are given in order to proceed with their estimation

procedures (Maathuis et al., 2009; Nandy et al., 2017).

However, apart from a few exceptions, current methods for learning parent sets suffer from

inefficiencies inherent in global causal discovery algorithms or from a failure to adequately

distinguish between parents, children, and spouses in local learning algorithms, such as some

Mb learning algorithms (Aliferis et al., 2010a,b; Gao and Ji, 2017). Our method is designed

to correct these shortcomings by maintaining the efficiency of a local learning approach while

attempting to orient as many identifiable edges in the subgraph of the DAG as possible,

thereby limiting the size of a possible parent set. This motivates us to pursue coordinated

local learning, since by learning the structure of the neighborhoods simultaneously, we can

orient more edges than we could by examining individual neighborhoods. Additionally,

local structure learning provides theoretical and practical advantages by relaxing global

assumptions and substantially reducing computational complexity and runtime, as will be

demonstrated by our empirical results in Chapter 4. In reality, one can rarely be assured

of the propriety of including as many variables as are present in a high-dimensional graph,

nor is it always safe to make faithfulness or other assumptions on the entire network. The

principles of our algorithm are founded on more modest claims focused on a subgraph of only

the most relevant nodes. To summarize, we will show that coordinated multi-neighborhood

learning is, especially in comparison to global algorithms, a scalable and efficient approach

with a concomitant reduction in the size of the set of possible parents for greater precision in

causal effect estimation.

While there are existing methods for estimating the neighborhood and the graphical
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structure around a single target node, such as those we cover in Chapter 2, there are,

to our knowledge, no existing methods to coordinate structure learning around multiple

neighborhoods of interest from observational data without estimating the global structure.

Applying existing methods to each neighborhood individually is sound for identifying members

of each neighborhood provided the underlying algorithm is correct. However, these methods

are limited in their ability to orient edges within single neighborhoods due to the inevitable

loss of structural information. Moreover, it would be particularly challenging to identify

any topological ordering between the neighborhoods. Causal discovery in such a scenario is

limited if we restrict ourselves to considering one neighborhood at a time rather than finding

a way to coordinate structure learning over multiple neighborhoods.

3.2.1 Background

For the local learning problem in this work, we intend to learn the structure of local

neighborhoods, coordinating the results such that causal information, as encoded in edge

orientation, can, in principle, be passed from one neighborhood to another. Unlike many

other algorithms, our algorithm treats some of the variables as latent since we refrain from

estimating the entire graph structure. This restriction requires a different class of graphs to

accommodate latent variables while retaining the capacity for encoding causal information.

For this purpose, we use ancestral graphs due to their facility for conveniently representing

causal information inferred from data on observed nodes in the presence of latent variables

(Richardson and Spirtes, 2002; Zhang, 2008a). Because ancestral graphs can represent true

CI and causal relations among observed variables in the presence of latent variables, they are

perfectly suited for our problem.

For clarity, it must be acknowledged that none of the nodes are latent in a proper sense.

That is, each of the variables may, in principle, be invoked and potentially included in

the algorithm or in the final output. However, after being filtered out by the Mb learning

algorithm, many nodes will not be included in the final output. Thus, it is more accurate to
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say that these nodes are graphically latent. While these nodes are included in the underlying

DAG and may even be used during the execution of the algorithm as potential members of

a separating set, they will otherwise be treated as latent variables in the final output. We

further assume the absence of any nodes which may properly be called latent, thus ensuring

causal sufficiency within each neighborhood.

In this work, we only consider two kinds of edges: directed (→) and bi-directed (↔).

Since we assume the absence of selection bias, there are no undirected edges in the ancestral

graphs we consider in this chapter. In the literature these graphs are sometimes referred to

as directed maximal ancestral graphs (DMAGs), which are special cases of the MAG defined

in Definition 8, differing only in that they are graphical representations accommodating

a marginal distribution over observed variables under the assumption of potential latent

confounders but not selection variables (Borboudakis et al., 2012).

The method we are proposing fits within the class of constraint-based structure learning

algorithms such as the PC and FCI algorithms, using both CI tests and deterministic

rules to recover a ground truth graph. The novelty of the algorithm we are proposing is

twofold: it offers coordinated local learning across multiple neighborhoods with theoretical

guarantees, and it lowers computational cost by not estimating the entire graph structure.

The algorithm is well-motivated by causal inference problems, since the local structure is

sufficient for causal effect estimation by back-door adjustment. Some of the components of

the algorithm, especially the specific Mb estimation algorithms, may be substituted and are

built upon other work. Though it relies on other algorithms for a pre-processing step, the

method provides a novel, general framework for approaching coordinated local learning across

multiple neighborhoods, which allows us to orient more edges and improve subsequent causal

effect estimation attempts. In contrast, most other existing local algorithms consider one

neighborhood at a time without any coordination, which limits their ability to distinguish

between parents and children, an essential task for causal effect estimation.

One may instead consider naïvely estimating the structure of the entire DAG with a
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global algorithm such as those discussed in Chapter 1. This approach has the advantage

of coordinating learning across target neighborhoods and does a better job distinguishing

between parents and children. However, global algorithms are often computationally expensive

and prone to more errors, often propagated by nodes outside of the specific set of interest.

There are some attempts in the literature which pursue causal effect estimation using local

algorithms for structure learning. Gupta et al. (2023) run the PC algorithm locally to discover

neighborhood structures around nodes using an algorithm called Sequential Discovery and

Local Discovery with Eager Collider Checks (LDECC). The collider checks entail searching

for separated nodes which become dependent when the target is added to the separating set.

The algorithm then orients the smallest subset that d-separate the target from the two nodes

as parents. They prove that, with a CI oracle, the estimated average treatment effect (ATE)

using this method is equal to the true ATE. Fang et al. (2022) proposed a local approach for

identifying causes of a target using a novel graphical condition to check the existence of a

causal path between a variable and the target in every Markov equivalent DAG. Their work

provides the basis for their algorithm, the local ITC, which takes a target and its neighbors,

estimated by a local algorithm, as input and conducts a series of CI tests to determine

causal relationships with the target node. The authors also provide a global extension of

the algorithm, using the estimated CPDAG as input. One of the principal benefits of this

algorithm is that it can increase the accuracy of a causal effect estimation algorithm by

definitively ruling out nodes which are definitively non-causes with respect to the target node.

While both of these methods share some similarities with ours and may point in fruitful

future research directions, they do not provide guidance for coordinated learning for multiple

target nodes.

3.2.2 Contribution

In this chapter, we develop a method to address the lacuna in the literature for coordinated

learning across multiple neighborhoods. The Coordinated Multi-Neighborhood Learning
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(CML) algorithm is designed to maximize causal structure learning in targeted neighborhoods

with efficiency and scalability. We do not need to estimate the entire graphical structure, but

instead we limit our attention to only the relevant subgraph, which by definition classifies

CML as a local algorithm. The algorithm first identifies target neighborhoods using existing

Mb estimation methods. We then develop a two-stage constraint-based algorithm. The first

stage consists of two phases, where the first constructs the skeleton of a maximal ancestral

graph (MAG) over the union of target neighborhoods, maintaining ancestral relationships

connecting the distinct neighborhoods. The second phase further prunes edges within each

neighborhood after additional CI tests. Both phases of skeleton recovery follow the hierarchical

CI test ordering from the PC algorithm for efficient constraint-based design. The last stage

involves applying a subset of the complete FCI rules to simultaneously orient edges in all

neighborhoods.

The outline for this chapter is as follows. We will introduce CML and present its important

features in Section 3.3, as well as a brief discussion of a special case of the algorithm where

the target set only includes one node. Then, we will produce some theoretical results

in Sections 3.4 and 3.5, including proofs of consistency and discussions of computational

complexity. We conclude by reviewing the literature of causal effect estimation in Section 3.6,

demonstrating how our algorithm facilitates existing procedures by providing possible parent

sets as inputs. We refrain from discussing empirical results until Chapter 4.

3.3 CML algorithm

In many research scenarios, we can safely assume sufficient background knowledge to identify

a set of target nodes T . These nodes will be designated by the user to learn their local

structures simultaneously, especially to obtain the parent set of each node for causal effect

estimation on other nodes downstream using the back-door adjustment. Our method may

also partially identify the topological relationship among the target neighborhoods in the
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underlying DAG, though this global graph structure is never estimated.

3.3.1 Definitions

We define the set of first-order neighbors of a node i, denoted N1
i , to be its Mb as given in

Definition 9. We call NBi := N1
i ∪ {i} the neighborhood of i. The second-order neighbor

set of node i is the union of the Mbs for each node in its neighborhood, except for nodes

already in NBi, denoted N2
i = ∪j∈N1

i
N1

j \ NBi. For a set of nodes T , the union of their

neighborhoods is denoted NBT = ∪t∈TNBt.

3.3.2 Algorithm details

For the population version of the CML algorithm, we assume perfect knowledge of the CI

relations, or a CI oracle, which will be replaced with appropriate CI tests for the sample

version. We further assume that we are provided with first- and second-order neighbors of

each target node, N1
t and N2

t , respectively, for t ∈ T . For the sample version of CML, we use

existing Mb learning algorithms to estimate the neighbor sets. Following similar notation as

the FCI algorithm, which partitions the node set V = O ∪ L ∪ S, where O is the observed

nodes, L the set of latent nodes, and S the set of selection variables, we define O = NBT ,

the graphically latent nodes L = V \NBT , and S = ∅.

Algorithm 10 outlines the steps of the CML algorithm. For skeleton recovery (lines 1

to 12), we begin with a complete graph over NBT and recursively delete edges based on the

CI oracle, or CI tests in the sample version. However, in order to ensure that edges between

the neighborhoods are properly maintained for coordinating orientations, this stage takes

place in two successive phases. The first phase (lines 2 to 5), the union skeleton recovery

phase, is equivalent to the skeleton learning in the FCI algorithm over O = NBT . Thus,

only subsets of NBT are possible separation sets. Edges between nodes in two different

neighborhoods may be preserved because they are not separated by any subset of NBT .
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Algorithm 10 Coordinated Multi-Neighborhood Learning
1: O ← NBT ; E ← edge set of complete, undirected graph over NBT

2: for (i, j) ∈ E do

3: Search for separating set Sij ⊂ O such that Xi ⊥⊥ Xj | Sij

4: If Sij is found, then update E ← E \ {(i, j), (j, i)}

5: end for

6: Et ← {(i, j) ∈ E : i, j ∈ NBt} for all t ∈ T

7: for t ∈ T do

8: for (i, j) ∈ Et do

9: Search for Sij ⊂ N1
i ∪N1

j such that Xi ⊥⊥ Xj | Sij

10: If Sij is found, then update E ← E \ {(i, j), (j, i)}

11: end for

12: end for

13: Replace each edge with

14: Apply R0 of the FCI algorithm to identify v-structures based on E and Sij

15: Apply FCI rules R1 to R4 and R8 to R10 until none of them apply

16: Modify edge marks within each single neighborhood with rule RN

Consider the two neighborhoods NB3 = {1, 2, 3, 4, 5} and NB8 = {7, 8, 9, 10} in Figure 3.1a.

No subsets of NB3 ∪NB8 m-separate X4 and X9, and thus the edge (4, 9) will remain in the

skeleton in Figure 3.1b, and similarly the edge (2, 9). Note that the two edges correspond to

inducing paths relative to L = {6, 11, 12, 13}. Such between-neighborhood edges will facilitate

coordinated orientation in the second stage of our algorithm.

After this phase, there may be extraneous edges present within each target neighborhood,

such as the edge (1, 2) in Figure 3.1b. During the second phase (lines 6 to 12), the local

skeletons recovery phase, we narrow our focus to one target neighborhood at a time, each

considered separately. Now we make use of the second-order neighbors and search for

separating sets in N1
i ∪N1

j for i, j ∈ NBt to further delete edges within the same neighborhood.
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Figure 3.1: An illustration of the Coordinated Multi-Neighborhood Learning algorithm. (a)

The neighborhoods of two target nodes. The highlighted nodes {X3, X8} are the specified

target nodes, the gray nodes are members of the Mb of one of the target nodes, and the

white nodes are second-order neighbors. (b) Graph after the first phase of skeleton recovery.

Edges in red are between-neighborhood edges and edges in black are within-neighborhood

edges. The edge in blue is removed during the second phase of skeleton recovery. (c) Output

of the CML algorithm. (d) Output of the Single Neighborhood Learning algorithm.

Consider N1
1 = {2, 3, 13} and N1

2 = {1, 3, 13} in Figure 3.1a in order to remove the extraneous

edge (1, 2). Though nodes 1 and 2 could not be separated by a subset of NB3 in the first

phase, they are separated by node 13 in the second phase since 13 ∈ N2
3 . Therefore, the edge

(1, 2) is removed in Figure 3.1c.

By construction every edge between two nodes not in the same neighborhood will remain

connected during the second phase of skeleton recovery. This preserves the potential to

coordinate learning between neighborhoods and ensures that local learning within individual

neighborhoods is maximally informative. For the example we are following in Figure 3.1,

we obtain the skeleton of the graph in Figure 3.1c after line 12 of our algorithm, which still

retains between-neighborhood edges (4, 9) and (2, 9).

After the skeleton recovery stage, we identify v-structures using the stored separation

sets (line 14) and then apply the relevant FCI rules (line 15) discussed in Section 1.5. The
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advantage of our method is illustrated in Figure 3.1. Figure 3.1c shows the CML output,

in which all edges in the two neighborhoods NB3 and NB8 have been oriented and the two

between-neighborhood edges are shown in red. If we were to apply our algorithm to each

of the two neighborhoods separately, then the output graphs would be the two shown in

Figure 3.1d. Because the induced subgraph over NB8 does not contain a v-structure, none of

the four edges are oriented.

After line 15, there may be four types of edges (↔, →, , ) in the estimated

PAG. However, with knowledge of the first- and second-order neighbors, there should be no

bidirected edges between two nodes in the same neighborhood. Consequently, we apply an

additional set of rules (RN) to simplify the edge marks in a neighborhood.

RN : For nodes i and j in the same target neighborhood, convert i j to an undirected

edge i− j, and convert i j to a directed edge i→ j.

The soundness of RN follows from the interpretation of the edge marks in MAGs and the

fact that there are no bidirected edges between pairs of nodes in the same neighborhood. If

i j is within a neighborhood, then the possible orientations are i → j or i ↔ j, but the

latter (bidirected) is excluded, and thus the orientation must be i→ j. This is because we

assume knowledge of N1
t and N2

t and the absence of latent confounders for each neighborhood,

which prevents there being any inducing path between the two nodes. A similar line of

reasoning applies to converting i j to an undirected edge, since this denotes uncertainty

regarding causal direction while denying the possibility of a bidirected edge between nodes

belonging to the same neighborhood.

Remark 10. For a finite sample, a bidirected edge could appear within a neighborhood after

we apply the FCI rules in line 15. In such a case, we also convert it to an undirected edge

to resolve this conflict in a practical way. This is similar to the situation of conflicting

v-structures in learning DAGs.

Remark 11. For each target node t ∈ T , the output graph from CML provides a set of

parents p̂a(t) and possible parents p̂pa(t) (nodes connected to t by an undirected edge) in
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the neighborhood NBt. Once we have these estimates of the target neighborhoods, we can

use existing causal effect estimation procedures such as recursive regressions for causal effects

(RRC) or modifying Cholesky decompositions (MCD) of the covariance matrix to infer causal

effects of interest (Nandy et al., 2017). We discuss this in more detail in Section 3.6.

3.3.3 Single Neighborhood Learning algorithm

As a special case, and for the purpose of illustrating the advantages of our coordinated method,

we consider our algorithm design in the case where there is only one target node. Since we

only consider one target node and its neighborhood at a time, there is no requirement for

ancestral graphs and the rules from the FCI algorithm, which makes this method a modified

version of the PC algorithm applied to a local neighborhood. The Single Neighborhood

Learning algorithm (SNL) is described in the pseudocode provided below in Algorithm 11.

The skeleton recovery stage of SNL is only a single phase (lines 2 to 8), which corresponds

to the local skeletons recovery phase of CML (Algorithm 10, lines 7 to 12). After skeleton

recovery, we orient v-structures and apply Meek’s rules, since we no longer require the extra

rules provided by the FCI algorithm.

In the case where there are multiple target nodes, the algorithm is applied serially to each

target and its neighborhood. Because there is no coordination between the neighborhoods,

we expect there to be fewer directed edges than we find in the CML output. As we mentioned

in Chapter 2, this is similar to the global extension of the G-S algorithm, since we apply

CI tests and a set of deterministic rules over a set of nodes selected by the Mb learning

algorithm to obtain the neighborhood structure and orient some edges. However, SNL uses

Meek’s rules rather than the attenuated G-S rule set, which is usually only applicable to the

global structure, for the subgraph over NBT .

The output of this algorithm given a CI oracle is a PDAG with perfect recovery of the

underlying skeleton and v-structures of the induced subgraph Gt over NBt. Figure 3.1d
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presents the output of SNL over the target neighborhoods for the graph in Figure 3.1a. While

Meek’s rules allow us to properly orient all edges in NB3, we are unable to orient any of the

edges in NB8.

Algorithm 11 Single Neighborhood Learning
1: O ← NBt; Et ← edge set of complete, undirected graph over NBt

2: for (i, j) ∈ Et do

3: Search for subset Sij ⊂ N1
t ∪N2

t such that Xi ⊥⊥ Xj | Sij

4: if a set Sij is found such that Xi ⊥⊥ Xj | Sij then

5: Delete edge (i, j) from Et

6: Store Sij

7: end if

8: end for

9: Identify v-structures based on Et and S

10: Apply Meek’s Rules to further orient edges in Gt

3.3.4 Discussion

Although built upon components of some existing algorithms, Algorithm 10 is far from a

straightforward extension. The first for-loop (lines 2 to 5) considers multiple neighborhoods

as a whole so that later edge orientation (lines 14 to 16) can be done in a coordinated manner.

That is, orientation of one neighborhood may help orientation of another neighborhood

through edges between the two neighborhood (see Figure 3.1c for an illustration). This

step is similar to the skeleton step of the FCI algorithm. In the second for-loop (lines 7

to 12), we further delete edges within each neighborhood to reduce the uncertainty in parent

identification, making use of the estimated Mbs of the nodes. This is similar to the skeleton

learning of the PC algorithm.

From the preceding reasoning, we may conclude that CML is not a simple extension of
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existing work. The skeleton estimation procedure of our algorithm is very different from that

of the FCI, and we also add a few additional rules (line 16) for edge orientation to incorporate

our knowledge of the target neighborhoods in our graph interpretation. A simple modified

PC algorithm for local learning is best embodied in the serial use of the SNL algorithm

(Algorithm 11), which cannot coordinate the results between multiple neighborhoods for

further edge orientation. This is illustrated in Figure 3.1d and consistent with our empirical

results in Chapter 4.

3.4 Theoretical analysis

To perform theoretical analysis of Algorithm 10, we start by defining the ground truth graph

for the multi-neighborhood learning problem. Let G = G(V ) be a DAG over vertex set

V = [p], T ⊂ V be a set of target nodes, and N = NBT be the union of the neighborhoods

of t ∈ T . Then, B = N ×N − ∪t∈TNBt ×NBt is the set of node pairs that do not belong

to any common neighborhood, which is referred to as between-neighborhood pairs. Denote

by GN the induced subgraph of G over N . For each (i, j) ∈ B, if there is an inducing path

between them relative to L = V − N in G, add an edge between i and j to GN with the

following orientation rules: (i) orient as i→ j if i ∈ anG(j); orient as j → i if j ∈ anG(i); (iii)

otherwise, orient as i ↔ j. Denote the resulting graph as G∗N . As an example, if G is the

DAG in Figure 3.1a with T = {3, 8}, then G∗N is the graph in Figure 3.1c.

Assumption 12. In the DAG G, there is no inducing path relative to L between any two

nodes in the same neighborhood NBt, t ∈ T , such that some intermediate node not in L on

the path is in N \NBt.

Lemma 13. Under Assumption 12, the G∗N defined by the above procedure is a MAG.

Proof of Lemma 13. Since GN is an induced subgraph of DAG G, it follows that GN is

ancestral because there are no directed cycles on the graph since GN is a DAG as well. For
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the additional edges in G∗N , it follows from their construction that no directed or almost

directed cycles will be introduced. For any (i, j) ∈ B such that there is an inducing path

relative to L = V −N , if we set i→ j, then it follows that j /∈ anG(i) and j /∈ anG∗
N
(i). If we

set i ↔ j, then i /∈ anG(j) and j /∈ anG(i) by construction, which also implies i /∈ anG∗
N
(j)

and j /∈ anG∗
N
(i). Therefore, G∗N is ancestral since it has neither directed nor almost directed

cycles. (Richardson and Spirtes, 2002) proved that DAGs are maximal ancestral graphs,

and therefore GN is a maximal ancestral graph. After we add directed edges i → j for

(i, j) ∈ B, we still have a DAG and thus preserve the maximality. Furthermore, we would

retain maximality after bidirected edges are added between nodes in distinct neighborhoods.

We prove the last assertion by contradiction. Assume there is an inducing path with non-

adjacent endpoints πI = ⟨α, β, γ, . . . , ϵ, ω⟩ ∈ G∗N . The orientation of the edges on πI is

α β ↔ γ ↔ · · · ↔ ϵ ω, where ∗ is a wildcard which can represent either a tail or an

arrowhead. By Assumption 12, α and ω must be in different target neighborhoods. It is easy

to see that this path πI corresponds to an inducing path relative to L in the original DAG G,

and thus by construction (α, ω) is an edge in G∗N . This leads to a contradiction.

We hasten to note, however, that G∗N is not the MAG obtained from G over N , which is

demonstrated by the removal of the edge (1, 2) in Figure 3.1b. In Figure 3.1a, we observe

an inducing path ⟨X1, X13, X2⟩ relative to {X13}. Since X13 is a second-order neighbor of

target node X3, it will be treated as graphically latent in our algorithm output. That is,

though we use second-order neighbors as potential members of a separating set in the second

phase of the skeleton recovery portion of our algorithm, we do not invoke the second-order

neighbors in any other portion of structure recovery or in the output. On the other hand,

in the MAG constructed by marginalizing X13, a bidirected edge will be added between X1

and X2. In Figure 3.1a, GN is the sub-DAG over N = {1, 2, 3, 4, 5, 7, 8, 9, 10}, the MAG

over N would have skeleton as in Figure 3.1b, and G∗N is in Figure 3.1c. In terms of the

skeleton, GN ⊆ G∗N ⊆ the MAG. In summary, G∗N is in general a proper subgraph of, and thus

sparser than, the MAG constructed by marginalizing L from the DAG G(V ), which can have
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additional edges in a neighborhood due to inducing paths.

As a consequence of Lemma 13, the Markov equivalence class of G∗N is represented by a

PAG, denoted [G∗N ]. Given the CI oracle, which also can be used to perfectly recover the

neighbor set, or Mb, of any node, we have the following result for the population version of

our algorithm:

Theorem 14. Suppose the joint distribution P (X1, . . . , Xp) is faithful to G. Given the CI

oracle, the graph constructed by Algorithm 10 up to the completion of line 15 is the PAG [G∗N ].

Proof of Theorem 14. We begin by showing that we recover the skeleton of G∗N after the

skeleton recovery stage of our algorithm. Since the distribution P (X1, . . . , Xp) is faithful to G,

conditional independence of Xi and Xj given Xk is equivalent to m-separation of nodes i and

j given set k for i, j ∈ N and k ⊆ N . Therefore, after line 5, all extraneous edges between

neighborhoods are removed, and the edge set E corresponds to the skeleton of the true MAG

over N , which is a supergraph of the skeleton of G∗N . For any t ∈ T and (i, j) ∈ NBt, N1
i ∪N1

j

will be sufficient to remove edges between non-adjacent i, j in G. Then, after having used

second order neighbors within each neighborhood, we obtain the skeleton of G∗N after line 12.

While the correctness of the FCI rules have been shown by Zhang (2008a), we must show

that our use of the rules in the CML algorithm is valid. The rules only depend on the skeleton

and whether a node γ ∈ N is in a separating set Sij (R0 and R4). For any separating set

Sij found in the skeleton recovery stage, let S ′
ij = Sij ∩N . That is, we remove any second

order-neighbors from the separating set. In the application of the FCI rules requiring the

separating set Sij, using S ′
ij instead will lead to the same orientation result since γ ∈ Sij if

and only if γ ∈ S ′
ij for any γ ∈ N . On the other hand, the sets {S ′

ij} are all the separating

sets for the sound and complete orientation of [G∗N ] by the FCI rules. This completes the

proof.

We can further establish structure learning consistency for the sample version of our

algorithm when the CI oracle is replaced by consistent CI tests. Denote by Ĝn the graph
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constructed by Algorithm 10 up to the completion of line 15 given a sample of size n from

P (X1, . . . , Xp).

Theorem 15. Suppose the joint distribution P (X1, . . . , Xp) is faithful to G and we perform

all CI checks in Algorithm 10 using consistent CI tests with significance level αn. Then, there

exists αn → 0, such that P (Ĝn = [G∗N ])→ 1 as n→∞.

Proof of Theorem 15. Based on Theorem 14, we just need to show that both Type I and

Type II errors of the CI tests approach zero as n→∞.

Let pn;i,j|k and p∗n;i,j|k be the p-values for testing the independence between nodes i and

j conditioned on set k using a dataset with n observations and i and j are and are not

separated by k in G, respectively. In the case where i and j are conditionally independent

given k, the Type I error is given by P (pn;i,j|k ≤ αn) = αn.

For easy understanding of the proof, let us assume for now that the joint distribution P

is Gaussian. Due to the faithfulness assumption, for any i and j not d-separated by k in G

there exists a lower bound ρ∗ > 0 for the magnitude of the partial correlation. The Type II

error may be expressed as P (p∗n;i,j|k > αn). In the case where we have Gaussian data, we use

Fisher’s z-transformation of sample partial correlation ρ̂i,j|k. Let Z∗ = 1
2
log
(

1+ρ∗

1−ρ∗

)
. For all

i and j not separated by k, Z∗
n + O(n−1/2) ≤ |Z(i, j;k)|, where Z(i, j;k) = 1

2
log
(

1+ρ̂i,j|k
1−ρ̂i,j|k

)
.

Therefore, we have

P (p∗n;i,j|k > αn) = P (2(1− Φ(|Z(i, j;k)|
√
n− |k| − 3)) > αn)

= P (|Z(i, j;k)|
√

n− |k| − 3 < Φ−1(1− αn/2))

≤ P (|Z∗
n|
√

n− |k| − 3 +O(1) ≤ Φ−1(1− αn/2)).

Note that |Z∗
n|
√
n− k − 3 is on the order of

√
n. We can choose αn → 0 but Φ−1(1−αn/2) =

o(
√
n) as n→∞. Then, both the Type I and the Type II errors go to 0 in the limit.

Similar arguments can be used to prove the result for other distributions with a consistent

CI test.
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With these results, we have shown that our algorithm is sound and complete. Using the

sample version with consistent CI tests, we have consistency with respect to the equivalence

class of the ground truth G∗N . These results for the CML algorithm will hold for any data

distribution as long as a consistent CI test is used.

3.5 Computational complexity

One of the primary benefits of a local algorithm is its improved efficiency, which we seek

to demonstrate. We begin by discussing the complexity of Mb recovery algorithms before

the complexity of CML proper. Though not necessarily the best or most efficient, we first

consider the G-S algorithm as somewhat representative, which uses O(p) CI tests for learning

the Mb of a single node. Thus, the total number of tests for finding the first- and second-order

neighbors is O(p|N |), where |N | is the number of nodes in the union of the neighborhoods.

In our numerical results, we choose to use MMPC for neighborhood estimation. Using this

algorithm, the complexity for the neighborhood estimation stage is O(p|N ||PCmax|ℓmax+1),

where PCmax is the maximum neighborhood size over nodes in N and ℓmax is the largest size

of the tested conditioning sets. Typically, both ℓmax and |PCmax| are small (say bounded by

a constant), which is consistent with our aim of causal discovery for small neighborhoods in

large graphs. In this case, we will find that the number of tests also reduces to O(p|N |).

Let f(k) and g(k) be the respective computational complexities of the FCI and the PC

algorithms on a k-node problem. Then the computational complexity of Algorithm 10 is

bounded by f(|N |) +
∑

t∈T g(|NBt|). In the worst case, the computational complexity of the

FCI and the PC algorithm is exponential in the number of nodes (Spirtes et al., 2000). Clearly,

our local algorithm will achieve substantial computational savings when |N | ≪ p compared

to applying the PC algorithm on all the p nodes. In this local setting, the Mb recovery

algorithm will dominate the rest of the algorithm, though still with reduced complexity

compared to a global algorithm. These conclusions will be further demonstrated with our
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numerical comparisons in Chapter 4.

3.6 Causal effect estimation

Recall that one of the primary aims for our local method is to learn a portion of the underlying

graphical structure sufficient for estimating the causal effects of the target nodes on other

nodes in the graph. We now consider how to apply the output from CML to existing

algorithms for causal effect estimation.

The intervention do-calculus when the DAG is absent (IDA) method (Maathuis et al.,

2009) is used to estimate the total causal effect of a single target node t on another variable

given an equivalence class for the underlying graph structure. From the equivalence class, this

algorithm identifies valid parent sets using a local criterion to verify that no new v-structures

are introduced by the proposed parent set. Let p̂a(t) and p̂pa(t) be the parent set and the

possible parent set (i.e., adjacent nodes connected by an undirected edge) of the target node

estimated by CML, respectively. We may use their algorithm to enumerate all candidate

parent sets P̂A(t) = {p̂a(i)(t) : p̂a(t) ⊆ p̂a(i)(t) ⊆ p̂a(t) ∪ p̂pa(t)} for node t. Let j be the

node on which we are estimating the causal effect of t. Then, for all p̂a(i)(t) ∈ P̂A(t), we

compute the estimate of the causal effect of t on j, assuming the parent set of t is p̂a(i)(t),

and include the result in the multiset Θj
t . In the case where we are considering Gaussian data,

this simply comes from the regression of Xj on Xt and Xp̂a(i)(t). The multiset Θj
t provides a

range of possible values with which we can estimate the causal effect and provide bounds on

the estimate.

However, the multi-neighborhood problem requires an algorithm which can accommodate

multiple target nodes considered jointly. Nandy et al. (2017) proposed the joint IDA algorithm,

a method which generalizes IDA for causal effect estimation such that researchers may estimate

causal effects under multiple simultaneous interventions T , where |T | > 1. In order to make

this extension, the combination of parent sets cannot be simply extracted from the estimated
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graph using the same local criterion as in IDA. Each parent set has to be jointly valid in

the equivalence class of the true graph. Additionally, rather than simply using regression

with covariate adjustment as in IDA, the authors propose a new set of estimation methods,

recursive regressions for causal effects (RRC) and modifying Cholesky decompositions of the

covariance matrix (MCD). RRC uses a recursive formula to transform the results from local

regressions into elements of the total joint effect. Since there will be multiple possible parent

sets for each local regression, there will also be a multiset of total joint effects from which

we can bound the effect we are attempting to estimate. In the second method (MCD), the

Cholesky factorization of the covariance matrix is recursively calculated, rearranged for each

target node and its parent set, and modified until the procedure is completed for each target

node. Upon completion, the modified covariance matrix can be used to easily calculate the

total joint effect for each target node on another node j. These procedures can be applied

to each jointly valid possible parent set from DAGs which are members of the estimated

equivalence class, and each estimated total joint effect may be inserted into the multiset, just

as in IDA. See Sections 3.1 and 3.2 in the work of Nandy et al. (2017) for a more detailed

description.

From the description of these algorithms, we can see that CML, in principal, learns a

sufficient subset of the structure for causal effect estimation. Moreover, because we use

coordinated learning, CML offers greater specificity for the possible parent sets of the target

nodes, which in turn reduces uncertainty in the inferential procedure by reducing the size of

the causal effect estimation multiset.

3.7 Extensions

To this point, we have only considered Gaussian datasets and Fisher’s z-transformation of

the partial correlation for CI testing. However, CML may also use different kinds of data

and CI tests, which we discuss briefly in this section.
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For continuous datasets, continuous conditional mutual information (Runge, 2018) is

another option as a statistic for CI testing, as are kernel-based methods such as the Kernel-

based Conditional Independence test (KCI-test), which is computationally efficient and easy

to use (Zhang et al., 2011).

To generalize our algorithm for discrete datasets, we need only substitute an appropriate

CI test for the data we are considering. The G2 statistic, a log-likelihood ratio test which

has a limiting chi-square distribution, is a typical choice (Aliferis et al., 2010a; Schlüter,

2012). Pearson’s χ2 test is another potentially suitable option. However, these tests are

often impractical because they have high sample complexity (Marx and Vreeken, 2019).

Conditional Mutual Information (CMI) is another test frequently used in practice, though it

may lead to spurious dependencies and related practical issues depending on the threshold

value (Zhang et al., 2010). Marx and Vreeken (2019) suggested a new test, the Stochastic

complexity based Conditional Independence criterium (SCI), which deals with the problem

of sample complexity due to limited available data by taking the size of the distribution into

account within the test. Its empirical performance shows improvement in accuracy compared

to alternative tests, especially for smaller sample sizes.

3.8 Conclusion

The method we present is novel and introduces a general framework which can coordinate

learning even across disjoint neighborhoods, retaining the efficiency of a local method while

increasing the capacity for encoding CI information in the output. The CML algorithm is

perfectly suited for researchers who wish to ask causal queries for a small subset of target

nodes without the computational cost of a global structure learning algorithm. Moreover, we

demonstrate that, over the union of the target neighborhoods, CML is sound and complete for

the novel ground truth graph we define, and also provides more structural information than

if we were to consider each neighborhood individually and without coordinating the learning
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between them. We accomplish this in the algorithm in multiple stages: using available Mb

learning algorithms to obtain the local neighborhood nodes for each target, then recovering

the skeleton using a hierarchical testing strategy from the FCI and PC algorithms which

preserves between-neighborhood edges, and finally orienting as many edges as possible using

the augmented rule set for the FCI algorithm. We also consider some of the primary benefits

of our algorithm, such as the improvement in computational complexity where the size of the

neighborhoods is small compared to the number of nodes in the entire network. In addition,

we examine the potential for improved performance by using the output from CML for causal

effect estimation, since it is optimally suited for existing estimation algorithms, given local

learning constraints, by specifying a higher proportion of the targets’ parent sets. In the next

chapter, we will further demonstrate these conclusions with numerical comparisons of CML

with other global and local algorithms using simulated and real-world data.
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CHAPTER 4

Numerical Results and Applications

4.1 Preliminaries

Along with motivating and introducing CML in Chapter 3, we made specific claims about

its advantages in comparison to other existing local and global algorithms. In the following

analysis, we will empirically verify those claims using both simulated and real-world datasets.

First, we seek to demonstrate that, for the multi-neighborhood problem, CML is com-

petitive with other algorithms with respect to learning the local structures of the target

neighborhoods. Next, we will consider whether CML achieves its primary objective by opti-

mally identifying the parent sets of the target nodes with greater accuracy and specificity than

the alternatives. We also will examine the efficiency of our method to ensure its improvement

in comparison to global methods while remaining competitive with a local algorithm that

does not coordinate learning between neighborhoods (SNL). Finally, we will conclude the

empirical analysis of the simulated datasets by examining CML in greater depth and provide

preliminary advice for practical usage.

Following the empirical analysis using synthetic datasets, we will continue our numerical

study by applying the structure learning methods to a gene expression dataset. Here, since

the size of the dataset is large, we expect to find a significant reduction in runtime for our

local methods while the fitted models are largely comparable to those formed from the global

output. Moreover, we anticipate the CML algorithm to orient more edges and identify more

target parents than the SNL algorithm, thus demonstrating the value of coordination.
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4.2 Experimental results

4.2.1 Parameter settings

The algorithm we have discussed is flexible such that it can be used for any data faithful to

the underlying DAG. For our simulations, however, we assume a linear SEM with independent

Gaussian errors (denoted εj) for [Xj | XpaG(j)]:

Xj =
∑

i∈paG(j)

βijXi + εj, j ∈ [p]. (4.1)

For our analysis, we simulate data from 13 networks provided by the bnlearn network

repository (Scutari, 2010). The SEM coefficients are drawn from the Unif(0.4, 0.75) dis-

tribution, multiplied by a sign term with equal probability of being positive or negative.

We also generate error terms from N(0, σ2
j ) with σj drawn from Unif(0.1, 0.5). With these

parameters, we randomly generate datasets of size n ∈ {500, 1000, 10000}. To estimate Mbs

and obtain first- and second-order neighbors for each target, we use the MMPC algorithm

from the MXM package (Tsamardinos et al., 2003a). For both the Mb estimation and

skeleton recovery steps, we use significance levels (αMb, αskel) ∈ {0.01, 0.05, 0.1}2, where αMb

is used for the Mb recovery algorithm and αskel is the significance level for the CI tests in

CML skeleton recovery. These elements together form a unique parameter setting, which is

composed of a network, dataset size, Mb estimation algorithm, and significance level pair.

For each setting, three datasets are generated with unique randomly drawn coefficients and

error variances.

For each network, we randomly select a set of target sets of varying cardinality ranging

from two to four nodes from the entire vertex set. These target sets are used in each parameter

setting for the network. After generating each dataset, we ran the global PC algorithm one

time, using the implementation from the pcalg library (Kalisch et al., 2012). For additional

comparison on each target set, we also ran SNL along with CML. Recall that we may consider

SNL an augmented version of global G-S applied to the subgraph over the neighborhoods of
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multiple targets, and for our purposes represents the extension of any single Mb algorithm to

the multi-neighborhood problem. Both SNL and CML are applied on all datasets, and once

for each target set. For our analysis, we use the MMPC algorithm to estimate the first- and

second-order neighbors for each target node, applying the aforementioned additional CI tests

to recover spouses belonging to the first-order neighbor sets. We also filter our results by the

number of nodes in target neighborhoods and the number of estimated edges to ensure that

we are only considering relatively sparse, smaller neighborhoods. In the analysis below, we

only use target sets such that the total number of nodes under consideration, according to

the subgraph of the ground truth CPDAG, is in the set [8, 20], and the number of edges is in

the set [3, 20]. We further filter the simulations to only include αMb = 0.01 since this was the

optimal choice for MMPC across different datasets according to F1 score.

Let G′ be the CPDAG of DAG G, and G′
NBT

be the induced subgraph of G′ over NBT

for a given target set T . For each estimated setting and target set, we compare the estimated

graph to G′
NBT

, since this represents the maximal amount of information which is not

underdetermined and in principle recoverable by a global structure learning algorithm, say

the PC algorithm, to which we are comparing our local method. We consider this to be the

ground truth against which we measure the performance of our algorithms. We measure the

subgraph of the PC algorithm output over NBT against the ground truth as well in order to

compare our local method with a global algorithm.

The summary statistics in Table 4.1 provide details about the simulations used for the

empirical study. For each parameter setting, we provide results from as many as three

datasets, with some settings showing incomplete results due to excessive computation time

requirements for some datasets. The last four columns represent the number of target sets

of each cardinality we use in our analysis. For example, in the first row, we consider nine

different settings (i.e., combinations of αskel and n) for the insurance network, which entails

that we produce 27 datasets. Given the neighborhood filtering criteria stated above, we

consider six target sets with |T | = 2, yielding 162 total simulation results.
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Table 4.1: The simulations we produce for our empirical analysis. Each network from the

bnlearn repository is listed and sorted by increasing network size. The number of settings is

the amount of combinations of significance levels for the CI tests and sizes of the datasets.

The remaining columns represent the total number of simulations we produce for target sets

of cardinality ranging from two to four for each network (Nsims;|T |=x).

Network p Num. Settings Nsims;|T |=2 Nsims;|T |=3 Nsims;|T |=4

insurance 27 9 162 108 0

mildew 35 9 189 189 27

alarm 37 9 135 189 189

barley 48 9 135 135 54

hepar2 70 9 81 81 108

arth150 107 9 51 39 60

andes 223 9 81 162 27

diabetes 413 9 183 158 131

pigs 441 8 46 82 74

link 724 9 162 108 108

munin2 1003 9 96 154 131

munin4 1038 9 98 143 118

munin3 1041 7 118 110 117

4.2.2 Partial correlation tests

In the sample version of our algorithms, we calculate sample partial correlations to infer

CI relationships. The sample partial correlation ρ̂i,j|k can be calculated in various ways,

and in our implementation we use the well-known function of elements from the inverted

submatrix of the covariance matrix over the variables corresponding to nodes in {i, j} ∪ k.

Upon obtaining ρ̂i,j|k, we can test whether or not nodes i and j are conditionally independent

70



by carrying out the following hypothesis test:

H0 : ρi,j|k = 0

Ha : ρi,j|k ̸= 0

To test this, we apply Fisher’s z-transformation to obtain the sample statistic Z(i, j;k) =

1
2
log
(

1+ρ̂i,j|k
1−ρ̂i,j|k

)
, since

√
n− |k| − 3[Z(i, j;k)] ∼ N(0, 1).

4.2.3 Adapting P/C algorithms for Mb learning

For the Mb recovery stage, one may use a P/C recovery algorithm, such as MMPC, along with

additional CI tests to obtain the spouses belonging to each target’s first-order neighbor set.

In order to extend a P/C algorithm to identify spouses of target nodes, we require knowledge

of the P/C sets for each node in the P/C set of the target node. This fits naturally with CML,

since we must obtain second-order neighbors for the second phase of skeleton recovery. Then,

there are various techniques to identify spouses from those additional P/C sets. One may

simply identify spouses as those nodes in other P/C sets which are dependent on the target

conditioned on the target’s P/C set. This only requires one CI test for each potential spouse,

and it is the strategy we use in our empirical study. Other methods involve running additional

tests for a selection of proper subsets of the target’s P/C set to be used as conditioning sets to

verify if a potential spouse should still be retained in the estimated Mb set. This is a slightly

different approach than that of the HITON-MB algorithm, which includes all second-order

neighbors in the candidate Mb set before searching for separating sets to remove non-spousal

nodes (Aliferis et al., 2003). The HITON search is more comprehensive, but we can afford to

be more permissive here, since any false positives will be dealt with during skeleton recovery

in CML. However, the second-order P/C sets are not sufficient to remove every possible kind

of extraneous edge during the second phase of skeleton recovery, which entails that the local

algorithms may lose some accuracy when using augmented P/C recovery algorithms, a small

tradeoff for a slight reduction in complexity.
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Figure 4.1: Comparisons between the global and local algorithms with respect to accuracy.

The distributions of (a) F1 scores and (b) Structural Hamming Distances (SHDs) across

different combinations of network sizes and CI test significance levels.

4.2.4 Overall accuracy

The Overall F1 score measures how well the edge set of the estimated graph precisely conforms

to that of the ground truth graph, and is given by F1 = 2TP
2TP+FP+FN+IO

, where TP , FP ,

and FN are the number of true positives, false positives, and false negatives, respectively.

The last term, IO, denotes the number of edges in the estimated graph which have incorrect

orientation with respect to the ground truth graph. These errors are distinct from false

positives and false negatives because the adjacency relations are still correct for edges with

incorrect orientation. In Figure 4.1a, we compare our method to the global PC algorithm

as well as to SNL applied to each target node. In terms of overall performance, the CML

algorithm is superior to the other methods in both smaller (top panels, p < 100) and larger

networks (lower panels, p ≥ 100). For example, the median F1 score of the CML algorithm is

159% higher than that of the global PC algorithm, using significance level αskel = 0.01.

The same conclusion is drawn when using the Structural Hamming Distance (SHD) as the

measure of structure learning accuracy, since the SHD measures the number of errors of the

estimated graph compared to the ground truth. Figure 4.1b provides evidence of improvement
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in structure learning for the local algorithms, since both CML and SNL typically have fewer

errors.

Along with improvement in median performance, the local algorithms also show less

variation in their performance than the global PC for larger networks, which may be observed

by the smaller interquartile range in the results across the lower panels. The local algorithms,

and CML in particular, show greater consistency and accuracy than the global algorithm

for the multi-neighborhood problem when considering larger networks. This verifies our

contention that the primary benefits of our local method will be primarily for the high-

dimensional setting.

Both plots in Figure 4.1 provide summaries of accuracy measurements on the subgraph of

the CPDAG over a narrowly considered set of nodes, namely NBT from the true CPDAG.

With respect to general local structure recovery, the evidence from this study clearly favors

the use of local algorithms.

4.2.5 Parent recovery
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Figure 4.2: The distributions of the parent recovery accuracy F1 scores for different network

size and significance level combinations. (a) The loose F1 score; (b) The strict F1 score.

One of the primary goals of our work is to identify as many parents of the target nodes
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as possible, since this would reduce the uncertainty in parent set adjustment for estimating

causal effects. Therefore, beyond structural conformity to the ground truth graph, it is of

special interest to examine how well our algorithm performs in target node parent recovery.

Here, the parents of a node are defined by directed edges into this node in the true CPDAG,

since these are the identifiable parents with observational data alone.

In Figure 4.2, we compare the parent recovery accuracy (PRA) of the different algorithms

using the F1 score of the estimated parent set with respect to the true parent set. The

PRA F1 score is given by F1 = 2TP
2TP+FP+FN

where TP , FP , and FN are the number of

true positives, false positives, and false negatives for the estimated parent set, respectively.

The F1 score is considered under two different principles for counting. The loose version

of the score, used in Figure 4.2a, counts an estimated undirected edge between a parent

and the target node in the true CPDAG as a true positive, while the strict version, used

in Figure 4.2b, counts such an edge as a false negative. Considering again the example in

Figure 3.1, suppose we call the CPDAG of the DAG in Figure 3.1a G′ and denote by G′
NBT

its induced subgraph over NBT , where T = {3, 8}. The ground truth graph, G′
NBT

, will be

equivalent to the graph in Figure 3.1c without the red edges. Suppose we are considering

the SNL output, depicted in Figure 3.1d. For T , the identifiable parents to be recovered are

paG′
NBT

(3) ∪ paG′
NBT

(8) = {1, 2, 9}. The SNL output correctly identifies parent edges (1, 3)

and (2, 3), along with placing an undirected edge between nodes 8 and 9. Under the loose

version of the score, we count the undirected edge between nodes 8 and 9 as a true positive,

thus assigning the SNL output a PRA F1 score of 1. Under the strict version of the score,

however, the undirected edge does not count, and the SNL output receives a score of 2/3.

Distinguishing the results in two sets of scores allows us to consider how well an algorithm

performs in finding possible parents (loose) as well as in providing greater specificity to the

possible parent set with correctly defined invariant parent edges (strict).

In considering the results, we first note that the CML algorithm is consistently better

than the PC algorithm in identifying parents of the target nodes for all settings. This shows
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that the accumulation of errors in global learning will deteriorate structure learning for

strictly local problems. Second, the differences between the two sets of plots in Figure 4.2

imply that the CML algorithm correctly orients far more directed edges than SNL. Consider

as an example the results for p ≥ 100 with significance level 0.01. In the loose PRA F1

score, the SNL algorithm narrowly outperforms the CML algorithm when comparing the

reported percentiles. However, in the strict version of the score, the SNL algorithm performs

significantly worse than the CML algorithm and even the PC algorithm. In fact, apart

from a few isolated cases, all of the PRA F1 scores for the SNL algorithm are 0 under the

strict definition. This is expected and confirms our discussion about Figure 3.1 since, in the

SNL algorithm, the orientation of edges in one target neighborhood has no influence on the

orientation of edges in another neighborhood when those neighborhoods do not share nodes.

Consequently, the SNL algorithm fails to orient as many edges as the CML algorithm, which

has the advantage of inferring additional orientations with ancestral information between

neighborhoods.

The results in Table 4.2 give further insight into the performance of the CML algorithm.

The table provides the average parent recovery performance statistics across all target sets

and parameter settings for all networks, which are organized in order of increasing size. As

we move down the table, we can observe a general trend of improved performance for the

larger networks. Moreover, this table helps give an idea of the number of parents we expect

to recover with CML under the conditions of our simulations. For example, if we consider the

average target set for network munin2, which for simplicity we will say has two parent nodes,

the average recall statistic informs us that we can usually expect to recover at least one of the

parents. This is under the strict definition of recovery, where undirected edges do not count.

In comparison to the global PC algorithm, the local algorithms each perform significantly

better in parent recovery under the loose definition of the PRA F1 score. However, this speaks

primarily to the success of the Mb recovery algorithm in identifying the correct node sets for

the target neighborhoods. To reduce the uncertainty of our causal effect estimates, we need
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Table 4.2: Summary of parent recovery metrics for CML averaged across all datasets, settings,

and target sets used for each network in the simulation study. PRA scores are reported

using strict edge counting principles (i.e., only directed edges in the estimated graph may be

counted as true positives).

Network Avg. Num. of Parents Max. Num. of Parents Avg. PRA Recall Avg. PRA F1

insurance 1.38 5 0.36 0.28

mildew 1.93 8 0.67 0.71

alarm 2.99 9 0.54 0.59

barley 2.45 7 0.43 0.48

hepar2 4.55 11 0.24 0.30

arth150 1.47 7 0.34 0.32

andes 2.80 8 0.66 0.64

diabetes 3.06 8 0.63 0.67

pigs 3.06 8 0.65 0.67

link 2.56 6 0.45 0.46

munin2 2.16 6 0.55 0.51

munin4 2.70 7 0.53 0.58

munin3 2.73 6 0.47 0.50

to see greater specificity in defining the parent set with oriented edges into the target nodes,

which we hope to achieve with the additional rules of coordinated local learning. We see this

advantage in the strict definition of the score. While the SNL score completely diminishes

under this score’s restriction, the CML algorithm continues to significantly outperform its

competitors with only mild decreases in accuracy compared to the loose score. With causal

effect estimation in mind, we can clearly observe the significant benefits of a coordinated

learning algorithm to estimate the parent sets for multiple target nodes.
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Figure 4.3: Comparisons between the global and local algorithms with respect to complexity.

The distributions of (a) runtime and (b) number of CI tests used for different network sizes

on a log scale.

4.2.6 Algorithm complexity

Another key contribution of local algorithms in general, and CML in particular, is the

improved computational efficiency compared to global algorithms, especially as the size of the

network increases. In Figure 4.3a, we find that the computing runtime of the local algorithms

significantly improves in comparison to the PC algorithm, and the difference increases as the

size of the network increases in magnitude. While the gains are modest for smaller networks,

the median compute time drops by more than one order of magnitude for the largest networks

when switching from a global to a local method. The rate of runtime increase is much slower

for the local algorithms than for the global algorithm.

Additionally, since the computation of all three algorithms is dominated by CI tests, we

use the total number of tests performed as a complementary metric to measure computational

cost. As demonstrated in Figure 4.3b, the number of CI tests executed sharply decreases for

the local algorithms when compared to the PC algorithm. For networks with more than 100

nodes, we observe a reduction of nearly two orders of magnitude in the median number of CI

tests. This shows a similar pattern of improvement to the actual runtime of the complete
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algorithms. We note that Figure 4.3b only includes the number of CI tests used in the skeleton

recovery portions of the local algorithms, since we had difficult in extracting the exact number

of tests from the Mb recovery method. However, per our discussion in Section 3.5, we can

assume that the complexity of a Mb recovery algorithm is O(|N |p), where N is the union of

the neighborhood sets and p is the size of the network. Assuming that |N | is bounded by

a constant, visual inspection allows us to safely conclude that the difference in the number

of CI tests between the local and global algorithms will not be substantially altered by the

addition of Mb recovery CI tests, as the distribution of tests for the PC algorithm is clearly

much greater than log p.
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4.2.7 Equivalence class accuracy
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Figure 4.4: Comparison of algorithms with respect to their accuracy in recovering the skeleton

and v-structures of the underlying graph. The ground truth does not include any nodes

outside the target neighborhoods, even if included in the local algorithm output.

Another advantage of a local algorithm is that, compared to a global algorithm, a local

method is less likely to be affected by the propagation of errors from other parts of the

estimated graph. Figure 4.4 demonstrates this phenomenon in the recovery of v-structures.

Recall that the skeleton and v-structures are essential to defining an equivalence class of

DAGs. Consequently, each algorithm uses a v-structure orientation step as part of its overall

orientation strategy. Accurate v-structure orientation requires both the correct unshielded

triple and the correct separating set, at least to the extent that it properly excludes the node
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which both edges are into. The first of these requirements, an accurate skeleton, seems to

be fairly evenly met by all algorithms, as seen in Figure 4.4a. In fact, the global algorithm

slightly outperforms the local algorithms in skeleton recovery accuracy according to the F1

score.

However, in Figure 4.4b, we find that the local algorithms vastly outperform the global

PC algorithm in v-structure orientation. This may be due to CI testing errors providing the

wrong separating sets or due to conflicting v-structure orientation decisions from other nodes

in the graph. Figures 4.4c and 4.4d show evidence that both false negatives and false positives

are substantial components of the overall error. While CML does not always correctly identify

even more than half of the v-structures in the underlying graph, as shown in Figure 4.4c,

the results in Figure 4.4d confirm that the algorithm is quite precise in correctly identifying

those unshielded triples which are truly v-structures. The PC algorithm, on the other hand,

produces neither a good recall score nor a high precision in its estimate.

These results further bolster our motivation for using coordinated local learning. Along

with the unnecessary computation requirements, global algorithms frequently lead to unnec-

essary errors as well. Moreover, though we are coordinating learning from different parts of

the graph, which has the potential to propagate errors as well, we find minimal divergence in

v-structure recovery performance from SNL to CML. Thus, CML retains the advantages of a

local algorithm while having the potential for additional edge orientation, a characteristic

benefit of a global algorithm.

4.2.8 Practical considerations

In the interest of practical guidance, we will take a closer look at possible sources of error

for CML and attempt to draw some principles for selecting setting parameters. While each

decision comes with some trade-offs, our results do provide some clear guidelines for choosing

significance levels.
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Figure 4.5: False positives in (a) Mb learning and (b) skeleton estimation. False negatives in

(c) Mb learning and (d) skeleton estimation. Graphs are ordered by different combinations

of network size and Mb algorithm significance level. Graphs (b) and (d) only consider

simulations with αskel = 0.01. Some outliers are removed.

First, in selecting the Mb recovery algorithm significance level, we must acknowledge the

asymmetry in the importance of the kinds of error which come from the algorithm output.

That is, a false negative is far more consequential than a false positive with respect to selecting

the Mb for the target nodes. While a false positive may be properly removed during the

skeleton recovery stage of CML, there is no way to recover edges involving nodes which are

not selected during Mb estimation. Thus, we can afford to be more permissive in Mb recovery,

since errors from lenient selection rules may be corrected later in the algorithm. This may be
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clearly seen in Figures 4.5a and 4.5b. In Figure 4.5a, for the case considering larger networks

and the highest Mb learning significance level (plot in the second row, third column), we

frequently observe more than 10 nodes falsely included in the Mb for larger neighborhood

sets. After skeleton recovery, however, in most cases we observe only a few false positive edges

for the larger Mb significance level without any major differences in performance compared

to the smaller Mb significance levels. However, if Mb selection is too permissive, then the

neighborhoods may become too large, which will mitigate the advantages of our local method

by increasing the runtime and generating errors in defining the separating sets. If one chooses

to be more permissive in Mb selection, it is prudent to balance this decision with a more

restrictive threshold for skeleton estimation.

On the other hand, false negatives from Mb estimation provide a hard floor for false

negatives in skeleton estimation, for the simple reason that an edge cannot be present where

at least one of the nodes is not included in the graph. In Figure 4.5c, we did not encounter

many false negatives across all theresholds, but wherever there are false negatives in Mb

recovery, we are guaranteed at least that many false negatives in skeleton recovery, which is

reflected in the higher false negative values found in Figure 4.5d.

The selection of significance thresholds depends on many factors such as the research

domain, the characteristics of the particular use case, and the Mb algorithm. While each

of these considerations demand considerable attention, the present discussion elucidates the

balance which must be held in the relative difference between the significance thresholds.

The Mb recovery significance level should be set to achieve a high recall, and with less of an

emphasis on precision. The skeleton recovery significance level must aim for overall accuracy,

and should be properly determined to offset the errors from Mb recovery.
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4.3 Discussion

For estimating the causal structure in local neighborhoods and facilitating the estimation

of causal effects of specified target nodes, the CML algorithm is a sound algorithm with

demonstrable empirical benefits. Compared to existing methods, this algorithm is more

efficient and scalable while maintaining a degree of accuracy comparable to or better than

global methods. Though in this work we only conducted empirical analysis on Gaussian

data, this method is more broadly applicable to different kinds of data and DAG models. A

future direction of research is to observe the performance of our algorithm with simulated and

real-world data from different distributions. Along similar lines, another potentially fruitful

research direction would consider modifications to our algorithm for the use of experimental

data with interventions.

4.3.1 Code

The code written to produce this simulation study is located in two online repositories for

review. The first repository contains the source code for the R package which implements

the CML and SNL algorithms in C++ using Rcpp. The package may be found at http:

//github.com/stephenvsmith/CML. The other repository contains the R script files and

instructions for reproducing the simulations of our study. These scripts may be found at

http://github.com/stephenvsmith/CML-Scripts.

4.4 Gene expression data

In this section, we apply our algorithm to the data collected in (Yao et al., 2021) which profiles

approximately 1.3 million cells of the adult mouse isocortex and hippocampal formation

(HPF). The isocortex is part of the cerebral cortex, covering many sensory functions and

primary and secondary motor areas. HPF is a structure composed of multiple parts with
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interconnected neurons forming a network related to and foundational for learning, memory,

spatial navigation, and emotional regulation.

We apply our method to model local structures in a network where each variable represents

the gene expression level of a particular cell. The data provides information from isolated

cells processed for RNA sequencing using SMART-Seq v4. Only a subset of the available

data will be used for our analysis, and the cells are conveniently catalogued over the isocortex

and HPF in a manner which is strongly correlated to the spatial relationship of the cells,

making one of these subsets a natural choice. As in the work of Ruiz et al. (2022), we consider

the glutamatergic cells from the primary visual cortex, which contain a wide and diverse

selection of cell types, and we further limit our data to cells for which injection materials are

not specified. This selection reduces the number of cells from 74,973 to 7,159. Furthermore,

we remove genes for which less than half of the cell expression levels were nonzero, of which

many have expression measurements of exactly 0 for all cells. This reduces the number of

genes from 45,768 to 10,012, which are taken across the 7,159 cells.

4.4.1 Data setup

In order to further reduce the number of genes under consideration, we calculate the coefficient

of variation (CV) for each gene by measuring the ratio of the standard deviation to the

mean for the expression levels across all cells. The median CV of all genes is 1.06. We then

filter our dataset by removing all variables with CV less than 1.5, which leaves 1,883 genes

remaining. Next, we take a random sample of 50% of cells for use in our analysis, so that our

final dataset is 3,579×1,883.

To identify target genes, we begin by applying the MMPC algorithm to identify the P/C

set of each remaining gene. Figure 4.6 gives an idea of the size of neighborhoods we will be

considering for our algorithm, and we use these results to guide our choice of targets so that

we limit the size of the target neighborhoods.
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Figure 4.6: The distribution of sizes for estimated P/C sets for genes with the highest CV

values. We use the MMPC algorithm and a threshold of αMb = 0.001.

As demonstrated in Figure 4.6, there are very few genes with small P/C sets, and many

of the P/C sets are very large. In selecting our targets, we choose from a pool of nodes with

estimated P/C sets of cardinality less than 15. Furthermore, because we are more interested

in distant or disjoint neighborhoods, we remove any nodes from the target candidate pool

which contain another potential candidate within their neighborhood. Upon completing this

step, we obtain our pool of qualified potential target nodes. In order to judge performance

with different target set sizes, we take a random selection of two sets of targets for each target

set size |T |, where |T | ∈ {2, 3, 4, 5}.

4.4.2 Parameter settings

Using a similar procedure as we did for the synthetic data, we will examine different parameter

combinations to compare the performance between the algorithms, and we refer to these

unique parameter combinations as settings. Setting parameters for the local algorithms

still consist of the significance thresholds for the Mb and skeleton recovery algorithms, αMb

and αskel, and the maximum potential separating set size, ℓmax. Each setting is defined by
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these parameters. Since CML and SNL are in the same class of algorithms, they use the

same settings θlocal = (αskel, ℓmax, ℓmax), where θlocal ∈ {10−5, 10−4} × {10−3, 10−2} × {3, 5}.

However, because the PC algorithm does not use Mb learning for pre-processing, it uses its

own parameter settings given by θglobal = (αskel, ℓmax), where θglobal ∈ {10−6, 10−5} × {3, 5}.

This yields 20 total combinations of algorithms and settings.

4.4.3 Cross-validation procedure

Since we use cross-validation (cv) to identify an optimal algorithm and setting, we randomly

assign the 3,579 cells to 10 different sets of roughly equivalent size. Our cv procedure uses 10

folds, where each fold will be a held-out set used as the “testing data” to evaluate the model

trained on the other nine folds. The results we present are generated using the held-out fold

score on the “training set” models for all 10 folds, which provide the basis of comparison for

the different algorithms across various settings.

For each fold of our cv procedure, we run the algorithms using data from the remaining

nine folds, or the “training data,” in order to learn the local structures around the target

nodes, and then we calculate the model performance on the “testing data.” That is, let D

represent the entire dataset and suppose we are considering setting i. We partition the data

D = (D1,D2, . . . ,D9,D10). For cv fold j, we define the “training set” as Dtrain;j = D−j =

(D1,D2, . . . ,Dj−1,Dj+1, . . . ,D9,D10) and the “testing set” is Dtest;j = Dj.

Using Dtrain;j = (X
(−j)
1 ,X

(−j)
2 , . . . ,X

(−j)
p−1 ,X

(−j)
p ), where p is the number of genes we are

considering and X
(−j)
k contains the expression levels of gene k for all cells excluding those

in the jth fold, we run CML and SNL for target nodes T and obtain the estimated local

structure, denoted G
(j)
T . In addition, we run the PC algorithm once for each fold and obtain

the estimated structure G(j) over the entire node set, from which we extract the relevant

subgraphs G(j)
T for each node set T . For each algorithm, we then collect the estimated parent

set in G
(j)
T for each target node, p̂a

G
(j)
T
(T ) = ∪tm∈T p̂a

G
(j)
T
(tm), which we use to estimate the
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SEM. For simplicity of notation, we also write p̂a
(j)
T (tm) := p̂a

G
(j)
T
(tm).

In order to compare the results of our estimates, we use the cell-adjusted log-likelihood

for the held-out fold, denoted Dtest;j = (X
(j)
1 ,X

(j)
2 , . . . ,X

(j)
p−1,X

(j)
p ), where X

(j)
k contains the

expression levels of gene k for cells in the jth fold. To compute this metric, we first estimate

the SEM models for each of the target nodes tm ∈ T using OLS regression of X
(−j)
tm on

X
(−j)

p̂a
(j)
T (tm)

, or the gene expression levels for all cells excluding those in fold j for the parents of

target tm in the estimated graph for target set T , which we rewrite as X
(−j)
m;T . This regression

gives us estimates β̂
(−j)
0m;T , the intercept of the model, and β̂

(−j)
m;T , the model coefficients. We

also obtain the standard error,

σ̂
(−j)
m;T =

(
1

n−j − |p̂a(j)T (tm)| − 1
||X(−j)

tm − β̂
(−j)
0m;T1n−j

−X
(−j)
m;T β̂

(−j)
m;T ||

2
2

)1/2

, (4.2)

where n−j denotes the number of cells in Dtrain;j and 1η is a vector of ones of length η ∈ R.

If there are no estimated parents, then we report the normalized total sum of squares. Using

these results, we can compute the cell-adjusted log-likelihood on the held-out fold as

ℓℓ
(j)
T =

1

nj

|T |∑
m=1

[
−nj

2
log
(
2π(σ̂

(−j)
m;T )

2
)
− 1

2(σ̂
(−j)
m;T )

2
||X(j)

tm − β̂
(−j)
0m;T1nj

−X
(j)
m;T β̂

(−j)
m;T ||

2
2

]
, (4.3)

where nj is the number of cells in Dtest;j. We can now use the distribution of cell-adjusted

log-likelihood across all cv folds to determine the optimal settings and compare the different

algorithms.

However, this basis of comparison is limited in scope, since it automatically excludes nodes

which are connected to the targets by an undirected edge. Consequently, in addition to using

the estimated parents to evaluate the local learning methods, we also find the maximum-sized

set of jointly valid parents, or the maximized parent set, from the estimated graph and

recalculate the cell-adjusted log-likelihood with the new parent set. This helps broaden the

perspective of comparison, since both results provide a range of possible values given the

graphical output.
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The primary challenge in this task is to find the set of possible parents which are jointly

valid. Within the estimated equivalence class, we can only use those graphs which do not

introduce any new v-structures other than those already specified by the directed edges in

the output. That is, a subset of the undirected edges in the skeleton which were not oriented

by the algorithm’s rules can only be directed and considered jointly valid if they do not form

a new v-structure. In the following discussion, we will give an outline of the steps we take to

obtain the maximized parent set.

Algorithm 12 Identifying the maximized parent set
1: Input: graph G, target set T

2: Let Nv be the number of v-structures in G

3: Identify the set of possible parent ordered pairs p̂papair(T ); set Nppa = |p̂papair(T )|

4: for i = Nppa, Nppa − 1, . . . , 0 do

5: for every ppamax ⊆ p̂papair(T ) of size i do

6: Set G̃← G

7: for all (j, t) ∈ ppamax do

8: Orient j → t in G̃

9: end for

10: if the number of v-structures in G̃ is Nv then

11: Output: G̃

12: end if

13: end for

14: end for

15: Output: Original graph G

After the initial estimation of the local structure, we obtain the initial parent set of

ordered pairs p̂apair(T ) := {(i, t) ∈ N ×T : i→ t}. The maximized parent set will be a subset

of the union of the parent set and the possible parents set PPA(T ) = p̂apair(T ) ∪ p̂papair(T ),

where p̂papair(T ) := {(i, t) ∈ N × T : i − t}. Before beginning our search, we identify all
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v-structures in the estimated graph. The basic algorithm for the search begins by directing all

nodes in p̂papair(T ) into their respective target nodes, then checking to determine if any new

v-structures are created. If not, then we return the graph with the new parent set, denoted

G̃. If this step does create new v-structures, then we try again for subsets of p̂papair(T ) with

cardinality decremented by one. We repeat this procedure until we find a new graph with the

same v-structures or we run out of possible parent subsets to try. We present the pseudocode

for this strategy in Algorithm 12.

4.4.4 Modeling performance
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Figure 4.7: Modeling performance across different target set sizes for multiple algorithms.

Side-by-side boxplots provide the results under different strategies for identifying the parent

sets of the target nodes. The maximized parent set strategy (max.) identifies the largest

jointly valid set of parents, and the standard strategy (std.) uses the parent set from the

estimated output.

We may now consider the results produced by our modeling procedure according to

cell-adjusted log-likelihood. In what follows, we compare all three kinds of algorithms across

different combinations of significance levels and target set sizes. Each plot also contains
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side-by-side boxplots displaying the results under two different strategies for target parent

identification. The standard (std.) strategy merely uses the p̂a
(j)
T (T ) set for modeling, while

the maximized parent set (max.) strategy uses the parent set obtained from Algorithm 12,

which may include nodes connected to one of the targets by an undirected edge in the

structure learning algorithm output.

It is difficult to discern any differences between the algorithms in Figure 4.7. Clearly, we

may at least conclude that the local algorithms are competitive with the global algorithm.

Moreover, we find that the variability of the score tends to increase with the number of nodes

in the target set, except for the case where |T | = 3. However, we must go further to assess

the performance of these methods.

4.4.5 Parent recovery
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Figure 4.8: Distribution of the number of estimated parents for each algorithm by target set

size and parent set identification strategy.

By analyzing the parent recovery results for each algorithm in Figure 4.8, we can gain

further insight into the performance as it relates to edge orientation. For example, if we

consider the SNL algorithm, we observe the detrimental effects of a lack of coordination.
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Under the standard strategy for parent identification, the SNL algorithm rarely identifies

any target parents, which is in stark contrast to the maximized parent set strategy, which

generally competes well with the other two algorithms. Yet, this variability corresponds

to greater uncertainty in our model estimation algorithms. The CML algorithm on the

other hand, usually shows only minor differences in the results between the two strategies,

highlighting the value of coordinated learning across target neighborhoods. The results are

also competitive with those of the global PC algorithm in most cases, maintaining fairly low

variability in the number of parents and generally selecting nearly as many parent nodes.

4.4.6 Runtime
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Figure 4.9: Runtime comparison for the algorithms across different target set sizes. Runtime

is measured on a log scale.

Local algorithm runtime is heavily dependent on factors such as the targets chosen, the

topology of the graph, and the setting threshold parameters. In Figure 4.9, we observe a high

variability in the local algorithm runtime results spanning multiple orders of magnitude. In

addition, we find that the runtime advantage of the local algorithm deteriorates as the number

of targets increases. Extrapolating from the distribution of P/C sets presented in Figure 4.6,
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only a few target nodes are required before the first- and second-order neighbor sets contain

most of the node set. Therefore, due to large neighborhood sizes and the proposed best use

case for our algorithm where the graph is sparse, we confine our attention to the case where

two or three targets are selected. Then, we may observe significant improvement for the local

algorithms in most instances, though we still observe a high variability in runtime. On this

basis, we do find evidence, albeit weaker than that of the simulation study, for improvement

of the local algorithms compared to the global PC.

4.4.7 Discussion

Though we cannot say that the findings from the gene expression dataset are as strong as

those from the synthetic data, we still find evidence for some of the theoretical claims we

make in Chapter 3 to complement the simulation results in Section 4.2. The summary results

in Table 4.3 show the quality of the CML algorithm in model estimation, since CML produces

the top two results in cell-normalized log-likelihood for each target set size, though it must

be noted that all of the other scores are all well within one standard deviation. Furthermore,

as we observed in the discussion of Figure 4.8, we find that CML improves significantly in

parent orientation in comparison to SNL, further bolstering our claim of the importance of

neighborhood coordination for edge orientation. Finally, apart from the larger target sets

which include most of the genes in our dataset, the local algorithms still provide competitive

or improved runtime compared to the global PC algorithm. This analysis provides evidence

from a real-world dataset of the main advantages of coordinated learning, and sets the

foundation for further exploration in applying our method to other datasets.
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Algorithm αMb αskel ℓmax |T | log10(runtime) |NBT | |pa(T )| |pamax(T )| ℓℓ
(j)
T (sd) ℓℓ

(j)
T max. (sd)

CML 1e-04 1e-02 5 2 4.28 23.35 5.10 5.65 -10.24 (0.27) -10.24 (0.27)

CML 1e-05 1e-02 5 2 3.14 17.15 4.75 4.95 -10.24 (0.28) -10.23 (0.28)

PC NA 1e-05 3 2 4.50 52.35 3.85 3.85 -10.26 (0.28) -10.26 (0.28)

PC NA 1e-06 3 2 4.18 24.80 2.30 2.30 -10.28 (0.28) -10.28 (0.28)

SNL 1e-04 1e-02 3 2 3.88 29.85 0.40 4.05 -10.33 (0.28) -10.28 (0.26)

SNL 1e-05 1e-03 3 2 2.96 19.70 0.10 4.10 -10.35 (0.28) -10.25 (0.27)

CML 1e-05 1e-03 5 3 4.03 31.55 8.25 8.50 -15.78 (4.34) -15.74 (4.36)

CML 1e-05 1e-02 3 3 3.65 38.00 8.10 9.30 -15.8 (4.31) -15.77 (4.33)

PC NA 1e-05 3 3 4.50 77.75 8.55 8.55 -15.95 (4.39) -15.95 (4.39)

PC NA 1e-05 5 3 4.71 48.40 7.35 7.35 -15.96 (4.38) -15.96 (4.38)

SNL 1e-04 1e-03 3 3 4.06 57.90 2.05 5.70 -16 (4.19) -15.85 (4.33)

SNL 1e-04 1e-02 3 3 4.09 57.90 1.15 3.55 -16.03 (4.19) -15.97 (4.27)

CML 1e-05 1e-03 3 4 3.78 52.60 6.75 9.05 -20.65 (1.36) -20.63 (1.38)

CML 1e-05 1e-02 5 4 4.25 43.15 4.90 7.05 -20.65 (1.36) -20.64 (1.37)

PC NA 1e-05 3 4 4.50 143.15 7.15 7.15 -20.78 (1.37) -20.78 (1.37)

SNL 1e-04 1e-03 3 4 4.14 79.25 2.00 7.40 -20.78 (1.44) -20.71 (1.41)

SNL 1e-05 1e-03 3 4 3.47 52.60 0.80 6.80 -20.8 (1.43) -20.7 (1.39)

PC NA 1e-06 3 4 4.18 78.20 3.95 3.95 -20.81 (1.38) -20.81 (1.38)

CML 1e-05 1e-02 5 5 4.27 53.40 3.85 6.60 -24.19 (1.55) -24.13 (1.53)

CML 1e-04 1e-03 5 5 4.94 72.70 7.85 10.25 -24.2 (1.55) -24.18 (1.54)

SNL 1e-04 1e-03 3 5 4.57 114.80 3.95 9.20 -24.24 (1.55) -24.22 (1.56)

PC NA 1e-05 3 5 4.50 140.40 13.10 13.10 -24.27 (1.48) -24.27 (1.48)

SNL 1e-05 1e-03 3 5 3.86 70.40 1.60 7.60 -24.27 (1.54) -24.23 (1.56)

PC NA 1e-05 5 5 4.71 81.35 9.20 9.20 -24.28 (1.49) -24.28 (1.49)

Table 4.3: Summary statistics for different settings and target set sizes. Results are averaged

across the 10 cv folds for both target sets in the category. Only the top two settings for each

algorithm with respect to ℓℓ
(j)
T are provided for each target set size. The results are given

in descending order by ℓℓ
(j)
T for each target size category. The number of estimated parents

and the cell-adjusted log-likelihood using the maximized parent set strategy are denoted by

|pamax(T )| and ℓℓ
(j)
T max., respectively.
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CHAPTER 5

R Package

5.1 Introduction

In the previous chapters we introduce, motivate, and demonstrate the possibilities for local

structure learning with respect to a novel setting given by the multi-neighborhood problem.

As graphical modeling becomes increasingly popular for researchers in a number of fields,

algorithms and methods must be designed and implemented which are easy to use and fulfill

specific research needs while remaining sound, consistent, and scalable. In this section, we

transition from describing the design and performance of CML, our algorithm for coordinated

learning across multiple target neighborhoods, and begin to discuss the implementation of

our method in a new R package intended for further application and research usage.

Corresponding to the growth of interest in graphical models for machine learning and

statistics, there are a substantial number of software libraries to implement the growing

number of learning algorithms. Structure learning packages such as Tetrad (Ramsey et al.,

2018) and visualization software such as DAGitty (Textor et al., 2017) are part of a growing

ecosystem of libraries and tools designed for structure learning and causal reasoning with

graphical models.

In this chapter we present CML, a new R (R Core Team, 2020) package developed to

implement a framework for coordinated local structure learning for different kinds of datasets

in the context of a multi-neighborhood problem, thus contributing a novel, complementary

approach alongside existing software.
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5.2 Background

While there are many software developments related to causal DAG learning in other languages

(Ling et al., 2022b; C. Squires, 2018), we will confine our discussion here to contributions

written in R. The bnlearn (Scutari, 2010) and pcalg (Kalisch et al., 2012) packages are some

of the most well-known for structure learning, since they provide a large selection of different

classes of algorithms, including constraint-based and score-based global algorithms as well as

local algorithms for P/C or Mb learning. In addition, the pcalg library provides inference

procedures such as IDA and joint-IDA. The bnlearn package also uses the Rgraphviz

(Hansen et al., 2020) package to provide additional plotting options for visualizing graphical

models, including the output from structure learning algorithms. These packages also

provide options for different kinds of data and CI tests, an indispensable feature of any

structure learning package intended for practical use. For local learning, Lagani et al. (2017)

developed the MXM package to specialize in implementing their group’s feature selection

algorithms, especially the statistically equivalent signature (SES) algorithm. The authors

also implemented MMPC and other algorithms related to local structure learning.

In response to increased interest in biological and other applications with high-dimensional

datasets, Aragam et al. (2019) introduced the sparsebn package to address scalability concerns

and implement new methods for structure learning and parameter inference, replacing previous

options which are too slow for more demanding datasets. This package does not add anything

new in terms of graph visualization, since it is compatible with existing graph storage and

visualization packages in three different languages. For a dataset with fewer observations,

many variables, and potentially some interventional data, this package provides new methods

and implementations to address challenging problems.

In addition to these, one may also consult the deal (Boettcher and Dethlefsen, 2003),

causaleffect (Tikka and Karvanen, 2017), and ParallelPC (Le et al., 2015) packages for

additional methods to use for causal inference with graphical models.
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5.3 The CML package

Since we introduce an algorithm for the multi-neighborhood problem, a novel perspective for

structure learning, we present CML, a package we developed to fill a gap in DAG learning

packages. This package fills a mediating position between local and global methods, since

CML is properly a local algorithm but coordinates learning from different parts of the graph

in a manner similar to a global algorithm. The CML package is available on Github, and

may be downloaded using the devtools library:

devtools::install_github("stephenvsmith/CML")

The CML package is built using Rcpp (Eddelbuettel et al., 2023a), a package which

serves as an interface between R and C++ for greater computational speed. Additionally,

the package uses some of the data structures and methods found in the Rcpp Armadillo

library (Eddelbuettel et al., 2023b). The package also imports bnlearn for some internal

functions, along with the MXM package, both of which provide implementations for Mb

estimation procedures. In addition, the package carries the adjacency matrix for the asia

network (Lauritzen and Spiegelhalter, 1988), as well as a simulated Gaussian dataset for the

network with n = 500.

asia smoke

tub lung

either bronc

dyspxray

Figure 5.1: The asia network from bnlearn
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To illustrate the basic usage of the package, we will demonstrate its functionality with the

population version of the algorithm for the asia network, using the true graphical structure

to identify Mbs and the d-separations in the true DAG as a CI oracle for the skeleton recovery

stage. Figure 5.1 presents the asia DAG, and Figure 5.2 provides both the subgraph of

the true graph and its estimate from the population CML algorithm for target nodes “asia”

and “either.” We also provide the code snippet to produce the plots in Figure 5.2. The first

three lines load the library, the data matrix containing the adjacency matrix of asia, and

the simulated Gaussian data from the network. Then, we run the algorithm using the cml

function, using the true DAG adjacency matrix as input to ensure we use the population

version. Finally, we plot the algorithm output and the subgraph of the true DAG over

the target neighborhoods using the plotOutput function, which utilizes the functionality of

Rgraphviz.

library(CML)

data("asiaDAG")

data("asiadf")

local_est <- cml(true_dag = asiaDAG,targets = c(1,6),

node_names = colnames(asiaDAG),verbose = FALSE)

plotOutput(local_est,asiaDAG)

In this example, we apply the CML algorithm to learn the local structures around nodes

1 and 6 (“asia” and “either”). Even though we use a CI oracle for the population version of

the algorithm, these plots are not identical since, in principle, the edge between “asia” and

“tub” may be in either direction based on the CI information available. The CML output

represents the maximum amount of information which we may recover from observational

data. Indeed, the CML algorithm recovers the complete skeleton and the v-structures for the

subgraph over the target neighborhoods, as well as the compelled edge between “either” and

“xray”.

97



asia

tub lung

bronceither

xray dysp

asia

tub lung

bronceither

xray dysp

Figure 5.2: The graph on the left is the output of the CML algorithm for target nodes

“asia” and “either”, and the graph on the right is the subgraph of the asia DAG over the

neighborhoods of the target nodes.

In practice, we will not have access to a CI oracle, so this exercise serves only as a proof

of concept and a simple illustration of our implementation. The primary use of the package

will require an input dataset, which we consider next.

5.3.1 Local structure learning from data

Calling the sample version of the cml method follows similar usage rules as the population

version, except with additional parameters and the substitution of a dataset for the true

DAG adjacency matrix.

cml(data = asiadf,targets = c(1,6),node_names = colnames(asiaDAG),

lmax = 3,tol = 0.01,mb_tol = 0.05,method = "MMPC",

test = "testIndFisher",verbose=FALSE)

The main arguments are data, targets, method, and test. The fuller declaration and

exposition of the arguments are as follows:
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• data: A data.frame or matrix containing observational data to be used for structure

learning. The default is NULL in case we are considering the population version of the

algorithm.

• true_dag: A matrix containing the adjacency matrix for the true DAG. The default is

NULL in case we are considering the sample version of the algorithm. The purpose of this

argument is mainly diagnostic and for testing purposes, not for practical application,

since it allows d-separations in the graph to replace CI tests.

• targets: A vector containing the nodes around which we will coordinate local structure

learning.

• node_names: A vector of strings with the names of the nodes being used in an order

corresponding to that of the columns in data or true_dag.

• lmax: The maximum possible size of a potential separating set (ℓmax). The default is 3.

• tol: The significance level we use during the skeleton stage of CML (αskel). The default

is 0.05.

• mb_tol: The significance level we use for the Mb recovery algorithm (αMb). The default

is 0.01.

• method: A string with the name of the Mb recovery algorithm being used. The default

choice is the MMPC algorithm.

• test: A string with the name of the type of CI test to be used. The default test uses

Fisher’s z-transformation of the partial correlation.

• verbose: A boolean determining whether or not to print diagnostic output. The default

is FALSE.
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The method returns a list containing the adjacency matrix of the output graph, along with

various statistics including the number of CI tests, the computation times for the different

stages, the frequencies of usage for the orientation rules, and the input data’s mean and

covariance prior to normalization and the initiation of the algorithm. The list also includes a

vector of the nodes in the target neighborhoods, a list of all estimated Mbs, and the separating

sets from the skeleton estimation stage.

We can consider the results of the sample version using the plotOutput command, which

provides the output displayed in Figure 5.3.

asia

tub lung

bronceither

xray dysp

asia

tub lung

bronceither

xray dysp

Figure 5.3: Plot output from the sample version of cml. The graph estimated by CML is on

the left, while the subgraph over the true neighborhoods of the target nodes is on the right.

As we would expect, the sample output contains errors. Notably, both v-structures

are missing from the estimated graph. However, one correctly directed edge from each

of the v-structures is present in the CML output. Moreover, we also have “asia”→“tub”

in the CML output, though we previously stated that the edge between “asia” and “tub”

should be undirected in our discussion of Figure 5.2. These errors are related and illustrate

important practical features of our implementation. According to our CI test procedure,

we mistakenly identify v-structure (“asia”,“either”,“tub”). However, this conflicts with the

v-structure (“tub”,“lung”,“either”), which is correctly identified. Since “tub” and “either” are
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Figure 5.4: The graphical output at different times during the execution of the sample version

of cml for the asia network.

nodes in the same neighborhood, we leave this edge undirected in the final output, following

Remark 10. A similar line of reasoning explains the undirected edge between “either” and

“dysp” in the sample output. An illustration of the stages of the sample procedure is given in

Figure 5.4.

The skeleton plot with variant marks in Figure 5.4a shows the result of the sample CML

algorithm after the Mb and skeleton estimation stages. To this point, there are no errors

which are visible in the graph. However, there are errors in the definitions of the separating

sets, which become apparent after initial edge orientation as displayed in Figure 5.4b. The

bidirected edges appear due to the faulty separating sets, which lead us to conclude the

presence of v-structures which are inaccurate. Another feature of the output at this stage is

that, while some of the directed edges contain a variant mark (e.g., the edge between “asia”

and “tub”), the edge between “either” and “xray” is a directed edge with an invariant tail.

This is due to the fact that the former kind of directed edges come about due to v-structures,

which for FCI orientation rules do not rule out the possibility of bidirected edges. The

latter edge, however, is a compelled edge which does exclude the possibility of a bidirected

edge. The final output in Figure 5.4c uses the neighborhood information of our algorithm to

properly orient the edges by removing the variant marks and changing bidirected edges into

undirected edges.

101



Upon completing this step, we may identify all jointly valid parent sets for the target

nodes and use these as input for the jointIda function from the pcalg package to calculate

the multiset of estimated causal effects of the target nodes on another node in the graph.

5.4 Conclusion

This chapter provides a brief outline of the functionality of the novel CML package, as well as

a description of where this package fits in the larger ecosystem of structure learning software

for causal graphical models. While the package currently only possesses limited options

for Mb learning algorithms and different data types, we expect to extend its capabilities

and incorporate some of the strategies from existing packages for wider application and

cross-compatibility.
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CHAPTER 6

Discussion

In this dissertation, we explore the state of local learning methods for causal DAGs and

contribute a framework for coordinating learning across the local structures of multiple target

nodes, jointly considered. The algorithm is both efficient and sound with respect to a novel

ground truth graph which respects the topology between the neighborhoods and retains all

CI information which is not underdetermined.

In Chapter 1, we provide definitions and discuss some global structure learning algorithms

developed under different assumptions, especially the PC and FCI algorithms, since these

contain steps which relate closely to the approach we take in addressing the multi-neighborhood

problem. Though the PC algorithm is sufficient to learn the local structures for multiple

target nodes, as contained in a subgraph of its output, it is computationally expensive and

usually unnecessary. The FCI algorithm and its complete orientation rule set in the presence

of latent variables is also important for our consideration since an optimal multi-neighborhood

algorithm necessarily treats some of the nodes in the graph as latent to alleviate the complexity

burden of estimating the global structure. Neither of these algorithms, however, are optimal

or appropriate for local learning on multiple target nodes.

In Chapter 2, we discuss some local methods to bridge the gap between global structure

learning and a preferred multi-neighborhood algorithm which does not estimate the entire

graph structure. Markov blanket learning and the related field of feature selection are vast

topics with a wide body of literature, and we cover only the main algorithm families as well

as some newer methods. These local methods are essential for the initial pre-processing of
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any multi-neighborhood algorithm, but they are insufficient for our purposes because they do

not provide guidance for incorporating the overall graph topology into a local approach.

In Chapter 3, we finally introduce how to combine the relevant principles of previous

work to learn the structure around multiple target nodes, especially as we may best identify

a sufficient set for estimating the causal effects on other downstream nodes. With the CML

algorithm, we are proposing a novel method for approaching causal structure learning across

disjoint target neighborhoods without estimating the entire graph structure. This is of

practical importance since global structure learning is a challenging problem laden with

restrictive assumptions and high computational complexity, and practitioners interested in

causal inference are usually primarily interested in a few target nodes most relevant to their

study.

Though other local learning algorithms exist, to our knowledge none possess the capacity

for coordinated structure learning across multiple disjoint neighborhoods where there are

multiple target nodes of interest. The uniqueness of our method is also seen from the unique

definition of the ground truth graph, which is a subgraph of the underlying DAG over

the target neighborhoods with additional between-neighborhood ancestral edges to connect

disjoint neighborhoods. We also establish soundness and consistency for our algorithm with

respect to the equivalence class of the ground truth graph.

Although our algorithm builds on previous work in global and local learning, it is not a

simple extension of methods such as the PC, as demonstrated by the distinction between CML

and SNL, which applies the PC algorithm to each neighborhood individually. Moreover, by

applying the back-door criterion, our method is more efficient for estimating the causal effects

of target nodes on other nodes than applying a single Markov blanket learning algorithm

to each target neighborhood individually. This is because between-neighborhood edges can

help orient edges in downstream neighborhoods and thus identify accurate parent sets of the

target nodes with greater specificity.

The upshot of these results is that researchers working with high-dimensional datasets
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will have an efficient algorithm for causal discovery which focuses on target variables of their

choosing, facilitating causal effect estimation using the back-door criterion.

In Chapter 4, we discuss the numerical results which confirm the projected strengths of

our algorithm. Along with competitive or superior performance in overall accuracy and in

recovering the target parents sets, we demonstrate the substantial computational savings

of our algorithm compared to a global constraint-based algorithm (PC) in our simulated

data results. We support our claim that coordination improves parent recovery by thorough

comparisons to the SNL algorithm.

We also apply our method to a real-world gene expression dataset, which provides further

evidence of at least comparable performance between CML and a global method. We find

that, as long as the neighborhoods are relatively small compared to the global structure, CML

provides efficiency improvements compared to the PC algorithm while identifying a similar

number of nodes in the parent sets of the targets. This is also done with greater specificity

of orientation than by simply applying the PC algorithm to each target neighborhood

individually with the SNL algorithm.

In Chapter 5, we discuss the software package which implements the method in R,

illustrating its usage and output as well as note how it may be used to facilitate joint causal

effect estimation using the jointIda function from the pcalg package.

The ideas we discuss in this work point to fruitful research directions beyond the initial

findings we present, which primarily establish our contention that the multi-neighborhood

problem is worth greater attention and that our approach is sound and complete. Yet, this

method must still be extended to receive different kinds of data as input, as well as incorporate

different Mb learning algorithms and CI tests. The implementation may also be improved by

storing some of the CI test results from Mb learning in order to avoid repeated computation

during skeleton recovery. We can also achieve greater efficiency in our implementation

by improving the separating set search such that we select subsets of the adjacency set

for only one of the nodes rather than subsets of the union of the adjacency sets for both
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nodes. With these changes, additional empirical analysis is required to ensure the algorithm’s

robustness. It will also be beneficial to include causal effect estimation comparisons in future

numerical analysis to investigate our claims further. Finally, we will follow similar steps as in

the work of Kalisch and Bühlmann (2007) to provide further theoretical guarantees under

high-dimensional assumptions.
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