
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Complex Query Operators on Modern Parallel Architectures

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Vasileios Zois

December 2019

Dissertation Committee:

Dr. Vassilis J. Tsotras, Chairperson
Dr. Walid A. Najjar
Dr. Vagelis Papalexakis
Dr. Daniel Wong

Copyright by
Vasileios Zois

2019

The Dissertation of Vasileios Zois is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I would like to express my sincere gratitude to my advisors Dr. Vassilis J. Tsotras and Dr.

Walid A. Najjar for their support, patience, and encouragement to explore new research

ideas. Besides my advisors, I would like also to thank the rest of my thesis committee: Dr.

Vagelis Papalexakis and Dr. Daniel Wong.

I would also like to thank UPMEM for providing the SDK and related simulation

tools to develop and evaluate the associated algorithms. Special thanks to Divya Gupta,

Jean-Francois Roy, and David Furodet for their help in understanding UPMEM’s tool and

corresponding architecture.

My sincere thanks and gratitude to my family who provided invaluable support,

encouragement and advise during the whole PhD journey. I would like to thank my parents

Dr. Dimitrios Zois, and Dr. Polyxeni Stathopoulou for their unwavering belief in me. To

my sister, Dr. Daphney-Stavroula Zois who offered countless days of laughter. Thank you

for your unconditional love and understanding. Above all, i would like to thank my wife

(soon to be Dr.) Christina Pavlopoulou for her constant love and support, for keeping my

sane and motivated all these past few years. Thank you for giving me a place to stand on

and move the world.

The text of this dissertation, in part or in full, is a reprint of the material as it

appers in Proceedings of the 27th International Conference on Parallel Architectures and

Compilation Techniques (PACT18) (Massively parallel skyline computation for processing-

in-memory architectures, Limassol, Cyprus, November 1-4, 2018), Proceedings of the 10th

International Workshop on Accelerating Analytics and Data Management Systems Using

iv

Modern Processor and Storage Architectures (ADMS 2019) (GPU Accelerated Top-K Se-

lection With Efficient Early Stopping, Los Angeles, USA, Monday, August 26, 2019) and

Proceedings of the 46th international Conference on Very Large Databases (VLDB 2020)

(Efficient Main-Memory Top-K Selection For Multicore Architectures, Tokyo, Japan, Au-

gust 31 - September 4, 2020). The co-author (Dr. Vassilis Tsotras) listed in these publica-

tions directed and superivised the research which forms the basis for this dissertation. The

co-authors (Walid A. Najjar, Divya Gupta and Jean-Francois Roy) reviewed and co-wrote

in part the aforementioned papers. This research was partially supported by NSF grants

IIS:1447826 and IIS:1527984.

v

To my loving wife Christina for her eternal devotion, support, and encouragement.

To my parents and sister who inspired me to pursue and achieve more.

vi

ABSTRACT OF THE DISSERTATION

Complex Query Operators on Modern Parallel Architectures

by

Vasileios Zois

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2019

Dr. Vassilis J. Tsotras, Chairperson

Identifying interesting objects from a large data collection is a fundamental prob-

lem for multi-criteria decision making applications. In Relational Database Management

Systems (RDBMS), the most popular complex query operators used to solve this type of

problem are the Top-K selection operator and the Skyline operator. Top-K selection is

tasked with retrieving the k-highest ranking tuples from a given relation, as determined by

a user-defined aggregation function. Skyline selection retrieves those tuples with attributes

offering (pareto) optimal trade-offs in a given relation. Efficient Top-K query processing

entails minimizing tuple evaluations by utilizing elaborate processing schemes combined

with sophisticated data structures that enable early termination. Skyline query evaluation

involves supporting processing strategies which are geared towards early termination and

incomparable tuple pruning.

The rapid increase in memory capacity and decreasing costs have been the main

drivers behind the development of main-memory database systems. Although the act of

migrating query processing in-memory has created many opportunities to improve the as-

vii

sociated query latency, attaining such improvements has been very challenging due to the

growing gap between processor and main memory speeds. Addressing this limitation has

been made easier by the rapid proliferation of multi-core and many-core architectures.

However, their utilization in real systems has been hindered by the lack of suitable parallel

algorithms that focus on algorithmic efficiency.

In this thesis, we study in depth the Top-K and Skyline selection operators, in

the context of emerging parallel architectures. Our ultimate goal is to provide practical

guidelines for developing work-efficient algorithms suitable for parallel main memory pro-

cessing. We concentrate on multi-core (CPU), many-core (GPU), and processing-in-memory

architectures (PIM), developing solutions optimized for high throughput and low latency.

The first part of this thesis focuses on Top-K selection, presenting the specific details of

early termination algorithms that we developed specifically for parallel architectures and

various types of accelerators (i.e. GPU, PIM). The second part of this thesis, concentrates

on Skyline selection and the development of a massively parallel load balanced algorithm

for PIM architectures. Our work consolidates performance results across different parallel

architectures using synthetic and real data on variable query parameters and distributions

for both of the aforementioned problems. The experimental results demonstrate several

orders of magnitude better throughput and query latency, thus validating the effectiveness

of our proposed solutions for the Top-K and Skyline selection operators.

viii

Contents

List of Figures xii

List of Tables xv

1 Introduction & Motivation 1

2 Background 6
2.1 The Top-K Selection Operator . 6

2.1.1 Top-K Selection Definition . 7
2.1.2 List-Based Methods . 8
2.1.3 View-Based Methods . 9
2.1.4 Layered-Based Methods . 10
2.1.5 Parallel In-Memory Top-K Selection 10

2.2 The Skyline Selection Operator . 11
2.2.1 Skyline Selection Definition . 13
2.2.2 Skyline Related Work . 15

3 Main-Memory Top-K Selection For Multi-core Architectures 19
3.1 Introduction . 19
3.2 Parallel Top-K Queries . 21

3.2.1 Parallel Execution Models . 21
3.2.2 Rank Uncertainty . 22

3.3 Single-Thread Top-K Selection . 25
3.3.1 TBL List and TBL Node . 28
3.3.2 The Vectorized Threshold Algorithm 34
3.3.3 VTA Complexity Analysis . 34

3.4 Multi-threaded Top-K Selection . 35
3.4.1 The Skyline Layered Algorithm . 36
3.4.2 The Partitioned Threshold Algorithm 38
3.4.3 Angle Space Partitioning Overview 39
3.4.4 PTA Algorithm . 42
3.4.5 PTA Complexity Estimation . 42

ix

3.5 Experimental Environment . 45
3.5.1 System Specification . 46
3.5.2 Dataset, Query Format & Metrics 46

3.6 Performance Tuning . 49
3.6.1 Initialization Cost . 49
3.6.2 TBL Node Size . 50
3.6.3 Varying Preference Vectors . 50

3.7 Synthetic Data Experiments . 52
3.7.1 Related Literature Scalar Comparison 52
3.7.2 Hardware Optimized STSQ Processing 56
3.7.3 Hardware Optimized MTSQ Processing 56
3.7.4 MTMQ Performance Evaluation . 59

3.8 Real Data Experiments . 61
3.9 Conclusions . 63

4 GPU Accelerated Top-K Selection With Efficient Early Termination 64
4.1 Introduction . 64
4.2 Background . 67

4.2.1 GPU Architecture & Organization 67
4.2.2 Bitonic Top-k Selection . 68

4.3 GPU Threshold Algorithms . 71
4.3.1 Ordered Data-Threshold Table . 74
4.3.2 ODT Construction & Maintenance 77
4.3.3 Heap Build & Reduction . 81
4.3.4 Data Partitioning Strategies . 82
4.3.5 GTA Complexity Estimation . 86

4.4 Experimental Environment . 90
4.4.1 Dataset, Queries & Metrics . 91

4.5 Synthetic Data Experiments . 92
4.5.1 Initial Cost of Indexing . 92
4.5.2 Variable Preference Vectors . 93
4.5.3 Device Memory Query Processing 95
4.5.4 Host Memory Query Processing . 96
4.5.5 CPU Performance Comparison . 98

4.6 Conclusions . 99

5 Processing-In-Memory Architectures 100
5.1 Introduction . 100
5.2 Architecture Overview . 101

5.2.1 Performance Validation . 104

6 Accelerated Top-K Selection on Processing-In-Memory 105
6.1 Introduction . 105
6.2 Top-K Selection using Full Table Evaluation 106

6.2.1 Sorting on PIM Systems . 107

x

6.2.2 Top-K Queries Using Multiple Priority Queues 119
6.3 Early Termination Top-K Selection on PIM 122

6.3.1 Maximum Attribute Tuple Re-ordering 124
6.3.2 Multi-DPU Data Partitioning . 125
6.3.3 DPU-Based Query Evaluation With Early Termination 128

6.4 Experimental Evaluation . 129
6.4.1 Experimental Environment . 129
6.4.2 Single DPU Sorting& Radix Count 130
6.4.3 Radix-Sort Performance Comparison between PIM and CPU 133
6.4.4 Heap-Based Top-K Performance on PIM 134
6.4.5 FTE Top-K Performance on Parallel Architectures 137
6.4.6 Early Termination Performance Evaluation 141

6.5 Conclusion . 144

7 Accelerated Skyline Selection on Processing-In-Memory 145
7.1 Introduction . 145
7.2 Parallel Skyline Computation on PIM . 147

7.2.1 Parallel Radix-Select & Block Creation 149
7.2.2 Horizontal Partition Assignment . 153
7.2.3 Spiral Partition Assignment . 155
7.2.4 DSky Main Processing Stage . 157
7.2.5 P2P Kernel . 161

7.3 Experimental Environment . 165
7.3.1 Setup Configuration . 165
7.3.2 Dataset . 166
7.3.3 Experiments & Metrics . 166

7.4 Synthetic Data Experiments . 167
7.4.1 Run-Time Performance . 167
7.4.2 System Throughput & Utilization 170
7.4.3 Algorithmic Efficiency & Throughput 172
7.4.4 Scaling . 173
7.4.5 Energy Consumption . 175
7.4.6 Fine Tuning the Partition Size . 176

7.5 Conclusion . 177

8 Conclusion and Future Work 179

Bibliography 183

xi

List of Figures

2.1 A Top-K selection query example. 7
2.2 A Skyline selection query example. 12
2.3 Skyline vs Dominated Points Example. 14
2.4 Runtime snapshot for 16 dimension skyline. 17

3.1 Parallel Top-k evaluation models . 22
3.2 Cycles/Object vs Rank Uncertainty. 23
3.3 TA execution and data access example . 26
3.4 Round robin reordering example . 27
3.5 TBL list insert-delete example. 31
3.6 ASP on objects from Fig 3.3. 39
3.7 Grid partitioning on a hypersphere. 40
3.8 Processed areas for varying δi using ASP. 43
3.9 Projected vs actual object evaluations. 45
3.10 Distribution properties of synthetic vs real data (top: histogram, bottom:

correlation matrix). 48
3.11 Initialization cost comparison. 49
3.12 Block size vs latency-object evaluations. 51
3.13 Variable weights vs object evaluations. 52
3.14 Scalar performance on synthetic data. 54
3.15 Latency using SIMD instructions. 55
3.16 Single vs multi-thread performance on synthetic data. 57
3.17 Throughput-latency on synthetic data. 59
3.18 MTMQ Scale-up and parallel efficiency. 60
3.19 Single-thread vs multi-thread performance on real data. 61
3.20 Throughput-latency on real data. 62

4.1 GPU Architecture Organization. 67
4.2 Top-3 selection using Bitonic Top-k. 69
4.3 An example of mapping a base relation (left) to a collection of per attribute

sorted-lists (right). 71

xii

4.4 An example of mapping a base relation (left) to multiple ODT tables (right)
by preordering tuples based on the maximum attribute value (indicated in
gray). 75

4.5 Example depicting insertion of a new tuples in a given ODT table. 77
4.6 Example depicting deletion of an object from a given ODT table. 78
4.7 Random vs Angle Space Partitioning. 84
4.8 Random vs Angle Space Partitioning. 87
4.9 Processed Area for Varying δi using RP and ASP. 88
4.10 Expected processed area as function of δ1 using RP and ASP(degrees). . . . 89
4.11 GPU Data Partitioning cost. 91
4.12 Varying Query Preference Vector. 92
4.13 Device Memory Query Performance. 94
4.14 Host Memory Query Performance. 96
4.15 Query latency comparison against CPU. 97

5.1 UPMEM’s PIM Architecture Overview . 103

6.1 Local comparison sort on 4 DPUs combined with the host processor merging
phase to produce a globally sorted sequence. 112

6.2 Radix sort example . 114
6.3 Multiple priority queue Top-K using host CPU for merging intermediate

results. 119
6.4 Example of TBL Tree Maintaned on a Single DPU. 125
6.5 Example of a partitioned relation based on 4 angle regions that is represented

using multiple distinct TBL trees. 126
6.6 Single DPU query evaluation snapshot for top-2 query on a toy dataset. . . 128
6.7 Measured throughput for sorting and radix-count using a single DPU on an

input vector of 32 or 64 bits. 131
6.8 Percentage of time spent in re-arranging the unsorted keys (scatter) and cal-

culating the digit histogram for CPU only and PIM-assisted implementation
of radix sort. 132

6.9 Latency measurements of sorting a sequence of 32 or 64-bit keys by using
CPU only or our PIM-assisted implementation. 134

6.10 Single DPU throughput for our heap-based Top-K implementation. 135
6.11 Single DPU throughput for our heap-based Top-K implementation. 136
6.12 Query latency measurements for 32 and 64-bit key workloads using optimized

Top-K implementations for CPU, GPU and PIM architectures. 138
6.13 Processing throughput for 32 and 64-bit key workloads using optimized Top-

K implementations for CPU, GPU and PIM architectures. 139
6.14 Measured query latency for experiments with increasing number of attributes,

result size, and input size while using early termination Top-K query evalu-
ation across different parallel architectures. 141

6.15 Measured query latency of FTE Top-K and early termination Top-K using
PIM for experiments with increasing number of attributes, result size, and
input size. 143

xiii

7.1 Radix-select example using radix-1. 149
7.2 Assignment strategies of 8 partitions on 2 DPUs. 155
7.3 Number of comparisons across iterations when assigning (A) 2 partitions per

DPU vs (B) 4 partitions per DPU. 158
7.4 Median pivot multi-level partitioning example. 162
7.5 Execution time (log(t)) using correlated data. 168
7.6 Execution time (log(t)) using independent data. 169
7.7 Execution time (log(t)) using anticorrelated data. 170
7.8 Ratio of achieved throughput over peak device throughput. 171
7.9 Number of executed DTs per algorithm. 172
7.10 MDTs/sec for each algorithm on 16 dimensions. 174
7.11 Execution time scaling with additional DPUs. 175
7.12 Execution time for n=32× 106 d=16 on varying partition size. 177

xiv

List of Tables

3.1 Experimental parameters. 47
3.2 Individual query weights. 53

4.1 Individual query weights. 93

6.1 Single node specification comparison for CPU (Xeon E5-2686), GPU (TITAN
V) and PIM (UPMEM) architectures. 130

7.1 Single node specification comparison for CPU (Xeon E5-2650), GPU (TITAN
X) and PIM (UPMEM) architectures. 146

7.2 Energy per unit of work (µJ/DT). 176

xv

Chapter 1

Introduction & Motivation

The rapid proliferation of decision support systems combined with the increasing

prevalence of multi-dimensional data has compelled researchers to develop various schemes

for extracting useful data insights. Research in that area concentrates on enabling support

for decision making by utilizing different analytical methods such as mathematical models,

statistical analysis or other related data mining techniques. In the context of Relational

Database Management Systems (RDBMS), methods that support discovery of hidden data

patterns are crucial to the operational characteristics of many real life applications. In fact,

bridging the gap between data mining and data management has been an elusive goal of

the research community for the past several decades. This happens because the relational

data layout hinders the efficient adaptation of relevant data mining algorithms. Therefore,

it has been the ultimate goal of the community to identify those methods that work best

with modern RDBMS. There has been a lot of work devoted on developing complex query

operators which include but are not limited to Top-K [34], Skyline queries [17], Diversifi-

1

cation [26] and Regret Minimization [22] queries. All of these methods aim at identifying

a good representative subset of tuples which fit the user’s preference or query parameters.

Top-K and Skyline selection queries are amongst the most prominent solutions due to their

simplicity and robustness when operating on variable data distributions.

Top-K queries are a crucial component for a wide range of real life applica-

tions which span the areas of information retrieval [35], database systems [50], sensor net-

works [84], spatial data analysis [24], and data stream management systems [38]. Processing

Top-K queries involves ranking a large collection of tuples/objects utilizing a user-defined

aggregation function combined with some preference vector and retrieving k of those that

attain the highest score. Many different instances of the Top-K problem exist, including but

not limited to Top-K selection [34, 65, 41, 48], Top-K aggregate [63], Top-K join [73, 49] and

Top-K dominating queries [42]. Every such variant strives to attain the same goal which is

to minimize tuple/object evaluations while maintaining efficient data access. In Top-K se-

lection, these competing goals are achieved using intricate indexing techniques and auxiliary

information which are intended to efficiently guide processing [41, 59, 11] and reduce the

candidate maintenance cost [65]. In the context of database management systems (DBMS),

the most prominent solutions fall under three categories, namely: (i) sorted-lists [34], (ii)

materialized views [48], and (iii) layered-based methods (convex-hull [19], skyline [59]).

Such approaches were developed primarily to enable efficient processing on disk-resident

data, addressing issues related to main memory buffering and batch I/O operations. The

premise has been that using the main memory buffer pool to store and operate on auxiliary

information is less costly than performing a full data scan.

2

Top-K selection compels the user to provide an aggregation function, a precondi-

tion that is not always easy to satisfy given that the user might not have a specific preference

or is keen to explore the data for hidden insights. Therefore, there is no strict way of rank-

ing the corresponding tuples in a manner that is equatable to a single aggregation function.

Skyline selection was invented to address the aforementioned issue since it does not re-

quire from the user to provide a specific aggregation function. Evaluating skyline queries

involves discovering a set of tuples offering (pareto) optimal trade-offs compared to every

other tuple outside the skyline set. Discovering the skyline set from a given collection of

items is the same as finding the Pareto optimal front. The term skyline (inspired by the

Manhattan skyline example) has been introduced in [17] and has since been used exten-

sively from the database community for a variety of large scale data processing applications

including but not limited to data exploration [20], database preference queries [7], route

planning [57], web-service support [97], web information [87] and user recommendation sys-

tems [12]. Database management systems are optimized on the basis of efficient per object

access. Therefore, skyline queries where designed to leverage on the notion of pairwise

Pareto dominance between objects/points in order to identify those points not dominated

by any other point in a given dataset. A point p dominates another point q, if it is equal

or better on all dimensions and there exists at least one dimension for which it is strictly

better. In order to identify the dominance relationship between two points, it is common

to perform a Dominance Test (DT) [21] by comparing all their attributes/dimensions. The

fact that every tuple in the skyline set dominates all the others outside it, guarantees that

the Top-1 result for every possible monotone aggregation function will appear in that set.

3

Therefore, skyline queries are suitable for scenarios in which the user does not have a specific

preference function.

The apparent decrease in DRAM cost, coupled with granted high capacity and

bandwidth guarantees, resulted in the migration of processing from disk to main memory

and resulted in the proliferation of in-memory database systems. On the other hand, the

exponential increase in data volume observed over the past decades combined with the

widening gap between processor and memory speed has negated any benefits of that mi-

gration. This stimulated the development of different types of multi-core and many-core

architectures having the exclusive purpose of improving processing throughput and mask-

ing data access latency. Modern processors (i.e. CPUs) leverage the integration of many

compute cores and deep cache hierarchies on a single chip to mitigate the effects of pro-

cessing large dataset. Many core architectures (i.e. GPUs, PNM) rely on thousands of

processing cores to mask data access latency during processing and specialized memory

(i.e. GDDR) increase the available memory bandwidth. The pervasiveness of such parallel

architectures has contributed towards a growing need to redesign established query opera-

tors, such Top-K and Skyline selection, in order for them to execute efficiently in this new

parallel environment.

In this thesis, we develop algorithms suitable for in-memory processing using par-

allel and massively parallel architectures to solve the Top-K and Skyline problems. We

concentrate on multi-core CPUs, many-core GPUs and Processing-In-Memory (PIM) ar-

chitectures. Our goal is to develop solutions that aim at achieving high parallelism, load

balancing and respectable work-efficiency. We achieve these goals by (1) developing new

4

strategies used to prune irrelevant items during processing, and (2) adopting previously

proposed techniques to the aforementioned processing environments.

The rest of this thesis is organized as follows; In Chapter 2, we provide a formal

definition of both the Top-K and Skyline operators including a discussion about established

practices designed to enable efficient processing of these operators. Chapter 3, discusses the

challenges associated with main-memory Top-K selection for multi-core architectures and

develop an algorithm suitable for improving significantly query latency, and throughput for

query batches while minimizing the number of tuple evaluations. Chapter 4, concentrates on

how to adopt the techniques developed for in-memory CPU-based Top-K query evaluation

on modern GPUs. In addition, we discuss how to take advantage of data caching on the

GPU side that in order to improve query latency when the device memory capacity is low.

Chapter 5, introduces the properties of an upcoming parallel architecture called Processing-

In-Memory (PIM). We present a discussion concentrating on challenges and opportunities

related to the development of database operators on that environment. In Chapter 6,

we concentrate on how to adopt Top-K query evaluation on PIM using either Full Table

Evaluation (FTE) or early termination algorithms. Chapter 7, presents a comparative study

of previously proposed in-memory solutions for computing the Skyline set and propose a new

algorithm to solve this problem on PIM. Finally, Chapter 8 summarizes the lessons learned

from developing database operators for data analytics on in-memory parallel architectures,

and provide insights on the potential for future work that is related to fusing together other

well known operators (i.e. Top-K joins) or using PIM to evaluate them efficiently.

5

Chapter 2

Background

In this chapter, we present formal definitions for both the Top-K and Skyline

problems. Furthermore, we provide a thorough review of the related literature and examine

the specific properties as well as associated challenges when implementing either operator

in a main memory parallel environment.

2.1 The Top-K Selection Operator

A toy example of Top-K selection is depicted in Figure 2.1. The input relation

represents a collection of vehicles and their corresponding properties (i.e. warranty, MPG,

price). In that example, the Top-K selection query considers the attributes warranty and

MPG, requesting from the system to return the Top-2 vehicle with the highest rank, based

on the weights of the provided preference vector. A simple approach of calculating the

Top-2 answer will be to scan the complete relation and evaluate every tuple’s score. Doing

so will provide the correct answer which is depicted in green for our example.

6

SELECT C.make, C.model

FROM Cars AS C

ORDER BY (C.warranty ⋅ 0.2 + C.mpg ⋅ 0.8) DESC

LIMIT 2

Make Model Warranty MPG Price

Toyota Prius 15 50 35000

Ford Mustang 10 10 22000

BMW M3 12 14 45000

VW Jetta 10 30 29000

Volvo XC60 18 27 32000

Hyundai Accent 15 25 28000

Figure 2.1: A Top-K selection query example.

2.1.1 Top-K Selection Definition

Let R be a relation consisting of n objects/tuples, each one having d attributes

(o = {a0, a1, ...ad−1}) ranging in (0, 1] without loss of generality. Equivalently, R can be

thought of as a set of multidimensional points assigned in euclidean space. A user-defined

scoring function F (o) maps the objects in R to values in the range (−∞,∞). A Top-k query

retrieves the k objects having the k highest (or lowest) score under F . For the rest of this

section it is assumed that we are searching for the highest ranked objects. Hence, our goal

is to discover a collection S of objects [o1, o2, o3...ok] such that ∀j ∈ [1, k] and ∀oi ∈ (R−S),

F (oj) ≥ F (oi).

In related work the user-defined aggregation function has been either linear [19,

25, 48] or monotone [25, 48, 90, 100]. We formally define an arbitrary linear function as

follows:

F (o) =

m∑
i=0

(wi · ai) (2.1)

7

An arbitrary ranking function F is identified through a unique declaration of

weights which refer to a specific subset of the corresponding relational attributes. These

weights, denoted with wi, constitute the preference vector of a given Top-k query.

A monotone scoring function satisfies that:

if ou(ai) ≥ ov(ai),∀i ∈ [0, d− 1]

then F (ou) ≥ F (ov)

(2.2)

In essence, this means that objects having higher values for all attributes should

also rank higher than others with smaller values. This is guaranteed for any linear func-

tion when all weights in the preference vector are non-negative. Following the majority of

previous work [50], we concentrate mainly on linear monotone aggregation functions.

Well-established methods used to support efficient Top-k query evaluation include

caching and managing materialized results (i.e. view-based methods), using combined at-

tribute indexing to reorder and stream only relevant data from memory (i.e. layered-based

methods), or balancing random vs sequential accesses on individual attribute indexes (i.e.

list-based methods).

2.1.2 List-Based Methods

Fagin et al [34] formalized the problem of Top-k query evaluation over sorted-lists

presenting FA, TA, and NRA. These algorithms access the individual database objects in

round robin order dictated by a collection of sorted attribute lists. FA maintains all seen

objects until k of them have been detected in all lists, evaluating their scores only after

that point. TA evaluates each object as soon as it is seen, terminating execution only

after discovering k objects with scores greater or equal than the combined threshold of

8

the associated list level. NRA focuses on enabling sequential access which requires keeping

track of the lower and upper bounds for each seen object, terminating only when k objects

with lower bounds greater than all objects’ upper bounds are discovered.

Stream-Combine (SC) [39] improves NRA using heuristics to choose the most

promising list for evaluation. LARA [65] aims at reducing the cost of maintaining the

upper bounds for each seen object and improve candidate pruning. IO-Top-K [11] utilizes

selectivity estimators and score predictors to efficiently schedule sorted and random accesses.

TBB [75] relies on a pruning mechanism and bloom filters to efficiently process Top-k queries

over bucketized sorted lists.

BPA [4] improves TA’s stopping threshold by considering attributes seen both

under sorted and random access. T2S [41] promotes reordering the database objects based

on their first seen position in the sorted lists favoring sequential access for disk-resident data.

ListMerge [104] relies on intelligent result merging to efficiently evaluate Top-k queries over

large number of sorted lists.

2.1.3 View-Based Methods

PREFER [48] aims at reducing the cost associated with Top-k query processing

by effectively managing and updating materialized views in-memory. LPTA [25] employs

linear programming to avoid accessing the disk when the combined query attributes appear

within overlapping materialized views. LPTA+ [99] aims at reducing the number of solved

linear programming problems per query to improve performance. TKAP [44] combines

early pruning strategies from list-based methods and materialized views to support Top-k

queries on massive data.

9

2.1.4 Layered-Based Methods

The Onion technique [19] linearly orders the objects in the database by computing

disjoint convex hulls on all attributes. This method offers guarantees which state that

the Top-k objects appear within the first k layers (convex hulls). The Dominant Graph

(DG) [106, 107] orders objects according to their dominance relationship while utilizing

a graph traversal algorithm to evaluate Top-k queries. The partitioned layer algorithm

(PLA) [46] relies on convex skyline layering and fixed line partitioning to further improve

object pruning. The HL-index [45] is a hybrid method that combines skyline layering and

TA ordering within each layer to reduce object evaluations. The Dual Resolution (DL) [59]

index suggest relying on skyline layering and the convex skyline properties to improve DG’s

graph traversal algorithm.

2.1.5 Parallel In-Memory Top-K Selection

Top-k query processing techniques that support early stopping have focused mainly

on disk-resident data. Existing solutions for in-memory processing reduce the problem of

query evaluation to that of list intersection [92, 91, 51, 102, 29], while other methods avoid

reordering the dataset and try to maximize skipping irrelevant objects during evaluation [30,

35, 28]. These optimizations are contingent on the attribute lists having different sizes. This

may not be a reasonable assumption for a DBMS environment and is heavily dependent

on the application (e.g. text mining). In this thesis, we consider a setting, in which all

objects/tuples have a value for each attribute (even if that value is close to zero). Our goal

is to incorporate an early stopping mechanism that strikes a balance between algorithmic

10

efficiency and the ability to support vectorization, parallel execution, and high memory

bandwidth utilization.

2.2 The Skyline Selection Operator

The skyline computation concentrates on identifying the Pareto front through

exploration of a given data collection which cannot be formally represented using a single

non-linear equation. A classic example used to demonstrate its importance is picking a

hotel, given the hotel’s prices and its distance to the beach. Although users prefer affordable

hotels, those close to the beach are likely expensive. In this case, the skyline operator would

present hotels that are no worse than any other in both price and distance to the beach

(Fig. 2.2).

The term skyline (inspired by the Manhattan skyline example) has been introduced

in [17] and has since been used extensively from the database community for a variety of

large scale data processing applications including but not limited to data exploration [20],

database preference queries [7], route planning [57], web-service support [97], web informa-

tion [87] and user recommendation systems [12].

Skyline queries differ from conventional Pareto analysis which aims at discover-

ing all or some of the Pareto optimal solutions without enumerating all of the potentially

unbounded number of feasible solutions from a given collection of linear or non-linear equa-

tions and the user-provided constrains. Multi-objective optimization has been applied ex-

tensively for a number of different applications including but not limited to hardware design

space exploration (DSE) [74, 85, 13], high level synthesis [101], compiler optimization ex-

11

SELECT H.distance, H.price

FROM Hotels AS H

SKYLINE OF H.warranty [MIN], H.price [MIN]

Hotel Distance(m) Price ($)

Blue Waters 1.3 92

Empire Hotel 3.8 59

Pine Inn 6.4 54

Sunny Hotel 4 95

Sandy Beach 1 110

Holiday Inn 2.2 76

Bright Motel 6 95

Palms Hotel 3.2 104

Lakeview Inn 5.8 74

Park Hotel 5.4 109
40

60

80

100

120

0 2 4 6 8

𝑷
𝒓
𝒊𝒄
𝒆
($
)

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 (𝒎)

Figure 2.2: A Skyline selection query example.

ploration [52, 47], power management [14], portfolio optimization [79]. In each case, the

proposed solutions leverage on either numerical methods (e.g. linear regression), evolution-

ary algorithms or heuristics [33] to identify Pareto optimal solutions.

Database management systems are optimized on the basis of efficient per object

access. Therefore, skyline queries where designed to leverage on the notion of pairwise

Pareto dominance between objects/points in order to identify those points not dominated

by any other point in a given dataset. A point p dominates another point q, if it is equal

or better on all dimensions and there exists at least one dimension for which it is strictly

better (see Section 2.2.1). In order to identify the dominance relationship between two

points, it is common to perform a Dominance Test (DT) [21] by comparing all their at-

tributes/dimensions.

When the input dataset is large and multidimensional, computing the skyline is

costly, since in theory each unprocessed point needs to be compared against all the existing

12

skyline points. In order to reduce this cost, most sequential algorithms rely on established

optimization techniques such as in-order processing [23] and space partitioning [17], both

of which aim at reducing the total number of point-to-point comparisons.

2.2.1 Skyline Selection Definition

Let D be a set of d-dimensional points such that p ∈ D and p[i] ∈ R, ∀i ∈ [0, d−1].

The concept of dominance between two points is used to identify those that are part of the

skyline set. As mentioned, a point p dominates a point q, if it has “better” or equal value

for all dimensions and there exists at least one dimension where its value is strictly “better”.

The meaning of “better” corresponds to the manner in which we choose to rank the values

for each dimension, being smaller or larger, although the ranking should be consistent

amongst all dimensions. For this work, we regard smaller values as better, therefore the

mathematical definition of dominance becomes:

Dominance: Given p, q ∈ D, p dominates q, written as p ≺ q if and only if ∀i ∈

[0, d− 1] p[i] ≤ q[i] and ∃j ∈ [0, d− 1] such that p[j] < q[j].

Any point that is not dominated from any other in the dataset, will be part of

the skyline set (see Fig. 2.3) and can be identified through a simple comparison called

Dominance Test (DT).

Skyline: The skyline S of set D is the collection of points which are not dominated

by any other point in the dataset, formally defined as:

S = {∀p ∈ D|@q ∈ s.t q ≺ p}.

13

50

150

250

350

0 2 4 6 8 10
P

ri
ce

 (
$

)

Distance (km)

Skyline Points
Dominated Points

Figure 2.3: Skyline vs Dominated Points Example.

Clearly S ⊆ D. The definition of dominance acts as the basic building block for

designing skyline algorithms. The BNL algorithm relies näıvely on brute force to compute

the skyline set. This method is quite inefficient, resulting in O(n2) DTs and a proportional

number of memory fetches. To avoid unnecessary DTs, previous solutions used in-order

processing based on a user defined monotone function. It considers all query attributes,

reducing the point to a single value that can be used for sorting. Such a function is formally

defined as:

Monotone Function: A monotone scoring function F with respect to Rd takes

as input a given point p ∈ D and maps it to R using k monotone increasing functions

(f1, f2, ...fk). Therefore, for p ∈ D, F (p) =
∑k

i=1 fi(p[i]).

The ordering guarantees that points which are already determined to be part of the

skyline, will not be dominated by any other which are yet to be processed. This effectively

reduces the number of DTs by half.

ps = argmin
pi∈S

{
max

j∈[0,d−1]
{pi[j]}

}
(2.3)

14

Another important optimization aimed at reducing the total number of DTs uses

a so-called stopping point [10] to determine when it is apparent that no other point is going

to be added in the skyline. Thus a number of DTs are avoided by stopping early. Each time

a new point is added to the skyline, it is checked to see if it can be used as a stopping point.

Regardless of the chosen monotone function, we can optimally select that point using the

MiniMax [10] update rule depicted in Eq. 2.3.

2.2.2 Skyline Related Work

The skyline operator was first introduced by Borzsony et al. [17], who also proposed

a brute-force algorithm known as Block Nested Loop (BNL) to compute it. Sort-Filter-

Skyline (SFS) [23] relied on topological sorting to choose a processing order, that maximizes

pruning and reduces the overall work associated with computing the skyline set. Related

variants such as LESS [36] and SALSA [10] proposed the use of optimizations like pruning

while sorting the data or determining when to stop early.

Sort-based solutions are optimized towards maximizing dominance and reducing

the overall work by half. However, on certain distributions where the majority of points

are incomparable [62], they are proven to be less effective. In contrast, space partitioning

strategies [62] have been proven to perform better at identifying incomparability.

The BSkyTree [60] algorithm facilitates index-free partitioning by using a single

pivot point. This point is calculated iteratively during processing through the use of a

heuristic that aims at achieving a balance between maximizing incomparability and dom-

inance. BSkyTree is the current state-of-the-art sequential algorithm for computing the

skyline regardless of the dataset distribution.

15

Despite their proven usefulness, previous optimizations cannot be easily adapted

on modern parallel platforms. Related research concentrated mainly on developing parallel

skyline algorithms that are able to maintain the same level of efficiency as their sequential

counterparts. The PSkyline algorithm [77] is based on the Branch & Bound Skyline (BBS)

and exploits multi-core architectures to improve performance of the sequential BBS. For

data distributions that are more challenging to process, it creates large intermediate results

that require merging which causes a noticeable drop in performance. BSkyTree-P [60] is

a parallel variant of the regular BSkyTree algorithm. Although, generally more robust on

challenging data distributions, BSkyTree-P is also severely restricted during the merging of

intermediate results, an operation that entails lower parallelism.

The current state-of-the-art multi-core algorithm is Hybrid [21] and is based on

blocked processing, an idea used extensively for a variety of CPU-based applications to

achieve good cache locality. Sorting based on a monotone function is used to reduce the

total workload by half. For more challenging distributions, the algorithm employs a sim-

ple space partitioning mechanism, using cheap filter tests which effectively reduce the cost

for identifying incomparable points. Hybrid is specifically optimized for multi-core plat-

forms, the performance of which depends heavily on cache size and memory bandwidth.

Data distributions that generate an arbitrarily large skyline limit processing performance.

Therefore, multi-core CPUs are limited when it comes to large scale skyline computation.

Accelerators present the most popular solution when dealing with data parallel

applications such as computing the skyline set. Previous solutions include using GPUs [15]

or FPGAs [98]. The FPGA solution relies on streaming to implement a variant of BNL.

16

Cardinality

Ti
m
e(
s)

Naïve DSky

𝟐𝟐𝟕 𝟐𝟐𝟖 𝟐𝟐𝟗

107

105

103

101

Figure 2.4: Runtime snapshot for 16 dimension skyline.

Although, it showcases better performance compared to an equivalent software solution,

it is far from the efficiency achieved by Hybrid. On GPUs, the current state-of-the-art

algorithm is SkyAlign [15]; it aims at achieving work-efficiency through the use of a data

structure that closely resembles a quad tree. SkyAlign strives towards reducing the overall

workload at the expense of lower throughput that is caused by excessive thread divergence.

Furthermore, load balancing issues and irregular data accesses coupled with restrictions in

memory size and bandwidth result in significant performance degradation when processing

large dataset.

Our solution is based on PIM architectures which relies on integrating a large

collection of processors in DRAM. This concept offers higher bandwidth, lower latency and

massive parallelism. In short, it is perfectly tailored for computing the skyline, a data

intensive application. In UPMEM’s PIM architecture, each processor is isolated having

access only to their local memory. This restriction makes previously proposed parallel

17

solutions and their optimizations nontrivial to apply. In fact, our initial attempts to directly

apply optimizations used in the state-of-the-art CPU and GPU solutions on UPMEM’s PIM

architecture, resulted in noticeable inferior performance (Figure 2.4). We attribute this

behavior to low parallelism, unbalanced workload assignment and a high communication

cost. In Chapter 7, we discuss these challenges in detail and describe how to design a

parallel skyline algorithm suitable for this newly introduced architecture.

18

Chapter 3

Main-Memory Top-K Selection For

Multi-core Architectures

3.1 Introduction

Efficient parallel in-memory Top-k selection should favor low number of object

evaluations while avoiding complex strategies used to enable early termination. This is

crucial for main memory query evaluation because complicated processing methods translate

to excessive number of memory accesses which count against query latency. In the same

context, the wide availability of SIMD instructions and multi-threading make data scan

solutions strong contenders for high performance Top-k selection.

Enabling low cost early termination becomes increasingly difficult for a number of

reasons. Firstly, simple processing strategies often rely on random accesses [34, 4, 11] to

resolve score ambiguity, a practice inherently detrimental for high throughput. Secondly,

techniques favoring sequential access enable such behavior at the expense of more object

19

evaluations [45] or having to maintain too many candidates [65, 59], the end result of which

is an increased number of memory accesses.

In this chapter, we study the related literature in order to discover suitable prac-

tices for efficient parallel main memory Top-k selection utilizing multi-core architectures. In

order to identify these methods, we establish a new measure of algorithmic efficiency called

rank uncertainty. As opposed to the number of object evaluations (a measure concentrating

on memory accesses related to score aggregation), rank uncertainty considers the proportion

of total accesses to that of object evaluation accesses. Using the notion of rank uncertainty

we empirically quantify the cost of early termination and classify (Figure 3.2) disk-based

related work. This classification indicates that data reordering and layering techniques bear

the highest potential for efficient parallel in-memory execution.

We first adapt these practices to create their parallel in-memory variations, thus

creating the VTA (Vectorized Threshold Algorithm) and SLA (Skyline Layered Algorithm)

approaches. VTA uses reordering while SLA applies reordering and layering. Nevertheless,

we show experimentally that they incur large number of object evaluations. To overcome

this limitation, we introduce PTA (Partitioned Threshold Algorithm) which combines re-

ordering and angle space partitioning. Our contributions are summarized below:

• We introduce (Section 3.2.2) the notion of rank uncertainty, a robust measure of

algorithmic efficiency, designed to identify appropriate methods for efficient parallel

in-memory Top-k selection.

• We provide practical guidelines geared towards efficient adaptation of reordering (Sec-

tion 3.3.2) and data layering (Section 3.4.1) algorithms in a parallel environment

(creating the VTA and SLA approaches).

20

• We develop a new solution (PTA) that relies on angle space partitioning (Section 3.4.3)

combined with data reordering to 19 improve algorithmic efficiency while also main-

taining low rank uncertainty.

This chapter is organized as follows. In Section 3.2.1 three parallel Top-k models

are presented and Section 3.2.2 the concept of rank uncertainty is described. Sections 3.3

and 3.4 propose guidelines for implementing optimized algorithms for scalar, SIMD, and

multi-threaded execution. Section 3.5 concludes with extensive experiments and result

discussion.

3.2 Parallel Top-K Queries

Considering that previous work has focused mostly on disk-based solutions, it is

nontrivial to identify which practices are best for parallel in-memory environments. In this

section, we attempt to identify such practices that provide satisfactory parallelism, and

efficient in-memory processing without sacrificing algorithmic efficiency.

3.2.1 Parallel Execution Models

In the context of in-memory Top-k query evaluation, there are two ways to enable

parallelism: (1) utilize SIMD instructions to evaluate multiple objects in parallel, (2) lever-

age multi-threading to either evaluate many queries concurrently or partition the data so

as to evaluate a single query in parallel. It is important to note that both of these methods

implicitly improve memory bandwidth utilization, as they promote sequential streaming

access and memory latency masking by issuing many outstanding memory requests, respec-

21

STSQ

CPU

𝑄𝑗

MTSQ

CPU

𝑄𝑗

MTMQ

CPU

𝑄𝑗 , 𝑄𝑗+1, 𝑄𝑗+2…

Figure 3.1: Parallel Top-k evaluation models

tively. In addition, they can be intertwined together to create three separate parallel Top-k

query evaluation models as indicated in Fig. 3.1; this includes: (i) Single Thread Single

Query (STSQ), (ii) Multiple Thread Single Query (MTSQ) and (iii) Multiple Thread Mul-

tiple Query (MTMQ) (i.e. one thread per query). There is apparent correlation between

developing optimal STSQ/MTSQ algorithms and applying them also towards MTMQ pro-

cessing. For this reason, we focus on developing optimal STSQ and MTSQ methods which

are also tested on top of MTMQ environments.

3.2.2 Rank Uncertainty

Existing Top-k algorithms [34, 11, 65, 4, 45, 41] improve query latency using auxil-

iary information to guide processing, skip object evaluations through early termination and

reduce the candidate maintenance cost. These practices are favorable in systems where the

relative data access cost (aka latency gap), as experienced by the CPU, between the primary

and secondary storage media is high. For example systems operating on disk-resident data,

experience high random access latency gap (×100000) between DRAM (primary) and disk

22

0.01

1

100

10000

0.01 1 100 10000

BPA[2]

TA[15] DL[27]

LARA[29]

FTE

PTA

SLA
HL[20] T2S[18]

VTA

Rank Uncertainty

C
yc

le
s/

O
b

je
ct

Proposed methods Existing work

Figure 3.2: Cycles/Object vs Rank Uncertainty.

(secondary). Therefore any intricate strategies geared towards skipping object evaluations

and enabling early termination are less costly than a direct access to non-essential data from

the secondary storage medium. In contrast when data are memory resident, the latency

gap between CPU cache and DRAM is much smaller (×30). In that case, complicated

pruning and early termination schemes may result in performance degradation as the cost

of enabling them cannot be justified solely by less object evaluations. In fact, using a simple

streaming solution may prove to be more or equally effective than some over-complicated

early termination strategies.

In order to quantify the suitability of previous work, when employed in a par-

allel main-memory environment, we introduce the concept of rank uncertainty. The rank

uncertainty (R(A) = MT (A)
ME(A)) of a Top-k algorithm (A) is the ratio of total memory ac-

23

cesses (MT (A)) over memory accesses associated with object score aggregation and ranking

(ME(A)). Rank uncertainty is a superior measure of algorithmic efficiency because it con-

centrates on the relationship between supportive and meaningful work. Supportive work is

affiliated with practices intended to guide processing (e.g. selectivity estimators) or early

termination (e.g. threshold calculations), and maintain partially or fully evaluated candi-

date objects. Breaking down memory accesses into supportive and meaningful ones help

us reason about why they occur and how to reduce them independently. Barring proce-

dures geared towards high throughput, practices attaining low rank uncertainty are equally

important for efficient parallel main-memory Top-k query processing.

We validated the above hypothesis by conducting experiments measuring latency

per object evaluation and rank uncertainty for different threshold-based solutions (Fig. 3.2).

Rank uncertainty was calculated as the ratio of the total memory accesses (MT(A)) using

performance counters1 over the accesses related to score aggregation (ME(A)) by multiply-

ing the number of evaluated objects to the corresponding query attributes. Figure 3.2 was

created by evaluating 8 attribute queries on a collection of 256 million objects that were

synthetically generated following a uniform distribution.

LARA, BPA, and DL experience higher rank uncertainty because of memory ac-

cesses associated with candidate maintenance, seen position tracking (i.e. best position

threshold), and candidate generation (i.e. graph traversal), respectively. Although BPA

and DL require less object evaluations compared to TA, their total workload is much higher,

contributing to higher latency. Full Table Evaluation (FTE) attains the lowest possible rank

uncertainty because it performs work related only to evaluating and ranking objects. HL

1Reported using mem uops retired.all loads.

24

and T2S leverage on data layering and reordering, techniques that require some threshold

calculations and maintenance of few candidate objects while performing increased number

of object evaluations. Hence, their rank uncertainty is relatively low while the attainable

cycles per object are somewhat higher compared to FTE. We adopted the practices of HL

and T2S, and developed their optimized parallel in-memory variants (i.e. SLA and VTA).

These solutions utilize blocking which results to less threshold calculation, thus lower rank

uncertainty, while being optimized for parallel main-memory execution enabling lower cycles

per object. We improved rank uncertainty further, designing an improved solution called

PTA which utilizes a sophisticated partitioning mechanism (i.e. angle space partitioning).

As indicated by the previous figure, its rank uncertainty is close to FTE because of less

object and threshold calculations while the attained cycles/object remain very low.

3.3 Single-Thread Top-K Selection

In this section, we review TA’s execution and present the concept of round robin

reordering of the base relation.

TA operates on a collection of sorted-lists which are maintained using indexes (i.e.

B-trees). The main algorithm retrieves the objects seen at each list level in round robin

order. For example, in Fig. 3.3 objects o1 and o3 are accessed at the first iteration. The score

of each one is computed by random access to the remaining lists. Only the k-highest ranked

objects are retained using a priority queue (i.e. Qk). Processing of new objects terminates

when k objects exist in the queue and their minimum score is ≥ than the threshold of the

given list level. In our example, o3 remains in the queue until the 4-th list level is processed.

25

𝑎1 𝑎2 ∑

𝑜1 0.87 0.60 1.47

𝑜2 0.6 0.70 1.3

𝑜3 0.70 0.90 1.6

𝑜4 0.40 0.90 1.3

𝑜5 0.22 0.85 1.07

𝑜6 0.78 0.56 1.34

𝑜7 0.5 0.33 0.83

𝑜8 0.35 0.45 0.8

𝑜9 0.80 0.30 1.1

1. Objects:{𝑜1 , 𝑜3} , 𝑄𝑘 = {𝑜3, 1.6} , 𝑇 = 1.77
2. Objects:{𝑜9 , 𝑜4} , 𝑄𝑘 = {𝑜3, 1.6} , 𝑇 = 1.70
3. Objects:{𝑜6 , 𝑜5} , 𝑄𝑘 = {𝑜3, 1.6} , 𝑇 = 1.63
4. Objects:{𝑜2} , 𝑄𝑘 = {𝑜3, 1.6} , 𝑇 = 1.40

Total Objects Fetched = 7

Sorted
Lists

𝑎1 𝑎2

𝑜1 = 0.87 𝑜3 = 0.90

𝑜9 = 0.80 𝑜4 = 0.90

𝑜6 = 0.78 𝑜5 = 0.85

𝑜3 = 0.70 𝑜2 = 0.70

𝑜2 = 0.60 𝑜1 = 0.60

𝑜7 = 0.50 𝑜6 = 0.56

𝑜4 = 0.40 𝑜8 = 0.45

𝑜8 = 0.35 𝑜7 = 0.33

𝑜5 = 0.22 𝑜9 = 0.30

Figure 3.3: TA execution and data access example

At that point, we can safely stop processing relying on the fact that there are no objects

with score higher than 1.40 after level 4, as indicated by the threshold value.

In addition to incurring too many random accesses, TA requires keeping track of

seen objects to avoid reevaluation. This results in cache pollution as the number of evaluated

objects grows. For every evaluated object, TA requires d−1 arithmetic operations and may

result to d+2 random memory references. This puts increased pressure on the main memory

bus, especially during parallel processing, and can be overall detrimental to performance.

In the wake of these issues, we develop a solution called Vectorized Threshold

Algorithm (VTA). This method relies on static object reordering as proposed by Han et

al. [41]. In that work, the authors choose to reorder the base relation according to the

26

𝑎1 𝑎2 𝑎3

𝒐𝟒 = 𝟎. 𝟗𝟎 𝒐𝟐 = 𝟎. 𝟕0 𝑜4 = 0.80

𝑜2 = 0.80 𝑜4 = 0.50 𝒐𝟕 = 𝟎. 𝟕𝟎

𝑜7 = 0.70 𝐨𝟑 = 𝟎. 𝟓𝟎 𝑜3 = 0.60

𝒐𝟏 = 𝟎. 𝟓𝟎 𝑜7 = 0.40 𝑜1 = 0.60

𝑜3 = 0.50 𝑜1 = 0.30 𝒐𝟔 = 𝟎. 𝟓𝟎

𝑜6 = 0.30 𝒐𝟓 = 𝟎. 𝟑𝟎 𝑜5 = 0.40

𝑜5 = 0.20 𝒐𝟖 = 𝟎. 𝟐𝟎 𝑜8 = 0.20

𝑜8 = 0.10 𝑜6 = 0.10 𝑜2 = 0.10

𝒐𝟗 = 𝟎. 𝟎𝟓 𝑜9 = 0.10 𝑜9 = 0.02

𝑎1 𝑎2 𝑎3

𝑜4 0.90 0.50 0.80

𝑜2 0.80 0.70 0.10

𝑜7 0.70 0.40 0.70

𝑜3 0.50 0.50 0.60

𝑜1 0.50 0.30 0.60

𝑜6 0.30 0.10 0.50

𝑜5 0.20 0.30 0.40

𝑜8 0.10 0.20 0.20

𝑜9 0.05 0.10 0.02

(a) Sorted Lists (b) Round Robin Ordering

Figure 3.4: Round robin reordering example

round-robin access indicated by the corresponding sorted-lists. Our implementation avoids

using any auxiliary information such as pre-materialized results, since we try to minimize

the overall data footprint. It simply relies on SIMD vectorization to accelerate processing

and improve bandwidth utilization. Moreover, we develop our own easily maintainable data

layout, called Threshold Block Layout (TBL; to be discussed next). This layout clusters

objects together according to their first seen position and assigns them a threshold using

the sorted-lists. We develop VTA in order to establish a baseline that incorporates both

system specific and algorithmic optimization. This allows us to identify the right practices

for developing and evaluating multithreaded methods (i.e. SLA and PTA) that promote

algorithmic efficiency.

27

3.3.1 TBL List and TBL Node

Fig. 3.4 presents an example showcasing how to order a relation based on the

round robin access. Each sorted-list contains objects (highlighted in gray), indicating the

first seen position for a given object under sorted access. For a collection of objects oi where

i ∈ [0, n− 1] and their corresponding collection of sorted-lists SLj with j ∈ [0, d− 1], there

exists a unique position of first appearance denoted with pi [j] ∈ [0, n− 1]. This position is

calculated based on the following formula:

p̃i = argmin
∀j∈[0,d−1]

{pi [j]} (3.1)

During query evaluation, not all threshold calculations are necessary since they do

not contribute towards satisfying the stopping conditions. For example in Fig. 3.3, only the

fourth threshold evaluation was needed. It is not possible to pinpoint the exact threshold

for arbitrary data distributions and query configurations (i.e. result size, preference vec-

tor). However, it is possible to maintain a small fraction of all thresholds sacrificing some

algorithmic efficiency for better processing throughput.

In order to achieve this goal, we develop a data layout, called Threshold Block

Layout (TBL) node. Each TBL node contains a fixed collection of objects, and a set of

attributes that correspond to the node’s threshold. For a given relation and depending on

the TBL node size, we maintain a list of multiple nodes called TBL list. This data structure

has similar properties to a clustered index, in that it stores data in close proximity and

according to a predetermined ordering. Fig. 3.5 (left) showcases a TBL list configuration

with node size 3 (i.e. each node has three objects plus the threshold T) for the list ordering

28

Algorithm 1 Build TBL List

D = Input dataset.

NTBL = TBL node size.

1: for c in D do

2: c = sort(c)

3: for i = 0 to n− 1 do

4: Ps[c[i].id] = min(Ps[c[i].id], i)

5: if i % NTBL == 0 then L.set(i/NTBL, c[i].score)

6: end for

7: end for

8: Ps = sort(Ps)

9: for i = 0 to n− 1 do

10: L.assign(i/NTBL, Ps[i].id, D)

11: end for

29

shown in Fig. 3.4. The threshold of each node equates to the last object’s threshold first

seen position. For example, node 2 is assigned threshold attributes 0.5, 0.3, 0.5 because o6

(the last object) appears in column a3 at the fifth level where the threshold contains these

exact attributes (see Fig. 3.4 (a)). Choosing a small TBL node size results in estimating

the true stopping threshold with greater accuracy but demands higher memory footprint

and proportional threshold calculations. Modern multiprocessors benefit from large node

size because it equates to a large pool of unordered work, providing opportunities for better

instruction level parallelism.

Algorithm 1 summarizes the steps related to building a TBL list. For each attribute

column (Line 1), we create a sorted list of <id,score> pairs in descending order of score

(Line 2). For each sorted list, we update the first seen position of every object (Line 4).

We assign the i-th threshold attribute for the given attribute column to partition i/NTBL

when i is divisible by the TBL node size (Line 5). We sort the objects in ascending order

to the first seen position (Line 8). Finally, we assign object i to partition i/NTBL (Lines

9-11).

Maintenance: The TBL list can easily support insertion, and deletion of objects.

Assume that the TBL node has a minimum (Bmin) and a maximum (Bmax) size, where

Bmax = 2 · Bmin − 1 and the root node can have minimum 1 object. A new object ov =

{a0, a1, ..ad−1} is inserted into the list by performing binary search to discover node B

having a threshold T = {t0, t1...td−1} such that ∃ai ∈ ov where ai ≥ ti. This assignment

process guarantees that any newly inserted object follows the first seen position principle,

hence we do not need to update the thresholds because they roughly approximate those seen

30

𝑜4 0.90 0.50 0.80

𝑜2 0.80 0.70 0.10

𝑜7 0.70 0.40 0.70

𝑇 0.80 0.50 0.70

𝑜3 0.50 0.50 0.60

𝑜10 0.10 0.20 0.65

𝑇 0.50 0.50 0.65

𝑜1 0.50 0.30 0.60

𝑜6 0.30 0.10 0.50

𝑇 0.20 0.30 0.40

𝑜5 0.20 0.30 0.40

𝑜8 0.10 0.20 0.20

𝑜9 0.05 0.10 0.02

𝑇 0.05 0.10 0.02

𝑜4 0.90 0.50 0.80

𝑜2 0.80 0.70 0.10

𝑜7 0.70 0.40 0.70

𝑇 0.80 0.50 0.70

𝑜3 0.50 0.50 0.60

𝑜1 0.50 0.30 0.60

𝑜6 0.30 0.10 0.50

𝑇 0.50 0.30 0.50

𝑜5 0.20 0.30 0.40

𝑜8 0.10 0.20 0.20

𝑜9 0.05 0.10 0.02

𝑇 0.05 0.10 0.02

After 𝑜10 insertBefore 𝑜10 insert

𝑜4 0.90 0.50 0.80

𝑜2 0.80 0.70 0.10

𝑜7 0.70 0.40 0.70

𝑇 0.80 0.50 0.70

𝑜5 0.20 0.30 0.40

𝑜8 0.10 0.20 0.20

𝑜9 0.05 0.10 0.02

𝑇 0.05 0.10 0.02

After 𝑜6 delete

𝑜3 0.50 0.50 0.60

𝑜10 0.10 0.20 0.65

𝑜1 0.50 0.30 0.60

𝑇 0.20 0.30 0.40

Figure 3.5: TBL list insert-delete example.

under sorted list access. When the node size becomes larger than Bmax, we split it into

two nodes using Algorithm 1 for all objects within the node. The second node’s threshold

is initialized with the maximum attributes of the subsequent node. In Fig. 3.5 (center), o10

is inserted and the third node is assigned a threshold consisting of the maximum attributes

of the fourth node. Deleting an object may result in two nodes being merged. In that case,

we merge with the previous node in-order and update its threshold with the one of the

merging node. Fig. 3.5 (right) shows the deletion of o6 which results in merging nodes 2

and 3. In the worst case, a merge can cause at most another split to happen when the new

node size exceeds Bmax. This happens because a node’s size ranges in [Bmin, 2 ·Bmin − 1],

and the merging node’s size is Bmin − 1, hence the total size of the new node will range

31

in [2 · Bmin − 1, 4 · Bmin − 2]. In any case, we can create two nodes following the splitting

steps outlined previously. Updates are implemented by combining a delete and an insert

operation.

Algorithm 2 Vectorized Threshold Algorithm

LTBL = TBL List.

W = Preference Vector

Qk = Priority Queue.

k = Query result size.

1: for B ∈ LTBL do

2: vta kernel(B,W,Qk, k)

3: for j = 0 to m− 1 do

4: T+ = B.threshold[j] ·W [j]

5: end for

6: if T ≤ Qk.min() & Qk.size() == k then return Qk

7: end for

Discussion: The TBL list concept resembles that of a clustered index similar to a

B+tree, having the additional requirement for keeping track of stopping thresholds. It can

thus be easily integrated within a relational DBMS. The TBL list was designed explicitly to

improve Top-k selection performance, which is inline with related work [34, 65, 41, 44, 80]

focusing solely on selection. The idea could be extended on rank joins [50] and possibly

combined with other operators (i.e. group-by, join) , but this is out of this thesis’ scope.

32

Algorithm 3 VTA Kernel

B = TBL Node.

W = Preference Vector

Qk = Priority Queue.

1: for i = 0 to |B| − 1 do

2: for m = 0 to d− 1 do

3: pv= mm256 set ps(W [m])

4: j = |B| ∗m+ i

5: ld0 = mm256 load ps(&B[j])

6: ld1 = mm256 load ps(&B[j + 8])

7: r0 = mm256 add ps(r0, mm256 mul ps(ld0, pv))

8: r1 = mm256 add ps(r1, mm256 mul ps(ld0, pv))

9: end for

10: mm256 store ps(&buf [0], r0)

11: mm256 store ps(&buf [8], r1)

12: for r ∈ buf do

13: if Qk.size() < k then Qk.push(id, r)

14: else if Qk.min() < r then Qk.pop(), Qk.push(id, r)

15: end for

16: i+ = 16

17: end for

33

3.3.2 The Vectorized Threshold Algorithm

Algorithm 2 summarizes the steps of VTA which operates on a single TBL list.

For each TBL node (Line 1), the algorithm evaluates the objects associated with it by

utilizing the V TA kernel (Line 2) and then calculates the node’s threshold (Lines 3-5).

When both stopping conditions are satisfied, the algorithm halts processing and returns a

priority queue consisting of the k-highest ranked objects (Line 6). TBL nodes store their

data using column-major order to enable SIMD vectorization. Our implementation makes

use of AVX instructions that support 8 lane operations. The VTA kernel (Algorithm 3

evaluates the score for a fixed group of objects per iteration (Lines 2-9). Once 16 objects

have been evaluated using SIMD operations, their scores are written back to a local buffer

(Lines 10-11). This local buffer is used to update the contents of the associated priority

queue (Lines 12-15). A new object is inserted into the queue if no more than k objects

already exist (Line 13), or when its score is greater than that of the minimum scored

object, at which point the latter object is evicted (Line 14).

3.3.3 VTA Complexity Analysis

VTA does not require keeping track of evaluated objects and is able to maintain

a constant candidate set at each processing step. In addition, it favors instruction level

parallelism and vectorization which improves bandwidth utilization. However, it exhibits

increased rank uncertainty for queries on a subset of the reordered attributes, resulting in

many more object evaluations compared to TA.

Let np be the depth at which TA is able to stop processing new objects. In the

worst case, the total number of object evaluations will be np·m for a query withm attributes.

34

In contrast, VTA requires (np + nTBL) · d evaluations where d is the number of attributes

and nTBL the node size. This inefficiency motivates the development of a solution having

better algorithmic efficiency. In the following section, we describe two possible solutions,

one based on previous work (i.e. skyline layering) and a new method relying on angle space

partitioning.

3.4 Multi-threaded Top-K Selection

There are two ways to parallelize TBL list processing: (1) enable parallel evaluation

within each TBL node, (2) create multiple TBL lists and assign each one to distinct threads

for processing. Both options should be optimized to achieve high algorithmic efficiency.

In the following sections, we discuss two different algorithmic solutions geared towards

implementing the previous parallel query evaluation strategies. The first method (SLA)

relies on the practices established in [45], while the second method (PTA) follows a new

direction, utilizing angle space partitioning to optimally partition the data for processing.

Algorithm 4 Skyline layering with TBL list construction.

D = Relation data.

LL = List of layers.

1: while D 6= ∅ do

2: L =skyline(D)

3: LL.append(build tbl(L))

4: D = D − L

5: end while

35

3.4.1 The Skyline Layered Algorithm

SLA combines the idea of reordering the base table, with the concept of layering

data using the skyline operator. Our implementation leverages vectorization and the TBL

list organization, in addition to utilizing the pruning properties of the skyline layers. Al-

though, our solution follows the best practices established by Heo et al. [45], it presents the

first attempt to enable parallel processing and vectorization using static reordering of each

layer. Related solutions using skyline layering [59, 107] rely on graph traversal to improve

algorithmic efficiency, a process that is often hard to vectorize. In addition, these solutions

require maintenance of a high number of candidates at each processing step, a characteristic

that is incompatible to our original goals (Section 3.2.2) and inappropriate for our current

environment.

Algorithm 4 showcases the pseudo-code for calculating the skyline layers and their

corresponding TBL lists. Utilizing the parallel skyline algorithm presented in [21], we

calculate the skyline set (Line 2). For this collection of points, we create a TBL list which

is added at the end of a list containing all layers (Line 3). Finally, we update the dataset

by removing the skyline set (Line 4) and repeat the previous steps until there are no more

points in D.

Algorithm 5 summarizes SLA’s execution steps. SLA processes only the first k

layers (Line 2) since according to Chang et al. [19] the Top-k objects are guaranteed to

appear in them. Within each layer, we process the individual TBL nodes by assigning con-

secutive objects for evaluation to distinct threads (Line 4). Thread zero is responsible for

calculating the node’s threshold (Lines 5-9). In order to ensure that T has been computed

36

Algorithm 5 Skyline Layered Algorithm

LL = Layers List

W = Preference Vector.

Qk = Priority queues

k = Query result size.

tid = Thread id

1: for i = 0 to |LL| − 1 do

2: if i > k then break

3: for B ∈ LL[i] in parallel do

4: vta kernel(B,W,Qk[tid], k)

5: if tid == 0 then

6: for j = 0 to m− 1 do

7: T+ = B.threshold[j] ·W [j]

8: end for

9: end if

10: synchronize

11: if T ≤ Qk.min() & Qk.size() == k then break

12: end for

13: end for

14: return merge(Qk)

37

and all threads have completed their evaluations, omp barrier is used to synchronize pro-

cessing (Line 10). When the accrued number of objects from all queues are ≥ k and their

minimum scored object is ≥ T processing terminates for the given layer (Line 11). Finally,

when all k layers have been processed, the individual queues are merged together before

returning the Top-k result (Line 14).

3.4.2 The Partitioned Threshold Algorithm

SLA relies on discovering an optimal linear ordering for all objects in the dataset

to improve algorithmic efficiency. Since this is a form of global optimization, it will not

work well for increasing attributes due to the curse of dimensionality which makes it in-

creasingly difficult to identify similar properties between high-dimensional objects. In order

to overcome this limitation, we develop a versatile solution which relies on partitioning the

objects according to their attribute correlation before choosing a local optimal ordering.

We call this method the Partitioned Threshold Algorithm (PTA).

tan(φ1) =

√
(Ãd)2 + (Ãd−1)2...+ (Ã2)2

Ã1

...

tan(φd−2) =

√
(Ãd)2 + (Ãd−1)2

Ãd−2

tan(φd−1) =
Ãd

Ãd−1

(3.2)

PTA utilizes Angle Space Partitioning (ASP), a strategy first proposed in [96] for

improving skyline computation. This strategy has never been used in the context of Top-k

selection queries, hence it is a new approach. In addition, PTA only necessitates partitioning

38

Angle Space Partitioning

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

𝑜3

𝑜1
𝑜6

𝑜2

𝑜4𝑜5

𝑜8
𝑜7 𝑜9

𝑎1 𝑎2
𝑜3 = 0.70 𝑜3 = 0.90
𝑜4 = 0.40 𝑜4 = 0.90
𝑜5 = 0.22 𝑜5 = 0.85

𝑎1 𝑎2
𝑜2 = 0.60 𝑜2 = 0.70
𝑜7 = 0.50 𝑜8 = 0.45
𝑜8 = 0.35 𝑜7 = 0.33

𝑎1 𝑎2
𝑜1 = 0.87 𝑜1 = 0.60
𝑜9 = 0.80 𝑜6 = 0.56
𝑜6 = 0.78 𝑜9 = 0.30

𝑃1

𝑃2

𝑃3

Figure 3.6: ASP on objects from Fig 3.3.

the data in collections of correlated objects (i.e. objects around a given trend line), thus it is

not tied to that specific partitioning strategy. In reality, our contribution with PTA revolves

around the idea of minimizing the number of possible total orderings within each partition

by considering object correlation. Any partitioning strategy that accomplishes these goals

is suitable to overcome the limitations associated with choosing a global ordering.

3.4.3 Angle Space Partitioning Overview

ASP maps each multidimensional object from cartesian space to hyperspherical

space using the equations shown in 3.2. Commonly Top-k queries retrieve the Top-k high-

est ranked objects, hence the corresponding equations are applied on attributes Ãi = |Ai−α|

assuming the given collection (Ai) is in range [0, α] Due to geometric symmetry, this trans-

formation is equivalent to calculating the angles defined opposite from the origin as shown

in Figure 3.6. We partition the data using grid partitioning over the d − 1 space defined

39

𝑃0 𝑃1 𝑃2
𝑃3

𝑃7
𝑃6𝑃5

𝑃4

𝑃8
𝑃9 𝑃10

𝑃11

𝑃12
𝑃13

𝑃14

𝑃15

𝜙1

𝜙2

Figure 3.7: Grid partitioning on a hypersphere.

by the corresponding angular coordinates. In effect, this leads to grouping together objects

that are increasingly correlated as the angle of the partition shrinks (see Figure 3.7). As-

suming a splitting factor s we create sd−1 distinct partitions for relations with d attributes.

Through recursive splitting of each angular dimension, we are able to maintain roughly the

same number of objects per partition. For each partition, we build a separate TBL list

following the process described in the previous sections.

ASP performs well when combined with any TA style optimization (see Sec-

tion 3.4.5). This happens because the data are partitioned around an imaginary trend

line as indicated by Figure 3.6. For list-based methods, this contributes towards discover-

ing an optimal local ordering for every partition independently of any user-defined monotone

40

function. Therefore, in theory each partition may require as little as k evaluations to dis-

cover the highest ranked objects. For example in Figure 3.6 even after reordering the data,

a Top-1 query will evaluate only a single object per partition before stopping for any pref-

erence vector. Compared that to TA’s and VTA’s performance, we achieve at least two-fold

reduction in the total number of object evaluations. In addition, PTA enables parallel

evaluation without reducing algorithmic efficiency.

Algorithm 6 Partitioned Threshold Algorithm

PL = Partitions List

W = Preference Vector.

Qk = Priority queues

k = Query result size.

tid = Thread id

1: for p ∈ PL in parallel do

2: for B ∈ p do

3: vta kernel(B,W,Qk[tid], k)

4: for j = 0 to m− 1 do

5: T+ = B.threshold[j] ·W [j]

6: end for

7: if T ≤ Qk.min() & Qk.size() == k then break

8: end for

9: end for

10: return merge(Qk)

41

Typically Top-k query evaluation involves only a subset of all attributes. In order

to achieve the best possible algorithmic efficiency, ASP should be used only on the query

attributes. However, our extensive experimentation showed that the associated processing

overhead in terms of object evaluations is negligible. In the worst case, it is roughly equal

to the total evaluations performed by the chosen TA style method without applying ASP.

In that scenario, we still remain algorithmic efficient while evaluating queries in parallel.

3.4.4 PTA Algorithm

Algorithm 6 summarizes the execution steps of PTA. We assign each partition to a

distinct thread and in parallel process their corresponding TBL lists (Lines 1 - 9). For each

list assigned to a thread, the VTA kernel is utilized to evaluate one node at a time from

the TBL list (Line 3). The threshold is calculated after the evaluation of each node (Lines

4-6), then the corresponding stop conditions are evaluated (Line 7). Note that stopping

applies only to the partition which is currently under processing. A thread is responsible

for evaluating multiple partitions. Once all partitions are processed, the individual priority

queues are traversed and only the k-highest ranked objects are returned (Line 10). It is

possible to employ different strategies when merging the queues together. However, the

cost of merging is relatively small and is not detrimental to high performance.

3.4.5 PTA Complexity Estimation

In this section, we demonstrate that leveraging angle space partitioning yields

significant improvements over the number of object evaluations. This is apparent for any

Top-k processing method when the stopping threshold is reduced. Hence, intelligent parti-

42

𝑥2

𝑥1

𝑥2

𝑥1

1 1

111 − 𝛿1 1 − 𝛿1

1
−
𝑐
⋅
𝛿 1

1
−
𝑐
⋅
𝛿 1

𝜑1
𝜑2

𝜑2

𝜑1

𝛿1 ≤ 𝑐 ⋅ 𝑡𝑎𝑛𝜑1 𝛿1 > 𝑐 ⋅ 𝑡𝑎𝑛𝜑1

Figure 3.8: Processed areas for varying δi using ASP.

tioning is important for improving rank uncertainty, and can be used in combination with

other optimizations to yield proportional improvements.

Consider an algorithm leveraging on TA (i.e. VTA, SLA, T2S, HL-index, IO-Top-

K) at step t of its execution where k objects have been identified. Let τ = (1 − δ1, 1 −

δ2, . . . , 1− δm) (δi ∈ [0, 1]) be the combined attribute threshold. For the worst case object

arrangement, the corresponding algorithm would need to evaluate all objects with at least

one aj ≥ 1 − δi. Assuming uniformly distributed values, the expected number of object

evaluations can be estimated by the volume (or area in 2D) of the polytope enclosed by the

threshold and hypercube [0, 1]m. This is ETA(t) ≤ n·[1−
∏m
i=1 (1− δi)]. Typically, δi grows

linearly with k and N , while E(t) grows exponentially to the query dimensions. This growth

rate is conceptually equivalent to the number of candidates maintained during processing

for no random access methods [34, 65, 41]. Hence, any strategy geared towards limiting

such growth could be used as well to improve performance for that class of algorithms.

43

Let us consider the 2D case of ASP where δ2 = c·δ1, c ∈ [0, 1] for simplicity. Fig. 3.8

presents the case where 0 ≤ φ1 < φ2 ≤ π
4 . Given some threshold, an ASP enabled algorithm

following the TA ordering would process in the worst case the depicted shaded region.

This occurs because TA performs a plane sweep for each attribute while ASP restricts the

associated region depending on the partition angle. For δ1 ∈ [0, 1], the processed area is

computed using Equations 3.3, 3.4 where δ1 ≤ or > to c · tan(φ1), respectively.

A1 =
δ21
2
·

(
tanφ2 − tanφ1 +

(
1− 1

c · tanφ1

)2

· tanφ1

)
(3.3)

A2 = 0.5 ·
(
tanφ2 − tanφ1 − (1− δ1)2 · tanφ2

)
(3.4)

Fig. 3.9 presents the projected (utilizing Equations 3.3, 3.4) vs actual number

of object evaluations for TA vs PTA (assuming 8 partitions). The actual number was

measured through experimentation with varying k on 228 uniformly generated objects. It

is apparent that the projected curves are very similar to the actual ones, indicating an

average improvement of at least two orders of magnitude. ASP is extremely efficient for

δi ≤ 0.004 where EPTA(t)
ETA(t) ≥ 400. This finding indicates that intelligent partitioning is

pivotal to achieving high parallel efficiency and should precede the choice of a suitable Top-

k implementation that favors high system performance. Note that this does not entail the

selection of any specific Top-k optimization, it only acts as the foundation for the design of an

efficient parallel Top-k algorithm. In fact, our analysis suggests that any previously proposed

Top-k method, aimed at limiting the exponential growth of candidate objects and object

evaluations, can be parallelized effectively using ASP partitioning. However, according

44

𝛿1

𝑂
𝑏
𝑗𝑒
𝑐𝑡

𝐸
𝑣
𝑎
𝑙𝑢
𝑎
𝑡𝑖
𝑜
𝑛
𝑠

%

Ideal TA Actual TA

Ideal PTA (8) Actual PTA(8)

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

Figure 3.9: Projected vs actual object evaluations.

to our analysis, the in-memory execution environment dictates utilizing data reordering

and layering because these techniques favor sequential access and reduced candidate object

maintenance cost. As a result, we developed PTA to utilize these practices in combination

with ASP.

3.5 Experimental Environment

In this section, we provide a thorough performance evaluation of the proposed

solutions under different execution scenarios and processing models as indicated from Sec-

tion 3.2.1. Despite the wide range of Top-k algorithms, there is no comprehensive study

comparing the different algorithmic categories. In addition, the related literature concen-

45

trates mainly on disk-based systems. Hence, we provide a detailed experimental evaluation

and comparison against hardware optimized algorithms (Full Table Evaluation (FTE)),

list-based solutions optimized for random-access (TA [34]) or sorted-access (LARA [65]),

and layered-based solutions geared for efficient blocked access (HL [45]) or high algorithmic

efficiency (DL [107, 59]). Note that our work adopts the best practices established from the

aforementioned previous work, concentrating on fine tuning it for the underlying hardware

while maintain similar or better work-efficiency guarantees.

3.5.1 System Specification

All our experiments were conducted on a two socket 2.30 GHz Intel Xeon E5-2650

CPU with 64 GB DDR4. We implemented each algorithm in C + + utilizing the standard

priority queue implementation. FTE, VTA, SLA and PTA were designed to utilize AVX

instructions and assume that the data are stored in column-major order. For these methods,

we also developed a scalar version used to present a fair comparison against previous work

which was not originally designed for column-major execution or to use AVX-instructions.

We used GCC version 5.4.0 enabling with O3 optimization flag enabled and the OpenMP

framework to enable multi-threaded execution. Unless stated otherwise, all multi-threaded

measurements where acquired for 16 threads. Our code is publicly available in Github [105].

3.5.2 Dataset, Query Format & Metrics

We conducted experiments using both real and synthetic data. Overall, the per-

formance characteristics of the developed algorithms do not change between normalized

46

Objects (n) Attributes (d) Result Size (k)

(n) [225, 229] 6 128

(d) 228 [2, 8] 128

(k) 228 6 [16, 1024]

Table 3.1: Experimental parameters.

and regular values. For the experimental results on synthetic data we use normalized val-

ues. In contrast, the real dataset measurements where acquired using the regular values.

Unless otherwise stated, the parameters of our experiments are summarized in Table 3.1.

Similar to previous work [45, 107, 65], our synthetic data follow a uniform distribution and

were created using the standard dataset generator from [17]. The real dataset consist of

temperature measurements acquired from NOAA [66]. We gathered 524 million objects

each one having 8 attributes which correspond to pairs of values indicating the maximum

and minimum temperature for one day. For this reason, each object corresponds to the

temperature variations for 4 consecutive days. We performed experiments retrieving the k

objects with the highest sum (i.e. wi = 1,∀i ∈ [0, d− 1]), unless stated otherwise. MTMQ

is evaluated on 131072 randomly generated queries for k = 16, n = 228 using our overall

best performing algorithms, mainly VTA and PTA.

We evaluate the different processing models described in Section 3.2.1 utilizing the

relevant implementations, mainly STSQ scalar and SIMD versions, MTSQ multithreaded

version including SIMD, MTMQ SIMD version with multiple queries per thread. Our ex-

47

0.0 0.2 0.4 0.6 0.8 1.00
25000
50000
75000

100000
125000
150000

0.0 0.2 0.4 0.6 0.8 1.00
25000
50000
75000

100000
125000
150000

0 256 512 768 10240

256

512

768

1024

0 256 512 768 10240

256

512

768

1024

Synthetic Data Real Data

Figure 3.10: Distribution properties of synthetic vs real data (top: histogram, bottom:

correlation matrix).

periments concentrate on measuring the initialization cost, throughput (queries per second),

single query latency (wall clock time) and average query latency (for a batch of queries).

In Figure 3.10, we summarize the distribution characteristics for a random sample

of our synthetic and real data using a single attribute histogram and correlation matrix

(light = zero correlation, dark= high correlation). In contrast to the synthetic data (that

follow a uniform distribution), the real dataset follow a bimodal distribution. From the

correlation matrices, we observe that the synthetic data contain objects having almost no

linear relationship. In contrast, the real data consist of noticeably larger clusters of strongly

correlated objects. Low (High) correlation between objects is responsible for decreasing (in-

creasing) the likelihood of constructing highly correlated partitions just by chance. Hence,

we expect methods that do not utilize intelligent partitioning to perform poorly on data col-

48

108

106

104

102

100

Ti
m

e(
s)

Number of Objects (log2𝑛)
25 26 27 28 29

TA LARA HL DL VTA SLA PTA

Figure 3.11: Initialization cost comparison.

lections with zero or negative linear correlation, especially for dataset that contain multiple

attributes.

3.6 Performance Tuning

In this section, we discuss experiments related to the cost of initialization (i.e.

reordering, layering, creating sorted lists), the chosen TBL node size, and the effects of

varying query weights.

3.6.1 Initialization Cost

In Fig. 3.11, the highest initialization cost is incurred by methods that require

calculating the skyline set to construct the corresponding data layers. DL exhibits the

highest initialization overhead because in addition to the skyline it requires identifying

49

all points dominated by any point in the parent layer. Likewise, SLA attains the second

highest initialization cost because it requires also reordering the layers according the first

seen principle. On the other hand, HL requires discovering the skyline set and building the

individual lists for each layer, which translates to incurring about the same initialization cost

of VTA and PTA. Compared to TA and LARA, the previous methods exhibit at most 4×

and 7× higher initialization overhead which is an acceptable trade-off considering that all

of them perform 350× and 33000× better in terms of query latency. Note that initialization

is executed only once, similar to any other type of index like structure.

3.6.2 TBL Node Size

Figure 3.12 presents the measured object evaluations and query latency for varying

TBL node size. We observed a noticeable increase in object evaluations for queries with 2 to

4 attributes and somewhat mediocre increase on queries with 5 to 8 attributes. In contrast,

query latency follows a downward trend for increasing TBL node size. This happens because

having large node size translates to less threshold evaluations and a larger pool of unordered

work that favors instruction level parallelism, hence lower latency. Note that a similar

downward trend is observed for the threshold memory footprint as the node size increases

(i.e. at most 8 MB for 1024 vs 128 MB for 64).

3.6.3 Varying Preference Vectors

Figure 3.13 presents the measured object evaluations for the preference vectors of

Table 3.2. VTA exhibits little variation in performance, while PTA occasionally performs

50

100

101

102

103

0

2

4

6

Q
u

er
y

La
te

n
cy

 (
m

s)

O
b

je
ct

 E
va

lu
at

io
n

s
64 128 256 512 1024

2 3 4 5 6 7 8 2 3 4 5 6 7 8
Query Attributes (𝑑)Query Attributes (𝑑)

Figure 3.12: Block size vs latency-object evaluations.

better for specific weight combinations. PTA’s behavior is a consequence of the order in

which partitions are processed (i.e. starting from φ1, in ascending order of the correspond-

ing partition angles). For preference vectors Q2 and Q3, the specific order of processing

favors discovery of high scoring objects early, while the decreasing weight values reduce the

magnitude of the threshold for each TBL node. Hence, any partition processed after these

objects have been discovered will require less object evaluations due to the higher likelihood

for the minimum score to be greater than the associated threshold. PTA is compatible with

cost-based scheduling algorithms [11] focused on choosing the best order of evaluating the

corresponding partitions. Our experiments follows the worst case order of processing (i.e.

round-robin order).

51

104

105

106

107

104

105

106

107
O

b
je

ct
 E

va
lu

at
io

n
s

Q0 Q1 Q2 Q3 Q4

VTA PTA

2 3 4 5 6 7 8 2 3 4 5 6 7 8
Query Attributes (𝑑) Query Attributes (𝑑)

Figure 3.13: Variable weights vs object evaluations.

3.7 Synthetic Data Experiments

In this section, we concentrate on experiments using synthetic data. At first,

we concentrate on scalar implementations of our proposed solutions in order to present

a fair comparison against previous work which was not originally designed for in-memory

execution and SIMD vectorization. Next, we evaluate the performance of our methods

using hardware optimized SIMD implementations. Finally, we compare against optimized

versions following the MTSQ and MTMQ models of processing.

3.7.1 Related Literature Scalar Comparison

In Figures 3.14 (a), (b), (c), we present the measured number of object evaluations

for all developed scalar algorithms. Overall, PTA requires the least number of object

evaluations compared to the previously developed solutions. Although, it follows a fixed

order of processing within each partition, PTA manages to reduce rank uncertainty by

52

Q0 (1, 1, 1, 1, 1, 1, 1, 1)

Q1 (.1, .2, .3, .4, .5, .6, .7, .8)

Q2 (.8, .7, .6, .5, .4, .3, .2, .1)

Q3 (.1, .2, .3, .4, .4, .3, .2, .1)

Q4 (.4, .3, .2, .1, .1, .2, .3, .4)

Table 3.2: Individual query weights.

effectively constraining the search space area. This is apparent for any instance of the

Top-k problem, as indicated by our experiments with varying number of attributes, result

size, and input size. VTA exhibits lower algorithmic efficiency, especially for queries on few

attributes (i.e. 2 to 4). When the query attributes contain the largest part of all indexed

attributes from the relation, VTA is able to approximate the optimal order of processing

of common list-based methods. Hence, the rank uncertainty and similarly the measured

number of object evaluations are roughly equivalent to that of TA, LARA, and HL. SLA

performs worse than any other method because it follows the same sub-optimal order of

processing while also partitioning the data in few skyline layers which are quite large and

often need to be evaluated completely. DL is the second best solution in terms of the

number of object evaluations. However, it is not practical because it necessitates a costly

initialization step and requires too much auxiliary information the processing of which

negatively affects query latency (see next section). TA, LARA, and HL exhibit comparable

performance for large number of attributes. For only few query attributes, LARA needs

53

25 26 27 28 29

109

108

107

106

105

2 3 4 5 6 7 8

109

108

107

106

105

Query Attributes (𝑑)

Result size (𝑘)

Number of Objects (log2𝑛)

(a)

(b)

(c)

O
b

je
ct

 E
va

lu
at

io
n

s

16 32 64 128 256 512 1024

109

108

107

106

105

10 7

10 5

10 3

10 1

10 1-

10 7

10 5

10 3

10 1

10 1-

10 7

10 5

10 3

10 1

10 1-

2 3 4 5 6 7 8

16 32 64 128 256 512 1024

25 26 27 28 29

Query Attributes (𝑑)(d)

Result size (𝑘)(e)

Number of Objects (log2𝑛)(f)

Q
u

er
y

La
te

n
cy

 (
m

s)

TA LARA HL DL VTA SLA PTA

Figure 3.14: Scalar performance on synthetic data.

to evaluates more objects because it cannot approximate well the stopping depth due to

having insufficient information about the actual scores of the seen objects.

In Figures 3.14 (d), (e), (f), we showcase the query latency for all scalar methods.

VTA and SLA achieve query latency comparable to DL. DL requires traversing frequently

the lists of dominated objects for every object within the result set, in order to update its

candidate set. Although at each iteration only a few candidate objects will be identified,

the process of accessing the relevant auxiliary information is extremely costly. In fact, for

a relation that contains a lot of attributes these lists are quite large in length. Therefore,

it is with great likelihood that every list access will be served directly from main memory

and may also cause a TLB miss. Both of these actions affect negatively the expected query

latency. LARA attains the worst query latency because it needs to maintain large candidate

54

Query Attributes (𝑑)(a)

Result size (𝑘)(b)

Number of Objects (log2𝑛)(c)

Q
u

er
y

La
te

n
cy

 (
m

s)

-

2 3 4 5 6 7 8

16 32 64 128 256 512 1024

25 26 27 28 29

10 4

10 3

10 2

10 1

10 0

10 1

-

10 3

10 2

10 1

10 0

10 1

-

10 3

10 2

10 1

10 0

10 1

FTE VTA SLA PTA

Figure 3.15: Latency using SIMD instructions.

sets and update their upper bounds at every step during the shrinking phase. DL’s and

LARA’s behavior is indicative of the performance penalties associated with maintaining too

much auxiliary information while requiring also exorbitant amount of computation to avoid

only few object evaluations. In comparison, VTA and SLA are able to achieve lower query

latency despite having to evaluate many more objects. Both solutions avoid maintaining a

large candidate set (at most k objects) at each iteration, while also the maintenance itself

is relatively cheap (i.e. only push and pop operations are executed). Furthermore, the

required auxiliary information (see 3.3.1) during processing is very low compared to other

methods (i.e LARA, DL). Finally, all memory accesses are sequential being also executed

on blocks of data a procedure which is known to be efficient for CPU based processing.

55

PTA adheres to the same principles while also being work-efficient by relying on intelligent

partitioning to guide effectively the order of processing. For this reason, its query latency

is noticeably lower.

3.7.2 Hardware Optimized STSQ Processing

In this section, we concentrate on the evaluation of our hardware optimized im-

plementations. We consider only algorithms designed to operate efficiently using AVX

instructions.

As indicated by Fig 3.15, PTA attains the best performance among all other

hardware optimized solutions for varying instances of the Top-k problem. VTA and SLA

achieve similar query latency, with the former being occasionally slightly better than the

latter. FTE performs worse that all other implementations because it requires evaluating the

full dataset for every query. The above behavior indicates that achieving high algorithmic

efficiency is as important as optimizing for the underlying hardware.

3.7.3 Hardware Optimized MTSQ Processing

In this section, we concentrate on the evaluation of hardware optimized solutions

that follow the MTSQ processing model (denoted with M). We compare against the single-

threaded hardware optimized implementations (denoted with S) of the previous section.

In Figures 3.16 (a), (b), (c), we summarize the number of object evaluations for

each implementation. VTA-M and SLA-M perform worse than their single-threaded coun-

terparts because they randomly partition the data across distinct TBL lists. Random

56

109

108

107

106

105

109

108

107

106

105

109

108

107

106

105

Query Attributes (𝑑)

Result size (𝑘)

Number of Objects (log2𝑛)

(a)

(b)

(c)

2 3 4 5 6 7 8

16 32 64 128 256 512 1024

25 26 27 28 29

O
b

je
ct

 E
va

lu
at

io
n

s

VTA-S VTA-M SLA-S SLA-M PTA-S PTA-M

10 3

10 2

10 1

10 0

10 1-

10 3

10 2

10 1

10 0

10 1-

10 3

10 2

10 1

10 0

10 1-

Q
u

er
y

La
te

n
cy

 (
m

s)

2 3 4 5 6 7 8

16 32 64 128 256 512 1024

25 26 27 28 29

Query Attributes (𝑑)(d)

Result size (𝑘)(e)

Number of Objects (log2𝑛)(f)

Figure 3.16: Single vs multi-thread performance on synthetic data.

partitioning increases score uncertainty since each partition contains objects from the com-

plete data space, possibly omitting those that contribute towards improving the stopping

threshold. SLA-M is also affected by the fact that the individual data partitions consist

of objects that are weakly and possibly negatively correlated. This organization negatively

affects score uncertainty because it creates a wider gap between the maximal and minimal

attribute values making it more probable to first evaluate low scoring objects which ap-

pear at the boundaries of the skyline set. Hence, the number of object evaluations increase

drastically.

PTA is the only method able to sustain the same algorithmic efficiency for a

wide range of experimental parameters. For queries on 2 or 3 attributes, it discovers the

57

Top-k result by evaluating just one TBL node. In fact, considering a smaller node size it

can perform less object evaluations at the expense of lower processing throughput due to

frequent threshold calculations. Overall, PTA’s work grows linearly to the query attributes.

In addition, the number of object evaluations grow linearly with respect to increasing values

of k and n. This behavior suggests that PTA exhibits good scaling properties across the

board and can benefit from the addition of new system resources (e.g. CPU cores, better

memory bandwidth).

In Figures 3.16 (d), (e), (f), we compare the query latency of our single-threaded

and multi-threaded implementations. These measurements follow a similar trend to the

observed number of object evaluations. VTA-M and SLA-M exhibit comparable perfor-

mance that is overall slightly worse than their single-threaded counterparts because of the

former requiring more object evaluations. PTA-M outperforms both of these solutions and

the PTA-S variant. However, its performance is slightly worse than proportional to the

number of threads used during processing. This happens mainly because updating the in-

dividual priority queues is an inherently sequential operation. When k is larger than 128

the combined size of all priority queues (16 threads) is larger than the size of the L1 cache

(8 bytes for the key, 4 bytes for the score). In that case, each update operation will most

likely access the priority queue from L2 cache the latency of which is considerably higher.

Further improvements on latency and throughput are only possible through batched query

processing.

58

VTA PTA VTA PTA

100

101

102

103

104

105

VTA PTA VTA PTA

100

101

102

103

104

105

100

101

102

103

104

105

100

101

102

103

104

105 2

3

4

5

6

7

8

1

2

4

8

16

32Q
u

er
y

La
te

n
cy

 (
μ

s)

Q
u

er
ie

s/
se

c
Q

u
er

ie
s/

se
c

(a) Throughput and average latency for increasing number of threads.

(b) Throughput and average latency for increasing number of attributes.

Q
u

er
y

La
te

n
cy

 (
μ

s)

Figure 3.17: Throughput-latency on synthetic data.

3.7.4 MTMQ Performance Evaluation

In Figure 3.17, we present the measured throughput and average query latency

for increasing (a) number of threads, and (b) number of attributes. PTA and VTA are

both highly optimized, enabling efficient sequential processing and SIMD vectorization.

For this reason, our experiments indicate that the observed throughput grows linearly to

the number of processing threads. Likewise, the average query latency follows a downward

pattern. Both algorithm reach their peak performance when utilizing at most 16 threads,

due to limitations in the L1 cache size. PTA achieves lower query latency because it

experiences higher temporal locality during processing. For certain queries only few TBL

nodes are examined, a behavior that increases the likelihood of these nodes remaining in

59

25 26 27 28 29

104

10 3

102

10 1

100

VTA PTA
Q

u
er

ie
s/

se
c

1 2 4 8 16

1.0

0.8

0.6

0.4

0.2

0.0Pa
ra

lle
l E

ff
ic

ie
n

cy

Number of Objects (log2𝑛) Number of Threads

VTA PTA

Figure 3.18: MTMQ Scale-up and parallel efficiency.

cache thus favoring future data re-use. VTA fails to exploit this type of locality because

it references many more TBL nodes during processing, thus contributing to the eviction

of data useful to future queries. Overall, PTA scales well for increasing query attributes

because the associated throughput and latency remain relatively stable.

In Figure 3.18, we showcase (a) the scale-up and (b) parallel efficiency of PTA

compared to VTA. We indicate scale-up by increasing the number of processing threads to

the input size. Our experiments demonstrate that PTA exhibits better scaling properties

compared to VTA since the former sustains the same throughput for the corresponding

experimental parameters. Parallel efficiency was measured by dividing the achieved speed-

up with the number of processing threads for the same input size and MTMQ workload (i.e.

512 million objects, and 131072 random queries). PTA scales almost linearly with increasing

number of threads thus parallel efficiency is close to 1. On the other hand, VTA’s parallel

efficiency drops noticeably because it cannot effectively exploit temporal locality for a given

batch of queries.

60

109

108

107

106

105

109

108

107

106

105

Query Attributes (𝑑)

Result size (𝑘)

Number of Objects (log2𝑛)

(a)

(b)

(c)

2 3 4 5 6 7 8

16 32 64 128 256 512 1024

25 26 27 28 29

10 3

10 2

10 1

10 0

10 1-
2 3 4 5 6 7 8

Query Attributes (𝑑)(d)

16 32 64 128 256 512 1024

25 26 27 28 29
Number of Objects (log2𝑛)(f)

Result size (𝑘)(e)

O
b

je
ct

 E
va

lu
at

io
n

s

Q
u

er
y

La
te

n
cy

 (
m

s)

VTA-S VTA-M SLA-S SLA-M PTA-S PTA-M
109

108

107

106

105

104

10 3

10 2

10 1

10 0

10 1-

10 3

10 2

10 1

10 0

10 1-

Figure 3.19: Single-thread vs multi-thread performance on real data.

3.8 Real Data Experiments

In this section, we validate our experimental results using real data. There is no

discernible difference between the experimental results on synthetic and real data when

comparing our scalar implementations against the related literature. For this reason, we

concentrate only on the MTSQ and MTMQ processing models using for both the equiva-

lent hardware optimized implementations.

In Figures 3.19 (a), (b), (c), we summarize the number of object evaluations fol-

lowing MTSQ processing. Similar to the experiments on synthetic data, VTA-S and SLA-S

perform less object evaluations than their multi-threaded counterparts. PTA-S and PTA-M

61

VTA PTA

101

102

103

104

105
Q

u
er

ie
s/

se
c

VTA PTA

100

101

102

103

104 1

2

4

8

16

32

VTA PTA

101

102

103
104

105

106

VTA PTA

101

102

103

104

Q
u

er
ie

s/
se

c

2

3

4

5

6

7

8

(a) Throughput and average latency for increasing number of threads.

(b) Throughput and average latency for increasing number of attributes.

A
ve

ra
ge

 Q
u

er
y

La
te

n
cy

 (
μ

s)
A

ve
ra

ge
 Q

u
er

y
La

te
n

cy
 (
μ

s)

Figure 3.20: Throughput-latency on real data.

outperform VTA and SLA for almost every experimental parameter, with the only excep-

tion being queries on 2 attributes. This happens because consecutive attributes within each

object are often highly correlated (i.e. daily temperature values), thus their first seen po-

sition matches the ranking order of most preference vectors. The measured query latency

for all methods follows a similar trend to the observed number of object evaluations. For

PTA-M the major source of contention during processing is the priority queue and the fact

that it does not fit completely within L1 cache.

In Figure 3.20, we present experiments measuring throughput and latency on

weather data for increasing number of (a) threads and (b) attributes. PTA exhibits superior

62

performance compared to VTA for almost every experimental parameter. This behavior is

inline with our experiments on synthetic data. Again, the only exception is queries on 2 at-

tributes in which case, the strong correlation between attributes allows VTA to stop earlier

evaluating few TBL nodes. In fact, PTA suffers from the overhead of having to evaluate at

least one node per partition.

3.9 Conclusions

In this work, we concentrated on developing algorithmic solutions for parallel in-

memory Top-K selection. We proposed three distinct processing models that offer varying

levels of parallelism. We introduced the concept of rank uncertainty used to discern (given

a small representative subset of existing approaches) those having the highest potential

to perform well for main memory processing. Based on the rank uncertainty metric, we

identified HL and T2S as potential candidates for further parallel optimization (due to their

early termination property). We proposed three algorithms, namely VTA and PTA (based

on improving T2S), and SLA (based on improving HL). All these methods utilize a simple

and easy to maintain data structure, within a conventional DBMS, called a TBL list. PTA

adopts a new strategy to minimize rank uncertainty which relies on angle space partitioning.

In its scalar form, PTA exhibits several orders of magnitude better performance compared

to previous works. In addition, PTA outperforms parallel variants of previous methods that

utilize reordering (VTA) and layering (SLA).

63

Chapter 4

GPU Accelerated Top-K Selection

With Efficient Early Termination

4.1 Introduction

A straightforward approach for answering Top-K queries involves two steps: (1)

calculating the score of each tuple by summing their weighted attributes (also known as

tuple score aggregation), (2) utilizing sorting or k-selection algorithms to identify those

tuples having the k highest scores/rankings. The most expensive part of Top-K query

evaluation is score aggregation because during that phase data movement dominates the

total execution time.

Increasing memory capacity and decreasing memory costs motivated the develop-

ment of in-memory database systems. Although the process of migrating in-memory has

created several opportunities for improved query latency, their potential has been severely

64

limited by the growing gap between processor and main memory speed. Further improve-

ments in processing throughput and query latency can be obtained utilizing multi-core [9]

processing or hardware acceleration [53, 1]. Related work has demonstrated the immense

potential of GPU accelerated processing for filtering [86], and complex selection [15] op-

erators. This body of work has revealed that caring about practices geared towards high

throughput (i.e. coalesced memory access, minimal thread divergence) is as important as

designing algorithmically efficient solutions.

GPU accelerated Top-K selection with support for early stopping has not been

studied in previous work. It is a very challenging problem to tackle for two reasons: (1) Top-

K query processing leverages on random accesses to resolve score ambiguity during tuple

evaluation [11, 65], a practice that is inherently incompatible with GPU processing, (2) the

immense compute capabilities of GPUs make it hard to justify the additional work that is

required for enabling early termination. The latter point is concerned with avoiding intricate

query evaluation strategies which might lead to higher query latency, despite enabling less

tuple evaluations. Unless a satisfactory trade-off can be obtained there is no motivation

to avoid evaluating the complete relation. Data reordering [41, 44] and layering [45, 59]

are popular methods geared towards efficient sequential access. Despite being cheap to

implement, their pruning abilities are severely affected for queries on relations with high

number of attributes.

In this chapter, we investigate the suitability of data re-ordering and intelligent

partitioning in order to enable efficient GPU based Top-K selection with support for early

termination. We are concerned with Top-K selection queries that involve high number of

65

attributes and focus on techniques that utilize clustered indices to enable early termina-

tion. These techniques involve a single initialization step to build the underlying index,

after which multiple sub-queries can be efficiently executed on top of it. As established

from previous work, such indices can function in a dynamic environment enabling low cost

insertions/updates [45, 59]. Our ultimate goal is to improve query latency by developing

solutions suitable for massively parallel architectures. The main contributions described in

this chapter are summarized below:

• We develop the skeleton of a parallel threshold algorithm (see Section 4.3.3) that is

designed to enable efficient GPU Top-K selection with support for early termination.

• We consider two different data partitioning strategies and evaluate their effectiveness

when combined with data reordering (see Section 4.3.4).

• We study the performance characteristics of GPU-based Top-K selection and evaluate

our proposed solutions for a variety of parameters, including result size, attribute

number, and variable preference vectors.

The rest of the chapter is organized as follows: In Section 4.2.1, we discuss the GPU

architecture and the details of previous work on GPUs, while Section 4.3 contains a thorough

discussion of the proposed framework. Section 4.4 describes the experimental evaluation

and Section 4.6 concludes the section.

66

𝑆𝑀1

Registers

SMEM/ L1

L2 Cache

Device Memory

Host Memory

PCIe (x16)

Host
Processor

𝑆𝑀2

Registers

SMEM/ L1

𝑆𝑀𝑁

Registers

SMEM/ L1…

Figure 4.1: GPU Architecture Organization.

4.2 Background

4.2.1 GPU Architecture & Organization

A simplified depiction of the GPU architecture and memory hierarchy is shown in

Fig. 4.1. GPUs consist of multi-core processing units known as Streaming Multiprocessors

(SMs), each one containing their own set of registers, L1 cache and a software programmable

cache (i.e. shared memory). In addition, each SM has direct access to a shared L2 cache

and a dedicated RAM often designated as global or device memory. Programs execute on

the GPU in the form of kernels. Each kernel utilizes thousand of active threads, typically

grouped into thread blocks. Thread blocks share access to L1 cache and shared memory,

67

while each thread within a block has private access to their own set of registers. Blocks

are split further into warps which take turns executing in lock-step using any available

SM. The threads within a warp should access data stored in global memory sequentially to

ensure maximum bandwidth utilization. In addition, a sufficient number of active warps

is necessary to effectively mask the latency associated with instruction dependencies (i.e.

data access, synchronization).

Although the device memory offers high bandwidth its capacity is limited to only

few GBs (i.e. 12−24 GBs). For this reason, GPUs may rely on the host memory for storage,

retrieving (across PCIe) the necessary data on-demand during processing. In modern GPUs,

this is made possible through the use of a unified virtual memory space that is managed

seamlessly either by the GPU driver or the programmer. The GPU driver facilitates data

exchange across PCIe utilizing two types of memory declarations: (1) Zero copy memory

initiates data transfers each time a GPU kernel is executed, (2) Managed memory utilizes

heuristics and hints during runtime to prefetch the necessary data into device memory. The

latter method works also as a caching mechanism being able to retain data and re-use it in

future kernel calls.

4.2.2 Bitonic Top-k Selection

Typically, GPU enabled algorithms operate on data that reside in device mem-

ory. In this environment, it is important to take advantage of the immense GPU memory

bandwidth by enabling coalesced data accesses when reading from and writing to the de-

vice memory. When the associated data are used multiple times during computation, it is

68

𝒕𝟎𝟏 𝒕𝟎𝟐 𝒕𝟎𝟑 𝒕𝟎𝟒 𝒕𝟎𝟓 𝒕𝟎𝟔 𝒕𝟎𝟕 𝒕𝟎𝟖 𝒕𝟎𝟗 𝒕𝟏𝟎 𝒕𝟏𝟏 𝒕𝟏𝟐

7 8 0 10 4 5 7 0 2 1 11 1

1 12 1 8 3 6 5 3 0 1 9 1

5 9 1 6 5 3 9 1 1 4 8 1

𝒕𝟎𝟏 𝒕𝟎𝟐 𝒕𝟎𝟑 𝒕𝟎𝟒 𝒕𝟎𝟓 𝒕𝟎𝟔 𝒕𝟎𝟕 𝒕𝟎𝟖 𝒕𝟎𝟗 𝒕𝟏𝟎 𝒕𝟏𝟏 𝒕𝟏𝟐

13 29 2 24 12 14 21 4 3 6 28 3

Tuples

A
tt

ri
b
u
te

s
Score Aggregation

𝒕𝟎𝟐

29

𝒕𝟎𝟏

13

𝒕𝟎𝟑

2

𝒕𝟎𝟓

12

𝒕𝟎𝟔

14

𝒕𝟎𝟒

24

𝒕𝟎𝟕

21

𝒕𝟎𝟖

4

𝒕𝟎𝟗

3

𝒕𝟏𝟐

3

𝒕𝟏𝟎

6

𝒕𝟏𝟏

28

𝒕𝟎𝟐

29

𝒕𝟎𝟔

14

𝒕𝟎𝟒

24

𝒕𝟎𝟕

21

𝒕𝟏𝟎

6

𝒕𝟏𝟏

28

𝒕𝟎𝟐

29

𝒕𝟎𝟒

24

𝒕𝟎𝟔

14

𝒕𝟏𝟎

6

𝒕𝟎𝟕

21

𝒕𝟏𝟏

28

𝒕𝟎𝟐

29

𝒕𝟎𝟒

24

𝒕𝟏𝟏

28

Local Sort/ Bitonic Top – K Merge
Step 1

Step 2

Figure 4.2: Top-3 selection using Bitonic Top-k.

commonplace to avoid unnecessary memory transactions by storing and operating on them

through registers or shared memory.

A simple implementation of Top-K selection on GPUs, requires first aggregating

the scores of all tuples in a given relation using the user-defined monotone function, and

then utilizing a k-selection algorithm to identify those tuples with the k-highest scores.

Bitonic top-K [80] is the state-of-the-art k-selection algorithm for GPUs. Its main goal

is to avoid completely sorting the key-value pairs that are generated after the aggregation

step. In order to achieve this, it executes bitonic sort to create k-sized groups of data which

are sorted in alternating order. Consecutive groups are combined using bitonic merge, and

69

the process repeats until a single group with the k-highest scoring tuples is created. An

example of this process to calculate the Top-3 query is shown in Fig. 4.2. The bitonic top-K

algorithm operates on the key-value pairs generated by summing all attributes of the input

relation. Bitonic sort (a.k.a local sort) and bitonic merge execute in sequence by repeatedly

sorting and extracting the maximum values until the 3-highest scoring tuples remain.

Despite its higher complexity (i.e. O(N log2 k), bitonic top-K performs better than

sorting or previous k-selection algorithms based on radix-sort because it avoids expensive

scatter operations while also considerably reducing the total amount of data being written

back to global memory [80]. Nevertheless, the performance of Top-K selection based on

bitonic top-K drops when the target relation contains a large number of attributes. In that

scenario, the aggregation phase dominates the total execution time because processing is

limited by how fast the data can be read from device memory. In addition, for very large

relations that cannot fit in device memory, the required attributes need to be fetched from

host memory at the moment of query evaluation. In both, circumstances evaluating all

the tuples is detrimental to query latency. Hence improving performance is connected to

reducing the overall number of tuples being evaluated.

In relational databases the proven way to achieve this is to utilize a threshold based

indexing scheme [34, 11, 65, 45, 41] able to support sub-queries and variable preference vec-

tors. Typically, such solutions require an initialization step where the index is build, after

which many queries can be executed on top of the existing data structure. Such methods

also support data schemes which can be easily updated in a dynamic environment. How-

ever, these early termination solutions are not directly applicable to the GPU environment

70

𝒕𝟏𝟏: 𝟏𝟏

𝒕𝟎𝟒: 𝟏𝟎

𝒕𝟎𝟐: 𝟖

𝒕𝟎𝟏: 𝟕

𝒕𝟎𝟕: 𝟕

𝒕𝟎𝟔: 𝟓

𝒕𝟎𝟓: 𝟒

𝒕𝟎𝟗: 𝟐

𝒕𝟏𝟐: 𝟏

𝒕𝟏𝟎: 𝟏

𝒕𝟎𝟑: 𝟎

𝒕𝟎𝟖: 𝟎

𝐿1 𝐿2 𝐿3

Target Relation Sorted Lists

𝒕𝟎𝟏 7 1 5

𝒕𝟎𝟐 8 12 9

𝒕𝟎𝟑 0 1 1

𝒕𝟎𝟒 10 8 6

𝒕𝟎𝟓 4 3 5

𝒕𝟎𝟔 5 6 3

𝒕𝟎𝟕 7 5 9

𝒕𝟎𝟖 0 3 1

𝒕𝟎𝟗 2 0 1

𝒕𝟏𝟎 1 1 4

𝒕𝟏𝟏 11 9 8

𝒕𝟏𝟐 1 1 1

𝒕𝟎𝟐: 𝟏𝟐

𝒕𝟏𝟏: 𝟗

𝒕𝟎𝟒: 𝟖

𝒕𝟎𝟔: 𝟔

𝒕𝟎𝟕: 𝟓

𝒕𝟎𝟓: 𝟑

𝒕𝟎𝟖: 𝟑

𝒕𝟎𝟏: 𝟏

𝒕𝟎𝟑: 𝟏

𝒕𝟏𝟐: 𝟏

𝒕𝟏𝟎: 𝟏

𝒕𝟎𝟗: 𝟎

𝒕𝟎𝟐: 𝟗

𝒕𝟎𝟕: 𝟗

𝒕𝟏𝟏: 𝟖

𝒕𝟎𝟒: 𝟔

𝒕𝟎𝟏: 𝟓

𝒕𝟎𝟓: 𝟓

𝒕𝟏𝟎: 𝟒

𝒕𝟎𝟔: 𝟑

𝒕𝟎𝟑: 𝟏

𝒕𝟏𝟐: 𝟏

𝒕𝟎𝟖: 𝟏

𝒕𝟎𝟗: 𝟏

Figure 4.3: An example of mapping a base relation (left) to a collection of per attribute

sorted-lists (right).

because they are known to incur too many random accesses [34, 11]. Methods optimized

for sequential access [65, 45, 41] exist but operate at the expense of higher number of tuple

evaluations. In the next section, we review TA, a threshold based early termination solu-

tion, and describe a generic framework for developing efficient threshold based algorithms

for the GPU using data preordering and layering.

4.3 GPU Threshold Algorithms

List-based algorithms utilize a collection of per attribute sorted lists to enable

efficient Top-K query processing. These lists present a simple data abstraction that is

resilient to different query parameters (e.g. variable preference vectors, result size, attribute

71

number) and can be easily realized in a dynamic environment using self-balancing trees

(i.e. B/B+trees). An example of those sorted lists build upon a toy relation is shown in

Figure 4.3. The majority of list-based methods follow a similar execution model to the one

that was established by the Threshold Algorithm (TA) [34]. The main idea is to iterate

over the sorted lists in round robin order and calculate the score of each seen tuple through

random access to every other list. The seen tuples with highest scores are maintained

using a priority queue that is updated periodically as new tuple-score pairs are generated.

Algorithm 7 summarizes the steps associated with TA’s execution. We start by initializing

an empty priority queue (Line 1) and set the threshold value to zero (Line 3). As stated

before, we iterate through all lists in round robin order (Line 4) retrieving one tuple (i.e.

tuple-id, attribute value) at a time from each sorted list (Line 5). We use the retrieved key-

value pairs to update the current threshold value (Line 6). Unless the tuple was evaluated

in the past (Line 7), we continue by inserting the tuple-id into a hash-table (to keep track

of evaluated tuples) and initialize the score of the associated tuple equal to the value of

the retrieved attribute (Line 11). An index is used to retrieve the remaining attributes

of the given tuple from every other list (Line 13) which are then aggregated to the total

score of that tuple (Line 14). We update the priority queue with the new tuple if its score

is greater than the minimum or less than k tuples have been discovered (Lines 16 - 23).

Query processing continues until k items have been discovered and the minimum scoring

item has a ranking greater than or equal to the threshold of the current list level (Line 25).

Ignoring memory accesses associated with updating the hashtable (in order to

avoid duplicate tuple evaluations), for every tuple evaluation, TA performs 1 sequential

72

Algorithm 7 Threshold Algorithm

L = Sorted list collection.

W = Preference vector.

k = Result size.

1: Q = {} . Initialize empty priority queue.

2: do

3: T = 0 . Initialize threshold value.

4: for i ∈ [1, d] do

5: (Tid, Ai) = getNextObjectFromList(Li)

6: T = T +Wi ·Ai . Update threshold.

7: if Tid ∈M then continue . Check if object seen before.

8: M.push(Tid)

9: S = Wi ·Ai

10: for j ∈ [1, d] AND j 6= i do

11: Aj = getV alueByKeyFromList(Tid, Lj)

12: S = S +Wj · Vj

13: end for

14: if Q.size() < k then Q.push (Tid, S)

15: else if Q.top() < S then Q.popMin(), Q.push (Tid, S)

16: end if

17: end for

18: while Q.size() < k AND Q.top() < T

73

access (Line 5) to the corresponding sorted list and d− 1 random accesses (Line 13) to find

the remaining attributes from every other list. The number of tuple evaluations increase

rapidly with respect to increasing query attributes [41], a behavior that affects propor-

tionally the total number of random accesses. Random accesses are not compatible with

GPU based processing which often relies on coalescing to fully utilize the available memory

bandwidth. Data layering [45, 59] or tuple preordering strategies [41] are used to eliminate

random accesses at the expense of higher tuple evaluations. In fact, their performance de-

grades rapidly for high dimensional relations with extreme data variability (i.e. correlated,

independent, and anti-correlated data distributions [17]). As opposed to data re-ordering,

data layering incurs a higher initialization cost, therefore the former method is a better

candidate for GPU based processing.

In order to resolve the above issues, we present a simplistic data layout scheme

based on data preordering that can be adopted to enable efficient GPU based processing. In

addition, we describe the major components of a generic framework for developing efficient

GPU Threshold Algorithms (GTA). Utilizing this framework, we concentrate on developing

and evaluating two algorithms which use different partitioning schemes when assigning work

to distinct thread blocks, namely, GTA with random partitioning (GTA-RP) and GTA with

angle space partioning (GTA-ASP). We show empirically and experimentally that intelligent

partitioning contributes towards high algorithmic efficiency.

4.3.1 Ordered Data-Threshold Table

Designing GPU-friendly threshold algorithms necessitates preordering the tuples

of a relation to enable coalesced data access. This practice is often detrimental for queries

74

𝒕𝟎𝟐 8 12 9

𝒕𝟎𝟑 10 8 6

𝒉𝟎𝟎 7 6 5

𝒕𝟎𝟏 7 1 5

𝒕𝟎𝟔 5 6 3

𝒉𝟎𝟏 4 3 5

𝒕𝟎𝟓 4 3 5

𝒕𝟎𝟒 0 1 1

𝒉𝟎𝟐 0 0 0

𝒕𝟏𝟏 11 9 8

𝒕𝟏𝟐 7 5 9

𝒉𝟏𝟎 2 3 4

𝒕𝟏𝟎 1 1 4

𝒕𝟎𝟖 0 3 1

𝒉𝟏𝟏 1 2 1

𝒕𝟎𝟗 0 2 1

𝒕𝟎𝟕 1 1 1

𝒉𝟏𝟐 0 0 0

𝐎𝑫𝑻𝟎 𝑶𝑫𝑻𝟏

Target Relation

𝒕𝟎𝟕 1 1 1

𝒕𝟎𝟖 0 3 1

𝒕𝟎𝟗 2 0 1

𝒕𝟏𝟎 1 1 4

𝒕𝟏𝟏 11 9 8

𝒕𝟏𝟐 7 5 9

𝒕𝟎𝟏 7 1 5

𝒕𝟎𝟐 8 12 9

𝒕𝟎𝟑 10 8 6

𝒕𝟎𝟒 0 1 1

𝒕𝟎𝟓 4 3 5

𝒕𝟎𝟔 5 6 3

D
at

a
B

lo
ck

D
at

a
B

lo
ck

Pa
rt

it
io

n
 2

Pa
rt

it
io

n
 1

Figure 4.4: An example of mapping a base relation (left) to multiple ODT tables (right) by

preordering tuples based on the maximum attribute value (indicated in gray).

that execute only on a subset of all available attributes (i.e. sub-queries). Queries on skewed

distributions (i.e. anti-correlated data) or those evaluated on relations with high number

of attributes become very challenging to process. Such behavior is related to the number

of possible tuple orderings which grow exponentially to the number of query attributes.

It is possible to overcome the aforementioned issues by restricting the value range of the

associated attributes for a collection of tuples, through intelligent partitioning. Creating

these range boundaries limits the number of possible tuple orderings within a partition,

thus enabling a better total ordering that is beneficial for early termination.

Investigating this hypothesis requires first describing the central component of our

broader data organization scheme, henceforth referred to as Ordered Data-Threshold (ODT)

table. ODT tables are formulated by rearranging/layering the tuples of a target relation so

75

as to ensure early evaluation of those with the greatest likelihood to score high. Different

preordering strategies are possible including those based on skyline layering [45] or first seen

position using list-based ordering [41]. In order to simplify discussion and construction of

ODT tables, we order the tuples according to their largest attribute as shown in Fig. 4.4.

In that example before creating each ODT table, we partition the data into two distinct

collections. Although different partitioning strategies are possible (see Section 4.3.4), we

group tuples based on their insertion order just for demonstration purposes. An ODT

table is logically split into ordered data blocks, each one containing several tuples from the

original relation plus one extra tuple (depicted in grey), known as the the threshold tuple.

In the general case, where a relation is divided into p partitions, and b data blocks per ODT

table, a single data block contains a set of relation tuples (Cij) and a threshold tuple (Hij),

where i ∈ [0, p− 1], j ∈ [0, b− 1]. Let Cij [n, d] be the d-th attribute of the n-th tuple in Cij

then the threshold tuple Hij is calculated as follows:

Hij = {am|am ≥ arg max
r∈[j+1,b−1]

Cir[n,m]} (4.1)

The threshold tuple (Hij) contains the maximum attribute values among those in

the tuples of any subsequent data block. It is useful for determining when to safely stop

query processing because it provides information about the maximum possible score of the

tuples which are yet to be processed. When constructing the associated ODT tables, the

threshold tuples are computed inexpensively by keeping track of the maximum attribute

values during the assignment of every tuple to its corresponding data block. Consider the

example of Fig. 4.4, for a Top-2 query on all attributes, in ODT0 tuples t2 = 29 and t3 = 24

76

𝒕𝟎𝟐 8 12 9

𝒕𝟎𝟑 10 8 6

𝒉𝟎𝟎 7 6 5

𝒕𝟎𝟏 7 1 5

𝒕𝟎𝟔 5 6 3

𝒉𝟎𝟏 4 3 5

𝒕𝟎𝟓 4 3 5

𝒕𝟎𝟒 0 1 1

𝒉𝟎𝟐 0 0 0

𝒕𝟎𝟐 8 12 9

𝒕𝟎𝟑 10 8 6

𝒉𝟎𝟎 7 6 5

𝒕𝟎𝟐 8 12 9

𝒕𝟎𝟑 10 8 6

𝒉𝟎𝟎 7 6 5

𝒕𝟎𝟏 7 1 5

𝒕𝟎𝟕 6 5 5

𝒕𝟎𝟔 5 6 3

𝒉𝟎𝟏 4 3 5

𝒕𝟎𝟏 7 1 5

𝒕𝟎𝟕 6 5 5

𝒕𝟎𝟖 5 4 6

𝒕𝟎𝟔 5 6 3

𝒉𝟎𝟏 4 3 5

𝒕𝟎𝟖 5 4 6

𝒕𝟎𝟔 5 6 3

𝒉𝟎𝟐 4 3 5

𝒕𝟎𝟏 7 1 5

𝒕𝟎𝟕 6 5 5

𝒉𝟎𝟏 5 6 6

𝒕𝟎𝟐 8 12 9

𝒕𝟎𝟑 10 8 6

𝒉𝟎𝟎 7 6 5

𝒕𝟎𝟓 4 3 5

𝒕𝟎𝟒 0 1 1

𝒉𝟎𝟐 0 0 0

𝒕𝟎𝟓 4 3 5

𝒕𝟎𝟒 0 1 1

𝒉𝟎𝟐 0 0 0

𝒕𝟎𝟓 4 3 5

𝒕𝟎𝟒 0 1 1

𝒉𝟎𝟑 0 0 0

insert 𝑡07 insert 𝑡08 split 2nd block

Figure 4.5: Example depicting insertion of a new tuples in a given ODT table.

will be evaluated and processing will stop at the first data block because the threshold

tuple h00 = 16 guarantees that no tuples exist with higher score. Note that the chosen

block size is independent of the query result size k. In a real life application, our method

would operate on hundreds of partitions containing thousands of blocks each with variable

query parameters including varying query attributes (m), result size (k), and tuple number

(n). Note that the threshold attributes can be updated iteratively by examining only the

attribute values of neighboring blocks to those where new tuples are being added or existing

ones deleted (see Construction & Maintenance).

4.3.2 ODT Construction & Maintenance

ODT tables possess similar properties to that of data layering strategies [45, 41].

However, they are simpler to build and inherently well structured for coalesced data access.

They can be constructed in batch using simple highly parallel GPU primitives (i.e. sort,

parallel reduction). In addition, ODT tables can be easily maintained in a dynamic environ-

77

delete 𝑡01

𝒕𝟎𝟐 8 12 9

𝒕𝟎𝟑 10 8 6

𝒉𝟎𝟎 7 6 7

𝒕𝟎𝟕 6 5 5

𝒉𝟎𝟏 5 6 6

𝒕𝟎𝟖 5 4 6

𝒕𝟎𝟔 5 6 3

𝒉𝟎𝟐 4 3 5

𝒕𝟎𝟓 4 3 5

𝒕𝟎𝟒 0 1 1

𝒉𝟎𝟑 0 0 0

𝒕𝟎𝟐 8 12 9

𝒕𝟎𝟑 10 8 6

𝒕𝟎𝟕 6 3 7

𝒉𝟎𝟎 5 6 6

𝒕𝟎𝟔 5 6 3

𝒕𝟎𝟖 3 5 4

𝒉𝟎𝟐 4 3 5

𝒕𝟎𝟓 4 3 5

𝒕𝟎𝟒 0 1 1

𝒉𝟎𝟑 0 0 0

merge block 1 & 2

𝒕𝟎𝟖 5 4 6

𝒕𝟎𝟔 5 6 3

𝒉𝟎𝟐 4 3 5

𝒕𝟎𝟏 7 1 5

𝒕𝟎𝟕 6 5 5

𝒉𝟎𝟏 5 6 6

𝒕𝟎𝟐 8 12 9

𝒕𝟎𝟑 10 8 6

𝒉𝟎𝟎 7 6 5

𝒕𝟎𝟓 4 3 5

𝒕𝟎𝟒 0 1 1

𝒉𝟎𝟑 0 0 0

Figure 4.6: Example depicting deletion of an object from a given ODT table.

ment by retrofitting them to support insert and delete operations using a self-balancing tree

structure (i.e. B/B+ tree). In that environment the data blocks of a given ODT table, cor-

respond to the leaf pages of the associated tree structure (think of a clustered index). These

leaf pages are created by indexing the maximum attribute of each tuple and are augmented

with a threshold tuple as described previously. Any insert, update or delete operation will

be managed on the CPU side, allowing the GPU to operate on a read-only instance of the

transformed relation. Efficient GPU based processing is contingent on enabling coalesced

access within any given data block, thus linking randomly pages in main memory will not

degrade performance.

Below we demonstrate the capability of ODT tables to support insert and delete

operations using two examples indicating their behavior during such scenarios. For these

examples, we assume a minimum and a maximum block size of 2 and 3 respectively. In

Figure 4.5, we showcase how an ODT table is updated during several consecutive tuple

78

insertions which lead to a block split operation. A new tuple tv = {a0, a1, ..ad−1} is inserted

into an ODT table by utilizing binary search to discover block B having a threshold tuple

hij = {t0, t1...td−1} such that ∃am ∈ tv where am > tm where m ∈ [0, d−1]. In our example,

t07 will be inserted in the second block because at least one of its attributes is greater than

the equivalent attributes of h01. The same happens for tuple t08 after the insertion of which

a split operation occurs due to the current block size being larger than the maximum (3).

For a block that is being split into two new ones, we preorder the tuples according to their

maximum attribute value and group them into blocks of size equal to the minimum. In the

previous example, this will result in two groups, one containing t01 and t07 and the other

t08 and t06. For the first group, the threshold tuple is calculated by finding the maximum

attributes of the subsequent block (third block). The second group retains the threshold

tuple of the original block, as it was before the split, since no changes occurred below that

block.

Figure 4.6 showcases what happens when a delete operation causes the merging

of two blocks. There tuple t01 is deleted resulting in the second block having less tuples

than the minimum allowed. When merging two ordered blocks Bi and Bj , where Bj comes

after Bi, we create a new block with all their tuples combined and a threshold tuple equal

to that of Bj . In our example, the first and second blocks combined together utilizing the

threshold tuple of the latter for that of the new block.

79

Algorithm 8 Aggregate-Heap Building (hbuild)

C = ODT collection.

S = Tuple-id, scores buffer.

Q = Tuple-id, scores heap.

W = Preference vector.

k = Result size.

1: for i ∈ [1, p] in parallel do

2: for j ∈ [1, b] do

3: for (t ∈ Cij) & (h ∈ Hij) in parallel do

4: Sit =
∑d

m=1 (wm · tm) . Score aggregation.

5: Th =
∑d

m=1 (wm · hm) . Threshold value.

6: end for

7: syncthreads()

8: Qi = hmerge ({Qi ∪ Si}, k) . Bitonic merge.

9: if Qi.min() >= Th then . Early stopping.

10: return Qi

11: end if

12: end for

13: end for

80

4.3.3 Heap Build & Reduction

GTA operates in two phases: (1) Aggregate-Build Heap phase (hbuild), (2) Heap

Merge phase (hmerge). Each phase is implemented using a distinct GPU kernel. A simplified

description of the first phase is shown in Algorithm 8. Every partition contains a single

ODT table, assigned for processing to a single thread block (Line 1). Threads within a

block are responsible for aggregating in parallel the scores of several tuples (Line 3-5) and

calculating the threshold value (Line 5). At the end of every data block evaluation the

current collection of <tuple-id,score> pairs are combined with the k highest scoring pairs

identified from previous iterations (Line 6). This heap is stored in shared memory and is

constructed using Bitonic Top-K. The code responsible for merging is similar to that of

the hmerge kernel (Algorithm 9). At the end of the merge step, the minimum heap score is

compared to the associated threshold (Line 8) to determine when the Top-K answer for a

given partition becomes available. Unless this condition is false, we write the corresponding

pairs in global memory and terminate processing. The hmerge operates on the individual

heaps created by hbuild. A fixed collection of ¡tuple-id, score¿ pairs is assigned to distinct

thread blocks for processing. Each thread block reduces their input set to k pairs having the

highest score by combining bitonic sort (only the first k iterations [80] Line 2) and parallel

reduction (Line 4). Several rounds of sort-reduce operations are executed in sequence until

only k pairs remain.

81

Algorithm 9 Heap Merge (hmerge)

S = Tuple-id, scores collection.

k = Result size.

n = Score buffer size.

1: while n > k in parallel do

2: bitonic sort (S, k, n) . Sort up to k.

3: Si = max (Si, Si+k) . Bitonic merge.

4: n = n/2

5: end while

6: return S0:k . Return k highest tuple-id, score pairs.

4.3.4 Data Partitioning Strategies

Data partitioning is crucial for achieving efficient GPU based processing. The

rationale is that good partitioning facilitates workload balance which is pivotal for masking

data access latency and maximizing throughput by using an adequate number of operating

threads. Likewise, in Top-K selection data partitioning influences algorithmic efficiency

since it restricts access to tuples that can effectively prune the search space. Achieving a

balance between these extreme cases is possible using an intelligent partitioning scheme.

82

tan(φ1) =

√
(Ãd)2 + (Ãd−1)2...+ (Ã2)2

Ã1

...

tan(φd−2) =

√
(Ãd)2 + (Ãd−1)2

Ãd−2

tan(φd−1) =
Ãd

Ãd−1

(4.2)

Random partitioning (RP) groups together tuples according to their relative posi-

tion within a target relation; an example of RP is shown in Fig. 4.7 (left). This method of

partitioning is beneficial for two reasons: (1) it incurs almost zero initialization cost, (2) it

constructs partitions having approximately the same size, which supports workload balance

during processing. However, this practice might contribute to the creation of partitions

that consist primarily of anti-correlated data. In this case, algorithmic efficiency and in

turn query latency are adversely impacted by the fact that an optimal query evaluation de-

pends on different tuple re-orderings dictated by variable query parameters (i.e. attribute

number, preference vector, result size).

Angle space partitioning (ASP) formulates multiple data collections by enabling

grid partitioning on the polar coordinates (Eq. 3.2) of every tuple in the target relation.

Considering geometric symmetry and the fact that we are interested in the highest ranked

tuples, we compute the polar coordinates of Ãi = (α−Ai) where Ai is the i-th attribute of

each tuple having values in range (0, α]. The number of resulting partitions is determined

by the number of split points for each angular dimension. Assuming s split points, the

resulting number of partitions is sd−1, where d is the number of attributes in the based table.

Alternatively, there exist solutions enabling equi-volume partitioning using ASP [96]. In our

83

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Random Partitioning

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Angle Space Partitioning

Figure 4.7: Random vs Angle Space Partitioning.

experiments, we concentrate on regular grid partitioning since it incurs lower initialization

cost without noticeable difference in query latency.

A toy example indicating the different characteristics of ASP vs RP is shown

in Figure 4.7. In that example, each partition consists of tuples indicated with similar

point shape and color. Compared to RP, ASP is better alternative when partitioning

the data for Top-K selection. This happens because the latter method creates partitions

containing tuples with correlated attributes which are inherently easier to linearly order for

any monotone function utilizing the ODT table concept. This conjecture is also applicable

to relations with more than 2 attributes and has been showcased to be effective for skyline

computation [96], where attaining a near optimal linear order is critical for improving

algorithmic efficiency.

In order to demonstrate ASP’s superiority in a more intuitive manner, we utilize

the concept of “identical score curve” (ISC) as proposed in [89]. ISC is the line corresponding

84

to equation f(t) = v, consisting of tuples (t) in the data space whose scores are equal

to v. Let tk be the minimum scoring tuple in the priority queue at some point during

query evaluation, ISC(tk) the line defined by equation f(tk) = vk and Ti the corresponding

threshold tuple. Assuming the priority queue contains k tuples, query processing terminates

if and only if F (Ti) ≤ F (tk) has been satisfied. This indicates that Ti must be on or below

ISC(tk) inside the half-space that is closer to the origin. In Figure 4.8, we concentrate on

one partition from each partitioning method and plot the corresponding ISC, and threshold

tuples at various points during Top-2 query processing. The example of Figure 4.8 derives

from the partitions of the toy dataset depicted in Figure 4.7. Our goal with this example is

to demonstrate how different partitioning strategies affect early termination by influencing

ISC(tk) and Ti respectively. Note that because the tuples are reordered based on their

maximum attribute value, the order in which they are visited during query processing is

equivalent to performing in succession a plane sweep of each axis.

In the RP example (Figure 4.8 left), the first two tuples evaluated are t1 = (x1, y1)

and t2 = (x2, y2). Query processing will terminate if the corresponding threshold tuple is

below the halfspace defined by ISC(t1). In the worst case, because of random partitioning

the threshold tuple will consist of attributes that are arbitrarily close to the maximum from

those in at least one of t1 and t2. When this happens, it is very likely for the threshold

tuple to reside in the halfspace above ISC(t1). In fact, in our example the threshold tuple

T1 contains x3 from t3 = (x3, y3) which is very close to the value of x1 from t1. Thus, in the

first iteration query processing does not terminate because the stopping condition is not

satisfied. Because the tuples within the given partition are not restricted in any way, it takes

85

several iterations and evaluation of tuples t3, t4, t5, t6, before Top-2 selection can safely

terminate. This happens because T2 resides above the halfspace defined by ISC(t4), and

only after t5, t6 are evaluated, the new threshold T3 is available for consideration, indicating

that no tuples exist with better score than that of t4.

ASP creates partitions with tuples having attributes restricted by the partition

boundaries. This practice restricts the value range of the threshold attributes, subsequently

reducing the threshold and enabling early termination with fewer tuple evaluations. In the

ASP example (Figure 4.8 right), after evaluating t1 = (x1, y1) and t2 = (x2, y2), t3 and t4 are

combined to create T1 which is the current stopping threshold. At this point, because T1 is

in the halfspace below ISC(t2) processing can safely stop since we have discovered the two

highest ranking tuples and satisfied the stopping condition. Therefore, for a single partition

only 2 evaluations were required as opposed to 6 when using RP. When the partition angle

is small, the partition boundaries restrict the threshold attributes, resulting in rapidly

decreasing threshold score which contributes towards early with few tuple evaluations.

4.3.5 GTA Complexity Estimation

In this section, we analyze the complexity of GTA and the manner in which it is

affected by the previously mentioned partitioning strategies (i.e. RP and ASP). Let L be

the maximum attribute value for all n tuples and m be the number of query attributes.

GTA evaluates each tuple within a given partition in-order of their maximum attribute.

Considering that the tuples are mapped in multidimensional space, this order of processing

is equivalent to a plane sweep of the axes that correspond to the actual tuple attributes.

86

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

𝑻𝟏

𝑻𝟐

𝑻𝟑

𝒕𝟏

𝒕𝟐

𝒕𝟒

𝒕𝟑

𝒕𝟓

𝒕𝟔

𝒕𝟖

𝑰𝑺𝑪(𝒕𝟒)𝑰𝑺𝑪(𝒕𝟏)

𝑻𝟏

𝑰𝑺𝑪 𝒕𝟐

Random Partitioning Angle Space Partitioning

𝒕𝟏

𝒕𝟑 𝒕𝟐

𝒕𝟒

𝒕𝟕

Figure 4.8: Random vs Angle Space Partitioning.

Let [L,L− δj] (i ∈ [1,m]), be the region processed by GTA for some axis xi, at

some point during query evaluation. Due to the order in which tuples are visited during

processing, GTA would have evaluated some tuple ti (i ∈ [1, n]), if and only if ti contains at

least one attribute aj ∈ [L,L− δj]. In this case, it is possible to realize GTA’s complexity

as a function of δi by calculating the volume (or area in 2D) of the polytope defined by

hypercube [0, L]m and the intersection of every “swept” region [L,L− δj] (i ∈ [1,m]). Our

analysis is applicable for uniformly distributed points (tuples) in space and assume the

existence of a single data partition. However, it is a scenario that could arise in the worst

case with many partitions when RP is used because there is no restriction on the attribute

range when tuples are assigned to distinct partitions.

In order to simplify the discussion and without loss of generality, we continue

our analysis by concentrating on the 2D case where L = 1. Figure 4.9 (left) provides an

illustration (depicted in green) of the area that has been processed after regions [1, 1− δ1]

87

1 − 𝛿1

1 − 𝑐 ⋅ 𝛿1

𝑐 ⋅ 𝛿1

𝛿1

𝑥1

𝑥2

𝑥1

𝑥2

1 1

11Random Partitioning Angle Space Partitioning

𝐶1
𝜃

𝐶2

Figure 4.9: Processed Area for Varying δi using RP and ASP.

and [1, 1− c · δ1] have been ”swept” by GTA. We correlate delta2 to δ1 through c ∈ [0, 1] in

order to emulate the different query parameters (e.g. preference vector, result size) and data

distributions that could possibly affect how they evolve during processing. The expected

processed area when using RP as function of δ1 and c equals:

ERP = 1− (1− δ1) · (1− c · δ1) (4.3)

Following the same process, we showcase in Figure 4.9 (right) the area of a partition defined

by angle θ that has been processed after some point during query evaluation. The partition

boundaries dictate the value of δi because no tuple within the partition will have attributes

outside that range. In this case, we can represent the processed areas as a function of δ1

and c using the following equation:

EASP δ
2
i · sin(θ) ·

(
3 + c2

)
4

(4.4)

88

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

RP ASP (45) ASP (30)

ASP (15) ASP (10) ASP (5)

Figure 4.10: Expected processed area as function of δ1 using RP and ASP(degrees).

The previous equation was calculated by finding the combined area of triangles

C1 and C2. Equation 4.4 indicates that a smaller partition angle contributes towards the

reduction of the total area that needs to be processed for a given δ1 value. However, we

cannot decrease the partition angle indefinitely because it may result in evaluating more

tuples than necessary since from each partition at least k tuple will be evaluated. This can

be realized in Figure 4.10 where we plot the corresponding area values for increasing δ1, c = 1

and varying angles. In this we observe that the processed area value decreases less rapidly

after 15 degrees. Therefore, there is little benefit in having too many small partitions. We

discovered experimentally that utilizing ASP by having 512 to 2048 partitions is enough to

attain a good trade-off between having enough work for the GPU to operate efficiently and

reducing the number of tuple evaluations.

89

4.4 Experimental Environment

In our experimental evaluation, we consider two GTA algorithms: (1) GTA-RP

which utilizes random partitioning, (2) GTA-ASP which utilizes angle space partitioning.

Due to lack of existing solutions that support early termination on GPU, we compare against

Bitonic Top-K [80], henceforth denoted as GFTE (GPU Full Table Evaluation).

In order to demonstrate the importance of early termination, we explore two dif-

ferent experimental paradigms (1) where the data reside in device memory and are directly

accessible by the GPU Streaming Multiprocessors (SMs), (2) where the data reside in host

memory and are managed explicitly by NVIDIA’s unified memory driver. The latter form

of data management has two modes of execution, one where the driver retrieves the data

during the kernel’s first call (Zero Copy Mode), and another where it receives a hint to

prefetch the necessary data before query evaluation (Prefetching Mode).

In addition to our comparison with state-of-the-art GPU based algorithms, we im-

plemented and evaluated the performance of CTA-ASP, an equivalent solution to GTA-ASP,

that is optimized for CPU based processing using multi-threading and AVX instructions.

We provide discussion comparing CTA-ASP and GTA-ASP against their corresponding

full table evaluation algorithms which are optimized for CPU (CFTE) and GPU (GFTE)

processing, respectively.

Our experiments were conducted using a single 12 GB NVIDIA Titan V GPU

attached to a single socket Intel Xeon E5-1650 processor @ 3.5 GHz with 32 GB of RAM.

All algorithms were implemented using standard C++, CUDA 10.0 and NVIDIA’s CUB

Library [67]. The CPU implementations utilize distinct priority queues for every thread,

90

64

128

256

512

1024

2048

4096

64

128

256

512

1024

2048

4096

32 64 128 256

GTA - RP GPTA - ASP

La
te

n
cy

 (
m

s)

Number of Tuples (n)

Figure 4.11: GPU Data Partitioning cost.

which are combined towards the end of query evaluation. Our code is publicly available in

Github [105].

4.4.1 Dataset, Queries & Metrics

Following the example of previous work [45, 107, 65], we conducted experiments

using synthetic data and three types of distributions, mainly correlated, independent and

anti-correlated, generated using the readily available data-set generator [17]. Our experi-

ments concentrate on measuring query latency for variable attribute number (d ∈ [2, 8]) and

result size (k ∈ [4, 8, 16, 32, 64, 128, 256]) for a relation containing 256 million tuples with 8

attributes each (8 GB of raw data). For experiments with data that reside in host mem-

ory, we generated a relation with 8 attributes and 512 million tuples (16 GB of raw data).

Finally, we measured the execution time on independent data utilizing variable preference

vectors as summarized in Table 3.2.

91

0.01

0.1

1

10

100

0.01

0.1

1

10

100

Q0 Q1 Q2 Q3 Q4

0.01

0.1

1

10

100

0.01

0.1

1

10

100

Q0 Q1 Q2 Q3 Q4

GTA - RP GTA - ASP

La
te

n
cy

 (
m

s)

0.25

1

4

16

64

0.25

1

4

16

64

Q0 Q1 Q2 Q3 Q4

GTA - RP

0.25

1

4

16

64

0.25

1

4

16

64

Q0 Q1 Q2 Q3 Q4

GTA - ASP

La
te

n
cy

 (
m

s)

A
ttrib

u
tes (𝑑

)

4

8

16

32

64

128

256

R
esu

lt Size (k)

2

3

4

5

6

7

8

Figure 4.12: Varying Query Preference Vector.

4.5 Synthetic Data Experiments

4.5.1 Initial Cost of Indexing

Figure 4.11 indicates the total cost of initialization which includes partitioning and

the host-to-device communication when building the ODT tables. ASP incurs at most twice

the initialization overhead of RP while being 2× to 200× faster in terms of query latency,

as it will be come clear in the following sections. Initialization occurs only once before any

queries are executed and is commonplace for all list-based early stopping algorithms [34,

65, 45, 59]. Note that regardless of the chosen partitioning strategy, ODT tables can

be constructed utilizing a “bulk loading” algorithm and maintained using insert/delete

operations as described in Section 4.3.1. In addition, our methods are generic in that they

can be applied on an arbitrary number of attributes and support queries only for a subset

92

of them. This property is demonstrated throughout our experimental evaluation where

we present the query latency for sub-queries on 2 to 8 attributes for a target totaling 8

attributes per tuple.

4.5.2 Variable Preference Vectors

As indicated in Fig. 4.12, there is no difference in execution time when using

random partitioning for every tested preference vector and query parameters. On the

other hand, ASP experiences somewhat noticeable change in execution time across different

queries. This behavior is associated with the way query weights influence the associated

processing workload of each partition. ASP operates on all attributes, though it correlates

them through angular coordinate calculations which consider fewer of them in ascending

attribute order (see Eq. 3.2). This ordering lessens the effects of other attributes in the

corresponding angular coordinate calculations for those appearing at the end.

Q0 (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Q1 (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8)

Q2 (0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1)

Q3 (0.1, 0.2, 0.3, 0.4, 0.4, 0.3, 0.2, 0.1)

Q4 (0.4, 0.3, 0.2, 0.1, 0.1, 0.2, 0.3, 0.4)

Table 4.1: Individual query weights.

Hence, preference vectors that favor these attributes using higher weights (see Q1,

Q4) will naturally result in less work to process the corresponding edge (those closer to the

93

GFTE GTA-RP GTA-ASP

0.01

0.1

1

10

100

2 3 4 5 6 7 8

0.01

0.1

1

10

100

4 16 64 256

0.01

0.1

1

10

100

2 3 4 5 6 7 8

0.1

1

10

100

4 16 64 256

0.1

1

10

100

2 3 4 5 6 7 8

1

10

100

4 16 64 256

La
te

n
cy

 (
m

s)
La

te
n

cy
 (

m
s)

La
te

n
cy

 (
m

s)

Independent

Attributes (𝑑) Result size (k)

Anticorrelated

Correlated

Figure 4.13: Device Memory Query Performance.

axes in high-dimensional space) partitions. In contrast, symmetrically opposite preference

vectors (see Q2, Q3) are responsible for higher execution time since the angle coordinates

are diluted more with irrelevant information from other attributes. Although this behavior

is inherent to ASP, its effect on execution time are minuscule, as indicated by our measure-

ments. Henceforth, in our remaining experiments we present results using Q0.

94

4.5.3 Device Memory Query Processing

In Fig. 4.13, we present the query latency for all developed algorithms on differ-

ent data distributions when the base relation resides in device memory. Early stopping

solutions are very efficient when processing highly correlated data because it is possible

to order the tuples linearly without any ambiguity. For this reason, both GTA-RP and

GTA-ASP are respectively 60× and 150× on average faster than GFTE. Independent data

are somewhat more difficult to process. This happens because the likelihood of a tuple with

one high scoring attribute appearing early on during processing increases dramatically. For

this reason, GTA-RP ends up evaluating almost 50% of the raw data, despite them being

irrelevant to the Top-K answer. This contributes to higher query latency because of the

additional synchronization cost associated with the heap merge phase. GTA-ASP remains

work-efficient as it relies on ASP to restrict the answer search space (i.e. variance of tuple

attribute values) within a partition. This technique enables stopping earlier, reducing the

associated processing workload and query latency. Anti-correlated data are the most diffi-

cult to process. Similar to before, the high variance in attribute values results in GTA-RP

processing much more data that necessary (up 90% from our measurements). Hence, its

query latency is almost comparable to that of GFTE for every experimental parameter. For

the same reason as before, GTA-ASP is able to adapt well exhibiting 1.7× to 4× better

query latency compared to GFTE.

95

0.1

1

10

100

1000

10000

2 3 4 5 6 7 8

10

100

1000

10000

4 16 64 256

10

100

1000

10000

4 16 64 256
1

10

100

1000

10000

2 3 4 5 6 7 8

1

10

100

1000

10000

2 3 4 5 6 7 8

1

10

100

1000

10000

4 16 64 256

1

10

100

1000

10000

4 16 64 256

0.01

1

100

10000

2 3 4 5 6 7 8

Independent

Anticorrelated

Attributes (𝑑) Attributes (𝑑)

ZERO COPY PREFETCH

GFTE GTA-RP GTA-ASP

ZERO COPY PREFETCH

La
te

n
cy

 (
m

s)
La

te
n

cy
 (

m
s)

Independent

PREFETCH

Anticorrelated

ZERO COPY

ZERO COPY PREFETCH

Result size (k)Result size (k)

Figure 4.14: Host Memory Query Performance.

4.5.4 Host Memory Query Processing

In Fig. 4.14, we depict the query latency measurements for all developed algo-

rithms on different data distributions when the base relation resides in host memory. We

concentrate on the independent and anti-correlated distributions since they are the most

challenging to process. For independent data, data prefetching as opposed to accessing

them during evaluation is beneficial for both GTA variants. However, it is occasionally

worse when accessing all the tuples (i.e. GFTE). We traced this behavior back to an ex-

cessive number of GPU page faults. In fact, we observed occasionally 2× the amount of

the necessary data (i.e. 16GB) being transferred across PCIe. We estimate that the GPU

driver is unsuccessful in detecting temporal locality during query processing, so it resorts

into moving data back and forth from the host memory. On anti-correlated data, we observe

similar behavior with prefetching being the best option to speed-up processing. GTA-RP

96

CFTE GFTE CTA-ASP GTA-ASP

1

10

100

1000

4 16 64 256

0.1

1

10

100

1000

4 16 64 256

0.01

0.1

1

10

100

1000

4 16 64 256

0.01

0.1

1

10

100

1000

2 3 4 5 6 7 8

0.01

0.1

1

10

100

1000

2 3 4 5 6 7 8

0.1

1

10

100

1000

2 3 4 5 6 7 8

La
te

n
cy

 (
m

s)
La

te
n

cy
 (

m
s)

La
te

n
cy

 (
m

s)

Independent

Attributes (𝑑) Result size (k)

Anticorrelated

Correlated

Figure 4.15: Query latency comparison against CPU.

requires processing more data blocks to find the Top-K answer and outperforms GFTE

occasionally. GTA-ASP performs on average 22× to 40× better than GTA-RP. The reason

is because it requires fetching less data from host memory while most of it is already cached

in GPU memory due to prefetching.

97

4.5.5 CPU Performance Comparison

In this section, we compare the performance of CPU Top-K selection against GPU

Top-K selection. We developed two CPU methods; one that evaluates the score of all tuple

for the target relation (CFTE), and another that relies on ASP and data re-ordering to

enable early termination during query processing (CPU-ASP). Both methods utilize multi-

threading and AVX instructions to improve processing throughput. Every CPU thread

keeps track of the k-highest ranking tuples in a private priority queue, merging them only

towards the end of query evaluation.

In Figure 4.15, we summarize the results attained for varying query parameters

and data distributions. Overall, early termination methods using ASP and data re-ordering

on CPU and GPU outperform solutions that rely on full evaluation because they require less

tuple evaluations to compute the query answer. In fact, early termination on CPU is able

to outperform the full table evaluation algorithm on GPU despite the latter being heavily

optimized and while having higher bandwidth and compute capabilities. This behavior is

consistent for our experiments with correlated and independent data, showcasing improve

query latency by a factor of at least 100× and 30× respectively. On anticorrelated data, it

is more challenging to enable early termination because every tuple contains at least one

relatively high ranking attribute. In this case, the performance of early termination drops

noticeably for both CPU and GPU implementations because about 50% of all tuples are

evaluated. Despite this behavior, early termination improves query latency at least 2× for

both CPU and GPU solutions compared to full evaluation. In fact, subqueries referring to

2 or 3 attributes experience up to 10× lower query latency in either architecture.

98

4.6 Conclusions

In this section, we developed the skeleton of parallel threshold algorithms that were

optimized to enable GPU accelerated Top-K selection with support for early termination.

We considered two different data partitioning strategies, evaluating their effectiveness on

various data distributions and query parameters. Our empirical results showcased that

data preordering when combined with angle space partitioning is superior in terms of tuple

evaluations compared against random partitioning. Experiments with queries that were

evaluated on device memory resident data showcased 2× to 100× better query latency

against the state-of-the-art solution that relied on evaluating the complete relation. In

addition, our experiments on queries that were evaluated on host memory resident data

showcased that our methods are very effective when combined with prefetching and related

caching strategies. For these experiments, we showcased 10× to 1000× better query latency

as opposed to a full table evaluation algorithm. Finally, we implemented our methods on

multi-core CPUs and demonstrated proportional performance improvements compared to

the corresponding state-of-the-art full table evaluation solution utilizing priority queues.

99

Chapter 5

Processing-In-Memory

Architectures

5.1 Introduction

Modern processors leverage the integration of many compute cores and deep cache

hierarchies on a single chip to mitigate the effects of processing large dataset. Despite

these efforts, the widening gap between memory and processor speed contributes to a high

execution time, as the maximum attainable throughput is constrained by the data move-

ment. Processing-In-Memory (PIM) architectures [3, 31, 37, 40, 58, 71, 83, 88, 93, 103]

present a viable alternative for addressing this bottleneck leveraging on many processing

cores that are embedded into DRAM. Moving processing closer to where data reside of-

fers many advantages including but not limited to higher processing throughput, lower

power consumption and increased scalability for well designed parallel algorithms. In this

100

work we rely on UPMEM’s architecture [58], a commercially available PIM implemen-

tation that incorporates several of the aforementioned characteristics. UPMEM’s archi-

tectural implementation follows closely the fundamental characteristics of previous PIM

systems [3, 31, 37, 40, 58, 71, 83, 88, 93, 103], offering in addition an FPGA-based test-

ing environment [94]. In this chapter, we utilize UPMEM’s PIM accelerator and develop

algorithmic solutions for Top-K and Skyline Selection. In Top-K selection, we provide a

thorough discussion involving full table evaluation as well as early termination solutions.

For Skyline selection, we design a load balanced algorithm suitable for PIM architectures

and include a comprehensive evaluation comparing against state-of-the-art multi-core CPU

and many-core GPU solutions.

5.2 Architecture Overview

UPMEM’s Processing-In-Memory (PIM) technology promotes integration of pro-

cessing elements within the memory banks of DRAM modules. UPMEM’s programming

model assumes a host processor (CPU), which acts as an orchestrator performing read/write

operations directly to each memory module. Once the required data is in-place, the host

may initiate any number of transformations to be performed on the data using the embed-

ded co-processors. This data-centric model favors the execution of fine grained data-parallel

tasks [58]. Figure 5.1 illustrates the UPMEM’s PIM architecture.

A memory system of 128 GB provides access to 2048 embedded processors called

Data Processing Units (DPUs) having a total maximum of 49152 operating threads and 2

TB/s data bandwidth to DRAM. Depending on the number of DIMMs, it is possible to

101

have hundreds of DPUs operating in parallel. Each one owns 64 MBs which are part of the

collective DRAM capacity, referred to as Main RAM (i.e. MRAM). The UPMEM DPU

is a triadic RISC processor with 24 32-bits registers per thread. The DPU processors are

highly multi-threaded, supporting a maximum of 24 threads. Fast context switching allows

for effective masking of memory access latency1. Dedicated Instruction RAM (IRAM) allows

for individual DPUs to execute their own program as initiated by the host. Additionally,

each DPU has access to a fast working memory (64 KB) called Work RAM (WRAM),

which is used as a cache/scratchpad memory during processing and is globally accessible

from all active threads running on the same DPU. This memory can be used to transfer

blocks of data from the MRAM and is managed explicitly by the application.

In order for PIM systems to operate at peak processing throughput, all participat-

ing embedded processors are required to operate in isolation with minimal data exchange.

It is important to note that different PIM system configurations that exhibit varying levels

of isolation are possible and can be classified accordingly. UPMEM’s PIM is an example

of physical isolation, not allowing direct communication between compute nodes requiring

instead for the host CPU to be involved. PIM configurations based on 3D stacked memory

(known also as Processing Near Memory(PNM) systems) utilize a Network-On-Chip(NoC)

to enable support for direct access to neighboring physical memory partitions without any

involvement from the host CPU [32]. Each physical memory partition can be classified as

local or remote partition depending on their proximity to the corresponding embedded pro-

cessor [32]. This organization indicates a form of logical isolation between the corresponding

1Switching is performed at every clock cycle between threads

102

Figure 5.1: UPMEM’s PIM Architecture Overview

processors affecting memory access latency since local memory partitions are significantly

faster to access than a remote one [32]. Our algorithmic solution is structured around the

provision of an efficient partitioning schema that enables opportunities for masking the

communication overhead associated with either types of logical or physical isolation which

are apparent in most PIM systems, regardless of configuration specifics.

From a programming point of view, two different implementations must be speci-

fied: (1) the host program that will dispatch the data to the co-processors’ memory, sends

commands, and retrieves the results, and (2) the DPU program/kernel that will specify any

transformations that need to be performed on the data stored in memory. The UPMEM ar-

103

chitecture offers several benefits over conventional multi-core chips including but not limited

to increased bandwidth, low latency and massive parallelism. For a continuously growing

dataset, it can offer additional memory capacity and proportional processing throughput

since new DRAM modules can be added as needed.

5.2.1 Performance Validation

Due to lack of an actual hardware implementation (at the time of this thesis UP-

MEM had not publicly released their PIM hardware), we used UPMEM’s cycle accurate

simulator (validated through an FPGA emulation) to evaluate the performance of our pro-

posed solutions. The simulator was designed and distributed by UPMEM and is publicly

available upon request through their website [95]. It operates by taking as input the binary

of an application that was generated using UPMEM’s SDK [94] and compiler, and calcu-

lates the expected number of clock cycles required for completing the corresponding task.

These clock cycles include time spend in the DPU pipeline as well as waiting for data to

arrive from the DPU memory upon an data access request.

104

Chapter 6

Accelerated Top-K Selection on

Processing-In-Memory

6.1 Introduction

Typically, Top-K selection involves two steps: (A) the Score aggregation step,

where the individual scores of every tuple are calculated by utilizing the provided aggrega-

tion function, (B) the Ranking step, where the k-highest ranking tuples are identified by

using either a sorting or a K-selection algorithm (i.e. radix-select, bitonic top-K). Consid-

ering the aforementioned processing steps, it is apparent that Top-K selection is inherently

memory bound. This happens when the k value is large and the corresponding query in-

volves many attributes. Hence, such an operator stands to achieve a significant performance

improvement from utilizing processing-in-memory (PIM) architectures. This happens be-

cause PIM architectures are suitable for memory bound applications since they provide low

data access latency and high processing bandwidth.

105

PIM accelerators offer massive parallelism and high processing bandwidth, but

unlike GPUs they rely on processing units (PUs) which operate in total isolation relying

on the host processor for coordination and data exchange. For this reason, the process of

migrating applications on PIM systems is not as straightforward as designing a massively

parallel algorithm similar to that of a GPU or another type of an accelerator. One must

consider partitioning, load balancing and data exchange issues that might arise during the

design phase. In this chapter, we investigate possible solutions which are geared towards

evaluating efficiently Top-K queries using PIM systems. We investigate two different ap-

proaches: (1) Top-K queries using Full Table Evaluation (FTE), (2) Top-K queries with

support for early termination. The former approach refers to solutions which require evalu-

ating all the tuples from a target relation and utilize sorting or k-selection to identify those

with the highest ranking. The latter approach relies on data reordering and some type of

intelligent partitioning to enable processing that enables efficient early termination. In the

following sections, we present a discussion analyzing first the full table evaluation solutions.

We attempt to establish a fair baseline which can be used to compare against the early ter-

mination strategies that we presented in the previous chapters. We conclude by providing

an extensive performance evaluation comparing the advantages and disadvantages for each

one of the proposed solutions.

6.2 Top-K Selection using Full Table Evaluation

As mentioned in previous chapters, a straightforward solution to the Top-K selec-

tion problem involves two steps: (1) calculate the score for each tuple (i.e. score aggregation

106

step) (2) utilize a sorting algorithm (see Section 6.2.1) or a priority queue (see Section 6.2.2)

to identify those having the k highest scores (i.e. ranking step). Score aggregation is easy to

implement on PIM accelerators since it is an embarrassingly parallel problem which requires

evenly partitioning the data across the available Data Processing Units (DPUs). The rank-

ing step is a little bit more complex because it requires optimizing calculations within every

one of the participating DPUs and minimizing data exchange across them. In fact, when

utilizing sorting for ranking the corresponding tuples, it is extremely important to optimize

data movement during the phase in which the associated data need to be re-arranged across

the participating DPU. In the following sections, we study and develop optimized sorting

and k-selection algorithms for PIM accelerators and compare them against the equivalent

state-of-the-art multi-core algorithms. In addition, we provide a comprehensive experimen-

tal evaluation aimed at identifying which method works best for Top-K selection.

6.2.1 Sorting on PIM Systems

Sorting a collection of keys on a PIM architecture can be achieved in two dif-

ferent ways. One way is to employ a comparison based approach that utilizes DPUs to

create sorted sequences and the host processor to merge those sequences into a single sorted

data collection. Another way is to implement a non-comparison based solution where the

host processor is responsible for rearranging the corresponding keys in the associated bins

(DPUs) while the available DPUs take the lead in counting digit/key occurrences locally.

Both local sort and digit counting are embarrassingly parallel operations being able to take

advantage of all available DPUs offered by UPMEM’s PIM architecture. Merging sorted

sequences on the host processor is expensive for two reasons: (1) it requires an additional

107

buffer to store intermediate results during the actual merging, (2) it exposes limited op-

portunities for parallelism as the number of sorted sequences decrease. Finally, rearranging

(also known as scattering) keys is less expensive though still being bounded by the write

throughput of the host processor. In the following sections, we present the details for both

of the aforementioned approaches providing a comprehensive complexity analysis aimed at

identifying which solution is the most suitable for implementation on PIM systems.

Comparison Based Sorting Algorithms

Utilizing a comparison based method to sort a collection of keys requires first

partitioning the data evenly across every available DPU. Load balancing is not really an

issue even for skewed data distributions because, we can ensure that every DPU receives

roughly the same number of keys. In fact, given P DPUs and having to sort N keys, the i-th

DPU will receive the keys between the offsets calculated by utilizing the following equations:

start offset =

⌊
i ·N
P

⌋
(6.1)

end offset =

⌊
(i+ 1) ·N

P

⌋
(6.2)

Sorting the data locally can be achieved by utilizing different algorithms. Picking

the most suitable for implementation on UPMEM’s PIM architecture requires taking into

consideration the corresponding processing model and hardware resources available to a

single DPU. First, the processing model dictates that at least 10 threads should be active

during processing to enable full utilization of the 10 stage DPU pipeline. Second, the DPU

programming model follows the principles of a cache-less architecture requiring from the

108

programmer to utilize buffers to access data from the main memory. A limited capacity

scratchpad memory (known as WRAM) is used to store and manage those buffers.

Algorithm 10 Parallel Bitonic Sort

A = Input array of N unsorted keys.

1: tid = me() . Tasklet id.

2: for len← 1; len < N ; len← len << 1 do

3: dir = len << 1

4: for step← len; step > 0; step← step >> 1 do

5: for t← tid; t < (N >> 1); t← t← t+NT do

6: low ← t&(step− 1)

7: i← t << 1− low

8: reverse← ((dir&i) == 0)

9: swap = reverse⊕ (A[i] < A[i+ step])

10: if swap then (A[i], A[i+ step])← (A[i+ step], A[i])

11: end for

12: barrier wait() . Wait for swapping to finish.

13: end for

14: end for

Considering the previous limitations we have identified that the best candidates

for implementation on DPUs are bitonic sort and merge sort. Bitonic sort is suitable for a

parallel environment having no requirements for additional memory. However, it requires

109

frequent barrier synchronizations to ensure read after write consistency. As mentioned

previously, merge sort requires additional memory to buffer the corresponding data during

the merging phase. In addition, it is difficult to parallelize when only few sorted sequences

are available during the merging phase.

Algorithm 10 presents a high level overview of the bitonic sort DPU kernel. Typ-

ically, for an array of N keys, NT = N/2 threads are required. However, a DPU can have

at most 24 threads (tasklets) executing at the same time. In our DPU kernel, the required

number of threads are emulated by increasing the corresponding thread-id by fixed offset

(NT line 5) to get the equivalent thread-id for the required number of operating threads.

This enables executing the steps of bitonic sort with less than N/2 threads. In addition,

it assigns more work to every participating thread minimizing the number of barrier syn-

chronization calls (Line 12) executed in between the swapping operations. As indicated by

the associated algorithm, there is no need for extra space because swapping executes in-

place. In addition to the costly barrier synchronizations which are necessary to ensure read

after write consistency, bitonic sort incurs higher algorithmic complexity which is equal to

O(Nlog2N).

Despite requiring additional memory to perform the merging phase, merge sort

attains lower algorithmic complexity that is equal to O(NlogN) . Algorithm 11 summa-

rizes the individual steps required for executing merge sort. In addition to the collection

of unsorted keys, the algorithm takes as input a buffer in which the merging results are

stored. We utilize pointers pointing to the left and right sub-arrays (Lines 3-4) which are

scheduled to be merged together. The corresponding values are compared and the minimum

110

Algorithm 11 Merge Sort

A = Input array of N unsorted keys.

B = Buffer array.

1: for i = 1; i < N ; i = i << 1 do

2: for j = 0; j < N ; j = j + (i << 1) do

3: (Ls, Le) = (A+ j, A+ j + i) . Pointer to start & end of left sub-array.

4: (Rs, Re) = (Le, Le + (i << 1)) . Pointer to start & end of right sub-array.

5: Bs = B + i . Buffer pointer start.

6: while Ls < Le AND Rs < Re do

7: if ∗Ls <
∗Rs then

8: ∗Bs + + = ∗Ls + + . Write Ls value to buffer and increment pointer.

9: else

10: ∗Bs + + = ∗Rs + + . Write Rs value to buffer and increment pointer.

11: end if

12: end while

13: while Ls < Le do {∗Bs + + = ∗Ls + +} . Flush left sub-array to buffer.

14: while Rs < Re do {∗Bs + + = ∗Rs + +} . Flush right sub-array to buffer.

15: end for

16: swap(A,B)

17: end for

111

7 3 9 17 32 5 1 26 15 42 19 14 2 0 21 18

7 3 9 17 32 5 1 26 15 42 19 14 2 0 21 18

Host Processor Buffer

P
IM

 A
cc

el
er

a
to

r

DPU0 DPU1 DPU2 DPU3

3 7 9 17 1 5 26 32 14 15 19 42 0 2 18 21

Host Processor Buffer

1 3 5 7 8 17 26 32 0 2 14 15 18 19 21 42

0 1 2 3 5 7 8 14 15 17 18 19 21 26 32 42

Figure 6.1: Local comparison sort on 4 DPUs combined with the host processor merging

phase to produce a globally sorted sequence.

(maximum) (Lines 8,9) is selected to rearrange the associated data creating an ascending

(descending) sequence of values. This process executes across logN iterations creating it-

eratively a larger sorted sequence. At the end of every one of the logN merge iterations

(Line 15), the input array and buffer pointers are swapped (Line 16) to avoid expensive

copy operations between the two.

The aforementioned algorithms operate locally within each DPU resulting in the

creation of many distinct sorted sequences. Those sequences will be merged by the host

CPU to produce a globally sorted sequence. An example of this process operating end to

end to produce a globally sorted sequence is shown in Figure 6.1. Initially, the data reside

in a buffer that is accessible both from the CPU and PIM accelerator. The host CPU is

responsible for partitioning the data and assigning distinct batches for processing to every

112

available DPU. This requires only transmitting the offset at the start of the corresponding

data block. The DPU is able to access the buffered data directly and execute its preferred

sorting algorithm (merge sort/ bitonic sort). Once local sort completes the corresponding

DPU informs the host CPU using a zero overhead completion message. The host CPU will

wait for all DPUs to finish before starting the merge phase. Merging can be performed using

the same hierarchical approach as described either in merge sort or bitonic sort. While the

former solution attains lower complexity the latter is highly parallel and should be chosen for

multi-core CPUs. However, the performance of both solutions is restricted by the available

data bandwidth.

Non-Comparison Based Sorting Algorithms

Non-comparison based sorting algorithms operate by counting the number of key

occurrences in the input sequence using arithmetic operations and use that information to

determine the offset for the position of the corresponding key in the output sorted sequence.

Counting sort is the simplest example of a non-comparative based sorting algorithm As

opposed to other efficient comparison based sorting algorithms, such as merge-sort, the

complexity of counting sort is proportional to the size of the given input sequence and the

difference between the maximum and minimum values within that sequence. Therefore, it

is often suitable for sequences where the variation in key values is not significantly greater

than the input size.

Radix-sort is another example of a non-comparative based sorting algorithm. It is

more efficient than counting sort and can handle key values of arbitrary distribution. The

algorithm has been implemented on different parallel architectures including multi-core

113

7 3 9 17 32 5 1 26 15 42 19 14 2 0 21 18

Host Processor Buffer

7 3 9 17 32 5 1 26 15 42 19 14 2 0 21 18

P
IM

 A
cc

el
er

a
to

r DPU0 DPU1 DPU2 DPU3

0 1 2 3 4 5 6 7 8 9

1 1 1 0 0 0 0 0 1 0

0 1 2 3 4 5 6 7 8 9

0 0 0 1 0 0 0 2 0 1

0 1 2 3 4 5 6 7 8 9

0 1 1 0 0 1 1 0 0 0

0 1 2 3 4 5 6 7 8 9

0 0 1 0 1 1 0 0 0 1

Host Processor Buffer

1 2 3 1 1 2 1 2 1 2

0 1 21 32 42 2 3 14 5 15 26 7 17 18 9 19

7 3 9 17 32 5 1 26 15 42 19 14 2 0 21 18

1 3 6 7 8 10 11 13 14 16

Radix count

Prefix sum

1 3 6 7 8 10 11 13 14 16

Figure 6.2: Radix sort example

CPUs and many-core GPUs. Radix-sort operates on the input sequence by counting the

occurrences of non-overlapping fixed-sized digit groups. The size of the group is referred to

as radix, which is often set of 4 or 8-bits starting from the least significant bit when sorting

in ascending order. The counting step is similar to creating a histogram which is then used

to rearrange the input sequence into one that is partially sorted. Counting digit occurrences

and re-arranging them execute in sequence across different iterations until the sequence is

fully sorted.

An example showcasing the interaction between the host CPU and each individual

DPU which includes merging the counts and re-arranging the keys is show in Figure 6.2.

Initially the data are loaded into memory and are accessible directly from both the host

114

Algorithm 12 Radix Count DPU Kernel

A = Input array of N unsorted keys.

P = Total number of tasklets.

m = Mask to extract corresponding digit.

shf = Shift places to find digit occurrence

1: t = getTaskletId()

2: pb = A+ b(N ∗ t)/(P)c . Pointer to the beginning of data batch for tasklet t.

3: pe = A+ b(N ∗ (t+ 1))/(P)c . Pointer to the ending of data batch for tasklet t.

4: mBuff = buff + (t << 9) . Pointer to buffer beginning for tasklet t.

5: mBins = bins+ (t << 8) . Pointer to bins beginning or tasklet t.

6: while pb < pe do

7: mram read(pb,mBuff)

8: mram read(pb+ 256,mBuff + 256)

9: for i = 0; i < 512; i+ + do

10: d = (mBuff [i] & m) >> shf . Extract digit.

11: mBins[d] + + . Increment the bin value corresponding to the extracted digit.

12: end for

13: pb+ = 512

14: end while

115

CPU and all available DPUs. We assign for processing non-overlapping continuous batches

of data to distinct DPUs. Every DPU will calculate their own digit count and inform the

host CPU when processing ends. The resulting bins will be aggregated by the CPU who

can access directly the individual bins from DRAM. After aggregating the corresponding

bins, a prefix sum operation executes calculating the associated offsets. The host CPU will

be responsible for scanning the input vector and using those offsets to rearrange the values

as shown in the aforementioned figure.

Algorithm 12 summarizes the steps executed on the DPU. The pseudocode de-

scribes the occurrences of the corresponding digits extracted by the associated mask (m).

Each DPU is assigned a distinct batch of data (which is stored in the DPU MRAM) and

is responsible for counting the associated digit occurrences. Every available DPU tasklet is

responsible for processing a continues sequence of values between pb and pe pointers (Line

Algorithm 13 Merge Bins DPU Kernel

P = Total number of tasklets.

r = User defined radix value.

1: t = getTaskletId()

2: for i = 1; i < P ; i+ + do

3: for j = t; j < P · 2r; j+ = P do

4: bins[j]+ = bins[(i · P · 2r) + j] . Merge counts to first 16 bins.

5: end for

6: end for

116

Algorithm 14 Host CPU Key Rearrange

A = Input array of unsorted keys.

B = Output array of unsorted keys.

N = Number of input keys.

bins = Merged bin counts.

m = Mask to extract corresponding digit.

shf = Shift places to find digit occurrence.

1: for i = N − 1; i >= 0; i−− do

2: d = (A[i] & m) >> shf . Extract digit.

3: pos = −− bins[d] . Calculate output offset.

4: B[pos] = A[i] . Copy element to new location.

5: end for

6: swap(A,B) . Swap array pointers for next iteration.

117

2,3). We allocate space in WRAM to hold a buffer for reading the data from MRAM (Line

4) and another to store the digit occurrences (Line 5). In the pseudocode example, we as-

sumes 16 tasklets and radix 4 which leaves enough space to store a collection of 24 = 16 bins

and buffer 512 values in WRAM (assuming 32-bit keys). The counting of the corresponding

digit occurrences (Line 10, 11) proceeds after the data have been loaded in the correspond-

ing buffers (Line 7,8). When all the data in the buffers have been loaded, we increment the

corresponding pointers (Line 13) to process the next sequence of values. When the counting

of digit occurrences completes, we merge the bin values using tasklet 0. This pseudocode for

merging is shown in Algorithm 13. Every tasklet is responsible for aggregating the results

of the same digit across all bins in the collection. Once this operation completes the host

is responsible for merging the final count across different DPUs and using it to re-arrange

the data before the next round of counting begins.

Algorithm 14 summarizes the host CPU steps required for rearranging the key

elements after globally merging the individual bin counts. The algorithm operates by iter-

ating through each element in the input array (Line 1) and extracting the corresponding

digit (Line 2). The extracted digit is used to index the bins and calculate the position (Line

3) of the given element in the output array. The corresponding element is copied to that

position (Line 4) and processing continues to the next available element. At the end of

processing, the input and output array pointers are swapped to prepare for the next stage

of processing.

118

Host Processor Buffer

7 3 9 17 32 5 1 26 15 42 19 14 2 0 21 18

7 3 9 17 32 5 1 26 15 42 19 14 2 0 21 18

P
IM

 A
cc

el
er

a
to

r

DPU0 DPU1 DPU2 DPU3

17 9

𝑃𝑄0
32 26

𝑃𝑄1
42 19

𝑃𝑄2
21 18

𝑃𝑄3

Host Processor Buffer

17 9 32 26 42 19 21 18

42 32

𝑃𝑄0 𝑃𝑄1 𝑃𝑄2 𝑃𝑄3

Figure 6.3: Multiple priority queue Top-K using host CPU for merging intermediate results.

6.2.2 Top-K Queries Using Multiple Priority Queues

An alternate way of evaluating Top-K queries is by utilizing a priority queue (i.e.

max heap) which is used to maintain the k-highest ranking tuples during processing. This

approach is beneficial because it requires scanning the input data only once while also

enabling processing within on-chip memory when the corresponding k value is small (this

is a common occurrence since k often ranges between 10 and 100).

On massively parallel architectures that follow the multiple instruction multiple

data (MIMD) paradigm, it is common to utilize a single priority queue per available worker

and merge all intermediate results at the end of processing. This paradigm is applicable

on UPMEM’s PIM accelerator enabling higher levels of parallelism and higher processing

throughput. In the aforementioned configuration, the host CPU will be responsible for

efficiently merging the intermediate results. In practice the merging operation is relatively

cheap because the chosen k value is often small.

119

In Figure 6.3, we provide an example showcasing the individual steps associated

with discovering the Top-K value from a given input vector. Following the sorting paradigm,

we assign for processing non-overlapping continuous batches of data to distinct DPUs. Each

DPU operates on its own local memory space which contains space for storing the priority

queue data. The priority queue is used to store the k highest values during processing

of the input data batch. Since each DPU encapsulates multiple operating threads (i.e.

tasklet) and in order to ensure thread safety, we created an implementation where each

thread operates on a different priority queue. This approach incurs an additional cost

for merging and has a higher memory overhead. However, we found experimentally that

enabling synchronized access (using mutexes) to a single priority queue limits the maximum

attainable DPU throughput. Hence, our decision to implement a solution that utilizes a

different priority queue per tasklet. After the data assignment phase, the available DPUs

will begin processing their own chunk of data in parallel. Once processing completes the

host processor will be informed in order to start the merging phase. Note that the merged

priority queue of every DPU is stored in MRAM which is directly accessible by the host

CPU. Therefore, there is no additional cost of moving the data where the CPU can access

it. Merging is straightforward and can be implemented in a number of different ways. Our

implementation iterates over all available priority queues each time pulling the maximum

item and storing it on a CPU owned priority queue until k items have been discovered.

Algorithm 15 summarizes the steps associated with computing the Top-K values

within every available DPU. Every DPU tasklet is responsible for processing a small chunk

of the data input which is assigned to the given DPU (Line 2-3). A buffer local to each

120

Algorithm 15 Top-K using Many Priority Queues - DPU Kernel

A = Input array of unsorted keys.

P = Total number of tasklets.

mBuff = Tasklet local buffer.

mHeap = Tasklet local priority queue

gHeap = Pointer to global heap collection.

1: t = getTaskletId()

2: pb = A+ b(N ∗ t)/(P)c . Pointer to the beginning of data batch for tasklet t.

3: pe = A+ b(N ∗ (t+ 1))/(P)c . Pointer to the ending of data batch for tasklet t.

4: while pb < pe do

5: mram read(pb,mBuff) . Read 256 items to local buffer from pb address.

6: for i = 0; i < 256; i+ + do

7: if mBuff [i] > mHeap[k − 1] then . Condition to update heap.

8: mHeap.pop() . Pop smallest item.

9: mHeap.pushMax(mBuff [i]) . Push new item.

10: end if

11: end for

12: pb+ = 256

13: end while

14: barrier wait() . Wait for swapping to finish.

15: If t == 0 then rHeap = merge(gHeap) . Merge individual heaps.

121

tasklet is used to load the data from MRAM (Line 5). In addition, a local heap is maintain

containing the k-highest values. An item from the buffer will be inserted in the local heap

if and only if its value is larger than the current heap minimum (Line 7). The new item is

inserted into the heap (Line 9) after deleting the minimum (Line 8). Inserting new items

into the corresponding max heap is a relatively cheap since it incurs a complexity of at

most O(logk). All of the required operations execute in WRAM which is much faster to

access as opposed to MRAM. In order to ensure read after write consistency, we utilize a

barrier (Line 14) to synchronize before attempting to merge the global heap collection into

a single heap (Line 15). Tasklet 0 is responsible for executing the final merge operation

which creates a single heap containing the k-highest ranked elements.

Algorithm 16 summarizes the steps of the standard heap merge algorithm. The

algorithm iterates over all non-empty heaps in order to discover the one containing the

largest element (Line 4 - 8). The corresponding element will be inserted into the result

heap (Line 10) and removed from global heap collection (Line 11). This process repeats

until the result heap contains k items (Line 2). Every time an item is pulled from any heap

in the global collection, the corresponding heap needs to be re-balanced. The cost of this

is O(logk) while the total complexity of merging is O(klogk).

6.3 Early Termination Top-K Selection on PIM

As discussed in previous chapters, the most expensive part of Top-K query evalua-

tion is the process of retrieving the associated tuple attributes to calculate the corresponding

tuple score. In order to mitigate this cost indexing and data re-ordering strategies are em-

122

Algorithm 16 Heap Merge - DPU Kernel

gHeap = Pointer to global heap collection.

P = Total number of tasklets.

1: rHeap = Init()

2: while rHeap.size() < k do

3: pos = 0

4: for i = 0; i < P ; i+ + do

5: cHeap = gHeap[i]

6: if gHeap[pos][0] > cHeap[0] then . Discover maximum element heap.

7: pos = i

8: end if

9: end for

10: rHeap.push(gHeap[pos][0]) . Insert maximum element to result heap.

11: gHeap[pos][0].popMax() . Pop maximum element.

12: end while

13: return rHeap

123

ployed to enable early termination during query evaluation. These strategies produce the

exact answer to the given Top-K query while managing to significantly reduce the asso-

ciated evaluation workload. In this section, we present a discussion focused on how to

effectively adopt the best practices (as established in previous chapters) geared towards

efficient Top-K selection with early termination, on processing-in-memory architectures.

6.3.1 Maximum Attribute Tuple Re-ordering

In order to enable early termination on PIM, we implemented tuple re-ordering

based on the maximum attribute value considering all attributes for any given tuple. We

reuse the Threshold Block Layout (TBL) configuration for our DPU-based implementation.

In contrast to our CPU based implementation, we utilize the radix-sort implementation

(introduced in the previous sections) to perform the actual re-ordering. A toy example

of a given TBL tree is shown in Figure 6.4. It consists of a collection of ordered non-

overlapping data blocks stored as leaves in a self-balancing tree. Each data block contains

several tuples along with a threshold tuple that contains the maximum attribute values of

any subsequent data block. This configuration resembles a clustered B+tree index thus

being easily maintainable either from the host CPU or the corresponding DPU. UPMEM’s

PIM accelerator implements a message based communication API to received data from the

host CPU. This API can be used to initiate low latency insert/update/delete operations on

the corresponding TBL tree.

124

0.50 0.30

0.70

0.90

𝑜7: 0.20 0.10 0.20

𝑜8: 0.10 0.05 0.10

𝑇 0.00 0.00

𝑜5: 0.50 0.50 0.10

𝑜0: 0.40 0.10 0.40

𝑇 0.10 0.20

𝑜6: 0.70 0.70 0.10

𝑜9: 0.60 0.30 0.60

𝑇 0.50 0.40

𝑜3: 0.90 0.90 0.70

𝑜1: 0.80 0.80 0.80

𝑇 0.70 0.60

𝑜4: 1.15 1.15 0.50

𝑜2: 1.00 1.00 0.70

𝑇 0.90 0.80

Figure 6.4: Example of TBL Tree Maintaned on a Single DPU.

6.3.2 Multi-DPU Data Partitioning

Intelligent data partitioning is fundamental to enabling efficient early termination

for Top-K Selection. On PIM architectures effective data partitioning is extremely impor-

tant and significantly more challenging. This happens because a given partitioning strategy

should be optimized to address issues related to (1) load balancing, and (2) constraints in

the memory capacity of the given embedded processor (i.e. DPU).

In the previous chapters, we established that angle space partitioning works better

than random partitioning in terms of enabling load balanced and work-efficient Top-K query

processing on massively parallel architectures. However, it incurs an additional initialization

overhead when building the corresponding index on the target relation. In addition, due

to the limited memory capacity available to every DPU (only 64 MB) care must be taken

not to create large partitions when the data are skewed. In order to avoid the latter issue,

we utilized equi-volume partitioning [96] increasing proportionally the number of available

DPUs in order to make sure that the DPU memory capacity will not be exceeded. Doing so

will not change the characteristics of our solution thus retaining the associated latency and

throughput gains when answering Top-K queries for variable preference vectors and data

distributions.

125

DPU0 DPU1 DPU2 DPU3

P
IM

 A
cc

el
er

a
to

r
Host Processor Buffer

≤ 𝜑0 ≤ 𝜑1 ≤ 𝜑2 ≤ 𝜑3

Figure 6.5: Example of a partitioned relation based on 4 angle regions that is represented

using multiple distinct TBL trees.

Angle space partitioning is employed on top of the target relation after which

the tuples within each partition are re-ordered based on their maximum value. The host

processor retains information related to which DPU contains what portion of the space

based on the partition angle. An example of this organization is shown in Figure 6.5. In

that example, we partition a collection of tuples with two attributes each by splitting the

space using four angles, mainly φ0, φ1, φ2, φ3. The host CPU facilitates insert/update/delete

operations utilizing the pointers stored for every angle region. In the case where each

tuple contains more than two attributes, multiple angles are needed to describe a given

region. Considering that grid partitioning is employed on the angular coordinates, the grid

boundaries can be maintained efficiently using R-trees. This organization does not change

how the underlying TBL trees are maintained thus the insert/update/delete operations are

still supported.

126

Algorithm 17 DPU Early Termination Kernel

mBuffer = Per tasklet read buffer., mScores = Per tasklet score buffer.

mHeap = Per tasklet heap buffer., cBytes = Bytes in column of attributes.

q = Query attribute count.

1: while b < block count do . Iterate over data blocks.

2: row = pos+ (tid << 8) . Column-wise access to the tuple attributes.

3: for (i = 0; i < q; i+ +) do

4: mram read256(row,mBuffer)

5: for (j = 0; j < 64; j + +) do

6: mScores[j]+ = mBuffer[j] . Accumulate i-th attribute of j-th tuple.

7: end for

8: row+ = cBytes

9: end for

10: for (i = 0; i < 64; i+ +) do mHeap.pushMax(mScores[i]) . Push new item.

11: mram read64(row,mBuffer)

12: for (i = 0; i < q; i+ +) do th+ = mBuffer[i] . Calculate threshold.

13: If mHeap[k − 1] ≥ th then break

14: pos+ = row + 64

15: end while

16: barrier wait() . Wait for swapping to finish.

17: If t == 0 then rHeap = merge(mHeap) . Merge individual heaps.

18: return rHeap

127

DPU0

11 8 10 8 7 6 0 0 0

17 8 9

3 10 16

14 5 9

3 11 18

11 7 8

7 8 10

5 4 9

8 7 6

8 3 4

2 7 6

3 4 4

1 2 1

MRAM

WRAM

11 8 10

17 8 9

3 10 16

14 5 9

3 11 18

34

29

28

32

29

34

32

29

≥

Figure 6.6: Single DPU query evaluation snapshot for top-2 query on a toy dataset.

6.3.3 DPU-Based Query Evaluation With Early Termination

Algorithm 17 summarizes the steps associated with enabling early termination on

a single DPU. For every data block stored in DPU’s MRAM (Line 1), we calculate the offset

address for the corresponding column of attributes (Line 2). This offset is used to retrieve

the query attributes in private buffer which is associated uniquely to a specific tasklet

(Line 4). The retrieved attributes will then be aggregated to the scores buffer owned by

the corresponding tasklet (Line 6). After calculating the scores of a given group of tuples

(the size of which is determined by the result size (i.e. k = 64 in the example)), we update

the private priority queue (Line 10) of every tasklet using the newly calculated tuple scores.

In Algorithm 17, we assume that the TBL block size is equal to the result size, thus only

one iteration of the main loop (Line 3-10)) is needed to calculate the scores and update

the corresponding heap. Once the heap is updated, we load the threshold tuple attributes

128

(Line 11) and calculate the corresponding threshold (Line 12). If the threshold value is equal

or less than the minimum value in the priority queue, we terminate processing (Line 13).

At the end of processing tasklet 0 is responsible for merging all heaps together (Line 17).

6.4 Experimental Evaluation

In this section, we present a detailed experimental performance evaluation of all

methods developed in the previous sections. The first part of our discussion concentrates

on Full Table Evaluation (FTE) methods. Our analysis involves utilizing a series of mi-

crobenchmarks to identify which approaches amongst those utilizing sorting or priority

queues perform the best. Following this, we compare the performance of early termination

against the best FTE method. We conclude with an extensive experimental comparison

against optimized FTE and early termination solution across different processing architec-

tures, mainly multi-core CPUs and many-core GPUs.

6.4.1 Experimental Environment

All our experiments where performed on uniformly generated synthetic data. Our

CPU implementations utilize 16 threads and where evaluated on a two socket Intel(R)

Xeon(R) CPU E5-2686 v4 @ 2.30GHz. Our GPU experiments were conducted using a sin-

gle 12 GB NVIDIA Titan V GPU attached to a single socket Intel Xeon E5-1650 processor

@ 3.5 GHz with 32 GB of RAM. The GPU algorithm was implemented using standard

C++, CUDA 10.0 and NVIDIA’s CUB Library [67]. The DPU kernels used for sorting,

implementing the priority queue and our early termination solutions were developed using

129

CPU GPU PIM

Cores (c) 18 5120 2048

Bandwidth (GB/s) 71 652 2048

Power (W/c) 8.5 0.11 0.04

Table 6.1: Single node specification comparison for CPU (Xeon E5-2686), GPU (TITAN

V) and PIM (UPMEM) architectures.

UPMEM’s C-based API. We used an AWS instance containing an FPGA-based cycle ac-

curate emulator (emulating the parallel execution of up to 128 DPUs) that was provided

by UPMEM to measure the DPU cycles (including the cost of memory access) for all PIM-

based approaches. The DPU cycles were converted to ms assuming a DPU clock frequency

of 750Mhz. Every DPU implementation has been designed to utilize 16 tasklets. In Ta-

ble 6.1, we summarize the specification of each parallel architecture used in our experiments.

In our experiments, we assume result size k = 16 for increasing input size, and the

maximum input size (i.e. 221 for a single DPU, 230 for multiple DPUs) when presenting

measurements for increasing result size. We evaluated the performance of early termination

against FTE solutions using queries on 2 to 8 attributes. For increasing result and input

size, we present the results gathered when using 8 query attributes.

6.4.2 Single DPU Sorting& Radix Count

In Figure 6.7, we summarize the throughput measurements obtained using a single

DPU and 16 operating tasklets for mergesort, bitonic sort, and radix count. We observed

130

1

4

16

64

256

1024

4096

8 32 128 512 2048

1

4

16

64

256

1024

4096

8 32 128 512 2048

UINT32 UINT64

Keys (x1000) Keys (x1000)

Th
ro

u
g

h
p

u
t

(M
B

/s
)

Th
ro

u
g

h
p

u
t

(M
B

/s
)

MergeSort BitonicSort RadixCount Ideal

Figure 6.7: Measured throughput for sorting and radix-count using a single DPU on an

input vector of 32 or 64 bits.

that regardless of the use sorting method the attainable throughput is much lower than what

a single DPU can achieve in the ideal case. This happens because conventional DRAMs are

designed to sustain higher write throughput by taking advantage of parallel writes across

multiple DRAM chips. DPUs operate in isolation on their own DRAM chip thus their write

throughput is limited. Therefore, any local sorting algorithm will be unable to sustain a

high processing throughput because it is bounded by the memory chip bandwidth.

Bitonic sort performs worse than merge-sort because it has higher complexity and

incurs more writes into MRAM. In addition, it requires too many barrier synchronization

to ensure read-after-write consistency when rearranging the corresponding unsorted keys.

Mergesort performs better because it makes use of WRAM buffers to sort the data. In the

early merge stages, the associated buffers fit entirely in WRAM thus any writes to MRAM

are performed efficiently in batches. When the blocks to be merged become too large, we

131

0%

25%

50%

75%

100%

24 25 26 27 28 29 30

0%

25%

50%

75%

100%

24 25 26 27 28 29 30

0%

25%

50%

75%

100%

24 25 26 27 28 29 30

0%

25%

50%

75%

100%

24 25 26 27 28 29 30

Keys 𝐿𝑜𝑔2 𝑁 Keys 𝐿𝑜𝑔2 𝑁

C
P

U
 O

n
ly

 W
o

rk

UINT32

UINT32 UINT64

UINT64

Scatter Histogram

P
IM

-A
ss

is
te

d
 W

o
rk

Keys 𝐿𝑜𝑔2 𝑁 Keys 𝐿𝑜𝑔2 𝑁

Figure 6.8: Percentage of time spent in re-arranging the unsorted keys (scatter) and calcu-

lating the digit histogram for CPU only and PIM-assisted implementation of radix sort.

utilize an external sorting algorithm that writes back to MRAM in smaller batches due to

the associated limitations in WRAM memory capacity. The latter portion of mergesort’s

execution is what limits the maximum processing throughput. Radix-count attains much

higher processing throughput because it operates entirely in WRAM when accumulating the

corresponding digit occurrences. Commonly, radix-sort is implemented using radix equal to

8 which requires having to manage 256 digit bins. WRAM has more than enough space to

accommodate multiple distinct groups of such bins thus enabling multi-tasklet processing.

In addition, our implementation uses large buffers to sequentially read in WRAM large

chunks of the unsorted key sequence.

Our previous analysis indicates that radix-sort is the best performing solution (in

terms of throughput) when sorting a large sequence of keys. For this reason, henceforth we

will be using radix-sort as a fair baseline for all the possible sorting based FTE solutions.

132

6.4.3 Radix-Sort Performance Comparison between PIM and CPU

In this section, we focus on comparing the performance between CPU only radix-

sort and PIM-assisted radix-sort implementation. The latter approach is termed ”assisted”

because the PIM accelerator is responsible only for performing radix-count. In that con-

figuration, the host processor takes charge of rearranging the keys according to the digit

occurrences.

In Figure 6.8, we present measurements indicating the percentage of work per-

formed on re-arranging the data (scatter) and calculating the histogram for the CPU only

and PIM-assisted radix-sort implementations We observe from the CPU only implementa-

tion that the total processing time for radix-sort is split in half between data re-arranging

and histogram calculations. The PIM-assisted approach spends less than 2% of its time in

calculating the histogram. These measurements indicate that we should expect an improve-

ment in the total execution time of radix-sort that is capped close to 50%

Figure 6.9 validates our expectations by showcasing an average improvement of

about 2× when comparing the latency of our PIM-assisted solution over the CPU only

implementation. When 64-bit keys are used and the input size is large, the observed im-

provement in the total execution time is more than 2×. This happens because the cost of

calculating the histogram is more that 50% (as depicted Figure 6.8) and the associated read

throughput achieved by UPMEM’s PIM is several orders of magnitude higher than the host

processor throughput.

133

0

1000

2000

3000

4000

24 25 26 27 28 29 30

0

2000

4000

6000

8000

10000

24 25 26 27 28 29 30

UINT32 UINT64

La
te

n
cy

 (
m

s)

Keys 𝐿𝑜𝑔2 𝑁 Keys 𝐿𝑜𝑔2 𝑁

La
te

n
cy

 (
m

s)

CPU - Radix Sort PIM - Radix Sort

Figure 6.9: Latency measurements of sorting a sequence of 32 or 64-bit keys by using CPU

only or our PIM-assisted implementation.

6.4.4 Heap-Based Top-K Performance on PIM

In Figure 6.10, we present the throughput measurements obtained for the heap-

based Top-K implementation on a single DPU. We observe that the processing throughput

approaches that of the ideal case when dealing with 64-bit keys when considering increasing

input size. This happens because maintaining a max heap is mainly a memory intensive

operation requiring only a few arithmetic operations. In that case, the throughput is better

on 64-bits because we are able to maintain larger buffers which are used to load the associ-

ated data This enables us to process more information in about the same amount of time.

Hence, the higher throughput which is almost 2× better than the 32-bit case.

For increasing result size, we observed a noticeable drop in the throughput when

k is larger than 64. This happens because the merging phase executes on a single tasklet.

In that case, we do not have enough threads executing in the DPU pipeline to mask the

134

64

128

256

512

1024

2048

8 16 32 64 128 256

64

128

256

512

1024

2048

8 32 128 512 2048

Th
ro

u
g

h
p

u
t

(M
B

/s
)

Th
ro

u
g

h
p

u
t

(M
B

/s
)

Keys (x1000) Result Size (k)

uint32_t uint64_t Ideal

Figure 6.10: Single DPU throughput for our heap-based Top-K implementation.

latency of accessing and re-balancing multiple heaps until the k highest values are discovered.

Despite this drop, the attainable throughput remains reasonably high.

In Figure 6.11, we present latency measurements for increasing number of keys

and result size using our PIM optimized sorting-based and heap-based Top-K implemen-

tations. We observed that regardless of the experimental configuration, heap-based Top-K

query evaluation is significantly faster than its sorting-based equivalent. This happens

because using sorting requires re-arranging the input keys many times across different it-

erations. This operation is very expensive and usually limited by the available CPU to

DRAM bandwidth. Our implementation of radix-sort utilizes the PIM accelerator to only

improve radix-count. Hence, there is limited space for improving processing since the host

CPU is responsible for re-arranging the corresponding keys. Our heap-based Top-K query

implementation does not requires re-arranging the input keys across multiple DPUs. It

operates by creating multiple heaps per DPU and merging them into a single one. This

135

PIM Sort PIM TopK

0.1

1

10

100

1000

10000

21 23 25 27 29
0.1

1

10

100

1000

10000

21 23 25 27 29

1

10

100

1000

10000

4 16 64 256

1

10

100

1000

10000

4 16 64 256

Keys 𝐿𝑜𝑔2 𝑁 Keys 𝐿𝑜𝑔2 𝑁

Result Size (k) Result Size (k)

La
te

n
cy

 (
m

s)
La

te
n

cy
 (

m
s)

UINT32 UINT64

UINT32 UINT64

Figure 6.11: Single DPU throughput for our heap-based Top-K implementation.

merging operation executes on the host CPU and is cheap compared to re-arranging the

corresponding keys across different DPUs. Therefore, the major part of the heap-based

Top-K computation is spend in building multiple distinct heaps across different DPUs.

This operation is embarrassingly parallel enabling us to take advantage of the full PIM

processing bandwidth. In addition to that characteristic, our implementation is structured

in such a way that every DPU is able to process the required information entirely into

WRAM requiring only minimal write-back operations to MRAM. This reduces significantly

the overall query latency since writing to MRAM has been established to be very expensive.

The aforementioned performance behavior can be observed for both increasing input and

result size.

136

Considering our analysis the heap-based Top-K query evaluation works better

than completely sorting the input vector when using PIM architectures. This is evident

from the fact that our heap-based Top-K implementations achieve reasonable throughput

per DPU and several orders of magnitude better query latency. Based on this finding,

we establish that heap-based Top-K query evaluation is the best strategy amongst every

possible PIM optimized FTE solution. For this reason and henceforth, we will be using

our heap-based Top-K query implementation (referred to as Top-K PIM) as the baseline

solution for enabling efficient FTE Top-K query evaluation on UPMEM’s PIM architecture.

6.4.5 FTE Top-K Performance on Parallel Architectures

In this section, we focus on comparing the performance of PIM Top-K against

previously proposed Top-K FTE solutions that have been optimized for CPU and GPU

processing. We utilize the SIMD-enabled multi-threaded implementation presented in Sec-

tion 3.5 and the bitonic Top-K algorithm described in Section 4.2.2.

We conducted experiments on uniform data using 32 and 64-bit keys. In Fig-

ure 6.12, we summarize the results of our experiments indicating the measured query latency

for each one of the available parallel architectures. For increasing input size, PIM Top-K

performs on average 30× to 35× than the equivalent CPU implementation on the 32-bit key

workload. As observed from our experiments, the performance gap between PIM and CPU

for the 64-bit key workload increases significantly by almost 50% This behavior is expected

and can be attributed to the fact that UPMEM’s PIM architecture is designed to efficiently

retrieve and operate on 64-bit keys. In addition, our implementation makes use of WRAM

137

0.1

1

10

100

25 26 27 28 29

0.1

1

10

100

1000

25 26 27 28 29

1

10

100

1000

4 16 64 256

UINT32 UINT64

1

10

100

1000

4 16 64 256

La
te

n
cy

 (
m

s)

La
te

n
cy

 (
m

s)

La
te

n
cy

 (
m

s)

La
te

n
cy

 (
m

s)

Result Size (k) Result Size (k)

Keys 𝐿𝑜𝑔2 𝑁 Keys 𝐿𝑜𝑔2 𝑁

UINT32 UINT64

CPU GPU PIM

Figure 6.12: Query latency measurements for 32 and 64-bit key workloads using optimized

Top-K implementations for CPU, GPU and PIM architectures.

when re-arranging the keys corresponding to the priority queue of every available DPU.

Compared to the GPU implementation and for increasing input size, Top-K PIM attains

on average 3× and 7× better query latency. GPUs are designed to operate efficiently on

32-bit data thus explained the noticeable performance drop when processing the 32-bit keys.

As noted above, PIM will process 64-bit keys incurring an equivalent processing overhead

to that of processing 32-bit keys. Hence, the performance gap doubles when focusing on

64-bit keys.

138

12.34
19.75

31.02 29.54
37.51

212.22
266.52 258.93 244.44 246.88

437.22
637.24

835.04 991.81 1111.84

24.5 25 25.5 26 26.5 27 27.5 28 28.5 29 29.5

8

32

128

512

2048

8192

25 26 27 28 29

12.34
19.75

31.02 29.54
37.51

146.87
184.45 179.19 169.16 170.85

708.62
1014.74

1301.36 1522.25 1675.72

24.5 25 25.5 26 26.5 27 27.5 28 28.5 29 29.5

8

32

128

512

2048

8192

25 26 27 28 29

Th
ro

u
g

h
p

u
t

(G
B

/s
)

Th
ro

u
g

h
p

u
t

(G
B

/s
)

Keys 𝐿𝑜𝑔2 𝑁

Keys 𝐿𝑜𝑔2 𝑁

CPU GPU PIM

Figure 6.13: Processing throughput for 32 and 64-bit key workloads using optimized Top-K

implementations for CPU, GPU and PIM architectures.

For increasing result size, all architectures suffer from increase pressure to the

on-chip resources (i.e. cache, shared-memory, registers). Multi-core CPUs consist of large

hierarchies which allow them to easily retain a lot of data during processing. This is a useful

property which comes into play when processing Top-K queries which aim at retrieving a

lot of results. GPUs and PIM architectures leverage on massive parallelism to hide data

access latency. This processing model forces both architectures to invest more space on

139

chip placing processing cores as opposed to caches and registers. Hence, they are unable

to retain a lot of data during processing. This constrains affect Top-K processing when

the expected result size is large. In our experimental measurements, we can clearly observe

that for the CPU implementation the latency remains relatively constant for both workloads

despite the increasing result size. On the other hand, for the GPU and PIM measurements

we observe a noticeable increase in query latency when the result size is larger than 64

regardless of the given workload. In fact, the increase in query latency is much more

striking for the GPU measurements when considering the 64-bit workload. This happens

because the GPU shared memory allocated per streaming multiprocessor is limited to 48KB

while the equivalent on-chip memory (WRAM) for a single DPU is 64KB. Therefore, our

PIM implementation is able to maintaining more data during processing thus sustaining a

better overall performance.

In Figure 6.13, we present the results of our experiments focusing on the attained

processing throughput for all tested parallel architectures. The associated figure contains

the maximum attainable throughput (indicated using the same color line) corresponding

to the CPU, GPU and PIM based on their publicly available specification sheets which

are also summarized in Table 6.1. PIM attains on average 30× and 3× better throughput

than the equivalent CPU and GPU implementation, respectively. Similar to the latency

measurements, UPMEM’s PIM attains its peak performance when processing the 64-bit

key workload. Concentrating on the theoretical maximum, we observe that our Top-K

PIM implementation achieves between 30% to 80% utilization for increasing input size on

the 64-bit workload. In comparison, the CPU maximum real utilization is at most 50% of

140

0.01

0.1

1

10

24 25 26 27 28 29
0.01

0.1

1

10

4 16 64 256

0.01

0.1

1

10

2 3 4 5 6 7 8

La
te

n
cy

 (
m

s)

Keys 𝐿𝑜𝑔2 𝑁Result Size (k)Query Attributes (d)

La
te

n
cy

 (
m

s)

La
te

n
cy

 (
m

s)

CPU-ASP GPU-ASP PIM-ASP

Figure 6.14: Measured query latency for experiments with increasing number of attributes,

result size, and input size while using early termination Top-K query evaluation across

different parallel architectures.

what is theoretically possible while the GPU attains even lower utilization the maximum

of which is around 26% of the theoretical. Overall, we conclude that FTE Top-K on PIM

performs better than any other equivalent solution on either multi-core CPUs or many-core

GPUs.

6.4.6 Early Termination Performance Evaluation

In Figure 6.14, we present the experimental results measuring query latency for

early termination algorithms developed on multi-threaded CPU, many-core GPU and PIM

environments. Overall, we observed that early termination on PIM attains more than order

of magnitude better query latency compared to the equivalent solution on CPU. The GPU

implementation is almost an order of magnitude worse than the equivalent PIM solution.

141

The observed performance gap widens significantly when processing queries that access high

number of attributes (i.e. 4 to 8 attributes). The difference in the maximum available read

bandwidth for every tested parallel architecture (i.e. CPU, GPU, PIM) contributes to this

widening gap. This happens regardless of the fact that every solution performs about the

same amount of work during query evaluation.

For increasing result size, early termination on PIM consistently outperforms the

equivalent CPU and GPU solutions. We observed that query latency increases significantly

for large k values when using PIM or GPU processing because more pressure is put on the

limited on-chip resources. Although the CPU implementation has access to comparatively

larger on-chip memory, its attained query latency for large k values increases because of the

additional cost that is related to aggregating the corresponding tuple scores. Finally, we

observe that for increasing input size PIM outperforms again both the CPU and GPU meth-

ods. In fact, the measured query latency for PIM is somewhat as the number of input tuples

increases. In comparison, the attained query latency of the CPU and GPU implementa-

tion increase linearly to the input number. This happens because PIM operates in-memory

where data access latency is comparatively lower than accessing the data from DRAM (for

the CPU) or GDDR (for the GPU). Hence, the overall processing cost is dominated by data

movement which becomes apparent through our experimental measurements.

In Figure 6.15, we summarize the results of our experiments measuring query

latency for varying query configuration while using the heap-based Top-K query evaluation

(denoted as PIM-FTE) and ASP-based early termination Top-K query evaluation (denoted

as PIM-ASP). The early termination solution consistently outperforms full table evaluation

142

0.01

0.1

1

10

2 3 4 5 6 7 8

0.01

0.1

1

10

4 8 16 32 64 128 256

0.01

0.1

1

10

24 25 26 27 28 29

Keys 𝐿𝑜𝑔2 𝑁

Result Size (k)

Query Attributes (d)

La
te

n
cy

 (
m

s)
La

te
n

cy
 (

m
s)

La
te

n
cy

 (
m

s)

PIM-FTE PIM-ASP

Figure 6.15: Measured query latency of FTE Top-K and early termination Top-K using

PIM for experiments with increasing number of attributes, result size, and input size.

by several orders of magnitude. The performance gap between these solutions is apparent

for increasing attribute number, result size, and input size. In fact, for high number of query

attributes it is significant because FTE solutions requires scanning the whole dataset. In

contrast, early termination requires processing about 10% of the total number of tuples,

a characteristic that is consistent across different implementation platforms (i.e. CPUs or

GPUs).

143

6.5 Conclusion

In this chapter, we developed efficient Top-K algorithms for Processing-In-Memory

(PIM) architectures. We focused on optimizing query evaluation by studying strategies

which leverage on either Full Table Evaluation (FTE) or early termination combined with

Angle Space Partitioning (ASP). Our analysis identified that FTE methods fall under two

categories; (1) sort-based, (2) heap-based. Considering the constrains imposed by UP-

MEM’s PIM solution, we discerned that FTE heap-based solutions outperform sort-based

alternatives because they are able to utilize the full bandwidth and parallelism of the cor-

responding PIM accelerator. Such distinction lead us towards the establishment of a fair

baseline for comparing PIM performance against FTE methods that were optimized for

multi-core CPU and many-core GPU processing. Our experiments showcased that PIM

performs attains lower query latency, higher processing throughput and higher utilization

than any of the aforementioned architectures on FTE Top-K query processing. We utilized

the main principles of heap-based processing to implement efficient early termination Top-

K query processing for UPMEM’s PIM. Our experiments revealed that early termination

combined with ASP attains lower query latency compared to FTE Top-K query evaluation.

In addition, early termination on PIM attained several orders of magnitude better query

latency compared to similar solutions optimized for CPUs and GPUs.

144

Chapter 7

Accelerated Skyline Selection on

Processing-In-Memory

7.1 Introduction

Modern processors leverage the integration of many compute cores and deep cache

hierarchies on a single chip to mitigate the effects of processing large dataset. This trend

necessitates the redesign of popular skyline algorithms to take advantage of the additional

hardware capabilities. Recent work on skyline computation relies on modern parallel plat-

forms such as multi-core CPUs [21] and many-core GPUs [15]. These solutions attempt

to address the unprecedented challenges associated with maintaining algorithmic efficiency

while maximizing throughput. Despite these efforts, the widening gap between memory

and processor speed contributes to a high execution time, as the maximum attainable

throughput is constrained by the data movement overhead that is exacerbated by the low

145

CPU GPU PIM

Cores (c) 10 3584 2048

Bandwidth (GB/s) 68 480 2048

Power (W/c) 10.5 0.17 0.04

Table 7.1: Single node specification comparison for CPU (Xeon E5-2650), GPU (TITAN

X) and PIM (UPMEM) architectures.

computation to data movement ratio evident in the core (i.e. dominance test, Section 2.2.1)

skyline computation. In addition, the skyline operator exhibits limited spatial and temporal

locality because each point in the candidate set is accessed with varying frequency since it

might dominate only few other points. As a result cache hierarchies will not be beneficial

when processing large amounts of data.

Processing-In-Memory (PIM) architectures [3, 31, 37, 40, 58, 71, 83, 88, 93, 103]

present a viable alternative for addressing this bottleneck leveraging on many processing

cores that are embedded into DRAM. Moving processing closer to where data reside offers

many advantages including but not limited to higher processing throughput, lower power

consumption and increased scalability for well designed parallel algorithms (Table 7.1). For

our work we rely again on UPMEM’s architecture [58] , a commercially available PIM im-

plementation that incorporates several of the aforementioned characteristics. Our skyline

implementation presents a practical use case, that captures the important challenges as-

sociated with designing complex data processing algorithms using the PIM programming

model.

146

Computing the skyline using a PIM co-processor comes with its own set of non-

trivial challenges, related to both architectural and algorithmic limitations. Our goal is to

identify and overcome these challenges through the design of a massively parallel skyline

algorithm, that is optimized for PIM systems and adheres to the computational efficiency

and throughput constraints established on competing architectures. Our contributions are

summarized below:

• We propose a nontrivial assignment strategy suitable for balancing the expected sky-

line workload amongst all available PIM processors (Section 7.2.3).

• We present the first massively parallel skyline algorithm (i.e. DSky), optimized for

established PIM architectures (Section 7.2.4).

• We provide a detailed complexity analysis, proving that our algorithm performs ap-

proximately the same amount of parallel work, as in the sequential case (Section 7.2.4).

• We successfully incorporate important optimizations, that help maintain algorithmic

efficiency without reducing the maximum attainable throughput (Section 7.2.5).

• Our experimental evaluation demonstrates 2−14× higher throughput (Section 7.4.3),

good scalability (Section 7.4.4), and an order of magnitude better energy consumption

(Section 7.4.5) compared to CPUs and GPUs.

7.2 Parallel Skyline Computation on PIM

Although PIM architectures resemble a distributed system, they are far from being

one since they do not allow for direct communication between DPUs (i.e. slave-nodes). For

147

this reason, algorithms relying on the MapReduce framework [78] are not directly applicable

since they will involve excessive bookkeeping to coordinate execution and necessary data

exchange for each DPU. Additionally, the MapReduce framework involves only a few stages

of computation (i.e. chained map-reduce transformations) which may not be enough to

effectively mask communication latency when the intermediate results between local sky-

line computations are prohibitively large. Despite these limitations, we can still rely on

Bulk Synchronous Processing (BSP) to design our algorithm, giving greater emphasis on

good partitioning strategies that provide opportunities to mask communication latency and

achieve load balancing. The most prominent solutions in that field include the work of

Vlachou et al. [96] and Kø̈hler et al. [55]. Both advocate towards partitioning the dataset

using each points’ hyperspherical coordinates. Although, this methodology is promising,

it does not perform well on high dimensional data (i.e. d > 8), because it creates large

local skylines, resulting in a single expensive merging phase [72]. Additionally, calculating

each points’ hyperspherical coordinates is a computationally expensive step [55]. For this

reasons, we purposefully avoid using the aforementioned partitioning schemes. Instead,

we present a simpler partitioning scheme which emphasizes load balancing and masking

communication latency during the merging of all intermediate results.

Following, we describe the details of our approach which we call DPU Skyline

(DSky), and present a thorough experimental analysis. The algorithm operates in two

stages, the preprocessing stage where points are grouped into blocks/partitions and assigned

to different DPUs, and a main processing stage spanning across multiple iterations within

which individual blocks are compared in parallel against other previously processed blocks.

148

3

7

6

2

5

011

111

110

010

101

0 1

2 3

0 1

2 5

111

110

101

0 1

1 2

0 1

1 3

111

110

0 1

1 1

0 1

1 2

𝟏𝒔𝒕 𝒅𝒊𝒈𝒊𝒕
𝑘 = 4, 𝑣𝑘 = 𝑋𝑋𝑋 𝑘 = 2, 𝑣𝑘 = 1𝑋𝑋 𝑘 = 1, 𝑣𝑘 = 11𝑋

𝟐𝒏𝒅 𝒅𝒊𝒈𝒊𝒕 𝟑𝒓𝒅 𝒅𝒊𝒈𝒊𝒕

𝐶𝑜𝑢𝑛𝑡

𝑃𝑟𝑒𝑓𝑖𝑥 𝑆𝑢𝑚 𝑃𝑟𝑒𝑓𝑖𝑥 𝑆𝑢𝑚

𝐶𝑜𝑢𝑛𝑡

𝑃𝑟𝑒𝑓𝑖𝑥 𝑆𝑢𝑚

𝐶𝑜𝑢𝑛𝑡

Figure 7.1: Radix-select example using radix-1.

7.2.1 Parallel Radix-Select & Block Creation

Maintaining the efficiency of sequential skyline algorithms, requires processing

points in-order based on a user-defined monotone function. Due to architectural constraints,

sorting the input to establish that order, contributes to a significant increase in the commu-

nication cost between host and DPUs. Our algorithm relies on parallel radix-select [5] to find

a set of pivots which can be used to split the dataset into a collection of blocks/partitions.

Radix-select operates on the ranks/scores that are generated for each point from a user

defined monotone function. In our implementation, we assume the use of L1 norm. Com-

puting the rank of each point is relatively inexpensive, highly parallel and can be achieved

by splitting the data points evenly across all available DPUs.

Radix-select closely resembles radix-sort, in that it requires grouping keys by their

individual digits which share the same significant position and value. However, it differs as

its ultimate goal is to discover the k-th largest element and not sort the data. This can be

accomplished by building a histogram of the digit occurrences, for each significant position

149

across multiple iterations, and iteratively construct the digits for the k-th largest element.

An example for k = 4 is shown in Fig. 7.1. The digits are examined in groups of 1 (i.e.

radix-1) starting from the most significant digit (MSD). At the first iteration, there are 2

and 3 occurrences of 0 and 1, respectively. The prefix sum of these values indicates that

the 4-th element starts with 1. We update k by subtracting the number of elements at the

lower bins. This process repeats at the next iteration for elements that match to 1XX.

After 3 iterations the k-th largest value will be vk = 110.

The pseudocode for the DPU kernel corresponding to radix-select is shown in

Algorithm 18. In our implementation, we use radix-4 (i.e. examine 4 digits at a time)

which requires 16 bins per thread. For 32-bit1 values, we require 8 iterations that consist

of two phases. First, each DPU thread counts the digit occurrences for a given portion

of the data. At a given synchronization point the threads cooperate to accumulate partial

results into a single data instance. In the second phase, the host will gather all intermediate

results and calculate the corresponding digit of the k-th value while also updating k. The

new information is then made available to all DPUs at the next iteration. This whole

process is memory bound, although highly parallel and with a low communication cost (i.e.

only few KB need to be exchanged), fitting nicely to the PIM paradigm. Therefore, it is

suitable for discovering the splitting points between partitions.

Assuming a partition size, denoted with Psize, and N number of points, we require

Pvt = P − 1 = N
Psize

− 1 pivots to create partitions {C0, C1, C2...CP−2, CP−1}. In Algo-

rithm 19, we present the pseudocode for assigning points to their corresponding partitions.

1Floating-point types can be processed through a simple transformation to their IEEE-754 format.

150

Algorithm 18 Radix-select Kernel

R = Precomputed Rank vector.

K = Splitting Position.

Vk = Digits of Current Pivot.

1: for digit ∈ [7, 0] do

2: Set Bt = {0} . Set thread bins to zero.

3: for all r ∈ R in parallel do

4: if prefix(r, Vk) then . Match prefix.

5: Bt[digit] + +

6: end if

7: end for

8: B = sum(Bt) . Aggregate Partial Counts.

9: (Vk,K) = search(B,K) . Update P & K.

10: end for

151

As indicated in Line 3, we concentrate on the rank of a given point to identify the range

of pivots that contain it, after which we assign it to the partition with the corresponding

index. The presented partitioning method guarantees that no two points p, q exist, such

that p ∈ Ci and q ∈ Cj , where i < j and F (p) > F (q). Points within a partition do not have

to be ordered with respect to their rank, given a small partition which allows for parallel

brute force point-to-point comparison.

Blocked processing has been used before for CPU based skyline computation [21]

to improve cache locality. Our solution differs, since it supports blocking while avoiding

the high cost of completely sorting the input data. Furthermore, we utilize blocking to

introduce a nontrivial work assignment strategy which enables us to design a highly parallel

and throughput optimized skyline algorithm for PIM architectures. This strategy aims at

maximizing parallel work through maintaining good load balance across all participating

DPUs, as compared to the optimal case.

Algorithm 19 Radix-select Partitioning

D = Input dataset

Rp = Pivots vector

1: Rp = radix select(D) . Calculate pivots.

2: for all p ∈ D do

3: if Rp[j] < F (p) ≤ Rp[j + 1] then

4: Cj = Cj ∪ {p} . Assign p to Cj .

5: end if

6: end for

152

7.2.2 Horizontal Partition Assignment

In this section, we concentrate on introducing a simple horizontal assignment strat-

egy, the performance of which motivates our efforts to suggest a better solution. Our goal

is to establish the lower bound associated with the parallel work for computing the skyline,

measured in partition-to-partition (p2p) comparisons, and suggest a strategy along with

the algorithm that is able to attain it.

We start by introducing some definitions. Given a partition Cj , we define its

pruned equivalent partition, the set of all points that appear in Cj which will be eventually

identified as being part of the final skyline set. We denote this pruned partition as C̃j ⊆ Cj .

Assuming a collection of P partitions, which can be ordered using radix-select partitioning,

such that for i, j ∈ [0, P − 1] and i < j, then Ci ≺ Cj (i.e. Ci precedes Cj), it is possible to

compute P pruned partitions iteratively:

a. C̃0 = p2p(C0, C0)

b. C̃1 = p2p(C̃0, p2p(C1, C1))

c. C̃2 = p2p(C̃0, p2p(C̃1, p2p(C2, C2)))

The p2p function denotes a single partition-to-partition comparison operation,

checking if any points exist in Ci that dominate those in Cj . More details related to the

implementation of p2p, are presented in Section 7.2.5. We observe that using the pruned

partition definition, we can calculate the skyline set using the following formula:

S = ∪
i∈[0,P−1]

(
C̃i

)
(7.1)

153

Eq. 7.1, indicates that it is possible to compute the skyline using the union of all

pruned partitions. Therefore, it is possible to maintain and share information about the

skyline without using a centralized data structure. Additionally, once C̃j is generated, all

remaining partitions with index larger than j may use it to prune points from their own

collection. In fact, performing this work is “embarrassingly” parallel and depending on the

partition size and the input dataset size, it can be scaled to utilize thousands of processing

cores. However, we observe that assigning work to DPUs näıvely could potentially hurt

performance, due to the apparent dependencies between partitions and the fact that latter

partitions require more p2p comparisons to be pruned.

Assuming all partitions are processed in sequence, we can calculate the number of

total p2p comparisons by examining each partition separately. For example, C0 will need

1 self-comparison (i.e. p2p(C0, C0)), C1 will need 2 p2p comparisons, C2 3 and so on. In

fact, the total number of p2p comparisons, assuming P partitions is given by the following

equation:

Mseq =
P · (P + 1)

2
(7.2)

Ideally, with Dp DPUs at our disposal, we would like to evenly distribute the

workload among them, maintaining a p2p comparison count which is roughly equal to
Mseq

Dp
.

A fairly common and easily implementable strategy, is to divide the partitions (PD = P
Dp

per DPU) horizontally across DPUs as indicated in Figure 7.2. However, if we attempt to

follow this strategy, the DPU responsible for the last collection of partitions will have to

perform at least (P − PD) ·PD + PD·(PD+1)
2 p2p comparisons a number P ·PD times higher

than the DPU responsible for the first collection of partitions. Obviously, this assignment

154

𝐷𝑃𝑈0

Horizontal Assignment

𝐷𝑃𝑈1

𝐶0

𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

𝐶6

𝐶7

𝐷𝑃𝑈0

Spiral Assignment

𝐷𝑃𝑈1

𝐶0

𝐶3

𝐶4

𝐶7

𝐶1

𝐶2

𝐶5

𝐶6

Figure 7.2: Assignment strategies of 8 partitions on 2 DPUs.

mechanism suffers from several issues, the most important of which is poor load balancing.

In fact during processing, the majority of the participating DPUs will be idle waiting for

pruned partitions to be calculated and transmitted. Additionally, the limited memory

space available to each DPU, makes it hard to amortize the cost of communication, since

processing needs to complete before exchanging any data. To overcome the problems set

forth by horizontal partitioning, we introduce the concept of spiral partition assignment.

7.2.3 Spiral Partition Assignment

Commonly, data intensive algorithms rely on Bulk Synchronous Processing (BSP)

to iteratively apply transformations on a given input across many iterations, between which

a large portion of the execution time is dedicated to processing rather than communication.

This process aims to maintain good load balance and reducing communication to effectively

minimize each processor’s idle time. In this section, we introduce a nontrivial assignment

strategy which allows for the design of an iterative algorithm that follows the aforementioned

properties.

155

Our assignment strategy relies on the observation that for a collection of 2 · Dp

ordered partitions with respect to a user-provided monotone function, we can always group

them together creating non-overlapping pairs, all of which when processed individually,

require the same p2p comparison count. The pairing process considers partitions in opposite

locations with respect to the monotone function ordering, resulting in the creation of Dp

pairs in total. For example, assuming the existence of partitions
{
C0, C1..., C2·Dp−1

}
, we

will end up with the following pairs:

{〈
C0, C2·Dp−1

〉
,
〈
C1, C2·Dp−2

〉
...,
〈
CDp−1, CDp

〉}
(7.3)

In Figure 7.2, we showcase our novel assignment strategy, which we call spiral

partitioning, next to the näıve horizontal partitioning scheme. In contrast to the horizontal

partitioning mechanism which requires 4 · 4 + 4·5
2 = 26 p2p comparisons from a single DPU,

our spiral partitioning scheme requires only 18 (i.e., (1+4+5+8) = DPU0, (2+3+6+7) =

DPU1) most of which can be performed in parallel. This number is equivalent to
Mseq

Dp
= 36

2 ,

indicating that our spiral partitioning strategy splits evenly the expected workload across

all participating DPUs.

In our analysis, we assumed the number of partitions P to be equal to 2 ·Dp. In

the general case, we can choose P and Dp, in order for P to be expressed as multiple of

2 ·Dp such that K = P
2·Dp

. For each one of the K collections, we can individually apply the

spiral partitioning algorithm and assign one pair from each collection to a distinct DPU.

Following this assignment process, we calculate the total p2p comparison count per DPU

based on the following formula:

156

Mopt = (1 + 2 ·Dp) + (1 + 6 ·Dp) + (1 + 10 ·Dp) + ... =

Dp · (2 + 6 + 10 + 14...) +
PD
2

=

Dp ·
(4 + 4 · (PD

2 − 1))

2
· PD

2
+
PD
2

=

PD
2
·
[
2 · PD

2
·Dp + 1

]
=

P

2 ·Dp
[P + 1]⇒Mopt =

P · (P + 1)

2 ·Dp

(7.4)

The aforementioned formula is based on the observation that for each collection,

the number of p2p comparisons per DPU is equal to the p2p comparisons required for the

first and last partition of that collection. Therefore, for the first collection we need 1+2 ·Dp

p2p comparisons, for the second 2 ·Dp + 1 + 4 ·Dp, for the third 4 ·Dp + 1 + 6 ·Dp and so

on, requiring increasing number of p2p comparisons.

In theory, it is possible to utilize at most P
2 DPUs for processing when using spiral

partitioning. However, in practice, it might not be beneficial to reach this limit, since at

that point the work performed within each DPU will not be enough to amortize the cost of

communication or minimize the idle time. Additionally, due to the existing dependencies

between partitions, increasing the number of DPUs will result in less work being performed

in parallel. In the next section, we present more details regarding these issues and present

the intrinsic characteristics of our main algorithm.

7.2.4 DSky Main Processing Stage

Leveraging on spiral partitioning, we introduce a new algorithm for computing

the skyline set on PIM architectures. Once each partition has been assigned to their corre-

157

Partitions/Iteration 𝑖 = 0 𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 𝑖 = 5 𝑖 = 6

{𝐶0, 𝐶3, 𝐶4, 𝐶7} ሚ𝐶0: (𝐶3, 𝐶4, 𝐶7) ሚ𝐶1: (𝐶3, 𝐶4, 𝐶7) ሚ𝐶2: (𝐶3, 𝐶4, 𝐶7) ሚ𝐶3: (𝐶4, 𝐶7) ሚ𝐶4: (𝐶7) ሚ𝐶5: (𝐶7) ሚ𝐶6: (𝐶7)

{𝐶1, 𝐶2, 𝐶5, 𝐶6} ሚ𝐶0: (𝐶1, 𝐶2, 𝐶5, 𝐶6) ሚ𝐶1: (𝐶2, 𝐶5, 𝐶6) ሚ𝐶2: (𝐶5, 𝐶6) ሚ𝐶3: (𝐶5, 𝐶6) ሚ𝐶4: (𝐶5, 𝐶6) ሚ𝐶5: (𝐶6) −

Partitions/Iteration 𝑖 = 0 𝑖 = 1 𝑖 = 2

{𝐶0, 𝐶3} ሚ𝐶0: (𝐶3) ሚ𝐶1: (𝐶3) ሚ𝐶2: (𝐶3)

{𝐶1, 𝐶2} ሚ𝐶0: (𝐶1, 𝐶2) ሚ𝐶1: (𝐶2) −

(A)

(B)

Figure 7.3: Number of comparisons across iterations when assigning (A) 2 partitions per

DPU vs (B) 4 partitions per DPU.

sponding DPU, we can start calculating each pruned partition within two distinct phases as

indicated in Algorithm 20. In the first phase, each DPU performs a “self-comparison” for

all partitions assigned to it. This step is “embarrassingly” parallel and does not require any

data to be exchanged. The second phase consists of multiple iterations across which the

pruned partitions are computed. At iteration i, the pruned partition C̃i has already been

computed and is ready to be transmitted across all DPUs. Once the broadcast is complete,

all DPUs have access to C̃i which they use as a window to partially prune any of their own

Cj partitions in parallel, where j > i is based on the established ordering of partitions.

Our implementation uses a collection of flags, denoted with Fi for partition C̃i, to

mark which points have been dominated during processing. We indicate with 0 those points

that have been pruned away and with 1 those that are still tentatively skyline candidates.

The whole process is orchestrated by the host (CPU), who keeps track of which partition

needs to be transmitted at the end of each iteration. It is important to note that broad-

casting individual partitions can be expensive. For this reason, we need to carefully choose

the partition size in order to overlap data exchange with actual processing. Additionally,

158

we propose to further reduce this cost by preemptively broadcasting m partitions at each

iteration before they are actually needed, thus increasing the computation-communication

overlap window. Nevertheless, we still need to wait for the Fi bit-vector to become avail-

able before starting the next iteration. However, once the corresponding Fi bit-vector is

calculated we can inexpensively transmit it to all DPUs, since it is inversely proportional

to the point dimensions and partition size.

Assuming an optimal p2p kernel, we measure the complexity of DSky in terms of

p2p comparisons per DPU. For the first phase, each DPU is responsible for self-comparing

their assigned partitions, requiring PD comparisons to complete. The second stage is slightly

more complex. Within iteration i, the corresponding partition C̃i will be compared against

all Cj partitions having a higher index. Starting from C̃0 and for the next Dp−1 iterations,

each DPU will perform PD comparisons. Once C̃Dp is computed, only partitions with

index larger than Dp will need to be considered, resulting in at most PD − 1 comparisons

for iterations Dp to 2 ·Dp − 1. This process is repeated multiple times until all partitions

within each DPU have been checked. Adding the complexity of each phase together, we

end up with the following formula:

Mpar = [(Dp − 1) · PD +Dp · (PD − 1)+

Dp · (PD − 2) ... +Dp · 1] + PD ⇒

Mpar = Dp · [
PD · (PD + 1)

2
]

(7.5)

From Eq. 7.5 and Eq. 7.4, if we replace PD = P
Dp

, we get the following ratio:

Mpar

Mopt
=

1 +
Dp

P

1 + 1
P

(7.6)

159

Algorithm 20 DSky Algorithm

Bj = Region bit vectors for Cj .

Fj = Flags indicating active skyline points for Cj .

1: for all DPUs in parallel do

2: for all Cj ∈ DPUi do

3: P2P (Cj , Bj , Cj , Bj) . Self compare partitions.

4: end for

5: end for

6: for all i ∈ [0, P − 1] do

7: copy(C̃i, B̃i, Fi) . Broadcast pruned partition info.

8: for all DPUs in parallel do

9: for all j > i do

10: P2P (C̃i, B̃i, Cj , Bj) . Prune Cj using C̃i

11: end for

12: end for

13: end for

160

From Eq. 7.6, we can observe how different values for P and Dp affect the complex-

ity of DSky with respect to the optimal case. When P → ∞, then
Mpar

Mopt
→ 1. Intuitively,

when the number of partitions assigned per DPU is significantly larger than its collective

number, the observed idle time constitutes a smaller portion of the actual processing time.

In Figure 7.3 using two DPUs, we present an example where 2 or 4 partitions are assigned

per DPU. In the first case, we require 3 p2p comparisons and within iterations i = 0, 2,

DPU0 or DPU1 will do 1 less comparison than the other, respectively. Therefore, 1
4 of the

time each DPU will be idle. In the second case, the total comparisons across iterations

will be 14 and the corresponding idle time within iterations i = 0, 2, 4, 6 is 2. Hence, the

idle time per DPU will be 2
16 , half of what was observed for the previous example. At

this point, it is important to note that creating more partitions does not depend on the

input size, but instead on the number of pivots calculated during radix-select partitioning.

Although, this may seem like having a partition size equal to 1 is the best case, in practice

there are several trade-offs to consider, such as the preprocessing time required to calculate

each partition and the communication overhead when small data are transmitted frequently

and not in bulk. Through experimentation, we are able to identify the specific parameters

contributing to these trade-offs, allowing us to successfully fine tune the partition size.

7.2.5 P2P Kernel

In this section, we discuss three specific optimizations that can be integrated into

our p2p kernel to ensure algorithmic efficiency.

Optimization I: The points within each partition are sorted based on their rank.

This optimization can be embarrassingly parallel and less expensive than globally sorting

all the points. It aims at reducing the expected number of DTs for each DPU by half [21].

161

𝑝3

𝑝6

𝑝7

𝑝2

𝑝1
𝑝5

𝑝4
𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7

10 01 10 01 10 11 01

00 01 11 00 10 01 11𝐿𝑒𝑣𝑒𝑙2

𝐿𝑒𝑣𝑒𝑙1

Figure 7.4: Median pivot multi-level partitioning example.

Optimization II: For more challenging distributions (i.e. anti-correlated), space

partitioning is preferable since it can help with identifying incomparable point through cheap

filter tests [21]. Similarly to previous work [15], we exploit a recursive space partitioning

scheme to detect incomparability. This technique requires calculating bit-vectors for each

point, indicating the region of space it resides. They are determined through a virtual pivot,

constructed from the median value of its subspace.

An example of this is shown in Figure 7.4. There, we determine the values for the

median level virtual pivot by taking the projection of p1 in the x-axis and p4 in the y-axis.

Each point is assigned a bit vector based on its relative position to the virtual point. For

example, p1 is assigned 10 because it is ≥ and < in the x and y-axis, respectively, compared

to the pivot. For each quartile, we can repeat this process multiple times. However, it

has been shown empirically [15] that doing it twice is sufficient to gain good algorithmic

efficiency. We use radix-select to calculate the median value for each subspace and construct

the corresponding pivots.

162

In related work [15], a centralized data structure is used to manage the bit vectors

and establish a good order of processing. Due to architectural limitations (i.e. expensive

global access), our implementation uses a flat array to pack both bit vectors in a single

32-bit value for each point. Our spiral partitioning scheme is responsible for maintaining

the good order of processing. Additionally, it is designed around optimizing local access

and minimizing communication while, also, promoting the seamless incorporation of the bit

vector information within a partition.

Optimization III: Based on the work in [10], we use Eq. 2.3 to update the

stopping level and point, and then compare this information with the point of the smallest

rank within each partition to determine if it is dominated. The stopping information is

updated locally within each DPU. The host is responsible for merging the local results at

each step of DSky’s second stage (Algorithm 20). This requires few KBs to be exchanged,

thus its communication overhead is low.

Algorithm 21 presents the implementation of our p2p kernel. Each DPU allocates

memory for PD partitions, plus two remote partitions to support double buffering. In Line

1, we compare the smallest rank within the given partition to the global stopping value to

determine if the whole partition is dominated. When this test fails, we need to check all

the points within the partition. For each point in the local partition, we only examine the

points that are still skyline candidates (Line 5) against those of the remote partition that

satisfy the same property (Line 7). Using the corresponding bit vectors, if the two points are

incomparable (Line 8) we skip to the next point in the remote partition, otherwise we need

to perform a full DT (Line 11). For all points in the local partition that are not dominated

163

Algorithm 21 P2P Function Kernel

Rj = Rank vector for Cj , Bj = Region bit vectors for Cj .

Fj = Active skyline points for Cj , (gs, ps) = Global stop level and point.

1: if stop(gs,ps,Rj [0],Cj [0]) then

2: return Fj ← 0 . Prune partition.

3: end if

4: for all q ∈ Cjin parallel do

5: if Fj [q] 6= 0 then . q is alive.

6: for all p ∈ Ci do

7: if Fi[p] 6= 0 then . p is alive.

8: If Bi[p] ⊀ Bj [q] then continue . Incomparable.

9: If p ≺ q then Fj [q] = 0 break . Set flag for q to zero.

10: end if

11: end for

12: end if

13: if Fj [q] = 1 then . Point is not dominated.

14: ls[id] = MiniMax(q,ls[id]) . Thread stop level.

15: ps[id] = q . Thread stop point.

16: end if

17: end for

18: (gs, ps) =update ps(ls[id] , ps[id]) . DPU stop info.

19: merge Fj

164

(Line 18), we update the local stop point information. At the end of the for-loop (Lines

23 − 24), we merge the local stop point information and update the local partition’s flags

to indicate which points have been dominated.

7.3 Experimental Environment

In this section, we present an in-depth analysis of DSky, comparing against the

state-of-the-art sequential [60], multi-core [21] and many-core [15] algorithms.

7.3.1 Setup Configuration

CPU Configuration: For the CPU algorithms, we conducted experiments on an

Intel Xeon E5-2650 2.3 GHz CPU with 64 GB memory. We used readily available C++

implementations of BSkyTree [60] and Hybrid [16].

GPU Configuration: For the GPU, we used the latest NVIDIA Titan X (Pascal)

1.53 GHz 12 GB main memory GPU with CUDA 8.0. We conducted experiments using

the readily available C++ implementation of SkyAlign [16] which is the current state-of-

the-art algorithm for GPUs. For a fair comparison, we present measurements using clock

frequencies 0.75 and 1.53 GHz.

DPU Configuration: We implemented both phases of DSky, including the pre-

processing steps, using UPMEM’s C-based development framework [94] and dedicated com-

piler. Our experiments were performed on UPMEM’s Cycle Accurate Simulator (CAS)

using the binary files of the corresponding implementation. The simulation results were

validated using an FPGA implementation [94] of the DPU pipeline. Based on the reported

clock cycle count that includes pipeline stalls associated with the corresponding data ac-

165

cesses, and a base clock of 0.75 GHz for each DPU, we calculated the exact execution time

for a single node system using 8 to 4096 DPUs. For a fair comparison against the GPU, we

limit the number of DPUs in accordance to the available cuda cores (i.e. 3584).

7.3.2 Dataset

Similarly to previous work [15], we rely on the standard skyline dataset genera-

tor [17] to create common data distributions (i.e., correlated, independent, anticorrelated).

We compare against the CPU and GPU implementations using queries with dimensionality

d ∈ {4, 8, 16} and for dataset of cardinality n ∈
[
220, 226

]
2. Additional experiments are

presented on PIM only for cardinality n ∈
[
220, 229

]
.

7.3.3 Experiments & Metrics

For all implementations, our measurements include the cost of preprocessing and

data transfer (where it is applicable) across PCIE 3.0 (i.e. GPU) or broadcast between

DPUs. We benchmarked the aforementioned algorithms with all of their optimizations

enabled. For the performance evaluation, we concentrate on the following metrics:

Runtime Performance: This metric is used to evaluate at a high level the

performance of DSky against previous solutions. It showcases the overall capabilities of the

given architecture coupled with the chosen algorithm.

Algorithmic Efficiency & Throughput: Due to several hidden details within

the runtime performance, we focus on the algorithmic efficiency by studying the number of

full DTs conducted by each algorithm. Our ultimate goal is to showcase the ability of DSky

2Due to restrictions in GPU memory, the maximum dataset for comparison purposes was set to 226.

166

to successfully incorporate known skyline optimizations and indicate their contribution to-

wards achieving high throughput on the UPMEM-PIM architecture.

Scaling: An important property of the UPMEM-PIM architecture is the ability

to easily increase resources when the input grows beyond capacity. However, doing so

requires a well designed parallel algorithm that avoids any unnecessary overheads caused

by excessive communication or load imbalance. With this metric, we indicate DSky’s ability

to scale when resources increase proportionally to the input size.

In addition, our experiments on comparing the system utilization between GPU

and PIM architectures, indicated an upward trend of 75% for PIM against 40% for GPUs.

Moreover, we provide measurements demonstrating superior energy efficiency compared to

state-of-the-art algorithms on CPUs and GPUs (Section 7.4.5).

7.4 Synthetic Data Experiments

7.4.1 Run-Time Performance

Correlated data contribute to a smaller skyline set which contains only a few

dominator points. Therefore, during processing the main performance bottleneck is the

memory bandwidth. Figure 7.5 illustrates the runtime performance for all algorithms on

correlated data. DSky outperforms previous state-of-the-art algorithms for all tested query

dimensions. This happens because it relies on radix-select, an inherently memory bound

operation, to lower the preprocessing cost. Moreover, the main processing stage terminates

early due to the discovery of a suitable stopping point. BSkyTree and Hybrid under-utilize

167

104

103

102

101

1 16 32 48 64

104

103

102

101

1 16 32 48 64

105

104

103

102

101
1 16 32 48 64

Ti
m

e(
m

s)

D=16D=8D=4

Cardinality (Millions)

BSkyTree Hybrid SkyAlign (1.5 GHz) SkyAlign (0.75GHz) DSky

Figure 7.5: Execution time (log(t)) using correlated data.

the available bandwidth, since a single point requires only few comparisons to be pruned

away. Therefore, prefetching data into cache will result in lower computation to commu-

nication ratio and higher execution time. SkyAlign is limited by the overhead associated

with launching kernels on the GPU, which in this case is high relative to the cost of the

processing and preprocessing stages.

Figure 7.6 presents the runtime performance for all methods using independent

data. We observe that DSky outperforms previous implementations for query dimensions

(i.e. d = {4, 8}) that reflect the needs of real-world applications. Hybrid and BSkyTree are

restricted by the cache size, since increasing dimensionality contributes to a larger skyline.

This results in a higher number of direct memory accesses leading to higher runtime. Com-

pared to DSky, SkyAlign exhibits higher runtime on 4 and 8 dimension queries, due to

168

107

106

105

104

103

102

1 16 32 48 64

BSkyTree Hybrid SkyAlign (1.5 GHz) SkyAlign (0.75GHz) DSky

105

104

103

102

1 16 32 48 64

106

105

104

103

102

1 16 32 48 64

Ti
m

e(
m

s)

D=4 D=8 D=16

Cardinality (Millions)

Figure 7.6: Execution time (log(t)) using independent data.

achieving lower throughput as a result of irregular memory accesses and thread divergence.

On 16 dimensions, these limitations have a lesser effect on runtime, due to the increased

workload which contributes towards masking memory access latency when more threads ex-

ecute in parallel. However, concentrating on measurements using 750 MHz clock frequency,

we observe that DSky outperforms SkyAlign approximately by a factor of 2. Intuitively,

this indicates that DSky is throughput efficient compared to SkyAlign, as the latter fails

to sustain same runtime for equal specification. In fact, experiments with higher frequency

indicate a trend that predicts better performance for DSky on sufficiently large input (be-

yond 16 million points SkyAlign would crash, probably due to implementation restrictions

and limited global memory).

Finally, Figure 7.7 illustrates the measured runtime for anticorrelated distribu-

tions. As before, DSky outperforms CPU-based methods which are restricted by the cache

169

BSkyTree Hybrid SkyAlign (1.5 GHz) SkyAlign (0.75GHz) DSky

106

105

104

103

102

1 16 32 48 64

107

106

105

104

103

102

1 16 32 48 64

108

107

106

105

104

103

1 16 32 48 64

D=16D=8D=4

Cardinality (Millions)

Ti
m

e
(m

s)

Figure 7.7: Execution time (log(t)) using anticorrelated data.

size. The only noticeable difference relates to the runtime of SkyAlign which is closer to

that of DSky on 8 and 16 dimensions for higher clock frequency. The increased workload

associated with anticorrelated distributions makes optimizing for work-efficiency a good

strategy but only for a relatively small number of points.

7.4.2 System Throughput & Utilization

In Figure 7.8, we depict the actual to peak system throughput ratio achieved by

SkyAlign and DSky. These experiments aim at quantifying the level of utilization achieved

by each algorithm on the corresponding architecture. In order to attain accurate measure-

ments, we focus on experiments with the independent and anticorrelated datasets for 8 and

16 dimensions.

170

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

𝑇
ℎ
𝑟𝑜
𝑢
𝑔
ℎ
𝑝
𝑢
𝑡
𝑅
𝑎
𝑡𝑖
𝑜

𝑇
ℎ
𝑟𝑜
𝑢
𝑔
ℎ
𝑝
𝑢
𝑡
𝑅
𝑎
𝑡𝑖
𝑜

Independent Anticorrelated

d = 8

d = 16 d = 16

d = 8

𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 × 106 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 × 106
SkyAlign DSky

Figure 7.8: Ratio of achieved throughput over peak device throughput.

Overall, DSky exhibits higher and fairly constant throughput across different input

size for both 8 and 16 dimension queries. Without considering communication across PCIE

the expected throughput will be in the range of 90% to 97%. However, our measurements

include the PCIE communication which justifies the throughput being in the worst case

around 76%. In contrast, SkyAlign is mainly limited by the memory bandwidth and thread

divergence and for 8 dimensions seems to peak around 16 million points. For 16 dimensions

the system throughput increases at a constant rate, although it shows some indication of

171

D=16

D=8

D=16

D
T

 C
o

u
n

t
D

T
 C

o
u

n
t

CardinalityCardinality

D=8

Independent Anticorrelated

BSkyTree Hybrid SkyAlign Dsky

Figure 7.9: Number of executed DTs per algorithm.

reaching its peak around or after 32 million points. This behavior follows our previous

claims indicating that SkyAlign is not throughput efficient for large scale dataset.

7.4.3 Algorithmic Efficiency & Throughput

Figure 7.9 illustrates the number of full DTs performed by all algorithms. We

concentrate on independent and anticorrelated distributions and omit DTs performed on

correlated data as their limited number has a lesser impact on throughput. Our experiments

indicate that DSky exhibits remarkable efficiency for queries on 8 dimensions, outperform-

ing the state-of-the-art parallel algorithms. In fact, its performance is closer to BSkyTree in

terms of total DT count, indicating its ability to achieve balance between efficient pruning

172

and detecting incomparability. This results from the optimizations related to in-order pro-

cessing, early stopping and cheap filter tests using space partitioning. On 16 dimensions,

DSky remains as efficient or slightly better than the CPU-based methods. In contrast to

SkyAlign, DSky requires more DTs to compute the skyline, since the former relies on a

centralized data structure to decide the ordering in which points are processed. Avoiding

such a data structure comes at a trade-off, which offers opportunities for high parallelism

and subsequently high throughput at the expense of doing more work.

In order to support our claims, we present in Figure 7.10 the throughput measured

in million DTs per second for all implementations. We focus on the higher workload 16

dimension queries that allow for accurate throughput measurements. In our experiments,

we observe that DSky is able to consistently maintain a higher throughput than previous

state-of-the-art algorithms. Despite requiring a higher number of DTs, DSky maintains a

higher processing rate relative to SkyAlign when using the same clock frequency. Intuitively,

this can be attributed to a less rigid parallel execution model which allows for irregular

processing, and higher bandwidth achieved through processing-in-memory. DSky leverages

on these two properties towards being throughput efficient.

7.4.4 Scaling

We evaluate scalability by measuring the execution time, while the number of

available DPUs increases proportionally (i.e. 8 to 4096) to the input size. Figure 7.11 con-

tains the results of our experiments for all distributions. We focus on 8 and 16 dimension

queries, which are the most compute and communication intensive case studies. Experi-

173

0

300

600

900

1200

220 221 222 223 224 225 226

0

300

600

900

1200

220 221 222 223 224 225 226

BSkyTree Hybrid SkyAlign Dsky

Independent

M
D
Ts
/s
ec

Anticorrelated

M
D
Ts
/s
ec

Cardinality

Figure 7.10: MDTs/sec for each algorithm on 16 dimensions.

ments with correlated data demonstrate a constant increase in execution time regardless

of the query dimensions. We attribute this behavior to the higher cost of communication

relative to processing. In practice, doubling the number of DPUs will improve performance

only when the computation cost is sufficiently large. Low processing time offers minimal

improvements over the increase in communication which dominates the overall execution

time.

Independent and anticorrelated distributions require more time for processing than

transmitting data, thus adding resources contributes to a higher reduction of the total

execution time. In fact, as we increase the number of DPUs proportionally to the number

174

D=8

Cardinality

Ti
m

e
(m

s)

106

104

102

100

220 221 222 223 224 225 226 227 228 229

106

104

102

100
220 221 222 223 224 225 226 227 228 229

D=16

Ti
m

e
(m

s)

Correlated Independent Anticorrelated

Figure 7.11: Execution time scaling with additional DPUs.

of points, the execution time remains fairly constant regardless of the distribution or query

dimension. This showcases the ability of DSky to scale comfortably with respect to growing

input. It is also noteworthy to mention that selecting a suitable partition size, contributes to

achieving good scalability. This offers more opportunities for parallelism, while minimizing

the work overhead associated with dependencies which arise from in-order processing.

7.4.5 Energy Consumption

As seen from our experimental evaluation, in most cases DSky achieves same or

better execution time than state of the art solutions while being more throughput efficient

175

CPU GPU PIM

Independent 0.715 1.124 0.140

Anticorrelated 1.562 2.177 0.153

Table 7.2: Energy per unit of work (µJ/DT).

and easily scalable. Moreover, DSky runs on an architecture that uses around 25% of the

energy requirements (Table 7.1). Overall, this translates to more than an order of magnitude

better energy consumption per unit of work in comparison to the corresponding CPU and

GPU solutions, as seen in Table 7.2.

7.4.6 Fine Tuning the Partition Size

In Figure 7.12, we present the execution time for 32 million points on 16 dimension

queries. Although reducing the partition size necessitates the discovery of more pivots to

split the data, it contributes to a constant increase in the execution time. This happens due

to radix-select which reduces data movement during preprocessing and is highly parallel.

For small partition size, the communication cost grows as the associated hardware overhead

is higher than the cost of data transmission. In contrast, large partitions saturate the

communication channel causing a bottleneck that increases the data transmission cost. A

trade-off between these extremes is achieved for partition size equal to 128. Fine tuning

is important since more partitions result in more opportunities for higher parallelism and

subsequently higher throughput.

176

p=8 p=16 p=32 p=64 p=128 p=256 p=512 p=1024
10

100

1000

1e+04

Init

Communication

Processing

10

102

103

104

23 24 25 26 27 28 29 210

p=8 p=16 p=32 p=64 p=128 p=256 p=512 p=1024
10

100

1000

1e+04

1e+05

10

102
103

104
105

23 24 25 26 27 28 29 210

p=8 p=16 p=32 p=64 p=128 p=256 p=512 p=1024
10

100

1000

1e+04

1e+05

23 24 25 26 27 28 29 210
10

102
103

104
105

𝑇
𝑖𝑚

𝑒
(𝑚

𝑠)
𝑇
𝑖𝑚

𝑒
(𝑚

𝑠)
𝑇
𝑖𝑚

𝑒
(𝑚

𝑠)

Initialization Communication Processing

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒

Anticorrelated

Independent

Correlated

Figure 7.12: Execution time for n=32× 106 d=16 on varying partition size.

7.5 Conclusion

In this work, we presented a massively parallel skyline algorithm for PIM archi-

tectures, called DSky. Leveraging on our novel work assignment strategy, we showcased

DSky’s ability to achieve good load balance across all participating DPUs. We proved that

by following this methodology, the total amount of parallel work is asymptotically equal

to the optimal case. Furthermore, combining spiral partitioning with blocking enabled

us to seamlessly incorporate optimizations that contribute towards respectable algorithmic

efficiency. Our claims have been validated by an extensive set of experiments that show-

177

cased DSky’s ability to outperform the state-of-the-art implementations for both CPUs and

GPUs. Moreover, DSky maintains higher processing throughput and better resource uti-

lization. In addition, we showcased that DSky scales well with added resources, a feature

that fits closely the capabilities of PIM architectures. Finally, our solution improves by

more than an order of magnitude the energy consumption per unit of work.

178

Chapter 8

Conclusion and Future Work

In recent years there has been a huge influx on the number of applications re-

sponsible for generating multi-dimensional data. This trend combined with the increasing

demand in discovering interesting data insights, using complex query operators puts signif-

icant pressure on the processing capabilities of modern decision support systems. In order

to improve the processing capacity of such systems, researchers proposed the development

of main memory databases that are tightly integrated with modern multi-core or many-core

architectures. In this dissertation, we concentrated on tackling the challenges related to the

deployment of complex query operators (such as the Top-K and Skyline operators), within

a main memory environment that consists of either a modern multi-core CPU or certain

established hardware accelerators (e.g. GPUs, PIM).

In Chapter 3, we presented an efficient main memory algorithm for multi-core

CPUs which outperforms methods proposed in previous work while maintaining good work

efficiency. The algorithm (termed PTA) leverages on intelligent partitioning to reduce the

179

number of object evaluations for every possible linear monotone function when evaluating

multi-attribute Top-K queries. Our analysis and extensive experimental result demonstrate

that this method can operate efficiently for different types of Top-K queries and data

distributions.

In Chapter 4, we presented an algorithm designed to enable Top-K selection with

early termination on the GPU. The proposed early termination GPU algorithm was an

adaptation of the equivalent CPU algorithm established in Chapter 3. In order to attain

high throughput processing, we combined the early termination strategy (that was based on

angle space partitioning) with an optimized GPU kernel called Bitonic Top-K. Our solution

outperformed the previous state-of-the-art full table evaluation (FTE) solution for varying

data distributions and query instances when the corresponding data reside exclusively in

device memory. In addition, early termination provided several opportunities to improve

query processing when the total amount of data exceed the corresponding GPU memory

capacity. In that case, we were able to seamlessly integrate data caching with the concept

of unified memory to enable query processing without affecting the overall cost of query

evaluation. In fact, early termination enabled us to improve over the only existing solution

which would have us access the data from the remote host memory incurring a significantly

higher processing cost.

In Chapter 6, we studied different categories of algorithms which are suitable

for enabling efficient Top-K selection on PIM. We developed two types of FTE solutions,

mainly (1) sort based (2) heap based Top-K query evaluation. In addition, we adopted the

practices established for GPU early termination and developed an equivalent solution for

180

PIM. Our detailed experimental evaluation showcased that sorting is much more expensive

compared to the heap based approach. For this reason, we considered heap based Top-

K query evaluation to be the best solution from all possible solutions contained in the

FTE class. We compared heap based Top-K on PIM against the equivalent solutions that

were specifically optimized for CPU and GPU processing and observed that PIM attains

higher throughput, higher system utilization, and overall lower latency. Furthermore, we

concentrated on experiments comparing the performance of early termination against FTE

on PIM, and noticed that our measurements were consistent with the performance gains

indicated in the performance evaluation of all the other tested architectures (i.e. CPU

and GPU). Finally, early termination on PIM outperformed the equivalent CPU and GPU

algorithms by more than an order of magnitude. This behavior was expected given that

PIM is inherently better in providing lower data access latency during processing.

In Chapter 7, we developed a massively parallel skyline algorithm for PIM architec-

tures. Our solution, which we called DSky, concentrates on maintaining good load balance

while maximizing parallelism across the available PIM processors. In addition to that, we

focused on efficiently adopting previously proposed early termination practices without sig-

nificantly affecting the parallel work. The proposed algorithm follows the bulk synchronous

processing model having as ultimate goal to overlap computation with communication in

order to maximize the processing throughput. Our extensive experimental result demon-

strates that DSky outperforms previous work optimized for CPU and GPU processing by

more than an order of magnitude. In addition, we showcased that the proposed algorithm

enables high system utilization in the order of 80 to 90%.

181

Over the recent years there has been a great amount of work focused on combining

Top-K queries with other operators (e.g. Top-K joins [64, 49]). In addition several attempts

have been made to merge Top-K queries with the Skyline operator [61]. Give the wealth

of problems deriving from this two basic operators, we believe that our future work should

focus on adopting the previously described strategies to solve the aforementioned problems.

Currently, as we have focused on selection only solving such problems is very challenging

since our methods will need to be amended to operate efficiently on an environment con-

taining multiple tables. This creates additional challenges related to work assignment and

load balancing especially for massively parallel architectures (i.e. GPUs or PIM).

Another promising venue of research is discovering other database operators which

are primarily memory bound and attempting to implement them on PIM. This is a promis-

ing research direction because as we demonstrated PIM outperforms other architectures by

more than an order of magnitude. An example of such operator which is widely popular for

databases is the natural join operator. Implementing it on PIM comes with its own set of

challenging mostly related to load balancing as a result of the DPU memory capacity lim-

itations. Such a research direction will certainly have a high impact on the characteristics

of the architecture itself since it is still at the early stages of development.

182

Bibliography

[1] Ildar Absalyamov, Prerna Budhkar, Skyler Windh, Robert J Halstead, Walid A Naj-
jar, and Vassilis J Tsotras. FPGA-accelerated group-by aggregation using synchroniz-
ing caches. In Proceedings of the 12th International Workshop on Data Management
on New Hardware, page 11. ACM, 2016.

[2] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the surprising
behavior of distance metrics in high dimensional space. In ICDT, pages 420–434.
Springer, 2001.

[3] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. A
scalable processing-in-memory accelerator for parallel graph processing. In ISCA,
pages 105–117. IEEE, 2015.

[4] Reza Akbarinia, Esther Pacitti, and Patrick Valduriez. Best position algorithms for
top-k queries. In Proceedings of the 33rd international conference on Very large data
bases, pages 495–506. VLDB Endowment, 2007.

[5] Tolu Alabi, Jeffrey D Blanchard, Bradley Gordon, and Russel Steinbach. Fast k-
selection algorithms for graphics processing units. JEA, 17:4–2, 2012.

[6] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in
high-energy physics with deep learning. Nature communications, 5:4308, 2014.

[7] Wolf-Tilo Balke and Ulrich Güntzer. Multi-objective query processing for database
systems. In VLDB, pages 936–947. VLDB Endowment, 2004.

[8] Wolf-Tilo Balke, Ulrich Güntzer, and Jason Xin Zheng. Efficient distributed skylining
for web information systems. In EDBT, pages 256–273. Springer, 2004.

[9] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M Tamer Özsu. Main-memory
hash joins on multi-core CPUs: Tuning to the underlying hardware. In Proceedings of
the 29th International Conference on Data Engineering, pages 362–373. IEEE, 2013.

[10] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. Efficient sort-based skyline evalu-
ation. TODS, 33(4):31, 2008.

183

[11] Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Martin Theobald, and Gerhard
Weikum. Io-top-k: Index-access optimized top-k query processing. In Proceedings
of the 32nd international conference on Very large data bases, pages 475–486. VLDB
Endowment, 2006.

[12] Christian Beecks, Ira Assent, and Thomas Seidl. Content-based multimedia retrieval
in the presence of unknown user preferences. Advances in Multimedia Modeling, pages
140–150, 2011.

[13] Giovanni Beltrame, Luca Fossati, and Donatella Sciuto. Decision-theoretic design
space exploration of multiprocessor platforms. TCAD, 29(7):1083–1095, 2010.

[14] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. A survey of design
techniques for system-level dynamic power management. VLSI, 8(3):299–316, 2000.

[15] Kenneth S Bøgh, Sean Chester, and Ira Assent. Work-efficient parallel skyline com-
putation for the gpu. VLDB, 8(9):962–973, 2015.

[16] Kenneth S Bøgh, Sean Chester, Darius Šidlauskas, and Ira Assent. Template sky-
cube algorithms for heterogeneous parallelism on multicore and gpu architectures. In
SIGMOD, pages 447–462. ACM, 2017.

[17] Stephan Borzsony, Donald Kossmann, and Konrad Stocker. The skyline operator. In
Data Engineering, 2001. Proceedings. 17th International Conference on, pages 421–
430. IEEE, 2001.

[18] Andrei Z Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien.
Efficient query evaluation using a two-level retrieval process. In Proceedings of the
twelfth international conference on Information and knowledge management, pages
426–434. ACM, 2003.

[19] Yuan-Chi Chang, Lawrence Bergman, Vittorio Castelli, Chung-Sheng Li, Ming-Ling
Lo, and John R Smith. The onion technique: indexing for linear optimization queries.
In ACM Sigmod Record, volume 29, pages 391–402. ACM, 2000.

[20] Sean Chester, Michael L Mortensen, and Ira Assent. On the suitability of skyline
queries for data exploration. In EDBT/ICDT, pages 161–166. IEEE, 2014.

[21] Sean Chester, Darius Šidlauskas, Ira Assent, and Kenneth S Bøgh. Scalable par-
allelization of skyline computation for multi-core processors. In Data Engineering
(ICDE), IEEE 31st International Conference on, pages 1083–1094. IEEE, 2015.

[22] Sean Chester, Alex Thomo, S Venkatesh, and Sue Whitesides. Computing k-regret
minimizing sets. Proceedings of the VLDB Endowment, 7(5):389–400, 2014.

[23] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. Skyline with pre-
sorting: Theory and optimizations. In IIPWM, pages 595–604. Springer, 2005.

184

[24] Gao Cong, Christian S Jensen, and Dingming Wu. Efficient retrieval of the top-k
most relevant spatial web objects. Proceedings of the VLDB Endowment, 2(1):337–
348, 2009.

[25] Gautam Das, Dimitrios Gunopulos, Nick Koudas, and Dimitris Tsirogiannis. Answer-
ing top-k queries using views. In Proceedings of the 32nd international conference on
Very large data bases, pages 451–462. VLDB Endowment, 2006.

[26] Elena Demidova, Peter Fankhauser, Xuan Zhou, and Wolfgang Nejdl. Divq: diver-
sification for keyword search over structured databases. In Proceedings of the 33rd
international ACM SIGIR conference on Research and development in information
retrieval, pages 331–338. ACM, 2010.

[27] Ke Deng, Xiaofang Zhou, and Heng Tao. Multi-source skyline query processing in
road networks. In ICDE, pages 796–805. IEEE, 2007.

[28] Constantinos Dimopoulos, Sergey Nepomnyachiy, and Torsten Suel. A candidate
filtering mechanism for fast top-k query processing on modern cpus. In Proceedings
of the 36th international ACM SIGIR conference on Research and development in
information retrieval, pages 723–732. ACM, 2013.

[29] Shuai Ding, Jinru He, Hao Yan, and Torsten Suel. Using graphics processors for high
performance ir query processing. In Proceedings of the 18th international conference
on World wide web, pages 421–430. ACM, 2009.

[30] Shuai Ding and Torsten Suel. Faster top-k document retrieval using block-max in-
dexes. In Proceedings of the 34th international ACM SIGIR conference on Research
and development in Information Retrieval, pages 993–1002. ACM, 2011.

[31] Jeff Draper, Jacqueline Chame, Mary Hall, Craig Steele, Tim Barrett, Jeff LaCoss,
John Granacki, Jaewook Shin, Chun Chen, Chang Woo Kang, et al. The architecture
of the diva processing-in-memory chip. In ICS, pages 14–25. ACM, 2002.

[32] Mario Drumond, Alexandros Daglis, Nooshin Mirzadeh, Dmitrii Ustiugov, Javier Pi-
corel, Babak Falsafi, Boris Grot, and Dionisios Pnevmatikatos. The mondrian data
engine. In ISCA, pages 639–651. ACM, 2017.

[33] Jiunn-Der Duh and Daniel G Brown. Knowledge-informed pareto simulated annealing
for multi-objective spatial allocation. Computers, Environment and Urban Systems,
31(3):253–281, 2007.

[34] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for
middleware. Journal of computer and system sciences, 66(4):614–656, 2003.

[35] Marcus Fontoura, Vanja Josifovski, Jinhui Liu, Srihari Venkatesan, Xiangfei Zhu, and
Jason Zien. Evaluation strategies for top-k queries over memory-resident inverted
indexes. Proceedings of the VLDB Endowment, 4(12):1213–1224, 2011.

185

[36] Parke Godfrey, Ryan Shipley, and Jarek Gryz. Algorithms and analyses for maximal
vector computation. VLDB, 16(1):5–28, 2007.

[37] Maya Gokhale, Bill Holmes, and Ken Iobst. Processing in memory: The terasys
massively parallel pim array. Computer, 28(4):23–31, 1995.

[38] J Guntzer, W-T Balke, and Werner Kießling. Towards efficient multi-feature queries
in heterogeneous environments. In Information Technology: Coding and Computing.
Proceedings. International Conference on, pages 622–628. IEEE, 2001.

[39] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling. Optimizing multi-feature
queries for image databases. In Proceedings of the 26th international conference on
very large data bases, pages 419–428. Morgan Kaufmann Publishers Inc., 2000.

[40] Qi Guo, Nikolaos Alachiotis, Berkin Akin, Fazle Sadi, Guanglin Xu, Tze Meng Low,
Larry Pileggi, James C Hoe, and Franz Franchetti. 3d-stacked memory-side acceler-
ation: Accelerator and system design. In WoNDP, 2014.

[41] Xixian Han, Jianzhong Li, and Hong Gao. Efficient top-k retrieval on massive data.
IEEE Transactions on Knowledge and Data Engineering, 27(10):2687–2699, 2015.

[42] Xixian Han, Jianzhong Li, and Hong Gao. Efficient top-k dominating computation on
massive data. IEEE Transactions on Knowledge and Data Engineering, 29(6):1199–
1211, 2017.

[43] Xixian Han, Jianzhong Li, and Donghua Yang. Supporting early pruning in top-k
query processing on massive data. Information Processing Letters, 111(11):524–532,
2011.

[44] Xixian Han, Xianmin Liu, Jianzhong Li, and Hong Gao. Tkap: Efficiently process-
ing top-k query on massive data by adaptive pruning. Knowledge and Information
Systems, 47(2):301–328, 2016.

[45] Jun-Seok Heo, Junghoo Cho, and Kyu-Young Whang. The hybrid-layer index: A
synergic approach to answering top-k queries in arbitrary subspaces. In ICDE, pages
445–448, 2010.

[46] Jun-Seok Heo, Kyu-Young Whang, Min-Soo Kim, Yi-Reun Kim, and Il-Yeol Song.
The partitioned-layer index: Answering monotone top-k queries using the convex
skyline and partitioning-merging technique. Information Sciences, 179(19):3286–3308,
2009.

[47] Kenneth Hoste and Lieven Eeckhout. Cole: compiler optimization level exploration.
In CGO, pages 165–174. ACM, 2008.

[48] Vagelis Hristidis, Nick Koudas, and Yannis Papakonstantinou. Prefer: A system for
the efficient execution of multi-parametric ranked queries. In ACM Sigmod Record,
volume 30, pages 259–270. ACM, 2001.

186

[49] Ihab F Ilyas, Walid G Aref, and Ahmed K Elmagarmid. Supporting top-k join queries
in relational databases. The VLDB JournalThe International Journal on Very Large
Data Bases, 13(3):207–221, 2004.

[50] Ihab F Ilyas, George Beskales, and Mohamed A Soliman. A survey of top-k query pro-
cessing techniques in relational database systems. ACM Computing Surveys (CSUR),
40(4):11, 2008.

[51] Myeongjae Jeon, Saehoon Kim, Seung-won Hwang, Yuxiong He, Sameh Elnikety,
Alan L Cox, and Scott Rixner. Predictive parallelization: Taming tail latencies in web
search. In Proceedings of the 37th international ACM SIGIR conference on Research
& development in information retrieval, pages 253–262. ACM, 2014.

[52] Herbert Jordan, Peter Thoman, Juan J Durillo, Simone Pellegrini, Philipp
Gschwandtner, Thomas Fahringer, and Hans Moritsch. A multi-objective auto-tuning
framework for parallel codes. In SC, pages 1–12. IEEE, 2012.

[53] Tim Kaldewey, Guy Lohman, Rene Mueller, and Peter Volk. Gpu join processing
revisited. In Proceedings of the 8th International Workshop on Data Management on
New Hardware, pages 55–62. ACM, 2012.

[54] Hina A Khan, Mohamed A Sharaf, and Abdullah Albarrak. Divide: efficient diversi-
fication for interactive data exploration. In SSDBM, page 15. ACM, 2014.

[55] Henning Köhler, Jing Yang, and Xiaofang Zhou. Efficient parallel skyline processing
using hyperplane projections. In SIGMOD, pages 85–96. ACM, 2011.

[56] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars in the sky: An
online algorithm for skyline queries. In VLDB, pages 275–286. VLDB Endowment,
2002.

[57] Hans-Peter Kriegel, Matthias Renz, and Matthias Schubert. Route skyline queries:
A multi-preference path planning approach. In ICDE, pages 261–272. IEEE, 2010.

[58] Dominique Lavenier, Jean Francois Roy, and David Furodet. DNA mapping using
processor-in-memory architecture. In BIBM, pages 1429–1435. IEEE, 2016.

[59] Jongwuk Lee, Hyunsouk Cho, Sunyou Lee, and Seung-won Hwang. Toward scalable
indexing for top-k queries. IEEE Transactions on Knowledge and Data Engineering,
26(12):3103–3116, 2014.

[60] Jongwuk Lee and Seung-won Hwang. Bskytree: scalable skyline computation using
a balanced pivot selection. In Proceedings of the 13th International Conference on
Extending Database Technology, pages 195–206. ACM, 2010.

[61] Jongwuk Lee, Gae-won You, and Seung-won Hwang. Personalized top-k skyline
queries in high-dimensional space. Information Systems, 34(1):45–61, 2009.

[62] Ken CK Lee, Baihua Zheng, Huajing Li, and Wang-Chien Lee. Approaching the
skyline in z order. In VLDB, pages 279–290. VLDB Endowment, 2007.

187

[63] Chengkai Li, Kevin Chen-Chuan Chang, and Ihab F Ilyas. Supporting ad-hoc ranking
aggregates. In Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, pages 61–72. ACM, 2006.

[64] Vebjorn Ljosa and Ambuj K Singh. Top-k spatial joins of probabilistic objects. In
2008 IEEE 24th International Conference on Data Engineering, pages 566–575. IEEE,
2008.

[65] Nikos Mamoulis, Man Lung Yiu, Kit Hung Cheng, and David W Cheung. Efficient
top-k aggregation of ranked inputs. ACM Transactions on Database Systems (TODS),
32(3):19, 2007.

[66] Matthew J Menne, Imke Durre, Russell S Vose, Byron E Gleason, and Tamara G
Houston. An overview of the global historical climatology network-daily database.
Journal of Atmospheric and Oceanic Technology, 29(7):897–910, 2012.

[67] Duane Merrill. Cub, 2016. https://nvlabs.github.io/cub/.

[68] Cayman Mitchell, Nelson Schoenbrot, Joshua Shor, Keith Thomas, and Sung-Hyuk
Cha. Radix selection algorithm for the kth order statistic. 2015.

[69] Mohamed F Mokbel and Justin J Levandoski. Toward context and preference-aware
location-based services. In MobiDE, pages 25–32. ACM, 2009.

[70] Michael Morse, Jignesh M Patel, and William I Grosky. Efficient continuous skyline
computation. Information Sciences, 177(17):3411–3437, 2007.

[71] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and Hye-
soon Kim. Graphpim: Enabling instruction-level pim offloading in graph computing
frameworks. In HPCA, pages 457–468. IEEE, 2017.

[72] Aziz Nasridinov, Jong-Hyeok Choi, and Young-Ho Park. A two-phase data space
partitioning for efficient skyline computation. Cluster Computing, 20(4):3617–3628,
2017.

[73] Apostol Natsev, Yuan-Chi Chang, John R Smith, Chung-Sheng Li, and Jeffrey Scott
Vitter. Supporting incremental join queries on ranked inputs. In VLDB, volume 1,
pages 281–290, 2001.

[74] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. Respir: a response surface-
based pareto iterative refinement for application-specific design space exploration.
TCAD, 28(12):1816–1829, 2009.

[75] Hweehwa Pang, Xuhua Ding, and Baihua Zheng. Efficient processing of exact top-k
queries over disk-resident sorted lists. The VLDB JournalThe International Journal
on Very Large Data Bases, 19(3):437–456, 2010.

[76] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal and pro-
gressive algorithm for skyline queries. In SIGMOD, pages 467–478. ACM, 2003.

188

[77] Sungwoo Park, Taekyung Kim, Jonghyun Park, Jinha Kim, and Hyeonseung Im.
Parallel skyline computation on multicore architectures. In Data Engineering, 2009.
ICDE’09. IEEE 25th International Conference on, pages 760–771. IEEE, 2009.

[78] Yoonjae Park, Jun-Ki Min, and Kyuseok Shim. Efficient processing of skyline queries
using mapreduce. TKDE, 29(5):1031–1044, 2017.

[79] Antonin Ponsich, Antonio Lopez Jaimes, and Carlos A Coello Coello. A survey on
multiobjective evolutionary algorithms for the solution of the portfolio optimization
problem and other finance and economics applications. TEVC, 17(3):321–344, 2013.

[80] Anil Shanbhag, Holger Pirk, and Samuel Madden. Efficient top-k query processing
on massively parallel hardware. In Proceedings of the 2018 International Conference
on Management of Data, pages 1557–1570. ACM, 2018.

[81] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. Aladdin: A
pre-rtl, power-performance accelerator simulator enabling large design space explo-
ration of customized architectures. In SIGARCH, volume 42, pages 97–108. IEEE,
2014.

[82] Mehdi Sharifzadeh, Cyrus Shahabi, and Leyla Kazemi. Processing spatial skyline
queries in both vector spaces and spatial network databases. TODS, 34(3):14, 2009.

[83] Patrick Siegl, Rainer Buchty, and Mladen Berekovic. Data-centric computing frontiers:
A survey on processing-in-memory. In MEMSYS, pages 295–308. ACM, 2016.

[84] Adam Silberstein Silberstein, Rebecca Braynard, Carla Ellis, Kamesh Munagala, and
Jun Yang. A sampling-based approach to optimizing top-k queries in sensor net-
works. In Data Engineering, 2006. ICDE’06. Proceedings of the 22nd International
Conference on, pages 68–68. IEEE, 2006.

[85] Cristina Silvano, William Fornaciari, Gianluca Palermo, Vittorio Zaccaria, Fabrizio
Castro, Marcos Martinez, Sara Bocchio, Roberto Zafalon, Prabhat Avasare, Geert
Vanmeerbeeck, et al. Multicube: Multi-objective design space exploration of multi-
core architectures. In VLSI, pages 47–63. Springer, 2010.

[86] Evangelia A Sitaridi and Kenneth A Ross. Optimizing select conditions on gpus. In
Proceedings of the 9th International Workshop on Data Management on New Hard-
ware, page 4. ACM, 2013.

[87] Dimitrios Skoutas, Dimitris Sacharidis, Alkis Simitsis, and Timos Sellis. Serving the
sky: Discovering and selecting semantic web services through dynamic skyline queries.
In ICSC, pages 222–229. IEEE, 2008.

[88] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. Pipelayer: A pipelined reram-
based accelerator for deep learning. In HPCA, pages 541–552. IEEE, 2017.

[89] Yufei Tao, Vagelis Hristidis, Dimitris Papadias, and Yannis Papakonstantinou.
Branch-and-bound processing of ranked queries. Information Systems, 32:424–445,
2007.

189

[90] Yufei Tao, Xiaokui Xiao, and Jian Pei. Efficient skyline and top-k retrieval in sub-
spaces. IEEE Transactions on Knowledge and Data Engineering, 19(8):1072–1088,
2007.

[91] Shirish Tatikonda, B Barla Cambazoglu, and Flavio P Junqueira. Posting list intersec-
tion on multicore architectures. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval, pages 963–972.
ACM, 2011.

[92] Shirish Tatikonda, Flavio Junqueira, B Barla Cambazoglu, and Vassilis Plachouras.
On efficient posting list intersection with multicore processors. In Proceedings of the
32nd international ACM SIGIR conference on Research and development in informa-
tion retrieval, pages 738–739. ACM, 2009.

[93] Ed Upchurch, Thomas Sterling, and Jay Brockman. Analysis and modeling of ad-
vanced pim architecture design tradeoffs. In SC, 2004.

[94] UPMEM SAS. UPMEM SDK, 2015. http://www.upmem.com/wp-content/uploads/
2017/02/20170210_SDK_One-Pager.pdf.

[95] UPMEM SAS. UPMEM web, 2015. http://www.upmem.com.

[96] Akrivi Vlachou, Christos Doulkeridis, and Yannis Kotidis. Angle-based space parti-
tioning for efficient parallel skyline computation. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pages 227–238. ACM,
2008.

[97] Shangguang Wang, Qibo Sun, Hua Zou, and Fangchun Yang. Particle swarm opti-
mization with skyline operator for fast cloud-based web service composition. Mobile
Networks and Applications, 18(1):116–121, 2013.

[98] Louis Woods, Gustavo Alonso, and Jens Teubner. Parallel computation of skyline
queries. In FCCM, pages 1–8. IEEE, 2013.

[99] Min Xie, Laks VS Lakshmanan, and Peter T Wood. Efficient top-k query answering
using cached views. In Proceedings of the 16th International Conference on Extending
Database Technology, pages 489–500. ACM, 2013.

[100] Dong Xin, Chen Chen, and Jiawei Han. Towards robust indexing for ranked queries.
In Proceedings of the 32nd international conference on Very large data bases, pages
235–246. VLDB Endowment, 2006.

[101] Sotirios Xydis, Gianluca Palermo, Vittorio Zaccaria, and Cristina Silvano. Spirit:
spectral-aware pareto iterative refinement optimization for supervised high-level syn-
thesis. TCAD, 34(1):155–159, 2015.

[102] Jeong-Min Yun, Yuxiong He, Sameh Elnikety, and Shaolei Ren. Optimal aggrega-
tion policy for reducing tail latency of web search. In Proceedings of the 38th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 63–72. ACM, 2015.

190

[103] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L Greathouse, Li-
fan Xu, and Michael Ignatowski. Top-pim: throughput-oriented programmable pro-
cessing in memory. In HPDC, pages 85–98. ACM, 2014.

[104] Shile Zhang, Chao Sun, and Zhenying He. Listmerge: Accelerating top-k aggregation
queries over large number of lists. In International Conference on Database Systems
for Advanced Applications, pages 67–81. Springer, 2016.

[105] Vasileios Zois. Top-k selection. https://github.com/vzois/TopK.

[106] Lei Zou and Lei Chen. Dominant graph: An efficient indexing structure to answer
top-k queries. In 2008 IEEE 24th International Conference on Data Engineering,
pages 536–545. IEEE, 2008.

[107] Lei Zou and Lei Chen. Pareto-based dominant graph: An efficient indexing structure
to answer top-k queries. IEEE transactions on Knowledge and Data Engineering,
23(5):727–741, 2011.

191

