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Abstract

Analyzing and Influencing Traffic Networks with Mixed Autonomy

by

Daniel Arthur Lazar

As publicly available cars gain semi-autonomous capabilities and companies promise

to deliver fully autonomous vehicles in the near future, it is important to understand the

effects that these vehicles will have on traffic networks. If all vehicles on the road are

autonomous and are properly coordinated, road capacity and intersection throughput

can be greatly increased. However, in the medium-term future roads will exist in a state

of mixed autonomy, meaning they will be shared between human-driven and autonomous

vehicles.

The properties of this regime are not yet well-established. Preliminary studies show

that even if autonomous vehicles can increase road capacity, converting human-driven

vehicles to autonomous vehicles can increase the overall delay experienced by travelers.

This phenomenon stems from the nature of this sociotechnical system, containing humans

who are making selfish routing choices rather than choices that are socially optimal.

Accordingly, we must understand the nature of these choices in order to design efficient

mixed autonomous traffic networks.

This thesis theoretically characterizes areas of inefficiency and opportunity in mixed

autonomy and offers control algorithms with theoretical guarantees or benchmarks. Specif-

ically, it studies problems including 1) formulating a framework for understanding and

bounding the inefficiency due to selfish routing, 2) establishing toll structures which can

decrease or eliminate this inefficiency, including tolls which differentiate between the

different types of vehicles to varying degrees, 3) actively learning human preferences for

ix



time/money tradeoffs to determine optimal pricing for an autonomous ride-hailing service

in the presence of human drivers who minimize their travel time, 4) decongesting roads

by using Reinforcement Learning to route autonomous vehicles in a way which leverages

the reaction of the surrounding uncontrolled human-driven vehicles, and 5) designing a

controller for the low-level actions of autonomous vehicles to form platoons in the pres-

ence of vehicles driven by humans. In all these settings, we provide theoretical guarantees

or benchmarks so that a system designer can intelligently choose whether to and how to

implement each suggested scheme. In this fashion, we can ensure that autonomous vehi-

cles will not worsen, and will rather improve, the performance of transportation networks

in the years to come.
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Chapter 1

Introduction

The addition of autonomous vehicles to public road networks opens up a number of chal-

lenges and opportunities. For the forseeable future, traffic networks will exist in a state

of mixed autonomy, meaning they will be shared by human-driven and autonomous vehi-

cles. In this regime, properly designed and controlled autonomous vehicles can increase

road capacity, stabilize traffic flow, and route in a way to reduce congestion on roads.

The interactions between autonomous vehicles and human-driven vehicles are not always

easy to predict, and they take place on a number of scales, ranging from vehicle-level

interactions to routing-level interactions. If autonomous vehicles are not carefully de-

signed with these interactions in mind, instead of decreasing congestion, their presence

may instead end up worsening it.

In mixed autonomy, each interaction between autonomous and human-driven vehi-

cles yields an opportunity for using autonomous vehicles to positively influence human

drivers in a way toward improving a societal goal, such as reducing traffic congestion.

We can then consider possible interventions such as designing autonomous vehicles to

intelligently form platoons to increase road capacity, directly controlling the routing of

autonomous vehicles to influence the routing of human drivers, or using tolling to influ-

1



Introduction Chapter 1

ence the routing of both vehicle types. Each of these interventions incur a cost, be it

in altering infrastructure, coordination, or even unfair economic effects. It is therefore

important to fully understand the potential gain from each proposed intervention so that

it can be weighed against the costs of implementing that intervention.

In this work we study problems in both high-level (routing) and low-level (vehicle con-

trol) interactions. In these, for specific possible interventions, we seek to do the following:

1) model the interaction between human-driven and autonomous vehicles, 2) propose an

algorithm for guiding this interaction to improve a societal goal, and 3) provide theo-

retical guarantees about the range of possible outcomes of this intervention, or provide

theoretical baselines for understanding the empirical performance of the intervention. By

understanding these key elements, a system designer can make informed decisions on how

to guide these interactions in mixed autonomy.

1.1 Contributions

The main contributions of this thesis are as follows.

• Chapter 2: We propose a model for road capacity in mixed autonomy which encap-

sulates vehicle platooning, when autonomous vehicles travel closely to one another.

In our model, the capacity of a road is a function of the fraction of vehicles on

a road that are autonomous. Using this model, we formulate a congestion game

formulation of mixed autonomous vehicle flow, where the latency on each road is

a function of the flow of each vehicle type on that road. This formulation can be

used to study optimal routing for traffic networks with mixed autonomy, as well

as Wardrop Equilibria, in which the users of the network are modeled as selfish

decision makers who choose the shortest route available to them.

2
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• In this same chapter we study the Price of Anarchy (PoA) for traffic networks with

mixed autonomy. Using the total delay experienced by all users as the social cost,

which measures the quality of a routing, the Price of Anarchy is an upper bound,

over a class of congestion games, of the ratio of the social cost in the worst-case

Wardrop Equilibrium to that of the routing which minimizes the social cost. Classic

results bound the Price of Anarchy for congestion games with a single vehicle type,

and in very limited circumstances, multiple vehicle types. We show that in general,

the PoA in mixed autonomy can be unbounded. Moreover, we provide novel PoA

bounds in mixed autonomy which depend on the asymmetry in how the vehicle

types contribute to road congestion. We also prove a lower bound on the Price of

Stability in this setting.

• Chapter 3: Having established the potential downsides of allowing uncontrolled

selfish routing, we study using tolling to improving the social cost of equilibrium

routing. We show that inefficiency due to selfish routing can be eliminated using

differentiated tolls, in which the different vehicle types pay different tolls. This so-

lution may be costly due to the logistical, privacy, and fairness challenges of levying

separate tolls to the different vehicle types. Because of this, we study anonymous

tolls, in which all vehicle types pay the same toll. We show that anonymous tolls

have fundamentally limited usefulness in this setting; nonetheless we provide anony-

mous tolls which improve worst-case guarantees on the Price of Anarchy. To avoid

this fundamental limitation, we provide a tolling scheme which is almost anony-

mous, and has only an infinitesimal distinction between the tolls for the different

vehicle classes, and we show that this tolling scheme completely eliminates inef-

ficiency due to selfish routing in our considered setting. We also provide a lower

bound on the Price of Anarchy in this setting with variable marginal cost tolls
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applied.

• Chapter 4: We consider the setting of a network shared between users of an au-

tonomous ride-hailing service and human drivers in which a social planner controls

the prices offered to users of the ride-hailing service. We model how autonomous

service users choose between routes with different prices and latencies, and we

develop an algorithm to learn the preferences of the users. With these learned pref-

erences, we formulate a method for choosing prices for the ride hailing service to

maximize a social objective. To understand the efficacy of this scheme, we develop

theoretical benchmarks for the range of possible outcomes in this setting, and, using

these benchmarks, show the efficacy of our algorithm.

• Chapter 5: Though the above studies focus on controlling network equilibria, it is

not straightforward to control a network to move from one equilibrium to another.

We consider a setting in which a social planner has direct control over the routing of

the autonomous vehicles, and could potentially use this control to achieve efficient

equilibria and mitigate congestion due to network shocks such as traffic collisions.

To investigate this, we study a dynamic routing game, in which the routes of the

arriving flow of autonomous vehicles can be controlled by a central planner, and

in response the human drivers dynamically choose their routes selfishly. Again we

develop theoretical benchmarks to understand the maximum benefit which could

be accrued if all routing was perfectly controlled. We use Deep Reinforcement

Learning to find a policy which routes autonomous vehicles such that it guides

human reaction to route in a way which decreases congestion. We show the efficacy

of these learned policies, and show large congestion in the absence of them.

• Chapter 6: Finally, we investigate how to use micro-level interactions to positively

affect global behavior. Specifically, we analyze the optimal lane assignment and
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ordering of vehicles in the mixed autonomy setting. Using this, we design the

low-level controller of autonomous vehicles to reorder themselves in the presence of

vehicles driven by humans in a manner to maximize the capacity of the road. We

showcase the efficacy of our algorithm in simulation, and compare its results to the

theoretically optimal vehicle configuration.

1.2 Related Works

In this section we summarize key prior work in the realm of mixed autonomy, and for

works which we extend to the realm of mixed autonomy. The relevant chapters of this

thesis contain more detailed surveys of the literature. The review below highlights some

key relevant works, but is not a comprehensive literature review of these large topics.

Many studies have established the deleterious effects of road congestion, including

the negative impact of ride-hailing services [3, 4]. There are a number of methods which

have been proposed to minimize or eliminate congestion, including ramp metering, road

tolling, variable speed limits, and synchronized intersection cycles [5–9]. Other works

consider selectively revealing network state information to a fraction of users of a traffic

network in order to strategically influence their routing choices [10,11].

The framework of congestion games has been developed in order to understand prop-

erties of route choice in traffic networks, or other resources susceptible to congestion,

such as computer networks [12]. This framework allows the study of both the socially

optimal routing as well as the equilibria that emerge when the users of the network are

selfish and wish to minimize their personal cost [13–17]. This framework has been used

to characterize the Price of Anarchy (PoA) for a class of games, bounding the max-

imum gap between the social cost of an equilibrium routing and the socially optimal

routing [18–21]. A framework for calculating the Price of Anarchy was establish for a

5
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subclass of games which include multiple vehicle types, each influencing and experiencing

congestion differently [22]. However, the assumptions of this framework fail to capture

the case of networks with mixed autonomy.

One important ramification of this quantity is determining how useful it would be to

implement some control or influence over user routing; one example of such a scheme is

tolling. If the PoA is large, a system designer would wish to control routing somehow;

if the PoA is bounded to a small value, the suboptimal state reached by the selfish

equilibrium would not be much worse than it would be if it were optimally controlled.

In our work we find the PoA to be large in the case of mixed autonomy; we therefore

examine control schemes such as tolling. Tolling schemes which completely eliminate

inefficiency due to selfish routing have been established as far back as the 1950s, with

many later developments to handle some cases of networks with multiple vehicle types,

users with different values of time vs money, or users with unknown parameters [23–26].

Another method for influencing routing is when a system designer controls the routing

of some fraction of users, and the remaining users route selfishly in response. This

is known as a Stackelberg Game, and it has been studied in many settings including

congestion games and routing games using more complicated congestion models [27–29].

This dissertation deals largely with the effects of autonomous vehicles on traffic net-

works. The study of controlling platoons (closely space groups) of vehicles dates back

to the 1970s, in the study of how to space vehicles in an automated guideway transit

systems [30]. As autonomous technology advanced, multitudes of works studied how

to control platoons of passenger vehicles. Some relevant works study the effects of au-

tonomous technologies on throughput and mobility on urban roads [31,32]. Other works

characterize how the presence of autonomous vehicles changes traffic dynamics [33], ex-

tending well known models for vehicle flow of a single type [34]

Many relevant works study the effects and possibilities of integrating vehicles with
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autonomous technology in among with vehicles that are driven manually by humans.

Some works investigate how autonomous vehicles can be used to stabilize traffic flow

[35,36]. Other works seek to control platoons to improve traffic flow [37] or even decongest

highways [38] or localize traffic disturbances [39].

Despite many works showing the potential benefits of autonomy, other works show

that the presence of vehicles with autonomous technology can worsen congestion. For

example, the existing autonomous technology installed in vehicles on the market can

amplify traffic disturbances [40]. Moreover, even if autonomous vehicles improve road

usage efficiency, converting some human-driven vehicles to more efficient autonomous

vehicles can actually worsen congestion [41]. This motivates the study of how much worse

congestion can be in this mixed-autonomy setting, and how to mitigate this congestion.

7



Chapter 2

Mixed Autonomous Traffic

Networks: Modeling and Analysis

In this chapter1 we model traffic networks with mixed autonomy and use this model to

analyze the inefficiency due to selfish routing in the mixed autonomy setting. Specifically,

we introduce two capacity models for roads with mixed autonomy and use these models

to construct a family of latency functions for the roads, which relate the flow of vehicles

on the roads to the delay experienced by drivers on these roads. We show that in the

mixed autonomy setting, the inefficiency due to selfish routing can be much greater than

in the case of a single vehicle type. We therefore provide bounds on this inefficiency, and

analyze the tightness of these bounds.

1This chapter is in part adapted, with permission, from the works “Capacity modeling and routing
for traffic networks with mixed autonomy”, previously published by IEEE Conference on Decision and
Control, c© 2017 IEEE, “The price of anarchy for transportation networks with mixed autonomy”,
previously published by American Control Conference, c© 2018 IEEE, and “Routing for traffic networks
with mixed autonomy” previously published by IEEE Transactions on Automatic Control, c© 2020 IEEE,
and is joint work with Sam Coogan and Ramtin Pedarsani [42–44].
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2.1 Introduction

In recent years, automobiles are increasingly equipped with autonomous and semi-

autonomous technology, which has potential to dramatically decrease traffic congestion

[45]. Specifically, autonomous technologies enable platooning, in which these vehicles

automatically maintain short headways between them via adaptive cruise control (ACC)

or cooperative adaptive cruise control (CACC). ACC uses sensing such as radar or LIDAR

to maintain a specific distance to the preceeding vehicle with faster-than-human reaction

time, and CACC augments this with vehicle-to-vehicle communications.

When all vehicles are autonomous, the use of platooning has the potential to increase

network capacity as much as three-fold [31] by enabling synchronous acceleration at green

lights [46]. However, the presence of human-driven vehicles – leading to mixed autonomy

– makes much of these benefits unclear.

Moreover, even in the absence of autonomous capabilities, it is well known that if

drivers route selfishly and minimize their individual traffic delays, this does not in general

minimize overall traffic delay. Understanding the extent of this phenomenon can help

city planners – if selfish routing does not adversely affect travel delay too much, then

it may not be necessary to try to control vehicle flow using schemes such as tolling.

Alternatively, if selfishness can lead to much worse road delay, then a city planner may

wish to try to control human routing decisions. See Figure 6.1 for an example of selfish

routing and optimal routing in mixed autonomy.

The ratio between traffic delay under worst-case selfish routing and optimal rout-

ing is called the Price of Anarchy (PoA) and is well understood for networks with only

human-driven vehicles [19–21,47,48]. Many such works also bound the bicriteria, which

quantifies, for any given volume of vehicle flow demand, how much additional flow can

be routed optimally to result in the same overall latency as the original volume of traffic
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(a) When vehicles route selfishly, vehicles pack onto a congested road.

(b) In optimal routing, only autonomous vehicles are sent onto the road
most amenable to platooning.

Figure 2.1: A social planner can decrease overall travel times by make routing decisions
that utilize autonomous vehicles’ ability to platoon, and choosing different routes for
human-driven vehicles (blue) and autonomous vehicles (purple).

routed selfishly. Other studies have bounded the PoA with multiple modes of transporta-

tion [22,49]. However, these prior works require assumptions that do not capture vehicle

flow on roads shared between human-driven and autonomous vehicles, leaving open the

question of the Price of Anarchy in mixed autonomy. In fact, we show that these previ-

ous results do not hold, and the PoA for roads with mixed autonomy can in general be

unbounded!

Motivated by this observation, in we provide novel bounds on the PoA and bicriteria

that depend on the degree to which platooning affects road delay and on the degree

of the polynomial describing road delay. To do so, we use two models that describe

road capacity as a function of the fraction of vehicles on the road that are autonomous;

each model corresponds to a different assumption regarding the technology that enables
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platooning. We use these capacity models with a known polynomial road delay function,

and, for this class of latency functions, we bound the Price of Anarchy and bicriteria.

We develop two mechanisms for bounding the PoA, which yield bounds that are tighter

depending on platoon spacing and polynomial degree. In our development we provide

the main elements of our proofs and defer proofs of the lemmas to the appendix.

In our formulation, the benefit due to the presence of autonomous vehicles is limited

to platoon formation, and the probability that each vehicle is autonomous is indepen-

dent of the surrounding vehicles. While we acknowledge that autonomous vehicles yield

other benefits such as smoothing traffic shockwaves, we consider platooning because it

is a mature technology that is commercially available. Further, if autonomous vehicles

actively rearrange themselves to form platoons, the resulting capacity falls between the

two capacity models presented here, as investigated in Chapter 6.

Motivating Example. To show that the PoA bounds previously developed for roads

with only one type of vehicle (i.e. no autonomous vehicles) do not hold, we present an

example of a road network with unbounded PoA (Fig. 2.2). Consider a network of two

parallel roads, with road latency functions c1(z1
1 , z

2
1) = 1 and c2(z1

2 , z
2
2) = ζz1

2 . On each

road i the latency is a function of the human-driven flow (z1
i ) and the autonomous flow

(z2
i ) on that road. Suppose we have 1

ζ
units of human-driven vehicle flow and 1 unit of

autonomous traffic demand to cross from node s to node s′, with ζ ≥ 1.

Optimal routing puts all human-driven cars on the top road and all autonomous cars

on the bottom road; when vehicles route selfishly they all end up on the bottom road.

This yields a price of anarchy of ζ+ 1. The bicriteria is also ζ+ 1, as ζ+ 1 times as much

traffic, optimally routed, yields the same total cost as the original amount of traffic at

Wardrop Equilibrium.2 This examples leads us already to our first proposition, which

2Though in this case autonomous vehicles do not affect road delay, other examples in Section 2.3 also
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s s′

c1(z1
1 , z

2
1) = 1

c2(z1
2 , z

2
2) = ζz1

2

Figure 2.2: Road network with price of anarchy and bicriteria that grow unboundedly
with ζ when considering 1/ζ units of human-driven flow and 1 unit of autonomous flow
demand, with ζ ≥ 1. Function arguments z1

i and z2
i respectively denote human-driven

and autonomous vehicle flow on a road.

lays the foundations for the contributions of this chapter:

Proposition 2.1. The Price of Anarchy and bicriteria are in general unbounded in mixed

autonomy.

Motivated by this proposition, we develop the notion of the degree of asymmetry of

a road and use this, in conjunction with the degree of the polynomial cost function, to

parameterize the bound on the Price of Anarchy. We also lower bound a more optimistic

quantity of inefficiency due to selfish routing, the Price of Stability, in this setting. To

summarize, we

1. show that previous PoA results do not hold for mixed autonomy,

2. develop a realistic class of polynomial cost functions for traffic of mixed autonomy,

3. develop two mechanisms for bounding the PoA using this cost function with both

capacity models,

4. bound the Price of Anarchy and bicriteria, analyze the bound tightness, and

5. provide a lower bound for the Price of Stability in mixed autonomy.

yield an unbounded PoA with both vehicle types affecting road delay.
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2.1.1 Related Works

Congestion Games and Wardrop Equilibria. Our work is related to the optimal

traffic assignment problem, e.g. [13], which studies how to optimally route vehicles on a

network when the cost (i.e. delay) on a road link is a function of the flow of vehicles that

travel on that link. We are concerned specifically with the relationship between optimal

traffic assignment and Wardrop Equilibria, which occur when drivers choose their paths

selfishly. For a survey on literature on Wardrop Equilibria, see [50]; [51] describes other

notions of equilibria. Classic works on Wardrop Equilibria and the associated tools for

analyzing them include [16,17,52].

In an important development, Smith [16] establishes the widely used Variational

Inequality and uses it to describe flows at Wardrop Equilibrium, in which all users sharing

an origin and destination use paths of equal cost and no unused path has a smaller cost.

For any feasible flow z and equilibrium flow ẑ, the Variational Inequality dictates that

〈c(ẑ), ẑ − z〉 ≤ 0 , (2.1)

where z is a vector describing vehicle flow on each road, c(z) maps a vector of flows to

a vector of the delay on each road, and 〈·, ·〉 denotes the inner product of two terms.

Note that in the absence of an assumption about the monotonicity of c (see the follow-

ing section for a definition), the Variational Inequality is a necessary but not sufficient

condition for equilibria [51]. The Variational Inequality is fundamental for establishing

our PoA bound.

Multiclass Traffic. Some previous works consider traffic assignment and Wardrop

Equilibria with multiclass traffic, meaning traffic with multiple vehicle types and trans-

portation modes that affect and experience road latency differently (e.g. [14, 15,53]).

13



Mixed Autonomous Traffic Networks: Modeling and Analysis Chapter 2

Florian [15] demonstrates how to calculate equilibria for a multimodal system involv-

ing personal automobiles and public transportation. They use a relaxation that assumes

public transportation will take the path that would be shortest in the absence of cars.

In the case of mixed autonomy, this is not a fair assumption.

Dafermos [53] assumes the Jacobian of the cost function is symmetric and positive

definite. Similarly, Hearn et. al. [14] deal with a monotone cost function, i.e. satisfying

the property

〈c(z)− c(z′), z − z′〉 ≥ 0 (2.2)

for flow vectors z and z′.

However, traffic networks with mixed autonomy are in general nonmonotone. To

see this, consider a network of two roads with costs c1(z1
1 , z

2
1) = 3z1

1 + z2
1 + t1 and

c2(z1
2 , z

2
2) = 3z1

2 + 2z2
2 + t2, where t1 and t2 are constants denoting the free-flow latency

on roads 1 and 2. This corresponds to a road in which autonomous vehicles can platoon

closely and another road on which they cannot platoon as closely. The Jacobian of the

cost function is as follows: 
3 1 0 0
3 1 0 0
0 0 3 2
0 0 3 2

 ,

which is not symmetric, and the vector z =

[
−1 2 0 0

]T
demonstrates that it is

also not positive semidefinite. Monotonicity is closely related to the positive (semi-)

definiteness of the Jacobian of the cost function. To show that the monotonicity condition

is violated as well, consider that there are 2 units of human-driven flow demand and 3

units autonomous flow demand. With one routing in which all human-driven flow is on
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the first road and all autonomous flow is on the second and another routing with these

reversed, we find that the monotonicity condition is violated.

Similarly, Faroukhi et. al. [54] prove that in heterogeneous routing games with cost

functions that are continuously differentiable, nonnegative for feasible flows, and non-

decreasing in each of their arguments, then at least one equilibrium is guaranteed to

exist. These mild conditions are satisfied in our setting. For heterogeneous games with

two types, they further prove a necessary and sufficient condition for a potential func-

tion (and therefore unique equilibrium) to exist. However, the condition required can

be considered a relaxation of the condition that the Jacobian of the cost function be

symmetric. While broader than strict symmetry, this condition is still not satisfied in

mixed autonomy. Notably, they describe tolls that, when applied, yield a cost function

that satisfies this condition.

As described above, these previous works in multiclass traffic require restrictive as-

sumptions and therefore do not apply to the case of mixed autonomy. In fact, in the

case of mixed autonomy, the routing game is not formally a proper congestion game, as

it cannot be described with a potential function. Nonetheless, in this paper we adapt

tools developed for such games to derive results for mixed autonomous traffic.

Price of Anarchy. There is an abundance of research into the Price of Anarchy in

nonatomic congestion games, originating in [55] and codified in [19–21, 47, 48]. In [21],

the authors develop a general tool for analyzing Price of Anarchy in nonatomic congestion

games. Though their development is specific to monotone cost functions, in this paper

we broaden it to cost functions that are not necessarily monotone. Also relatedly, we

find that in the case of no asymmetry, our Price of Anarchy bound for polynomial cost

functions simplifies to the classic bound in [20,47].

The previously mentioned works consider primarily single-type traffic. Perakis [22]
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considers PoA in multiclass traffic using nonseparable, asymmetric, nonlinear cost func-

tions with inelastic demand. However, they restrict their analysis to the case that the

Jacobian matrix of the cost function is positive semidefinite. Similarly, Chau and Sim [49]

consider the PoA for multiclass traffic with elastic demand with symmetric cost functions

and positive semidefinite Jacobian of the cost function. As demonstrated earlier, these

assumptions are violated in the case of mixed autonomy.

The study of multitype congestion games is related to the field of weighted congestion

games, for which tools are available to bound the Price of Anarchy [56]. In this setting,

each flow type is assigned a weight, and the total flow on an edge is the weighted sum

of the flow types on that edge. However, the weight for each type is uniform across

the network. Our setting is more general; a single flow (i.e. vehicle) type may have

congestion effects that differ based on the edge (i.e. road) it travels upon. In fact, our

bound on PoA on networks constructed from roads with the first capacity model can be

viewed as an extension of the PoA for weighted congestion games to games in which the

weights for the players are link-dependent.

A relevant work studies the Price of Anarchy for a broader class of delay functions

than the ones we study [57]. They provide Price of Anarchy bounds which are polyno-

mial in the number of source-destination pairs for each vehicle type; our bounds do not

depend on this parameter and are therefore arbitrarily tighter in our case of interest. In

the affine case their bound simplifies to 2 times the degree of asymmetry, which we define

below; our bound is 4/3 times the degree of asymmetry.

Autonomy. In one line of research, autonomous vehicles are controlled to locally improve

traffic by smoothing out stop-and-go shockwaves in congested traffic [30, 35, 36, 58–63],

optimally sending platooned vehicles through highway bottlenecks [64, 65], and simulta-

neously accelerating platooned vehicles at signalized intersections [31, 46]. Other papers
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investigate fuel savings attained using autonomous vehicles [66–69] or jointly controlling

vehicles on a highway to localize and eliminate traffic disturbances [39]. Some works

consider optimally routing and rebalancing a fleet of autonomous vehicles [70], though

these generally consider a simpler model for road latency, in which capacitated roads

have constant latency for flows below their capacity, and all roads are considered to be

in this regime.

Some works have related models for road capacity and throughput under mixed au-

tonomy, in particular [32, 46]. [71] provides a capacity model which assumes that all

autonomous vehicles are platooned in periodic platoons, each with the same number of

vehicles and the same number of human-driven vehicles between platoons. In contrast,

we consider two capacity models: one in which autonomous vehicles can maintain a short

headway behind any vehicle they follow, and one in which autonomous vehicles are placed

randomly as the result of a Bernoulli process and only platoon opportunistically. The

capacity model in [32] shares key features with ours and was published contemporane-

ously to our model [42]. Another work shows that autonomy can increase the total delay

experienced by users [72].

2.2 Modeling

Consider a network described by a graph with n edges, where edges correspond to

roads. We consider nonatomic flow, meaning each driver controls an infinitesimally small

fraction of vehicle flow. Let m denote the number of vehicle types, where the latency on

each edge is a function of the flow of each vehicle type on that edge. We generally use

i to index roads and j to index vehicle types. For integer x, let [x] denote {1, 2, . . . , x}.

Let 〈v, w〉 denote the inner product between the vectors v and w.

Consider inelastic flow demand, with demand described by {sr, s′r, βr, jr}r∈[R], where
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for each commodity r in the set of commodities [R], sr is that commodity’s source node,

s′r is the destination node, βr is the flow demand, and jr is the vehicle type of the

commodity. Thus, each commodity describes the flow demand of a specific vehicle type

between a specific source and destination node.

We use zji to describe the flow of vehicle of type i on road j. Then, for road i, zi is a

column vector describing the flow of all vehicle types on road i:

zi :=

[
z1
i z2

i . . . zmi

]T
.

Let z describe the flow over the entire network:

z =

[
zT1 zT2 . . . zTn

]T
.

We can alternately describe the flow through a graph in terms of the flow on each

route. Let Pr denote the set of simple paths available to commodity r. Let f jp ≥ 0 denote

the flow of vehicle type j on path p. Then a routing f is feasible if
∑

p∈Pr f
jr
p = βr for

commodities r ∈ [R]. Since there is a one-to-one correspondence between path flows and

edge flows, a characterization of feasible routings can be applied to edge routings z as

well. Thus, a feasible routing z refers to a routing which satisfies the commodity flow

demands and graph constraints. We use Z to denote the set of feasible routings. We use

Ip to denote the set of edges in path p.

We refer to the flow vector z as a routing or a strategy. We use Z ⊆ Rmn
≥0 to denote

the set of feasible routings, meaning routings that route all flow demand from their origin

nodes to their destination nodes while respecting conservation of flow in the network.

Let cji : Rm
≥0 → R≥0 denote the delay experienced on road i by vehicle type j, which

is a function of the flow of all vehicle types on that road. We assume that all vehicle
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types experience the same delay on a road; we can then write a vector-valued function

which outputs the delay experienced by each vehicle type on road i, ci : Rm
≥0 → Rm

≥0, as

ci(zi) = 1mc
1
i (zi) ,

where 1m denotes the m-dimensional column vector of ones. We then define the delay

function for the network, c : Rmn
≥0 → Rmn

≥0 as

c(z) :=

[
c1(z1)T c2(z2)T . . . cn(zn)T

]
.

The social cost, which is the aggregate delay experienced by all users of the network,

is then

C(z) := 〈c(z), z〉 .

A social planner then wishes to find the socially optimal routing, which is the feasible

routing that minimizes the social cost, and therefore solves the following optimization:

min
z∈Z

C(z) .

We are concerned with the social cost of user equilibria in this setting. This means

routings for which no user type would wish to change their routing, where users experience

the cost of a route as a sum of the latency of each road in their path. Specifically, we

consider Wardrop Equilibrium, which can be specified in terms of path routing.

Definition 2.1. A flow is at Wardrop Equilibrium if no user can decrease their cost by

switching routes. Mathematically, a flow f is at Wardrop Equilibrium if

∀r ∈ [R], ∀p, p′ ∈ Pr, f jp > 0 =⇒
∑
i∈Ip

cji (zi) ≤
∑
i∈Ip′

cji (zi) .
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Figure 2.3: Capacity models 1 and 2. In capacity model 1 (top), autonomous cars
can platoon behind any vehicle, and therefore take up length h1

i when traveling at
the free-flow velocity. In capacity model 2 (bottom), autonomous vehicles can only
platoon behind other autonomous vehicles; in that case they take up length h1

i , but
if following a human-driven vehicle, they take up length h2

i . Human-driven vehicles
always take up length h2

i .

In words, for each commodity, if a path has positive flow, then no other path available

to that commodity can have lower cost, where the cost is relative to the user type of the

commodity. As mentioned above, in the setting without tolling, we consider the cost

experienced by all users on a road to be equal. In the following sections we develop

models for road capacity and road delay in order to construct the cost functions.

2.2.1 Capacity Models

We model the capacity of a road under two assumptions: 1) the spacing between

two cars depends only on the vehicle type of the following vehicle and 2) the spacing

between two vehicle types depends on the vehicle types of both vehicles. The first as-

sumptions corresponds to a setting in which vehicles with autonomous technology do not

platoon cooperatively, and instead treat all other vehicles interchangeably, and the sec-

ond corresponds to the setting in which autonomous vehicles actively platoon coordinate

acceleration and deceleration. We first develop the first capacity model.

Let di denote road length times the road’s nominal velocity and let hji denote the

20



Mixed Autonomous Traffic Networks: Modeling and Analysis Chapter 2

nominal space taken up by vehicle type j, which is the sum of the length of the vehicle

and the headway that vehicle maintains at free-flow velocity. We define the capacity of a

road as the number of vehicles that can travel on a road at the road’s nominal velocity.

The capacity will be a function of the fraction of the total vehicles of each vehicle type

and is calculated by taking the product of the length of the road and the free-flow velocity

and dividing it by the average space taken up by a car on the road. We formalize this in

the following proposition.

Proposition 2.2. Assume that vehicles maintain a nominal spacing independent of the

vehicle type they follow, and let hji denote the nominal space occupied by vehicle of type

j on road i. Then the capacity is

θi(zi) =
di
∑

j∈[m] z
j
i∑

j∈[m] h
j
iz
j
i

. (2.3)

We justify this proposition by noting that under this assumption, the average space

maintained by a vehicle, as the number of vehicles grows large, is a weighted combination

of the spacing of each vehicle type, with weights determined by the fraction of total

vehicles that are of that vehicle type. Note that this capacity model does not depend on

the ordering of the vehicles.

We next consider the setting in which the spacing between a pair of vehicles depend

on the types of both the vehicles. For this model we consider two vehicle types3, the

first one autonomous, which maintains a nominal spacing of h1
i when traveling behind

other autonomous vehicles, and a nominal spacing of h2
i when traveling behind human-

driven vehicles. We consider the second vehicle type to be human-driven vehicles, which

maintain a nominal spacing of h2
i when traveling behind any vehicle type. We formalize

3Since the second capacity model only incorporates two vehicle types, any networks which include
some roads with capacity model 1 and some with capacity model 2 will have two vehicle types. Networks
which only include roads with capacity model 1 can have more than two vehicle types.
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the capacity in the following proposition.

Proposition 2.3. Consider a setting of two vehicle types on road i, where type 1 main-

tains a nominal spacing of h1
i when traveling behind other vehicles of type 1, and in all

other cases, vehicles maintain a nominal spacing of h2
i . Assume that vehicles are placed

on a road as the result of a Bernoulli process. Then the capacity is

θi(zi) =
di

(
z1i

z1i +z2i
)2h1

i + (1− (
z1i

z1i +z2i
)2)h2

i

. (2.4)

Proof. For this capacity model, we assume the vehicles are placed as the result of a

Bernoulli process with parameter
z1i

z1i +z2i
. Consider M vehicles, each with length L, with

sq denoting the headway of vehicle q. Note that the front vehicle will have sq = 0. The

expected total space taken up is, due to linearity of expectation,

E[
M∑
m=1

L+ sq] = ML+
M−1∑
q=1

E[sq]

= (M − 1)((
z1
i

z1
i + z2

i

)2h1
i + (1− (

z1
i

z1
i + z2

i

)2)h2
i ) + L .

Then, as the number of vehicles grows, the average space occupied by a vehicle approaches

(
z1i

z1i +z2i
)2h1

i + (1− (
z1i

z1i +z2i
)2)h2

i , yielding the above expression.

Figure 2.3 provides an illustration of the technology assumptions. To make the mean-

ing of nominal vehicle spacing more concrete, we offer one way of calculating spacing:

let L denote vehicle length, τh,i and τa,i denote the reaction speed of human-driven and

autonomous vehicles, respectively. Let vi be the nominal speed on road i, which is likely

the road’s speed limit. Then we consider h1
i = L+ viτa,i and h2

i = L+ viτh,i.
4

4Our theoretical results hold even in the case that h1i ≥ h2i on some roads and h1i′ < h2i′ on others.
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2.2.2 Delay Model

We now propose a model, similar to Bureau of Public Roads (BPR) model [15,73,74],

for the road delay incurred by mixed traffic resulting from the capacity models derived

above.

Assumptions 2.1. In the remainder of this chapter, we assume the following relationship

between the flow of vehicles on a road and the delay on the road:

ci(zi) = ti(1 + ρi

(∑
j∈[m] z

j
i

θi(zi)

)σi
) . (2.5)

Here, ti denotes the free-flow delay on road i, and ρi and σi are model parameters.

Typical values for ρi and σi are 0.15 and 4, respectively [74]. However, our solution

methodology is valid for any parameters such that ti ≥ 0, ρi ≥ 0 and σi ≥ 1.

Remark 2.1. This model of delay function assumes that the density of vehicles on a

road remains low enough that the vehicle flow does not enter the congested regime, in

which delay increases as flow decreases. In the absence of this assumption the Price of

Anarchy is trivially infinite.

Remark 2.2. This choice of cost functions implies that road delay is separable, meaning

that the vehicles on one road do not affect those on another. We bound the Price of

Anarchy and bicriteria for some nonseparable affine cost functions in another work [43].

The class of cost functions we consider are not monotone, meaning they do not

necessarily satisfy (2.2), but are elementwise monotone, defined below:

Definition 2.2. A cost function c : Rmn
≥0 → Rmn

≥0 is elementwise monotone if it is non-

decreasing in each of its arguments, i.e.
dcji (zi)

dzj
′
i′
≥ 0 ∀i, i′ ∈ [n] ∧ ∀j, j′ ∈ [m].
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2.3 Price of Anarchy Analysis

In this section we bound the PoA and bicriteria of traffic networks with mixed auton-

omy. As established in the introduction of this chapter, the PoA is in general unbounded

in traffic networks with mixed autonomy. However, we can establish a bound for the

PoA by parameterizing it as described below.

Definition 2.3. The degree of asymmetry on a road is the maximum ratio of road space

utilized by a car of one type to a car of another type on the same road, while traveling at

nominal velocity. The maximum degree of asymmetry, k, is the maximum of the above

quantity over all roads in the network. Formally,

k := max
i∈[n],j,j′∈[m]

hji/h
j′

i . (2.6)

Note that this quantity is always greater than or equal to 1. Also, we do not assume

that one vehicle type affects delay more than another type on all roads. For example, au-

tonomous vehicles may require shorter headways than human-driven vehicles on highways

but longer headways on neighborhood roads to maintain safety for pedestrians.

Definition 2.4. The maximum polynomial degree, denoted σ, for a road network with

cost functions in the form (2.5) is the maximum degree of a polynomial denoting the cost

on all roads in the network: σ = maxi∈[n] σi.

We use Ck,σ to denote the class of cost functions of the form (2.5), with maximum

degree of asymmetry k and maximum polynomial degree σ, with cost functions using θi

from either capacity mode 1 in (2.3) or capacity model 2 in (2.4). Let

ξ(σ) := σ(σ + 1)−
σ+1
σ . (2.7)
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Note that for σ ≥ 1, ξ(σ) < 1. With this, we present our first bound.

Theorem 2.1. Consider a class of nonatomic congestion games with cost functions

drawn from Ck,σ. Let ẑ be an equilibrium and z∗ be a social optimum for this game.

Then,

C(ẑ) ≤ kσ

1− ξ(σ)
C(z∗) .

Proof. Given any road cost function c (and social cost C) and equilibrium ẑ, we define an

aggregate cost function ` (and social cost L) parameterized by the original equilibrium

flow ẑ and the cost function c. We also define a corresponding equilibrium flow f̂ , also

parameterized by ẑ. This allows us to combine flow of all vehicle types on a road into

one flow type in the aggregate function so we can bound the Price of Anarchy for the

aggregate cost function. This means finding the relationship between the social cost

at the equilibrium routing f̂ and a socially optimal routing f ∗, both relative to the

aggregate cost function `. We then find the relationship between the optimal routing for

the aggregate cost function to that of the original cost function. Formally, the steps of

the proof are:

C(ẑ) = L(f̂(ẑ); ẑ, c) (2.8)

≤ 1

1− ξ(σ)
L(f ∗; ẑ, c) (2.9)

≤ 1

1− ξ(σ)
kσC(z∗) . (2.10)

We begin by introducing the tool with which we bound the PoA in (2.9). We then define

` and f̂ such that (2.8) holds and show that f̂ is an equilibrium for `. We discuss the

structure of the tool used to bound the PoA and provide an intuitive explanation of how

the chosen structure of ` leads to a tighter PoA bound than an alternative choice. We
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then provide lemmas corresponding to inequality (2.9), which bounds the PoA of this

new cost function, and (2.10), which relates the social cost of optimal routing under ` to

that of the original cost function, c. We defer proofs of the lemmas to the appendix.

We first introduce a general tool that we use for our results by extending the frame-

work established by Correa et. al. [21], which relies on the Variational Inequality to

bound the PoA. We use the following parameters:

β(c, z′) := max
z∈Rmn≥0

〈c(z′)− c(z), z〉
〈c(z′), z′〉

,

β(C) := sup
c∈C,z′∈Z

β(c, z′) , (2.11)

where 0/0=0 by definition, and C is the class of network cost functions being considered.

Then,

Lemma 2.1. Let ẑ be an equilibrium of a nonatomic congestion game with cost functions

drawn from a class C of elementwise monotone cost functions.

(a) If z∗ is a social optimum for this game and β(C) < 1, then

C(ẑ) ≤ (1− β(C))−1C(z∗) .

(b) If q∗ is a social optimum for the same game with 1 + β(C) times as much flow

demand of each type, then

C(ẑ) ≤ C(q∗) .

The lemma and proof are nearly identical to that of Correa et. al. [21], extended to

encompass nonmonotone, yet elementwise monotone, cost functions.

We now explain our choice of ` and f̂ that yields (2.8) then provide an intuitive
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explanation for this choice. Recall that we define

ẑ =

[
ẑ1

1 ẑ2
1 . . . ẑm1 ẑ1

2 ẑ2
2 . . . ẑmn

]T
.

We first define a flow aggregator function which combines the flow in ẑ of each type

on a road. We define f̂i : Rm
≥0 → R≥0, where

f̂i(ẑi) =
∑
j∈[m]

ẑji . (2.12)

We define a new cost function ` that is a mapping from flow vector (with one flow

for each road) to road latencies, i.e. ` : Rn
≥0 → Rn

≥0. We define ` so that it has the same

road costs with flow f̂ as c does with flow ẑ. Note, however, that c is a mapping from

flows, with m flow types per road, to road latencies, again with each road represented m

times (c : Rmn
≥0 → Rmn

≥0 ). However, ` represents each road once.

To formally define `, we first define a latency function parameterized by another

latency function and a flow. First define an intermediary function vj
′

i : Rm
≥0 → R≥0 such

that

vj
′

i (ẑi) =


0 j = 0∑

j∈[j′] ẑ
j
i j′ ∈ [m− 1]

∞ j = m

(2.13)

We formally define `, which depends on the equilibrium flow being considered, ẑ.

This cost function is defined for both capacity models. If road i has the first capacity
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type, then

`i(fi; ẑi, ci) :=

{
ti(1 + ρi

(∑
j∈[j′−1] h

j
i ẑ
j
i + hj

′

i (fi −
∑

j∈[j′−1] ẑ
j
i )
)σi) for vj

′−1
i ≤ fi ≤ vj

′

i
.

(2.14)

The second capacity model only incorporates two vehicle types. For roads using

capacity model 2, if h1
i ≤ h2

i , `i is defined as follows.

`i(fi; ẑi, ci) :=


ti(1 + ρi(

h2i fi
di

)σi) fi ≤ ẑ2
i

ti(1 + ρi(
h2i (fi)

2−(h2i−h1i )(fi−ẑ1i )2

difi
)σi) fi > ẑ2

i

. (2.15)

If h1
i > h2

i ,

`i(fi; ẑi, ci) :=


ti(1 + ρi(

h1i fi
di

)σi) fi ≤ ẑ1
i

ti(1 + ρi(
h1i (fi)

2−(h1i−h2i )(fi−ẑ2i )2

difi
)σi) fi > ẑ1

i

. (2.16)

We defined the social cost for a network with cost function `:

L(f ; ẑ, c) :=
∑
i∈[n]

fi`i(fi; ẑi, ci) . (2.17)

Finally, we use Lσ to denote the set of functions L parameterized by cost function c

with maximum polynomial degree σ.

With all this established, we relate equilibria for networks with cost function c and

networks with cost function ` in the following proposition.

Proposition 2.4. For a network with latency function c and Wardrop Equilibrium ẑ,

and with f̂ , vj
′

i , `, and L defined as in (2.12), (2.13), (2.14), (2.15), (2.17),

1. L(f̂(ẑ); ẑ, c) = C(ẑ), and

2. if ẑ is a Wardrop Equilibrium for c, then f̂ is a Wardrop Equilibrium for `.
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, road cost
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Figure 2.4: Illustration of the geometric interpretation of the parameter β(L) where
L represents the class of aggregate cost functions. Parameter β(L) is an upper bound
on the ratio between the size of the shaded rectangle and the dashed rectangle. This
is an upper bound over all choices of `i ∈ L and ẑi with nonnegative elements.

In our proof, when bounding β(Lσ), we can bound (2.11) by only considering a single

road i. Key in this is that without loss of generality, on this road, we assign vehicle type

indices such that `i adds the vehicle types in decreasing order of how much they congest.

This means the we assign vehicle type indices such that h1
i ≥ h2

i ≥ . . . ≥ hmi , so the most

congesting vehicle type is added first, then the second-most congesting type, and so on.

To provide some intuition as to why we add the “costly” vehicle type first, consider

the affine case with the first capacity model with two vehicle types. Correa et. al. give

a geometric interpretation of the parameter β(C) when cost are separable, meaning road

latency only depends on one element of the flow vector. They show that for any cost

function drawn from C, β(C) provides an upper bound on the ratio of the area of a

rectangle above the cost function curve to the area of a rectangle enclosing it, where the

enclosing rectangle has one corner at the origin. See Figure 2.4 for an illustration.

This interpretation provides the intuition that the more convex a function can be, the

greater β(C) can grow. Thus, to make our bound as tight as possible in our case, when

considering β(L), we add the costly vehicle type first. In the affine case with the first

capacity model, this makes the class of cost functions concave. Then the element of this
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class that maximizes the size of the interior rectangle relative to the exterior rectangle

minimizes the concavity of the function by setting ẑ1
i = 0 or ẑ2

i = 0. Thus, the PoA

bound does not depend on the degree of asymmetry. Though this exact interpretation

does not apply for σ > 1 or for the second capacity model, the intuition is nonetheless

useful.

With this intuition, we now present inequalities (2.9) and (2.10) as a lemmas, which

we prove in the appendix.

Lemma 2.2. Consider a nonatomic congestion game with road cost functions of the

form (2.14) or (2.15), parameterized by c with maximum polynomial degree σ. Then, for

socially optimal routing f ∗ serving the same flow demand as f̂(ẑ),

L(f̂(ẑ); ẑ, c) ≤ 1

1− ξ(σ)
L(f ∗; ẑ, c)

where ξ(σ) = σ(σ + 1)−
σ+1
σ .

Lemma 2.3. Let c be a cost function from the class Ck,σ. Consider L as defined in (2.12),

(2.13), (2.14), (2.15), (2.17), and let f ∗ be a socially optimal routing for L serving the

same flow demand as ẑ(f̂). Let z∗ be a socially optimal routing for C, serving the same

flow demand as ẑ. Then,

L(f ∗; ẑ, c) ≤ kσC(z∗) .

We prove Lemma 2.2 by bounding β(L) for the class of aggregate cost functions and

applying Lemma 2.1. We analyze the structures of c and ` to prove Lemma 2.3. The

proofs for these lemmas are provided in the appendix to this chapter. With these lemmas,

the theorem is proved.
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Remark 2.3. In this proof outline above, L is parameterized by a specific equilibrium of

c, denoted ẑ. Though c may have multiple equilibria, the proof construction applies for

any equilibrium of c. Thus, for any c ∈ Ck,σ, for each equilibrium of this cost function,

this methodology can be applied, thereby bounding the cost of any equilibrium.

Note that for k = 1 (i.e. no asymmetry), the PoA bound simplifies to those in [20,47].

If the cost functions are affine and there is no asymmetry, this reduces to the classic 4
3

bound [19]. We characterize the tightness of this bound in the following corollary:

Corollary 2.1. Given a maximum polynomial degree σ, the PoA bound is order-optimal

with respect to the maximum degree of asymmetry k.

We provide an example proving the corollary later in this section. When considering

road networks with low asymmetry, we can establish another bound.

Theorem 2.2. Consider a class of nonatomic congestion games with cost functions

drawn from Ck,σ. Let ẑ be an equilibrium and z∗ a social optimum for this game. If

kξ(σ) < 1, then

C(ẑ) ≤ 1

1− kξ(σ)
C(z∗) .

Proof. To prove this theorem, instead of going through an aggregate cost function we

directly find β(C) for our class of cost functions and apply Lemma 2.1. We do this in

two two lemmas: we first find a relationship between the parameter β(c, v) and the road

capacity model θi(xi, yi), then we bound the resulting expression.

Lemma 2.4. For cost functions of the form (2.5), the parameter β(C) is bounded by

β(C) ≤ max
i∈[n],ẑi,zi∈Rm≥0

∑
j∈[m] z

j
i∑

j∈[m] ẑ
j
i

(
1−

(θi(qi)(∑j∈[m] z
j
i )

θi(zi)(
∑

j∈[m] ẑ
j
i )

)σ)
.
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Lemma 2.5. For capacities of the forms (2.3) or (2.4),

max
i∈[n],ẑi,zi∈Rm≥0

∑
j∈[m] z

j
i∑

j∈[m] ẑ
j
i

(
1−

(θi(ẑi)(∑j∈[m] z
j
i )

θi(zi)(
∑

j∈[m] ẑ
j
i )

)σ) ≤ kξ(σ) .

These lemmas, together with Lemma 2.1, prove the theorem as well as Theorem 2.3

below.

Note that this bound may not necessarily be tighter in all regimes so our new PoA

bound is min( kσ

1−ξ(σ)
, 1

1−kξ(σ)
). Though we cannot in closed form determine the region for

which it is tighter, we can do so numerically. For example, for affine cost functions with

k = 2, kσ

1−ξ(σ)
= 8

3
and 1

1−kξ(σ)
= 2. Later in this section we show via example that the

bound in Theorem 2.2 is tight in this case.

The method used for establishing Theorem 2.2 also gives a bound on the bicriteria,

stated in the following theorem.

Theorem 2.3. Consider a class of nonatomic congestion games with cost functions

drawn from Ck,σ. Let ẑ be an equilibrium for this game. If q∗ is a social optimum

for the same game with 1 + kξ(σ) times as much flow demand of each type, then

C(ẑ) ≤ C(q∗) .

As an example, if road delays are described by polynomials of degree 4, and the

maximum asymmetry between the spacing of platooned and nonplatooned vehicles is 3,

then the the cost of selfishly routing vehicles will be less than optimally routing 1 +

3 ξ(4) ≈ 2.61 times as much vehicle flow of each type.

In the theoretical results above, we only considered the Price of Anarchy, which

depends on the worst-case equilibria, in the worst-case over all network topologies and
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s s′

c1(z1) = (kz1
1 + z2

1)σ

c2(z2) = (z1
2 + kz2

2)σ 1√
1

(a) Network from Example 2.1 with two
sided asymmetry. One unit of vehicle
type 1 and one unit of vehicle type 2
cross from node s to s′.

s s′

c1(z1) = 1

c2(z2) = k√
k+1

z1
2 + 1√

k+1
z2

2

(b) Network from Example 2.2 with one
sided asymmetry. 1√

k
units of vehicle

type 1 and one unit of vehicle type 2 cross
from node s to s′.

Figure 2.5: Examples showing the tightness of the Price of Anarchy bounds.

cost functions in the considered class of cost functions. In this setting we found that the

PoA scales with the maximum degree of asymmetry as kσ. However, in mixed autonomy,

the equilibrium is not necessarily unique, meaning that there may be better equilibria

with lower cost, and it may not be a fair assumption to assume that the network will

settle on the worst-case equilibrium. It is therefore valuable to understand the worst-

case gap between social cost under optimal routing and best-case equilibrium, meaning

the equilibrium that minimizes the social cost. This quantity is known as the Price of

Stability.

Proposition 2.5. The Price of Stability for the class of nonatomic congestion games

with cost functions drawn from Ck,σ is lower bounded by 1 + k
2
√
k+1

.

This proposition is proved in Example 2.2. This result shows that even assuming that

the most socially optimal equilibrium arises in each network, in the worst case, the ratio

between the equilibrium social cost and the optimal social cost can be lower bounded by

an expression which scales with
√
k/2.

Next we provide examples that give a lower bound on the PoA for this class of

networks and serve to illustrate the tightness of the bounds. The examples are shown in

Fig. 2.5 and the comparison of the PoA and bicriteria are shown in Fig. 2.6. We discuss
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(a) Comparison of the PoA of Example 2.1 with
the upper bound, with σ = 1.

(b) Comparison of the PoA of Example 2.2 with
the upper bound, with σ = 1.

(c) Bicriteria of Examples 2.1 and 2.2 (with
σ = 1), compared with the bicriteria bound.

Figure 2.6: Tightness of theoretical bounds.
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notions of one-sided and two-sided asymmetry: a network has one sided asymmetry

if h1
i ≤ h2

i ∀i ∈ [n] (human-driven cars always contribute more to road delay than

autonomous cars) or h1
i ≥ h2

i ∀i ∈ [n] (human-driven cars always contribute less to

road delay than autonomous cars); otherwise the network has two-sided asymmetry. We

provide two example networks (Fig. 2.5), one with two-sided asymmetry and one with

one-sided asymmetry. We compare the PoA and bicriteria in those networks to the upper

bounds established earlier.

Through the first example we prove Corollary 2.1. In this example, we consider two

roads, one of which is well-suited for autonomous vehicles (such as a highway) and the

other is well-suited for human-driven vehicles (such as an urban road).

Example 2.1. Consider the network of parallel roads in Fig. 2.5 (a), where one unit of

vehicle type 1 and one unit of vehicle type 2 wish to cross from node s to s′. The roads

have costs c1(z2) = (kz1
1 + z2

1)σ and c2(z2) = (z1
2 + kz2

2)σ, where k ≥ 1. In worst-case

equilibrium, all flow of type 1 are on the top road and all flow of type 2 are on the bottom

road. In the best case, these routing are reversed. This yields a PoA of kσ. To find the

bicriteria, we calculate how much traffic, optimally routed, yields a cost equal to 2kσ, the

cost of the original traffic volume at worst-case equilibrium. We find that k
σ
σ+1 as much

traffic, optimally routed, yields this same cost.

We now analyze the setting in which autonomous vehicles always increase the capacity

of a road. In this case, the tightness of our bound (which holds for two-sided asymmetry

as well) remains open.

Example 2.2. Consider the network of parallel roads in Fig. 2.5 (b), where 1√
k

unit of

vehicle type 1 and one unit of vehicle type 2 wish to cross from node s to s′. The roads

have costs c1(z1) = 1 and c2(z1) = k√
k+1

z1
2 + 1√

k+1
z2

2. At equilibrium, all vehicles take the

bottom road; optimally routed, flow of type 1 takes the top road and flow of type 2 take
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the bottom. This yields a PoA of 1 + k
2
√
k+1

. Calculations similar to that in Example 2.1

yield a bicriteria of (−1+
√

1+4
√
k)(1+

√
k)

2
√
k

.

For affine cost functions, σ = 1, so ξ = 1/4. The PoA bound is then min( 4
4−k ,

4
3
k)

and the bicriteria bound is 1 + k/4. With σ = 1, the first example has PoA k and

bicriteria
√
k, and the second example has PoA of order

√
k and bicriteria of order k1/4.

Accordingly, the first example shows that the PoA bound is tight for k = 2 and the

bicriteria bound is tight for k = 4. Note that a realistic range for k is between 1 and 4.

Further, for affine cost functions, the bound in Theorem 2.2 is tighter than that of

Theorem 2.1 when the degree of asymmetry is low. However, the bound in Theorem 2.1

scales much better for high degrees of asymmetry. This effect is accentuated for cost

functions that have higher order polynomials – the regime for which the bound in Theo-

rem 2.2 is tighter shrinks as the maximum polynomial degree grows.

As stated in Corollary 2.1, our bound is order-optimal with respect to the maximum

degree of asymmetry, k. Comparing the bound ( kσ

1−ξ(σ)
) with the PoA in Example 2.1

(kσ) shows that for a fixed σ, the PoA upper bound is within a constant factor of the

lower bound, implying that the upper bound is order-optimal in k.

It is also worth noting that under the construction used in Theorem 2.2, the bicriteria

is related to the PoA through the quantity β(C) [21]. Observe that Example 2.1 provides

a bicriteria of 2 for k = 4, implying β(C4) ≥ 1. Since the PoA is greater than or equal

to 1
1−β(C) , this mechanism cannot bound the PoA for k ≥ 4. This leads us to rely on the

mechanism developed for Theorem 2.1 for networks with large asymmetry.
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2.4 Conclusion

In this chapter5 we presented a framework, similar to a congestion game, for consid-

ering traffic networks with mixed autonomy. To do so we presented two models for the

capacity of roads with mixed autonomy, each corresponding to an assumption about the

technological capabilities of autonomous vehicles, and we defined a class of road latency

functions that incorporates these capacity models. Using this framework, we developed

two methods of bounding the Price of Anarchy and show that these bounds depend on

the degree of the polynomial describing latency and the difference in the degree to which

platooned and nonplatooned vehicles occupy space on a road. In addition we presented

a bound on the bicriteria, another measure of inefficiency due to selfish routing. We

presented examples showing these bounds are tight in some cases and recover classical

bounds when human-driven and autonomous vehicles affect congestion the same way.

Moreover, we showed that our PoA bound is order-optimal with respect to the degree to

which vehicle types differently affect latency.

Some directions for future work are as follows. The capacity models presented assume

that vehicle types are determined as a result of a Bernoulli process; a more general

capacity model could incorporate autonomous vehicles that actively rearrange themselves

as to form platoons. Further, autonomous vehicles can affect vehicle flow in ways not

limited to platooning. In addition, our proposed latency function considers only the effect

of a vehicle on the road upon which it travels; a more general latency function would

consider interaction between roads. Finally, the PoA bound is not shown to be tight but

is order-optimal in the degree of asymmetry k, and a future work could aim to close this

gap. Nonetheless, this chapter presents a framework that can be used in the future for

studying traffic networks in mixed autonomy.

5This work was supported by California Department of Transportation UC Connect grant number
65A0529, NSF grant 1749357, and UC Office of the President grant LFR-18-548175.
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2.5 Appendix

2.5.1 Proof of Lemma 2.1

We prove Lemma 2.1, which offers a useful tool for bounding the PoA. To prove part

(a),

〈c(z′), z〉 = 〈c(z), z〉+ 〈c(z′)− c(z), z〉

≤ 〈c(z), z〉+ β(c, z′)〈c(z′), z′〉

≤ C(z) + β(C)C(z′) (2.18)

and replacing z′ with ẑ, by the Variational Inequality, C(ẑ) ≤ 〈c(ẑ), z〉 for any feasible

routing z. Completing the proof requires that β(C) ≤ 1, then replacing the generic z

with z∗.

To prove part (b), element-wise monotonicity implies the feasibility of (1+β(C))−1q∗,

which routes the same volume of traffic as ẑ. Using (2.1),

〈c(ẑ), ẑ〉 ≤ 〈c(ẑ), (1 + β(C))−1q∗〉 . (2.19)

Then,

C(ẑ) = (1 + β(C))〈c(ẑ), ẑ〉 − β(C)〈c(ẑ), ẑ〉 (2.20)

≤ (1 + β(C))〈c(ẑ), (1 + β(C))−1q∗〉 − β(C)〈c(ẑ), ẑ〉 (2.21)

≤ C(q∗) , (2.22)

where (2.21) uses (2.19) and (2.22) uses (2.18).
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2.5.2 Proof of Lemma 2.2

We prove Lemma 2.2, an intermediary step for bounding the PoA. We use Lemma 2.1

and bound β(Lσ), where Lσ denotes the set of aggregate cost functions with maximum

polynomial degree σ.

β(Lσ) := sup
c∈C·,σ ,ẑ∈Z

max
f∈Rn≥0

〈`(f̂(ẑ); ẑ, c)− `(f ; ẑ, c), f〉
〈`(f̂(ẑ); ẑ, c), f̂(ẑ)〉

≤ sup
c∈C·,σ ,i∈[n],ẑ∈Z

max
fi∈R≥0

fi(`i(f̂i(ẑi); ẑi, ci)− `(fi; ẑi, ci))
f̂i(ẑi)(`i(f̂i(ẑi); ẑi, ci))

,

where the inequality results from all terms in the denominator being nonnegative. Note

that since, by definition, β(Lσ) ≥ 1, we know that for this term to be maximized,

fi ≤ f̂i(ẑi) – otherwise β(Lσ) would be negative, since `i is increasing in fi. Next we

bound this term for each capacity model. We first bound this term when road i uses

capacity model 1. Assume, without loss of generality, that the vehicle types are assigned
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such that on road i, h1
i ≥ h2

i ≥ . . . ≥ hmi > 0. Plugging in the definition of `i in this case,

β(Lσ) ≤ sup
c∈C·,σ ,i∈[n],ẑ∈Z

max
fi∈R≥0

fi(`i(f̂i(ẑi); ẑi, ci)− `i(fi; ẑi, ci))
f̂i(ẑi)(`i(f̂i(ẑi); ẑi, ci))

= sup
h1i≥h2i≥...≥hmi >0,

j′∈[m],
ẑi∈Rm≥0,

fi∈R≥0,
1≤σi≤σ,
ti∈R≥0,
ρi∈R≥0,
di∈R>0

fi
ρi
dσi

(( ∑
j∈[m]

hji ẑ
j
i

)σi − ( ∑
j∈[j′−1]

hji ẑ
j
i + hj

′

i (fi −
∑

j∈[j′−1]

ẑji )
)σi)

(
∑

j∈[m] ẑ
j
i )ti
(
1 + ρi

dσi
(
∑

j∈[m] h
j
i ẑ
j
i )
σi
)

≤ sup
h1i≥h2i≥...≥hmi >0,

j′∈[m],
ẑi∈Rm≥0,

fi∈R≥0,
1≤σi≤σ

fi

(( ∑
j∈[m]

hji ẑ
j
i

)σi − ( ∑
j∈[j′−1]

hji ẑ
j
i + hj

′

i (fi −
∑

j∈[j′−1]

ẑji )
)σi)

(
∑

j∈[m] ẑ
j
i )(
∑

j∈[m] h
j
i ẑ
j
i )
σi

(2.23)

= sup
h1i≥h2i≥...≥hmi >0,

j′∈[m],
ẑi∈Rm≥0,

fi∈R≥0,
1≤σi≤σ

fi∑
j∈[m] ẑ

j
i

[
1−

(∑
j∈[j′−1] h

j
i ẑ
j
i + hj

′

i (fi −
∑

j∈[j′−1] ẑ
j
i )∑

j∈[m] h
j
i ẑ
j
i

)σi]

≤ sup
h1i≥h2i≥...≥hmi >0,

j′∈[m],
ẑi∈Rm≥0,

fi∈R≥0

fi∑
j∈[m] ẑ

j
i

[
1−

( ∑
j∈[j′−1]

hji ẑ
j
i + hj

′

i (fi −
∑

j∈[j′−1]

ẑji )∑
j∈[m] h

j
i ẑ
j
i

)σ]
(2.24)

≤ sup
h1i≥h2i≥...≥h

j′
i >0,

j′∈[m],
ẑi∈Rm≥0,

fi∈R≥0

fi∑
j∈[m] ẑ

j
i

[
1−

( ∑
j∈[j′−1]

hji ẑ
j
i + hj

′

i (fi −
∑

j∈[j′−1]

ẑji )∑
j∈[j′−1] h

j
i ẑ
j
i + hj

′

i

m∑
j′
ẑji

)σ]
(2.25)

≤ sup
hj
′
i >0,

j′∈[m],
ẑi∈Rm≥0,

fi∈R≥0

fi∑
j∈[m] ẑ

j
i

[
1−

(hj′i ∑j∈[j′−1] ẑ
j
i + hj

′

i (fi −
∑

j∈[j′−1] ẑ
j
i )

hj
′

i

∑
j∈[j′−1] ẑ

j
i + hj

′

i

m∑
j′
ẑji

)σ]
(2.26)

= sup
ẑi∈Rm≥0,

fi∈R≥0

fi∑
j∈[m] ẑ

j
i

[
1−

( fi∑
j∈[m] ẑ

j
i

)σ]
.
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In the above, (2.23) follows from the numerator, denominator, and ti being non-

negative, (2.24) results from the whole expression being nonnegative and therefore the

second term in the bracket being less than or equal to 1, and therefore the bracketed

expression is maximized when σi is the maximum allowable value. Since we assumed

that h1
i ≥ h2

i ≥ . . . ≥ hmi > 0, (2.25) stems from
∑

j∈[m] h
j
i ẑ
j
i being maximized when the

hji terms are larger, and (2.26) follows from the fact that the second term in the brackets

is minimized when a term common to the numerator and denominator is minimized due

to the structure of the expression.

Then we can show that the final expression above is equal to the following.

sup
ẑi∈Rm≥0,

fi∈R≥0

fi∑
j∈[m] ẑ

j
i

[
1−

( fi∑
j∈[m] ẑ

j
i

)σ]
= sup

ẑi∈Rm≥0,

fi∈R≥0

fi∑
j∈[m] ẑ

j
i

−
( fi∑

j∈[m] ẑ
j
i

)σ+1

=
1

(σ + 1)1/σ
− 1

(σ + 1)(σ+1)/σ

= σ(σ + 1)−
σ+1
σ

:= ξ(σ) .

The logic above follows from the overall expression being concave with respect to

fi∑
j∈[m] ẑ

j
i

, and therefore maximized when fi∑
j∈[m] ẑ

j
i

= (σ + 1)−
1
σ . Plugging in this value

yields that β(Lσ) is upper bounded by ξ(σ).

We next show that the expression has the same upper bound when road i uses capacity

model 2. We bound the expression for h1
i ≤ h2

i , but the same method works for when

h1
i > h2

i . As we established above, we only need to consider the case in which fi ≤ f̂i(ẑi).

We then bound the expression for two cases: 0 ≤ fi ≤ ẑ2
i and ẑ2

i < fi ≤ ẑ1
i + ẑ2

i . For the
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first case,

fi(`i(f̂i(ẑi); ẑi, ci)− `i(fi; ẑi, ci))
f̂i(ẑi)(`i(f̂i(ẑi); ẑi, ci))

=
fi

ẑ1
i + ẑ2

i

(1−
1 + ρi(

h2i fi
di

)σi

1 + ρi(
(ẑ1i )2h1i+ẑ

2
i (ẑ2i +ẑ1i )h2i

di(ẑ1i +ẑ2i )
)σi

)

≤ fi
ẑ1
i + ẑ2

i

(1−
h2i fi
di

(ẑ1i )2h1i+ẑ
2
i (ẑ2i +ẑ1i )h2i

di(ẑ1i +ẑ2i )

)σi) (2.27)

=
fi

ẑ1
i + ẑ2

i

(1− (
h2
i fi(ẑ

1
i + ẑ2

i )

(ẑ1
i )

2h1
i + ẑ2

i (ẑ
2
i + ẑ1

i )h
2
i

)σi)

≤ fi
ẑ1
i + ẑ2

i

(1− (
h2
i fi(ẑ

1
i + ẑ2

i )

(ẑ1
i )

2h2
i + ẑ2

i (ẑ
2
i + ẑ1

i )h
2
i

)σi) (2.28)

=
fi

ẑ1
i + ẑ2

i

(1− (
fi

ẑ1
i + ẑ2

i

)σi)

≤ fi
ẑ1
i + ẑ2

i

(1− (
fi

ẑ1
i + ẑ2

i

)σ) (2.29)

≤ ξ(σ) . (2.30)

In the above, (2.27) follows from `i(fi; ẑi, ci) ≤ `i(f̂i(ẑi); ẑi, ci), (2.28) follows from

h1
i ≤ h2

i , (2.29) follows from σi ≤ σ and the expression it applies to being less than or

equal to 1, and (2.30) follows from the same logic as the proof for capacity model 1.
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For the case that ẑ2
i < fi ≤ ẑ1

i + ẑ2
i ,

fi(`i(f̂i(ẑi); ẑi, ci)− `i(fi; ẑi, ci))
f̂i(ẑi)(`i(f̂i(ẑi); ẑi, ci))

=
fi

ẑ1
i + ẑ2

i

(1−
1 + ρi(

h2i (fi)
2−(h2i−h1i )(fi−ẑ1i )2

difi
)σi

1 + ρi(
(ẑ1i +ẑ2i )2h2i−(h2i−h1i )(ẑ1i )2

di(ẑ1i +ẑ2i )
)σi

)

≤ fi
ẑ1
i + ẑ2

i

(1− (

h2i (fi)
2−(h2i−h1i )(fi−ẑ1i )2

difi

(ẑ1i +ẑ2i )2h2i−(h2i−h1i )(ẑ1i )2

di(ẑ1i +ẑ2i )

)σi) (2.31)

=
fi

ẑ1
i + ẑ2

i

(1− ((
ẑ1
i + ẑ2

i

fi
)
(h2

i (fi)
2 − (h2

i − h1
i )(fi − ẑ1

i )
2)

(ẑ1
i + ẑ2

i )
2h2

i − (h2
i − h1

i )(ẑ
1
i )

2
)σi)

≤ fi
ẑ1
i + ẑ2

i

(1− ((
ẑ1
i + ẑ2

i

fi
)

(fi)
2

(ẑ1
i + ẑ2

i )
2
)σi) (2.32)

=
fi

ẑ1
i + ẑ2

i

(1− (
fi

ẑ1
i + ẑ2

i

)σi)

≤ ξ(σ) . (2.33)

Here, (2.31) follows from `i(fi; ẑi, ci) ≤ `i(f̂i(ẑi); ẑi, ci), (2.32) follows from fi ≤ ẑ1
i +ẑ2

i ,

and (2.33) follows the same logic as (2.29) and (2.30) above. With all these cases, the

lemma is proven.

2.5.3 Proof of Lemma 2.3

We prove the final intermediary step, bounding the difference in social cost between

the optimal routing for our intermediary latency functions and the optimal routing for

our original latency function.

First define wi : Rm
≥0 × C → Rm

≥0 such that

[wi(zi; ci)]j′ =


∑

j∈[m] z
j
i if j′ = argminj∈[m] h

j
i

0 otherwise

.

In words, wi puts all the flow in zi as the vehicle type that congests the least according
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to cost function ci. Then considering capacity model 1, for f ∗ as an optimal routing with

respect to L(f ; ẑ, c) and z∗ as an optimal routing with respect to C,

L(f ∗; ẑ, c) =
∑
i∈[n]

f ∗i `i(f
∗
i ; ẑi, ci)

≤
∑
i∈[n]

∑
j∈[m]

z∗ji `i(
∑
j∈[m]

z∗ji ; ẑi, ci) (2.34)

≤
∑
i∈[n]

∑
j∈[m]

z∗ji ti(1 + ρi(
maxj∈[m] h

j
i

∑
j∈[m] z

∗j
i

di
)σi (2.35)

≤
∑
i∈[n]

∑
j∈[m]

z∗jik
σti(1 + ρi(

minj∈[m] h
j
i

∑
j∈[m] z

∗j
i

di
)σi (2.36)

= kσ
∑
i∈[n]

∑
j∈[m]

z∗jici(wi(z
∗
i ; ci))

≤ kσ
∑
i∈[n]

∑
j∈[m]

z∗jici(z
∗
i ) (2.37)

= kσC(z∗) . (2.38)

In the above, (2.34) stems from f ∗ as a minimizer of the cost with respect to L, (2.35)

follows from the definitions of `i and ci, (2.36) follows from the definition of k and σ, and

(2.37) from the construction of wi.

Thus, L(f ∗; ẑ, c) ≤ kσC(z∗), proving the lemma.
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2.5.4 Proof of Lemma 2.4

This Lemma and the following one together prove Theorem 2.2. Using (2.11),

β(c, ẑ) = max
z∈Rmn≥0

∑
i∈[n] tiρi[(

∑
j∈[m] ẑ

j
i

θi(ẑi)
)σi − (

∑
j∈[m] z

j
i

θi(zi)
)σi ](

∑
j∈[m] z

j
i )∑

i∈[n] ti[1 + ρi(
∑
j∈[m] ẑ

j
i

θi(ẑi)
)σi ](

∑
j∈[m] ẑ

j
i )

≤ max
i∈[n],zi∈Rm≥0

ρi[(
∑
j∈[m] ẑ

j
i

θi(ẑi)
)σi − (

∑
j∈[m] z

j
i

θi(zi)
)σi ](

∑
j∈[m] z

j
i )

[1 + ρi(
∑
j∈[m] ẑ

j
i

θi(ẑi)
)σi ](

∑
j∈[m] ẑ

j
i )

(2.39)

≤ max
i∈[n],zi∈Rm≥0

[(
∑
j∈[m] ẑ

j
i

θi(ẑi)
)σi − (

∑
j∈[m] z

j
i

θi(zi)
)σi ](

∑
j∈[m] z

j
i )

(
∑
j∈[m] ẑ

j
i

θi(ẑi)
)σi(
∑

j∈[m] ẑ
j
i )

= max
i∈[n],zi∈Rm≥0

∑
j∈[m] z

j
i∑

j∈[m] ẑ
j
i

(1− (
θi(ẑi)(

∑
j∈[m] z

j
i )

θi(zi)(
∑

j∈[m] ẑ
j
i )

)σi)

≤ max
i∈[n],zi∈Rm≥0

∑
j∈[m] z

j
i∑

j∈[m] ẑ
j
i

(1− (
θi(ẑi)(

∑
j∈[m] z

j
i )

θi(zi)(
∑

j∈[m] ẑ
j
i )

)σ) , (2.40)

where the terms of the denominator being nonnegative imply (2.39), since a term in the

summation in the numerator that is negative does not need to be accounted for in the

upper bound. Then, β(c, q) ≥ 0 implies (2.40), allowing us to consider only the maximum

allowable degree of polynomial.
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2.5.5 Proof of Lemma 2.5

For capacity model 1, without loss of generality, let us again assume that on road i

that h1
i ≥ h2

i ≥ . . . ≥ hmi > 0. Then,

β(c, ẑ) ≤ max
i∈[n],zi∈Rm≥0

∑
j∈[m] z

j
i∑

j∈[m] ẑ
j
i

(1− (
θi(ẑi)(

∑
j∈[m] z

j
i )

θi(zi)(
∑

j∈[m] ẑ
j
i )

)σ)

= max
i∈[n],zi∈Rm≥0

∑
j∈[m] z

j
i∑

j∈[m] ẑ
j
i

(1− (

∑
j∈[m] h

j
iz
j
i∑

j∈[m] h
j
i ẑ
j
i

)σ)

≤ max
i∈[n],zi∈Rm≥0

∑
j∈[m] z

j
i∑

j∈[m] ẑ
j
i

(1− (
hmi
∑

j∈[m] z
j
i

h1
i

∑
j∈[m] ẑ

j
i

)σ)

≤ max
i∈[n],zi∈Rm≥0

∑
j∈[m] z

j
i∑

j∈[m] ẑ
j
i

(1− 1

kσ
(

∑
j∈[m] z

j
i∑

j∈[m] ẑ
j
i

)σ) . (2.41)

In (2.41) we use the Definition 2.3 of the maximum degree of asymmetry. We now

note that the above expression is concave with respect to
∑
j∈[m] z

j
i∑

j∈[m] ẑ
j
i

, and the expression is

maximized when
∑
j∈[m] z

j
i∑

j∈[m] ẑ
j
i

= k(σ + 1)−1/σ. With this, we find

β(Ck,σ) ≤ kσ(σ + 1)−
σ+1
σ = kξ(σ) , (2.42)

proving the lemma for capacity model 1.

For capacity model 2, let us assume that h1
i ≥ h2

i , though the same steps follow if the
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opposite is true, with only a mild alteration.

β(c, ẑ) ≤ max
i∈[n],zi∈Rm≥0

∑
j∈[m] z

j
i∑

j∈[m] ẑ
j
i

(1− (
θi(ẑi)(

∑
j∈[m] z

j
i )

θi(zi)(
∑

j∈[m] ẑ
j
i )

)σ)

= max
i∈[n],zi∈Rm≥0

(
z1
i + z2

i

ẑ1
i + ẑ2

i

)(1− (
ẑ1
i + ẑ2

i

z1
i + z2

i

)
(z1
i )

2h1
i + ((z1

i + z2
i )

2 − (z1
i )

2)h2
i

(ẑ1
i )

2h1
i + ((ẑ1

i + ẑ2
i )

2 − (ẑ1
i )

2)h2
i

)σ)

≤ max
i∈[n],zi∈Rm≥0

(
z1
i + z2

i

ẑ1
i + ẑ2

i

)(1− (
ẑ1
i + ẑ2

i

z1
i + z2

i

)
(z1
i )

2h2
i + ((z1

i + z2
i )

2 − (z1
i )

2)h2
i

(ẑ1
i )

2h1
i + ((ẑ1

i + ẑ2
i )

2 − (ẑ1
i )

2)h1
i

)σ) (2.43)

≤ max
i∈[n],zi∈Rm≥0

(
z1
i + z2

i

ẑ1
i + ẑ2

i

)(1− 1

kσ
(
ẑ1
i + ẑ2

i

z1
i + z2

i

)
(z1
i )

2 + ((z1
i + z2

i )
2 − (z1

i )
2)

(ẑ1
i )

2 + ((ẑ1
i + ẑ2

i )
2 − (ẑ1

i )
2)

)σ) (2.44)

= max
i∈[n],zi∈Rm≥0

(
z1
i + z2

i

ẑ1
i + ẑ2

i

)(1− 1

kσ
(
z1
i + z2

i

ẑ1
i + ẑ2

i

)σ)

≤ kξ(σ) . (2.45)

Above, (2.43) follows from the assumption that h1
i ≥ h2

i , (2.44) follows from the

definition of the maximum degree of asymmetry k, and the same logic as applied in the

case of capacity model 1 results in (2.45).

Together, this shows that regardless of capacity model, β(Ck,σ) ≤ kξ(σ).
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Chapter 3

Mixed Autonomous Traffic

Networks: Design

In this chapter1 we investigate toll design for traffic networks with mixed autonomy. In

the preceding chapter we established a model for traffic networks with mixed autonomy

and bounded the inefficiency due to selfish routing in the absence of tolling. In this

chapter we investigate how much tolling can help mitigate this inefficiency. Specifically,

for the case of affine latency functions, we provide differentiated tolls which completely

eliminate inefficiency due to selfish routing. We show that anonymous cannot significantly

improve inefficiency, and nonetheless we provide anonymous tolls which improve the

performance guarantees from what they are without tolling. Finally, in the setting of

parallel networks, we provide tolls that are ε-differentiated, meaning that each vehicle

type pays almost the same amount on a road, and we show that these tolls completely

1This chapter is in part adapted, with permission, from the manuscripts “Optimal tolling for hetero-
geneous traffic networks with mixed autonomy”, previously published by IEEE Conference on Decision
and Control, c© 2019 IEEE, “Optimal tolling for multitype mixed autonomous traffic networks” previ-
ously published by IEEE Control Systems Letters, c© 2020 IEEE, and “Anonymous Tolling for Traffic
Networks with Mixed Autonomy” [75–77]. These are joint work with Ramtin Pedarsani, and the first is
joint work with Sam Coogan.
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eliminate inefficiency due to selfish routing.

3.1 Introduction

Autonomous vehicles have been presented as a way to greatly decrease road congestion

in popular culture and academic works [31, 78]. However, recent work shows that in the

realm of mixed autonomy, where some vehicles are autonomous and some are human-

driven, if vehicle users choose routes to minimize their own travel times, switching some

vehicles from human-driven to autonomous can paradoxically worsen congestion [41].

Moreover, as shown in the preceding chapter, the Price of Anarchy, or maximum gap

between the total delay under selfish routing as compared to the minimum total delay

possible, is much larger in the case of mixed autonomy than when there is only one

vehicle type.

When vehicles consist of a single type, well-known tolling schemes can eliminate

inefficiency [23,24,79] and the social cost, or total delay experienced by all users, can be

reduced to the minimum that it would be with all vehicles routed by a social planner.

However, in the general mixed autonomy setting, optimal tolls are unknown, absent

very restrictive assumptions [76, 80]. In our work, we provide optimal tolls for a broad

class of settings, namely general networks with multiple source-destination pairs and

with multiple vehicle types, where road latency is an affine function of vehicle flows.

We do so via a simple, and to the best of our knowledge, novel, application of the

Variational Inequality. With the tolls we provide, network inefficiency due to selfish

routing is eliminated.

The optimal tolls we derive are differentiated, meaning that the different vehicle

types must experience different tolls. However, it can be difficult to administer these

differentiated tolls, due to logistics and concerns about privacy and fairness [81, 82]. In
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the case of mixed autonomy, the tolls levied on the users of human-driven vehicles are

likely to be greater than those levied against the users of autonomous vehicles, though

users of autonomous vehicle may be wealthier. To address this, we investigate anonymous

tolls, which are identical for all vehicle types on a given road. We provide a function

to calculate anonymous tolls and prove that these tolls can decrease inefficiency, and

provide upper and lower bounds on the efficiency improvement possible with anonymous

tolls. Finally, we analyze the efficacy of variable marginal cost tolling in our setting.

To summarize, our contributions are as follows:

• We provide optimal differentiated tolls for general networks with mixed autonomy

and affine latency functions, with optimality provided via a direct and clear proof,

• we provide anonymous tolls with an upper bound on the induced inefficiency,

• we establish lower bounds on the worst-case induced inefficiency with anonymous

tolls for comparison,

• in the setting of parallel networks, we introduce tolls with only an infinitesimally

small differentiation between vehicle types which eliminate inefficiency due to selfish

routing, and

• we show that variable marginal cost tolling can yield equilibria which have social

cost that are arbitrarily worse than that of the socially optimal routing.

3.1.1 Related Works

Classic works in congestion games determine optimal tolls for networks with a single

vehicle type as far back as Pigou [79], and canonized in Beckmann et al. [23]. Dafermos

generalizes this to the multiclass setting, in which different vehicle types affect congestion

differently [24]. However, this work requires the social cost of flow on each road to be

strictly convex, which is generally not the case in the mixed autonomy setting.
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In the mixed-autonomy setting with two vehicle types and polynomial latency func-

tions, previous work provides optimal tolls when the asymmetry between the congestion

effects of the two vehicle types is constant across all roads in the network [80]. This work

also establishes that when tolls are restricted to be nondifferentiated between vehicle

types, tolling may not be able to achieve the socially optimal routing.

These works are based on the foundation of congestion games, which have long been

used to analyze optimal routing [13], understand the properties of user (selfish) equilibria

[51,83], and bound the Price of Anarchy, the maximum gap in social cost between optimal

routing and the worst-case user equilibrium in a class of games [19, 21]. In Chapter 2,

and the works on which it is based [44], this gap is bounded in the setting of mixed

autonomy, and the maximum gap is shown to increase with the ratio between how much

the different vehicle types can affect congestion on any road. Similarly, [41] describes and

bounds the counterintuitively negative effect which can be caused by converting human-

driven vehicles to less congesting autonomous vehicles, and [84] shows a similar effect

with autonomous vehicles traveling to park in urban centers.

The effects of mixed autonomy on traffic congestion has been studied in a number of

other contexts. This is studied in jointly routing and rebalancing autonomous mobility-

on-demand services in the presence of other transportation modes [85] as well as au-

tonomous carpooling [86]. Other works study selectively using route recommendations

to improve the efficiency of equilibria [87,88].

3.2 Model

We consider the setting proposed in Chapter 2, using the first capacity model (2.3)

and a latency function with polynomial degree of 1 (σ = 1), leading to affine latency

functions. For the sake of readability, and to introduce new notation, we describe our
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full model in this section.

Consider a network described by a graph with n edges, where edges correspond to

roads. We consider nonatomic flow, meaning each driver controls an infinitesimally small

fraction of vehicle flow. Let m denote the number of vehicle types, where the latency on

each edge is a function of the flow of each vehicle type on that edge. We generally use

i to index roads and j to index vehicle types. For integer x, let [x] denote {1, 2, . . . , x},

and let 1n to denote the n-dimensional column vector of ones. Let 〈v, w〉 denote the

inner product between the vectors v and w.

Consider inelastic flow demand, with demand described by {sr, s′r, βr, jr}r∈[R], where

for each commodity r in the set of commodities [R], sr is that commodity’s source node,

s′r is the destination node, βr is the flow demand, and jr is the vehicle type of the

commodity. Thus, each commodity describes the flow demand of a specific vehicle type

between a specific source and destination node.

We use zji to describe the flow of vehicle of type i on road j. Then, for road i, zi is a

column vector describing the flow of all vehicle types on road i:

zi :=

[
z1
i z2

i . . . zmi

]T
.

Let z describe the flow over the entire network:

z =

[
zT1 zT2 . . . zTn

]T
.

We can alternately describe the flow through a graph in terms of the flow on each

route. Let Pr denote the set of simple paths available to commodity r. Let f jp ≥ 0 denote

the flow of vehicle type j on path p. Then a routing f is feasible if
∑

p∈Pr f
jr
p = βr for

commodities r ∈ [R]. Since there is a one-to-one correspondence between path flows and
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edge flows, a characterization of feasible routings can be applied to edge routings z as

well. Thus, a feasible routing z refers to a routing which satisfies the commodity flow

demands and graph constraints. We use Z to denote the set of feasible routings. We use

Ip to denote the set of edges in path p.

As derived in [75] and [76] (based on the Bureau of Public Roads delay model in con-

junction with a capacity model derived for mixed autonomy [42, 73]), we consider mul-

titype mixed autonomous traffic as having an affine latency function, where the scaling

effect of each vehicle type on congestion depends on the nominal headway that the vehicle

type maintains. Accordingly, each edge i has latency, or cost, function ci : Rm
≥0 → Rm

≥0

ci(zi) = Aizi + bi1n

where bi ∈ R≥0 denotes the free-flow latency on road i and Ai ∈ Rm×m
≥0 describes the

linear increase in latency with flow. We consider all vehicle types to experience the same

delay from traversing a road, so we can write Ai = 1n ⊗ ai, for some ai ∈ Rm
≥0. To ease

our later derivations, we define

A :=



A1 0 . . . 0

0 A2 . . . 0

...
...

. . .
...

0 0 . . . An


,

b :=

[
b11

T
n b21

T
n . . . bn1

T
n

]T
, and

c(z) :=

[
c1(z1)T c2(z2)T . . . cn(zn)T

]
= Az + b ,

and we use C to refer to the set of cost functions c which are of this form.

We consider tolling, where vehicle types may experience different tolls. Accordingly,
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we denote the cost experienced by users of type j on road i under toll τj as c
τj
i ∈ Rm

≥0 →

Rm
≥0, where for some toll τ ji ,

c
τj
i (zi) = ci(zi) + τ ji .

We also define the following quantities:

cτi (zi) :=

[
cτ1i (zi)

T cτ2i (zi)
T . . . cτmi (zi)

T

]
,

cτ (z) :=

[
cτ1(z1)T cτ2(z2)T . . . cτn(zn)T

]
, and

τ :=

[
τT1 τT2 . . . τTn

]T
.

When discussing the efficiency of a routing, we will judge it by its social cost, or

aggregate latency, which we denote by C(z), where C :∈ Rmn
≥0 → R≥0:

C(z) :=
∑
i∈[n]

〈ci(zi), zi〉 = 〈c(z), z〉 . (3.1)

Note that tolls do not deduct from the social cost, as we consider the tolls to be

circulated back into public funds.

We are concerned with the social cost of user equilibria in this setting. This means

routings for which no user type would wish to change their routing, where users experience

the cost of a route as a sum of the latency and the toll for their user type. Specifically,

we consider Wardrop Equilibrium, which can be specified in terms of path routing.

Definition 3.1. A flow is at Wardrop Equilibrium if no user can decrease their cost by

switching routes. Mathematically, a flow f is at Wardrop Equilibrium relative to toll τ if

∀r ∈ [R], ∀p, p′ ∈ Pr, f jrp > 0 =⇒
∑
i∈Ip

c
τjr
i (zi) ≤

∑
i∈Ip′

c
τjr
i (zi) .

54



Mixed Autonomous Traffic Networks: Design Chapter 3

In words, for each commodity, if a path has positive flow, then no other path available

to that commodity can have lower cost, where the cost is relative to the user type of the

commodity.

Another useful way of characterizing equilibria is using the Variational Inequality

[16, 51]. Applied to our setting, if feasible routing z is a Wardrop Equilibrium, then for

any other feasible routing z′ ∈ Z,

〈cτ (z), z − z′〉 ≤ 0 .

In contrast with equilibrium routing, we define a socially optimal routing z∗ as a

routing in the set of feasible routing Z which minimizes the cost function C(z). We

define the set of minimizers of C(z) by Z∗

3.3 Differentiated Tolls

We are now prepared to present optimal tolls, which completely eliminate inefficiency

in routing in our setting. Specifically, when these differentiated tolls are applied, the

social cost of any routing at equilibrium will equal the optimal social cost of any feasible

routing.

Theorem 3.1. Let z∗ denote a socially optimal routing for a network with social cost

C. Apply tolls τi = ATi z
∗
i . Any resulting Wardrop Equilibrium z′ will have optimal social

cost, meaning

C(z′) = C(z∗) .

Proof. Let ẑ denote a routing at Wardrop Equilibrium, and let z∗ denote a socially
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optimal routing.

C(ẑ) = 〈c(ẑ), ẑ〉 = 〈cτ (ẑ), ẑ〉 − τT ẑ

≤ 〈cτ (ẑ), z∗〉 − τT ẑ

= 〈c(ẑ), z∗〉 − τT (ẑ − z∗)

= 〈c(z∗), z∗〉+ 〈c(ẑ)− c(z∗), z∗〉 − τT (ẑ − z∗)

= C(z∗) + z∗T (Aẑ + b− Az∗ − b)− τT (ẑ − z∗)

= C(z∗) + z∗TA(ẑ − z∗)− τT (ẑ − z∗)

= C(z∗) + (z∗TA− τT )(ẑ − z∗)

= C(z∗)

The inequality on the second line results from the Variational Inequality and the final

equality stems from the structure of the tolls. By the definition of optimal routing,

C(ẑ) ≥ C(z∗), so we find that C(ẑ) = C(z∗).

This proof is straightforward, and results from a novel application of Variational

Inequality, similar to that of [21], but applied to the cost function under the application

of tolls. Thus we have optimal tolls for multitype mixed autonomy in general networks

with affine latency functions. As mentioned in the theorem, the tolls depend on an

optimal flow pattern, which must be found to calculate the tolls.

Remark 3.1. These optimal tolls are the same as the edge tolls in [24], though in that

work the proof of optimality is limited to when the social cost is a convex function, which

in our setting it is not. The optimality of these same tolls has been proven in the mixed

autonomy setting when there are two vehicle types [80], but it is restricted to the case in

which the asymmetry in the congestion effects of the vehicle types is constant across roads,

i.e. weighted congestion games, though they prove this for polynomial latency functions.
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(a) Bounds on the Price of Anarchy in Theo-
rem 2.1, compared against PoA lower bounds
from Chapter 2.

(b) Bounds on inefficiency with anonymous
tolls, compared with untolled PoA upper
bound and tolled PoA lower bound. The PoA
with the proposed differentiated tolling is 1.

Figure 3.1: Bounds on the Price of Anarchy, with and without tolling

Since they consider only two vehicle types, this assumption means that a1
i /a

2
i = k for some

constant k for all roads i in the set of roads [n]. Our theoretical results greatly expands

their results by extending it to multiple types beyond two vehicle types and removing this

assumption about the congestion effects of the vehicle types, thereby expanding the model

from that of a weighted congestion game.

3.4 Anonymous Tolls

As mentioned in the introduction, implementing differentiated tolls may be logistically

or politically prohibitive. Accordingly, in this section we present anonymous tolls which

improve the bound on worst-case equilibrium behavior. In order to contextualize these

results, we first review a special case of results from the preceding chapter which bound

worst-case equilibrium behavior in the mixed autonomy setting without tolling. This will

contextualize the results on anonymous tolling results to follow.
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3.4.1 Price of Anarchy Bounds

The Price of Anarchy (PoA) is a metric which measures, for a class of congestion

games and cost functions, the maximum ratio between the social cost under the worst-

case equilibrium to the socially optimal cost. This gives a worst-case bound on how much

worse-off the social cost can be when users act selfishly. The PoA can be established with

or without tolls – for example, tolls that bring the equilibrium social cost equal to the

socially optimal cost, such as the differentiated tolls in the previous section, have a PoA

of 1. We now present a special case of the tolls presented in the preceding chapter.

Definition 3.2. The maximum degree of asymmetry, denoted k, is the maximum ratio

of congestion effects due to two vehicle types. In our setting,

k := max
i∈[n],j,j′∈[m]

aji/a
j′

i .

Note that by definition, k ≥ 1. We now present a theorem which extends the affine

case of Theorems 1 and 2 in [44].

Corollary 3.1 (Theorem 2.1 and 2.2). For any feasible equilibrium routing ẑ and optimal

routing z∗ in an untolled network with maximum degree of asymmetry k,

C(ẑ) ≤ Λ(k)C(z∗) ,

where

Λ(k) =


4/(4− k) k ≤ 3

4k/3 k > 3

.

The bounds above are not proven to be tight in all cases, but in Chapter 2 we provide

two examples to bound from below worst-case PoA, one of which reaches a PoA of k,
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and one of which reaches 1 + k/(2
√
k + 1). Figure 3.1 (a) compares these lower bounds

against the upper bounds from Corollary 3.1.

3.4.2 Anonymous Tolling

In this section we establish anonymous tolls which, when applied, improve the pre-

viously established PoA bounds; we defer the proof of our theoretical results to the ap-

pendix. We will then provide lower bounds on the worst-case PoA with this anonymous

routing via examples.

Theorem 3.2. Find an optimal routing z∗. Then on each road i, levy the following

identical toll for all vehicle types:

τ ji = min
j′∈[m]

aj
′

i

∑
j∈[m]

z∗ji .

Then, for any Wardrop Equilibrium ẑ,

C(ẑ) ≤ 4k

3k + 1
kC(z∗) .

This anonymous toll lowers the upper bound on PoA from that of the class of con-

gestion games without tolling for k < 1.45 and k > 2.8. However, the PoA bound, while

tight for maximum degree of asymmetry k = 1 and k = 2, is not tight for all k, as

shown in Fig. 3.1 (a). Therefore, lowering the upper bound is not guaranteed to improve

worst-case performance. Nevertheless, the bound with anonymous tolling is lower than

without tolling and the subsequent examples show that this tolling can improve the PoA

in certain cases.

We next investigate the tightness of this bound. The first example will prove the fol-

lowing proposition, which presents a subclass of anonymous tolls with a specific structure

59



Mixed Autonomous Traffic Networks: Design Chapter 3

which makes it easier to compute. Specifically, we consider tolling schemes in which the

toll on a road is a function of the vehicle flows of each type on that road, the optimal ve-

hicle flows, and the network parameters, but treating these vehicle types interchangeably.

We formulate this mathematically in the following proposition.

Proposition 3.1. Consider the class of tolls in which the anonymous tolls on each road

i is a function of the form:

τi({(zji , z
∗j
i , a

j
i , bi)}j∈[m]) .

The Price of Anarchy with these tolls applied is at least k.

The lower bound on the PoA in the proposition is proven in the following example.

Example 3.1. Consider the network in Figure 2.5 (a), with flow demand of 1 for each

vehicle type. The socially optimal routing has the flow of type 1 on the bottom road and

type 2 on the top road, for a social cost of 2. The worst-case equilibrium has this routing

reversed, for a social cost of 2k. This yields a PoA of k.

Due to the symmetry of the optimal routing, the anonymous tolls of Theorem 3.2 are

equal on the two roads, with a worst-case equilibrium routing again having a social cost

of 2k, yielding a PoA of k. Thus, in this network, the anonymous tolls provided do not

improve the worst-case performance. Further, due to the symmetry in this example, the

two roads have identical inputs to the tolling function for any tolling function of the form

proposed in Proposition 3.1. Thus the two roads must have identical tolls, again yielding

a PoA of k. This proves the proposition.

This class of tolls in Proposition 3.1 (of which the tolls in Theorem 3.2 are a member)

has the advantage of depending only on the optimal routing, and not on calculating a

specific equilibrium routing, which is often much more computationally difficult to find.
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However, if the tolls are not restricted to the above form, the social cost can be reduced

slightly to (7k + 3)/4 − 1/(k + 1), as shown in [76]. The resulting Price of Anarchy in

this case is used as our lower bound on PoA for anonymous tolling. We compare the

untolled PoA upper bound to the anonymous PoA upper bound and this lower bound in

Figure 3.1 (b).

We next present an example in which our proposed anonymous tolling does improve

the Price of Anarchy in a network from what it is without tolling.

Example 3.2. Consider the network shown in Figure 2.5 (b), with vehicle flow demand

of 1/
√
k units of type 1 and 1 unit of type 2. The optimal routing has the flow of type 1

entirely on the top road and type 2 on the bottom road, for a cost of 1/
√
k+ 1/(

√
k+ 1).

The worst-case equilibrium has all flow on the bottom road, for a social cost of 1 + 1/
√
k,

yielding a PoA which scales with
√
k [44].

With the tolling from Theorem 3.2, both vehicle types experience a toll on road 1 of

0 and a toll on road 2 of 1/(
√
k + 1). The resulting worst-case equilibrium has all flow

of vehicle type 1 on the lower road and vehicle type 2 on the upper road, for a social cost

of 1 + 1/(
√
k+ 1). This an improvement from the untolled worst-case equilibrium cost of

1 + 1/
√
k.

The worst-case equilibrium social cost could be further improved with a toll on road

2 of τ2 = 1/2, with the resulting worst-case equilibrium involving flow of vehicle type 1

split between the two roads and all vehicle flow of type 2 on the top road for a social cost

of 1 + (3
√
k − 1)/(4k).

3.5 ε-Differentiated Tolls

In this section we consider a setting of a parallel network of n roads, where roads

have affine latency functions. We present theoretical results with tolls that are almost
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anonymous and only differentiated with ε-differentiation, where ε is arbitrarily small,

which completely eliminate inefficiency due to selfish routing. Before presenting our

theoretical results, we first introduce some necessary notation.

For a specific routing z, we use N z
j to denote the set of roads with positive flow of

vehicle type j:

N z
j = {i : zji > 0 ∧ i ∈ [n]} .

Similarly, we use Mz
i to denote the set of vehicle types with positive flow on road i for

the routing z:

Mz
i = {j : zji > 0 ∧ j ∈ [m]} .

The theoretical results established in the next section conceptualize vehicle flow on

roads in the form of a graph, where for each specific routing z, a graph can be constructed.

We construct a bipartite graph G = (U, V,E) where one set of nodes is the set of roads

(U = [n]) and one set of nodes is the set of vehicle types (V = [m]). The set of edges

connect vehicle types to roads on which they have positive flow, i.e.

E = {(i, j) : i ∈ [n] ∧ j ∈Mz
i } , (3.2)

or equivalently, E = {(i, j) : zji > 0 ∧ i ∈ [n] ∧ j ∈ [m]}. In other words, for a routing z,

there is an edge between the nodes denoting road i and vehicle type j if there is positive

flow of type j on road i. We illustrate this in Figure 3.2.

We make the following assumption regarding the latency functions.

Assumptions 3.1. The road latency functions are affine and the latency of each road

is strictly increasing with the flow of each vehicle type on that road, i.e. aji > 0 for all

i ∈ [n], j ∈ [m].

We rephrase the Wardrop Equilibrium condition for the case of parallel networks.
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Figure 3.2: Example routings for a network with four roads and three vehicle types.
(a) vehicle type 1 has positive flow on roads 1 and 2, type 2 has positive flow on roads
2 and 3, and type 3 has positive flow on roads 1, 3, and 4. (b) shows the corresponding
bipartite graph. (c) shows a similar routing but type 3 has zero flow on road 3, and
(d) shows its corresponding bipartite graph.

Definition 3.3. A flow z is a Wardrop Equilibrium if zji > 0 implies cji (z) ≤ cji′(z) for

all i, i′ ∈ [n], j ∈ [m].

Since in this section we consider a network of parallel roads, a flow is at Wardrop

Equilibrium if no user can decrease their cost by switching roads.

In this section we establish tolls which ensure that the social cost is minimized in any

resulting equilibrium. We do this in two theorems: the first establishes properties about

a routing in the set of routings which minimize the social cost, and the second provides

optimal tolls which are constructed based on the routing which is proved to exist in the

first theorem.

Theorem 3.3. Consider the setting of multitype congestion games with affine cost func-

tions on parallel networks. There exists a routing in the set of routings minimizing social

cost, z ∈ Z∗, such that G(z) is acyclic, where G = (U, V,E) is constructed as in (3.2), i.e.
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where nodes are the roads and vehicle types, and edges exist between road i and vehicle

type j when zji > 0.

Corollary 3.2. For the routing z ∈ Z∗, such that G(z) is acyclic, provided by Theorem

3.3, no two vehicle types share more than one common road.

Theorem 3.4. Consider the setting of multitype congestion games with affine cost func-

tions on parallel networks. Consider any optimal routing z∗ ∈ Z∗ that has an associated

acyclic graph. The existence of such a routing is provided in Theorem 3.3. Assume the

latency on a road is increasing in the flow of each vehicle type on that road. Then levy

the following tolls τ(z∗):

τ ji (z∗i) =


µ− ci(z∗i) if i ∈ N z∗

j

µ− ci(z∗i) + ε if i ∈ ∪j′∈[m]N z∗

j′ \ N z∗
j

P otherwise.

(3.3)

Then for every µ, and every ε > 0, and sufficiently large P , the only Nash equilibrium

that exists is the flow z∗.

In words, we find an optimal routing with the acyclic property guaranteed by Thm 3.3.

Denote this routing z∗. Then, based on this routing, we assign a toll for each vehicle

type on each road. If z∗ has no vehicle flow on a specific road, we set a very high toll for

all vehicle types, ensuring that in equilibrium, vehicle flow on this road will be zero for

all vehicle types. If a vehicle type has positive flow on road i under z∗, it is given the toll

µ− ci(zi). If it does not have positive flow under z∗ but another vehicle type does, it is

given the toll µ− ci(zi) + ε, where ε is any positive number. This guarantees the optimal

routing at equilibrium.

We see that optimal routing can be guaranteed with an infinitesimal difference be-
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tween the tolls of each vehicle type on a road. We can even consider the setting in which

users are given random gifts to help encourage them to follow the route recommendations

and use these to ensure optimal routing without having a different toll for the vehicle

types. We now prove the theorem and defer the proofs of the supporting lemmas to the

appendix.

Proof. We prove this theorem by breaking down a candidate equilibrium z̃ into cases

for which roads the vehicle types have positive flow on, relative to the roads they have

positive flow on in z∗, the optimal routing on which the tolls are based. By analyzing

each case, we show that z̃ = z∗.

We first present a proposition suggesting that for sufficiently large P , no equilibrium

flow will exist on roads with toll P . We then provide a lemma stating that in any

equilibrium in which all vehicle types use the roads they were on in the routing on which

the tolls were based, z∗, then the equilibrium flow will be equal to z∗. Finally, we examine

the case in which z̃ has at least one vehicle type with positive flow on some road or roads

which did not have positive flow of the vehicle type in z∗ (though not on a road with toll

P ). To reiterate, our three cases are as follows:

1. z̃ has some vehicle type with positive flow on a road which did not have positive

vehicle flow of any type in z∗,

2. z̃ is such that each vehicle type has positive flow on the same roads as that vehicle

type did in z∗, or

3. z̃ is such that at least one vehicle type has positive flow on a road which, in z∗,

did not have positive flow of that vehicle type but did have positive flow of another

vehicle type.

The first case is handled in a proposition, the second in a lemma, and the third in

the subsequent development.
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Proposition 3.2. For sufficiently large P , users in equilibrium will not use a road with

toll P . Formally, for equilibrium flow f experiencing tolls τ(z∗),

f ji = 0 ∀j ∈ [m] ∧ i ∈ [n] \ ∪j′∈[m]N z∗

j′ .

This means that no equilibrium will have positive flow on roads that did not have

positive flow in z∗.

Lemma 3.1. Consider the setting of multitype congestion games with affine cost func-

tions on parallel networks. Consider any routing z∗ that has an associated acyclic graph;

the existence of such a routing is provided in Theorem 3.3. Assume that in routing z∗,

every road has positive flow of some vehicle type. Then levy the following tolls τ(z∗):

τ ji (z∗) = µ− `i(z∗) (3.4)

Consider a new equilibrium routing z̃ with flow demand of each type no greater than the

demand of that type in z∗, meaning

(∀j ∈ [m])[
∑
i∈[n]

z∗ji ≤
∑
i∈[n]

z̃ji ] . (3.5)

Moreover, assume that each vehicle type has positive flow in z̃ only on roads that it has

positive flow on in z∗, meaning

(∀j ∈ [m])[N z̃
j ⊆ N z∗

j ] . (3.6)

Then under Assumption 3.1, for every µ,
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1. Equilibrium routing z̃ is unique, meaning for any other equilibrium z̃′,

(∀i ∈ [n] ∧ ∀j ∈ [m])[z̃′ji = z̃ji ] .

2. If z̃ has the same flow demand as z∗, then z̃ = z∗. Formally,

(∀j ∈ [m])[
∑
i∈[n]

z̃ji =
∑
i∈[n]

z∗ji ] =⇒ z̃ = z∗ .

This lemma, which is proved in the appendix, handles Case 2 above. We will also

use the second statement in proving Case 3, which will be done in the remainder of this

proof.

Let us use I to denote the set of roads with positive flow in z∗:

I = {i ∈ [n] | (∃j ∈ [m])[z∗ji > 0]} . (3.7)

Next we define the notation cτ̄i (zi), which we call the standard cost on a road, to

denote the minimum cost on a road to the vehicle types which are on that road – if it

has vehicles which are on it in z∗ this road will have their tolled cost, otherwise it will

have the large cost of P .

cτ̄i (zi) :=


ci(zi) + µ− ci(z∗i ) if i ∈ I

P otherwise.

(3.8)

Proposition 3.3. By the definition of Wardrop Equilibrium (Definition 3.3) and the

structure of the tolls, all pairs of used roads will have standard cost within ε of each
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other. More specifically,

∀i, i′ ∈ [n], j ∈ [m] s.t. ẑji > 0, cτ̄i (ẑi) ≤ cτ̄i′(ẑi′) + ε . (3.9)

Proof. The reason for this is as follows. For any road i with positive flow of vehicle

type j, if there is another road with cτ̄i′(ẑi′) + ε < cτ̄i (ẑi) then c
τj
i′ (ẑi′) < c

τj
i (ẑi), violating

Wardrop Equilibrium conditions.

So far we have established that in a Wardrop Equilibrium, all used roads will have

standard cost within ε of each other, and no roads that were not used in z∗ will be used

in this equilibrium routing. We will next investigate the standard costs on the roads as

it relates the vehicle types on each road.

We now define some additional notation: let c denote the minimum standard cost of

all roads which were used in z∗, and c denote the maximum standard of all used roads

which were used in z∗. Mathematically,

c = min
i∈I

cτ̄i (zi)

c = max
i∈I

cτ̄i (zi)

(3.10)

Since by Lemma 3.1 if no vehicle types in ẑ are on roads they were not on in z∗,

meaning for all j ∈ [m], N ẑ
j ⊆ N z∗

j , then ẑ = z∗. Accordingly, we restrict our attention

to the situation in which some road has a vehicle type in ẑ that it did not have in z∗,

meaning

∃j ∈ [m], i ∈ [n] s.t. ẑji > 0 ∧ z∗ji = 0 (3.11)

Next we make a statement about the roads containing vehicle types in ẑ that were

not there in z∗.
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Lemma 3.2. Any road that has a vehicle type on it in ẑ but not in z∗ will have standard

cost c under routing ẑ, and all roads that have this specific vehicle type in z∗ have standard

cost c under routing ẑ. Mathematically,

(∀j ∈ [m] ∧ i ∈ [n])
[
ẑji > 0 ∧ z∗ji = 0 =⇒ cτi (ẑi) = c] , and

(∀j ∈ [m] ∧ i ∈ [n])
[
ẑji > 0 ∧ z∗ji = 0 =⇒ (∀i′ ∈ N z∗

j )[cτi′(ẑi′) = c+ ε]
]
.

Moreover,

c = c+ ε . (3.12)

Since this logic applies to all roads which have positive flow of a vehicle type in ẑ

that did not have it in z∗, we can construct a set of roads which contains all roads with

positive flow in ẑ that did not have positive flow of those types in z∗. This set will contain

these roads and possibly other roads as well. We partition I, the roads which can have

positive flow in an equilibrium, into three partitions: I1, I2, and I3. We define two first

two iteratively, and we define the third to be the roads not included in the first two.

Definition 3.4. Let I1 denote roads which have positive flow of vehicle types in ẑ that

were not there in z∗, and iteratively add in all roads which share common vehicle types

(relative to z∗) with those roads. We define I2 iteratively as well, starting with roads

which had positive flow in z∗ of those vehicle types now in I1, and adding all roads

which share common vehicle types (relative to z∗) with those roads. We define I3 as all

remaining roads. To formulate this mathematically, first define a helper function which

takes in a set of roads and outputs the union of that set and all roads that share vehicle

types with it in z∗:

Φ(A) = A ∪ {i ∈ [n] | (∃j ∈ [m], i′ ∈ A)[z∗ji′ > 0 ∧ z∗ji > 0]} . (3.13)
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Then,

I1 = Φn({i ∈ I | (∃j ∈ [m])[ẑji > 0 ∧ z∗ji = 0]})

I2 = Φn({i′ ∈ I | (∃j ∈ [m], i ∈ [n])[ẑji > 0 ∧ z∗ji = 0 ∧ i′ ∈ N z∗

j ]})

I3 = I \ (I1 ∪ I2) .

(3.14)

The construction of I1 and I2 to have roads with continuously overlapping vehicles

types with respect to z∗, implying that all its roads have the same standard cost. Using

this and Lemma 3.2 we can state the following:

∀i ∈ I1 : cτi (ẑi) = c

∀i ∈ I2 : cτi (ẑi) = c = c+ ε

∀i ∈ I3 : c ≤ cτi (ẑi) ≤ c .

(3.15)

If (3.15) and (3.14) share any roads, then c = c + ε, yielding a contradiction and

proving the theorem. Otherwise, these three sets are partitions of I and do not share

any roads in common with each other. Moreover, these roads partition the vehicle types

in z∗, meaning that in z∗, there are no vehicle types which have positive flow on more

than one of the sets I1, I2, or I3.

Moreover, as an implication of the definition, all roads in I3 have ẑji = z∗ji . Accord-

ingly, by the definition of the tolls,

∀i ∈ I3 : cτi (ẑi) = µ . (3.16)

We next relate c and c to µ. First we deal with I1, which has cτi (ẑi) = c.

Lemma 3.3. For any road i in partition I1, constructed as in Definition 3.4, the standard
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cost on i will be at least as great in ẑ as it is in z∗. Mathematically,

(∀i ∈ I1)[cτi (ẑi) ≥ cτi (z
∗
i )] (3.17)

We now deal with the roads in I2.

Lemma 3.4. For any road i in partition I2, constructed as in Definition 3.4, the standard

cost on i will not be greater in ẑ as it is in z∗. Mathematically,

(∀i ∈ I2)[cτi (ẑi) ≤ cτi (z
∗
i )] (3.18)

However, there is a contradiction between Lemmas 3.3 and 3.4 (combined with the

fact that in cτi (z
∗
i ) = µ for all roads i in I) with (3.15), proving Case 3. With all three

cases handled, the theorem is proved.

The theorem above provides tolls which ensure that any equilibrium will minimize

the social cost of routing. Importantly, the tolls for each vehicle type differ by at most

ε, which must be greater than zero, but can be arbitrarily small. A system designer can

consider different incentive methods to create this small differentiation. Some possible

methods include actually differentiated tolls, randomly providing gifts to vehicles of some

types to differentiate the tolls on expectation, or even pro-social public messaging. This

small differentiation addresses many of the problems with non-anonymous tolls, including

fairness and privacy.
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3.6 Variable Marginal Cost Tolling

The tolls provided in this chapter have been fixed cost tolls, meaning that the tolls

are calculated based on the network structure and overall flow demand, but the toll on

a link does not vary with the flow on that link. However, previous works have shown

that fixed tolls are not strongly robust to mischaracterizations of latency functions in a

network, meaning that if the information used to calculate the tolls is not accurate, the

tolls do not necessarily incentivize optimal behavior [89]. Moreover, the tolls provided

depend on knowledge of the entire network and the flow demand of all vehicle types. A

class of tolls which alleviates this latter requirement is variable marginal cost tolls, in

which the toll provided to vehicles of type j on road i is

τ ji (zi) = (
∑
j∈[m]

zji )
∂

∂zji
ci(zi) .

Assuming, as we do, that all vehicle types experience latency identically, if the social

cost function is convex, then variable marginal cost tolling ensure that any resulting

equilibrium has the social cost of the socially optimal routing2 [90]. However, in our

setting the assumption of convex social cost function does not hold. It is therefore worth

investigating whether marginal cost tolls are optimal in the setting of mixed autonomy;

the following proposition shows that they are not.

Proposition 3.4. Consider the setting of multitype congestion games with affine cost

functions. The Price of Anarchy, with variable marginal cost tolls applied, is unbounded.

Proof. We prove this proposition by example. Consider the network shown in Figure 3.3.

Consider 1 unit flow demand of vehicle type 1 and ζ units flow demand of vehicles type

2.
2This is because the tolls align the Wardrop Equilibrium conditions and the conditions for first-order

optimality of the social cost.
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s t

c1(z1) = 3k−1
2ζ

z1
1 + k+1

2ζ
z2

1

c2(z2) = kz1
2 + z2

2

Figure 3.3: Examples proving Proposition 3.4. Consider 1 unit flow demand of vehicle
type 1 and ζ units flow demand of vehicles type 2.

The form of the marginal cost tolls make it such that the Wardrop Equilibrium con-

ditions are satisfied when first-order optimality conditions are satisfied. We will therefore

lower bound the Price of Anarchy by taking the ratio of the social cost at a saddle point

of the social cost function to the social cost at another feasible routing. Since the socially

optimal routing will not have greater social cost than this latter term, this will be a lower

bound on the PoA.

With the parameters chosen above, a saddle point of the social cost function (and

therefore a Wardrop Equilibrium with tolls applied) exists at z1
1 = 0, z2

1 = ζ, z1
2 = 1,

z2
2 = 0. Let us use ẑ to denote this routing. Let us use z̃ to denote another routing,

z1
1 = 1, z2

1 = 0, z1
2 = 0, z2

2 = ζ. Then, for any socially optimal routing z∗,

C(ẑ)

C(z∗)
≥ C(ẑ)

C(z̃)
=

(k + 1)ζ2 + 2kζ

2ζ3 + 3k − 1
.

If we choose ζ =
√
k, we find

C(ẑ)

C(z∗)
≥ k

2
√
k − 1

,

meaning that we have a lower bound on the Price of Anarchy which is unbounded with

increasing k.

This proposition shows that marginal cost tolls do not necessarily induce optimal

equilibria in the setting of mixed autonomy. Moreover, we showed that a lower bound
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on the Price of Anarchy with variable marginal cost tolls applied scales with
√
k, where

k is the maximum degree of asymmetry.

3.7 Conclusion

In this chapter3 we explored tolling for multitype mixed autonomy in general networks

with affine latency functions, where different vehicle types affect congestion differently.

We showed via a clear proof mechanism that our provided differentiated tolls yield so-

cially optimal routing. We provided anonymous tolls with lower bounds on the resulting

PoA and upper bound the PoA of any anonymous toll scheme, and compared these

bounds to the PoA of untolled networks. After establishing the fundamental limitations

of anonymous tolls, we provide tolls which are ε-differentiated, meaning they have only

an infinitesimal difference for the different vehicle types, and showed that these tolls are

optimal on parallel networks.

There are a number of important directions for continuing this line of work. There

is a gap between the upper bound performance guarantees of our anonymous tolls and

the lower bounds that are established via example. It is worthwhile to explore different

subclasses of anonymous tolls to understand which induce better worst-case performance

versus best-case equilibrium performance. Finally, there is a possibility of extending

these ε-differentiated tolls to more general settings, or if not, characterizing exactly how

much differentiation between tolling types is needed to ensure optimality. Continuing

this direction holds promise for understanding the tradeoffs in choosing tolling granu-

larity in the presence of many different vehicle types, and choosing a toll method that

can be efficiently and fairly implemented, while preserving traffic network performance

efficiency.

3This work was supported by NSF grants CCF-1755808, 1736582, and ECCS 1952920, and UC Office
of the President grant LFR-18-548175
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3.8 Appendix

3.8.1 Proof of Theorem 3.2

To prove this theorem, we use the aggregate cost function provided in Proposition 2.4,

then prove a Price of Anarchy bound on this aggregate cost function with tolls applied,

and then bound the cost of the optimal routing with respect to the aggregate cost function

as compared to the original cost function using Lemma 2.3.

Accordingly, we first define f̂ , vj
′

i , `, and L as in eqs. (2.12) to (2.14) and (2.17), and

by Prop. 2.4, C(ẑ) = L(f̂(ẑ); ẑ, c), and f̂(ẑ) is a Wardrop Equilibrium for L(·; ẑ, c). In

an abuse of notation, we redefine τ ∈ Rn
≥0 as a column vector with elements τi ∈ R≥0.

We then define

`τii (fi; ẑi, ci) := `i(fi; ẑi, ci) + τi and

[`τ (f ; ẑ, c)]i := `τii (fi; ẑi, ci) .

Then,

L(f̂(ẑ); ẑ, c) = 〈`(f̂(ẑ); ẑ, c), f̂(ẑ)〉

= 〈`τ (f̂(ẑ); ẑ, c), f̂(ẑ)〉 − τT f̂(ẑ)

≤ 〈`τ (f̂(ẑ); ẑ, c), f ∗〉 − τT f̂(ẑ)

= 〈`(f̂(ẑ); ẑ), f ∗〉 − τT (f̂(ẑ)− f ∗)

≤ L(f ∗; ẑ, c) + γ(Ck)L(f̂(ẑ); ẑ, c) ,
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where

γ(Ck) = sup
c∈Ck
ẑ∈Rnm≥0

f∈F

〈`(f̂(ẑ); ẑ, c)− `(f ; ẑ, c), f〉 − τT (f̂ − f)

〈`(f̂(ẑ); ẑ, c), f̂〉

≤ max
ci∈Ck
ẑi∈Rm≥0

fi∈R≥0

(`i(f̂i(ẑi); ẑi, ci)− `i(fi; ẑi, ci))fi − τi(f̂i − fi)
`i(f̂i(ẑi), ẑi, ci)f̂i

≤ max
ai∈Ak
ẑi∈Rm≥0

fi∈R≥0

fi
( m∑

j

aji ẑ
j
i − a

j′

i (fi −
∑

j∈[j′−1]

ẑji )− ami (
∑
j∈[m]

ẑji − fi)
)

(
∑

j∈[m] a
j
i ẑ
j
i )(
∑

j∈[m] ẑ
j
i )

= max
ai∈Ak
ẑi∈Rm≥0

fi∈R≥0

fi
( m∑

j

(aji − ami )ẑji − (aj
′

i − ami )(fi −
∑

j∈[j′−1]

ẑji )
)

(
∑

j∈[m] a
j
i ẑ
j
i )(
∑

j∈[m] ẑ
j
i )

≤ max
ai∈Ak
ẑi∈Rm≥0

fi∈R≥0

fi(a
j′

i − ami )
(∑m

j ẑ
j
i − (fi −

∑
j∈[j′−1] ẑ

j
i )
)

aj
′

i (
∑

j∈[m] ẑ
j
i )(
∑

j∈[m] ẑ
j
i )

≤ max
ẑi∈Rm≥0,fi∈R≥0

(k − 1)fi
(∑m

j ẑ
j
i − (fi −

∑
j∈[j′−1] ẑ

j
i )
)

k(
∑

j∈[m] ẑ
j
i )(
∑

j∈[m] ẑ
j
i )

= max
ẑi∈Rm≥0,fi∈R≥0

(k − 1)fi
(∑

j∈[m] ẑ
j
i − fi

)
k(
∑

j∈[m] ẑ
j
i )(
∑

j∈[m] ẑ
j
i )

where the first inequality stems from the terms in the denominator being nonnegative.

As before, without loss of generality we choose the vehicle indices such that on road i,

a1
i ≥ a2

i ≥ . . . ≥ ami > 0. In the above, we denote this set of possible parameters aji with

maximum degree of asymmetry k as Ak. The second inequality stems from the constant

term in the latency, bi, being nonnegative and appearing only in the denominator. The

third inequality stems from the fact that aji is monotonically nonincreasing in the index

j, and the final inequality is from the definition of the maximum degree of inequality, k.
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We can then maximize with respect to fi by setting fi = 1/2
∑

j∈[m] ẑ
j
i . Then,

γ(Ck) ≤
(k − 1)

4k
, so

L(f̂(ẑ); ẑ, c) ≤ 4k/(3k − 1)L(f ∗; ẑ, c) .

Then by Lemma 2.3, L(f ∗; ẑ, c) ≤ kC(z∗), where z∗ is an optimal routing with respect

to the latency function c. Together this proves the theorem.

3.8.2 Proof of Theorem 3.3

We prove this theorem constructively. We show that if there exists a routing in the

set Z∗ that has a cyclic bipartite graph, we can break each cycle without altering the

cost. We do this by showing that for a cyclic routing z′, there exists a feasible direction

d and that moving in the direction d will not alter the cost and will eventually break the

cycle.

The second-order partial derivatives of (3.1) are as follows

∂2C

∂zji ∂z
j′

i′

(z) =


0 if i 6= i′

aji + aj
′

i otherwise .

Since we define z =

[
z1

1 , z
2
1 , . . . , z

m
1 , z

1
2 , z

2
2 , . . . , z

m
n

]T
, the Hessian matrix is therefore

block-diagonal in the following form:

H =



H1 0 . . . 0

0 H2 . . . 0

...
...

. . .
...

0 0 . . . Hn


,
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where the block corresponding to road i is

Hi =



2a1
i a1

i + a2
i . . . a1

i + ami

a1
i + a2

i 2a2
i . . . a2

i + ami
...

...
. . .

...

a1
i + ami a2

i + ami . . . 2ami


.

Consider a routing z′ which minimizes social cost and has a corresponding cyclic

graph. We will alter this routing and break the cycle while maintaining the same social

cost.

Since the graph is bipartite, any cycle will have the same number of nodes of each

type. For some cycle in z′, let us use r ∈ {2, 3, . . . ,min(m,n)} to denote the number

of roads (and therefore vehicle types as well) in a simple cycle. The vehicles and roads

are indexed arbitrarily, so let us consider the cycle to be comprised of the first r roads

(roads {1, 2, . . . , r} and the first r vehicle types (vehicle types {1, 2, . . . , r}). Let road 1

be shared between vehicle types 1 and 2, road 2 be shared between vehicle types 2 and

3, and so on, until road r which is shared between types r and 1. The remaining roads

and vehicle types are indexed arbitrarily.

Based on this feasible routing z′, we construct another feasible routing z̃. Consider

flow z′ + αd, where α ∈ R≥0 and d is a direction vector as follows. As with z, let

d =

[
d1, d2, . . . , dn

]T
, where di corresponds to the flow change on road i, specifically

di =

[
d1
i , d

2
i , . . . , d

m
i

]T
. We choose d1 =

[
−1, 0, . . . , 0, 1, 0, . . . 0

]T
, where dr1 = 1. We

choose d2 =

[
1,−1, 0, . . . , 0

]T
, and, for i = {3, . . . , r}, di is equal to di−1 circularly

shifted downward. For i /∈ [r], dji = 0 for all j ∈ [m].

The direction defined above corresponds to shifting some flow of type 1 from road 1

to road 2, some flow of type 2 from road 2 to road 3, and so on, ending in some flow of
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type r shifting from road r to road 1. With this defined direction, the flow vector z′+αd

is feasible for some range α ∈ [0, α], which we show as follows, using the fact the flow

demand is inelastic.

When starting from a feasible flow, moving in the direction d satisfies conservation

of flow for inelastic flow demand, as
∑

i∈[n] d
j
i = 0 for all j ∈ [m]. Moreover, by the

definition of flow z′, dji < 0 only when z′ji > 0, meaning that in the direction d, flow of a

certain vehicle type on a road is decreased only if there exists positive flow of that vehicle

type already. As such, we find the maximum feasible range to be α = mink∈[r] z
k
k , since

at this point the nonnegativity constraint becomes active. The reason it is the minimum

of zkk , with k ∈ [r], is because in direction d, some of vehicle type k is shifted off road

k. Since at α = α the nonnegativity constraint becomes active, at the flow z̃ = z′ + αd,

the cycle on roads [r] has been broken. Note that no new cycles have been induced, as

dji can only be greater than zero when z′ji is greater than zero. Thus, no new edges are

added to the graph by moving in direction d.

We now investigate the social cost at z̃. Since the objective function is quadratic (and

therefore analytic), by a trivial application of Taylor’s inequality we can express C(z̃) as

a second-order Taylor expansion around z′ as follows.

C(z̃) = C(z′) + 〈∇C(z′), αd〉+
1

2
αdTH(z′)αd ,

where H(z′) is the Hessian of C evaluated at z′. First-order optimality conditions imply

that 〈∇C(z′), αd〉 = 0, since d only has nonzero elements where inequalities for feasible

flow are not tight; thus for z′ to be optimal, the derivative of C(z′) in the direction of

d must be zero. We now investigate the latter term, ignoring the scalar α2

2
. Since H is
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block-diagonal,

dTHd =
∑
i∈[n]

dTi Hidi .

Let us inspect dTi Hidi. For any specific road i′, di′ has one entry that is 1 and one

that is −1. Let us assign p and p′ such that dpi′ = 1 and dp
′

i′ = −1. Then,

dTi′Hi′di′ =
∑
j′∈[m]

dj
′

i′

∑
j∈[m]

(aj
′

i′ + aji′)d
j
i′

=
∑
j′∈[m]

dj
′

i′ [(a
j′

i′ + api′)− (aj
′

i′ + ap
′

i′ )]

=
∑
j′∈[m]

dj
′

i′ (a
p
i′ − a

p′

i′ ) = (api′ − a
p′

i′ )− (api′ − a
p′

i′ ) = 0 .

Thus, dTHd = 0 as well, so

C(z̃) = C(z′) .

We have thus constructed a flow z̃ which has the same social cost as a socially optimal

flow z′, which has broken a cycle in the graph representing z′ without introducing a new

cycle. Since the number of roads and vehicle types is finite, this process can be repeated

until we arrive at a flow which has no cycles and has a social cost which optimizes (3.1).

This proves the theorem statement.

3.8.3 Proof of Lemma 3.1

We use the following property of the lemma statement.

Property 3.1. On each road, all users experience the same toll under the tolling structure
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in the lemma statement. Accordingly,

(∀i ∈ [n] ∧ j, j′ ∈ [m] ∧ ∀z ∈ Z)[cji (z) = cj
′

i (z)] .

We now prove the theorem by contradiction. Assume there exists two distinct flows

z̃ 6= ẑ which are both at equilibrium under tolls τ(z∗). Since z̃ 6= ẑ,

∃i ∈ [n] ∧ j ∈ [m] s.t. z̃ji > ẑji . (3.19)

From the lemma statement, i ∈ N z∗
j . Then, resulting from (3.19), either

(i) ∃j′ ∈Mz∗
i s.t. z̃j

′

i < ẑj
′

i , or

(ii) cji (z̃) > cji (ẑ) (from Assumption 3.1).

If (i), then it must be the case that

(iii) ∃i′ ∈ N z∗

j′ s.t. z̃j
′

i′ > ẑj
′

i′ ,

due to the demand being inelastic, which implies, from Definition 3.3,

cj
′

i (z̃) ≥ cj
′

i′ (z̃) . (3.20)

Then again, as a result of (iii) either (i) or (ii) must be the case, where i is replaced by

i′ and j is replaced by j′. This process continues until we reach (ii). This terminal point

must exist as the routing’s bipartite graph is acyclic. Say the termination point is on

vehicle type j(k) on road i(p). Then,

cj
(k)

i(p)
(z̃) > cj

(k)

i(p)
(ẑ) ≥ cji (ẑ) , (3.21)

where the second relationship results from Property 3.1 and Definition 3.3. Further, due
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to Definition 3.3 and Property 3.1,

cj
(k)

i(p)
(z̃) ≤ cj

(k)

i(p−1)(z̃) = cj
(k−1)

i(p−1) (z̃) ≤ . . . ≤ cj
′

i (z̃) = cji (z̃) . (3.22)

We follow a similar logic down another branch. Reusing the indices j′ and i′ to a new

use, we consider the other result of (3.19). Since the flow demand is inelastic,

∃i′ ∈ N z∗

j s.t. z̃ji′ < ẑji′ . (3.23)

Next, consider the results of (3.23). Similarly to above, either

(iv) ∃j′ ∈Mz∗

i′ s.t. z̃j
′

i′ > ẑj
′

i′ (where j′ ∈Mz∗

i′ due to the lemma statement), or

(v) cj
′

i′ (z̃) < cj
′

i′ (ẑ) (from Assumption 3.1).

If (iv), then it must be the case that

(vi) ∃i′′ ∈ N z∗

j′ s.t. z̃j
′

i′′ < ẑj
′

i′′ ,

due to the demand being inelastic, which implies, from Assumption 3.1,

cj
′

i′′(z̃) ≥ cj
′

i′ (z̃) . (3.24)

Similarly to above, as a result of (vi), either (iv) or (v) must be the case, where i′ is

replaced by i′′ and j is replaced by j′. This process continues until we reach (vi). Say

the termination point is on vehicle type j(r) on road i(s). Then,

cj
(r)

i(s)
(z̃) < cj

(r)

i(s)
(ẑ) ≤ cji (ẑ) , (3.25)

where the second relationship results from Property 3.1 and Definition 3.3. Further, due
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to Definition 3.3 and Property 3.1,

cj
(r)

i(s)
(z̃) ≥ cj

(r)

i(s−1)(z̃) = cj
(r−1)

i(s−1) (z̃) ≥ . . . ≥ cj
′

i (z̃) = cji (z̃) . (3.26)

We then string together (3.21) and (3.25) to find

cj
(k)

i(p)
(z̃) > cj

(r)

i(s)
(z̃) .

We find a contradiction by combining (3.22) and (3.26): cj
(k)

i(p)
(z̃) ≤ cj

(r)

i(s)
(z̃).

This contradiction proves that any resulting equilibrium for a flow demand is unique,

which is the first lemma statement. To prove the second statement, we note that the

tolls are the path tolls of [24], which, for a flow demand equal to that of the demand

used to generate z∗, the flow for determining the tolls, guarantees the existence of an

equilibrium with flow equal to z∗. This existence, with the uniqueness proven in the

previous statement, proves the second lemma statement.

3.8.4 Proof of Lemma 3.2

The reasoning for this statement is as follows. Due to the fact that j was not on i in

z∗, and from the structure of the tolls, we know that c
τj
i (ẑi) = cτi (ẑi) + ε. By definition of

Wardrop Inequality, due to ẑji > 0, we know c
τj
i (ẑi) ≤ c

τj
i′ (ẑi′) for all other roads i′ in [n].

Then, there is some road i′ such that c
τj
i′ (ẑi′) = cτi′(ẑi′), (since there is at least one road i′

with positive flow of type j in z∗). From Wardrop Equilibrium we find c
τj
i (ẑi) ≤ c

τj
i′ (ẑi′).

As we’ve stated, c
τj
i (ẑi) = cτi (ẑi) + ε, and since i′ ∈ N z∗

j , we have c
τj
i′ (ẑi′) = cτi′(ẑi′). This

gives us

cτi (ẑi) + ε = cτi′(ẑi′) . (3.27)
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From Proposition 3.3 and the definitions of c and c in (3.10), we can state that

cτi (ẑi) = c and

cτi′(ẑi′) = c .

(3.28)

3.8.5 Proof of Lemma 3.3

By definition of I1,

∑
i∈I1

ẑji =
∑
i∈I1

z∗ji ∀i′ ∈ I1, ∀j ∈Mz∗

i′ . (3.29)

In words, all vehicle types on I1 in z∗ will be on those roads as well in ẑ, in addition

to some vehicle flow that was not there in z∗. Then, we can show by contradiction that

the resulting standard cost cτi for the roads in I1 will be greater than or equal to µ as

follows. From (3.15), we know that the standard cost will be the same on all roads in I1.

By definition of the toll structure, the standard cost of the roads in I1 with routing z∗

will be µ. In ẑ there is not less flow of any type to route on I1, and cost functions are

nondecreasing in the vehicle flows. If cτi (ẑi) = ci(ẑi) + µ− ci(z∗i ) < µ for all roads in I1,

then z∗ would not be an optimal routing, since this new routing can decrease the social

cost from what it was in z∗. By this contradiction,

cτi (ẑi) ≥ µ ∀i ∈ I1 . (3.30)
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3.8.6 Proof of Lemma 3.4

By definition of I2, ∑
i∈I2

ẑji ≤
∑
i∈I2

z∗ji ∀j ∈ [m] , (3.31)

and each road has only the vehicle flow types that it did in z∗, since I1 ∩ I2 = ∅ (from

their different values of cτi of their roads – otherwise we arrive at a contradiction earlier

on). From Lemma 3.1, each road having the vehicle flow types that it did in z∗ implies

the uniqueness of equilibrium flow. Since the cost functions are nondecreasing in the

vehicle flows, the equilibrium flow ẑ has standard cost less than or equal to that of the

routing in z∗, which is µ. Accordingly,

cτi (ẑi) ≤ µ ∀i ∈ I2 . (3.32)
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Chapter 4

Incentivizing Efficient Equilibria

In this chapter1, we consider a setting in which, instead of a consumer product, au-

tonomous vehicles are offered as a ride-hailing service. We consider a road network

shared between human drivers, which choose their routes to minimize latency, and au-

tonomous vehicles, which offer their riders choices between different routes, each with

an associated price. In this case, a system designer can set the route prices so as to

incentivize the users to choose routes, that in the presence of selfishly optimizing human

drivers, lead to a desired network state. In order to facilitate this, we model how humans

choose between various options with different prices and latencies, and leverage an active

learning framework to learn the preferences of a population. Through a user study, we

empirically show this method to be an efficient and accurate way to learn preferences.

We then formulate an optimization to select prices which will yield the best network

equilibrium. Moreover, we theoretically characterize the range of outcomes possible in

1This chapter is adapted, with permission, from the manuscripts “Altruistic autonomy: Beating
congestion on shared roads”, previously published by International Workshop on the Algorithmic Foun-
dations of Robotics, c© 2018 Springer, “The green choice: Learning and influencing human decisions on
shared roads”, previously published by IEEE Conference on Decision and Control, c© 2019 IEEE, and
“Incentivizing Efficient Equilibria in Traffic Networks with Mixed Autonomy”, previously published by
IEEE Transactions on Control of Network Systems, c© 2021 IEEE, and is joint work with Erdem Bıyık,
Dorsa Sadigh, and Ramtin Pedarsani [91–93].
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this setting and epirically show that our algorithm performs well compared to the range

of outcomes.

4.1 Introduction

Road congestion is a major and growing source of inefficiency, costing drivers in the

United States billions of dollars in wasted time and fuel [3]. As established in Chap-

ter 2, autonomy alone will not suffice in alleviating road congestion, especially in the

mixed-autonomy setting. Accordingly, in Chapter 3 we analyzed tolling to mitigate the

inefficiency due to selfish routing, and established worst-case guarantees. Implicit in this

model was the assumption that autonomous vehicles will be available as consumer prod-

ucts, and therefore tolling will equivalently affect the choices of users of human-driven and

autonomous vehicles. This vision of the future, with autonomous vehicles as consumer

products, is not the only possible outcome.

There are many challenges faced in creating autonomous vehicles (AVs) as a consumer

product. Prohibitive factors include that for AVs as consumer products, the sensors

required for most autonomous technology is currently prohibitively expensive and require

specialized servicing, the AVs will need to be able to operate in any location and under

any weather condition, and the infrastructure, including maps and servicing, must be

available in all places [94]. Due to these limitations, there are currently companies which,

instead of offering AVs as consumer products, offer AVs as a ride-hailing service [95,96].

In this setting, a social planner wishing to reduce congestion will no longer have

equal influence over autonomous and human-driven vehicles, and will instead need to

rely on the autonomous vehicles to influence the behavior of the human-driven vehicles.

In the setting of a congestion game, like the one used in Chapters 2 and 3, this yields a

Stackelberg Game – a game in which a planner chooses the actions of some fraction of
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users and the remaining users respond with an equilibrium strategy. However, it has been

definitively shown that in general, in Stackelberg Games one cannot improve worst-case

guarantees beyond those that exist without any controlled flow [28]. Accordingly, in this

chapter we move towards a more realistic model and provide an algorithm for determining

how to leverage pricing control over the autonomous ride hailing service to improve

network performance. Instead of providing worst-case guarantees for our algorithm, in

this framework we will theoretically determine the range of possible outcomes on the

network in order to gauge the efficacy of our pricing algorithm.

Specifically, we consider a setting where a benevolent ride hailing service or social

planner sets prices for each route that an autonomous vehicle user may take. The users

of the autonomous service will choose their routes, or choose not to travel, based on their

time-money tradeoff. The remaining human drivers will choose routes that minimize

their latency. The role of the social planner is then to choose prices to optimize some

social objective. Though we no longer consider a congestion game, our model is an

indirect Stackelberg game – a game in which a social planner controls some fraction

of the population’s actions, where the remainder of the population responds selfishly.

However, in our model the planner only controls its portion of the vehicle flow indirectly,

via pricing.

To effectively set prices, the social planner needs a model for a) the flow of vehicles on

a road, which depends on how many autonomous and human-driven vehicles are on the

road, and b) how people make decisions between routes with various prices and latencies.

We model the latter based on multinomial logits [97] and model human drivers as selfish

agents who reach a Nash Equilibrium (which we called a Wardrop Equilibrium in the

setting of the previous chapters), a configuration in which no one can decrease their

travel time by switching paths [17].

Moreover, we use active preference-based learning [98, 99], via a series of queries, to
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understand the preferences of autonomous service users. This enables the planner to

predict how autonomous service users will react to a set of options with only a relatively

low number of training queries. We experimentally verify this method accurately pre-

dicts human choice, and that our planning algorithm can use this to improve network

performance. Furthermore, we provide a theoretical framework which establishes bench-

marks for the performance of the algorithm and we show that these benchmarks can be

calculated in polynomial time. Finally, we show the efficacy of our pricing scheme in the

context of these benchmarks.

Our contributions in this work are as follows:

• We develop an active preference-based algorithm to learn how different people value

time and money in choosing their transportation option. This enables learning a

model for people’s routing choices in a data-efficient manner.

• We formulate and solve an optimization for ride hailing service to minimize con-

gestion and maximize the road network utilization while constraining a minimum

profit for the service supplier.

• We provide theoretical benchmarks for understanding the performance of the above

and prove that we can calculate these benchmarks in polynomial time.

• We validate the learning algorithm and the planning optimization formulation via

simulations and user studies. Our results show carefully designed pricing schemes

can significantly improve traffic throughput.

4.1.1 Related Works

Previous works have shown the potential benefits that autonomous vehicles can have

for traffic networks by increasing road capacity through platooning [31, 32], damping

shockwaves of slowing vehicles [35, 36], managing merges [37], decongesting freeways in
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the event of accidents [39], and balancing a supply of vehicles [100]. Relatedly, many

works analyze and bound the inefficiency that can arise from network users choosing

their routes selfishly [19], including when autonomous vehicles are introduced [72].

As we use financial incentives to influence this behavior, our formulation is related

to work in tolling, some of which consider users with different sensitivities to tolls [25,

26]. [101] considers a congestion game framework and derives tolls which drive users to

choose socially optimal strategies for a broad class of user strategy update dynamics.

In contrast to many of these works, we consider an empirically validated probabilistic

model for human choice [102] which incorporates differences in price sensitivity, and we

model vehicle flow on shared roads based on the foundational Fundamental Diagram

of Traffic (FDT) [34]. Our FDT-based model shares fundamental similarities with the

one developed in [33]. Some works consider heterogeneous and stochastic user utilities

(e.g. [103], [104]). However, the approaches taken in these works cannot incorporate a

FDT-based model for road congestion, in which latency is no longer an increasing function

of vehicle flow on a road. Also relatedly, [29] considers a Stackelberg game (meaning a

planner can route a portion of the vehicle flow) on parallel roads with flow dictated by

the FDT when there is a single vehicle type. Hence, a major novelty of our work lies

in that we consider a mixed-autonomy network where autonomous service users have

different preferences.

To understand human choice, there has recently been much effort on learning human

reward functions which are assumed to be sufficient to model preferences. Inverse rein-

forcement learning [105–107] and preference-based learning [98,99,108–110] are the most

popular choices. In this paper, we employ preference-based learning, a natural fit to

our problem. We actively synthesize queries – a non-trivial generalization and extension

of [98] – for data-efficiency and better usability.
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4.2 Problem Setting and Objective

4.2.1 Vehicle Flow Model

We assume every road p has a maximum flow. This occurs when traffic is in free-flow

– when all vehicles travel at the nominal road speed v̄p.

Definition 4.1. The free-flow latency of a road p, denoted tp, is the time it takes vehicles

to traverse the road in free-flow. With road length denoted dp, the free-flow latency is

tp := dp/v̄p.

Traffic Density vs Traffic Flow: Adding more cars to a road that is already at

maximum flow makes the traffic switch from free-flow to a congested regime, which

decreases the vehicle flow. In the extreme case, at a certain density φ̄p, cars are bumper-

to-bumper and vehicle flow stops. The solid lines in Fig. 4.1(a) – Fundamental Diagram

of Traffic [34] – illustrates this phenomenon, where flow increases linearly with respect to

density until it hits the critical density. The slope corresponds to the free-flow velocity v̄p

on road i. After the critical point, flow decreases linearly until it is zero at the maximum

density. In this figure, F̄ is the maximum flow and ñ denotes the critical density, where

the argument is the fraction of vehicles that are autonomous. We will formally define

this notation below.

Traffic Flow vs Road Latency: The relationship between vehicle flow and road latency

reflects the same free-flow/congested divide. As mentioned above, roads in free-flow have

constant latency. In the congested regime, however, latency increases as vehicle flow

decreases, since a high density of vehicles is required to achieve a low traffic flow. This

is represented in Fig. 4.1(b) with the solid lines.

Mixed-Autonomy Roads. We assume that on mixed-autonomy roads, the autonomous

vehicles can coordinate with one another and potentially form platoons to help with the
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(a) The Fundamental Diagram of Traffic for
roads with all human-driven (solid) and all
autonomous (dashed) vehicles. In the latter,
congestion begins at a higher vehicle density
as autonomous vehicles require a shorter head-
way when following other vehicles.
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(b) The relationship between vehicle flow and latency
also changes in the presence of autonomous vehicles.
Free-flow speed remains the same but maximum flow
on a road increases.

Figure 4.1: Vehicle flow model for mixed autonomy.

efficiency of the road network. We now extend the traffic model above to mixed-autonomy

settings as shown with dashed lines in Fig. 4.1. We define the autonomy level of a road

p as the fraction of autonomous vehicle flow on that road: αp :=
fap

fap+fhp
where f a

p and fh
p

represent the autonomous and human-driven vehicle flow, respectively. Assuming that

neither the nominal velocity v̄p nor the maximum density φ̄p changes, the critical density

at which traffic becomes congested will now shift and increase with autonomy level αp,

as platooned autonomous vehicles require a shorter headway than human drivers.

To formalize the relationship between autonomy level and critical density on road i,

we assume the space occupied by autonomous vehicles and humans at nominal velocity

is ha
p and hh

p, respectively, with ha
p ≤ hh

p. This inequality reflects the assumption that

autonomous vehicles can maintain a short headway, regardless of the type of vehicle they

are following. Then, the critical density is

ñp(αp) :=
bp

αpha
p + (1− αp)hh

p

, (4.1)
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where bp is the number of lanes on that road. Here the denominator represents the

average length from one car’s rear bumper to the preceding car’s rear bumper when

all cars follow the vehicle in front of them with nominal headway. Note that critical

density is expressed here as a function of the autonomy level αp of the road. Since flow

increases linearly with density until hitting the critical point, the maximum flow can also

be expressed as a function of autonomy level: F̄p(αp) = v̄pñp(αp).

The flow on a road, fp = fh
p +f a

p is a function of the density (φh
p and φa

p, respectively)

of each vehicle type as follows.

fp(φ
h
p, φ

a
p) :=


v̄p · (φh

p + φa
p), if φh

p + φa
p ≤ ñp(αp)

v̄p·ñp(αp)·(φ̄p−(φhp+φap))

φ̄p−ñp(αp)
, if ñp(αp) ≤ φh

p + φa
p ≤ φ̄p

0, otherwise .

(4.2)

We can then write the latency as a function of vehicle flow as well as a binary argument

sp, which indicates whether the road is congested [1, 29]:

`p(f
h
p , f

a
p , sp) =


dp
v̄p

if sp = 0

dp

(
φ̄p

fhp+fap
+ ñp(αp)−φ̄p

v̄p·ñp(αp)

)
if sp = 1 .

(4.3)

Fig. 4.1(b) illustrates the effect of mixed autonomy on latency.

4.2.2 Network Model

Assumptions 4.1. We consider a network of n parallel roads. We assume that no two

roads have the same free-flow latency. We order the indices such that t1 < t2 < . . . < tn.

The role of the assumption above is explained in the Appendix. We use [k] to denote

the set of the first k roads; accordingly, P denotes the set of all roads.
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We describe the network state by (fh,f a, s), where fh, f a ∈ Rn
≥0 and s ∈ {0, 1}n. A

feasible routing is one for which fh
p +f a

p ≤ F̄p(αp) for all roads, and the flow of each vehicle

type on the roads sum to λ̄h and λ̄a in the case of inelastic demand, respectively, which

denote the total vehicle flow demands. In the case where the demand for autonomous ve-

hicles is elastic, i.e., Section 4.4, this constraint is relaxed such that the total autonomous

flow does not exceed the maximum demand. We are interested in finding a routing, i.e.

allocation of vehicles into the roads, that minimizes the total latency experienced by all

vehicles while maximizing the total flow of the roads in the case of elastic demand. Fur-

ther, we constrain this optimization based on total demand, selfishness or flexibility of

the vehicles. While selfish drivers always take the quickest road possible, flexible vehicles

accept relatively longer latencies. We will formalize these terms in Section 4.3.

4.2.3 Human Driver Choice Model

We assume human drivers are selfish, i.e. their only consideration is minimizing their

own commute time. This leads to a Nash Equilibrium [17], which, on parallel roads,

means that if one road has positive flow on it, all other roads must have higher or equal

latency. Formally,

fh
p > 0 =⇒ `p(f

h
p , f

a
p , sp) ≤ `p′(f

h
p′ , f

a
p′ , sp′) ∀p, p′ ∈ P .

This implies that all selfish users experience the same latency. It is therefore useful to

consider the flow-latency diagrams of roads when studying which equilibria exist – by

fixing the latency on the y-axis, one can reason about which roads must be congested to

achieve that equilibrium. As shown in Fig. 4.2, equilibria may have one road in free-flow

and rest congested, or all may be congested [1, 29].
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flow (cars/second)road 1, !!

latency (seconds)

road 2, !"

road 3, !#
equilibrium latency

equilibrium latency

(a) Equilibrium with one road in free-flow.

flow (cars/second)road 1, !!

latency (seconds)

road 2, !"

road 3, !#
equilibrium latency

equilibrium latency

(b) Equilibrium with all roads con-
gested.

Figure 4.2: Some possible equilibria of a three-road network with fixed flow demand.
Green and red lines denote the free-flow and congested regimes, respectively. An
equilibrium has an associated equilibrium latency experienced by all selfish users. By
considering a given equilibrium latency, we can reason about which roads must be
congested at that equilibrium as well how much flow is on each road.

4.2.4 System Objective

In this paper, we are interested in developing a pricing scheme for autonomous vehicles

that improves the state of the traffic by alleviating the adverse effects of selfishness. First,

we develop two baselines: the first is the case in which all users, including autonomous

vehicles, are selfish and the network reaches a Nash Equilibrium. In this case we wish

to efficiently calculate the Nash Equilibrium that minimizes overall travel latency. Our

goal is to achieve lower travel latencies than this equilibrium with the same amount of

flow. In the second baseline, we assume we have limited direct control over the routing

of autonomous users – more specifically, we can route autonomous vehicles as we wish as

long as the latency they experience is within some range of the quickest route available.

A specific case of this baseline with full flexibility of the autonomous vehicles serves as a

lower bound to our method.

After developing the two baselines in Section 4.3, we present our pricing method that

provides the same benefits as flexible behavior through financial incentives in Section 4.4.
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For our pricing scheme, we describe the various facets of the problem. We assume the

demand of human drivers is fixed, and the demand of people using the autonomous

service is elastic – if prices and latencies are high, some people may choose not to use the

autonomous mobility service. Our goal is then to simultaneously maximize the number

of autonomous service users that can use the road, and minimize the average latency

experienced by all the people using the roads.

4.3 Performance Benchmarks

Throughout this section, we assume an inelastic demand, i.e., we will route all au-

tonomous and human-driven flow demand, λ̄a and λ̄h, into the network. As the demand

is inelastic, we are only interested in finding a routing that minimizes the total latency

experienced by all vehicles, C(fh,f a, s) =
∑

p∈P(fh
p + f a

p )`p(f
h
p , f

a
p , sp), while satisfying

the demand, i.e.
∑

p∈P f
h
p = λ̄h and

∑
p∈P f

a
p = λ̄a.

We now make precise the aforementioned notions of selfishness and flexibility. We

develop properties of the resulting equilibria, and using those, provide polynomial-time

algorithms for computing the benchmark flows.

Selfishness. Human drivers are often thought of as selfish, meaning they will not take

a route with long latency if a quicker route is available to them. If all drivers are selfish

this leads to a Nash Equilibrium, in which no driver can achieve a lower travel time by

unilaterally switching routes [17]. This means that all selfish users with the same origin

and destination experience the same travel time.

Definition 4.2. The longest equilibrium road is the road with maximum free-flow

latency which has latency equal to the latency experienced by selfish users. Let mEQ denote

the index of this road. We use NE(λ̄h, λ̄a,mEQ) to denote the set of Nash Equilibria with

longest equilibrium road having index mEQ.
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Definition 4.3. The longest used road is the road with maximum free-flow latency

that has positive vehicle flow of any type on it. We use mALL to denote the index of this

road; if all vehicles in a network are selfish then mEQ = mALL.

The following lemma will help with the subsequent theoretical results; we defer its

proof to the appendix.

Lemma 4.1. If the set of Nash Equilibria contains a routing with positive flow only on

roads [m], then there exists a routing in the set of Nash Equilibria with positive flow only

on roads [m′] where m′ ≤ m, and road m′ is in free-flow.

We define the set of Best-case Nash Equilibria (BNE) as the set of feasible

routings in equilibrium that minimize the total latency for flow demand (λ̄h, λ̄a), denoted

BNE(λ̄h, λ̄a). The following theorem (proof deferred to the appendix) provides properties

of the set of BNE for mixed-autonomy roads (for roads with a single vehicle type, see [29]).

Theorem 4.1. There exists a road index m∗EQ such that all routings in the set of BNE

have the below properties. Further, this index m∗EQ is the minimum index such that a

feasible routing can satisfy the properties:

1. road m∗EQ is in free-flow,

2. roads with index less than m∗EQ are congested with latency am∗EQ
, and

3. all roads with index greater than m∗EQ have zero flow.

As the same latency level can be achieved by varying the autonomy levels of the

roads, BNE is not necessarily unique.

Flexibility. We also wish to find a lower bound for the social cost when some users are

willing (or incentivized) to take longer routes. To that end, we use the term flexibility

profile to refer to the distribution of the degree to which autonomous users are willing

to endure longer routes. For computational reasons, we consider flexibility profiles with

a finite number of flexibility levels.
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(a) Users will tolerate latency of up to κ0 times
that of the quickest route.

, fraction of autonomous cars 
that will not tolerate latency 

, multiple of lowest latency 1
κ

ϕ(κ )

1

κ ℓ̂0

ℓ̂0
1 κ

ϕ(κ )

1

κ0

…

κ0 κ1 κ2 κN−1
…

ϕ0

ϕ1

(b) Users have multiple flexibility levels.

Figure 4.3: Flexibility profiles. A fraction ϕ(κ) of autonomous users will not accept
latency greater than κ times that of the quickest available route.

Formally, we define ϕ : R≥0 → [0, 1] to represent the flexibility profile as a non-

decreasing function of a latency value that is mapped to [0, 1]. A volume of ϕ(κ)λ̄a

autonomous flow will reject a route incurring latency κ times the minimum route latency

available, which we denote `mEQ
. If autonomous users have a uniform flexibility level as

in Fig. 4.3(a), we call them κ0-flexible users, where κ0 is the maximum multiple of the

minimum latency that autonomous users will accept. Users may have differing flexibility

levels, as in Fig. 4.3(b). We use K to denote the set of flexibility levels, with cardi-

nality |K|. Accordingly, a feasible routing (fh,f a, s) is in the set of Flexible Nash

Equilibria (FNE) if

1. all routes with human traffic have latency `mEQ
≤ `p(f

h
p , f

a
p , sp) ∀p ∈ P and

2. for any ` ≥ 0, a volume of at least ϕ(`/`mEQ
)λ̄a autonomous traffic experiences a

latency less than or equal to `. Note that it is sufficient to check this condition for

` = `p(f
h
p , f

a
p , sp) for all p.

We denote the set of routings at Flexible Nash Equilibria with demand (λ̄h, λ̄a),

equilibrium latency `mEQ
, and flexibility profile ϕ as FNE(λ̄h, λ̄a, `mEQ

, ϕ). The set of

Best-case Flexible Nash Equilibria (BFNE) is the subset of FNE with routings

that minimize total latency. Note that as in Theorem 4.1, we use m∗EQ to denote the road

with longest free-flow latency that contains selfish vehicle flow in the best routing within
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the considered set of equilibria. We defer the proof of the following to the appendix.

Theorem 4.2. For any given routing in the set of BFNE, there exist a longest equilibrium

road m∗EQ and a longest used road m∗ALL with m∗EQ ≤ m∗ALL, such that:

1. roads with index less than m∗EQ are congested,

2. roads with index greater than m∗EQ are in free-flow,

3. roads with index greater than m∗EQ and less than m∗ALL have maximum flow.

Remark 4.1. Note that, unlike in BNE, road m∗EQ will not necessarily be in free-flow

and m∗EQ is not necessarily the minimum index such that all selfish traffic can be feasibly

routed at Nash Equilibrium [1]. Further, different elements of the set BFNE can have

different indices for longest equilibrium and longest used road.

Finding the Best-case Nash Equilibria. In general, the Nash Equilibrium constraint

is a difficult combinatorial constraint. Theorem 4.1 however states that we can charac-

terize the congestion profile of the roads by finding the minimum free-flow road such

that Nash Equilibrium can be feasibly achieved. This is formalized as follows: find the

minimum mEQ such that NE(λ̄h, λ̄a,mEQ) is nonempty:

m∗EQ = argmin
mEQ∈P

amEQ
s.t. NE(λ̄h, λ̄a,mEQ) 6= ∅ , then

BNE(λ̄h, λ̄a) ⊆ NE(λ̄h, λ̄a,m∗EQ). (4.4)

Theorem 4.3. (4.4) can be solved in O(N4) time.

We defer the proof to the appendix.

Finding the Best-case Flexible Nash Equilibria. To find an element of the BFNE,
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we need to solve:

argmin
mEQ∈P, ˆ̀

0∈[amEQ
,amEQ+1),

(fh,fa,s)∈FNE(λ̄h,λ̄a,ˆ̀0,ϕ)

C(fh,f a, s) . (4.5)

As demonstrated in [1], the longest equilibrium road is no longer the road with lowest

free-flow latency such that the routing is feasible, as was the case in BNE. Further, road

mEQ may not be in free-flow in the set of BFNE. However, we do know that for a fixed

mEQ, the latency on road mEQ which minimizes cost, subject to feasibility constraints,

is one of a finite number of options.

Theorem 4.4. Finding a solution to (4.5) is equivalent to finding a routing in the set

of BFNE, if any exist. Further, (4.5) can be solved in O(|K|N5) time, where |K| is the

number of flexibility levels of autonomous vehicle users.

Proof. First, Definition 4.2 implies that the latency on the longest equilibrium road mEQ,

which we denote ˆ̀
0, must be less than that of road m∗EQ + 1. This, with the definition of

BFNE imply that (4.5) solves for an element of the BFNE. Now, note that for a given

ˆ̀
0, the optimal routing will maximize the autonomous flow on roads [mEQ]. We show

that this can be computed in O(N3) time, and the optimal allocation of the remaining

autonomous flow can be computed inO(N) time. Next, we note that subject to feasibility,

the social cost of a routing decreases monotonically with ˆ̀
0. In light of this, we show

that there are a maximum of k|N | critical points to check for feasibility when searching

for the optimal ˆ̀
0.

We now show that given ˆ̀
0, the latency on road mEQ, computing the optimal flow

on roads [mEQ] can be done in O(N3) time. For a given ˆ̀
0, the optimal routing will fit

as much autonomous flow as possible on roads [mEQ]. Let fh,EQ and f a,EQ denote the

elements of the regular and autonomous routings fh and f a that correspond to flows on
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the roads [mEQ], as with sEQ. Then, solve

argmax
fh,EQ,fa,EQ∈R

|[mEQ]|
≥0 ,smEQ

∈{0,1}

∑
p∈[mEQ]

f a
i (4.6)

s.t.
∑

p∈[mEQ]

fh
p = λ̄h,

∑
p∈[mEQ]

f a
p ≤ λ̄a,

∀p ∈ [mEQ] fh
p ≥ 0, f a

p ≥ 0,

∀i ∈ [mEQ − 1] `p(f
h
p , f

a
p , 1) = ˆ̀

0,

`mEQ
(fh
mEQ

,f a
mEQ

,smEQ
)= ˆ̀

0.

Using similar reasoning as in Theorem 4.3, this can be formulated as a linear program

and therefore can be solved with a computational complexity O(N3) [111].

Having computed the optimal routing on roads [mEQ], we now consider an optimiza-

tion which computes the resulting optimal index of the longest used road in order to fit

the autonomous flow, and as a result, the optimal routing of the remaining autonomous

flow. This follows from Theorem 4.2:

argmin
j∈P\[mEQ−1]

j

s.t.
∑

p∈[mEQ]

f a
p +

∑
p∈[j]\[mEQ]

F̄p(1) ≥ λ̄a ,
(4.7)

which requires computations of order O(N).

We temporarily restrict our attention to the case in which autonomous users have a
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uniform autonomy level. We wish to optimize over the following decision variables:

mEQ ∈ P longest equilibrium road?

mALL ∈ [m]\[mEQ − 1] longest used road?

ˆ̀
0 ∈ [tmEQ

, tmEQ+1) equilibrium latency?

fh,f a ∈ Rn
≥0, s ∈ {0, 1}n actual routing?

The objective function to be minimized is aggregate latency, which, using the Theo-

rem 4.2, can be formulated as follows:

ˆ̀
0

∑
p∈[mEQ]

(fh
p + f a

p ) +
∑

p∈[mALL−1]\[mEQ]

apF̄p(1) + amALL

(
λ̄a −

∑
p∈[mALL−1]

f a
p

)
s.t. (fh,EQ,f a,EQ, sEQ) ∈ (4.6) (4.8)

mALL = (4.7) (4.9)

1

λ̄a

(∑
p∈[mEQ]

f a
p +

∑
p∈[j]\[mEQ]

F̄p(1)
)
≥ ϕ(

ai
ˆ̀
0

) ∀j ∈ P\[mEQ − 1] (4.10)

For a given ˆ̀
0, the optimal routing maximizes the autonomous flow on roads [mEQ],

yielding (4.8). The remaining autonomous flow is routed as in (4.9). Finally, (4.10)

ensures that no one is more flexible than they wish.

To solve this, recall that in the case of uniform flexibility,

ϕ(κ) =


0 0 ≤ κ ≤ κ0

1 κ > κ0 .

Further, the volume of autonomous flow that can fit on roads [m] increases with

decreasing `m. Because of this, we can restrict our search of ˆ̀
0 to critical points of the
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function ϕ:

ˆ̀
0 ∈ {tmEQ

}∪{ tp
κ0

:p∈ [mALL]\[mEQ], tmEQ
<
tp
κ0

<tmEQ+1},

which is a set with maximum cardinality N . Therefore, we can find the BFNE via the

following algorithm:

1. Enumerate through all possible values of mEQ (N possibilities).

2. For each possible mEQ, enumerate through all possible values of ˆ̀
0 (N possibilities).

3. For each combination of mEQ and ˆ̀
0, find the optimal routing on roads [mEQ] via

(4.6) (order N3), and find mALL and the optimal routing of autonomous vehicles on

the remaining roads via (4.7) (order N). As these are sequential, this step requires

computations of order O(N3).

All together, this requires computations of order O(N5).

Now consider that autonomous vehicles have nonuniform flexibility levels. Then,

ϕ(κ) =



0 0 ≤ κ ≤ κ0

ϕ0 κ0 < κ ≤ κ1

ϕ1 κ1 < κ ≤ κ2

. . .

1 κ > κ|K|−1 .

We therefore must search over ˆ̀
0 in the following set:

ˆ̀
0∈ {tmEQ

} ∪ { ti
κj

:p∈ [mALL]\[mEQ], j∈K, tmEQ
<
tp
κj
<tmEQ+1},

which has maximum cardinality |K|N , bringing the total computation complexity to

O(|K|N5).
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4.4 Incentivizing Flexibility

We next present a pricing mechanism to attain the same benefits of flexible behavior

through financial incentives in the case of elastic demands. We first explain the human

choice model that formalizes how autonomous service users choose between a variety

of price and latency pairs depending on their value of time, encoded by their reward

functions. We then formulate a mathematical optimization problem that aims to find an

optimal trade-off between high road usage and low average travel time. We then explain

the data-efficient algorithm that we propose for learning human reward functions.

4.4.1 Autonomous Service User Choice Model

How users choose between a variety of price and latency pairs depends on their val-

uation of time and money. Without knowing this choice model we cannot plan vehicle

flows and will not be able to ensure the resulting configuration matches our vehicle flow

models for the roads. Also, since different populations may have different valuations, we

need to learn this tradeoff for our population so we can estimate how many people will

choose which option.

To untangle these constraints, we describe how autonomous service users make routing

decisions (the model for human drivers is provided in Sec. 4.2.3). Though human drivers

are motivated directly only by latency, autonomous service users experience cost in both

latency and the price of the ride. We model the users as having some underlying reward

function, which is parameterized by their time/money tradeoff, as well as the desirability

of the option of traveling by some other means such as walking or public transit. We

assume that a strictly dominated option in terms of latency and price is completely
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undesirable. We formally define this set

D = {p ∈ P | (pp > pp′ ∧ `p ≥ `p′) ∨ (pp ≥ pp′ ∧ `p > `p′) for some p′ ∈ P} ,

where pp is the monetary cost of route p. We also define the set of undominated roads,

D̄ = P\D. We model the reward function of user j for choosing road p as follows, where

we assume choosing road 0 denotes declining the service:

rj(`,p, p) =


−ωj1`p − ωj2pp if p ∈ D̄,

−∞ if p ∈ D,

−ζj`w if p=0 (user j declines the service) ,

with the following nonnegative parameters: ` denotes the vector of road latencies, p

denotes prices, ωj =

[
ωj1 ωj2

]>
characterizes the users’ time/money tradeoff and ζj

specifies their willingness to use an alternative option with latency `w, which could be

walking, biking, or public transportation.

We do not assume users are simple reward maximizers. Rather, we adopt the multi-

nomial logit model [97] for the probability with which users choose each option:

P (user j chooses route p) ∝ exp (rj(`,p, p)) (4.11)

for all p ∈ P ∪ {0}.

In order to determine the optimal pricing, we want to know how many users will

choose each route as a function of the route prices and latencies. To this end, we define

qi(`,p) as the expected fraction of autonomous service users that will choose route p. If
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the parameter distribution for autonomous service users is g(ω, ζ), then

qi(`,p) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

g(ω, ζ)P (p | ω, ζ)dω1dω2dζ .

where P (i | ω, ζ) is the probability that a user with reward function parameters (ω, ζ)

will choose road p. This expression relate prices and latency to human choices, enabling

us to determine the prices that will maximize the social objective. This will be important

in constraining the optimization to only consider latency/price options that correspond

to the desired vehicle flows.

4.4.2 Solution Method

Problem Formulation. We now formulate the problem where we have an indirect

control of the autonomous cars’ routing through pricing, and the demand of autonomous

service is elastic. Because of this elasticity, we cannot just minimize the average latency,

which would result in extremely high prices to keep autonomous service users off the

network. Hence, we consider an objective that is a combination of maximizing road usage

and minimizing average travel time.2 We parameterize this tradeoff with parameter θ ≥ 0

in the cost function

J(fh,f a,s)=

∑
p∈P (fh

p +f a
p )`p(f

h
p , f

a
p , sp)∑

p∈P (fh
p + f a

p )
− θ
∑
p∈P

(fh
p +f a

p ) .

Our control variables in this optimization are the latency on each road and the price

offered to the users for traveling on each route. However, we cannot arbitrarily choose

prices and latencies – we need to respect:

2Some other works, e.g. [49], use the social welfare objective. While the two objectives have many
similarities, we cannot directly adopt it here as we have heterogeneous users who have different price-
latency valuations.
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1. the characteristics of the roads, in terms of how the flow demand for a road corre-

sponds to the latency on that road (Section 4.2.1), and

2. how people make decisions, making sure that the number of people who choose

each option corresponds to the latency of the roads described in the options (Sec-

tion 4.4.1).

Moreover, we want to be fair; so we must offer the same pricing and routing options to

all autonomous service users.

Given q(`,p), the cost function J(fh,f a, s), inelastic flow demand of human drivers

λ̄h, and elastic demand of autonomous users λ̄a, we are ready to formulate the planning

optimization. The most straightforward way is to optimize jointly over fh,f a, ` and p.

However, ` is fully defined by fh,f a and s. Hence, instead of `, we use s, which will

help us solve this nonconvex optimization. The problem is then formulated as:

min
fh,fa,p∈Rn≥0,k∈P,sk:N∈{0,1}N−k+1

J(fh,f a, s) (4.12)

s.t.
∑
p∈P

fh
p = λ̄h (4.13)

f a
p = λ̄aqi(`(f

h,f a, s),p), ∀p ∈ (P \ [k]) ∪D (4.14)∑
i∈[k]\D

f a
p = λ̄a

∑
i∈[k]\D

qi(`(f
h,f a, s),p) (4.15)

ak ≤ `k(f
h
k , f

a
k , sk) ≤ ak+1 (4.16)

fh
p = 0,∀p ∈ P \ [k] (4.17)

`p(f
h
p , f

a
p , 1) = `k(f

h
k , f

a
k , sk),∀p ∈ [k − 1] (4.18)

fh
p + f a

p ≤ F̄
(
f a
p/(f

a
p + fh

p )
)
,∀p ∈ P (4.19)∑

p∈P

(
f a
ppp − f a

pdpc
)
≥ P̄ (4.20)

with s1:k−1 = 1 due to selfishness of human-driven vehicles. Here, k is the longest
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road with human-driven vehicle flow, P̄ is the minimum profit per unit time for the

autonomous service provider and c is the constant fuel cost per unit length. We can

describe the constraints as follows.

4.13. The human-driven vehicle flow demand is fulfilled.

4.14. Autonomous flow will be distributed into the roads in (P \ [k]) ∪ D based on the

choice model described in the preceding section.

4.15. Total autonomous flow in [k]\D will satisfy the user choices, but can be distributed

arbitrarily as the roads have the same latency and price.

4.16. The “longest equilibrium road” has latency on the given interval of free flow latency.

4.17. Human-driven cars are selfish, i.e. no human-driven car will experience higher

latency than the road k.

4.18. The congested roads have the same latency as the “longest equilibrium road”.

4.19. The maximum capacities of the roads are respected.

4.20. The minimum profit per unit time is satisfied.

We can further improve the search space by relying on the heuristic that the roads

that are not used by the human-driven vehicles will be in free-flow, i.e. sk+1:N = 0. While

we do not have a proof for the conditions that lead to this, we also note constructing

counterexamples seems to require extremely careful design, which suggests the heuristic

holds in general. Furthermore, the following theorem shows we could also set sk = 0

under an additional assumption.

Theorem 4.5. Assume ω2 > 0 for all users. Then there exists a free-flow road k in the

optimal solution to the problem such that `p = `k for ∀p ∈ [k], and fh
p = 0 for ∀p ∈ P \ [k]

as long as the optimization is feasible.

We defer the proof to the appendix.

Generalizations. We assumed all autonomous cars are controlled by a centralized social
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planner. To extend our framework to scenarios where this is not the case and the social

planner has the control over a fraction of autonomous cars, we can simply do the following

modifications: The optimization will also be over fb ∈ Rn
≥0, which will now represent the

autonomous flow that does not belong to the planner. Add the corresponding constraint

of (4.13) for fb
p . Similar to (4.17), fb

p = 0 for p ∈ P \ [k] due to selfishness. Also, replace

f a’s in (4.16), (4.18) and (4.19) with f a + fb with appropriate subscripts. These simple

modifications enable a more general use.

Solving the Optimization. After learning the distribution g(ω, ζ) (described below),

we first take M samples (ω̄, ζ̄) ∼ g(ω, ζ). Using these samples, we approximate the

expected fraction of autonomous users that will choose route p as:

qi(`,p)
·
=

1

M

∑
ω̄,ζ̄

P (p | ω̄, ζ̄)

where
·
= denotes asymptotic equality as M →∞.

We then locally solve the nonconvex planning optimization using interior point algo-

rithms [112] with 100 random initial points for each run to get closer to global optimum.

Data-Efficient Learning of Human Reward Functions. While the routes in a

specific network can be fully modeled with the physical properties and the speed limits,

user’s decision models (parameterized by (ω, ζ)) must be learned in a data-driven way.

The parameters might be different among the users. While a business executive might

prefer paying extra to reach their company quickly, a graduate student may decide to

go to the lab a little later in order to save a few dollars. Therefore, we have to learn

personalized parameters ω and ζ.

We learn the parameters from users’ previous choices, which is known as preference-

based learning. If user j chooses from a variety of options, the user’s choice gives us a

noisy estimate of which road p ∈ P ∪ {0} maximizes their reward function rj(`,p, p).
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We could start from either uniform priors or priors informed by domain knowledge, then

sample from the distribution g(ω, ζ).

However, a major drawback of doing so is how quickly we learn the user preferences.

Preference-based learning suffers from the small amount of information that each query

carries. For example, if we show 4 options to a user (including the option to decline the

service), then the maximum information we can get from that query is only 2 bits. To

tackle this issue, previous works pose the query synthesis problem as an optimization

and maximize a measure of the expected change in the learned distribution after the

queries [98, 99].

While those works focus on pairwise queries, in this case we expect to pose several

route options to the users and therefore need more general query types. By using these

general queries which offer a variety of routes with varied latency and price, we can

consider various ways of using this learning framework to learn the human preferences.

• We could do a user study on a few people to learn a good prior distribution.

• We could use an exploration/exploitation strategy if we are allowed to break the

fairness constraint a few times for some small portion of the users. This could be

made through user-specific promotions; for each user we may either choose to use

the learned model or to offer special rates that would help us profile the user better.

• We could do an initial profiling study for each new user.

To implement any of these options, we formulate the following active learning opti-

mization. First, we discuss the general preference-based learning framework. Given the

data from previous choices of user j, which we denote as Dj, we formalize the probability

of (ωj, ζj) being true parameters for that user as follows:

P (ωj, ζj | Dj) ∝ P (ωj, ζj)
∏
m

P (Djm | ωj, ζj)
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where Djm denotes the road user j chose in their mth choice (with Djm = 0 meaning that

the user declined the service and preferred the alternative option). The relation is due

to the assumption that the users’ choices are conditionally independent from each other

given the reward function parameters.

The second term comes from the human choice model. For the prior, we can use a

uniform distribution over nonnegative parameters. The prior may be crucial especially

when we do not have enough data for a new user. In such settings, we incorporate domain

knowledge to start with a better prior.

We then use this unnormalized P (ωj, ζj | Dj) to obtain the samples of (ωj, ζj) using

Metropolis-Hastings algorithm. Doing this for each user, which can be easily parallelized,

we directly obtain the samples (ω̄, ζ̄) ∼ g(ω, ζ).

Next we formulate the active learning framework, which is needed so that it will

not take an excessive number of queries to learn human preferences. For this, we want

to maximize the expectation of the difference between the prior and the unnormalized

posterior:

query∗m = argmax
querym

EDjm
[
P (ωj, ζj|Dj1:m−1)− P (ωj, ζj|Dj1:m−1)P (Djm|ωj, ζj,Dj1:m−1)

]
= argmin

querym

EDjm
[
P (Djm|ωj, ζj,Dj1:m−1)

]
.

As we will use the sampled (ωj, ζj) to compute the probabilities of road choices, we can

write the optimization as:

query∗m
·
= argmin

querym

EDjm

∑
ω̄j ,ζ̄j

P (Djm|ω̄j, ζ̄j,Dj1:m−1)

 ,

where we have M samples denoted as (ω̄j, ζ̄j), and the term 1/M is canceled. Using the
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law of total probability,

P (Djm|Dj1:m−1)
·
=

1

M

∑
ω̄j ,ζ̄j

P (Djm|ω̄j, ζ̄j,Dj1:m−1) ,

which leads to the following optimization for finding query∗m:

argmin
querym

∑
Djm

P (Djm|Dj1:m−1)
∑
ω̄j ,ζ̄j

P (Djm|ω̄j, ζ̄j,Dj1:m−1)

·
=argmin

querym

∑
Djm

∑
ω̄j ,ζ̄j

P (Djm|ω̄j, ζ̄j)

2

.

We can easily compute this objective value for any given querym. This optimization is

nonconvex due to the human choice model. As in previous works, we assume local optima

is good enough [98,99]. We then use a Quasi-Newton method (L-BFGS [113]) to find the

local optima, and we repeat this for 1000 times starting from random initial points.

4.5 User Experiments

To validate our framework, we conducted different simulations and a user study ap-

proved by Stanford University’s Research Compliance Office.

Hypotheses. We test three hypotheses that together suggest our framework successfully

reduces traffic congestion through pricing, after it learns the humans’ choice models:

H1: Our active learning algorithm can learn the autonomous service user preferences

in a data-efficient way.

H2: Our planning optimization reduces the overall latency by creating flexible be-

havior through pricing.

H3: When used by humans, the overall framework works well and is advantageous
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over inflexible algorithms.

Implementation Details. In the planning optimization, we used the heuristic sk+1:N =

0. We assumed the only alternative for autonomous service users is walking. We set

c = 6×10−5 USD/meter, b = 1. We assumed the regular and autonomous cars keep a

2-second and 1-second headway distance with the leading car, respectively. The length

of the cars is 5 meters, and the minimum gap between two cars is 2 meters.

Experiments and Analyses. To validate H1, we simulated 5 autonomous service users

with different preferences. We tested our active learning framework by asking two sets of

200 queries, each of which consisted of 4 road options, similar to Fig. 4.6, and a walking

option. The queries were generated actively in the first set and randomly in the second.

After each query, we recorded the sample (ω̄, ζ̄) which has the highest likelihood as our

estimates.

Fig. 4.4 shows how the estimates evolved within active learning setting for one of the

users. All values are overestimated initially. Intuitively, this is because getting noiseless

responses has higher likelihood in the beginning. As we query more, accepting some of

the responses as noisy maximizes the likelihood. Therefore, the values start decreasing.

0 50 100 150 200

0

5

10

15

Figure 4.4: The errors of the reward function estimates are shown with varying number
of queries. ω̂1, ω̂2 and ζ̂ represent the estimates.

Another important observation is that the estimates of the parameters increase and

decrease together even in the early iterations. This suggests we are able to learn the
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ratio between the parameters, e.g. ω1/ω2 very quickly. To check this claim, we used the

following error metric:

ex,y = ‖x/y − x̂/ŷ‖1 ,

where x, y ∈ {ω1, ω2, ζ} and x̂, ŷ represent the corresponding estimates. Fig. 4.5 shows

how this error decreases with increasing number of queries. It also shows how active

querying enables data-efficient learning compared to the random querying baseline. We

are able to learn the relationship between parameters even under 20 queries with active

learning. All these results strongly support H1.

Figure 4.5: The error metric is averaged over 5 different reward functions.

The fact that we are able to learn the ratios implies we can estimate which road the

user is most likely to choose. We will only be unsure about how noisy the user is if the

parameter estimates did not converge yet. Therefore, we can still use the estimates for

our planning optimization even when we have small number of queries.

To validate H2, we use the road network from [1] and the equilibria benchmarks

we developed: NE, BNE and BFNE with full flexibility. Here, we give the average

latencies for the 4-road network from that study which we visualize in Fig. 4.6, and

where λ̄h = 0.4, λ̄a = 1.2 cars per second: (NE: 400.00 sec, BNE: 125.66 sec, BFNE (full

flexibility): 102.85 sec).

We then assumed we perfectly learned the preferences of the 5 simulated users. We
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Figure 4.6: The 4-road network from [1]. The roads are not to the scale and ordered
with respect to the free-flow latencies.

ran the planning optimization with P̄ = 0 and 3 different θ to show the trade-off. The

results are summarized in Table 4.1.

Table 4.1: Results of Routing Simulation
θ Avg. Latency (seconds) Flow (cars/second)
1 90.41 0.4412
20 97.03 1.2746
106 111.28 1.5964

It can be seen we can adjust the trade-off between average latency and the served

flow by tuning θ. Also, given the human preferences, even when we served (almost) all

of autonomous demand, our framework outperforms BNE. This shows its effectiveness

on creating flexibility and supports H2.

For H3, we recruited 21 subjects (9 female, 12 male) with an age range from 19 to 60.

In the first phase of the experiment, each participant was asked 40 actively synthesized

queries (4 roads + 1 walking option). We then used their responses to get the maximum

likelihood sample (ω̄, ζ̄). Afterwards, we designed 5 different road networks each with 4

different roads and an additional route where people may choose to walk. The 5 different

networks cover a range of different road lengths from 1.8 kilometers to 78 kilometers. For

each network, we also set different θ, λ̄h, λ̄a, and P̄ . By assuming all autonomous flow
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is in the service of these 21 subjects, or of the groups that match with their preferences,

we locally solved the planning optimization to get the pricing scheme for each traffic

network. We refer to these results as anticipated values.

In the second phase of the user study, we presented the route-price pairs and the

walking option to the same 21 subjects. For each of the 5 networks, they picked the

option they would prefer. Using these responses, we allocated the autonomous flow into

the roads. However, it is technically possible that more users select a road than its

maximum flow. To handle such cases, we assumed extra flow is transferred to the roads

with smaller latencies without making the users pay more. If that is not feasible, extra

flow is transferred to the slower roads, without any discount. While these break the

fairness constraint, it rarely happens and affects only a very small portion of the flow.

After autonomous flows are allocated, human driven cars selfishly chose their routes in a

way to minimize the overall average latency. We refer to the results of this allocation as

actual values.

Table 4.2 compares the anticipated and the actual values. We report latencies in

seconds, flows in cars per second, and profit is a rate value with the unit USD per second.

In order to show how our framework incentivizes flexible behavior, we also added other

benchmarks: two where the same flow as actual flow is routed (BNE1 and BFNE1) and

two where all flow demand is routed, i.e. no walking option (BNE2 and BFNE2). While

BNE and BFNE assume completely inelastic demand, using them as benchmarks under

both the actual flow and the all flow demand gives us insights about the success of our

framework, because the allocation of vehicles under the actual flow is comparable to the

elastic demand case.

It can be seen that there is generally an alignment between the anticipated and actual

values. While the mismatch may be further reduced by doing more queries or having

more users, the difference with BNE1 is significant. In all cases, our framework achieved
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to incentivize flexibility, which yielded lower average latencies compared to BNE1. Es-

pecially in Case 3 and Case 5, our framework approximately halved the average latency

compared to the best Nash equilibria. In fact, our framework achieved a latency that is

close to the lower bound set by BFNE1. We visualize these in Fig. 4.7. Furthermore,

our framework successfully reduced flow demand when satisfying the full demand under

selfishness is impossible (Case 1).

Case 1 Case 2 Case 3 Case 4 Case 5

0

2000

4000
BNE1

Actual

BFNE1

Figure 4.7: The comparison of the actual results and BNE1, both of which allocate
the same amount of flow.

One caveat is the small amount of actual flow in Case 1, which also caused an im-

portant profit loss. This is because the roads are relatively shorter, and most users

preferred walking over paying for an autonomous car. Our framework could not predict

this, because the learned reward functions failed to accurately estimate the probabilities.

Table 4.2: Results of Real-User Experiments
Anticipated Actual Pricing Scheme BNE1 BFNE1 Full BNE2 BFNE2

Flow Av. Lat. Profit Flow Av. Lat. Profit Av. Lat. Av. Lat. Flow Av. Lat. Av. Lat.
C1 1.662 338.10 11.11 1.043 283.30 3.85 501.97 240.80 1.90 Infeas. 421.45
C2 1.559 510.97 4.50 1.505 537.30 3.95 562.20 468.79 1.60 562.20 474.35
C3 1.268 921.06 4.59 1.300 957.71 3.99 1756.89 941.81 1.30 1756.89 941.81
C4 1.554 2576.36 40.01 1.600 2579.52 49.33 2720.00 2579.33 1.60 2720.00 2579.33
C5 1.238 2083.42 48.48 1.205 2089.53 46.32 4194.26 2079.15 1.30 4194.26 2183.56

Table 4.3: Comparing the anticipated and actual performance of five cases, C1-C5,
in terms of flow, average latency, and profit. For a fixed flow, BFNE serves as a
lower bound on the latency. Achieving lower latency than BNE means we successfully
incentivize flexible behavior.
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4.6 Conclusion

In this chapter3 we addressed the efficiency of traffic networks with mixed autonomy

when autonomous vehicles are used for a ride-hailing service, and vehicle flow on roads

is dictated by a model based on the Fundamental Diagram of Traffic. We developed a

method of pricing rides with autonomous vehicles such that when a population chooses

from these route and price options, and the human drivers choose the quickest routes

available to them, the objective of decreasing travel latency and increasing road usage is

achieved. To do so, we modeled how people choose between different route options with

varying prices and latencies. Moreover, we developed a method for actively learning the

parameters that describe the preferences of a population of users. We developed theoreti-

cal results which we use to gauge the performance of our algorithm, and conducted a user

study showing that our method of parameterizing and actively learning the preferences

of a human population is effective.

A wide horizon for further research remains. One could relax the assumption that

the reward functions are linear to improve the prediction accuracy [114] and optimize

for information gain in the active learning scheme, which can yield better data efficiency

[115]. Another direction is to consider an elastic demand for human drivers, as well as a

variety of nondriving options including walking, biking, or taking the bus. In that case,

ζ will have a multimodal distribution; we then need to learn the mixture. Future works

could consider optimizing for objectives aside from a linear combination of minimizing

delay and maximizing the number of people traveling [116].

More broadly, one can look at more general network topologies – if route pricing is

computed only with local information on each edge, pricing can make congestion worse

3Toyota Research Institute (”TRI”) provided funds to assist the authors with their research but this
article solely reflects the opinions and conclusions of its authors and not TRI or any other Toyota entity.
This work was also supported by NSF grant CCF-1755808, NSF ECCS-1952920, FLI grant RFP2-000,
and UC Office of the President grant LFR-18-548175.
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when users have different price sensitivities [117]. One can also expand the model to

include the role of information in decision making, as well as biases such as risk aversion.

Through these future directions we can ensure the efficient operation of transportation

networks that include autonomous vehicle-based ride hailing services.

4.7 Appendix

4.7.1 Proof of Lemma 4.1.

We begin by noting that for any given network and feasible flow demand, a continuum

of equilibria exist which satisfy the flow demand, where different equilibria have positive

flow on different sets of roads. This fact stems from the two regimes (free-flow and con-

gested) that exist, as well as the two different vehicle types. We note that for a congested

road, a lower density yields a higher vehicle flow and lower latency. Accordingly, via the

relationship with density, the latency function decreases smoothly with an increase in the

flow of regular or autonomous cars. Note this does not mean that transferring flow to

a road in a dynamic setting decreases its latency, rather that the function dictating the

relationship between latency and flow in the congested regime is smoothly decreasing (in

accordance with each quantity’s relationship with the corresponding vehicle density).

With this in mind, we consider the continuum of equilibria that exist. Consider a

Nash Equilibrium with positive flow on roads [m]. Assume road m is congested, as

otherwise the lemma would be satisfied with m′ = m. Roads [m− 1] must be congested

so as to have the same latency as road m, as it is an equilibrium. We constructively

find a different equilibrium as follows. Consider another configuration serving the same

flow demand, where the flow on road m serves less flow and roads [m − 1] serve more

flow as follows. Note that in each configuration serving the flow demand, vehicle flow
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is conserved but vehicle density is not. Accordingly, road m has higher latency (from

higher density) and roads [m − 1] have lower latency (from lower density). Since the

flow-latency relationship in (4.3) has latency as a monotonically decreasing function with

flow of each vehicle type, we can consider a new configuration where each road in [m−1]

has equal latency (which is less than the first equilibrium configuration) while serving

more flow. Accordingly, we can construct one of the two following configurations.

1. the latencies on roads [m− 1] are reduced to am, the free-flow latency on road m,

or

2. road m serves no flow and the latencies on roads [m− 1] are greater than am.

In the first case, the lemma is satisfied with m′ = m. In the second case, we can consider

the same logic again, again considering a new configuration with less flow on road m− 1

and more flow on roads [m − 2]. This continues until either we achieve case 1 above or

until we are reduced to a single road. If that occurs, traffic can be routed in free-flow

on that road, since any feasible flow in the congested regime is less than the maximum

free-flow on a road.

4.7.2 Proof of Theorem 4.1.

The definition of Nash Equilibrium and the fact that latency on a road is always

equal to or greater than its free-flow latency together imply that at Nash Equilibrium, if

road m has positive flow then all roads with free flow latency less than am have positive

flow as well. These also imply that if a road m in free-flow has positive flow, roads with

greater free-flow latency will have zero flow. Further, we use Lemma 4.1 to show that

all routings in the set of BNE will have one road in free-flow. Assume for the purposes

of contradiction that we have a routing in the set of BNE in which only roads [m] have

positive flow and all are congested, with equilibrium latency ˆ̀
0. The total cost is then
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ˆ̀
0(λ̄h + λ̄a), where ˆ̀

0 > am. By Lemma 4.1, another routing exists in the set of NE which

uses roads [m′], where m′ ≤ m and road m′ is in free flow. The cost of this equilibrium

is am′(λ̄
h + λ̄a) ≤ tm(λ̄h + λ̄a) < ˆ̀

0(λ̄h + λ̄a) contradicting our premise.

So far we have proved the numbered claims. We prove the remaining claim by con-

tradiction. Assume there are two routings in f , f ′ ∈ BNE(λ̄h, λ̄a) which have different

free-flow roads, m and m′ respectively. Assumption 4.1 implies tm 6= tm′ ; let tm < tm′ .

Since all selfish users experience the same latency, the total latency of routing f is

(λ̄h + λ̄a)tm < (λ̄h + λ̄a)tm′ , which is the total latency of routing f ′. However by the

definition of BNE, the total latency of the two routings are equal, yielding a contradic-

tion.

4.7.3 Proof of Theorem 4.2.

The first property directly follows from Theorem 4.1, as the regular vehicles have to be

at a Nash equilibrium due to selfishness. To prove the second property, we note that for

roads that have higher latencies than road m∗EQ, a Nash equilibrium is not necessary due

to flexibility. As `i(f
h
i , f

a
i , si) is a non-increasing continuous function of f a

i and decreasing

for si = 1, roads that have higher latencies than road m∗EQ will always be in free-flow.

Now we assume some of the roads with indices greater than m∗EQ and less than m∗ALL

are in free-flow, but not at maximum flow. Then we could simply transfer some flow

from the road m∗ALL to those roads and have lower overall costs. This is a contradiction,

completing the proof for the third property.

4.7.4 Proof of Theorem 4.3.

Since road mEQ, the longest equilibrium road, is in free-flow by Theorem 4.1 and m∗EQ

is the minimum feasible mEQ, our solution is restricted to the set of BNE. Accordingly,
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we can restrict our optimization to routing in which the longest equilibrium road is in

free-flow. This allows us to write an optimization equivalent to checking the feasibility

of a routing with the desired congestion profile:

max
fh,fa∈RN≥0

1

s.t.
∑

p∈[m∗EQ]

fh
p = λ̄h,

∑
i∈[m∗EQ]

f a
p = λ̄a

`p(f
h
p , f

a
p , 1) = tm∗EQ

∀p ∈ [m∗EQ − 1]

fh
m∗EQ

+ f a
m∗EQ
≤ F̄m∗EQ

(fh
m∗EQ

, f a
m∗EQ

)

The constraints can be shown to be affine in the decision variables. As it is a linear

program, it can be solved in O(N3) time [111]. Finding m∗EQ requires a search in O(N)

time.

4.7.5 Proof of Theorem 4.5.

We first prove, similar to Luce’s choice axiom [118], changing the latency or the

price of some roads does not alter the autonomous flow ratio between the other options,

including the alternative option. For this, we look at Eω,ζ
[
P (p1|ω,ζ,`,p)
P (p2|ω,ζ,`,p)

]
, where p2 is an

undominated option, P (p | ω, ζ, `,p) is the probability of choosing option p ∈ [N ] ∪ {0}

under the given reward parameters, latency and price. We note

P (p | ω, ζ, `,p) =
exp(r(`,p, p;ω, ζ))∑N
p′=0 exp(r(`,p, p′;ω, ζ))

, so

Eω,ζ
[
P (p1 | ω, ζ, `,p)

P (p2 | ω, ζ, `,p)

]
= Eω,ζ

[
exp(r(`,p, p1;ω, ζ))

exp(r(`,p, p2;ω, ζ))

]
.
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As the reward of an option depends only on that option’s price and latency, this proves

the first statement above.

Equipped with this result, we now prove Theorem 4.5. Assume the optimal solution is

such that all human-driven flow is in congested roads. Let k be the index of the highest

free-flow latency road with nonzero human-driven flow. We first show there exists an

equally optimal solution with no dominated roads in [k]. For this, we simply set the

prices of roads [k] such that they are all equal and the total autonomous demand in [k] in

the original and the new solution is the same. Since the new solution has no dominated

roads in [k], their new price has to be at least as high as the undominated roads in [k]

of the original solution, which implies the profit constraint is still satisfied. As the total

demand served and the overall latency values are the same between these two solutions

by the first statement above, the two solutions are equally good. In the remaining of the

proof, we refer to the new solution as the “optimal solution” for clarity, and show there

exists a better solution, leading to a contradiction.

Denote the optimal solution with (`∗,p∗,fh∗,f a∗), and its dominated options with

D∗, noting [k] ∩ D∗ = ∅. Let the ratio of autonomous service users in road i to the

autonomous service users who decline the service be βi, i.e., βi =
fa∗p

λ̄a−
∑
p′∈[N ] f

a∗
p′

.

Let k′= argmaxp tp subject to p≤ k and
(∑

p′∈[k] f
h∗
p′ ,
∑

p′∈[k] f
a∗
p′

)
can be allocated

into [k′] when all roads in [k′] have latency equal to tk′ . Existence of such a k′ is guaranteed

by Lemma 4.1.
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Using k′, we propose an alternative solution (`′,p′,fh′,f a′):

`′p =


`∗p if p ∈ [N ] \ [k]

ai if p ∈ [k] \ [k′]

tk′ if p ∈ [k′]

,

p′p =


p∗p if p ∈ [N ] \ ([k] ∪D∗)

p∗p + ε if p ∈ [k] ∪D∗
.

where ε ≥ 0 is such that the ratio of autonomous service users in [k′] to the autonomous

service users who decline the service in the alternative solution is equal to
∑

p∈[k] βp.

Since `′p < `∗p for ∀p ∈ [k′], ω2 > 0 for all users, and [k] ∩D∗ = ∅, the existence of such

an ε is guaranteed.

By the first statement, we know the ratios (βp’s) in the alternative solution will be

equal to the optimal solution for roads in [N ] \ ([k]∪D∗) as their latencies and prices are

the same. Similarly, roads in D∗ are also dominated in the alternative solution, because

no road has higher latency and prices went up maximally (by ε) for those roads. This

means the ratios are equal between two solutions for all roads in [N ] \ [k]. Noting roads

in [k] \ [k′] are dominated in the alternative solution, as they have the same price as the

roads in [k′] but higher latency, we write the total autonomous demand:

λ̄a =

λ̄a −
∑
p∈[N ]

f a′
p

 (1 + β1 + β2 + · · ·+ βN)

by the construction of ε. As the total autonomous demand is the same between two

solutions, we get λ̄a −
∑

p∈[N ] f
a′
p = λ̄a −

∑
p∈[N ] f

a∗
p meaning the flow of users who

decline the service is the same. This implies f a′
p = f a∗

p for ∀p ∈ [N ]/[k], and
∑

p∈[k] f
a′
p =
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∑
p∈[k] f

a∗
p. As the selection of k′ ensures there is enough room for selfish vehicles in [k′]

in the alternative solution, we have
∑

p∈[k′] f
h′
p =

∑
p∈[k] f

h∗
p.

Finally, the alternative solution satisfies the profit constraint because the price and

the autonomous flow in [N ] \ [k] are the same as the optimal solution, and the remaining

autonomous flow pays higher price in the alternative solution.

Overall, the alternative solution is feasible, serves the same amount of flow, but has

lower latency overall, (`∗,p∗,fh∗,f a∗) cannot be the optimal solution.

4.7.6 Role of Assumption 4.1.

Without this assumption, m∗EQ in Theorem 4.1 would instead represent a set of roads,

all of which would be in free-flow. Theorem 4.2 would change similarly to Theorem 4.1.

Theorem 4.3 is not altered, the constraint associated with m∗EQ would instead apply to

all roads within the set. Finally, Theorem 4.4 would remain the same as well. What

would potentially change this theorem is if the set of roads in m∗EQ could have different

congestion levels in the computed BFNE. To see why this is not the case, note that

the flexibility profile is with respect to the quickest route available to users (i.e. the

least congested road in the set m∗EQ). Accordingly, having another road in the set be

more congested would not help satisfy any constraint related to the flexibility profile and

would also not serve more flow than if it had the same latency as the minimum latency

road in m∗EQ. Hence, all roads in m∗EQ will have the same latency, so the computational

complexity remains the same. Theorem 4.5 would still hold: there exists a free-flow road

used by human drivers in the optimal solution.
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Chapter 5

Learning to Dynamically Influence

Human Routing

The previous chapters of this dissertation analyzed how to influence the equilibria of

traffic networks with mixed autonomy. In Chapter 3, the tolling schemes proposed either

guaranteed uniqueness of equilibria, or bounded the worst-case performance of equilibria.

When analyzing the case of autonomous vehicles serving as a ride hailing service in

Chapter 4, the equilibria found were no longer unique. Further, though we found price

controls which would maintain a good equilibrium, the control scheme was not designed

to guide traffic conditions from a bad equilibrium to a good one. Accordingly, in this

chapter1 we analyze the dynamics of a traffic network in mixed autonomy. Due to the

complexity of the formulation, we use Reinforcement Learning to learn a policy which

dynamically controls the autonomous vehicle routing to influence human routing in such

a way that road congestion is alleviated. We characterize the optimal equilibria in parallel

networks and show that the learned policy brings the network to the best equilibrium,

1This chapter is adapted, with permission, from “Learning How to Dynamically Route Autonomous
Vehicles on Shared Roads”, previously published in Transportation Research Part C, c© Elsevier 2021,
and is joint work with Erdem Bıyık, Dorsa Sadigh, and Ramtin Pedarsani [119].
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while model predictive control and greedy optimization methods fail to do so, and result

in unboundedly large delays. We also show the efficacy of our method on large, general

networks.

5.1 Introduction

There are a few mechanisms by which road network inefficiency and congestion

emerge. Previous chapters have focused on road network inefficiency due to route choice,

and specifically, have analyzed and controlled the equilibria of networks. However, in

realistic models of congestion, the congestion on a road is a function not just of the in-

coming flows of vehicles, but also of the current state of network – specifically, the density

of vehicles in each portion of the network. Because of this, choosing an equilibrium is

not as simple as choosing an input routing to the network, as the same input can result

in different equilibria, depending on the network state.

If a system controller had control over the input routing of vehicles entering a network

starting from an empty state, it could directly control the state of the network. There

are a few issues with this. Even if this unlikely situation was to happen, there could still

be system shocks, such as fluctuations in demand or traffic collisions, which suddenly

change the state of the network. Because of this, if one wishes to decrease congestion by

controlling or influencing routing, it is important to develop a method which is robust to

these effects, and which can start from any feasible network state.

In this chapter we consider a similar setting to that of Chapter 4, in which some

users of a network are users of an autonomous ride-hailing service, and some users are

human drivers. We consider that a system designer can directly control the routing of

the autonomous service users and that human drivers chooser their routes selfishly in

response. In contrast with equilibrium analysis of Chapter 4, in the current chapter we
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consider the dynamic setting. Our goal is to design a controller which can route the

autonomous vehicles in a way which leverages the selfish routing response of the human

drivers to decongest the network, and move the network from a ‘bad’ equilibrium to a

‘good’ one.

Our key idea is that by controlling the routing of autonomous vehicles we can change

the delay associated with traversing each road, thereby indirectly influencing peoples’

routing choices. By influencing people to use more “socially advantageous” routes, we

can eliminate long queues and significantly reduce traffic jams on roads.

The model for mixed-autonomy traffic, meaning traffic with both human-driven and

autonomous vehicles, is complex, involving very large and continuous state space and

continuous action space. Having human drivers dynamically respond to the choices of the

autonomous vehicles further complicates the matter, making a dynamic programming-

based approach and other classical methods infeasible. Because of this, we use model-

free deep reinforcement learning (RL) to learn a policy without requiring access to the

dynamics of the transportation network. Specifically, we show it is possible to learn a

policy via proximal policy optimization (PPO) [120] that mitigates traffic congestion by

managing routing of autonomous cars given the network state.

To understand the performance of the learned policy, we investigate the equilibrium

behavior of the network. In the preceding chapters we showed that there is a wide spec-

trum of equilibria in traffic networks, meaning situations in which everyone is taking the

quickest route immediately available to them, and these equilibria can have greatly vary-

ing average user delay. In this chapter we establish efficient ways to compute equilibria in

the network and compare the best equilibrium (in terms of latency) with the RL policy,

which works regardless of whether equilibrium conditions hold or not. We show that the

learned policy reaches the ‘desirable’ equilibria that have low travel times when starting

with varying traffic patterns, and can recover network functionality after a disturbance
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Figure 5.1: The schematic diagram of our framework. Our deep RL agent processes
the state of the traffic and outputs a control policy for autonomous cars’ routing.

such as a traffic accident. To summarize, our contributions are as follows:

• Theoretical analysis: We characterize equilibria in the network and derive a polynomial-

time computation for finding optimal equilibria of parallel networks.

• Finding a control policy via deep RL: We employ deep RL methods to learn a

routing policy for autonomous cars that effectively saves the traffic network from

unboundedly large delays. We show via simulation that the RL policy is able to

bring our network to the best possible equilibrium when starting from a congested

state or after a network disturbance on parallel networks. We further show that an

MPC-based approach and a greedy optimization method fail to do so, and thus is

outperformed by the RL-based method in general networks.

We portray our framework in the schematic diagram Fig. 5.1.

5.1.1 Related Works

Many works seek to understand how much traffic network latency could be improved if

vehicle routing was controlled by a central planner, including works on congestion games

[14,19,53,72]. Some study how indirectly influencing peoples’ routing choices by providing

them network state information affects network performance [10,11]. Stackelberg Routing,

in which only some of the vehicles are controlled, is another way to influence routing
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[27, 121]; some works incorporate the dynamics of human routing choices [122]. While

providing useful techniques for analysis, the congestion game framework does not reflect

a fundamental empirical understanding about vehicle flow on roads, namely that roads

with low vehicle density have a roughly constant latency, and roads with high density

see latency increase as flow decreases.

Works on CTM [34,123] capture this phenomenon, including works that characterize

equilibria on roads described with CTM [5]. Notably, some consider equilibria of parallel-

path Stackelberg Games, including with mixed autonomy [29,91]. However, their analyses

are limited to steady-state and do not capture the dynamics. [124] considers a Funda-

mental Diagram of Traffic-based model for slowly varying traffic. They formulate this as

a Stackelberg Game and design routing information for users to minimize overall latency

and bound the resulting inefficiency in a simple network. However, they only consider a

single-vehicle type, not a mixed-autonomy setting.

Previous works have shown the negative congestion effects of ride-hailing services [4].

There is a wide range of works on how to decrease congestion, including congestion

pricing [7], variable speed limits [8] and highway ramp metering [5].

Some works look at the low-level control of autonomous cars, specifically controlling

acceleration to smooth flow and ease congestion at bottlenecks [36,62,63]; [125] provides

a benchmark for gauging the performance of these techniques. Other works learn ramp

metering policies [6], localize congestion [39], and model lane-change behavior with a

neural network [126]. One study surveys the way in which autonomous vehicles provide

the opportunity for better congestion management [127].

In addition to these learning-based methods, there has also been an effort to use RL for

route selection [128] and driver choice modeling in traffic assignment problem [129–132].

Again using RL, [133] shows reward shaping mechanisms could be utilized to reach better

equilibria. More recently, [134] develops a hierarchical approach to optimize tolling and
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signal control in the high-level whereas a multi-agent RL method models the drivers

in the lower level. Although these works show the effectiveness and potential of RL

methods in transportation, to the best of our knowledge, these methods have not been

used in a routing game with mixed-autonomy traffic where a central planner aims to

reduce congestion by indirectly influecing humans’ routing via the routing of autonomous

vehicles.

Without any reinforcement learning component, some works provide macroscopic

models of roads shared between human-driven and autonomous cars. [65] models highway

bottlenecks in the presence of platoons of autonomous vehicles mixed in with human-

driven vehicles. The authors relate their model to a CTM type-model similar to the

model presented below, though it is specific to a single highway. [135] describes a micro-

scopic model to determine the effect of autonomy on throughput, yielding fundamental

diagrams. The fundamental relationship between autonomy level and critical density in

our model mirrors that of [33], which develops a CTM model for mixed autonomy traffic.

Some works solve the dynamic traffic assignment problem for networks with a CTM-

based flow model, including some which decompose the optimization to enable optimizing

flow on large networks [136]. In contrast, our works studies the setting in which some

flow demand is controlled to optimize the system performance, and some flow demand

updates according to a selfish update rule. This precludes the use of such decomposition

techniques, since the optimization can no longer be formulated as a linear program.

Because of this, we use RL to solve for a routing policy in our setting.

5.2 Vehicle flow dynamics: modeling roads

In this section we describe dynamics governing how vehicle flow travels on a road. We

extend the CTM, a widely used model that discretizes roads into cells, each with uniform
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density [34,123], for mixed-autonomy traffic. In CTM, each road segment has a maximum

flow that can traverse it. The key idea of our extension is that since autonomous vehicles

can keep a shorter headway (distance to the car in front of it), the greater the fraction

of autonomous vehicles on a road, the greater the maximum flow that the road can

serve [91]. Accordingly, our extension of CTM lies in the dependence of cell parameters

on the autonomy level, or the fraction of autonomous vehicles, in each cell.

We use our capacity model in conjunction with Daganzo’s CTM formulation in [34,

137], the combination of which we describe in the following. We consider a network of

roads with a single origin and destination for all vehicles in the network. The origin and

destination are connected by the set of simple paths P . Each path is composed of a

number of cells, and we denote the set of cells composing path p by Ip. We generally use

i and p as indices for cells and paths, respectively.

In the CTM, every cell has a critical density, and when the density of a cell exceeds the

critical density, that cell is congested. We model the critical density as being dependent

on the autonomy level. This is because autonomous vehicles maintain a different nominal

headway than human-driven vehicles; in other words, autonomous vehicles may require

more space in front of them due to prediction error, or less space, as they may react

faster than human drivers. Accordingly, we use the model in [42] to model the capacity

of a cell.

Using this model, each cell i has a free-flow velocity, v̄i, as well as a nominal headway

for vehicles traveling at the free-flow velocity — hh
i cells/vehicle for human-driven vehicles

and ha
i for autonomous vehicles. The capacity of the cell then varies with the autonomy

level, denoted αi ∈ [0, 1]. We use bi to denote the number of lanes in a cell. We model

vehicles as slowing down when the headway experienced decreases below the nominal

headway required and accordingly model the critical density as follows, as in [32,42,72,91]:
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(a) Fundamental diagram of traffic governing
vehicle flow in each cell of the Cell Transmis-
sion Model. The solid line corresponds to
a cell with only human-driven vehicles; the
dashed line represents a cell with both vehicle
types at autonomy level αi.
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(b) The flow from one cell to another is a function of
the density φ and autonomy level α in each cell.

Figure 5.2: Vehicle flow model. Green and red respectively represent a cell in free-flow
and congestion, and we suppress the notation for path p.

ñi(αi) := bi/(αih
a
i + (1− αi)hh

i ) . (5.1)

Each cell also has a vehicle density, φi = φh
i + φa

i , where φh
i and φa

i are, respectively, the

number of human-driven and autonomous vehicles. Thus, αi = φa
i /(φ

h
i +φa

i ). As the cells

are very large compared to the vehicles, we consider these quantities to be continuous

variables. As mentioned above, CTM has two regimes for vehicle flow: free-flow, when

cell density is less than the critical density, and congestion, when cell density is greater

than the critical density but less than the jam density φ̄i, the density at which flow stops

completely.

Three factors limit the flow from one cell to another. One is the capacity, or maximum

flow out of a cell, which is the flow of vehicles that traverse the cell at the critical density:

F̄i(αi) := v̄iñi(αi) . (5.2)

The flow out of a cell is limited by the sending function of that cell, which is the

minimum of the capacity of the cell and the demand of vehicles in the cell: Si(αi(k)) =
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min(F̄i(αi), v̄iφi(k)). The flow entering a cell is limited by that cell’s receiving func-

tion, which is the minimum of its capacity and its supply of vehicles: Ri(αi(k)) =

min(F̄i(αi), (φ̄i−φi)wi(αi)), where wi is the shockwave speed, the speed at which slowing

waves of traffic propagate upstream: wi(αi) := v̄iñi(αi)/(φ̄i − ñi(αi)). In the following,

we use fi(k) to denote the flow out of cell i at time k and yi(k) to denote the flow into

cell i. We use the standard superscripts for human-driven and autonomous flow, with

the relationships fh
i (k) + f a

i (k) = fi(k) and yh
i (k) + ya

i (k) = yi(k). Accordingly,

φh
i (k+1) = φh

i (k)+yh
i (k)−fh

i (k) ,

φa
i (k+1) = φa

i (k)+ya
i (k)−fh

i (k) . (5.3)

Since some cells might be a part of more than one path, we also track the paths of

the human-driven and autonomous vehicles in each cell. We use µh
i (p, k) and µa

i (p, k) to

denote the fraction of human-driven and autonomous vehicles, respectively, in cell i at

time k that are taking path p. If cell i is not on path p, let µh
i (p, k) = µa

i (p, k) = 0.

Extending the development in [138], we formulate a calculation of the flow of mixed

autonomous vehicles through general junctions. We define O as the set of intersections,

or junctions, in the network. We use Ξ(o) to denote the set of turning movements through

intersection o, with a turning movement denoted by a tuple, such as [i, o, j] ∈ Ξ(o), where

i denotes the incoming cell, and j denotes the outgoing cell. As before, we consider

all cells to have one direction of travel. For intersection o we define a set of conflict

points C(o), and Ξ(c) denotes the set of turning movements through the intersection

which pass through conflict point c, where c ∈ C(o). These routes may have different

priority levels, so for each [i, o, j] ∈ Ξ(c) we define βcioj > 0 as the priority of turning

movement [i, o, j] through conflict point c. Each conflict point has some supply Rc,

which we assume is independent of the level of autonomy of the vehicles passing through
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it. The relative priority of the turning movements will determine the relative flow of each

turning movement through the conflict point. In a slight abuse of notation, we use fioj(k)

to denote the total flow of vehicles through turning movement [i, o, j] at time k; we use

fh
ioj(k) and f a

ioj(k) to denote the flow of human and autonomous vehicles, respectively,

through the turning movement. We use Γ(o) and Γ−1(o) to denote the set of cells exiting

and entering junction o, respectively.

We then calculate the flows at each time step according to procedure flow cal-

culation, on the subsequent page.

An interpretation of this algorithm is as follows. The set A denotes the set of turning

movements with flows that can yet be increased, and each turning movement is assigned

a rate at which its flow increases. As sending and receiving limits are reached, turn-

ing movements are removed from A until there are no more turning movements left to

increase.

In more concrete terms, first calculate the fraction of vehicles in each incoming cell

which are headed to each outgoing cell. Then initialize all flows to 0 and initialized the

unused sending and receiving capacity for each cell and conflict point. We then find

relative rates of flow increase, δioj, for the turning movements. In the loop, we calculate

the similar rates of flow increases for the receiving cells and conflict points based on

the rates previously found. Then, the flows are increased by the established rates until

either a sending limit, a cell receiving limit, or conflict point capacity is reached. Any

turning movement that has reached its sending limit is removed from the set of turning

movements with further flow increases, A. Similarly, any turning movement that exits

from a cell which has reached its receiving limit is removed from A, and the same with

turning movements through conflict points which have reached their capacity. The loop

repeats until A is empty.

Having calculated the flow through the intersection, the states of each cell is updated
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1: procedure Flow Calculation( Intersection o)
2:

∀[i, o, j] ∈ Ξ(o), ph
ioj ←

∑
p∈P:i,j∈Ip

µh
i (p, k)

pa
ioj ←

∑
p∈P:i,j∈Ip

µa
i (p, k)

pioj ←
nh
i (k)ph

ioj + na
i (k)pa

ioj

nh
i (k) + na

i (k)

3:

∀[i, o, j] ∈ Ξ(o), fioj ← 0

fh
ioj ← 0

f a
ioj ← 0

S̃ioj ← Si(αi(k))pioj

∀(o, j) ∈ Γ(o), R̃oj ← Rj(αj(k))

∀c ∈ C(o), R̃c ← Rc

4: For all [i, o, j] ∈ Ξ(o), set δioj such that

∀[i, o, j] ∈ Ξ(o),

∀[i′, o, j′] ∈ Ξ(o),
δioj
δi′oj′

=
pioj
pi′oj′

,

where i can equal i′ and j can equal j′, and

∀c ∈ C(o); ∀[i, o, j] ∈ Ξ(c)

∀[i′, o, j′] ∈ Ξ(c),
δioj
δi′oj′

=
βciojpioj

βci′oj′pi′oj′
,

where i can equal i′ and j can equal j′.

5: A← Ξ(o)
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6: while A 6= ∅ do
7:

∀(o, j) ∈ Γ(o), δoj ←
∑

[i,o,j]∈A

pioj

∀c ∈ C(o), δc ←
∑

[i,o,j]∈Ξ(c)∩A

pioj

8:

θ = min{ min
[i,o,j]∈A

S̃ioj
δioj

, min
(o,j)∈Γ(o),δoj>0

R̃oj

δoj
,

min
c∈C(o):δc>0

R̃c

δc
}

9:

∀[i, o, j] ∈ A, fioj ← fioj + θδioj

fh
ioj ← fh

ioj + θδioj(1− αi(k))

f a
ioj ← f a

ioj + θδiojαi(k)

S̃ioj ← S̃ioj − θδioj
∀(oj) ∈ Γ(o), R̃oj ← R̃oj − θδoj
∀c ∈ C(o), R̃c ← R̃c − θδoj

10:

A← A \ {[i, o, j] ∈ A : S̃ioj = 0}
A← A \ {[i, o, j′] ∈ A : R̃oj = 0 ∧ pioj′ > 0}
A← A \ {[i, o, j] ∈ c : R̃c = 0 ∀c ∈ C(o)}

11: end while
12: return fioj, f

h
ioj, f

a
ioj, ∀[i, o, j] ∈ Ξ(o)

13: a = 5
14: end procedure
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as follows. We compute the incoming flows for the outgoing cells as follows:

∀(o, j) ∈ Γ(o), yh
j (k) =

∑
[i,o,j]∈Ξ(o)

fh
ioj

ya
j (k) =

∑
[i,o,j]∈Ξ(o)

f a
ioj

yj(k) = yh
j (k) + ya

j (k) (5.4)

To calculate the outgoing flows of the incoming cells,

∀(i, o) ∈ Γ−1(o), fh
i (k) =

∑
[i,o,j]∈Ξ(o)

fh
ioj

f a
i (k) =

∑
[i,o,j]∈Ξ(o)

f a
ioj

fi(k) = fh
i (k) + f a

i (k) , (5.5)

where Γ−1(o) denotes the set of cells going into intersection o. (5.3) updates the human-

driven and autonomous vehicle densities of each cell at the next time step. To update

the fraction of vehicles in the outgoing cells on each path,

∀(o, j) ∈ Γ(o),

µh
j (p, k + 1) =

∑
[i′,o,j]∈Ξ(o) f

h
i (k)µh

i (p, k) + µh
j (p, k)(nh

j (k)− fh
j (k))

nh
j (k + 1)

,

µa
j(p, k + 1) =

∑
[i′,o,j]∈Ξ(o) f

a
i (k)µa

i (p, k) + µa
j(p, k)(na

j(k)− f a
j (k))

na
j(k + 1)

.

Accidents. To evaluate the performance of the developed RL policy in reacting to

disturbances, we consider stochastic accidents occuring in the network, each of which

causes one lane to be closed. We let accidents occur in any cell at any time with equal
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probability as long as the jam density does not decrease below the current density of the

cell. Each accident is cleared out after some number of time steps, drawn from a Poisson

distribution. If b̄i lanes of cell i are closed due to accidents, then the jam density and the

critical density for the cell reduce to (bi − b̄i)/bi of their original values. Thus, accidents

introduce time-dependency to these variables.

5.3 Network dynamics: routing for humans and au-

tonomous vehicles

As mentioned above, we consider a network with a set of possible paths P . We use

λh and λa to denote the human-driven and autonomous vehicle demands, respectively.

We model all vehicles entering the network as entering a queue, a single cell with infinite

capacity. We use 0 for the index of this cell. The routing choices of autonomous vehicles

leaving the queue is determined by the central controller, and the routing choices of

human-driven vehicles leaving it are determined from the latencies associated with each

path, detailed below.

5.3.1 Human choice dynamics

In general, people wish to minimize the amount of time spent traveling. However,

people do not change routing choices instantaneously in response to new information;

rather they have some inertia and only change strategies sporadically. Moreover, we

assume people only account for current conditions and do not strategize based on pre-

dictions of the future [139]. Accordingly, we use an evolutionary dynamic to describe

how a population of users choose their routes.2 Specifically, we model the human driver

2Alternately, one could model individual users as learning agents, posing it as a Multi-Agent Rein-
forcement Learning problem. However, we consider large networks with too many human agents for this
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population as following Hedge Dynamics, also called Log-linear Learning [140–142].

Let (µh
0(p, k))p∈P represent the initial routing of human-driven vehicles at time k;

accordingly,
∑

p∈P µ
h
0(p, k) = 1 for all k. Humans will update their routes based on their

estimates of how long it will take to traverse each path. However, it is not always possible

to predict travel time accurately on general networks, since vehicles entering later on a

different path may influence the travel time of vehicles entering earlier. Because of this,

we consider that humans have an estimate ˆ̀
p(k) of the true latency `p(k). With these

estimates, the routing vector is updated as follows.

µh
0(p, k + 1) =

µh
0(p, k) exp(−ηh(k)ˆ̀

p(k))∑
p′∈P µ

h
0(p′, k) exp(−ηh(k)ˆ̀

p′(k))
. (5.6)

The ratio of the volume of vehicles using a path at successive time steps is inversely

proportional to the exponential of the delay experienced by users of that path. The

learning rate ηh(k) may be decreasing or constant. Krichene et al. introduce this model

in the context of humans’ routing choices and simulate a congestion game with Amazon

Mechanical Turk users to show the model accurately predicts human behavior [143].

We note that though we use this specific model for human choice for our simulations,

the control method described later does not require this specific choice of human choice

model. Our theoretical analysis similarly is not restricted to this choice of dynamics

and works for any human choice model in which all fixed points of the dynamics satisfy

human selfishness.

5.3.2 Autonomous vehicle control policy

We assume that we have control over the routing of autonomous vehicles. We justify

this by envisioning a future in which autonomous vehicles are offered as a service rather

to be feasible.
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than a consumer product. We then assume that a city can coordinate with the owner

of an autonomous fleet to decrease congestion in the city. Moreover, unlike traditional

tolling, coordination between autonomous vehicles and city infrastructure allows for fast-

changing and geographically finely quantized tolls, enabling routing control to be achieved

through incentives [92,116]. The initial routing of autonomous vehicles is then our control

parameter by which we influence the state of traffic on the network. Consistent with the

previous notation, we denote the initial autonomous routing as (µa
0(p, k))p∈P ∈ R|P|≥0,

where
∑

p∈P µ
a
0(p, k) = 1.

We assume the existence of a central controller, or social planner, which dictates µa
0

by processing the state of the network. At each time step, we let the controller observe:

• the number of human-driven and autonomous vehicles in each cell and in the queue,

• binary states for each lane that indicates whether the lane is closed due to an

accident or not.

We use deep RL to arrive at a policy for the social planner to control the autonomous

vehicle routing, µa
0. Since the state space is very large and both state and action spaces

are continuous, a dynamic programming-based approach is infeasible. For instance, even

if we discretized the spaces, say with 10 quantization levels, and did not have accidents,

we would have 1082 possible states and 10 actions for a moderate-size network with only

2 paths and 40 cells in total.

We wish to minimize the total latency experienced by users, which is equal to summing

over time the number of users in the system at each time step. Accordingly, the stage

cost is:

J(k) =
∑
i∈I

φi(k) . (5.7)

Due to their high performance in continuous control tasks [120,144], we employ policy

gradient methods to learn a policy that produces µa
0 given the observations. Specifically,
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we use state-of-the-art PPO with an objective function augmented by adding an entropy

bonus for sufficient exploration [120, 145]. We build a deep neural network, and train it

using Adam optimizer [146]. An overview of the PPO method and the set of parameters

we use are presented in the appendix (Sec. 5.7.3 and Sec. 5.7.4). Each episode has a fixed

number of time steps.

In order to evaluate the performance of our control policy, we use three criteria. The

first is the throughput of the network – we wish to have a policy that can serve any feasible

demand, thereby stabilizing the queue. The second is the average delay experienced by

users of the network, which we measure by counting the number of vehicles in the system.

The third is the convergence to some steady state; we wish to avoid wild oscillations in

congestion. To contextualize the performance of our control policy in this framework, we

first establish the performance of equilibria of the network.

5.4 Equilibrium analysis

In this section, we examine the possible equilibria of our dynamical system, which

characterize the possible steady state behaviors of the system. A network with a given

demand can have a variety of equilibria with varying average user delay. If our control

achieves overall delay equal to that of the best possible equilibrium, it is a successful pol-

icy. Section 5.5 shows empirically that our learned policy can achieve the best equilibrium

in a variety of settings.

In this section, we first formulate an optimization which solves for the most efficient

equilibrium, which is computationally hard. Motivated by this, we restrict the class of

networks considered and prove theoretical properties of this restricted class. Using these

properties, we formulate a new optimization formulation to solve for the most efficient

equilibrium and prove it is solvable in polynomial time.
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5.4.1 Equilibrium Formulation

We define two notions of equilibrium: one related to the vehicle flow dynamics, and

one related to human choice dynamics.3

Definition 5.1 (Path Equilibrium). We define a path equilibrium for path p as a set of

cell densities (φh
i (k), φa

i (k))i∈Ip that, for a given constant flow entering the first cell on

the path, yhi (k) and yai (k), the cell densities are constant.

Definition 5.2 (Network Equilibrium). We define a network equilibrium as a set of cell

densities (φh
i (k), φa

i (k))i∈I and human vehicle routing (µh
0(p, k))p∈P , such that for a given

constant entering flow yh0(k) and ya0(k) and a given constant autonomous vehicle routing

(µa
0(p, k))p∈P , the human vehicle routing, subject to the dynamics in (5.6), is constant.

We are interested in satisfying both notions of equilibrium – both the path equilib-

rium, which deals with the vehicle flow dynamics, and the network equilibrium, which

deals with the human choice dynamics. Accordingly, the pair can be considered a Stackel-

berg Equilibrium for a leader controlling the autonomous vehicles who wishes to maximize

the social utility in the presence of selfish human demand. We formulate the following

optimization to solve for the most efficient equilibrium (satisfying both notions of equi-

librium defined above), i.e. the equilibrium which minimizes the total travel time of

all users of the network. We drop all time indices since we consider quantities that are

constant over time.

min
(φhi ,φ

a
i ,f

h
i ,f

a
i ,y

h
i ,y

a
i ,µ

h
i (p),µai (p),`p)i∈I,p∈P

∑
i∈I

φi

3These define equilibria in the sense of dynamical systems, and do not strictly correspond to game-
theoretic notions of equilibria. Under Assumption 5.3 below, the set of equilibria for the dynamics of
human choice will correspond to the set of Nash Equilibria where the payoff is the path latency.
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s.t. ∀o ∈ O : procedure Flow Calculation(Intersection o)

(5.4), (5.5)

∀i ∈ I : yh
i = fh

i , ya
i = f a

i , αi = φa
i /(φ

h
i + φa

i )∑
i′∈Ui

fh
i′µ

h
i′(p)=fh

i µ
h
i (p),

∑
i′∈Ui

f a
i′µ

a
i′(p)=f a

i µ
a
i (p)

`p =
∑
i∈p

(φh
i + φa

i )/(f
h
i + f a

i )

∀p, p′ ∈ P : µh
0(p)(`p − `p′) ≤ 0

While this formulation solves for the most efficient equilibrium of any traffic network,

it is computationally difficult, especially due to the final constraint. Due to this, we

introduce a restricted class of networks that we consider for the remainder of this section,

which allows us to compute equilibria in polynomial time with respect to the number of

paths.

Definition 5.3 (Bottleneck). We define a bottleneck as a regular junction at which the

number of lanes decreases, decreasing the capacity of the cells.

Assumptions 5.1. We consider a parallel network in which leaving the first cell, vehicles

choose a path and paths do not share cells, meaning that each cell is identified with only

one path, aside from the downstream-most cell which has infinite capacity. We further

consider that all cells in the path have the same model parameters, except for a bottleneck

after the mn
p upstream-most cells.

In other words, we consider a parallel network where each path is composed of iden-

tical cells except for a single junction with a decrease in the number of lanes. Fig. 5.1

shows an example of such a network. For ease of analysis, we first establish properties of

Path Equilibria, then Network Equilibria.
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5.4.2 Path equilibrium

As mentioned above, we restrict our considered class of paths to those with a single

bottleneck, meaning one point on the path at which cell capacity drops. Formally, we

consider each path p to havemn
p cells, each with bn

p lanes, followed bymb
p cells downstream,

each with bb
p lanes, where bb

p < bn
p. We define rp := bb

p/b
n
p ∈ (0, 1).

In a slight abuse of notation, we use the subscript p for parameters that are constant

over a path under Assumption 5.1, and the superscript n for cells before the bottleneck

and b for the bottleneck and cells downstream of it. We now present a theoretical

result that completely analytically characterizes the path latencies that can occur at

equilibrium.

Theorem 5.1. Under Assumption 5.1 a path p with flow dynamics described in Sec-

tion 5.2 that is at Path Equilibrium will have the same autonomy level in all cells. Denote

this autonomy level αp. If the vehicle flow demand is strictly less than the minimum cell

capacity, the path will have no congested cells. Otherwise, the path will have one of the

following latencies, where γp ∈ {0, 1, 2, . . . ,mn
p}:

`p =
|Ip|
v̄p

+ γp
(1− rp)φ̄n

p(αph
a
p + (1− αp)hhp)

rpv̄pbnp
.

Proof. The proof is composed of three lemmas. We first establish a property of path

equilibria that allows us to treat the vehicle flow as if it were composed of a single car

type. With this, we use the CTM to characterize possible equilibria on a path. We then

derive the delay associated with each congested cell. Combining the latter two lemmas

yields the theorem.

Lemma 5.1. A path in equilibrium with nonzero incoming flow has the same autonomy

level in all cells of the path, which is equal to the autonomy level of the vehicle flow onto
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the path. Formally, a path p with demand (λ̄hp, λ̄
a
p) in equilibrium has, for all cells i in Ip,

αi = λ̄ap/(λ̄
h
p + λ̄ap) .

We defer the proof of the lemma to the appendix. With this, our path equilibria

analysis simplifies to that of single-typed traffic, with the autonomy level treated as

a variable parameter. The next lemma, similarly to Theorem 4.1 of [5], completely

characterizes the congestion patterns that can occur in cell equilibria. For this lemma, we

consider the cell indices in a path to be increasing, where the cell immediately downstream

from a cell i has index i+1.

Lemma 5.2. Under Assumption 5.1, if the demand on a path is less than the minimum

capacity of its cells, they will be uncongested at path equilibrium. Otherwise, a path

with demand equal to the minimum cell capacity will have mn
p possible path equilibria,

corresponding to one of the following sets of congested cells, where j is the index of the

mn
pth cell: {

∅, {j}, {j − 1, j}, . . . , {j −mn
p + 1, . . . , j − 2, j − 1, j}

}
.

Proof. As mentioned above, this lemma relates closely to Theorem 4.1 of [5]. However,

we cannot directly apply that theorem due to differing assumptions; namely they assume

F̄i+1 = (φ̄i−ñi)wi for all i. We therefore offer a similar proof, tailored to our assumptions.

For ease of notation, we drop all path subscripts p as well as the cell index for the

free-flow velocity parameter v̄. In light of Lemma 5.1, we also suppress the autonomy

level arguments to capacity F̄i and critical density ñi. The flow equation then becomes

fi = min(v̄φi, (φ̄i+1 − φi+1)wi+1, F̄i, F̄i+1).

We begin by proving that if the vehicle flow demand is strictly less than the minimum

capacity, i.e. the bottleneck capacity, then the only equilibrium has no congested cells.
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Let us use j′ to denote the index of the final cell in the path. Under Assumption 5.1 there

is no supply limit to the flow exiting a path, so fj′ = min(v̄φj′ , F̄j′). Since f0 = fj′ < F̄j′ ,

f0 = fj′ = v̄φj′ . The definition of capacity, F̄i = v̄ñi, then implies that φj′ < ñj′ , meaning

that cell j′ is uncongested, so v̄φj′ < (φ̄j′ − φj′)wj′ .

This is the base case for a proof by induction. Consider cell i that is uncongested (i.e.

φi < ñi). Since by assumption all cells have flow strictly less than the cell’s capacity,

fi = v̄φi < F̄i. Then consider the flow entering cell i: fi−1 =min(v̄φi−1, (φ̄i−φi)wi, F̄i−1)=

fi<F̄i<(φ̄i−φi)wi.

The fact that F̄i ≤ F̄i−1 then implies that fi−1 = v̄φi−1, so cell i − 1 is uncongested,

proving the lemma’s first statement.

The second statement assumes the flow on the path is equal to the minimum capacity.

The cells in the bottleneck segment all have the same capacity, which we denote F̄ b; this

capacity is less than the capacity of the cells in the nonbottleneck segment. This means

all bottleneck cells will be operating at capacity (and therefore have vehicle density equal

to their critical density); flow on the path is therefore equal to F̄ b.

We now turn to the nonbottleneck segment. We first note that if a nonbottleneck

cell is uncongested then the preceeding cell must be uncongested as well, using the same

reasoning as that proving the first statement above. Next, consider the flow out of the

downstream-most cell of the nonbottleneck segment: fj =min(v̄φj, (φ̄j+1−φj+1)wj+1, F̄j)=

F̄ b < F̄j, so fj = min(v̄φj, (φ̄j+1−φj+1)wj+1). Cell j can be uncongested, in which case

the cell density is such that v̄φj = F̄ b, or the cell can be congested, in which case

the second term dominates. Then, if nonbottleneck cell i is congested, the flow into

it is fi−1 = min(v̄φi−1, (φ̄i−φi)wi). Again, to achieve this flow, cell i−1 can be either

congested or uncongested. As shown above, if uncongested, then all upstream cells must

be uncongested as well, yielding the second statement in the lemma.
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We use these properties to find a closed-form expression for the latency incurred by

traveling through a bottleneck cell, which when combined with Lemma 5.2, completes

the proof.

Lemma 5.3. The latency incurred by traveling through a congested cell is as follows.

1

v̄p
+

(1− rp)φ̄n
p(αph

a
p + (1− αp)hhp)

rpv̄pbnp
.

Proof. Recall that we assume paths have a uniform free-flow velocity across all cells

in a path, where path p has free-flow velocity v̄p. We define [mn
p] as the set of cells

before the bottleneck, which have bn
p lanes. The remaining cells, with indices in the set

Ip \ [mn
p], have bb

p lanes. Further recall the definition rp = bb
p/b

n
p. Let F̄ n

p (αp) denote

the capacity of the cells before the bottleneck of path p with autonomy level αp and let

F̄ b
p (αp) be the same for the bottleneck cell. Note that F̄ b

p (αp) = rpF̄
n
p (αp). Similarly, let

wn
p(αp) and wb

p(αp) denote the shockwave speed for prebottleneck cells and bottleneck

cell, respectively, on path p with autonomy level αp, as with jam densities φ̄n
p and φ̄b

p and

critical densities ñn
p(αp) and ñb

p(αp).

Lemma 5.2 establishes all possible combinations of congested cells that a path at

equilibrium can experience. We now investigate how much delay each configuration

induces on the path, parameterized by the autonomy level of the path. By Lemma 5.2

and the definitions of r and capacity (5.2),

fp = F̄ b
p = rpF̄

n
p (αp) = rpw

n
p(αp)(φ̄

n
p − ñn

p(αp)) . (5.8)

Let nc
p(αp) denote the vehicle density in a congested cell on path p, which we know

must occur upstream of the bottleneck (Lemma 5.2). Then, the flow entering a congested

cell before the bottleneck is fp = wn
p(αp)(φ̄

n
p − nc

p(αp)). Equating this with (5.8), we find
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nc
p(αp) = (1− rp)φ̄n

p + rpñ
n
p(αp).

To use this to find the latency incurred by traveling through a congested cell, we

divide the density by the flow, as follows.

nc
p(αp)

fp
=
nc
p(αp)

F̄ b
p (αp)

=
(1− rp)φ̄n

p + rpñ
n
p(αp)

rpv̄pñn
p(αp)

=
1

v̄p
+

(1− rp)φ̄n
p(αph

a
p + (1− αp)hh

p)

rpv̄pbn
p

.

Together, the lemmas prove the theorem.

The two terms above are the free-flow delay and the per-cell latency due to congestion,

respectively. Theorem 5.1 allows us to calculate the possible latencies of a path as a

function of its autonomy level αp. Since in a network equilibrium all used paths have the

same latency, we can calculate network equilibria more efficiently than comprehensively

searching over all possible routings. However, equilibria may not exist, even with a fine

time discretization – in equilibrium the path latencies must be equal, but by Theorem

5.1, road latency is a function of the integer γp. To avoid this artifact, when analyzing

network equilibria we consider the cells to be small enough that we can consider the

continuous variable γp ∈ [0,mn
p].

5.4.3 Network equilibrium

We define the best equilibrium to be the equilibrium that serves a given flow demand

with minimum latency. We are now ready to establish properties of network equilibria,

as well as how to compute the best equilibria. We use the following two assumptions in

our analysis of network equilibrium.

Assumptions 5.2. No two paths have the same free-flow latency.
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Assumptions 5.3. The initial choice distribution has positive human-driven and au-

tonomous vehicle flow on each path.

Note that the Assumption 5.2 is not strictly necessary but is useful for easing analysis.

A similar analysis could be performed in its absence. We justify Assumption 5.3 by

noting that humans are not entirely rational and that our choice model does not capture

all reasons a person may wish to choose a route, and some small fraction of people will

choose routes that seem less advantageous at first glance.

Theorem 5.2. Under Assumptions 5.1 and 5.2, a routing that minimizes total latency

when all users (both human drivers and autonomous users) are selfish can be computed

in O(|P|3 log |P|) time. A routing that minimizes total latency when human drivers are

selfish and autonomous users are controlled can also be computed in O(|P|3 log |P|) time.

Proof. To establish properties of network equilibria, we introduce some notation. We use

tp = |Ip|/v̄p to denote the free-flow latency of path p. We also use P≤tp = {p′ ∈ P : tp′ ≤

tp}, which denotes the set of paths with free-flow latency less than or equal to that of

path p. We similarly define the expression with other comparators, e.g. P<tp or P>tp .

This proposition follows from Definition 5.2 and Assumption 5.3. The next lemma

follows, with proof deferred to the appendix.

Proposition 5.1. In a network equilibrium,

1. All paths with selfish drivers have the same latency, and

2. All paths without selfish drivers have equal or greater latency.

Lemma 5.4. If the set of equilibria contains a routing with positive flow only on paths

P≤tp, then there exists a routing in the set of equilibria in which path p is in free-flow.

Lemma 5.5. Under Assumption 5.2, if some users are selfish and some users are not

selfish, then the best equilibrium will have the following properties:
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1. the path with largest free-flow latency used by selfish users will be in free-flow,

2. all paths with lower free-flow latency will be congested,

3. paths with greater free-flow latency may have nonselfish users, and

4. paths used with larger free-flow latency that have nonselfish users on them will be

at capacity, except perhaps the path with largest free-flow latency used by nonselfish

users.

Proof. Consider a network with some selfish and some non-selfish (controlled) users. Let

p denote the path with the longest free-flow latency that contains selfish users. For the

purpose of contradiction, let this path contain congested cells, and let this be the best

equilibrium. Fix the nonselfish flow on all roads with longer free-flow latency than p.

By Lemma 5.4, there exists an equilibrium for the selfish users in which p is in free-flow.

This results in less latency for the users on path p, and no selfish user will have greater

delay (Proposition 5.1). This contradicts the premise, proving the first property.

The second property follows directly from Proposition 5.1 and Assumption 5.2. The

third property follows from the definition of nonselfish users, which can take a path with

a larger latency than other available paths. The best equilibrium minimized total latency.

If there was a road with nonselfish users that was not at capacity, while another path

with higher latency has positive flow, this would not be the best equilibrium, since a

more efficient routing would shift flow from the higher latency path to the lower latency

one. This yields the final property.

Using these properties, we prove Theorem 5.2. We first consider the setting in which

all users are selfish. We use ˆ̀
p(αp) to denote the per-cell latency due to congestion, i.e.

ˆ̀
p(αp) =

(1−rp)φ̄np(αphap+(1−αp)hhp)

rpv̄pbnp
. Lemma 5.5 implies that for a given demand, all equilibria

in the set of most efficient equilibria for that demand have one path that is in free-flow.

We can then formulate the search for a best equilibrium as an optimization. We are
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helped by the fact that the best equilibria will use the minimum number of feasible

paths, since all users experience the same delay. Then, for each candidate free-flow path

(denote with index p′), check feasibility of only using paths P≤tp′ , and choose a routing

that minimizes |P≤tp′ |, i.e. the number of roads used. The reason for minimizing the

number of used roads is that all users are experiencing the same latency (Proposition 5.1)

and in the best equilibrium, the road with flow on it that has longest free-flow latency

will be in free-flow (Lemma 5.5). The feasibility can be checked as follows, with an

optimization that utilizes Lemma 5.5.

argmin
(fhp ,f

a
p )p∈P≤tp′

, γ∈
∏
p∈P<tp′

[0,mn
p]

1

s.t.
∑

p∈P≤tp′

fh
p = λ̄h,

∑
p∈P≤tp′

f a
p = λ̄a

fh
p′ + f a

p′ ≤ F̄p′(
f a
p′

fh
p′ + f a

p′
)

∀p ∈ P<tp′ : γp ˆ̀
p(

f a
p

fh
p + f a

p

) = tp′ − tp

fh
p + f a

p = F̄p(
f a
p

fh
p + f a

p

) .

The last constraint yields an affine relationship between fh
p and f a

p for paths P<tp′ .

Solving for fh
p and plugging into the first constraint yields an affine relationship between

γp and f a
p . This way, the optimization can be converted to a linear program, and we

must solve log |P| linear programs to search the minimum feasible p′.

This formulation assumes that all vehicles are selfish. If instead we consider selfish

human drivers and fully controlled autonomous users, we can construct a similar opti-

mization to find the best equilibrium. For each choice of free-flow path p′, we minimize

the total latency of the autonomous vehicles not on free-flow paths. We then choose the

routing corresponding to free-flow path p′ that minimizes total latency (which may not
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necessarily minimize the number of paths used by human drivers). For each candidate

free-flow path p′ we solve the following optimization.

argmin
(fhp ,f

a
p )p∈P , γ∈

∏
p∈P<tp′

[0,mn
p]

∑
p∈P>tp′

f a
p tp

s.t.
∑

p∈P≤tp′

fh
p = λ̄h,

∑
p∈P

f a
p = λ̄a

fh
p′ + f a

p′ ≤ F̄p′(
f a
p′

fh
p′ + f a

p′
)

∀p ∈ P<tp′ : γp ˆ̀
p(αp) = tp′ − tp

fh
p + f a

p = F̄p(
f a
p

fh
p + f a

p

)

∀p ∈ P>tp′ : f a
p ≤ F̄ b(1)

This can be reformulated as a linear program by the same mechanism. Again, we solve

log |P| linear programs and choose the one corresponding to the minimum feasible p′.

Using these properties to compute optimal equilibria, we establish a framework for

understanding the performance of our learned control policy. If the policy can reach the

best equilibrium latency starting from arbitrary path conditions we view the policy as

successful. We use this baseline to evaluate our experimental results in the following

section.

A question then arises: if we have computed the best possible equilibria, why do we

not directly implement that control? This approach is not fruitful, since the theoretical

analysis of best equilibria gives the control policy only in the steady state. In practice,

the network can start in any state, including worse equilibria, from which good equilibria

will not emerge when autonomous vehicles unilaterally use their routing in the best equi-

librium. Besides, our equilibrium analysis is limited to parallel networks and extending
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it to more general networks would yield a nonconvex optimization problem. A dynamic

policy which depends on the current traffic state is therefore needed to guide the net-

work to the best equilibrium. As shown in the following section, the policy learned via

deep reinforcement learning achieves this guidance and reaches the best equilibrium in a

variety of settings.

5.5 Experiments and Results

In all of the experiments, we adopt the following parameters. All vehicles are 4 meters

long. Human drivers keep a 2 second headway distance, whereas autonomous cars can

keep 1 second. Each time step corresponds to 1 minute of real-life simulation. Each

episode during deep RL training covers 5 hours of real-life simulation (300 time steps).

In test time, we simulate 6 hours of real-life (360 time steps) to ensure the RL policy did

not learn to minimize the latency in the first 300 time steps and leave excess vehicles in

the network at the end. We divide paths into the cells such that it takes 1 time step to

traverse each cell in free-flow. We initialize φi(0) ∼ unif(0, 1.2ñi) for all i ∈ Ip for all

p ∈ P . We set the standard deviations of the zero-mean Gaussian demand noise to be

λ̄h/10 and λ̄a/10 for human-driven and autonomous vehicles, respectively.

Our overall control scheme can be seen in Fig. 5.1. As the learning model, we build a

two-hidden-layer neural network, with each layer having 256 nodes. We train an RL agent

for each configuration that we will describe later on in simulated traffic networks that

are based on the mixed-autonomy traffic model and the dynamics that we described in

Sections 5.2 and 5.3. All trainings simulate 40 million time steps.4 Depending on whether

we evaluate our RL-based approach with (or without) the accidents, we enable (or disable)

accidents at the training phase. However, we note that the number of possible accident

4Other hyperparameter values we use for PPO are in the Appendix.
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configurations in the network is far more than the expected number of accidents during

all training episodes. Hence, successfully handling accidents requires good generalization

performance. Similar to accidents, the demand distributions match between training and

test environments.

We compare our method with two baselines: first, a selfish routing scheme, where

all cars are selfish and use the human choice dynamics presented in Sec. 5.3.1, and

second, a model predictive control (MPC ) based controller which can perfectly simulate

the network other than the uncertainty due to accidents and noisy demand. It plans

for the receding horizon of 4 minutes and re-plans after every 1 minute to minimize the

number of cars in the network using a Quasi-Newton method (L-BFGS [113]). To increase

robustness against the uncertainty, it samples 12 different simulations of the network and

takes the average. We note that this MPC can only be useful in small networks where

some cars can enter the network and reach the destination within the MPC horizon of

4 minutes. While increasing the horizon may help MPC operate in larger networks, it

causes a huge computational burden. In fact, even though we parallelized the controller

over 12 Intel R© Xeon R© Gold 6244 CPUs (3.60 GHz), it took the controller 32 seconds on

average to decide the routing of autonomous vehicles for the next 1 minute, which clearly

indicates a practical problem. In all experiments, we set ηh(k) (and ηa(k) for the selfish

baseline) to be 0.5 for all k.

5.5.1 General Class of Networks

We first start by considering a small network of 9 cells and 7 junctions (1 regular

junction, 3 merges and 3 diverges) as shown in Fig. 5.3, where the priority levels of cells

at merges are equal to their numbers of lanes. We set the autonomy level of the demand

ᾱ= 0.6 and the total demand λ̄h + λ̄a = 2.60 cars per second. We set the probability
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Figure 5.3: The small general class network used for experiments.

of accidents such that the expected frequency of accidents is 1 per 100 minutes, and

clearing out an accident takes 30 minutes on average [147]. For human choice dynamics,

we assume humans’ latency estimates are based on the current states of each cell, i.e.,

they estimate the latencies as if the network is in steady-state.

Fig. 5.4 shows the number of cars in the network over time (mean ± standard error

over 100 simulations). While MPC controller improves over the selfish routing, they

both suffer from linearly growing queues. On the other hand, RL controller stabilizes the

queue and keeps the network uncongested.

Next, we consider a larger network shown in Fig. 5.5 as a graph where the numbers

noted on the links denote the number of cells in that link in one direction. Each cell,

excluding queues which has infinite capacity, has 2 lanes. This is a quantized version of the

OW network due to Ortúzar and Willumsen [2], and is widely used in the transportation

literature [129, 133, 148, 149]. This is a larger network with 4 origin-destination pairs,

102 cells (and 2 queues) and 41 junctions (28 junctions with only one incoming and one

outgoing cell, and 13 more general junctions). We set the total demand to be λ̄h + λ̄a =
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Figure 5.4: Time vs. number of cars under selfish, MPC and RL routing on the small
general class network.

3.46 cars per second, distributed equally to the 4 origin-destination pairs in expectation.

As there are 1752 possible different simple paths that vehicles could be taking, our action

space is 1752 dimensional. While such an optimization is still possible with powerful

computation resources, it might be unnecessary because an optimal solution is unlikely

to utilize the paths that traverse too many cells. We therefore restrict our action space

to the 10 shortest paths (with respect to the free-flow latencies) between each origin and

destination, and so adopt a 40-dimensional action space. We keep the other experiment

parameters the same as the small network experiment above.

Due to the network size and the computation cost to simulate the OW network,

the MPC-based controller does not produce any useful results in a reasonable time as

explained before. We instead implemented the greedy optimization method of [122] as a

baseline. Specifically we used a genetic algorithm for the optimization with a constraint

on the run time of one minute, as it is an online algorithm. It is important to note that

RL policy makes a routing decision within a millisecond during test time. We compare

the RL controller with this greedy method and the selfish routing.

Fig. 5.6 shows the number of cars in the network over time (mean ± standard error
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Figure 5.5: OW network (adapted from [2]) used for experiments.

over 100 simulations). Again, the selfish routing and the greedy optimization method

of [122] suffer from linearly growing queues, while RL controller is able to stabilize the

queues and keeps the network uncongested even though the network may start from

a congested state. Furthermore, we check whether the reduced action space is really

sufficient. We observe that, over 100 episodes, 98.92% of the autonomous vehicles were

routed to the paths that are faster than the fastest path that is not in the action space.

To analyze the performance RL controller in comparison with the optimal equilibrium,

we now move to parallel networks.

5.5.2 Parallel Networks

We consider a parallel network from downtown Los Angeles to the San Fernando

Valley with 3 paths. The highway numbers and the approximated parameter tuples

(length, number of lanes, speed limit) are:

1. 110N (5 miles, 3 lanes, 60 mph); 101N (10 miles, 3 lanes for 5 miles then 2 lanes,

60 mph)

2. 10E (5 miles, 4 lanes, 75 mph); 5N (10 miles, 4 lanes, 75 mph); 134W (5 miles, 3
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Figure 5.6: Time vs. number of cars under selfish, greedy and RL routing on OW network.

lanes, 75 mph)

3. 10W; 405N (both 10 miles, 4 lanes, 75 mph); 101S (5 miles, 3 lanes, 75 mph)

As the cells are now not shared between the paths, we employ better latency estimates

for human choice dynamics: we compute them as the actual latencies that would occur

if there were no accidents and no more demand into the network.

We perform 3 sets of experiments. In the first two, we disable accidents and analyze

the effects of varying the number of paths and autonomy. As the shortest path has

15 cells, we exclude MPC-based controller from our analysis as it is computationally

prohibitive to adopt a receding horizon longer than 15 minutes.

Varying number of paths. We first vary the number of paths |P| ∈ {2, 3, 4} by

duplicating, or removing, the third path. We set the autonomy level of the demand

ᾱ = 0.6, and λ̄h + λ̄a to be 95% of the maximum capacity under this autonomy level.

We plot learning curves in Fig. 5.7 (a). It can be seen that even with |P| = 4 when

observation space is 144-dimensional, the agent successfully learns routing within 40

million time steps. With randomized initial states, the agents learn routing policies that

achieve nearly as good as optimal equilibrium for all |P| ∈ {2, 3, 4}. In Fig. 5.7 (b), we
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(a) Average number of cars in the system per
episode during RL training.

(b) Time vs. number of cars in the system for the
comparison of selfish and RL routing in parallel
networks.

Figure 5.7: Varying number of paths.

plot the number of cars (mean ± standard error over 100 simulations) in the system over

time. While selfish routing causes congestion by creating linearly growing queues when

|P|>2, RL policies successfully stabilize queues and even reach car numbers of optimal

equilibria.

Varying autonomy. We take |P| = 3 and vary the autonomy of demand ᾱ ∈

{0.4, 0.5, 0.6, 0.7} without changing the total demand λ̄h + λ̄a. Note the demands are

infeasible when ᾱ ∈ {0.4, 0.5}. In Fig. 5.8 (a), we plot the number of cars (mean ±

standard error over 100 simulations) in the system over time. The result is similar to

the previous experiment when the demand is feasible. With infeasible demand, RL agent

keeps a queue that is only marginally longer than the queue that optimal equilibrium

would create. On the other hand, selfish routing grows the queue with much faster rates.

These experiments show RL policy successfully handles random initializations.

Accidents. In the third set, we fix |P| = 3 and ᾱ = 0.6 for the same total average

demand and enable accidents. As before, the expected frequency of accidents is 1 per 100

minutes, and clearing out an accident takes 30 minutes on average. Fig. 5.8 (b) shows the

RL policy successfully handles accidents, indicating a good generalization performance

by the RL controller. To give a clearer picture, we provide the space-time diagrams and
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(a) Varying autonomy. (b) Varying the presence of accidents and noise in
the demand.

Figure 5.8: Varying autonomy and perturbations.

the detailed information about the system states of a sample run in Figs. 5.9 and 5.10,

respectively. Fig. 5.9 shows that selfish routing causes congestion by not utilizing the

third route, whereas RL can avoid congestion and handle accidents. Fig. 5.10 shows the

number of cars in each cell as well as the queue lengths over time. The small oscillations,

which occur even after the effect of the accidents disappear (between third and fourth

hours), are due to noisy demand and the discretization of cells. With selfish routing,

the vehicles use the longest path only when there is an accident in another path (around

first and third hours) or the other two paths are congested (third and fifth hours). In

contrast, RL makes good use of the network and leads to altruistic behavior. It also

handles the accidents by effectively altering the routing of autonomous cars (around

third hour, autonomous cars start using the first route until the accident in the third

route is cleared). Hence, it manages to stabilize the queue and prevent congestion. We

provide video visualizations of this run at https://youtu.be/XwdSJuUb09o.
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Figure 5.9: Space-time diagrams on a parallel traffic network with accidents and noisy
demand. Orange rectangles represent accidents.

5.6 Conclusion

In this chapter5 we presented a framework for understanding a dynamic traffic network

shared between selfish human drivers and controllable autonomous cars. We showed,

using deep RL, we can find a policy to minimize the average travel time experienced by

users of the network. We developed theoretical results to describe and calculate the best

equilibria that can exist and empirically showed that our policy reaches the best possible

equilibrium performance in parallel networks. Further, we provided case studies showing

how the training period scales with the number of paths, and we showed our control

policy is empirically robust to accidents and stochastic demand.

Limitations. We used the number of cars in each cell as predictive features for RL

training. Although this makes the state space dimensionality grow only linearly with the

number of cells, it may not be scalable to much larger traffic networks. Moreover, the

action space grows linearly with the number of source-destination pairs, also impacting

the scalability of the algorithm.

Future work. This work opens up many future directions for research, including

using multiagent reinforcement learning to model autonomous vehicles with competitive

5This work was supported by NSF grant 1953032 and Toyota. Toyota Research Institute (TRI)
provided funds to assist the authors with their research but this article solely reflects the opinions and
conclusions of its authors and not TRI or any other Toyota entity
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R
ou

te
 1

R
ou

te
 1

R
ou

te
 2

R
ou

te
 3

Q
ue

ue
N

um
be

r o
f C

ar
s

Human-driven cars

Autonomous cars

Accidents

N
um

be
r o

f C
ar

s

Time (hours)

R
ou

te
 2

R
ou

te
 3

Q
ue

ue

Time (hours)

(b) RL routing.

Figure 5.10: The network under perturbations due to accidents and noisy demand.
For each path and time step, from bottom to top, the stacked color segments show
the number of cars in the cells from origin to the destination. Congestion occurs only
upstream to the bottlenecks.

goals and/or en route decision making ability and improving how the training time scales

with the complexity of the network. Another interesting future work is to investigate how

an RL policy can be deployed and the simulation imperfections (including the dependency

on the simulated human choice dynamics) can be alleviated by collecting online data using

sensors from the real traffic network.

5.7 Appendix

5.7.1 Summary of notation

See Table 5.1.
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Table 5.1: Summary of Notation
p Path index unitless
P Set of paths in the network set of paths
i Cell index unitless
I set of cells in the network set of cells
Ip set of cells in path p set of cells
Ui set of cells upstream of cell i set of cells
v̄i Free-flow velocity of cell i cells/time step
bi Number of lanes of cell i unitless
hh
i (ha

i ) Nominal vehicle headway on cell i cells/vehicle
φh
i (φa

i ) Density of vehicles on cell i vehicles/cell
φi Total vehicle density on cell i vehicles/cell
fh
i (f a

i ) Flow of vehicles from cell i vehicles/time step
yh
i (ya

i ) Hum. (aut.) veh flow into cell i vehicles/time step
αi Autonomy level of cell i unitless
ñi(α) Critical density of cell i, at aut. α vehicles/cell
φ̄i Jam (maximum) density of cell i vehicles/cell
F̄i(α) Capacity of cell i, at aut. α vehicles/time step
wi(α) Shockwave speed of cell i, at aut. α cells/time step
k Time index unitless
`p(k) Latency of path p if starting at time k time steps
qi(k) Priority for cell i at a merge at time k unitless
µh
i (p, k) (µa) Frac. of hum. (aut.) vehs in i on p at k unitless
βh
i (i′, k) (βa) Frac. of hum. (aut.) vehs i→ i′ at k unitless
J(k) Stage cost at time k vehicles
mb
p (mn

p) # of (non)bottleneck cells on path p cells
bb (bn) # of lanes in (non)bottleneck cells on p unitless
rp := bb/bn unitless
γp Number of congested cells on path p cells

5.7.2 Proofs for Section 5.4.3

Proof of Lemma 5.1. By definition, at equilibrium, the number of vehicles in each

cell i in Ip, φa
i (k) and φa

i (k) is constant for all times k. Since by definition the incoming

flow is also constant, by the definition of the sending and receiving functions, constant

cell densities implies constant flows. By (5.3), a constant density also implies that the

incoming and outgoing flow in each cell are equal. This means that all cells will have

the same incoming flow as the first cell. Further, we know that since the density of
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autonomous vehicles is constant over time, incoming and outgoing autonomy levels are

equal. Accordingly, if cell i′ is the cell immediately upstream of i, then αi′(k)fi′(k) =

αi(k)fi(k). Since we also have fi′(k) = fi(k), this implies that αi′(k) = αi(k). Therefore

the autonomy level of all cells is the same. Let us denote this uniform autonomy level

αp. Let the index of the first cell in the path be 0. Then, λ̄h
p + λ̄a

p = f0 and λ̄a
p = αpf0.

Combining these two expressions, we find αp = λ̄a
p/(λ̄

h
p + λ̄a

p).

Proof of Lemma 5.4. Under Assumption 5.2, no two paths have the same free-flow

latency. With Proposition 5.1, this implies that if an equilibrium has a used path with

no congestion, it must be the used path with greatest free-flow latency, as otherwise all

used paths would not have the same latency. Therefore, if an equilibrium routing with

positive flow on paths [p] has a path in free-flow, it must be path p. Otherwise, we can

construct an equilibrium with the same demand that has path p in free-flow. Recall

that the latency on paths in equilibrium is increasing with the length of the congested

portion of the path, γp′ , and γp′ = 0 corresponds to an uncongested path. If all paths are

congested, we consider decreasing the length of congestion on all paths simulatenously, at

rates which keep the path latencies equal. This continues until path p becomes completely

uncongested. This construction proves the lemma.

5.7.3 Overview of Proximal Policy Optimization (PPO)

In this section, we give a brief overview of the PPO method [120] we used for training

our deep reinforcement learning model. We first start with formalizing the problem.

We then introduce the policy gradients and the details of PPO. To keep the notation

consistent with the reinforcement learning literature, we abuse the notation for some

variables. Hence, this section of the appendix is written in a standalone way, and the

variables should not be confused with the notation introduced in the main paper (e.g. f
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is going to denote the transition distribution of the system as introduced below, instead

of flow values as in the main paper).

Problem Setting. We consider a sequential decision making problem in a Markov

decision process (MDP) represented by a tuple (S,A, f, T, r, γ), where S is the set of

states. A denotes the set of actions, and the system transitions with respect to the

transition distribution f : S ×A× S → [0, 1]. For example, if f(s, a, s′) = p, this means

taking action a ∈ A at state s ∈ S transitions the system into state s′ with probability

p. Next, T denotes the horizon of the system, i.e., the process gets completed after T

time steps. The reward function r : S × A → R maps state-actions to reward values.

The decision maker is then trying to maximize the cumulative reward over T time steps

by only observing the observations (not states). Finally γ is a discount factor that sets

how much priority we give to optimizing earlier rewards in the system.

Let us now describe how we formulate a transportation network with the CTM model

as an MDP in this paper. The state of the network is fully defined by the following

information:

• Location of each vehicle (which cell or queue it is in),

• Type of each vehicle (human-driven or autonomous),

• Accident information (where and when it happened), and

• Planned path of each vehicle (which cells it is going to traverse).

In our model, we assumed the first three items in the above list are available as observa-

tions. While this breaks the Markov assumption, deep RL techniques often perform well

in partially observable MDPs, too. So our deep RL policy is trying to make its decisions

based only on those first three observations, and the non-observability of the planned

paths increases the stochasticity of the problem. The action set of the decision maker

is defined by the set of available routing paths of autonomous vehicles. The transition

distribution follows the dynamics of CTM, human choice dynamics, as well as the acci-
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dents which also introduce stochasticity into the system. Finally, as a reward function,

one can think of using the negative of the number of cars in the system as a proxy to

negative of overall latency in the network.

Policy Gradients. To solve this problem using deep neural networks, we model

the decision-maker agent with a stochastic policy πθ parameterized with θ (e.g. weights

of the neural network), such that πθ(a | s) gives the probability of taking action a

when observing state s. The goal of the agent is to maximize the expected cumulative

discounted reward:

J(θ) = Eτ∼πθ

[
T−1∑
t=0

γtr(st, at)

]

where τ denotes a trajectory (s0, a0, . . . , sT−1, aT−1, sT ) in the system. The discount

factor is to improve robustness and to reduce susceptibility against high variance. We

can equivalently write this objective as:

J(θ) =

∫
Ξ

πθ(τ)r(τ)dτ

where Ξ is the set of all possible trajectories, πθ(τ) is the probability of trajectory τ

under policy πθ, and r(τ) is the cumulative discounted reward of trajectory τ . The idea

in policy gradients is to take gradient steps to maximize this quantity by optimizing θ:

∇θJ(θ) = ∇θ

∫
Ξ

πθ(τ)r(τ)dτ

=

∫
Ξ

∇θπθ(τ)
πθ(τ)

πθ(τ)
r(τ)dτ

=

∫
Ξ

πθ(τ)r(τ)∇θ log πθ(τ)dτ

= Eτ∼πθ [r(τ)∇θ log πθ(τ)]

which we can efficiently approximate by sampling trajectories using the policy.
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Unfortunately, this vanilla policy gradient method is not robust against variance

(due to stochasticity in the environment and trajectory sampling) and suffers from data-

inefficiency. In recent years, several works have developed alternative ways to approxi-

mate the gradients. One such idea is based on using baselines to reduce variance:

∇θJ(θ) = Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(a
τ
t | sτt )Âτt

]

where Â is called the estimated advantage function, which is usually defined asGτ
t−V (sτt ),

where Gτ
t is the cumulative discounted reward of the trajectory τ after (and including)

time step t, and V (sτt ) is some baseline that quantifies the value of state sτt . This

new equation for ∇θJ(θ) holds due to the Markov assumption and that the baseline is

independent from the policy parameter θ.

Having presented the policy gradients and the use of baselines for variance reduction,

we are now ready to give an overview of PPO.

Proximal Policy Optimization (PPO). PPO further improves the robustness and

data-efficiency of policy gradient methods by using a surrogate objective that prevents

the policy from being updated with large deviations. Instead of the usual objective

Eτ∼πθ
[
log πθ(a

τ
t | sτt )Âτt

]
, PPO uses the following objective:

J1(θ) = Eτ∼πθ
[
min(gτt (θ)Âτt , clip(gτt (θ), 1− ε, 1 + ε)Âτt )

]

where

gτt (θ) =
πθ(a

τ
t | sτt )

πθold(aτt | sτt )
and clip(x, ε1, ε2)=


ε1 x < ε1,

x ε1 ≤ x ≤ ε2,

ε2 otherwise.

In addition to J1(θ), PPO uses two more objective functions and converts the prob-

168



Learning to Dynamically Influence Human Routing Chapter 5

lem into a multi-objective optimization problem. The first additional objective is for the

baseline V (sτt ). Specifically, PPO learns a parameterized value function Vφ in a super-

vised way to minimize (Vφ(sτt ) − V
target
t )2 where V target

t is calculated using the sampled

trajectories as a sum of discounted rewards after (and including) time step t. It should

be noted that this does not make Gτ
t − Vφ(sτt ) = 0, because Vφ(sτt ) is an estimate of the

true value function and is updated after the computation of the estimated advantage.

Therefore,

J2(φ) = −Eτ∼πθ
[
Vφ(sτt )− V

target
t

]
.

Finally, PPO uses an entropy bonus (inspired by [145]) to ensure sufficient exploration:

J3(θ) = Eτ∼πθH(πθ(· | sτt )) ,

where H is information entropy. At the end, PPO tries to solve:

maximizeθ,φ J1(θ) + J2(φ) + cJ3(θ)

where c is the coefficient for the entropy term.

5.7.4 Experiment details

In implementation, we used J(k) − J(k − 1) as a proxy cost for time step k, where

J(0) = 0.

Below are the set of hyperparameters we used for PPO. We refer to Section 5.7.3

and [120] for the definitions of PPO-specific parameters. While this set yields good

results as we presented in the paper, a careful tuning may improve the performance.

• Number of Time Steps: 40 million

• Number of Actors: 32 (32 CPUs in parallel)
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• Time Steps per Episode During Training: 300

• Time Steps per Actor Batch: 1200

• ε for Clipping in the Surrogate Objective: 0.2

• Optimization Step Size (OSS): 3× 10−4

• Annealing for ε (Clipping) and OSS: Linear (down to 0)

• Entropy Coefficient: 0.005

• Number of Optimization Epochs: 5

• Optimization Batch Size: 64

• γ for Advantage Estimation: 0.99

• λ for Advantage Estimation: 0.95

• ε for Adam Optimization: 10−5

Finally, we report the training times (for 40 million time steps) and the number of

time steps of empirical convergence (in terms of reward value) for each RL policy in

Table 5.2. In test time, RL policies produce an action in under 1 ms.

Table 5.2: Training and Convergence Times
Policy Training Time Time Step of Convergence
Simple General Network 10.0 hours 26.3 million
OW Network 253.1 hours 31.0 million
|P| = 2 22.2 hours 0.7 million
|P| = 3 38.9 hours 10.0 million
|P| = 3, w/ accidents 40.5 hours 22.0 million
|P| = 3, ᾱ = 0.4 50.6 hours 25.5 million
|P| = 3, ᾱ = 0.5 43.1 hours 19.3 million
|P| = 3, ᾱ = 0.7 38.6 hours 6.6 million
|P| = 4 101.4 hours 23.3 million
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Chapter 6

Platoon Formation by Influencing

Individual Driving Actions

Previous chapters have built on a capacity model for mixed autonomy which assumes

that autonomous vehicles can keep a short headway (i.e. platoon) behind any vehicle,

whether human-driven or autonomous. In this chapter1 we relax that assumption and

provide a method by which autonomous vehicles can leverage their influence over human

drivers so as to reorder themselves to form platoons, thereby reaching, or approaching,

the capacity in the aformentioned capacity function.

6.1 Introduction

In recent years we have seen many advances in the field of autonomous driving. The

emergence of autonomous cars on public roads has become a reality. However, it is

becoming very clear that autonomous cars cannot immediately avoid interactions with

1This chapter is adapted, with permission, from “Maximizing road capacity using cars that influence
people”, previously published in IEEE Conference on Decision and Control, c© 2018 IEEE, and is joint
work with Kabir Chandrasekher, Ramtin Pedarsani, and Dorsa Sadigh [150].
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humans [151]. Despite incorporating the highest levels of autonomy, today’s self-driving

cars have to drive on roads shared by human-driven vehicles, bicyclists, or even pedes-

trians. This emphasizes the urgency and importance of understanding the interactions

between humans and autonomy on shared roads.

The work in this area has mainly diverged into two distinct approaches:

1. Local and distributed techniques to enable safe and effective interaction between

the vehicles [152–159]; and

2. Network-level control that focuses on studying global properties such as optimal

routing in the network or optimal throughput [19,31,42,63,67].

While these techniques are quite valuable at solely studying local or network level

properties, it turns out these two paradigms can actively influence each other. For in-

stance as shown in Fig. 6.1, if all autonomous cars (purple cars) on a road take interactive

local actions that enforce human-driven cars (blue cars) to open up some space, the au-

tonomous cars can then leverage the opportunity to form a platoon (Fig. 6.1 (b)).

The mobility benefits of platooning autonomous or semi-autonomous cars have been

largely studied in the literature for both freeway networks [30, 59, 160–162] and urban

networks [31, 46]. Most of these works have assumed that all vehicles are equipped with

some level of autonomy. Another line of work has focused on designing efficient scheduling

policies at intersections by leveraging the autonomy of vehicles and their communication

capabilities [163–168]. Our approach is significantly different from the existing work in

the literature.

Our key insight is that we need to intelligently design local level interactions

based on the knowledge of the desirable high level objectives for the network

of autonomous and human-driven cars.

Therefore, we attempt to attack the problem using a unified approach. We do so by
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Figure 6.1: Road shared by autonomous (purple) and human-driven (blue) cars.

extending the mathematical framework outlined in Chapter 2 to include the notion of

optimal lane allocation and ordering within it. We then provide theoretical results on the

structure of the optimal solution as well as the price of having no control. This optimal

allocation and ordering can practically be achieved using state-of-the-art interaction-

aware controllers [153]. Our contributions in this chapter are summarized as follows:

• Leveraging local interactions between autonomous and human driven cars to modify

the road configuration in open loop to an optimal configuration.

• Precisely characterizing the optimal solution of the network allocation problem and

characterizing the price of no control.

• Implementing the controller for a mixed-autonomy setting via extensive simulation

showing tight agreement with our theoretical results.

6.2 Running Example

In this section, we introduce a running example that describes an instance of the

problem of our interest. Imagine a road shown in Fig. 6.1 shared by autonomous and

173



Platoon Formation by Influencing Individual Driving Actions Chapter 6

human driven cars. We let the purple cars represent autonomous cars, and the blue cars

represent human-driven cars.

The vehicles, autonomous or human-driven, probabilistically arrive at any of the three

lanes 1, 2, 3 (where lane 1 is the leftmost lane). As we will discuss throughout the paper,

the vehicles keep a headway between each other, and this headway is much smaller if

two autonomous cars are following each other, i.e., h̄ < h. This reduced headway also

corresponds to the term platooning, which intuitively means that autonomous cars, unlike

human-driven cars, are capable of coordinating with each other and driving close to each

other to save space, energy, and time.

Our goal in this work is to start with a road configuration as shown in Fig. 6.1 (a),

and plan for the autonomous cars to navigate intelligently for the goal of converging to

a configuration similar to Fig. 6.1 (b).

We theoretically construct the most efficient road configuration based on an optimal

vehicle configuration problem and study its properties. In addition, to achieve this op-

timal configuration, we leverage local interaction-aware controllers for autonomous cars.

As shown in previous work [153], the autonomous vehicle can indirectly affect a human

driven car to take desirable actions that result in the ideal road configuration. In con-

structing these configurations, we assume that the heavy, local optimizations are solved

in a distributed fashion (separately by each vehicle), and that a central controller exists

which functions only to send and receive simple messages to coordinate.

6.3 Model

Our goal in this paper is to leverage the low level interactions between autonomous

and human-driven cars to indirectly order the vehicles in a fashion that is desirable from

the road network’s perspective. To achieve this goal, we plan to answer two questions:

174



Platoon Formation by Influencing Individual Driving Actions Chapter 6

1. Assuming autonomous and human-driven vehicles can reorder themselves from any

configuration to another (for example from Fig. 6.1 (a) to Fig. 6.1 (b)), what would

be the optimal vehicle ordering for the road?

2. How can we leverage the capability of autonomous cars to enforce this optimal

ordering?

To study the optimal ordering algorithm, we first discuss road capacity as a desirable

property for the road network. Road capacity has been used as a common measure that

needs to be optimized for a desirable traffic network [32,42,43,46]2.

To model road capacity, we consider how many vehicles can be packed onto a road

at nominal speed. To this end, each car has a certain headway in front of it depending

on the type of the car, as well as the type of the car it follows. In this model motivated

by previous work in capacity modeling [32,42,43,46], we assume that human-driven cars

follow all vehicles at a distance of h and autonomous cars follow other autonomous cars

by a distance of h̄ (typically h̄ < h) and follow human-driven cars with a distance of h

(as shown in Fig. 6.1 (a)). Note that these quantities will vary by road as they depend

on the nominal speed on that road.

We consider the capacity on a multi-lane road to be the sum of capacities of each

lane. To find lane capacity, we first find the average headway, which will be a function

of the level of autonomy of the lane, defined as αi = yi
xi+yi

∈ [0, 1], where xi and yi are

respectively the volume of human-driven and autonomous vehicles in lane i. For instance,

the level of autonomy for the leftmost lane in Fig. 6.1 (a) is α1 = 2
4
.

Let hj be the headway in front of vehicle j, and let HN be the total expected headway

for N vehicles on road i. Then, we see that HN =
∑N−1

j=1 E[hj] = (N−1)(α2
i h̄+(1−α2

i )h).

If each vehicle has length L, then as the number of vehicles N increases, the average

2Though some works show that increasing road capacity can lead to worse traffic equilibria [72,169], a
system designer can selectively use this capability and choose which roads on which to increase capacity
to avoid these negative effects and improve equilibrium performance.
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space taken by a vehicle approaches α2
i h̄+ (1− α2

i )h+L. The capacity is the number of

vehicles that can be fit on a lane of length d, so

c(αi) =
d

α2
i h̄+ (1− α2

i )h+ L
=

d

k1 − α2
i k2

, (6.1)

where we define two constants k1 , L + h and k2 , h − h̄, and k1 > k2. Note that

throughout the paper we consider same network parameters, d, h, h̄, L for all the lanes.

Upper Bound on Capacity. If we do not assume that the vehicles will arrive from

some Bernoulli process, and allow some arbitrary process to determine the ordering of

the vehicles, the capacity model described above will no longer be accurate. Though the

specific form of the capacity function will depend on the ordering, we define a capacity

model that serves as an upper bound on the capacity for any ordering. This upper bound

corresponds to the situation in which all autonomous cars are ordered optimally, meaning

they are all adjacent and can form one long platoon.

In this case, each autonomous car has a short headway h̄ and each human-driven

vehicle has headway h, yielding average headway αih̄ + (1 − αi)h. This results in the

following capacity function:

cUB(αi) =
d

αih̄+ (1− αi)h̄+ L
=

d

k1 − αik2

. (6.2)

Since for all i lanes αi ∈ [0, 1], it is clear that cUB(αi) ≥ c(αi). Further, cUB serves as

a tight upper bound with regards to vehicle ordering with a large number of vehicles.
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6.3.1 Optimal Lane Assignment

We now pose optimization problems for assigning vehicles lanes in which to travel

when operating at capacity, under the capacity models in (6.1) and (6.2). We also

provide theoretical results pertaining to the optimal lane assignment and attendant total

road capacities.

Optimal Lane Assignment with Bernoulli Arrivals. Assuming that the auton-

omy level for each lane αi is given by a system operator, we now describe the high-level

optimal lane assignment problem that maximizes the total capacity of the road. Here we

consider a multi-lane road to have a total capacity that is the sum of the capacity of each

lane. All lane parameters will be the same, and the only difference between capacities in

the lanes is due to different lane levels of autonomy αi.

Let ᾱ denote the overall autonomy level on the road that is the fraction of autonomous

cars to all cars in the network. Further, let α =

[
α1, . . . , αn

]T
. Then, we define

C(α) ,
n∑
i=1

c(αi) , (6.3)

G(α) ,
n∑
i=1

(αi − ᾱ)c(αi) . (6.4)

We consider the capacity of a road to be the sum of the lane capacities, so the social

planner’s optimization problem is as follows:

α∗ = arg max
α

C(α) (6.5)

s.t. G(α) = 0 , (6.6)

where αi ∈ [0, 1] for all lanes and (6.6) constrains the solution to have overall autonomy

level equal to ᾱ, the autonomy level of the traffic feeding the road. To see this, observe
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that
∑n

i=1 αic(αi) is the sum of autonomous cars on all lanes and has to be equal to

ᾱ
∑n

i=1 c(αi), which implies (6.6). Moreover, note that all the lanes have the same length,

i.e. di = d; thus, we implicitly assume that lane utilization is at capacity.

We now present our optimal lane assignment theorem:

Theorem 6.1. Consider an optimization problem of the form (6.5). Any solution will

have at most one lane with mixed autonomy, i.e. at most one lane with αi ∈ (0, 1).

See Appendix 6.7.1 for the proof of this theorem.

Remark 6.1. This theorem formalizes the intuition that mixing autonomous and regular

cars only decreases capacity, as it lessens the likelihood of adjacent autonomous vehicles,

the condition necessary for platooning.

Remark 6.2. Note that a corollary of the proof of this theorem is that G(α) is increasing

with an increase of any element of α. This quality of the constraint function will be used

in proving later theorems.

Now that we have information that narrows down the set of possible solutions, we can

derive a closed-form expression for optimal lane assignment, as expressed in the following

theorem.

Theorem 6.2. Let α∗ =

[
α∗1, . . . , α

∗
n

]T
be an optimum of (6.5), with autonomy levels

ordered in decreasing order. Let m denote the last lane with full autonomy, i.e. m = max i

s.t. α∗i = 1, where m = 0 implies that there are no lanes with full autonomy. Then,

m = b ᾱn(k1 − k2)

k1 − ᾱk2

c .

See Appendix 6.7.2 for a sketch of the proof of this theorem3.

3A full proof can be found in the extended version [170]
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Remark 6.3. One can also derive a closed-form expression for α∗m+1 by solving a quadratic

equation, but for the sake of brevity we omit this result.

After characterizing the optimal solution to (6.5), we now describe the lane assignment

that minimizes total capacity. This will be used to characterize the cost of declining to

optimally assign vehicles to lanes, which is developed in Section 6.3.3.

Proposition 6.1. Let α∗ denote the worst-case lane assignment, corresponding to the

minimum sum of capacities:

α∗ = argmin
α

C(α) s.t. (6.6) .

Then, α∗ = 1Tn ᾱ and C(α∗) = nc(ᾱ), where 1n is the row vector of ones of length n.

See Appendix 6.7.3 for a sketch of the proof. Intuitively, the worst-case lane assign-

ment is when all lanes have autonomy level equal to the overall autonomy level. This

means that any perturbation from uniform autonomy level allows benefits from platoon-

ing.

Upper Bound on Capacity Under Optimal Lane Assignment. Using the

upper bound capacity in (6.2), we now formulate an optimization problem to find the

theoretical maximum capacity on a road with n lanes, with autonomy level ᾱ.

For reasons of readability, we use β when discussing autonomy levels that are solutions

to the upper bound capacity maximization. As before, let CUB(β) ,
∑n

i=1 c
UB(βi) and

GUB(β) ,
∑n

i=1(βi − ᾱ)cUB(βi). The optimization problem is then:

179



Platoon Formation by Influencing Individual Driving Actions Chapter 6

max
β

CUB(β) (6.7)

s.t. GUB(β) = 0 , (6.8)

βi ∈ [0, 1] ∀ i

We next present a lemma showing that the total capacity when using the upper bound

on capacity is invariant to lane assignment.

Proposition 6.2. Any feasible solution to (6.7) has cost ncUB(ᾱ).

This proposition follows from the ordering-invariant nature of the capacity upper

bound. One can also construct a proof similar to that of Proposition 6.1.

Remark 6.4. Given that all feasible lane assignments have the same total capacity, there

are two notable lane assignment to consider. One such lane assignment is the uniform

lane assignment, β∗ =

[
ᾱ, . . . , ᾱ

]T
. Another such lane assignment is the one in which

there is a maximum of one mixed lane, such as the one developed in Theorem 6.2 for the

original capacity function. In this case, there will be same number of purely autonomous

lanes, which is apparent from the proof of the theorem. However, the level of autonomy in

the mixed lane will differ from that in the solution to (6.5). Again, for brevity we do not

state the closed-form solution for this autonomy level, but it can be found by manipulating

the constraint (6.8).

6.3.2 Local Interaction on Shared Roads

Now that we have discussed the optimal lane assignment problem, we would like to

address the second question of our interest, i.e., how can we leverage the capability of

autonomous cars to enforce this optimal lane assignment?
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The solution of the optimal lane assignment problem provides an optimal level of

autonomy α∗ based on the model of road capacity as we have discussed so far. Since the

cars are driving on shared roads, we would like to leverage the power of autonomous cars

to enforce this level of autonomy by allowing them to navigate intelligently on the road.

The autonomous cars in each lane can take actions that affect the behavior of the

human-driven cars. For instance, it can result in the human changing lanes, slowing

down, or speeding up. These local actions can in fact create a reordering of the vehicles.

Our goal in this paper is to intelligently create such reorderings in order to get closer to

the optimal autonomy level α∗. In this section, we discuss how such local reorderings

can be initiated.

We model the local interactions between one autonomous car and one human-driven

car as a dynamical system: xt+1 = f(xt, utA, u
t
H), where the states of the world xt evolve

based on the actions of the human-driven car utH and the autonomous car utR. Our goal in

these local interactions is to design a controller for the autonomous car, i.e., u∗A(u∗H), that

not only achieves reaching its destination but also can affect the actions of the human-

driven car. In other words, it can target for specific reactions from the human-driven

car. We follow the work of Sadigh et al. [153] to design such controllers by formulating

the problem as an optimization:

u∗A = arg max
uA

RA(x, uA, u
∗
H(x, uA)) . (6.9)

Here RA denotes the autonomous car’s reward function, which if optimized outputs a

sequence of actions for the autonomous car u∗A that avoids collisions and achieves the

goals of the car safely and efficiently. In addition, it can also implicitly manipulate the

actions of the human-driven car.

The optimization in 6.9 depends on a model of the human driving behavior that
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outputs u∗H . In this work, we model the humans as agents who optimize their own

reward function:

u∗H = arg max
uH

RH(x, u∗A, uH) . (6.10)

Similarly, this reward function encodes the goals and objectives of the human-driven car

such as collision avoidance or keeping velocity and heading. The reward RH is usually

learned through learning from demonstration techniques such as inverse reinforcement

learning (IRL) [107, 171, 172], where trajectories of human driving gets collected in an

offline setting and RH is then computed based on the collected trajectories. In our work,

we use the reward function trained and learned in [153].

Through this interaction between an autonomous car and a human-driven car 6.9, we

can intelligently design reward functions for the autonomous car RA, which then lead to

actions from the autonomous car u∗A that help him navigate for better efficiency of the

road network and affect the actions of the human-driven car u∗H .

6.3.3 Cost of lack of planning

We have now discussed how one can solve the optimal lane assignment problem,

and how using local interactions can affect the actions of the human-driven car. Before

presenting our simulation results, we first would like to present theoretical limits on how

much performance can be improved by optimally assigning lanes to cars and optimally

controlling them through local interactions. This will allow us to gauge the efficacy

of our control scheme, as well as judge when it is worthwhile to attempt more difficult

vehicle manipulation by examining the magnitude of potential gains that can be achieved

by these more complicated maneuvers. To this end, we introduce the following two

quantities:

Definition 6.1. The price of negligence, denoted Λ, is the maximum ratio between road
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capacity at optimal vehicle arrangement on a road to capacity at the worst-case vehicle

lane assignment. This is formalized as follows:

Λ = max
ᾱ,n,L,h,h̄

CUB(β∗)

C(α∗)

s.t. feasible network parameters

Remark 6.5. Note that worst-case lane assignment in the denominator above maintains

the Bernoulli assumption, i.e. not considering worst-case car ordering. Under worst-case

ordering, autonomous and human-driven cars would be interleaved, unlike the assumption

leading to the capacity model in (6.1).

Definition 6.2. The price of no control, denoted Γ, is the maximum ratio between road

capacity at optimal vehicle arrangement on a road and road capacity at best-case vehicle

lane assignment without low-level vehicle arrangement. This is formalized as

Γ = max
ᾱ,n,L,h,h̄

CUB(β∗)

C(α∗)

s.t. feasible network parameters

With this in mind, we present our bounds on these quantities.

Theorem 6.3. The price of negligence is bounded by

Λ ≤ 2
L+ h−

√
(L+ h)(L+ h̄)

h− h̄
≤ 2 ,

and the price of no control is bounded by

Γ ≤ 2n(L+ h)

(2n− 1)(L+ h) +
√

(L+ h)(L+ h̄)
≤ 2n

2n− 1
.
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The proof sketch of this theorem is found in Appendix 6.7.4.

Remark 6.6. The derived upper bounds on Λ and Γ are achieved by setting vehicle length

L and short headway h̄ to 0. Intuitively, the gain due to platooning increases as the space

taken up by a platoon decreases.

Remark 6.7. Note that Γ ≤ Λ, with equality when n = 1. This is because when there is

only one lane, there is no gain from optimal lane assignment.

The implications of the upper bounds on price of negligence and price of no control

are perhaps surprising. This means that if vehicle type is decided by a Bernoulli process,

optimally ordering the vehicles will result in at most a factor of 2 increase in capacity.

In a more realistic scenario, consider L = 4, h = 30, h̄ = 11. Then, Λ ≤ 1.202, meaning

that the maximum possible improvement is approximately 20%.

Note that a 20% increase in capacity may yield far more than a 20% improvement

in road latency. For example, a fourth-order polynomial is commonly used in traffic

literature. Consider, as in [74, Ch. 13], road latency of the form `(x) = t0[1 + ρ( x
c′

)σ],

where x is the volume of traffic on the road, c′ is the ”practical capacity”, t0 is the free-

flow travel time, and ρ and σ are typically 0.15 and 4, respectively. Using this model,

under a given traffic flow, a 20% increase in capacity leads to a 50% reduction in latency

due to congestion. In high congestion, this results in a large decrease in total latency.

6.4 Achieving Optimal Routing: Mid-level Optimiza-

tion

In this section we describe our algorithm for approaching the capacity increases

yielded from the optimal lane assignment and optimal vehicle ordering. We describe
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our algorithm and discuss the theoretical upper bound for performance at each stage.

Below is a summary of the policy:

• Phase 0: Cars are initialized in an intermixed configuration and ordering in all

lanes are determined by a Bernoulli process with parameter ᾱ.

• Phase 1: Autonomous vehicles follow optimal lane assignment.

• Phase 2: Autonomous vehicles affect human drivers in local interactions to follow

optimal lane assignment.

• Phase 3: Autonomous vehicles start platooning in the mixed lane, if one exists.

Note that if we were to terminate the policy at phase 2, we would want the lane

assignment to follow the solution to the optimization in (6.5). However, if we terminate

the policy at phase 3, the optimal lane assignment is the solution to (6.7). The number

of purely autonomous lanes in the solutions are the same (see Remark 6.4), but the

autonomy level in the mixed lanes will differ. We choose the optimistic lane assignment,

which assumes that we can optimally rearrange the vehicles.

6.4.1 Phase 1: Autonomous cars following optimal lane assign-

ment

In this stage, pictured in Fig. 6.2 (Phase 1), autonomous vehicles switch lanes to

satisfy their optimal lane assignment determined by α∗, the ordered solution to (6.7).

The human-driven vehicles though are not assumed to follow the optimal lane assignment

by the end of this stage.

To accomplish this, each autonomous vehicle can be directed to switch to a specific

lane, if there is a strong centralized control with close sensing and communication with the

vehicles. This can be accomplished in a decentralized manner as well, if the autonomous

vehicles are given a vector of probabilities q∗ = [q∗1 q∗2 ... q∗n]T corresponding to α∗,
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Car A
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Car A

Car B
Phase 3 Final 

Configurations

Figure 6.2: Phase 1: Autonomous vehicles follow optimal lane assignment. Here,
the acting autonomous car pairs with human car A. Phase 2: Autonomous vehicles
influence humans to follow optimal lane assignment. Here, the acting autonomous
cars pair with the human cars A & B. Phase 3: Autonomous vehicles platoon in the
mixed lane.

where q∗i is the probability that an autonomous vehicle is optimally assigned to lane i.

The vehicles then sample from a generalized Bernoulli distribution with parameter q∗ to

determine which lane to inhabit.

However the desired lane is selected, in the process of switching lanes, each au-

tonomous vehicle will determine its action by performing the nested optimization in (6.9)

while including behavior of the human-driven vehicles in their path. This pairing allows

the autonomous car to model the human’s responses, allowing it to merge even when

there is not a large space for it, by relying on trailing human-driven vehicles slowing

down in response to the autonomous car. The result of this phase is shown for a simu-

lated example in Fig. 6.2.
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6.4.2 Phase 2: Autonomous cars locally interacting with hu-

mans

This phase takes place only if the solution to (6.5) yields at least one lane with all

autonomous vehicles, i.e. α1 = 1. Otherwise, all influence over human cars occurs in the

mixed lane, which takes place during Phase 3.

If there are some lanes that under optimal lane assignment have only autonomous

vehicles, in this stage the autonomous vehicles in those lanes influence the human-driven

vehicles to enforce this solution, as shown in Fig. 6.2 (Phase 2). Lane-by-lane, starting

with lane 1, autonomous cars influence human drivers to leave their lanes. This is done

by having each autonomous car check if there is a human-driven vehicle behind it; if so,

it pairs with that vehicle and with the goal to influence them to merge rightward. In

a decentralized manner, each autonomous vehicle in an autonomous lane monitors its

surroundings, and if there are no human-driven vehicles to the left of it, it checks for a

human-driven vehicle behind it. If there is one, it influences it to move to the lane on

the right.

By the end of this phase, lanes designated as purely autonomous will be so, with all

autonomous vehicles in these lane forming long platoons. We expect the total capacity

at the end of this phase to compare to the solution of (6.5).

6.4.3 Phase 3: Autonomous cars platooning

Though the theoretical maximum capacity under the Bernoulli assumption has been

achieved at this point, if there is a lane with mixed autonomy, the capacity can be

further improved by platooning the vehicles in that lane. If the mixed lane is the only

lane with autonomous vehicles, i.e., ∀i, α∗i < 1, then autonomous vehicles can pair with

human-driven cars behind them, leading them out of the lane, until they reach another
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autonomous car and platoon with it.

However, if there is a lane with full autonomy, this scheme can be more easily achieved

through a series of swaps, as seen in Fig. 6.2 (Phase 3). If there is a lone autonomous

vehicle, it can merge into the adjacent full-autonomy lane, and another car can exit the

lane to join a platoon in the mixed lane. The exiting vehicle can do this by pairing with

the human-driven vehicle behind the vehicle it wants to platoon with, so that it will not

be too cautious in switching lanes. Alternatively, the vehicle to be platooned with can

slow down, and the merging vehicle move in front of it.

By the end of this phase, total capacity will be lower bounded by the optimal capacity

in (6.5), and upper bounded by the optimum of (6.7).

6.5 Experimental Results

In this section, we discuss our autonomous driving simulation framework and compare

the results of the simulation to the theoretical bounds established in Section 6.3.1.

6.5.1 Experimental Setup

We simulate a two-lane road with 20 vehicles, at varying levels of autonomy. To

determine vehicle arrangement at the start of the simulation, we create a population

with desired number of vehicles of each type, shuffle it, then randomly place the vehicles

into lanes, ensuring that each lane has the same number of vehicles. This begins phase

0, in which cars are intermixed as the result of a Bernoulli process. Human-driven cars

are simulated as agents optimizing a reward function, where reward functions are taken

from those used in [153].
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Figure 6.3: Capacity with Local Interactions. The achieved capacity at various au-
tonomy levels plotted against the achievable capacity with optimal local interactions
(green) and achievable capacity without any local interaction.

6.5.2 Driving Simulator

We use a simple point-mass model for the dynamics of each vehicle, where the state of

the system is: x = [x y θ v]>. x, y represent the coordinates of the vehicle on the road,

θ is its heading, and v is its velocity. We assume two control inputs u = [u1 u2] each

representing the steering angle and the acceleration of the vehicle. We then represent

the dynamics of each vehicle as the following, where γ is the friction coefficient:

[ẋ ẏ θ̇ v̇] = [v · cos(θ) v · sin(θ) v · u1 u2 − α · v] .
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Figure 6.4: Timing of Local Interactions. The variation in velocity over 125 iterations
of the mid-level optimization for 2 of the autonomous cars in the network.

6.5.3 Simulation Results

Recall the situation of Fig. 6.1 and note that our goal is to start in a configuration

similar to the left side and end in a situation such as the right. Noting our theoretical

upper and lower bounds on the effects of lane assignment and ordering, we show in

Fig. 6.3 the results of the mid-level optimization and compare it to the earlier derived

upper and lower bounds. Constrained by computation, we simulate 200 iterations of

the mid-level optimization using a setup with 20 cars at varying autonomy levels. As

expected, each run lies between the two curves. We note that the few data points which

exceed the upper bound are due to the asymptotic nature of the bound and the fact that

we are using only 20 cars in the network. Note also that at lower levels of autonomy, the

190



Platoon Formation by Influencing Individual Driving Actions Chapter 6

data points are closer to the upper bound, whereas at higher levels, the data points are

closer to the lower bound. This is due to the fact that the nested optimization is done

one car at a time and with only one other car in the network. We illustrate the timing of

the local interactions in Fig. 6.4, noting that when the velocity of the autonomous cars

drops dramatically, it indicates a movement intended to influence a human car.

6.5.4 Implementation Details

In our implementation of the nested optimization, we used the software package

Theano [173,174] to symbolically compute all Jacobians and Hessians. Theano optimizes

the computation graph into efficient C code, which is crucial for real-time applications.

In our implementation, each step of our optimization is solved with a horizon length

N = 5. We run the large-scale simulations with 20 cars in the network on a cluster using

4 CPU’s with a maximum utilization of 36 GB RAM between them. We make the code

publicly available here: https://github.com/Stanford-HRI/MultilaneInteractions.

6.6 Discussion and Conclusion

In this chapter4 we introduced a procedure to connect network-level control of traf-

fic networks with low-level local interactions amongst vehicles. To this end, we provided

theoretical guarantees on the potential of re-ordering vehicles as well as allocating propor-

tions of vehicles optimally. Finally, we implemented an algorithm to achieve the optimal

ordering.

Limitations. The nested optimization is extremely computationally heavy, and is

4Some of the computing for this project was performed on the Sherlock cluster. We would like to
thank Stanford University and the Stanford Research Computing Center for providing computational
resources and support that contributed to these research results. This work was supported in part by
NSF grant CCF-1755808 and the UC Office of the President grant LFR-18-548175.
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natural to be run in a distributed setting in which each car runs its own nested optimiza-

tion. It would be interesting to implement a fully distributed version of the algorithm

and compare the results to the current implementation. Additionally, we emphasize that

the simulations were not run with real humans, but rather with agents whose reward

functions were learned from humans. Each human is, however, different and this could

have large impacts on the performance of the algorithm. This may be addressed in future

work.

Conclusion. We demonstrated the connection between network-level and vehicle-

level control in transportation networks and designed a unifying scheme utilizing both to

achieve optimal efficiency in the network.

6.7 Appendix

6.7.1 Proof of Theorem 6.1

Assume, for the purpose of contradiction, that there exists a solution α∗ to (6.5) with

components α∗i , α
∗
j ∈ (0, 1), where i 6= j. Assume without loss of generality that αi ≤ αj.

If αi = αj, we can construct a new solution with same total capacity in which αi 6= αj.

This is because ∂
∂αi
C(α) = ∂

∂αj
C(α) and ∂

∂αi
G(α) = ∂

∂αj
G(α), so the autonomy level

on road i can be decreased by some infinitesimal value ε and autonomy level on road j

increased by ε, thereby maintaining the same capacity sum and satisfying the constraint.

Now that we have established an optimal solution with α∗i < α∗j with α∗i , α
∗
j ∈ (0, 1),

we explore a further perturbation of our solution. We construct a new lane assignment

α̂ with α̂i = α∗i − ε1 and α̂j = α∗j + ε2, where ε1, ε2 > 0 with these unequal infinitesimal

perturbations designed such that the constraint remains satisfied. Note that this can be

accomplished with nonnegative perturbations as ∂
∂αi
G(α) =

k2α2
i−2k2αiᾱ+k1

(k1−k2α2
i )

2 > 0, which is
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positive since k1 > k2.

Since we choose the relative scaling of ε1 and ε2 based on their contribution to the con-

straint function, we can find the relative change in the objective due to the perturbations

by the expression

∂
∂αj

C(α)

∂
∂αj

G(α)
−

∂
∂αi
C(α)

∂
∂αi
G(α)

=
2k2αj

k2α2
j − 2k2αjᾱ + k1

− 2k2αi
k2α2

i − 2k2αiᾱ + k1

> 0

since 2k2αi
k2α2

i−2k2αiᾱ+k1
> 0 and

∂

∂αi

2k2αi
k2α2

i − 2k2αiᾱ + k1

=
2k2(k1 − α2k2)

(k2α2
i − 2k2αiᾱ + k1)2

> 0 ,

as k1 > k2 > 0. Therefore, the addition of ε2 to αj increases the objective more than the

subtraction of ε1 from αi decreases it. Then, C(α̂) > C(α∗), so α∗ is not an optimum,

proving the theorem.

6.7.2 Proof of Theorem 6.2

Assume that ᾱ < 1, so m < n. Let g(αi) = (αi − ᾱ)c(αi). Then using (6.6),

0 = G(α∗) =
n∑
i=1

g(α∗i ) =
m∑
i=1

g(1) + g(α∗m+1) +
n∑

i=m+2

g(0)

= mg(1) + g(α∗m+1) + (n−m− 1)g(0) .

We can solve for m, giving

m =
(k1 − k2)(nᾱ(k1 − α∗m+1)k2 − α∗m+1(k1 − α∗m+1ᾱk2))

(k1 − α∗2m+1)(k1 − ᾱk2)
.

One can show that ∂m
∂α∗m+1

< 0. Note that by definition, α∗m+1 ∈ [0, 1) (as m represents
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the index of the first lane such that αi 6= 1), so we can bound m using these values:

ᾱn(k1 − k2)

k1 − ᾱk2

− 1 < m ≤ ᾱn(k1 − k2)

k1 − ᾱk2

.

Therefore, m = b ᾱn(k1−k2)
k1−ᾱk2 c. Note that in the case excluded at the start of the proof,

when ᾱ = 1, this expression yields m = n, which is correct. Therefore, this expression is

true for ᾱ ∈ [0, 1].

6.7.3 Proof of Proposition 6.1

First note that given feasible lane assignment vector α, if there exists one element

αi > ᾱ, then there must also exist element αj < ᾱ. This follows from the fact that

G(1T
n ᾱ) = 0 and ∂

∂αi
G(α) > 0.

Now we can prove the proposition by recursion. The base case is α = 1T
n ᾱ. For any

other feasible lane assignment, there are at most n lane autonomy levels αi not equal

to ᾱ. Pick any pair of lanes i and j such that αi > ᾱ > αj (which, when not in the

base case, are guaranteed to exist by the fact above). Then, using the reverse of the

mechanism in the proof of Theorem 6.1, we keep the constraint satisfied while decreasing

αi and increasing αj, while monotonically decreasing the road capacity. This continues

until either αi = ᾱ, αj = ᾱ, or both. Now we have a lane assignment vector with lower

road capacity than the original, with at most n− 1 lane autonomy levels not equal to ᾱ,

proving the proposition.

6.7.4 Proof of Theorem 6.3

To prove the first statement, note that due to Proposition 6.2, the cost for any feasible

lane assignment for the upper bound capacity function is equivalent to ncUB(ᾱ). For given
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network parameters k1 and k2h, we find our price of negligence:

Λ ≤ max
ᾱ∈[0,1]

ncUB(ᾱ)

nc(ᾱ)
= max

ᾱ∈[0,1]

k1 − ᾱ2k2

k1 − ᾱk2

.

This term is concave with respect to ᾱ for ᾱ ∈ [0, 1], with maximum at ᾱ =

k1−
√
k21−k1k2
k2

. Plugging this in,

Λ ≤ 2
k1 −

√
k2

1 − k1k2

k2

= 2
L+ h−

√
(L+ h)(L+ h̄)

h− h̄

≤ 2. (6.11)

To observe (6.11), note that k1 − 2k2 ≤
√

(k1 − k2)k1.

For the second statement, first note that if ᾱ = 1, the price of no control would be 1.

Since Γ ≥ 1, let us exclude that case. Now, assuming ᾱ < 1 we apply Theorem 6.1 and

Proposition 6.2:

Γ ≤ ncUB(ᾱ)∑m
i=1 c(1) + c(α∗m+1) +

∑n
i=m+2 c(0)

≤ ncUB(ᾱ)

c(α∗1) + (n− 1)c(0)
, (6.12)

where (6.12) follows from the fact that Γ ≥ 1 and c(1) > c(α∗m+1) ≥ c(0) so the denomi-

nator is minimized when m = 0 (meaning there are no purely autonomous lanes).

We can then solve G(α∗) = 0 to find an expression for ᾱ as a function of α∗1, yielding

Γ ≤ n(k1 − α∗1k2)

n(k1 − α∗1k2)− α∗1k2(1− α∗1)
.
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We then consider bounding 1/Γ, which we show to be convex.

∂2

∂α∗21

(1/Γ) =
2k2(k2

1 + 3k1k2(−1 + α∗1)α− k2
2α
∗3
1 )

n(k1 − α∗21 k2)3

The inner term on the numerator is convex for α∗1 ∈ [0, 1], with second derivative 6k2(k1−

α∗1k2). Its minimum over that interval occurs at α∗1 =
k1−
√
k21−k1k2
k2

, yielding ∂2

∂α∗21
(1/Γ) > 0.

Solving ∂
∂α∗1

(1/Γ) = 0, we find that the minimum of this outer equation also occurs at

α∗1 =
k1−
√
k21−k1k2
k2

. Using this,

Γ ≤ 4k1n
2 − 2n(k1 +

√
k2

1 − k1k2)

4k1n(n− 1) + k2

=
2n(L+ h)

(2n− 1)(L+ h) +
√

(L+ h̄)(L+ h̄)

≤ 2n

2n− 1
.

As k2 approaches k1, the above inequality becomes tight.
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Chapter 7

Conclusion

In this dissertation we examined a number of mechanisms by which a system designer can

decrease congestion in the setting of mixed autonomy. We provided a congestion game-

like model for traffic networks in mixed autonomy and provided worst-case bounds on

the inefficiency due to selfish routing. We provided optimal tolls, analyzed the potential

benefits of anonymous tolling, and provided anonymous tolls with a performance guar-

antee. We also studied the setting in which autonomous vehicles are used for ride-hailing

services, and provided a method for pricing these services to incentivize good traffic equi-

libria. We extended this to the dynamic setting, using Reinforcement Learning to learn

routing for autonomous vehicles which influences human drivers to choose routing which

decongests the network. Finally we bridged the gap between two capacity models for

mixed autonomy, and provided a method by which autonomous vehicles can rearrange

themselves to form platoons to maximize road capacity in the presence of human-driven

vehicles. In all these settings we provided theoretical results to contextualize and serve

as a benchmark for the performance of our algorithms.
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7.1 Future Directions

There are many promising directions to continue research in this field. We organize

this by specifying directions specific to each chapter, followed by more general comments.

Chapter 2. In this chapter we considered a model for road capacity under mixed

autonomy which considers the effects of platooning. This can be extended to include other

effects of mixed autonomy, as well as including other models for the effects of platooning

– e.g. generalizing the second capacity model to more than two vehicle types. Moreover,

while the Price of Anarchy upper bound is order-optimal with respect to the maximum

degree of asymmetry, it is not necessarily so with respect to the maximum polynomial

degree, warranting further investigation. We lower bound the Price of Stability as scaling

with the square root of the maximum degree of asymmetry; it would be valuable to upper

bound this quantity as well, and compare it to the Price of Anarchy, which scales linearly

with the maximum degree of asymmetry.

Chapter 3. Our tolling results all consider an affine latency model, so a natural

extension is to consider polynomial latency functions. This direction is valuable, though

it requires sacrificing the main tools used to derive our results, namely the usage of the

Variational Inequality in the proofs of Theorem 3.1 and 3.2, as well as Theorem 3.3, which

is used to prove Theorem 3.4 about almost anonymous tolls. However, such an extension

would be a valuable addition. It would also be valuable to analyze the robustness of

the considered tolls to mischaracterizations of flow demand or network parameters. One

approach to improve robustness is a variable marginal cost toll, in which the toll on a

road is depends on the current flow of each vehicle type on that road. We show that

such a toll does not guarantee that all resulting equilibria will coincide with the socially

optimal routing, and that the gap between one resulting equilibrium and the socially

optimal routing can be unbounded. However, further characterizing this gap would be
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a valuable contribution. Specifically, we provide a lower bound on the Price of Anarchy

with respect to the maximum degree of asymmetry; it would be valuable to provide

an upper bound as well and compare this bound to the Price of Anarchy bound on an

untolled network.

Another possible extension is to consider a population in which different users have

different sensitivities to tolls. Another direction is to consider a middle ground between

fully differentiated tolls and completely anonymous tolls, such as grouping vehicle classes

together which have similar effects on road congestion, therefore requiring a smaller

number of distinct tolls than the number of vehicle classes. In such a scheme, instead of

Price of Anarchy scaling with the maximum degree of asymmetry, it is possible that it

will scale with the maximum degree of asymmetry within each grouping of vehicle types.

Such an approach would allow for a more flexible implementation with correspondingly

flexible performance guarantees.

Chapter 4. When estimating and leveraging the sensitivity of users to features

such as cost and latency, it is important to ensure that the estimates accurately reflect

true user preferences, including changing preferences. Since the active learning to learn

preferences may depend on stated preferences instead of revealed preferences (in the

event that these answers are found when users complete a survey rather than actually

choosing options they will follow through with), it is necessary to adjust the estimates

to account for a possible resulting distortion. However, revealed preferences will become

available as users use the service. Accordingly, a promising direction of future research

is to adjust the preferences learned from the active learning phase with the revealed

preferences found when the user is using the service (and the system designer no longer

has complete control over the queries posed to the user). This method can also be used

to track changing user preferences. Another direction for future work is to extend the

work to more general networks.
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We use Fundamental Diagram of Traffic-based model to relate vehicle flow and den-

sity. Kerner has argued that a three-phase model more accurately reflects empirical

observations of vehicle flow [175]. However, in this context, a FDT-based model is useful

in that we solve for the best equilibrium, and implicitly rely on methods such as those

in Chapter 5 to dynamically move to the best available equilibrium. We can consider

the FDT model used to be an optimistic version of a model which includes hysteresis.

Thus, if we can relate the static equilibrium to the fluctuations which emerge in the

three-phase model, and show that a static equilibrium is an optimistic estimate of the

average flow under the fluctuations, pricing according to the model derived using this

FDT-based model is useful even in a network with flow which follows the three-phase

model. This future work will further justify the use of such equilibrium-based methods.

Chapter 5. As mentioned above, there are many models which relate vehicle flow,

density, and velocity. In this chapter we use a Cell Transmission Model-based model,

extended to incorporate the effects of mixed autonomy. We then use deep Reinforcement

Learning (RL) to learn a controller for the autonomous flow to minimize total travel

time. By using a CTM-based approach, we are able to establish benchmarks to showcase

the efficacy of our method. Since we have proven the concept of using RL for controlling

one vehicle type to influence the choices of the other vehicle type, the advantage of using

RL is that our method can easily be extended to other models for vehicle flow, such as

Kerner’s three-phase model. Another important direction for future research, though we

provide a method which works for a relatively large state space, is to truly address the

scalability issue and allow for larger networks with more source-destination pairs.

Chapter 6. In this chapter we provided a low-level scheme for increasing capacity on

roads through platooning. However, in some cases, increasing the capacity on a road can

yield worse equilibrium behavior. Accordingly, one feasible direction is having vehicles

which adjust their platooning behavior, and therefore effect on capacity, based on the
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road they are on in order to improve a global goal of decreasing congestion. In another

direction, our scheme only allows for computing pairwise interactions; future work can

extend this to groups of vehicles. This work can also be improved by using a more de-

centralized method.

On a broader scale, there are other directions which this dissertation did not consider.

It is possible that the free-flow latency of a road depends on the autonomy level as well;

this can be considered in future models. In this dissertation we focused primarily on

decreasing congestion by influencing route choice. Another important direction is to

consider influencing the timing of trip departures to decrease congestion. We mentioned

above that improving capacity via platooning may worsen equilibrium routing. This

can be incorporated in an important extension of this work, namely fusing the different

approaches on different scales presented in this work. One can consider a scheme which

includes pricing, dynamic routing, and platoon formation control. The goal would then

be to use these tools in conjunction to improve the performance of a traffic network.

This task, though challenging, would allow planners to use the emergence of autonomous

vehicles as a tool by which to improve the efficiency of traffic networks for all users.
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