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UNITARIZATION OF THE DUAL RESONANCE AMPLITUDE. 

III. GEIERAL RULES FOR THE ORIENTABLE AND 
* 

NONORIENTABLE MULTILOOP AMPLITUDES 

Michio Kakut and Loh-ping Yu 

Lawrence Radiation Laboratory 
University of California 
Berkeley, California 94720 

November 7, 1970 

ABSTRACT 

We complete the KSV unitarization scheme for the 

dual resonance amplitude by presenting the nonorientable 

and overlapping multiloop amplitudes. We also present 

rules for writing down arbitrarily mixed planar, nonpianar, 

nonorientable, and overlapping multiloop amplitudes by 

inspection. 
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I. INTRODUCTION 

This paper is the last in a series of three papers on the 

unitarization of the Veneziano amplitude. 5  Remarkably, the nonorient-

able and overlapping loop amplitudes retain most of the essential features 

of the integrand of the planar and nonpianar multiloop amplitudes. Each 

nonorientable loop is distinguished by the fact that its projective 

transformation is loxodromic (i.e., its multiplier is negative). The 

overlapping loop amplitudes have hyperbolic projective transformations 

(as in the case with the planar and nonplanar loops); the difference lies 

in the fact that the two pairs of invariant points are found to have 

overlapping orderings. 

Fortunately, the momentum-dependent factors in the integrand 

are independent of the arrangement of the various loops in a multloop 

amplitude. We give simple rules for writing down by inspection the 

factors raised to the 060 -  1 power, which are sensitive to the 

topology of the diagram. 	 . 

p 
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II. GENERAL MULTILOOP FORMULAS 

A. The Nonorientable Multiloop Amplitude 

In our previous papers,13  we went into considerable detail in 

deriving the planar and nonpianar multiloop amplitudes by joining the 

factorized legs of the N-reggeon tree as well as Sc:uto three-reggeon 

vertices. Because all multiloop amplitudes share many of the same 

characteristics, we shall present only the nonorientable and overlapping 

loop formulas without the derivation. 

In. Ref. 3, we found that the particular factorized tree used to 

calculate the multiloop amplitudes was often not the most desirable one 

from the viewpoint.of obtaining symmetry among all quark loops and in 

discussing the limits of integration. In Fig. 1, for example, we display 

the factorized tree which was used in the calculation of the nonplanar 

multiloop amplitude. To restore the symmetry among all the quark.loops, 

however, we found it convenient to move all external lines lying on the 

outer quark loop away from the loops. In Ref. 3 we found that these 

external variables, when bunched together, are confined to lie between 

the invariant points of the product of all projective transformations 

taken in order (see Fig. 2). The symmetry among all quark loops is 

restored, because the Koba-Nielsen variables associated with external 

legs trapped within a loop are confined to lie between the invariant 

points of that loop, whereas the variables associated with the outer quark 

loop are confined to lie between the invariant points of the product of 

all projective transformations. 
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Essentially all features of the multiloop amplitude remain the 

same if we go from Fig. 1 to Fig. 2, except for the factors raised to 

the power a0 - 1 and the region of integration. 

Using the notation of ReTh. 1, 2, and 3, we let y represent 

each external leg and y and y the invariant points of the (a) 

loop. As we move external legs lying on the outer quark loop away from 

the loops, the critical a0  - 1 factors, which are sensitive to the 

quark topology, change from 

-y)(R(y1) - a-l1 	1-1 - y)(R(y1) - a+i1 
 90-1 

X L 	- a+l) 	i 	 -  

(2.1) 

to 	

a0 	 -Y  )(R C,(y _,)-Y,+,) 

	

)) 	] 	
()=() 	

( - R a(yi) 	i 

xa 	 (2.2) 

8 	R 	and (2) = 	
( Z) 	{Notice that we have where R RW  

dropped all factors like ( 	- 	) 
0 	for simplicity.] 

is the multiplier of 	 = 	= R;a(z i ) z1  

and 	=y = R( z2 ), z2  x. ) 
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The factor raised to the .(a0 •-'l) power is projectively 

invariantand symmetric in all quark loops. 6  It arises only when all 

external lines are removed from the region between two or more loops. 

Now assume that we add an extra twist operator to Fig. 1 for 

each loop, so that it now describes the nonorientable multiloop amplitude. 

Applying the techniques used in Refs.. 1 and 2, we find that the projective 

transformation describing each ioop is loxodromic (i.e., it has a nega-

tive multiplier lying between zero and minus one) and that the a0  - 1 

factors change slightly from the analogous factors given in (2.1): 

a-i 	 a-i
(y 

 0  _
1 -y~ ) (Rfo(yo-l)  -Y.-1)  (YJ3+1 -y  f~  ) 

 (Rt,  (y  f3,l) -ya,)  0 
	 0 	

(2 3) X L 	- Ra(Y+i)) 	j 	- a -  i) 

Notice that the only difference between the nonpianar and nonorientable 

factors is that we have exchanged the roles of some of the y's. 

In the nonpianar case, lines trapped between the invariant points 

of the same loop remain there, though lines occurring within nonorient-

able loops are free to move out, due to duality. Mathematically, this 

corresponds to: 

Nonpianar case: 	y + 	<y 
< a 

<a <R(y1) 

and 	 y 	Ky 1  <y2 <a y R(y1) <ia' 



Nonorientatable case: 

+i < y <_i 	-' 
y <y1 < R a(y +1) < a 

and 	Yt3 < YD K 	Kya 	YP <  Y~ _ 2_ K 	 2.4 )
PCI 

In the nonpianar case, the pro3ective transformation is hrperbo 1ic, and 

therefore can send external lines past the invariant points In the 

nonorientatable case, the transformation is loxodromic, so R2  is 

responsible for sending external lines past loops 

Asbefore, Fig. lis an awkward configuration to discuss the 

limits of integration for the nonorientable case.. Assume that we have 

pushed all external lines away from the loops, as in Fig. 2 (notice thai; 

the lines situated between the various invariant points no longer exist). 

Since R. 2  is responsible for sending external lines past the ith loop . , 

we expect that the product of the squares of all projective transforma-

tions, taken in order, will send a line completely around the diagram. . 

We thus find that the analogous factors in Fig. 2 are 

	

(YO 
- x(2))(y0) 

- y1)]a0l 	
x2 x_12  

2 	 I 	[(a)=[) 	
R  j 

(x() -RY0 	J 	 . 

-. 	 .2 	2 	2 	. 	 (2) 	-- 	 .. 

where .R 	 and x 	B (.z). 

As in Refs. 2 and 3 1 
we expect the region of integration for 

Fig. 2 in the nonorientable case to be 
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= f(2) 	 ( 2 ) < 	 (i) < ( 2 ) < (i) < 
 X.  

<Ra2•Rxa2(Yo) ia-i 	a2 	
(2) 

and 	(i) K 	
) 	

y0  K - 
< (2)} 	 (2.6) 

y, which is arbitrary, is introduced to eliminate periodicities )  exactly ,  

as in Refs. 2 and 3. 

All other factors in the integrand of the nonorientable loop 

amplitude are identical to the planar case (except for the 1-X's). 

B. Overlapping Multiloop Amplitude 

The double overlapping loop amplitude can be calculated by 

joining the (on) and (rb) pairs as shown in Fig. 3. As in the case 

with the nonorientable loop, all the essential features of the integrand 

remain the same as in the nonpianar case, except for the a 0  - 1 factors. 

A direct calculation reveals that, for Fig. 3, we have the same form as 

the nonpianar case, except that the invariant points of different loops 

are allowed to overlap. Duality allows us to successively move external 

linespast the loops; mathematically, this corresponds to 

y +l <Y8 <Y <ya  Y
5 Ky <R 1(y5+1 ) < ya  

K R 8 ( +1 ) <y1  < ya 

E) 	bXaR 51(y 1 ) K y K y1  K Yce  

(2.7) 
E5 	(3 	Y' 	 00~RZN ~br(yb+l 
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We are then free. to bunch all external lines, as in Fig. Li. In 

this case, we find that the operator R 1R2 1B1 1R2  is responsible for 

sending external lines past loops 1 and 2. Again, from projective 

invariance, we find, that the a0  - 1 factors become 

- X(2))(R(y) 
Ys1 	[2x2x 1a0-1 
	

(2 8) 

((2) - R(y0)) 	J 	 R 

where R,= R1 P 1R1 1R2  and x 	 R(Z) 

As in the previous cases, we find that the 1:.rnits of integration 

for Fig. 4,can be expressed as 

( 2 ) < 	) 	
< 4: 

< (2) < () 

<R(y0) 	S-3 	S- 	
X 

and 	(l) <R(y) K 	K Y < ( 2 ) 	 (2.9) 

We end our discussion by stating that the linear dependence correction 

factor is (1 - x) for each planar loop, (1 - x) 2  for each nonpianar 

and overlapping loop, and (1 + 1xI)2 for each nonorientable loop. 
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III. ILLUSTRATIVE EXAMPLE 

We shall illustrate our principles, which apply to all multiloop .  

diagrams, by writing down the amplitude for a specific example. We shall 

find it convenient to make certain dual manipulations on the multiloop 

diagram such that (a) no loop ever occurs within another loop, (b) 

external legs confined between nonorientable and overlapping loops are 

removed, (c) all external legs not confined within nonpianar loops are 

bunched together, (d) no more than two loops ever overlap. In this 

configuration, all multiloop diagrams can be reduced to planar, nonpianar, 

nonorientable, and double overlapping loops placed in series along a 

chain. 

Now consider the diagram corresponding to Fig. 5, which contains 

two planar, two nonpianar, one double overlapping, and one nonorientable 

loops. Applying our techniques, we know that the operator 

R-R 	R6 1  R5  R6  R5 1 R 	 R 1  R2 1  R1 1  is.  responsible formoving 
external lines past the region occupied by the loops. Therefore, we 

find 

ff'fl 4k. f 	f T~
S 

 dy1 I f'(i) (2) 

i=l 	U1  i=l 	U2  i=1 	j=1 

(y 	 -y) 
a 	

dydY 
C 	a 1 (l - X QY 

c 

(1 - x1 )(i - x2 )(1 - x3 ) 2 (i - x)2(i - x5 )2 (i - x6 ) 2 (i + 1x7 1) 2  

Equation continued on next page 
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Equation continued. 

- 1+1)0 	
_R3 (Ym ) ] [ X 	- 

[x3 	- 	)] 
 M.  

ym+l- 	 - 	aQ1i 	- 	
y1]]aol 

[x 	- R(y)] 	I 	t 	i(2) - 

T•]1 

(4d( 

- IR 

(n=O,ij) 

,rr1j - [R]' (x(2?,)i 
Ix 	

i=1 	 n=o 	
- 

	

ttpt

00 	
it (x 

 

	

- 	

?TXttt)J 

 2xV
.k,,,  

(2) 	±](n ' 

	

L 	J 

IR 

- 	

tti 
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U2 = [X(2) < ,(i) < (2) <(i) 	< 	 ( 2) < (i) 

YS-1 	m+2 	
m+l R(Y) 

(2) 	(1) 
KX  4 

< X 	
1m 	m-1 L 

(2) 	(1) 	(2) 	(1) 	(2) 
< R 	<X3  <X2 <X2 	.Xl 

<y2 <y1 <R(y2)<x] 

and 41) 	<R() K(2) 

and 	(1) m R 	
2) 

3(y3) < 

and 	 y K fi 1 () 	K x (2) 

where (1) 	R(z1), 	
(2) 

(2) 	 41)R (z2),  

(i)00(z3), 	Z3 	(2) 

(2) = R(z 	
(1) 

= set of all closed paths = set of all group elements gener-

ated by products of R such that cyclic permutations and 

inverses of such permutations of previously included members 

are excluded. 
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= set of all open paths set of all group elements 

generated by products of R such that first (aot) 

element is R last is 	and n represents the 

number of R'S in the product. 

U1  is determined implicitly from the conditions on U 2 . 

In passing, we note that the renormalization program 7  is compli-

cated by the fact that the invariant points can overlap in a general 

multiloop amplitude. The results for the divergence of the N-loop 

planar amplitude8' do not apply in this case (or in the case where we 

have loxodromic transformations) 
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FIGURE CAPTIONS 

Fig 1 The general nonpianar double loop amplitude 

Fig. 2. The ordering of the variables in a general nonplanar multiloop 

amplitude (notice that variables located between different 

loops have been moved via duality). 

Fig. 3. The general overlapping double loop amplitude. 

Fig. 14 •  The ordering of the variables in the overlapping double loop 

amplitude (notice that variables located within the loops have 

pushed out via duality). 

Fig. 5. An illustrative example: a multiloop amplitude containing to 

planar, two nonplanar, one overlapping, and one nonorientable 

loops. 









(I) 

YS XR 
I y :X 

XBL70II-4081 

Fig. 4. 



Ic'J 

2c'J 

CV 

4. 

>' 

N) 
x 

•H 
rI 

() ç1D 

a 

F- 
._ 

CIS 

>. 

J  

> J  

K) 
I. 



LL.JPL 'JJ I IL.L 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or 
Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 

4 



t1 

t1 j  

Q 




