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SIMULTANEOUS EQUATICNS WITH COVARIANCE RESTRICTIONS

1. Introduction

We reconsider the linear simultaneous equations system with covariance
restrictions as described by Hausman, Newey, and Taylor (1987). Using both
maximum likelihood and minimum distance approaches, we explore several
estimation strategies. The augménted three stage least squares estimator
proposed by these authors is derived as a special case.

First we review the efficient estimation of the linear simultaneous
equations model without covariance restrictions. This provides the outline
of the approach that we will use in the presence of covariance restrictions
and it also is a useful contrast. Secondly, we provide an alternative
derivation of the asymptotic covariance matrix of a subset of parameters
estimated by maximum likelihood. This turns out to be much simpler than
using the partitioned inverse formula on the information matrix. Thirdly,
we derive the efficient 3SLS estimator in the presence of covariance re-
strictions as a linearized maximum likelihood and as a linearized minimum
distance estimator. Finally, we discuss the properties of our estimators

when the errors are not normally distributed.

2. HNo Covariance Restrictions

A complete linear simultaneous equations model involving G endogenous
and K predetermined variables for a sample of size T can be written com-

pactly as

(1) YB+ X =10,

where Y is the T X G matrix of observations on the endogenous variables,




Z is the T X K matrix of observations on the predetermined variables, and
U is the T X G matrix of unobserved random errors. The T rows of U are
mutually independent, identically distributed random vectors with mean zero
and positive definite covariance matrix . The matrix B is assumed to be

nonsingular so that Y has the reduced-form representation

Y=XI+V

where II = —FB_l

and the rows of V = UB™ ' are independent with mean zero and
covariance matrix B’ ‘Bl We shall further assume that X has rank K.

Some of the elements of B and I' are known a priori and do not have to
be estimated from the data. Let A = (B ")’ be the (G + K) X G matrix of
of structural coefficients. Defining & to be the g-dimensional vector of

unknown elements of A and defining r to be the GK + G2 — g vector of known

elements, we can write

(2) r = Ra’vec(A) and § = Sa'vec(A)

The selection matrices R6 and 55 consist of zeros and ones and satisfy

RsRs" + 565" = Ig(aux)

Using this fact, the prior restriction RS’vec(A) = r can be solved as

vec(A) = 856 + Rar

Since equation (1) is equivalent to [IG ® (Y X)]vec(a) = vee(l), the

The operator vec transforms a matrix into a vector by stacking successive
columns. We shall also use the operator vech which stacks the columns of
the lower triangle (including diagonal) of a symmetric matrix thereby

removing the redundant elements. For matrices of appropriate dimensions,

vec(CDE) =~ (E’* ® C)vec(D), where ® represents the Kronecker product.




simultaneous equations model with linear restrictions can be written in

the familiar form of one stacked vector equation in GT dimensions:
¥ =26 + u

where u = vec(U) has mean zero and covariance matrix (T @ IT); the

variables y and Z are given by
¥ = [IG ® (Y X)]Rar , Z = - [IG @ (Y X)]Ss

Assuming § is identifiable, one estimation strategy is to search for
a 6T X q matrix W that is highly correlated with Z and (approximately)
uncorreiated with u. Then, if the inverse exists, a reasonable estimate

would be (W’Z)_IW’y. This instrumental variable (IV) approach will not be

explored directly, but instead will emerge from our analysis of maximum

likelihood and minimum distance estimation. We discuss each in turn.

2.1 The Maximum Likelihood Approach

If the errors were normally distributed, the log likelihood function

for the simultaneous equations system would bhe

(3 L(B,T,Z;Y,X) = — % TG-log(2n) - % T-log det(Zm) + Tllogldet(B)[

- % tr[(YB + XT)’ (YB + X)) ')

For the remainder of sections 2 and 3 we shall assume that this is the
actual distribution of the data. In Section 4, we explore the consequences
of relaxing this assumption.

According to the method of maximum likelihood, estimators are obtained

by maximizing (3) over the values of B, I', and % satisfying the prior re-

strictions. This can be performed by calculating the derivatives of L with
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respect to the unrestricted parameters and setting these scores to zero.
Define L5 = gL/36 and La = 8L/30, where ¢ = vech(Z) is the %G(G+l) vector
containing the distinct unknown elements of =. Then, if H is the matrix

of zeros and ones such that vec(3) = H-vech(Z), the scores for § and ¢ are

(%) Ly = Sg/vec[T(3 " 0)" - (Y x)’Ux"?]
= S/vec[(B 0)/ (TS - WU)E ™" - (xm X)'UZ ]
and
(5) L= - % Wvee(T 2% — 5 'vros Yy
1 ., .1 -1 .
= -3 @ @ 2 HH-vech(TT ~ ')

where U = YB + XTI and (BH'O) is a G X (G + K) matrix whose last K columns
are all zero.

Since H’(Zq'® Eq)H is invertible, the equation Lb = 0 has the unique
golution T = U"U/T. Unfortunately, the equation L6 = 0 is highly nonlinear
and cannot be easily solved. However, an interesting interpretation of this
equation has been pointed out by Durbin (1988), Hausman (1975), and Hendry
(1976). Inserting the first-order condition TY — U'U = 0 into (&), we

. 2
obtain the concentrated score® for §

(6) Ly =~ S, vec[(XI X)'US ] = — 8,° e (XTI X)]'u

_’ -.1
VAR O IT)u

For the log likelihood L(§,¢), the concentrated function is defined as
L"(§) = L[§,h(§)] where L [§,h(8)] = 0 so that 3h’ /a5 = —LaaL;;
entiation of I gives L. = L6{6,h(6)} and L’

]

Differ-
-1
§ 56 LSS B LSaLaaLGS' Thus,
(6) is the score of the concentrated likelihood function and its deriva-
tive (when inverted) is LSE! the block of the inverse Hessian of L cor-

responding to §.




where Z = — [(IG @ (X X)}SS . Assuming the appropriate matrices are in-
vertible, the full information maximum likelihood (FIML) estimator which

kg
satisfies the equation L_ = 0 has the instrumental variable representation

6
(7 5 - 7t er 12172 (57 e 1)
ML T /Y
where Z = — [IG ® (X1 X)]SS and £ = U'U/T are functions of SML. According

A

to the definition of Z, the endogenous variables in Z are replaced by their
FIML fitted values to form instruments which, when combined using general-
ized least squares, are interpreted as optimal instruments.

Rothenberg and Leenders (1964) derived the asymptotic covariance matrix
of the FIML estimator by taking derivatives of the comcentrated score func-
tion (6). Alternatively, it can be obtained from the asymptotic variance
of the concentrated score. That is, the asymptotic covariance matrix for

VT(SML— 6) is given by the inverse of

Sz, e, , ral rqe XX
Avar(T LE) = SS [Z 7 & (I IK) pllm—T—(H IK)]S5
(8)
- PliniZ E'eI)E = o
T T 1

Equation (7) is only an implicit funetion for the FIML estimator but
other asymptotically equivalent estimators take the same form and are easi-
er to compute. For example, the three stage least squares (3SLS) estimator
proposed by Zellner and Theil (1962) and the full information instrumental
variables estimator (FIVE) proposed by Brundy and Jorgenson {1971) can both

be written as

=, =1 -1, ,=-1

[Z{(Z " ® IT)Z} Z(Z IT)y
where

Z = ({1, ® (XiT Xls, g = U




and I and T are calculated from consistent but inefficient estimators of B
and I'. They can be interpreted as linearized maximum likelihood estimators

(LMLE) since they are of the form

A

- 5 + T
LML 1 4
where § is some initial estimator, T151" is some estimate of the variance
—r -3
of the MLE, and L_ is the concentrated score for § evaluated at §. The

)

asymptotic equivalence of these estimators with FIML can be demonstrated

if appropriate regularity conditions are satisfied.

2.2 The Minimum Distance Approach

Rather than work with the likelihood function, a distance function
in sufficient statistics provides an alternative route to asymptotically
efficient estimators. Let M = I — X(X’X) X and n = GK + %G(G+l).
Then, under normality, the distinct elements of the matrices (X’X)ﬂX’Y
and Y MY/(T-X) are sufficient for the unknown elements of {A, ). These
statistics can be written as an n-dimensional vector s with mean I

vec (X’X)-lX’Y

g = plA,2) ol
Y MY vech B* "ZB
T-K

— vec 1"1!,_1

I

vech
The vector VT(s — p) has mean zero and variance matrix Vs given by

T(BZ 'B" ® X’ X)* 0
V (A,%) = _ _
S 0 T—quJ' (B ' © B ‘B ) 7Y

where J = H(H’H)“l has the property that vech(Z) = J’vec(Z). The minimum

3 Although the method was introduced by Rothenberg and Leenders (1964},
the IMLE interpretation of 3SLS and FIVE was made by Hendry (1976).




A A

distance approach finds parameter values that make the estimated mean H(AE)
as close as possible to the observed s. If VS is some consistent estimate

of VS, it is natural to consider estimates that minimize
.5 -1
Tls ~ w017 s - u(a,m)]

subject to R_."vec(A) = r. Under regularity conditions, this minimum dis-

5
tance (MD) procedure produces consistent and asymptotically efficient
estimates (Cf. Malinvaud (1970, 348-360) and Rothenberg (1973, 24-25)).

As in maximum likelihood, the actual solution can be rather difficult
because x4 is a complicated nonlinear function. A modification of the min-
imum distance approach is more tractable. Let £{s,A,Z) be a vector of n
smooth functions. Suppose that, for all parameter values (A*,Z*%) in an
open neighborhood of the true value, g(s,A*,3%) is a locally one-to-one
function of s. Suppose further that, as the sample size T tends to infin-
ity, plim'g(s,A,E) = 0 and VTg(s,A,Z) is asymptotically normal with zerc
mean and nonsingular covariance matrix Vg(A,E). For some consistent

estimate vg , minimize
Tlets, 4,217 Mg(s,a3)]

subject to the constraints. Under appropriate regularity conditions, the
solution to this problem is also consistent and asymptotically efficient.
By cleverly choosing the function g, we can construct a computationally
convenient estimate of the structural parameters.

The natural choice for g turns out to be

1 4 ’ 1 4

g6 _ Tvec(X YB + X’ XI) _ ﬁvec Xu

g r 4

o B Y’ MYB U’ Mu
Ve(‘.h(ﬂ—“ - ) Vech( T-K - )




%(B’@ XX 0
- [s — n(A,2)]
0 J(B @ BY'H
with
1
(28 XX 0
v - T
g T .,

0 25 3d (2@ )

In this case, the original problem has been simplified by "cancelling” the
common terms involving B’ that appear in both p and Vs’ For some consis-

tent estimator 3, the resulting modified distance function isa
(9) g F e XX 'g, + (T-Kg 'HG o 7'
Bs Bs 2 Ea Es

When there are no restrictions on Z, the minimization of (9) is very
simple. For any value of A, g, can be set to zero by varying . Hence,

minimizing (9) over A and = is equivalent to minimizing
2, .= -1 .-l NS S
T gé(z @ X' X) gs = (y = Z26)[27 @ X(X'X) "X 1 (y — z8§)

over § alone.5 Denoting the idempotent matrix X(X’X)qX’ by N, the solu-

tion is the three stage least squares estimator

[z & e mpz) Tz G e Wy,

which is a IMLE using the preliminary estimates ¥ and I = (X’X)qX’Y.

4 We use that fact that the inverse of JJE eI is Wz e Z)ﬂH. Cf.
Richard (1975) and Rothenberg (1973, pp. 87-88). Hausman (1983, p. 421)
questions this way of representing the precision of a variance matrix,

apparently because he does not use our definition of J.

11 22 12 ij
In general, let Q = xl’V x1 + XZ”V X, + 2x1”V Xz , where the V™ are
appropriate blocks of the inverse variance matrix. If X is freely vari-
e e . . , 22, -1..21 -
able, the ninimizing value of x2 is —=(V™) lV X_ and hence the minimum

of Q is obtained by minimizing x ' [V'- \712('\72:")'1v‘“]x1 - xl’V1;1x1
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3. Partially Restricted Covariance Matrix

Suppose p of the elements of vech(Z) are known to be zero. Then, as

in (3), this information can be expressed in terms of selection matrices:
(10) Ra’vec(E) = 0 Sa’vec(E) =g ,

where o is the vector containing the %G(G+1)—p unknown elements.6 Again, an

explicit solution is given by vec(Z)

Saa. The total prior information
on the structural parameters (which we assume to be sufficient for identi-

fiability) can be expressed either by the pair of constraint equations

Rg’vec(A) =r Ra vec({Z) = 0

or, equivalently, by the pair of equations relating the constrained param-

eters to the free parameters § and o:

vec(A) = 866 + Rar vec(Z) = Saa

Our problem now is to maximize the likelihood function (3) or to minimize

the modified distance function (9) subject to these restrictions.

3.1 Maximum Likelihood

Without covariance restrictions, concentrating the log likelihood
function with respect to I yields the IV interpretation of FIML. It is
also a route to simplifying the derivation of linearized approximations
to the maximum likelihood estimator. 1In particular, the asymptotic covar-

A
iance matrix for Smﬁ a key ingredient in developing such an approximation,

can be calculated from the score of the concentrated log likelihood funec-

tion, rather than from a partitioned inverse of the full information matrix

Ra and Sa are assumed to lie in the column space of H so that Uij and gji
are treated symmetrically in (10).
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of the likelihood function. In the presence of covariance restrictions,
concentration of the log likelihood is much less convenient since an ex-
plicit closed form solution of the normal equations for ¢ does not appear
to be possible. However, such solutions are not necegsary to take advantage
of the IML method or to obtain an IV interpretation of the FIML estimates.
The score for § given in equation (4) remains valid in the presence of
covariance restrictions, but equation (5) must be replaced by the score for

the free parameters o:

-1

(1) L = - % s/(z " ® 2" Myvee(Z - U U/T)

Although equating Lcr to zero does not yield a simple solution for ¥ in terms
of U when Sg has rank less than %G(G+l), an implicit relationship can still

be obtained. Substituting vec(Z) = Saa into (11), we find the "solution”

-1 1 1

r = _1 ’ - -1 r
g o= {Sa (= ® = )Sa] Sg (= ® X T)vec(UrU/T)

and hence7

, ~ RPEES| -1 -1, , -l -ty ) ,
vec(TE — U'U) = {Sa[sa (Z "oz )Sa] Sa (Z " e®3 ) IGZ]H vech(U )

- (ZeDR IR (e Z)Rg]‘lRa'vec(U'U)

Substituting this expression into equation (4) gives, as a generalization
of (6), the concentrated score function

1

* ; - , -1 = ’
(12) LS = — SS {[Z" @ (XX X)) + [IG ® (ZB " 0)] _(IG ®@ 1) Ju

Z+wEte Iu

The final expression follows, after a rotation of the coordinate system

from the identity H(H'H) 'H = R (R R )R’ + S (S ’S )% * which
o g o g o a g ag

3

describes the fact that the column space of H is the direct sum of the

column space of Ra and the column space of Sg,
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where

[x]

x —1 ”
- R (R’ (Z@ DR IR

N
|

- (I, ® (XT X)18

=
i

— -1
- (e WE[I @ (3B 0)]s,

The generalized IV form of FIML in (7) changes only in the instruments for
the endogenous explanatory variables. With covariance restrictions, we have

Fal - A , A_l _1 M A , A_l
Em.“ [((Z+W' (2" @ IT)Z] (Z + W {E e IT)y,

A A

where Z, W, and T are the FIML estimates of Z, W, and 3.
The matrix Z + W has a simple interpretation as an optimal instrument

2

for Z. Using the transformation matrix A = (E_U ® IT) where =% is the

symmetric square root of 3, our model can be written as
Ay = AZ§ + Au

where Au has a scalar covariance matrix. The transformed matrix of pre-
determined variables are valid instruments since Q[A(IG ® X)]"Au = 0. In
addition, the covariance restrictions imply that E[A(Z @ U)RU]’Au = 0. The
population projection of AZ onto the space spanned by the GK + p columns
of [A(IG ®X) AC e U)RJ] yields A(Z + W) as the linear combination most
highly correlated with AZ. In the presence of covariance restri-<ions,
structural disturbances that are uncorrelated with the errors a. -ent the
reduced form regression function for the endogenous variables, thereby
increasing the amount of variation in the instruments.

The asymptotic covariance matrix for the maximum likelihood estimator
1s, under suitable regularity assumptions, given by the inverse of the

limiting Hessian of the concentrated likelihood function. Again, an easier
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route is via the asymptotic variance of the concentrated score. From (12),

*
L& is the sum of two uncorrelated terms

Ly = = 84 Ele XM X]'u=2Z¢"e I)u

- -1 = ’ = ’ -1
L52 = — SE [IG @ (B~ 0)) Evec{Ur) WiEZ e IT)u.

Using the fact that var[vech(U'U)] is 2T J' (I ® =)J, the asymptotic variance

for Vf(ﬁﬂ ~ &) is given by the inverse of

» -1 . . XX -1 . -1
56 {[Z" & (I IK) pllm—T—(H IK)] + Z{IG ® (ZB~ 0)]’Z[I., ® (=B 0138

G

(13) 1= -1 = 1 -1
= plim T Z(zZ & IT)Z + 2 plim 7 Wi({E e IT)W = ¢ + 2%

Note that the instxuments Z and W contribute differently to the variance.
Although the rows of AW are uncorrelated with the corresponding rows of Au,
W and u are not independent. Hence, the variance of W’(E_1 @ IT)u depends
on the fourth moments of the error distribution. Under normality, this

variance is exactly twice the term that would occur if W were exogenous.

3.2 Feasible IV Estimation

When there are no covariance constraints, linearized maximum likelihood
simply involves replacing in (7) the FIML values Z and X by ones. based on

preliminary consistent (but inefficient) estimates. By analogy, one is

tempted to form the estimator
(Z+@)Ste IT)Z]‘l(Iz' + ) Ete L)Y,

where Z, W, and £ are estimates of Z, W, and I based on preliminary consis-

tent estimates of §. This, however, will not lead to an efficient estimator
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in the present situation because the dependence between W and u is ignored.
A linearized maximum likelihood estimator for § has the form

Y
*

-— —1 — . —l--.-
=5+ TUE) + 28,) L

LML

where § is some initial estimator, Tﬂ(al + 2?{32)-1 is some estimate of the
variance of the MLE and i; is the (concentrated) score for § evaluated at
5. Although (Z + W)’(Eq'® IT)u is the correct score, (Z + W)’(Eq'® IT)Z/T
converges in probability to @1 + @2 instead of the required @1 + 2@2. An

appropriate IMLE is

§ = 5+ [((Z+2iE e IT)Z]_l(Z +Et e L) (v ~ 28)

(14)

[(Z+ 20y e IT)Z]‘l[(Z + 2y &t e Iy - E" e )]

3.3 Minimum Distance

When there are covariance restrictions, it is no longer true that the
minimum distance estimator is 3SLS. The second term in (9) must now be
taken into account. Since Ra and Sa are selection matrices, the elements

of the vector g can be grouped into three subvectors:

= vecg’—g =R ’vch’MU = § ’vch’MU -
g5 T 7 gal el T-K * gaZ a T-K g -

Note that 85 and &s1 depend only on § and that, for any value taken by §,
Byp Can be set arbitrarily by varying o. Hence, by the argument given in

footnote 5, B, Can be concentrated out of (9). Then, with

1 ,
85 Voo Uso F(Z @ X'X) 0
oT :

Es1 vaﬁ Vaa 0 T-K Ra'(z ® Z)Ra

(15) V = T-Var

the appropriate distance function is
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Q(S) = ivee(X'U)}’ [T ® X' X] ‘vee(X'U)

(16)

+ §f%?§7 [vec(WMU)]’R [R ’ (Z ® E)Ra]'lga'vec(U’MU)

In the presence of covariance restrictions, the problem involves minimizing
a gquartic function in §. Given the additive form of the objective function,
the solution should not be difficult to calculate.

The asymptotic variance of the minimum distance estimator is given by

twice the inverse of the average Hessian of the distance function. That is,

it is the inverse of

(17) plim % 2 (2" ® NJZ + 2 plim %2 2z (I, ® U)E(1 @ U)’' 2

which is the same expression as obtained in (13) for the FIML estimator
. .1 —_— -1
since plim T(IG ® U Z = [IG ® (2B O)ISS
Just as with maximum likelihood, there exists an efficient linearized
minimum distance estimator that is easier to calculate. Let U = (Y X)K be

the residuals based on some consistent estimator A&. Then, using a first-

order approximation to the quadratic function, we have

IR

R_‘vee (U’ MU) Ra'vec(ﬁ'mu + MG — O"MO) = R(I, @ MO)” (2u - 1),

which can be viewed as a linearization of 8,1 around the value A = A. With
Rb’vec(U’MU)/VT—K replaced by the asymptotically equivalent Ra’vec(U’U)/VT,
we have the simple quadratic distance function

Q*(6) = u’(ﬁq'® Nx)u

(18)
+ %T (2u - G)’(IG ® ﬁ)RU[Ra’(§ ® E)Ra]‘iRa'(IG ® U)’ (2u - 0)

The resulting linearized minimum distance estimator is identical to the
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linearized maximum likelihood estimator (14) if Z = [I ® X(X’X)ﬂX’}Z and
W o= %(i ® ﬁ)g(IG ® U)’Z are used to form the latter.

The linearized minimum distance estimator is also equal to a version
of the augmented three stage least squares (A3SLS) estimator proposed by
Hausman, Newey, and Taylor (1987). The demonstration, however, requires
some additional notation. Let u, be the tth column of U’ and define e =
Ra’vec(utut’). Form the p X T matrix E’ = [

e Then, denoting

S LEREE T].

the T-dimensional vector of ones by i and setting e = vec(E), we have
Ra’vec(G’U) =E ¢ = (Ip ® t”)e. Hence, if Ra’vec(U’MU)/VT-K is replaced

by Ra’vec(U’U)/VT, equation (16) is equal to
’ “-“1 s r < = _1
uw(z " e NX)u + e [(Ra (Z @ E)RU) ® NL}e

where NL = L(L'L)-lb'. Corresponding to the linearization of Rg’vec(U’U)
around Ra'vec(ﬁ’ﬁ), there is an equivalent linearization of e around e.
Defining Ze ~ —3e/35” , e is approximated by e — 2@(6-3) = §e - 296. In

this notation, (18) is identical to
P 1.~ ’ e = -1 - 5
(19) (y-28)' (=" @ N (y-28) + 5(y - 2.8 [R7(Z® ZIR) @ N 1y, 2,8)

which is the A3SLS objective function when normality is imposed on the

augmented error covariance matrix.

4. Estimation when the Errors are Not Normal

The quasi maximum likelihood estimator that maximizes (3) and the
minimum distance estimator based on (16) are still consistent but are no
longer asymptotically efficient if the errors are not normal. Furthermore,
the expressions for the asymptotic variance in (13) and (17) may be wrong,

Some adjustments to our statistics can get around these problems. It will
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be more convenient to work within the minimum distance framework, but anal-
ogous results are available using the likelihood approach.

Two potential problems occur in our analysis in section 3.3 when the
errors are not normal. First, s is no longer a vector of sufficient stat-
istics for the unknown parameters. Optimal estimates need to make use of
additional sample data. Unfortunately, unless we make further parametric
assumptions (or switch to semiparametric methods), it is not clear what
additional sample data is relevant. Even if we restrict our attention to
estimators that are functions only of s, there is a second problem. The
minimum distance estimates behave asymptotically like linear functions of
s, where the weights depend on the elements of the variance matrix V in
equation (15}. Since we have used the normality assumption to form V, the

estimators derived here may be inefficient because the wrong welights are

employed.
-1 . . -
Note that T "(Z ® X’X) is a consistent estimate of V65 for any error
distribution as long as & is consistent for . Hence, if Vaa is zero

(because, for example, the errors are assumed to have a symmetric probab-
ility distribution), the distance function (16) is correct except for the
use of the matrix ZRJ’(E @ E)Ra as an estimate of Voa. Assuming fourch
moments of the error distribution exist, this matrix can be replaced in
equations (16) — (19) by a more robust estimate, say E'E/T. No other
changes need be made to obtain the optimal minimum distance estimator
based on s and the correct asymptotic variance.

If asymmetry of the error distribution is suspected, matters are con-
siderably more complicated. As pointed out by Hausman, Newey, and Taylor
(1987), when third moments are not a priori zero, the fact that the ele-

ments of X are uncorrelated with certain products of the errors is new
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information that can be exploited. Using the matrix E defined above, it

can be expressed by the fact that both X’E and X’U have mean zero. If :

is a column of X, the elements of Bs and g, are a subset of the elements
of %vec[X’(U E}]. It is natural then to consider a minimum distance est-
imator based on the expanded set of moment restrictions.

The T(G + p) vector ¢ = vec(U E) has mean zero and variance matrix

u
Var ¢ = Var[u] - [ReI for @ = var| ©| = | 1 12
e e a. n
21 22
Of course, Qll is just Z and 922 is Vaa; preliminary estimates for them

have been discussed already. The matrix 912 can be estimated by ﬁ’E/T.
Since vec[X' (U E)} = (I ® X)’ ¢ has variance matrix (@ ® X*X), the appro-

priate distance functioen is
(200 @ oNye - wv@eNnju+ e @o Npe + 20 (@3 o N e,

If e is linearized as in (19), the resulting minimum distance estimator
is the A3SLS estimator.8

The asymptotic covariance matrix for the MD estimator based on X' (U E)
. D S -1 _ , .
is [plim TZA (G° e NX)ZA] , where ZA = de¢/86’ . Using the the same nota-
tion, the asymptotic covariance matrix for the best MD estimator based on

the subset (X’U :.”E) can be written as the inverse of

.1, , . -1 y ral2 22 l 21
plim TZA {0 ®© NX)ZA — plim Z (77 @ NX—NL]Z .

Since the term being subtracted is positive semidefinite (and nonzero if
012 # 0), the estimator using third-moments of the data in addition to the

second moments is strictly more efficient whenever u is correlated with e,

8 Cf. Hausman, Newey, and Taylor (1987), equation (4.5a).
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In practice, third and fourth sample moments of regression residuals
are often unreliable estimates of the corresponding population moments.
Robust estimates of § using these sample moments will probably not be an
improvement over estimates based on normality unless the sample size is
quite large. Furthermore, covariance restrictions often arise from the be-
lief that certain error terms are independent of other error terms. Under
independence, however, cross third moments are zero and the efficiency
gain from exploiting &(X'E) = O disappears. Hence, it is an open quastion
whether the estimators using third and fourth moments will be useful in

practice.

5. Conclusion

The full information maximum likelihood and minimum distance estimators
for a simultaneous equations model with covariance restrictions are rather
complicated. But linearization yields estimators that are easy to compute
and have an instrumental variable interpretation. All of these estimators
are functions of the second order moment matrices of the data and have a
simple method of moments interpretation: the p covariance restrictions are
added to the usual GK exogeneity conditions to form mean functions for
approximate minimum distance estimation. Assuming a symmetric error dis-
tribution and a sufficiently large sample size, the estimators can easily
be modified to make them robust to nonnormality. When symmetry is dropped,
third order moments of the data may be used to comstruct improved estima-

tors. It appears that K{(G + p) moment conditionsg are needed when cross

third moments of the errors are nonzero.
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