
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Potentially near-optimal community discovery via stochastic graphlet sampling

Permalink
https://escholarship.org/uc/item/1vt420vg

Author
Martin Redondo, Pablo

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1vt420vg
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Potentially near-optimal community discovery via stochastic graphlet sampling

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Computer Science

by

Pablo Martin Redondo

Thesis Committee:
Associate Professor Wayne B Hayes, Chair
Chancellor’s Professor David A. Eppstein

Professor Emeritus Amelia C. Regan

2023

© 2023 Pablo Martin Redondo

DEDICATION

This work is the culmination of two years of dedicated effort during the final step of my
education, pursuing my Master’s degree. When I made the decision three years ago to
move to the United States for higher education, I could never have anticipated the

incredible experiences that awaited me. Throughout this journey, my family has provided
unwavering support, and I dedicate this achievement to my dad, my mum, my sister, and

my grandma—for being the best family one could ever have.

Gracias familia, os quiero con locura.

To my partner, who has been my rock, my guiding light, my muse, and the source of my
energy to keep pushing forward. Your patience, love, and unconditional support make me
the luckiest person on Earth. You have borne my relentless pursuit of completion, which
often required me to be away for extended periods. I am immensely grateful to have such

an incredible woman in my life.

Спасибо, любимАЯ.

To my friends, who bring joy to my life and are there for me when no one else can be. I
know I can always count on you, and have no doubt that you can count on me as well. A
heartfelt thank you to all my brothers in Ramuras, LA PSOE, La Plaza, and everywhere
else: Carlos, Guti, Ivan, Joan, Alberto, Moha, Mateo, Luca, Jose, Delafu, David, Sergio.

You guys rock.

Esto hay que celebrarlo.

By combining our love, support, and shared moments, we have made this achievement
possible. It is with profound gratitude and an overflowing heart that I dedicate this thesis

to my beloved family, partner, and friends.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

LIST OF EQUATIONS viii

LIST OF ALGORITHMS ix

ACKNOWLEDGMENTS x

VITA xi

ABSTRACT OF THE THESIS xii

1 Introduction 1
1.1 The community detection problem . 3
1.2 Background . 5
1.3 But, what is a community? . 7

2 Overlapping community detection algorithms and quality measures 10
2.1 Overlapping community detection algorithms 11

2.1.1 BigClam . 11
2.1.2 CFinder . 12
2.1.3 Copra . 13
2.1.4 DEMON . 14

2.2 Edge Density and Overlapping Modularity 16
2.2.1 Overlapping modularity . 16
2.2.2 Edge density vs community size . 17

2.3 LFR benchmark graphs and quality measures 19
2.3.1 LFR benchmark graphs . 19
2.3.2 Overlapping Normalized Mutual Information 20

3 BLANT-C 22
3.1 Graphlets . 22
3.2 BLANT . 24

3.2.1 Graphette and orbit identification . 24

iii

3.2.2 Sampling and output . 25
3.3 BLANT-C . 29

3.3.1 BLANT configuration . 29
3.3.2 BLANT-C algorithm . 30

4 Experimental setup 40
4.1 Machines used . 40
4.2 The data . 41
4.3 Algorithms’ parameters . 42

5 Comparative analysis for real networks 43
5.1 Denser, bigger communities . 44
5.2 Edge density uniformity . 48
5.3 Quality measures . 50

6 Comparative analysis for synthetic networks 55
6.1 LFR benchmark graphs generation . 56
6.2 Algorithms configuration . 57
6.3 Runtime . 58
6.4 Normalized mutual information . 59

7 Conclusions and Next Steps 63
7.1 Conclusions . 63
7.2 Next Steps . 64

Bibliography 66

iv

LIST OF FIGURES

Page

1.1 Directed and undirected graphs . 2
1.2 Weighted network representation. 3
1.3 Non-overlapping and overlapping communities 4

2.1 k-community detection example given the clique matrix in CPM. 12
2.2 Example of a EgoMinusEgo(u,G) subgraph in DEMON 15
2.3 Example of a community division membership matrix 21

3.1 Graphlets up to k = 5.The orbit numbering is not necessary standard. 23
3.2 All the 3-graphettes of 1 edge. The canonical representation is the one one

with the lowest bit vector (001). In this example, nodes that share an edge
have the same orbit (i.e they are automorphic), while the disconnected node
has a different orbit. Note that the three graphettes are isomorphic. 25

5.1 In the x-axis, the size of the community in a logarithmic scale. In the y-axis,
the edge density of a community. The image shows the area occcupied by the
solution given by each algorithm for the two smallest networks. 44

5.2 In the x-axis, the size of the community in a logarithmic scale. In the y-axis,
the edge density of a community. The image shows the area occcupied by the
solution given by each algorithm for the two networks that are between the
smallest and the mid-size ones. 45

5.3 In the x-axis, the size of the community in a logarithmic scale. In the y-axis,
the edge density of a community. The image shows the area occcupied by the
solution given by each algorithm for the mid-size networks. 45

5.4 In the x-axis, the size of the community in a logarithmic scale. In the y-axis,
the edge density of a community. The image shows the area occcupied by the
solution given by each algorithm for the biggest networks. 46

5.5 In the x-axis, the size of the community in a logarithmic scale. In the y-
axis, the edge density. The plot shows the ranges in which BLANT-C and
the rest of the algorithms found a community across every network. In blue,
the solution space of BLANT-C. In purple, the union of the solution space of
every other algorithm. The ranges in which BLANT-C found a solution but
the rest of the algorithms did not is marked in green. The ranges in which the
rest of the algorithms found a community but BLANT-C did not, are marked
in red. 47

v

5.6 Uniformity of edge density for each network and for the sum of all Samples.
The stacked bar graph illustrates the distribution of sampled subgraphs based
on their edge density in relation to the edge density of the corresponding
community. Subgraphs with an edge density equal to or higher than the
community’s edge density are represented in the ’Above’ category. Subgraphs
that exhibit a lower edge density are categorized based on the extent of the
drop: less than 5%, more than 5% but less than 10%, more than 10% but less
than 20%, more than 20% but less than 30%, and more than 30%. 49

5.7 Comparison of EDN scores across different networks and algorithms. Networks
are arranged in ascending order of size from left to right. The final value
represents the average score across all networks. 51

5.8 Comparison of M ov scores across different networks and algorithms. Networks
are arranged in ascending order of size from left to right. The final value
represents the average score across all networks. 53

6.1 Runtime analysis in the LFR benchmark graphs datasets 58
6.2 Distribution of the edge density of the communities defined by the LFR algo-

rithm as the ground truth and the ones found by BLANT-C. 60
6.3 Normalized mutual information of each algorithm for each LFR graph in the

dataset plus BLANT-C-m, that represents the results BLANT-C would yield
if only the communities matching those defined by the LFR algorithm were
selected . 61

vi

LIST OF TABLES

Page

4.1 Computational resources. 40
4.2 Real Networks dataset . 41
4.3 Parameters of the algorithms . 42

5.1 EDN score of the solution for each algorithm. The best score for each network
is highlighted. 50

5.2 Overlapping modularity score of the solution of each algorithm. The best
score for each network is highlighted. 52

6.1 LFR benchmark graphs datasets. 56

vii

LIST OF EQUATIONS

Page

1.1 Basic mathematical definition of a community 4
1.2 Fraction of edges with one edge end lying in ci and the other in cj 6
1.3 Fraction of edge ends that have one end in vertices in community ci 6
1.4 Modularity of a community partition of a graph 6
1.5 Edge density of a community . 8
2.1 Probability of two vertices to be connected in the graph given the bipartite

network of the BigClam generative model. 11
2.2 Edge connections inside the community vs edge connections outside the community 16
2.3 Overlapping modularity of a community . 17
2.4 Overlapping modularity of a graph division in communities 17
2.5 Edge density vs size community detection score EDN 18
2.6 Power law degree distribution in scale-free networks 19
2.7 Number of edges that a node shares with its communities in LFR benchmark

graphs . 20
2.8 Mutual information of two membership matrices 21

viii

LIST OF ALGORITHMS

Page
1 Non-overlapping Label Propagation community detection algorithm 13
2 BLANT-C algorithm . 30
3 Find list of communities . 31
4 Community discovery . 32
5 Node exploration . 34
6 Create community overlap graph . 35
7 Optimize community division . 36

ix

ACKNOWLEDGMENTS

I extend my heartfelt gratitude to the University of California, Irvine and the esteemed Don-
ald Bren School of Information and Computer Science for providing me with this invaluable
opportunity. Their unwavering support and belief in my potential have been instrumental
in shaping my academic journey. I am also deeply appreciative of the job opportunities they
offered, allowing me to serve as a Teaching Assistant, which significantly aided in funding
my studies and lightening the financial burden along the way.

A special acknowledgment goes to Microsoft, a renowned leader in the industry, for granting
me the privilege to work with their exceptional professionals during the summer and beyond
my graduation. This invaluable experience will undoubtedly propel me into a new chapter
of my life, surrounded by a talented and accomplished community. I eagerly anticipate the
knowledge and growth that await me in this exciting endeavor.

Finally, I would like to express my sincere appreciation to Dr. Wayne B Hayes, a remark-
able researcher and an extraordinary mentor. I have been truly fortunate to have him as
my guide throughout this journey. Dr. Hayes’s unparalleled dedication and unwavering
commitment have been instrumental in bringing this work to fruition. His invaluable contri-
butions, including insightful ideas, meticulous code assistance, and the generous investment
of time, have been invaluable to me. I am profoundly grateful for his exceptional support
and guidance.

x

VITA

Pablo Martin Redondo

EDUCATION

Master of Science in Computer Science 2023
University of California, Irvine Irvine, California

Bachelor of Engineering in Telecommunication
Technologies and Services 2020

Universidad Politécnica de Madrid Madrid, Spain

RESEARCH EXPERIENCE

Undergraduate Research Assistant 2018–2019
Universidad Politécnica de Madrid Madrid, Spain

TEACHING EXPERIENCE

Teaching Assistant 2022–2023
University of California, Irvine Irvine, California

INDUSTRY EXPERIENCE

Software Engineer Intern 2022
Microsoft Redmond, Washington

Software Consultant Developer 2020–2021
Guidewire Software Madrid, Spain

REFEREED JOURNAL PUBLICATIONS

Managing gestational diabetes mellitus using a smart-
phone application with artificial intelligence (SineDie)
during the COVID-19 pandemic: Much more than just
telemedicine

2020

Diabetes Research and Clinical Practice

xi

ABSTRACT OF THE THESIS

Potentially near-optimal community discovery via stochastic graphlet sampling

By

Pablo Martin Redondo

Master of Science in Computer Science

University of California, Irvine, 2023

Associate Professor Wayne B Hayes, Chair

Graph theory has extensive applications across various fields, such as social science, biol-

ogy, and physics. One prominent graph-related task is the search for subgraphs possessing

significantly higher edge densities than the mean; such subgraphs are referred to as com-

munities. Community detection is an NP-hard problem, and existing algorithms addressing

this problem are categorized between those that try to find a partition of non-overlapping

communities, and those that find overlapping communities.

In this work, we reimagine the definition of community and propose a novel algorithm for

overlapping community detection based on graphlet sampling using BLANT, a subgraph

sampling method developed at UCI by the Wayne Hayes’s Lab. By adopting a definition that

emphasizes uniformly dense subgraphs and allows for edges extending beyond the community

boundaries, our algorithm offers an extensive collection of dense overlapping communities.

Furthermore, it introduces a community overlap graph, providing users with insights into

the degree of overlap and empowering them to identify relevant communities based on their

specific use cases. Our algorithm, BLANT-clusters, demonstrates the ability to discover

larger and denser communities compared to existing state-of-the-art methods. We discuss

the strengths and weaknesses of our algorithm and provide a comparative analysis with

current approaches. Finally, we conclude by outlining potential future work and applications

xii

for subsequent iterations of this method, highlighting the potential capability of achieving

near-optimal community discovery.

xiii

Chapter 1

Introduction

In graph theory, a network (or graph) is a mathematical representation of entities and their

relationships. A graph G consists of a set of vertices (or nodes) V , representing the entities,

and a set of edges E, representing the relationships between them. Let G(V,E) be a graph

G with a set V of n vertices and set E of m edges.

Networks can be classified as either directed or undirected, depending on whether the re-

lationships are one-way or both-ways. In a directed graph, each edge has a direction

indicating the relationship between the vertices it connects. For instance: in a graph in

which the nodes represent interested parties in a sale and edges represents sells, the edges

will be directed from sellers to buyers. On the other hand, in an undirected graph, the

edges do not have a direction and simply represent a connection between two vertices. An

example is network representing friendships in a social network.

Additionally, networks can be weighted or unweighted. Entities in weighted graphs have

relationships with different levels of strength. The edges in weighted graphs have a numerical

value w associated with them. On the other hand, the edges in an unweighted graph are

binary, either there is a connection (1) or there is not (0).

1

John

Pablo

Amazon

Ebay

Wayne

John

Pablo

Joan

Moha

Wayne

Figure 1.1: On the left, a directed graph of sales. On the right, an undirected graph of
friendships.

In computer science, graphs are represented by data structures. The most common rep-

resentations are the adjacency list L are the adjacency matrix A. L is a dictionary in which

each key represents a node u and each value is a list of nodes that share an edge with u. If

the graph is weighted, each member of the list is the pair of values (node, weight). A is a

matrix of size (n x n) - where n is the cardinality of V - in which a cell (u, v) represents a

connection. If node u and node v share an edge, Au,v = Av,u = 1 in unweighted graphs and

Au,v = Av,u = w in weighted graphs.

Graphs can be used in a wide range of fields, including social science [1], biology [2], and

physics[3]. For instance, in social science, graphs can be used to model and analyze social

networks, where nodes represent people and edges represent their relationships. In biology,

graphs could represent protein-protein interaction networks, where nodes represent proteins

and two proteins are connected if they interact. In physics, graphs can be used to model

the interactions between particles in a system. From a computer science approach, these

networks are represented by a data structure and algorithms are developed in order to

exploit them and obtain valuable information from it.

2

1

1

2

3 2

3

5

4

4

Figure 1.2: Weighted network representa-
tion.

In the example weighted network (1.2)

L = {1 : [(2, 3), (3, 4)], 2 : [(1, 3)],

3 : [(1, 4), (4, 2)], 4 : [(3, 2)],

5 : [(4, 1)]}

and

A =


0 3 4 0 0
3 0 0 0 0
4 0 0 2 0
0 0 2 0 1
0 0 0 1 0



Between the features that can be exploited, we have statistical and topological characteris-

tics, including measures of connectivity, clustering, centrality or degree distribution. These

techniques can provide insights into the structure and properties of the graph, as well as help

to identify important vertices or induced subgraphs. An induced subgraph of G, S(G), is

a graph created using nodes and edges of G. Among all the graph study tasks, there is the

search of subgraphs known as communities.

1.1 The community detection problem

A community is commonly defined in literature as a connected subgraph Gc(Vc, Ec) ⊆

G(V,E) with nc vertices and mc edges, in which the number of connections within the nodes

in the community is greater than the connections with nodes outside the community. Given

the adjacency matrix A of a network, the most basic definition of a community implies that:

3

∑
∀ u,v ∈Vc

Au,v >
∑

∀ u∈Vc,∀ v/∈Vc

Au,v (1.1)

The direct implication of this observation is that the likelihood of a node being connected

to another node within the same community is higher compared to its likelihood of being

connected to a node outside the community. It is important to note that in this work, we

will not strictly adhere to this definition. The alternative definition will be presented and

discussed in more detail in (1.3).

Communities in a graph can be categorized as either overlapping or non-overlapping. In

the case of non-overlapping communities, each node is associated with at most one

community. Conversely, in a graph with overlapping communities, nodes can belong to

multiple communities simultaneously. While non-overlapping communities can be useful for

certain applications, the following section (1.3) will discuss the realism of this community

definition.

Figure 1.3: On the left, a separation of a graph in non-overlapping communities. On the
right, a separation in overlapping communities.

The problem of community detection can be formulated as follows: given a network G(V,E),

4

the objective is to identify and return a set of connected subgraphs that exhibit a community

structure. It is worth noting that this task is not any easier than finding a maximum clique,

which is already known to be NP-hard.

The concept of community is broad, encompassing various definitions and computational

challenges. As a result, community detection has garnered significant attention in the liter-

ature, leading to a diverse body of research. Despite extensive study, community detection

remains an open problem with active ongoing research.

1.2 Background

An open and unconstrained problem like community detection gives rise to a diverse range

of solutions. One approach is to view clustering algorithms as non-overlapping community

detection methods. However, even within clustering, there exist various techniques to ob-

tain clusters. Some algorithms find clusters by identifying the minimum cut of a graph [4],

while others employ spectral clustering algorithms [5] or graph partitioning algorithms [6].

Hierarchical clustering [7] discovers overlapping communities by initially identifying non-

overlapping communities and subsequently aggregating them. Although each level in the

hierarchy represents non-overlapping communities, the hierarchical structure can be inter-

preted as a division of overlapping communities.

Another category of non-overlapping community detection algorithms includes the Gir-

van–Newman algorithm [8] and its subsequent variations [9], [10]. This method utilizes

betweenness centrality measures to identify and remove edges that bridge different commu-

nities. Other innovative approaches to non-overlapping community detection involve tech-

niques such as random walks [11] and a variation of the Potts spin glass Hamiltonian

[12].

5

However, the most extensively researched method for community detection is based on opti-

mizing amodularity measure. Although the focus of this work is on overlapping community

detection, it is essential to acknowledge the significance of this area of research. Modularity

[13] quantifies the strength of the graph’s division into communities, assuming that nodes

belong to only one community. The measure evaluates the density of connections within a

community and the sparsity of intercommunity connections.

Let Au,v denote the value of the adjacency matrix for the edge connecting vertex u to v, ku

represent the degree of node u (i.e., the number of edges it is connected to), K represent the

number of communities, and m represent the number of edges.

The fraction of edges with one edge end

lying in community ci and other in com-

munity cj is:

eij =
∑

u∈ci,v∈cj

Au,v

2m
(1.2)

The fraction of edge ends that are in ver-

tices in ci is:

ai =
∑

u∈ci,v∈V

Au,v

2m
=

K∑
j=1

eij (1.3)

With this defined, the modularity of a community partition of a graph is given by:

Q =
K∑
i=1

(eii − a2i) (1.4)

The problem of finding the partition of G(V,E) that maximizes the modularity Q is known to

be NP-hard. As a result, the proposed algorithms for community detection rely on approxi-

mations and heuristics. The literature on these techniques is extensive and includes spectral

optimization [14], simulated annealing [15], genetic algorithms [16], among others. However,

the most widely used approach to maximize modularity is greedy optimization, which has

been explored in works such as [17], [18], [19], and the renowned Louvain algorithm [20],

known for its superior performance compared to other greedy algorithms.

Additionally, there exists a diverse range of methods for detecting overlapping communities.

6

These methods include label propagation fuzzy detection [21], clique percolation [22], local

expansion and optimization [7], non-negative matrix factorization [23], statistical inference

[24], and link partitioning [25]. Some of these methods, like label propagation and local

expansion, rely on network diffusion principles to identify communities through the spread

of information or influence within the network. Others, such as non-negative matrix factor-

ization and statistical inference, employ mathematical and statistical approaches to identify

communities based on structural and topological patterns in the network. These techniques

are implemented in a variety of state-of-the-art algorithms, including Bigclam [26], CFinder

[22], Copra [27] and Demon [28]. In the upcoming chapter (2), these algorithms will be

compared and further described.

1.3 But, what is a community?

Let’s address the elephant in the room. We have seen that the definition of community

is very broad, but there is a bigger issue. The concept of single memberships is often too

restrictive and does not adequately reflect the intricate relationships and associations nodes

have in various contexts.

Consider a social graph Gs, where nodes represent people and edges represent connections.

As an individual, I am part of multiple communities simultaneously. For example, I may be-

long to a complete clique representing my family, while also being a member of other cliques

such as my friends in Madrid, my friends in Irvine, my roommates, and my soccer team.

Moreover, as an MSc student in Computer Science at UC Irvine, I am connected to different

communities, including my MSc friends, MSc classmates, students in my department, stu-

dents in my school, and students at UC Irvine. These communities may have varying levels

of edge density, but they all represent valid communities to which I belong.

7

The community of UC Irvine, despite having sparser connections, can still be highly re-

sourceful and influential, sometimes even more so than my complete cliques. The number of

edges connecting myself to these larger, sparser communities tends to be greater than the

connections within my complete cliques.

This perspective extends beyond social networks. In biology, for instance, there are proteins

that interact with multiple protein complexes [29]. Therefore, non-overlapping communities

struggle to capture the diverse nature of real-world communities in most network contexts.

Returning to the previous example, if we were to use a modularity-based algorithm, where

would my node be assigned? The communities I mentioned would have many nodes extending

beyond their boundaries, resulting in low modularity values. This limitation is known as the

multiresolution limit of modularity [30]. Modularity, in this sense, becomes disconnected

from reality. Non-overlapping community detection algorithms fail to capture

essential community information, which creates a contradiction.

The notion of communities as non-overlapping likely originated as a simplification in early

research on community detection. However, it is time to reconsider and redefine the term

community. Dividing a graph into overlapping communities, even to the extent where some

communities are fully contained within others, provides a more accurate representation of

the complexity and interconnectedness of real-world communities.

Given a community c with nc nodes and mc edges, and the adjacency matrix A of the graph,

the maximum number of possible edges is
(
nc

2

)
. Then, its edge density is:

dc =
mc(
nc

2

) =

∑
u,v∈c

Au,v(
nc

2

) (1.5)

This work presents a re-imagined definition of a community, considering it as a con-

nected subgraph Gc(Vc, Ec) ⊆ G(V,E) with nc ≥ 3 vertices and mc edges, characterized by

a reelatively high uniform edge density dc. The term uniform refers to the property that any

8

subgraph within the community should not have a local edge density significantly lower than

the mean edge density of the entire community. This definition includes the existing defini-

tions as special cases, while simultaneously allowing significantly more flexibility. It serves

as the foundation for BLANT-C1, an algorithm specifically designed to identify subgraphs

with an arbitrary user-defined d.

1At present, the algorithm used in this study does not possess a specific name. As a temporary placeholder,
we can refer to it as BLANT-C (BLANT communities). However, suggestions for a suitable name are welcome
and encouraged from the readers and researchers in the field.

9

Chapter 2

Overlapping community detection

algorithms and quality measures

In this section, we will examine several prominent algorithms for community detection, in-

cluding Bigclam, CFinder, Copra and Demon. These algorithms have been widely recognized

as state-of-the-art and will serve as benchmarks for comparing BLANT-C.

To evaluate the algorithms’ performance, various quality measures will be employed. These

measures encompass overlapping modularity and a novel metric introduced within this thesis:

edge density vs community size. Both overlapping modularity and edge density vs community

size will be utilized to assess the algorithms’ effectiveness in real network scenarios.

For benchmark LFR synthetic networks, the evaluation will employ the Normalized Mutual

Information (NMI) as a quality measure. NMI quantifies the similarity between the detected

community structure and the ground truth communities in the benchmark networks. It en-

ables a comprehensive evaluation of the algorithms’ ability to accurately identify overlapping

communities in controlled synthetic environments.

10

While it would have been beneficial to compare algorithms based on diverse techniques,

this study focuses on the current state-of-the-art approaches, resulting on having half of the

algorithms be label propagation based. The selection of these algorithms ensures alignment

with existing research and enables meaningful comparisons within the field of community

detection.

2.1 Overlapping community detection algorithms

2.1.1 BigClam

BigClam [26], which stands for Cluster Affiliation Model for Big Networks, is a gener-

ative model designed for detecting overlapping communities. The algorithm employs a bipar-

tite graph representation (nodes to communities) as a cluster affiliation model to capture the

notion of overlapping communities. It combines this model with a variant of non-negative

matrix factorization (NMF) to identify communities within the network.

The algorithm estimates the number of communities, denoted as K, and modifies the objec-

tive optimization function of NMF from the l2 norm to log-likelihood. This adjustment en-

ables scalability for big networks. In BigClam, a matrix F is used to represent the weighted

bipartite graph, depicting the associations between each node and each community. The

connections between vertices in the original graph are determined based on the weights of

their affiliations to the communities. The probability of an edge between two vertices in the

original graph is given by:

p(u, v) = 1− e−
∑

K Fuc·Fvc = 1− e−Fu·FT
v (2.1)

The probability of an edge increases as the number of communities shared by the vertices

11

increases. The matrix F is optimized using block coordinate gradient descent, taking the

real network into account. Node membership within communities is determined based on

the values of Fuc. Specifically, if Fuc ≥ δ (where δ is a threshold), node u is considered a

member of community c. The estimation of the optimal value for K is itself treated as an

optimization problem within the BigClam algorithm.

2.1.2 CFinder

CFinder (Community finder) is a free software for detecting and drawing overlapping

communities based on the Clique Percolation Method (CPM) [22]. This method oper-

ates by initially identifying all k-cliques (complete subgraphs) within the network, where k

represents the number of nodes in the subgraph.

Figure 2.1: k-community detection example given the clique matrix in CPM.
Reproduced with permission from Springer Nature. [22]

The algorithm begins with the largest possible clique size, determined by the degree distri-

bution, and subsequently reduces the clique size in each iteration. For each potential clique

size, the algorithm samples the cliques by selecting an arbitrary node u, identifying the

12

cliques of the current size that include u, and removing the nodes and edges belonging to

the discovered cliques from the graph. To mitigate the time complexity, complete subcliques

of already found cliques are not considered. Nevertheless, the time complexity of this aspect

of the algorithm remains exponential.

Subsequently, the algorithm constructs a matrix that depicts the cliques and the number of

shared nodes among them. The communities are derived from this matrix. Clique cells on

the diagonal with numbers greater than or equal to k, and greater than or equal to k − 1

elsewhere in the matrix, represent cliques within a k-community.

2.1.3 Copra

TheCommunity Overlap Propagation Algorithm (Copra) [27] extends the non-overlapping

label propagation community detection algorithm [31] to enable the detection of overlapping

communities. The original label propagation algorithm is notable for its near-linear com-

plexity and can be summarized as follows:

Algorithm 1 Non-overlapping Label Propagation community detection algorithm

1: procedure LabelPropagation(G)
2: Initialize every vertex v ∈ G with a unique label.
3: while stopping condition is not reached do ▷ Labels tend to converge to a solution
4: for each vertex x ∈ G do
5: Nx ← set of neighbors of x
6: Ci ← count the number of times each label i appears in Nx

7: l← label with the maximum count in C
8: if multiple labels have the same maximum count in C then
9: l← randomly choose one of those labels
10: end if
11: Set the label of vertex x to l
12: end for
13: end while
14: Create a community for each unique label in G
15: Add all vertices with the same label to their respective communities
16: end procedure

13

The extension introduced by Copra for overlapping community detection involves syn-

chronous updates and the storage of a list of labels with corresponding node belonging

coefficients.

These coefficients range from 0 to 1, and the sum of all coefficients for a given node must

equal 1. If a coefficient falls below a threshold of 1
β
, it is removed from the node, and the

remaining coefficients are updated to ensure they sum up to 1. If all coefficients are below

the threshold, the largest coefficient is retained. In cases where all coefficients are equal,

one is randomly chosen. The threshold value depends on β, which represents the maximum

number of communities a node can belong to.

2.1.4 DEMON

The Democratic Estimate of the Modular Organization of a Network (DEMON)

[28] is an overlapping community detection algorithm that also relies on label propagation.

This variant of label propagation identifies local communities for each node and subsequently

merges the maximal communities from all local communities to extract the global commu-

nities.

In DEMON, the EgoMinusEgo subgraph is defined as EgoMinusEgo(u,G) = −g(u,EN(u,G)),

where EN(u,G) represents the subgraph obtained by extracting the ego network and−g(u,G)

denotes the graph-vertex difference operation. The ego network extraction operation EN(u,G)

involves constructing a graph consisting of node u, all its neighbors in G, and the connec-

tions among them. On the other hand, the graph-vertex difference −g(u,G) operation entails

removing node u and all edges connected to it from graph G.

14

(a) Example graph G

u
uEN(u,G)

EN(u,G)

-g(u,EN(u,G))

EgoMinusEgo(u,G)G

(b) Step by step EgoMinusEgo(u,G) transformation

Figure 2.2: Example of a EgoMinusEgo(u,G) subgraph in DEMON

To extract the local communities, DEMON performs label propagation on theEgoMinusEgo(u,G)

subgraph for each node u. Subsequently, node u is added to the communities identified

through this label propagation step. Finally, the local communities of each node are merged

if they exhibit sufficient similarity, determined by a threshold parameter ϵ, resulting in the

extraction of global communities.

15

2.2 Edge Density and Overlapping Modularity

Benchmarking community detection algorithms poses a significant challenge due to several

factors. Primarily, these algorithms are intended for real networks where the ground truth

is often unavailable. Furthermore, the concept of community itself is broad and lacks a

precise definition (1.3). Nonetheless, it is essential to employ quality measures to evaluate

the results of BLANT-C against real networks and enable comparisons with state-of-the-art

algorithms in our designated set of algorithms A.

2.2.1 Overlapping modularity

The research community has shown significant interest in developing measures for quanti-

fying overlapping communities. In line with these concerns, the concept of overlapping

modularity [32] was introduced. This measure aims to capture some attributes of the de-

tected communities that align with the ones of interest in this research, although it conflicts

in others.

The first requirement of this measure is that a node within a community c should have

more connections with nodes inside the community than outside of it1. This criterion can

be expressed using the following equation:

∑
v∈c,v ̸=u

Au,v −
∑
v/∈c

Au,v

ku
(2.2)

Here, Au,v represents the presence of an edge between nodes u and v, and ku is the degree of

node u. The second requirement is that communities should be dense, which is incorporated

by including the edge density dc in the equation.

1It has been argued that this requirement is unrealistic in (1.3). Nevertheless, this measure is commonly
used and well-regarded in the research community. A formal definition of a measure that is considered to be
an improvement will be proposed later.

16

Additionally, to prevent the occurrence of nearly identical overlapping communities being

repeated, the number of communities a node is part of, denoted as su, is considered. The

overlapping modularity of a community c is defined as:

M ov
c =

1

nc

∑
u∈c

∑
v∈c,v ̸=u

Au,v −
∑
v/∈c

Au,v

ku · su
· dc (2.3)

Finally, the overlapping modularity of each community is averaged over the K communities,

yielding the overall overlapping modularity quality measure:

M ov =
1

K

K∑
c=1

 1

nc

∑
u∈c


∑

v∈c,v ̸=u

Au,v −
∑
v/∈c

Au,v

ku · su
· dc


 (2.4)

It is important to note that according to the authors, every node must be assigned to at

least one community to compute this measure. Nodes that do not belong to any community

are typically added to a miscellaneous community. However, this approach has its limita-

tions, as it may be the case that not every node is part of a community. Additionally, the

miscellaneous community may be disconnected or have a low edge density, which deviates

from the fundamental concept of a community. These considerations should be taken into

account when interpreting and applying the overlapping modularity measure. In fact, for

our experiments this requirement has been relaxed.

2.2.2 Edge density vs community size

Given the definition of community described in this work (1.3), a quality index to measure

the edge density vs the size of the communities detected is required. For this matter,

a score based on these parameters is proposed. The overlapping modularity measure is

taken as a starting point. Nevertheless, the idea that a node in a community should have

more edges going into the community than outwards it is against what was exposed in (1.3).

17

This is why, for this quality measure, what is taken into account is the edge density of the

communities and the number of communities a node is part of.

Given the edge density dc of community c defined in Equation (1.5), the number of nodes

in a community nc, the number of communities a node is part of su, and the number of

communities K, let the edge density score EDN of the communities detected by algorithm

Ai ∈ A in a real network be:

EDN(Ai) =
1

K

K∑
c=1

[
1

nc

·
∑
∀u∈c

(
1

su
· dc
)]

=
1

K

K∑
c=1

[
dc ·

1

nc

·
∑
∀u∈c

1

su

]
(2.5)

The score is an average of the score of each community. The score of each community is an

average of the score that node has in that specific community. The score of a node directly

depends on the density of the community - the higher the better - and inversely depends

on the number of communities the node is member of - in order to avoid the repetitive

communities that vary by a little number of nodes.

Note that if su = 1 for every member of the community c, dc ·
∑

∀u∈c
1
su

= dc · nc, which

represents a good compromise between taking into consideration the size of the communities

and avoiding repetitive communities.

The measure under consideration ranges from a minimum value of 0 to a maximum value

of 1. In addition to evaluating the measure, a direct comparison of the results based on

community size versus edge density will be conducted to provide a more unfiltered and

comprehensive assessment of the solution space.

This raw comparison will allow for a deeper understanding and analysis of the performance

and characteristics of the different algorithms. By considering both the measure and the

size-edge density comparison, a more nuanced and informative evaluation of the algorithms

can be achieved.

18

2.3 LFR benchmark graphs and quality measures

The complexity of measuring the quality of a set of algorithms A in real networks arises

from the inherent challenge of not knowing the ground truth communities. To overcome this

limitation, researchers have sought to create synthetic networks that replicate real networks

but possess known community divisions. In [33], the authors propose an algorithm for

generating synthetic networks with non-overlapping community divisions.

Fortunately, the following year, the same authors extended this work to include overlapping

communities [34]. These synthetic networks are commonly referred to as LFR benchmark

graphs. The LFR benchmark graphs serve as valuable tools for evaluating and comparing

the performance of algorithms in community detection tasks.

2.3.1 LFR benchmark graphs

It has been observed that the degree distribution of real networks can be approximated by

a power-law distribution2 [36]. Synthetic networks based on this principle are referred to as

scale-free networks. In these networks, the fraction of nodes with degree k, denoted as

P (k), follows an approximate power-law distribution:

P (k) ≈ k−τ (2.6)

Furthermore, studies have shown that the size distribution of communities in real networks

can also exhibit a similar power-law distribution [22]. This is why in the LFR benchmark

graphs for both non-overlapping communities [33] and overlapping communities [34], the

authors chose to generate networks with degree distribution and community size distribution

that follow power-law distributions.

2Althought this model has recently been challenged, specifically for social networks. [35]

19

In this work, the official implementation algorithm from [34] is utilized. This algorithm

generates a graph with an overlapping community division, allowing for the specification of

various parameters. The number of nodes in the graph is controlled by the parameter N .

The degree distribution is determined by the average degree kavg, maximum degree kmax, and

the power-law exponent τ1. The number of edges that a node u shares with its communities,

denoted as k
(in)
u , is controlled by the topological mixing parameter µ. Given the degree ku

of node u, the number of edges it shares with its communities is calculated as:

k(in)
u = (1− µ) · ku (2.7)

The community size distribution is determined by the exponent τ2, as well as the minimum

and maximum possible sizes of the communities, denoted as min(nc) and max(nc), respec-

tively. Additionally, the number of overlapping nodes on and the number of memberships

for the overlapping nodes om can also be specified.

The output of the algorithm includes the connections between nodes in the form of an edge

list, as well as a list of communities with their corresponding node memberships. This

information allows us to evaluate the ability of the set of algorithms A to accurately detect

the ground truth communities.

2.3.2 Overlapping Normalized Mutual Information

After obtaining the results of the algorithms, they can be represented as a membership

matrix M . In this matrix, each row represents a community, and each column represents a

node in the graph. The value Mu,c in cell (u, c) is set to 1 if node u is a member of community

c, and 0 otherwise.

20

1 2 3 4

5 6 7 8

Figure 2.3: Example of a community di-
vision membership matrix

In the example community division (2.3)

the membership matrix M would be de-

fined as:

M =

(
1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1

)

To compare the results of algorithm Ai with the ground truth, we aim to compare the mem-

bership matrix M̂ obtained from algorithm Ai with the ground truth matrix M . To achieve

this, Normalized Mutual Information (NMI) was proposed by [7]. However, it was later

discussed in [37] that the normalization applied in the previous work was unconventional

and led to an overestimation of the similarity between the results.

To address this issue, a different normalization method was proposed by the authors. In this

approach, the mutual information between matrices M and M̂ is defined as the average:

I(M : M̂) :=
1

2

[
H(M)−H(M |M̂) +H(M̂)−H(M̂ |M)

]
(2.8)

Here, H(M) and H(M̂) represent the entropy of matrices M and M̂ , respectively. The

entropy of a matrix is approximated based on the conditional entropy of each vector. Sub-

sequently, the overlapping normalized mutual information (NMImax) between M and M̂ is

defined as follows:

NMImax =
I(M : M̂)

max(H(M), H(M̂))
(2.9)

Since communities may be listed in different orders between the matrices, NMImax refers to

the result of the best match between the matrices, accounting for different permutations of

the communities.

21

Chapter 3

BLANT-C

The algorithm proposed for community detection employs a sampling of graphlets generated

by BLANT as its starting point. This selection of subgraphs offers a highly advantageous

starting point for uncovering communities. In this chapter, BLANT will be introduced

and and it will be illustrated how the output of this algorithm is utilized for the proposed

algorithm for network discovery.

3.1 Graphlets

The investigation of network topology is a broad domain of theoretical computer science

research that holds considerable significance in bioinformatics. The fundamental approach

involves modeling a graph G using synthetic networks in order to leverage its topological

properties. This was the driving force behind the study presented in [38], which introduced

the notion of graphlets and employed statistical analysis to demonstrate that protein-

protein interaction networks were more accurately modeled using geometric random graphs

as opposed to scale-free networks.

22

A k-graphlet g of a graph G is a connected induced subgraph of k nodes. The automor-

phism orbits of graphlet g are the nodes that are topologically identical to each other in

g. An extension of k-graphlets are k-graphettes, which are induced subgraphs of k nodes

that are not necessarily connected. These structures can be useful if we are doing statistical

sampling of a network (selecting k nodes are random). The utilization of graphlets has been

extensive in various applications such as network classification and comparison [39], local

and global network alignment [2] and identification of the interplay between structure and

function [40].

Figure 3.1: Graphlets up to k = 5.The orbit numbering is not necessary standard.
Figure extracted from [41]

Sampling all the graphlets present in a network can quickly become a computationally in-

tractable problem as the number of graphlets exponentially increase with both the graphlet

size k and the number of nodes in the graph n. Consequently, exhaustive enumeration of

23

all graphlets is not feasible for large networks. This is where statistical methods, such as

BLANT, come into play. By efficiently sampling subgraphs from the network, BLANT pro-

vides a valuable tool for approximating the full distribution of graphlets in a given network.

3.2 BLANT

The Basic Local Alignment of Network Topology (BLANT) [42] is a tool analogous to

BLAST, specifically designed for performing local alignments of networks. BLAST, which

stands for Basic Local Alignment Search Tool, is an algorithmic approach for rapidly

identifying local alignments in proteomic and genomic sequences.

BLAST constructs a database of k-letter sequences, known as k-mers, which can subsequently

be employed to initialize a local alignment between distant regions of two sequences. One of

the key factors contributing to the speed and efficiency of the BLAST algorithm is its ability

to access k-mers in constant time.

3.2.1 Graphette and orbit identification

BLANT is inspired by BLAST and employs a pre-computed lookup table that contains

the lower triangular matrix of the adjacency matrix of all graphettes up to k = 8, repre-

sented as bit vectors. It also includes the pre-computed automorphism orbits of all canonical

graphettes. A canonical graphette K(g) is defined in the first paper published related to

BLANT [43], which also describes how to compute the lookup tables.

In graph theory, an isomorphism is a mapping between two graphs that preserves their

structure. Specifically, given two graphs G and H, an isomorphism is a bijection f : V (G)→

V (H) between the vertex sets of G and H that preserves adjacency. That is, f maps adjacent

24

vertices in G to adjacent vertices in H, and non-adjacent vertices in G to non-adjacent

vertices in H.

x y

w

x y

w

x y

w

 w x y
w 0
x 1 0
y 0 0 0

 w x y
w 0
x 0 0
y 0 1 0

 w x y
w 0
x 0 0
y 1 0 0

100 010 001

Matrix:

Bit vector:

Graphette:

Figure 3.2: All the 3-graphettes of 1 edge. The canonical representation is the one one with
the lowest bit vector (001). In this example, nodes that share an edge have the same orbit
(i.e they are automorphic), while the disconnected node has a different orbit. Note that the
three graphettes are isomorphic.

For a graphette g, the canonical graphette K(g) is a representative member of its isomor-

phism group. That is, all graphettes in the isomorphism group of g can be obtained from

K(g) by applying a sequence of graph isomorphisms. By choosing a canonical representative

for each isomorphism class of graphettes, BLANT is able to store K(g) and the permutations

in lookup tables.

In runtime, with this information precomputed, given a graphette g of k ≤ 8 nodes BLANT

can compute in constant time the graphette identity and which orbit each of the k nodes

belongs to.

3.2.2 Sampling and output

The BLANT software tool offers users the capability to extract a large number (up to mil-

lions per second) of sampled k-graphettes, where k ranges from 3 to 8. The tool provides

flexibility in selecting various graphette sampling techniques and output formats. More-

25

over, the sampling computation process can be distributed across t threads for improved

efficiency. BLANT offers five different sampling methods and five output formats to choose

from, allowing users to tailor the tool to their specific needs and preferences.

Sampling methods

Among the available sampling methods in BLANT, the first one isNode Based Expansion

(NBE). In NBE, each sample starts by selecting an edge uniformly at random from the input

network. The two nodes at the endpoints of the selected edge are added to the graphette

sample Si, where i ∈ [1, numSamples]. Subsequently, the method incrementally chooses the

remaining k − |Si| nodes in the graphette by uniformly selecting neighbors of the current

set of vertices. If the number of neighbors of Si is insufficient to complete the graphette, a

new location is randomly chosen to add the remaining nodes. NBE allows for exploration of

different regions of the network for a small value of numSamples, but it may introduce bias

in the sampling process.

The Edge Based Expansion (EBE) method offers asymptotic speed improvement com-

pared to NBE in very dense networks. Similar to NBE, EBE selects the first two vertices

in the sample randomly. However, when gradually expanding Si, it chooses adjacent nodes

with a probability proportional to the number of edges connecting them to Si. Although

EBE is faster, it also introduces more bias into the sampling process.

The third method is Reservoir Sampling (RES), which reduces the bias of NBE but

sacrifices computer efficiency . For each iteration, RES is initialized with an NBE sample Ŝi

of k nodes. After that, for each sample, a random walk process takes place. For a number

of steps, one node u is deleted from Ŝi
tj
, and another adjacent node to Ŝi

tj −{u} is selected

at random. This is: ∀j ∈ [1, s], where s is the number of steps, Ŝi
tj+1

= Ŝi
tj − {urandom} +

{vrandom}. After these steps, the resulting Si = Ŝi
ts
.

26

The fourth method provided by BLANT is Accept/Reject (AR). AR selects k nodes uni-

formly at random and rejects the sample if the resulting subgraph is disconnected. AR

is unbiased and asymptotically correct, but it can be exponentially slow as many samples

in large networks will be rejected. This is why it is only provided for testing for testing

purposes.

Finally, the Markov Chain Monte Carlo (MCMC) sampling method is available. This

method finds and outputs the first sample S1 in the same way NBE does. Nevertheless, to

compute the next sample, it does not look for a new edge at random to start over. Instead,

it begins a random walk with as many steps as there are samples left to output. For each

step, it deletes at random one node u from Si and selects - also randomly - a node v adjacent

to Si − {u}, outputting sample Si+1 = Si − {u}+ {v}.

This last method is the fastest per sample and, in the long run, is guaranteed to produce

unbiased samples. The disadvantage is that on short timescales, its local random walk nature

makes it fail to explore the whole network. Nevertheless, it can compute the bias on-the-fly

and output asymptotically correct concentrations using the frequency output mode.

Output formats

Although BLANT includes an optimized output format for community detection algorithms,

it’s worth mentioning the five existing output formats available in the tool.

The most distinctive output format to BLANT is the indexing Mode. In this format, each

line represents a graphlet sample and consists of k + 1 columns. The first column contains

a canonical ID for the graphlet, while the following k columns represent the nodes that

form the graphlet. The order of the nodes in this format enables local alignment with other

graphlets sharing the same canonical ID.

27

A similar format is the orbit indexing mode, which shares similarities with the Indexing

Mode. However, in this format, nodes belonging to the same automorphism orbit within

a graphlet are separated by colons. Consequently, the number of columns in a line varies

based on the number of orbits present in the graphlet. It’s important to note that the Orbit

Indexing Mode does not preserve the alignment property provided by the Indexing Mode.

For the purpose of frequency analysis, BLANT offers the frequency mode output format.

This format produces a list with as many lines as there are canonical graphlets for a specific

value of k. Each line consists of two columns: the canonical ID of the graphlet and the

corresponding frequency or concentration of that particular graphlet. The frequency mode

is particularly useful when using the MCMC sampling method, as it allows for on-the-fly

bias computation and output of graphlet concentrations.

The orbit degree vector (ODV) output format closely resembles the output format of

ORCA, an exhaustive sampling algorithm. Selecting this format in BLANT results in a

number of lines equal to the number of nodes in the graph. Each line contains multiple

columns representing the different orbits found in graphlets of size k. The frequency number

within each column indicates how many times a node was sampled within that specific orbit

of a graphlet. It’s worth noting that due to the stochastic nature of BLANT, the output of

ODV may differ from that of ORCA, which operates deterministically and exhaustively.

Lastly, the graphlet degree vector output format is similar to ODV, but instead of pro-

viding a list of orbit counts per node, it presents a list of graphlet counts per node. This

format generates a number of lines equal to the number of nodes in the graph, and each line

contains a number of columns corresponding to the canonical graphlets for a given value of

k. The count in each column represents how many times a node was sampled within that

specific graphlet.

28

3.3 BLANT-C

The proposed algorithm starts with the realization that high edge density connected graphlets

highly resemble to small communities. In fact, given the definition of community proposed

in (1.3) high edge density graphlets are communities. With this idea in mind, an

algorithm that uses graphlets sampled by BLANT as the community discovery mechanism

is proposed.

3.3.1 BLANT configuration

In BLANT-C, BLANT is executed for each value of k ranging from 3 to 7. Sampling 8-

graphlets is excluded due to the significant time required to run for large networks. The

number of samples is determined by the equation M ·N
k

, where N represents the number of

vertices in the graph and M represents the mean number of times each node u in the network

should be sampled. We have found out that M = 100 usually suffices, thought higher values

such as M = 1, 000 and M = 10, 000 can produce better results at the expense of more CPU.

The chosen sampling method is Markov Chain Monte Carlo (MCMC), which offers a

balance between bias and efficiency (3.2.2). BLANT-C utilizes a custom output format

called ”mc.” This format incorporates the on-the-fly bias computation using MCMC and

incorporates it into the output. Instead of outputting indexes or frequencies, the community

output format includes the following information for each line: a node u, a canonical ID ID

of the graphlet, the number of times u was sampled in graphlet ID, and the remaining nodes

in the ID graphlets where u appears.

By employing this configuration, BLANT-C aims to discover communities by leveraging

the graphlets sampled by BLANT, focusing on high edge density graphlets as potential

communities.

29

3.3.2 BLANT-C algorithm

Without further ado, the BLANT-C algorithm framework will be presented. Then, the

different parts of the algorithm will be dissected.

Algorithm 2 BLANT-C algorithm

1: procedure BLANT-C(G,M ,µ,E,Q)
2: for d = 1

e
, e ∈ [1, 2, ..., E] do ▷ This for loop is run in parallel

3: for k ∈ [3, 7] do ▷ This for loop is run in parallel
4: tmpResults[d][k]=listCommunities(G,M,µ,k,d)
5: end for
6: results[d] ← filter(tmpResults[d],µ)
7: end for
8: communities ← filter(results,µ)
9: overlapGraph ← createOverlapGraph(communities)

10: communities ← optimize(Q, G, overlapGraph, communities, µ)
11: return communities,overlapGraph

12: end procedure

In the context of the algorithm, G represents the network that needs to be divided into

communities. As mentioned before, M denotes the sampling multiplier, while µ represents

the overlapping threshold for the resulting communities. For example, if µ = 0.5, it implies

that two communities generated as output can share up to 50% of the nodes from the larger

community. If the overlap exceeds this threshold, the smaller community is discarded.

Additionally, the parameter E guides BLANT-C in determining the number of edge densities

to consider. These edge densities are evenly distributed along a linear scale. For instance,

if BLANT-C is executed with E = 5, it will search for communities at edge densities of

[0.2, 0.4, 0.6, 0.8, 1].

During the execution of BLANT-C, parallel processing is employed to optimize computa-

tional performance. The number of samples generated by BLANT is determined based on

the value of k and the sampling multiplier M , ensuring that a sufficient number of samples

are taken using the MCMC sampling method to adequately explore the entire graph.

30

Algorithm 3 Find list of communities

1: procedure listCommunities(G,M ,µ,k,d)
2: N ← numberOfNodes(G)

3: n← M ·N
k

4: samples ← runBLANT(G, k, n, MCMC, mc)

5: tmpCommunities ← discover(G, samples, d, k)
6: return tmpCommunities

7: end procedure
8: procedure numberOfNodes(G)
9: Returns the number of nodes in G
10: end procedure
11: procedure runBLANT(G, k, n, S, O)
12: Runs BLANT in G to sample n k-graphettes using sampling method S
13: and output format O
14: end procedure
15: procedure filter(communities, µ)
16: communities ← join(communities)

17: for community ∈ communities do
18: if !overlapsAboveThreshold(filteredCommunities, community, µ) then
19: filteredCommunities.add(community)

20: end if
21: end for
22: return filteredCommunities
23: end procedure
24: procedure join(communities)
25: Joins a list of lists of communities in one list and sorts by size of the community
26: end procedure
27: procedure overlap(c1,c2)
28: return size(c1 ∩ c2)/MAX(size(c1), size(c2))
29: end procedure
30: procedure overlapsAboveThreshold(filteredCommunities, community, µ)
31: for fc ∈ filteredCommunities do
32: if overlap(community, fc) > µ then
33: return True

34: end if
35: end for
36: return False

37: end procedure

For each specified edge density, community discovery is performed for every value of k,

resulting in a set of communities. These communities, obtained for each pair (k, d), are

then combined into a separate list for each edge density. Any communities that exceed the

31

specified overlap threshold µ are filtered out during this process. The combined communities

for each edge density are then sorted based on the number of nodes in each community. In

the case of a tie, the communities are further sorted by the smallest node ID.

Finally, the communities from each edge density are merged into a single list. Once again,

any communities that surpass the overlap threshold are filtered out. The resulting list of

communities is then sorted one more time.

Algorithm 4 Community discovery

1: procedure discover(G, samples, d, k)
2: processedSamples ← process(samples, d)
3: freqCount, nodes, neighbors ← extract(processedSamples)

4: for u ∈ nodes do
5: community ← explore(u, nodes, neighbors, freqCount, G , d)
6: if size(community)> k then
7: communities.add(community)

8: end if
9: end for
10: return communities
11: end procedure
12: procedure extract(processedSamples)
13: for sample ∈ processedSamples do
14: nodes.add(sample.node); freqCount[node]=sample.freqCount

15: L.add(node, sample.neighbors) ▷ Adjacency list
16: end for
17: return freqCount, nodes, L

18: end procedure

During the processing stage, the BLANT graphette samples are examined, and any samples

that have a lower edge density than the specified requirement are removed. Next, a list is

created, sorted by the frequency of node appearances in the remaining graphlets. Each

value in the list includes the node, its frequency, and the nodes in the graphettes where it

appears. This list serves as the basis for constructing an exploration graph.

The exploration graph is built using the sorted list. Each node in the graph represents a

node that is guaranteed to be part of a graphette that meets the edge density requirements.

32

19: procedure process(samples, d)
20: minEdges ← roundUp(d ·

(
k
2

)
)

21: for sample ∈ samples do
22: if canonEdgeCount(sample.canonID) < minEdges then
23: continue
24: end if
25: freqCount[sample.node]+=sample.Frequency

26: neighbors[sample.node].add(sample.neighbors)

27: end for
28: for node ∈ freqCount do
29: sample ← (node, freqCount[node], neighbors[node])

30: processedSamples.add(sample)

31: end for
32: return sort(processedSamples) ▷ Sort by freqCount
33: end procedure
34: procedure canonEdgeCount(canonID)
35: Constant time lookup of the number of edges a canonical graphette has.
36: end procedure

An edge is added between two nodes if they share membership in a graphette that meets

the edge density requirements.

Additionally, an adjacency list is constructed to facilitate node exploration during the com-

munity discovery process. This adjacency list allows for efficient traversal of neighboring

nodes in the exploration graph. Furthermore, a list of nodes is created, specifying the order

in which exploration should be performed.

The logic behind the order is that nodes with higher graphlet counts, indicating their involve-

ment in more high edge density graphettes, should be given higher priority during

exploration. These nodes are referred to as origin nodes, and each of them serves as the

starting point for a search to discover communities.

Local expansion in BLANT-C follows a Breadth First Search (BFS) approach. When

a node is dequeued, it is added to a new community. However, if adding the node would

result in a drop in the edge density below the desired threshold, it is not included in the

community and expansion is halted for that node.

33

Algorithm 5 Node exploration

1: procedure explore(originNode, nodes, neighbors, freqCount, G , d)
2: visited, community, misses ← set(), set(), 0

3: FQ ← FIFOQueue()

4: FQ.push(originNode); visited.add(originNode); community.add(originNode)

5: while !FQ.empty() do
6: u ← FQ.next()

7: community.add(u)

8: if edgeDensity(community) < d then
9: community.remove(u);misses++

10: if misses>MAX(size(community), N/100) then ▷ Heuristic
11: break

12: end if
13: else
14: expand(u, originNode, nodes, neighbors, freqCount, FQ, visited)

15: end if
16: end while
17: end procedure
18: procedure expand(u, originNode, nodes, neighbors, freqCount, FQ, visited)
19: for v ∈ randomOrder(neighbors[u]) do
20: if shouldExplore(u, v, originNode, nodes, freqCount) then
21: FQ.push(v); visited.add(v)

22: end if
23: end for
24: end procedure
25: procedure shouldExplore(u, v, originNode, nodes, freqCount)
26: if v ∈ visited then
27: return False

28: end if
29: if nodes.index(v) ≤ nodes.index(originNode) then ▷ Heuristic
30: return False

31: end if
32: if freqCount[v]

freqCount[u]
≤ 0.5 then ▷ Heuristic

33: return False

34: end if
35: return True

36: end procedure

A count is maintained to track the number of nodes that fail to be added. If this count exceeds

a specified threshold, the exploration process is terminated. This heuristic is employed to

optimize time complexity by preventing prolonged failures during expansion. We refer to

this search strategy as Graphlet First Search (GFS).

34

In the expansion process, when a node is successfully incorporated into a community, its

neighboring nodes are explored to further expand the community. However, certain con-

ditions must be met for a neighbor to be expanded. First, the neighbor should not have

been visited in the current exploration, adhering to the principles of classic BFS. Second,

the neighbor must be an origin node that appears after the current origin node in the explo-

ration order. Lastly, the frequency count of the neighbor should not experience a significant

drop compared to the node from which it is being expanded.

These heuristics are employed to ensure that the search remains efficient and focused on

identifying communities of maximum size. Through practical implementation, these heuris-

tics have proven to be highly effective.

Algorithm 6 Create community overlap graph

1: procedure createOverlapGraph(communities)
2: K← size(communities)

3: for ci ∈ [1, K] do
4: for cj ∈ [i+ 1, K] do
5: overlap ← size(communities[ci] ∩ communities[cj])
6: if overlap>0 then
7: A[ci][cj]=A[cj][ci]=overlap ▷ Adjacency matrix
8: end if
9: end for
10: end for
11: return A

12: end procedure

The creation of a community overlap graph opens up a multitude of possibilities for further

analysis and exploration. With communities of varying edge densities, one can explore

options such as hierarchical community divisions, overlapping community divisions within

a specific range of edge densities, optimization of divisions for specific applications, or even

identification of cliques within the graph. The range of possibilities is vast and offers

flexibility for tailored analyses.

In the current implementation of BLANT-C, the algorithm focuses on optimizing a com-

35

munity division based on a given measure. However, it is important to note that this final

part of the algorithm can be replaced or modified to output divisions that align with specific

requirements or objectives. By adapting this aspect of the algorithm, users can tailor the

output to match their specific needs and goals, expanding the utility and applicability of the

tool.

Various optimization approaches were explored during the study. One particular approach,

as described below, prioritizes runtime improvements over optimizing the score, albeit with

a slight sacrifice in the score metric.

Algorithm 7 Optimize community division

1: procedure optimize(Q,G, overlapGraph, communities, µ)
2: PQ← PriorityQueue()

3: for community ∈ communities do
4: if alreadyExplored(commuity) then
5: continue
6: end if
7: connectedSubgraph ← DFS(community, overlapGraph)

8: randomStart ← getRandomNode(connectedSubgraph)

9: PQ.push(score(Q, randomStart),randomStart)

10: visited.add(randomStart)

11: end for
12: while !PQ.empty() do
13: community ← PQ.pop()

14: attemptAddition(community, division, Q)

15: search(community, overlapGraph, division, Q, µ, PQ)

16: end while
17: return division

18: end procedure
19: procedure alreadyExplored(community)
20: Returns true if a community has already been seen in a previous DFS exploration
21: end procedure
22: procedure DFS(community)
23: Runs a Depth First Search node traversal to retrieve all the communities
24: that are reachable from the given community in the community graph
25: end procedure
26: procedure getRandomNode(subgraph)
27: Returns a node of the subgraph uniformly at random
28: end procedure

36

29: procedure score(Q, community)
30: if Q == M ov then

31: return 1
nc

∑
u∈c

∑
v∈c,v ̸=u

Au,v−
∑
v/∈c

Au,v

ku·su · dc
32:

33: else if Q == EDN then
34:

35: return
∑

∀u∈c

(
1
su
· dc · 1

nc

)
36: end if
37: end procedure
38: procedure attemptAddition(community, division,Q)
39: P ← potentialScore(community, division, Q)

40: if currentScore(division, Q) < P then
41: division.add(community))

42: end if
43: end procedure
44: procedure potentialScore(community, division, Q)
45: Returns the score of the division if the community was added
46: end procedure
47: procedure currntScore(division, Q)
48: Returns the current score of the division
49: end procedure
50: procedure search(community, overlapGraph, division, Q, µ, PQ)
51: for c2 ∈ overlapGraph.neighbors(community) do
52: if c2 ∈ visited then
53: continue
54: end if
55: P ← potentialScore(c2, division, Q)

56: CS ← currentScore(division, Q)

57: if CS < P and overlap(community, c2) ≤ µ then
58: PQ.push(P, c2)
59: end if
60: visited.add(c2)
61: end for
62: end procedure

To optimize the measures in BLANT-C, a greedy approach with random start is em-

ployed. Initially, the connected subgraphs of the community overlap graph are identified.

For each subgraph, a random node is selected as the starting point for the greedy expansion

process.

During the expansion, each community is visited once. If adding a community to the division

37

would not decrease the current score, it is added to a priority queue. The priority of a

community in the queue is determined by the score it would have if it were added to the

division during the exploration.

Since the division changes every time a node is added, the potential scores in the priority

queue can become outdated. However, it is important to note that the contribution of a

community c1 to the total scorewill never increase with the addition of another community

c2 to the division. It can only decrease. As a result, when a node is removed from the queue,

its potential score is recomputed. If the recomputed score does not improve the current

score, the community is not added to the division.

To ensure a comprehensive analysis of the algorithm’s performance and explore its limits, a

pure O(n2) greedy algorithm is employed in the comparative analysis. This algorithm itera-

tively selects the best available community until the score no longer increases, disregarding

any trade-offs in runtime efficiency. This approach allows for a rigorous examination of the

algorithm’s capabilities and enables a thorough understanding of its performance in different

scenarios.

As mentioned earlier, the output of BLANT-C provides an extensive list of communities.

The subsequent steps following the community detection phase will depend on the specific

application and objectives of the study. By considering the application context, researchers

can make informed decisions about how to utilize the discovered communities and extract

meaningful insights from them.

To summarize, BLANT-C harnesses the power of BLANT to sample graphlets within a

network, enabling an informed Graphlet First Search local expansion approach for com-

munity discovery. Through this process, a comprehensive catalog of big, dense commu-

nities is obtained. Additionally, BLANT-C generates a community similarity overlap

graph, which highlights the extent of overlap between communities. This valuable infor-

38

mation can be leveraged in various use cases. Given the stochastic nature of the algorithm

and its expansion method, we posit that this approach achieves near-optimal solutions

for community discovery1.

1More about this in (7)

39

Chapter 4

Experimental setup

In this chapter, we will present the real-world networks used for the experiments and define

the parameters assigned to the algorithms. Additionally, we will provide details about the

computational resources utilized for running the algorithms.

4.1 Machines used

The algorithms in this study were executed without any time limitations and were allocated

sufficient computational resources. The computational power utilized for running the algo-

rithms was provided by the openlab machines at the Donald Bren School of Information and

Computer Science.

Machine CPU cores RAM

circinus[1-96] 24 96GB
hermod 32 192GB
odin 64 512GB
poison 40 95GB
tristram 32 96GB

Table 4.1: Computational resources.

40

This approach ensured that the algorithms had access to the necessary resources required for

their execution. The school has equipped all students and faculty members with machines

as listed in the table. These machines were extensively utilized to parallelize the work

and conduct a sufficient number of experiments. By making the most of these resources,

the research was able to run numerous experiments simultaneously, effectively utilizing the

computational power available.

4.2 The data

In order to comprehensively evaluate each algorithm, a diverse dataset comprising various

sizes and network topologies was selected. The choice of datasets was based on the commonly

used datasets in the literature, as well as those available in the Stanford Large Network

Dataset Collection of SNAP [44].

Graph Nodes Edges Size

Zachary’s karate club 34 78 405 B
American College football 115 613 3.728 KB
Protein Interaction 1,846 2,203 18.375 KB
Arxiv HEP-TH citations 27,769 352,285 3.705 MB
Amazon product network 334,863 925,872 12.065 MB
DBLP collaboration network 317,080 1,049,866 13.409 MB
Social circles from Twitter 81,306 1,342,296 15.135 MB
Youtube online social network 1,134,890 2,987,624 38.21 MB

Table 4.2: Real Networks dataset

While a few small graphs were included to verify the correct operation of the algorithms,

larger graphs, such as the YouTube graph with 2,987,624 edges, were also incorporated

to assess the scalability and performance of the algorithms under realistic conditions. By

utilizing datasets of varying sizes and topologies, the study aimed to ensure a fair and

comprehensive evaluation of each algorithm’s effectiveness.

41

4.3 Algorithms’ parameters

The following chapters compare BLANT-C against four alternative algorithms: BigClam

(2.1.1), CFinder (2.1.2), COPRA (2.1.3), and Demon (2.1.4).

In each experiment, the algorithms were run using the parameters recommended in their

respective papers. For BigClam, the number of communities to attempt was determined

automatically, with a minimum of mc = 5 and a maximum of xc = 100. The number of

trials was set to nc = 10, and the number of threads used was nt = 4. The backtracking

search parameters were configured as α = 0.05 and β = 0.3.

Regarding CFinder, the size of k-cliques was set to k = 4. In the case of COPRA, the

maximum number of memberships allowed for a node was restricted to v = 8. Lastly, for

Demon, the merging threshold was set to ϵ = 0.3, and the minimum community size was

specified as mc = 3.

By employing these specific parameter configurations for each algorithm, the experiments

aimed to ensure consistency and comparability across different community detection ap-

proaches.

Algorithm Parameters

BigClam mc = 5, xc = 100, nc = 10, nt = 4, α = 0.05, β = 0.3
CFinder k = 4
COPRA v = 8
Demon ϵ = 0.3, mc = 3
BLANT-C M = 100, k ∈ [3, 7], E = 22, dc ∈ [0.0056, 1], µ = 0.2

Table 4.3: Parameters of the algorithms

For BLANT-C, it was executed with a sampling multiplier of M = 100. The community

discovery process was performed for values of k ranging from 3 to 7, and for a total of E = 22

different edge densities evenly spaced within the range dc ∈ [0.0056, 1]. In order to discard

candidate communities, an overlapping threshold of µ = 0.2 was applied.

42

Chapter 5

Comparative analysis for real

networks

Each algorithm was executed for every network in the dataset, enabling a thorough analysis of

their performance. The results demonstrate that BLANT-C excels in identifying the largest

and most densely connected communities compared to other algorithms. This achievement

can be attributed to the utilization of Graphlet First Search expansion, which ensures a

nearly uniform edge density within any induced subgraph.

In this chapter, the obtained results will be presented, focusing on these characteristics. A

comparison of the uniformity of the found communities is exposed, as well as of the quality

measures used to evaluate the effectiveness of the algorithms. The presentation of these

findings will shed light on the superior performance of BLANT-C in terms of identifying

large, dense communities, while also providing insights into its overall quality as compared

to the other algorithms.

43

5.1 Denser, bigger communities

Upon evaluating the algorithms on the real networks described in (4.2), it is evident that

BLANT-C surpasses other algorithms in terms of its ability to identify big and dense com-

munities. The forthcoming plots depict the comparative coverage area wherein the algorithm

identifies communities of specific edge densities and sizes.

To enhance the visualization, we have applied filters that eliminate local minima for the

upper curve and local maxima for the lower curve. By employing this approach, we ensure

that the results are neither overestimated nor underestimated, as opposed to methods like

convex hulls or Gaussian noise filters. This filtering technique contributes to a smoother

visualization of the comparative performance.

100 101

Size community (log)

0.0

0.2

0.4

0.6

0.8

1.0

Ed
ge

 d
en

sit
y

Zachary's karate club

100 101 102

Size community (log)

0.0

0.2

0.4

0.6

0.8

1.0

Ed
ge

 d
en

sit
y

American College football

Smoothed area of the found community sizes and edge densities blant-c
bigclam
copra
demon
cfinder

Figure 5.1: In the x-axis, the size of the community in a logarithmic scale. In the y-axis, the
edge density of a community. The image shows the area occcupied by the solution given by
each algorithm for the two smallest networks.

Although the differences may not be as pronounced in the case of the smallest networks, even

in those instances, there are discernible advantages offered by BLANT-C. By examining the

results obtained from Zachary’s karate club network, it becomes evident that BLANT-C is

superior in terms of both edge density and community size.

It is worth noting that the extent of improvement may vary depending on the specific network

topology under consideration. However, across all cases, there is a consistent enhancement

achieved by utilizing BLANT-C.

44

100 101 102

Size community (log)

0.0

0.2

0.4

0.6

0.8

1.0

Ed
ge

 d
en

sit
y

Protein Interaction

100 101 102 103 104

Size community (log)

0.0

0.2

0.4

0.6

0.8

1.0

Ed
ge

 d
en

sit
y

Arxiv HEP-TH citations

Smoothed area of the found community sizes and edge densities blant-c
bigclam
copra
demon
cfinder

Figure 5.2: In the x-axis, the size of the community in a logarithmic scale. In the y-axis, the
edge density of a community. The image shows the area occcupied by the solution given by
each algorithm for the two networks that are between the smallest and the mid-size ones.

The Arxiv HEP-TH citations network demonstrates a remarkable improvement with BLANT-

C. Its performance surpasses other algorithms, showcasing higher edge density and larger

communities. Moreover, when examining the protein interaction network, BLANT-C achieves

comparable results in terms of edge density and community size, while also displaying supe-

rior capability in identifying significant cliques within the network.

100 101 102 103

Size community (log)

0.0

0.2

0.4

0.6

0.8

1.0

Ed
ge

 d
en

sit
y

Amazon product network

100 101 102 103 104

Size community (log)

0.0

0.2

0.4

0.6

0.8

1.0

Ed
ge

 d
en

sit
y

DBLP collaboration network

Smoothed area of the found community sizes and edge densities blant-c
bigclam
copra
demon
cfinder

Figure 5.3: In the x-axis, the size of the community in a logarithmic scale. In the y-axis, the
edge density of a community. The image shows the area occcupied by the solution given by
each algorithm for the mid-size networks.

Upon evaluating networks of various sizes, it becomes evident that CFinder emerges as

the second most competitive method for networks within that range. However, even in

such cases, BLANT-C remains unrivaled in terms of performance, particularly evident in

the DBLP collaboration network. BLANT-C demonstrates superior results in this network

compared to all other algorithms.

When examining the Amazon product network, the improvement may not be as pronounced.

45

As acknowledged earlier, the degree of enhancement achieved by BLANT-C varies depending

on the specific topology of the network. Nevertheless, despite the relatively less noticeable

improvement, BLANT-C maintains its position as the most competitive algorithm for the

Amazon product network.

100 101 102 103 104

Size community (log)

0.0

0.2

0.4

0.6

0.8

1.0

Ed
ge

 d
en

sit
y

Social circles from Twitter

100 101 102 103 104

Size community (log)

0.0

0.2

0.4

0.6

0.8

1.0

Ed
ge

 d
en

sit
y

Youtube online social network

Smoothed area of the found community sizes and edge densities blant-c
bigclam
copra
demon

Figure 5.4: In the x-axis, the size of the community in a logarithmic scale. In the y-axis, the
edge density of a community. The image shows the area occcupied by the solution given by
each algorithm for the biggest networks.

In the case of the largest networks, CFinder proves to be ineffective in providing a solution,

despite being allocated a substantial amount of RAM (up to 500GB with the Odin machine).

This limitation indicates that CFinder faces challenges in handling such large-scale networks.

On the other hand, Demon manages to produce a solution for the Youtube online social

network. However, the resulting solution consists of a single community comprising 44,514

nodes, with an edge density of only 0.0532843%. Consequently, there is no discernible area

available for plotting this community due to its sparse nature.

In contrast, when running BLANT-C on these large graphs, there is a notable improvement in

both community size and edge density. BLANT-C demonstrates its effectiveness in capturing

meaningful community structures within these massive networks, highlighting its superiority

over alternative algorithms.

The significant improvement observed in terms of size and edge density further emphasizes

the strength of BLANT-C in handling large-scale networks and extracting meaningful com-

munities from them.

46

100 101 102 103 104 105

Community size (log)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ed
ge

 d
en

sit
y

BLANT-C solution space
BLANT-C found
Others found

100 101 102 103 104 105

Community size (log)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ed
ge

 d
en

sit
y

Rest of the algorithms solution space
Others found
BLANT-C

Solution space

Figure 5.5: In the x-axis, the size of the community in a logarithmic scale. In the y-axis, the
edge density. The plot shows the ranges in which BLANT-C and the rest of the algorithms
found a community across every network. In blue, the solution space of BLANT-C. In purple,
the union of the solution space of every other algorithm. The ranges in which BLANT-C
found a solution but the rest of the algorithms did not is marked in green. The ranges in
which the rest of the algorithms found a community but BLANT-C did not, are marked in
red.

47

In conclusion, BLANT-C consistently outperforms other state-of-the-art algorithms in iden-

tifying larger and denser communities. This superiority is clearly demonstrated in Figure

(5.5), where the solution space expands significantly, with an average 3.4x increase in com-

munity size for communities with an edge density dc ≥ 0.55. Notably, BLANT-C excels in

finding cliques, with the ability to identify cliques of up to 126 nodes.

It is important to highlight that BLANT-C effectively identifies the majority of communi-

ties, with the exception of those characterized by extremely low edge density or communities

with the same edge density but smaller size. However, even in such cases, BLANT-C seam-

lessly incorporates these smaller communities into larger ones with the same edge density,

ensuring a comprehensive coverage of the network. These findings highlight the exceptional

performance of BLANT-C in detecting significant communities within complex networks.

5.2 Edge density uniformity

As part of the re-imagined community definition (1.3), one key criterion is that a community

with a specified edge density, denoted as dc, should exhibit a uniform edge density across

the entire community and its induced subgraphs. This criterion ensures that a community

is not formed solely by a highly connected core with sparse connections in its surroundings.

One advantage of utilizing BLANT as a sampling tool is that it allows for the measurement

of other interesting properties of the algorithms, such as the uniformity of edge density

within the detected communities. Leveraging BLANT’s capabilities, we can efficiently induce

multiple subgraphs (graphlets) and compute their edge density in constant time.

To conduct the experiment, 100 graphlets were induced for each community within every

solution of every network in the real networks dataset. This process was carried out for

each k value within the range of 3 to 7. Subsequently, the edge density of each induced

48

graphlet was computed, enabling the evaluation of the uniformity of edge density across the

communities.

0 20 40 60 80 100
Percentage

BLANT-C

bigclam

copra

demon

cfinder

Al
go

rit
hm

96.10%

98.01%

100.00%

99.84%

73.08%

Zachary's karate club

0 20 40 60 80 100
Percentage

BLANT-C

bigclam

copra

demon

cfinder

Al
go

rit
hm

92.01%

98.45%

100.00%

96.23%

64.06%

American College football

0 20 40 60 80 100
Percentage

BLANT-C

bigclam

copra

demon

cfinder

Al
go

rit
hm

97.17%

99.96%

99.72%

96.76%

72.16%

Protein Interaction

0 20 40 60 80 100
Percentage

BLANT-C

bigclam

copra

demon

cfinder

Al
go

rit
hm

90.23%

99.95%

96.70%

99.32%

89.06%

Arxiv HEP-TH citations

0 20 40 60 80 100
Percentage

BLANT-C

bigclam

copra

demon

cfinder

Al
go

rit
hm

88.73%

99.93%

99.19%

96.16%

86.47%

Amazon product network

20 40 60 80 100
Percentage

BLANT-C

bigclam

copra

demon

cfinder

Al
go

rit
hm

93.65%

99.77%

98.41%

96.90%

87.86%

DBLP collaboration network

20 40 60 80 100
Percentage

BLANT-C

bigclam

copra

demon

Al
go

rit
hm

88.45%

99.98%

99.43%

99.34%

Social circles from Twitter

20 40 60 80 100
Percentage

BLANT-C

bigclam

copra

demon

Al
go

rit
hm

93.27%

99.99%

99.36%

100.00%

Youtube online social network

0 20 40 60 80 100
Percentage

BLANT-C

bigclam

copra

demon

cfinder

Al
go

rit
hm

91.10%

99.93%

99.17%

96.71%

87.04%

Sum of samples across networks

Edge density uniformity Below
-30%
-20%
-10%
-5%
Above

Figure 5.6: Uniformity of edge density for each network and for the sum of all Samples.
The stacked bar graph illustrates the distribution of sampled subgraphs based on their edge
density in relation to the edge density of the corresponding community. Subgraphs with an
edge density equal to or higher than the community’s edge density are represented in the
’Above’ category. Subgraphs that exhibit a lower edge density are categorized based on the
extent of the drop: less than 5%, more than 5% but less than 10%, more than 10% but less
than 20%, more than 20% but less than 30%, and more than 30%.

The results indicate that algorithms utilizing label propagation and non-negative matrix

49

factorization demonstrate strong performance in detecting communities that adhere to the

uniformity of edge density condition. In contrast, CFinder exhibits comparatively weaker

results in this aspect. Notably, the proposed algorithm, BLANT-C, successfully identifies

communities where at least 90% of all randomly sampled induced subgraphs maintains an

edge density drop of no more than 5%. While these results are deemed satisfactory, there

remains potential for further enhancements and improvements in future iterations of the

algorithm.

5.3 Quality measures

Based on the solutions obtained by each algorithm for each network, the quality measures

outlined in (2.2) have been computed. It is important to note that, as mentioned, the

minimum size requirement for a subgraph to be considered a community is set at nc ≥ 3.

Additionally, the condition for overlapping modularity, which necessitates every node to be

a member of at least one community, has been relaxed.

Network BigClam BLANT-C CFinder COPRA Demon

Zachary’s karate club 0.1598 0.8667 0.8111 0.1390 0.4036
American College football 0.4585 0.8646 0.8106 0.0935 0.1938
Protein Interaction 0.1236 0.6320 0.8814 0.4186 0.7341
Arxiv HEP-TH citations 0.0431 0.8419 0.5665 0.5750 0.2049
Amazon product network 0.0149 0.9363 0.7064 0.2165 0.4397
DBLP collaboration network 0.0761 0.8735 0.6248 0.4921 0.4814
Social circles from Twitter 0.0426 0.9141 - 0.1584 0.0980
Youtube online social network 0.0563 0.7981 - 0.3876 0.0005

Table 5.1: EDN score of the solution for each algorithm. The best score for each network is
highlighted.

The rationale behind this relaxation was also discussed in (2.2). For BLANT-C, the results

have been optimized for each measure using a parameter value of µ = 0.2 and has been done

after sorting the raw results by edge density instead of by size. This optimization process

50

aims to maximize the performance of BLANT-C with respect to each individual measure.

The table clearly demonstrates that BLANT-C consistently achieves the best results across

all networks, with the exception of the Protein Interaction network. It is worth noting that

CFinder, being a Clique Percolation Method, was expected to perform well in terms of the

EDN measure. However, as mentioned in 5.1, CFinder does not scale well for larger networks.

This limitation becomes evident as CFinder’s results are missing for the last two networks

in the table.

Karate Football Protein Arxiv Amazon DBLP Twitter Youtube Average
Network

0.0

0.2

0.4

0.6

0.8

N

Results for N metric per network and algorithm bigclam
copra
demon
cfinder
blant

Figure 5.7: Comparison of EDN scores across different networks and algorithms. Networks
are arranged in ascending order of size from left to right. The final value represents the
average score across all networks.

It is interesting to note that the Demon and COPRA algorithms compete in performance

and frequently alternate positions depending on the network topology. This observation is

51

particularly evident in the DBLP collaboration network, where both algorithms achieve sim-

ilar scores. On the other hand, BigClam consistently demonstrates the lowest performance

among the evaluated algorithms in relation to this metric.

These findings highlight the nuanced nature of community detection algorithms and their

performance characteristics, which can vary depending on the specific network characteristics

and topology.

Although there have been previous objections regarding the suitability of the overlapping

modularity measure and its alignment with the proposed community definition, it is worth

noting that this measure is commonly employed in community detection research. Therefore,

we have included the results for overlapping modularity as well.

Network BigClam BLANT-C CFinder COPRA Demon

Zachary’s karate club 0.0476 0.0819 0.1249 0.1390 0.3531
American College football -0.1325 0.3510 0.2159 0.0935 0.0847
Protein Interaction 0.0991 0.1969 0.3045 0.2466 0.3219
Arxiv HEP-TH citations 0.0318 0.0657 -0.0615 0.5543 0.1046
Amazon product network 0.0129 0.2793 0.2789 0.1696 0.2505
DBLP collaboration network 0.0696 0.4344 0.3168 0.4136 0.3369
Social circles from Twitter 0.0314 0.1549 - 0.1471 0.0910
Youtube online social network 0.0520 0.4216 - 0.2364 0.0002

Table 5.2: Overlapping modularity score of the solution of each algorithm. The best score
for each network is highlighted.

As observed in the results, BLANT-C surpasses the performance of the other algorithms for

the four largest networks. This further reinforces the effectiveness and superiority of BLANT-

C in detecting overlapping communities compared to the competing algorithms. Despite the

concerns raised about the measure’s compatibility with the community definition, BLANT-

C’s consistent outperformance demonstrates its ability to uncover meaningful and coherent

communities even under the overlapping modularity framework.

52

Karate Football Protein Arxiv Amazon DBLP Twitter Youtube Average
Network

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Mov

Results for Mov metric per network and algorithm bigclam
copra
demon
cfinder
blant

Figure 5.8: Comparison of M ov scores across different networks and algorithms. Networks
are arranged in ascending order of size from left to right. The final value represents the
average score across all networks.

Indeed, the results for overlapping modularity indicate that the performance of different algo-

rithms can vary depending on the specific network topology and size. BigClam consistently

performs poorly in capturing overlapping community structures, suggesting limitations in

its ability to handle complex network relationships.

On the other hand, BLANT-C, CFinder, and the label propagation algorithms demonstrate

competitive performance, often vying for the top scores in this metric. It is worth noting

that Demon’s performance appears to decline as the network size increases, while BLANT-C

consistently maintains its superiority in large graphs.

53

These observations highlight the importance of considering both the algorithm’s performance

and its scalability when dealing with networks of varying sizes. BLANT-C’s ability to main-

tain its effectiveness and outperform other algorithms in larger graphs suggests its scalability

and adaptability to handle complex community structures. Overall, these results underscore

the significance of selecting an algorithm that not only performs well in capturing overlap-

ping communities but also demonstrates scalability and robustness across different network

sizes and topologies.

54

Chapter 6

Comparative analysis for synthetic

networks

After analyzing the performance of BLANT-C on real networks, a comparative analysis

was conducted using LFR benchmark graphs. The methodology closely follows the recent

comparative analysis of [45], which served as a valuable reference.

In this analysis, the algorithms under consideration were executed on a dataset of LFR

graphs. The obtained results were then compared with the ground truth communities us-

ing the overlapping normalized mutual information (NMI) measure, as defined in 2.3.1.

Furthermore, the runtime of each algorithm was also analyzed, providing insights into their

efficiency and computational performance.

Through this comparative analysis, certain weaknesses in BLANT-C were identified. More-

over, the analysis yielded important insights that can guide potential enhancements to im-

prove the algorithm’s performance.

55

6.1 LFR benchmark graphs generation

The primary objective of the comparative analysis was to assess the robustness of algo-

rithms in the face of changes in community structure. This was achieved by modifying

various parameters used in generating LFR benchmark graphs and evaluating how closely

the algorithms approximated the ground truth established by the LFR algorithm.

For the generation of LFR benchmark graphs, default parameter values were used as follows:

N = 10000 nodes, an average degree of kavg = 20, and a maximum degree of kmax = 50. The

topological mixing parameter was set to µ = 0.4, while the degree distribution exponent and

community size distribution exponent were τ1 = 2 and τ2 = 1 respectively. The community

sizes ranged from min(nc) = 20 to max(nc) = 100. Aditionally, the number of overlapping

nodes on is set to be 20% of N and the number of memberships of the overlapping nodes is

set to om = 2.

While there was interest in evaluating how algorithms would react to changes in degree

distribution and community size distribution, due to time constraints and convergence issues

with the LFR generation algorithm, the focus of the analysis was primarily on evaluating

the impact of µ, N , om, and on, on the algorithms’ performance. To ensure clarity, only one

parameter was modified at a time during the analysis.

LFR
dataset

N kavg kmax µ τ1 τ2 min(nc) max(nc) on om

Study of
µ-graphs

10,000 20 50
[0.1,
0.8]

2 1 20 100 0.2 ·N 2

Study of
N -graphs

[10000,
100000]

20 50 0.4 2 1 20 100 0.2 ·N 2

Study of
on-graphs

10,000 20 50 0.4 2 1 20 100
[0.1 ·N ,
0.6 ·N]

2

Study of
om-graphs

10,000 20 50 0.4 2 1 20 100 0.2 ·N [1, 9]

Table 6.1: LFR benchmark graphs datasets.

56

For the mixing parameter µ, a range of values [0.1, 0.8] was explored, with a step size of

0.1. The number of nodes N was tested within the range [10000, 100000] nodes, with a step

size of 10,000 nodes. It is worth noting that this was the only deviation from the referenced

analysis [45], as we decided to generate larger graphs for evaluation purposes.

To assess the impact of the number of memberships of overlapping nodes om, a range of

values [1, 9] was considered, with a step size of 1. Finally, the number of overlapping nodes

on was tested within the range of [0.1 ·N, 0.6 ·N], with a step size of 0.1.

6.2 Algorithms configuration

The algorithms used for comparison with BLANT-C were executed with the same config-

uration, as specified in (4.3). In order to thoroughly explore the performance limits of

BLANT-C, it was executed for values of k ∈ [3, 7], and for 95 linearly spaced edge densities

in the range of d ∈ [0.05, 1]. Each (k, d) pair was executed in parallel. To filter the results, an

overlapping threshold of 1.0 was applied, and the community size was restricted to a range

of 18 to 111.

For the evaluation of BLANT-C results, two measures were optimized: the overlapping

modularity M ov and a new measure referred to as EDN . Following this optimization, the

overlapping normalized mutual information (NMI) was computed between the algorithms’

results and the ground truth.

Notably, it was observed that depending on the graph, either M ov or EDN yielded higher

NMI values. This suggests that neither measure is perfect, and there is still room for

improvement in optimizing the results produced by BLANT-C.

57

6.3 Runtime

The runtime of BLANT-C is determined by calculating the average runtime of each parallel

process using the GNU time tool, which captures the elapsed wall clock time. It is important

to note that this runtime measurement excludes the optimization algorithm of BLANT-C

and is applicable only to a distributed computing paradigm. If the experiment were to be

conducted on a single machine, the runtime would need to be multiplied by the number of

edge densities and values of k for which BLANT-C is executed.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

5

10

15

20

25

30

35

40

tim
e(

se
co

nd
s)

Runtime in LFR graphs variating

20000 40000 60000 80000 100000
N

101

102

103

tim
e(

se
co

nd
s)

Runtime in LFR graphs variating N

1 2 3 4 5 6 7 8
om

5

10

15

20

25

30

35

40

tim
e(

se
co

nd
s)

Runtime in LFR graphs variating om

0.1 0.2 0.3 0.4 0.5 0.6
on

5

10

15

20

25

30

35

40

tim
e(

se
co

nd
s)

Runtime in LFR graphs variating on

Runtime in LFR graphs blant
bigclam
copra
demon
cfinder

Figure 6.1: Runtime analysis in the LFR benchmark graphs datasets

58

The runtime of the algorithms demonstrates a direct relationship with the number of nodes in

the graph, while remaining relatively constant for variations in other parameters. BLANT-

C and Demon experience the most significant increase in runtime as the number of nodes

increases.

Regarding CFinder, it is important to note that the reported runtime is not realistic, as

CFinder’s runtime is expected to exhibit exponential growth. However, in order to save

time, a time limit per node was imposed during CFinder execution. Among the evaluated

algorithms, COPRA and BigClam were found to be the fastest.

When the number of nodes grows, the runtime of BLANT-C is comparatively higher than

that of other algorithms. This is primarily due to BLANT-C’s comprehensive retrieval

of communities, which can be up to 100 times larger. This information underscores the

importance of exploring options in future iterations of the algorithm to enhance runtime

efficiency. One potential approach is to allow users to selectively retrieve communities that

align with their specific interests, based on predefined rules or criteria.

6.4 Normalized mutual information

Currently, BLANT-C lags behind label propagation methods in the task of detecting ground

truth communities in LFR graphs. There are several reasons that contribute to this phe-

nomenon. Firstly, the communities generated by the LFR algorithm adhere to a definition

of community that differs from what was stated in (1.3). This disparity in community

definitions presents a fundamental challenge for BLANT-C.

Additionally, BLANT-C detects a comprehensive list of communities (much longer than

on) across a wide range of edge densities, whereas the communities generated by the LFR

algorithm are concentrated within a narrower range of edge densities. While the first issue

59

cannot be resolved, it is worth noting that BLANT-C not only identifies communities that

align with the ground truth but also identifies additional communities that were not defined

by the LFR algorithm but still exhibit high density and size, which lowers the NMI.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.2

0.4

0.6

0.8

1.0

Ed
ge

 d
en

sit
y

Diversity in LFR graphs variating

20000 40000 60000 80000 100000
N

0.0

0.2

0.4

0.6

0.8

1.0

Ed
ge

 d
en

sit
y

Diversity in LFR graphs variating N

1 2 3 4 5 6 7 8
om

0.0

0.2

0.4

0.6

0.8

1.0

Ed
ge

 d
en

sit
y

Diversity in LFR graphs variating om

0.1 0.2 0.3 0.4 0.5 0.6
on

0.0

0.2

0.4

0.6

0.8

1.0

Ed
ge

 d
en

sit
y

Diversity in LFR graphs variating on

Edge density diversity of BLANT-C communities in LFR graphs LFR
BLANT-C

Figure 6.2: Distribution of the edge density of the communities defined by the LFR algorithm
as the ground truth and the ones found by BLANT-C.

To address this, a comparison is presented that showcases both the maximum results achieved

by BLANT-C after optimization and the results it would yield if only the communities match-

60

ing those defined by the LFR algorithm were selected from its extensive list of communities.

This analysis allows for a comprehensive understanding of BLANT-C’s performance, con-

sidering both its ability to detect ground truth communities and its capacity to identify

additional dense and large communities beyond those defined by the LFR algorithm.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

1.0

ON
M

I

LFR graphs variating

20000 40000 60000 80000 100000
N

0.0

0.2

0.4

0.6

0.8

1.0

ON
M

I

LFR graphs variating N

1 2 3 4 5 6 7 8
om

0.0

0.2

0.4

0.6

0.8

1.0

ON
M

I

LFR graphs variating om

0.1 0.2 0.3 0.4 0.5 0.6
on

0.0

0.2

0.4

0.6

0.8

1.0

ON
M

I

LFR graphs variating on

Overlapping normalized mutual information in LFR graphs BLANT-C-m
bigclam
copra
demon
cfinder
BLANT-C

Figure 6.3: Normalized mutual information of each algorithm for each LFR graph in the
dataset plus BLANT-C-m, that represents the results BLANT-C would yield if only the
communities matching those defined by the LFR algorithm were selected

COPRA consistently achieves remarkable results across the datasets, with the exception of

high values of om where Demon outperforms it. On the other hand, the results of BLANT-

61

C, even after optimization, are not as strong, with only BigClam performing worse. This is

mainly due to the detection of numerous big and dense communities that are not included

in the LFR ground truth, resulting in a lower score for BLANT-C.

However, it is worth noting that the results of BLANT-C do contain several solutions that

match the ground truth communities of the LFR graphs. By selectively choosing only those

communities that align with the ground truth, BLANT-C’s performance is not significantly

behind label propagation algorithms.

Furthermore, considering the stochastic nature of BLANT-C and its expansion method, it

is believed that by increasing the sampling multiplier and exploring a wide range of edge

densities, it is possible to identify all ground truth communities. This suggests that further

improvements can be made to enhance the performance of BLANT-C in detecting ground

truth communities, thereby closing the gap with label propagation algorithms.

62

Chapter 7

Conclusions and Next Steps

7.1 Conclusions

In this study, we have introduced BLANT-C, a novel algorithm for overlapping community

detection in complex networks. Building upon the BLANT sampling method, BLANT-C

incorporates Graphlet First Search expansion to identify large and dense communities. By

redefining the notion of community, BLANT-C generates an extensive list of communities

and constructs an overlapping graph, which can be further optimized for various applications.

The performance of BLANT-C has been rigorously evaluated and compared against state-

of-the-art algorithms in the field. The experimental results demonstrate that BLANT-C

surpasses these algorithms in terms of its ability to identify large and dense communities.

Moreover, when applied to real-world networks, BLANT-C consistently outperforms com-

peting algorithms in the newly introduced measure EDN in overlapping modularity (M ov)

for big networks.

Through the comparative analysis conducted on synthetic networks, we have identified im-

63

portant limitations of BLANT-C. One such limitation pertains to the generation of a lengthy

list of communities, which poses challenges in terms of post-processing the algorithm’s out-

put. Additionally, there is room for improvement in terms of achieving higher edge density

uniformity within the communities. Lastly, enhancing the runtime efficiency of BLANT-C

is crucial for its scalability to larger networks.

7.2 Next Steps

The current work lays the foundation for the future development and refinement of BLANT-

C. A significant avenue for future research involves further exploring the potential optimality

of BLANT-C’s community discovery. It is worth noting that, similar to the convergence of

simulated annealing towards a globally optimal solution with probability 1 [46], the stochas-

tic nature of BLANT-C, coupled with the Graphlet First Search expansion method, holds

the potential to converge towards near-optimal results. This hypothesis suggests that by

iteratively refining the community detection process, BLANT-C can progressively approach

an optimal solution, effectively capturing the underlying community structure of complex

networks. Further research and experimentation will be conducted to validate and explore

the convergence properties of BLANT-C.

In terms of algorithmic improvements, the next steps will involve addressing the computa-

tional efficiency of BLANT-C. Specifically, efforts will be directed towards refining the time

complexity by devising more intelligent exploration strategies. Moreover, the post-processing

of results or real-time processing during the algorithm’s execution will be enhanced. This

will have two main objectives. Firstly, it will facilitate more efficient and effective community

identification. Secondly, the aim will be to improve the uniformity of the edge density across

the detected communities.

64

Finally, an additional line of research that has already been initiated involves the creation of

benchmark graphs that align with the redefined notion of community presented in this study.

These benchmark graphs aim to encompass a diverse range of edge densities, significant

overlapping possibilities, and nested communities.

By undertaking these initiatives, BLANT-C will solidify its position as a powerful and effi-

cient algorithm for detecting overlapping communities in complex networks. The advance-

ments achieved through future iterations will contribute to the broader field of community

detection and provide researchers with valuable tools for analyzing and understanding the

intricate structures present in complex real networks.

65

Bibliography

[1] Mark S Granovetter. The strength of weak ties. American journal of sociology,
78(6):1360–1380, 1973.

[2] Oleksii Kuchaiev, Tijana Milenković, Vesna Memǐsević, Wayne Hayes, and Nataša
Pržulj. Topological network alignment uncovers biological function and phylogeny. Jour-
nal of the Royal Society Interface, 7(50):1341–1354, 2010.

[3] Ernesto Estrada. Graph and network theory in physics. arXiv preprint arXiv:1302.4378,
2013.

[4] Olivier Goldschmidt and Dorit S Hochbaum. A polynomial algorithm for the k-cut
problem for fixed k. Mathematics of operations research, 19(1):24–37, 1994.

[5] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans-
actions on pattern analysis and machine intelligence, 22(8):888–905, 2000.

[6] Alex Pothen. Graph partitioning algorithms with applications to scientific computing.
ICASE LaRC Interdisciplinary Series in Science and Engineering, 4:323–368, 1997.

[7] Andrea Lancichinetti, Santo Fortunato, and János Kertész. Detecting the overlapping
and hierarchical community structure in complex networks. New journal of physics,
11(3):033015, 2009.

[8] Michelle Girvan and Mark EJ Newman. Community structure in social and biological
networks. Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.

[9] Joshua R Tyler, Dennis M Wilkinson, and Bernardo A Huberman. Email as spec-
troscopy: Automated discovery of community structure within organizations. In Com-
munities and Technologies: Proceedings of the First International Conference on Com-
munities and Technologies; C&T 2003, pages 81–96. Springer, 2003.

[10] Matthew J Rattigan, Marc Maier, and David Jensen. Graph clustering with network
structure indices. In Proceedings of the 24th international conference on Machine learn-
ing, pages 783–790, 2007.

[11] Pascal Pons and Matthieu Latapy. Computing communities in large networks using
random walks. In Computer and Information Sciences-ISCIS 2005: 20th International

66

Symposium, Istanbul, Turkey, October 26-28, 2005. Proceedings 20, pages 284–293.
Springer, 2005.

[12] Jörg Reichardt and Stefan Bornholdt. Detecting fuzzy community structures in complex
networks with a potts model. Physical review letters, 93(21):218701, 2004.

[13] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in
networks. Phys. Rev. E, 69:026113, Feb 2004.

[14] Mingming Chen, Konstantin Kuzmin, and Boleslaw K Szymanski. Community detection
via maximization of modularity and its variants. IEEE Transactions on Computational
Social Systems, 1(1):46–65, 2014.

[15] Jian Liu and Tingzhan Liu. Detecting community structure in complex networks using
simulated annealing with k-means algorithms. Physica A: Statistical Mechanics and its
Applications, 389(11):2300–2309, 2010.

[16] Mursel Tasgin, Amac Herdagdelen, and Haluk Bingol. Community detection in complex
networks using genetic algorithms. arXiv preprint arXiv:0711.0491, 2007.

[17] Mark EJ Newman. Fast algorithm for detecting community structure in networks.
Physical review E, 69(6):066133, 2004.

[18] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Finding community structure
in very large networks. Physical review E, 70(6):066111, 2004.

[19] Leon Danon, Albert Diaz-Guilera, and Alex Arenas. The effect of size heterogeneity
on community identification in complex networks. Journal of Statistical Mechanics:
Theory and Experiment, 2006(11):P11010, 2006.

[20] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of statistical mechanics: theory
and experiment, 2008(10):P10008, 2008.

[21] Muhammad Aqib Javed, Muhammad Shahzad Younis, Siddique Latif, Junaid Qadir,
and Adeel Baig. Community detection in networks: A multidisciplinary review. Journal
of Network and Computer Applications, 108:87–111, 2018.

[22] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. nature, 435(7043):814–
818, 2005.

[23] Shawn Mankad and George Michailidis. Structural and functional discovery in dynamic
networks with non-negative matrix factorization. Physical Review E, 88(4):042812, 2013.

[24] Mahsa Ghorbani, Hamid R Rabiee, and Ali Khodadadi. Bayesian overlapping commu-
nity detection in dynamic networks. arXiv preprint arXiv:1605.02288, 2016.

[25] Yong-Yeol Ahn, James P Bagrow, and Sune Lehmann. Link communities reveal multi-
scale complexity in networks. nature, 466(7307):761–764, 2010.

67

[26] Jaewon Yang and Jure Leskovec. Overlapping community detection at scale: a non-
negative matrix factorization approach. In Proceedings of the sixth ACM international
conference on Web search and data mining, pages 587–596, 2013.

[27] Steve Gregory. Finding overlapping communities in networks by label propagation. New
journal of Physics, 12(10):103018, 2010.

[28] Michele Coscia, Giulio Rossetti, Fosca Giannotti, and Dino Pedreschi. Demon: a local-
first discovery method for overlapping communities. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 615–
623, 2012.

[29] Anne-Claude Gavin, Markus Bösche, Roland Krause, Paola Grandi, Martina Marzioch,
Andreas Bauer, Jörg Schultz, Jens M Rick, Anne-Marie Michon, Cristina-Maria Cruciat,
et al. Functional organization of the yeast proteome by systematic analysis of protein
complexes. Nature, 415(6868):141–147, 2002.

[30] Andrea Lancichinetti and Santo Fortunato. Limits of modularity maximization in com-
munity detection. Phys. Rev. E, 84:066122, Dec 2011.

[31] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm
to detect community structures in large-scale networks. Physical review E, 76(3):036106,
2007.

[32] Anna Lázár, Dániel Abel, and Tamás Vicsek. Modularity measure of networks with
overlapping communities. Europhysics Letters, 90(1):18001, 2010.

[33] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for
testing community detection algorithms. Physical review E, 78(4):046110, 2008.

[34] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community detec-
tion algorithms on directed and weighted graphs with overlapping communities. Physical
Review E, 80(1):016118, 2009.

[35] Anna D Broido and Aaron Clauset. Scale-free networks are rare. Nature communica-
tions, 10(1):1017, 2019.

[36] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.
science, 286(5439):509–512, 1999.

[37] Aaron F McDaid, Derek Greene, and Neil Hurley. Normalized mutual information to
evaluate overlapping community finding algorithms. arXiv preprint arXiv:1110.2515,
2011.

[38] Natasa Pržulj, Derek G Corneil, and Igor Jurisica. Modeling interactome: scale-free or
geometric? Bioinformatics, 20(18):3508–3515, 2004.

[39] Wayne Hayes, Kai Sun, and Nataša Pržulj. Graphlet-based measures are suitable for
biological network comparison. Bioinformatics, 29(4):483–491, 2013.

68

[40] Darren Davis, Ömer Nebil Yaveroğlu, Noel Malod-Dognin, Aleksandar Stojmirovic, and
Nataša Pržulj. Topology-function conservation in protein–protein interaction networks.
Bioinformatics, 31(10):1632–1639, 2015.

[41] Rafael Espejo, Guillermo Mestre, Fernando Postigo, Sara Lumbreras, Andres Ramos,
Tao Huang, and Ettore Bompard. Exploiting graphlet decomposition to explain the
structure of complex networks: the ghust framework. Scientific reports, 10(1):12884,
2020.

[42] Sridevi Maharaj, Brennan Tracy, and Wayne B Hayes. Blant—fast graphlet sampling
tool. Bioinformatics, 35(24):5363–5364, 2019.

[43] Adib Hasan, Po-Chien Chung, and Wayne Hayes. Graphettes: Constant-time determi-
nation of graphlet and orbit identity including (possibly disconnected) graphlets up to
size 8. PloS one, 12(8):e0181570, 2017.

[44] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-
mining library. ACM Transactions on Intelligent Systems and Technology (TIST),
8(1):1–20, 2016.

[45] Vińıcius da Fonseca Vieira, Carolina Ribeiro Xavier, and Alexandre Gonçalves Evsukoff.
A comparative study of overlapping community detection methods from the perspective
of the structural properties. Applied Network Science, 5(1):1–42, 2020.

[46] Debasis Mitra, Fabio Romeo, and Alberto Sangiovanni-Vincentelli. Convergence and
finite-time behavior of simulated annealing. Advances in applied probability, 18(3):747–
771, 1986.

69

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF EQUATIONS
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE THESIS
	Introduction
	The community detection problem
	Background
	But, what is a community?

	Overlapping community detection algorithms and quality measures
	Overlapping community detection algorithms
	BigClam
	CFinder
	Copra
	DEMON

	Edge Density and Overlapping Modularity
	Overlapping modularity
	Edge density vs community size

	LFR benchmark graphs and quality measures
	LFR benchmark graphs
	Overlapping Normalized Mutual Information

	BLANT-C
	Graphlets
	BLANT
	Graphette and orbit identification
	Sampling and output

	BLANT-C
	BLANT configuration
	BLANT-C algorithm

	Experimental setup
	Machines used
	The data
	Algorithms' parameters

	Comparative analysis for real networks
	Denser, bigger communities
	Edge density uniformity
	Quality measures

	Comparative analysis for synthetic networks
	LFR benchmark graphs generation
	Algorithms configuration
	Runtime
	Normalized mutual information

	Conclusions and Next Steps
	Conclusions
	Next Steps

	Bibliography

