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Abstract

OBJECTIVE.—Our previous work showed variation measures, representing breast architecture 

derived from mammograms, were significantly associated with breast cancer. For replication 

purposes, we examined the association of three variation measures, V measured in the image 

domain and P1 and p1 from restricted regions in the Fourier domain, with breast cancer risk in 

an independent population. We also compared these measures to volumetric density measures, 

percent density and dense volume, from a commercial product.

†Corresponding Author: Please address correspondence to Celine M. Vachon; vachon.celine@mayo.edu; Mayo Clinic, 200 First 
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MATERIALS AND METHODS.—We examined 514 breast cancer cases and 1377 controls from 

a screening practice, matched for age, race, exam date, and mammography unit. Spearman’s rank 

order correlation was used to evaluate the monotonic association between measures. Breast cancer 

associations were estimated using conditional logistic regression, adjusted for age and body mass 

index. Odds ratios were calculated per standard deviation increase in mammographic measure.

RESULTS.—These variation measures were strongly correlated with volumetric percent density 

(correlations 0.68 to 0.80) but not dense volume (correlations 0.31 to 0.48). Similar to previous 

findings, all variation measures were significantly associated with breast cancer [odds ratios per 

standard deviation (95% confidence intervals)]: 1.30 (1.16, 1.46) for V; 1.55 (1.35, 1.77) for P1; 

1.51 (1.33, 1.72) for p1. Associations of volumetric density measures with breast cancer were 

similar [1.54 (1.33, 1.78) for percent density; 1.34 (1.20, 1.50) for dense volume]. When including 

dense volume with each variation measure in the same model, all measures retained significance.

CONCLUSION.—These variations measures were significantly associated with breast cancer 

risk, comparable to the volumetric density measures, but independent of the dense volume.

Introduction

Mammographic breast density is a significant breast cancer risk factor usually estimated 

from two-dimensional (2D) mammograms with various methods [1–6]. Breast density 

measures most often capture the degree or amount of dense tissue on a mammogram [7], 

as exemplified by the percentage of breast density measure [1]. However, mammographic 

texture has also shown significant association with breast cancer [4, 8–10]. The earliest 

example of mammographic texture was a four-category parenchymal pattern classification 

(i.e. Wolfe’s parenchymal patterns), which combined structure and radiographic density [11, 

12].

Texture measurements can be derived with various techniques such as filtering (Laws or 

wavelet filters), run length analyses, and co-occurrence measures [9]. Evidence indicates 

that texture and breast density both contribute to predicting future breast cancer incidence 

[13]. Texture features, then, may provide complementary information to breast cancer risk. 

Texture analysis was recently used to categorize the breast into four distinct radiomic 

phenotypes, which were independent of breast density [14]. Texture features, then, may 

provide complementary information to breast cancer risk and a greater understanding of 

molecular mechanisms relating breast parenchyma with risk.

In this report, we evaluated three related generalized automated mammographic measures. 

We refer to these as generalized [15] because they do not quantify dense tissue directly. 

Two of these measures are related and derived in the Fourier domain, referred to as P1 and 

p1 ( a normalized version of P1). Each measure can be considered as a component from 

the respective set of measures that decompose the power spectrum of a given mammogram 

non-parametrically in a radial spatial frequency coordinate system, described below. This 

technique was developed earlier to compare the spectra of mammograms in different data 

formats [16] and was subsequently evaluated for breast cancer risk with both digitized film 

[9] and full field digital mammography (FFDM) [15] images. The third generalized measure 

is referred to as V (for variation), calculated as the standard deviation of the pixels within 
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the breast area. Previously, V was significantly associated with breast cancer in studies that 

used both FFDM [17] and digitized film [18] images. In this current study, we examined the 

association of these generalized measures with breast cancer within two screening practices 

to replicate our previous findings in different breast screening settings. We also compared 

these measures with Volpara™ measures [19], volumetric breast density (VBD) and dense 

volume (DV), which are used in clinical practice [20], and were shown previously to be 

associated with breast cancer risk [21–23] (Volpara version 1.5.3; Matakina Technology, 

Wellington, New Zealand).

Materials and Methods

Study Population

We used a case-control study described previously [21] to evaluate the associations of 

five mammographic measures (i.e., P1, p1, V, VBD and DV) with breast cancer. This 

study was nested within the Mayo Clinic breast screening practice, Rochester, Minnesota; 

these data were collected from women in a large Midwestern screening practice. This 

study was approved by the relevant institutional review board and was compliant with 

the Health Insurance Portability and Accountability Act. It included 514 breast cancer 

cases with approximately three matched control subjects (N = 1377) without prior breast 

cancer. Controls were matched to each case on age, race, FFDM examination date, unit, 

facility, and state of residence. Mammograms were acquired with Hologic Selenia (Hologic, 

Inc., Bedford, MA) FFDM units (i.e., units that only acquire standard two-dimensional 

mammograms), which use direct x-ray detection. Raw images were used for this study. 

These have 70μm pitch with 14 bit dynamic range per pixel. The generalized measures were 

restricted to the cranial-caudal (CC) views to avoid chest wall interference.

For generalization purposes, we also examined these measures in a second case-control 

study with 1474 cases and 2942 controls matched controls, also described previously [21–

23]. This study was derived from the San Francisco Mammography Registry (SFMR) 

in Northern California. SFMR participates in the National Cancer Institute-funded Breast 

Cancer Surveillance Consortium (BCSC) (http://www.bcsc-research.org/index.html). Unlike 

the primary study, mammograms from this study were not archived in raw image 

format. Raw images were reduced in resolution to140μm pitch with a lossy (irreversible) 

compression technique to decrease data size for storage purposes. Images were up-sampled 

to their native pixel dimensions for the processing in this report.

Variation Measures of Breast Density

Fourier measures: This is a general approach, described in detail previously [15, 16]. 

The power spectrum of a given mammogram is summarized into a set of n measurements 

(defined as P = [P1, P2, P3…Pm]), where the set size is adjustable with m = n-1. The 

spectrum is divided into n concentric rings (bands). The sum over the ith ring produces 

Pi (i =1 to m, referred to as the ring analysis); note, the P0 measure is not included in 

the set. To apply Fourier analysis to mammograms, we first automatically determined the 

largest rectangle that fits within the breast area [15] illustrated in Figure 1. We take the 

Fourier transform (FT) of this region and form the power spectrum followed by the summary 
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analysis, which produces P. Figure 2 shows the basic ring scheme in the Fourier domain 

using coarse ring-width illustration. In this example, n = 6 and the highest resolvable 

spatial frequency component is defined as fc measured in cycles/mm, which gives a radial 

ring width of Δ = fc/6 cycles/mm. Summarizing the power in each ring gives 5 different 

measurements. The regions exterior to the rings can be summarized as another measure 

(i.e. the corners). The related measure, pi, is normalized at the image level: pi = Pi/ (total 

power from the set of the rings + the power in the corners for a given woman). On the 

mammography units used in the study, detector pitch = 0.07mm, giving fc ≈ 7.14 cycles/mm 

based on the Nyquist relationship [24, 25]. In this report, we restricted the analysis to P1 and 

p1 (derived with n = 86) due to related work with images acquired with the same type of 

FFDM units [16]. These two measures are constrained to this radial spatial frequency range: 

0.0833–0.166 cycles/mm corresponding with radial spatial precocities between 6–12mm. A 

given measure can also be viewed as a texture metric. The related texture can be derived by 

taking the FT of the raw image, discarding the entire Fourier domain signal except for the 

portion contained in a specified ring followed by Fourier inversion.

Variation measure in the image domain: V was calculated as the standard deviation 

of the pixel values within an eroded breast area. If we consider the breast area as a 

semicircle, this area was eroded inward radially by 25% and 35% (i.e., the new radius 

was either 0.75×original radius or 0.65×orginal radius, respectively) to reduce unwanted 

variation. This produced two variants of V that were analyzed separately. The erosion 

process results in a coarse estimation of the area corresponding to where the breast was 

uniformly compressed during the image acquisition. The two variants of V produced similar 

findings [data not shown]. Therefore, we discussed the variant derived with 65% erosion in 

our results.

Relationship between the variation measures: Both V and P capture variation and 

are related. The set of measures within P decompose V. Summing the components of P 

(including the corners and the center providing the region in the image domain was mean 

centered) gives V2 when considering the same mammographic region; this relationship 

follows from the well-known Fourier power conservation relationship between the image 

and Fourier domains. This relationship is an approximation in our application because it 

does not account for the influences of the related pre-processing [16] and that we used 

different regions with considerable overlap (i.e., the rectangular region compared to the 

eroded breast region).

Generalized measures and texture: The generalized measures tend to be abstract 

when describing breast density. As such, we have provided examples of these measures 

relative to visible image characteristics. The information captured by the Fourier measures 

can be interpreted as texture when viewed in the image domain. Mammograms shown in 

Figure 1 (top row) correspond with high and low values of P1. Mammograms in the bottom 

row of Figure 1 have more central P1 values. Figure 3 shows the associated texture captured 

by P1 (or p1) for the mammograms in the top row of Figure 1. Note, the first ring measure 

captures longer-range (i.e., coarse) image structure. These examples (Figure 1 and Figure 3) 

also illustrate the difficulty in attempting to untangle the connection between the variation 
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measures and breast density. In Figure 3, the image on the left (relatively large P1) has 

varied regions comprised of both adipose and dense tissue, whereas the image on the right 

(relatively low P1 value) tends to be more homogenous comprised of primary adipose tissue. 

The image on the left (Figure 3) also has increased V due to its spatial variability. In 

contrast, visually both images appear to have a very similar underlying coarse structure as 

indicated in Figure 3.

Volumetric breast density: Volpara™ (Version 1.5.3, Matakina Technology Limited, 

Wellington, New Zealand), an automated methodology for assessing volumetric breast 

density from raw FFDM images with a proprietary algorithm, was used in this study [20]. 

This assessment is based on estimating the compressed breast thickness, determining image 

areas of absolute adipose tissue, and considering the x-ray attenuation of breast tissue [26]. 

We considered both the volume of fibro-glandular tissue volume (DV) measured in cm3 and 

volumetric breast density (VBD), the ratio of DV to total breast volume.

Statistical Analyses

Risk factor distributions are presented by breast cancer status. Spearman’s rank order 

correlation (ρ) was used to evaluate the monotonic association between the various breast 

density measures based on the control distributions. For each measure, the average of the 

measurements taken from the left and right CC views was used as the mammographic 

feature metric. Associations of the mammographic measures with breast cancer were 

evaluated using conditional logistic regression, adjusted for study, age, and body mass 

index (BMI). We used odds ratio (OR) with 95% confidence intervals (CIs) as the primary 

metric to evaluate and compare the association of various image measurements with breast 

cancer. An OR derived from a case-control study from a given population can be used as 

an approximation for the relative risk for the same population when the disease incidence 

is small. Odds ratios were estimated for continuous [per standard deviation (SD) increment] 

measures and measures based on quartiles, both derived from the control distribution. In the 

continuous model, an OR=1.x is interpreted as a x% increase in risk relative to an individual 

with a measurement that is one SD less than this specific measurement under evaluation. 

The second quartile was used as the reference in the quartile models. The area under the 

receiver operator characteristic curve (Az) was calculated with 95% CIs to summarize the 

discriminatory ability of the models. A second set of associations were investigated while 

adjusting for DV, which was not strongly correlated with other mammographic measures. 

Statistical analyses were performed in the SAS (SAS Institute, Cary, NC) environment 

with version 9.4. Image analyses were performed in the IDL (Harris Geospatial Solutions, 

Boulder, CO) environment with version 8.6.

Results

The study characteristics are shown in Table 1. Cases and controls were similar in racial 

composition [primarily Caucasian (> 98%)], age, BMI and menopausal status but from two 

different screening populations (Midwest vs. west coast). Parity and age of first birth showed 

relatively small variations (about 3%) across groups. In contrast, cases were more likely to 

have a family history of breast cancer. For all breast density measures except p1, the mean 
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was greater for cases. Similarly, the case group had a greater proportion of women in the 

BI-RADS 4 category, whereas controls had a greater proportion of women in the BI-RADS 

1 category. The second screening study had greater proportions of younger women, women 

of Asian ancestry, high breast density (BI-RADS 4), nulliparous women but lower BMI 

(data not shown) [21–23]. Differences between the two studies are likely due to regional 

demographical variations.

The five mammographic measures exhibited varying degrees of correlation (referenced as 

ρ) ranging from 0.30 to 0.95 as shown in Table 2. As expected, the two Fourier measures 

were strongly correlated with ρ = 0.95. These measures showed moderate correlation with 

V: ρ = 0.68 with p1, and ρ = 0.74 with P1. VBD showed similar correlation with the three 

generalized variation measures: ρ = 0.68 with V, ρ = 0.82 with p1, ρ = 0.80 with P1. In 

contrast, correlation between DV with the generalized variation measures and VBD was 

weaker: ρ = 0.48 with V, ρ = 0.31 with p1, ρ = 0.33 with P1, and ρ = 0.30 with DV.

All continuous mammographic measures showed significant associations with breast cancer 

(Table 3, Model a). These ranged from OR=1.30 for V (Az=0.59) to OR=1.55 for P1 

(Az=0.61). Similar results were observed when examining quartiles of mammographic 

measures with breast cancer risk (Model b) for quartiles three and four versus the second 

quartile reference.

Due to the weak correlation between DV and the other measures, we considered a third 

model for each of the other four mammographic measures while controlling for DV (Table 

3, Model c). ORs were slightly attenuated compared with their respective continuous 

measure (Model a) but remained significant; Az showed minimal to no gain with the 

addition of DV.

Associations between mammographic measures and breast cancer were similar in the second 

screening study, even with the differences in image format (Table 4).

Discussion

We compared five mammographic measures that can be broadly grouped into two classes: 

VBD and DV capture dense tissue volume directly, whereas the variation measures capture 

structure in the mammogram and are related to density. The generalized variation measures, 

V, P1 and p1, showed moderate correlation with VBD and weak correlation with DV. All 

mammographic measures showed similar associations with breast cancer in both the primary 

and secondary studies. When controlling for DV, the associations for the three generalized 

breast density measures with breast cancer were attenuated but remained significant, 

indicating these measures are independent of DV.

The Fourier measures can be described as texture features. These measures have perfect 

frequency domain localization due to the sharp and infinitely steep separation between the 

rings. These measures are defined precisely over a spatial frequency range, which is related 

to the corresponding spatial periodicity range and specific texture range. The tradeoff for 

this Fourier domain localization is poor spatial localization. Most often, texture features 

derived from filtering split the difference between frequency and spatial localization. In 

Heine et al. Page 6

AJR Am J Roentgenol. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contrast with the Fourier metrics, V is a broad-band measure containing the entire Fourier 

spectrum, containing all spatial scales and image textures. In our analysis, localization 

was not an issue because each measure corresponds to the entire breast area (or region of 

interest) and can be considered as a global metric. In contrast with global metrics, other 

researchers argue that a localized measurement approach may be more useful [10]. As noted, 

many studies have investigated texture methods using mammograms as outlined in these 

review articles [4, 8]. Often the focus of texture work is multivariate in character [10, 13, 

27, 28], where the precise description of a given feature is not the study focal point [10], in 

contrast to our work with the Fourier measures in this report.

These generalized mammographic measures have been shown to translate across various 

settings. The specific Fourier measures showed significant associations with breast cancer 

previously when evaluating images acquired with both indirect and direct x-ray detection 

FFDM technologies [16]. These prior findings along with those in this report are also 

in agreement with our related work with digitized film [9]. Similarly, V has shown to 

be associated with breast cancer across populations and imaging platforms [17, 18]. This 

general agreement indicates these measures are capturing reproducible characteristics related 

to breast structure. Although both P1 and p1 are related, the p1 measure is normalized at the 

individual level and may be the preferred measure when merging data from many sources. 

In sum, the work shows that variation is associated with breast cancer, confirming our earlier 

findings.

There is an important connection between V and P1 worth comment. The spectral shape of 

mammograms is well approximated as an inverse power law [16, 29]; when obeying this 

form, the image domain variance is influenced heavily by the lower spatial frequencies. 

Theoretically, the power is infinite as the spatial frequencies tend to zero. It follows that 

the value of V in a given image is strongly dependent upon the lower spatial frequencies in 

particular the strength of P1 as indicated by their strong correlation.

A reproducible automated measure of breast density could provide clinical utility for 

both risk prediction and as an indicator of mammographic performance, such as the BI-

RADS composition descriptors. First, there is consensus that risk based breast screening 

strategies would be beneficial to optimize detection while minimalizing harms associated 

with mammography [30]. Although inclusion of breast density in risk modeling improved 

prediction accuracy in multiple studies, overall discrimination accuracy was still limited 

[31]. The most appropriate method of incorporating image measurements in risk modeling 

remains a work in progress. In this study, we replicated prior studies showing the variation 

measures as breast cancer risk factors in two independent studies. These metrics are 

potential candidates as image measurements for incorporation into risk modeling because 

they are reproducible and result from relatively simple algorithm without determining 

thresholds or other parameters related to the image acquisition. Second, these measures 

may be relevant for characterizing mammographic performance. Because the generalized 

measures do not provide an output that can be interpreted as breast density directly, their 

translation to clinical applications may require additional processing steps. One method 

would be to combine these measures with another breast density measure such as DV in 

a joint modeling approach for risk prediction. However, our findings did not suggest these 
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two measures together improved discrimination of risk. Previous work [32] showed how 

to convert continuous measures, such as V, to both a BI-RADS like breast composition 

measure and a four state ordinal measure for risk prediction. Our correlation findings 

suggest that regression analysis could also be used to map a given generalized measure to 

the range of an accepted standard measure of breast density.

This study has several limitations worth noting. For the variation measures, portions of the 

breast area were excluded from the analysis and only included mammograms in the CC 

orientation were considered. In many instances, the excluded area was considerable (up 

to 35%) due to the erosion process, but we still found strong associations. In the second 

study, mammograms were evaluated that were missing high frequency information relative 

to the raw images. Mammograms have a predominantly low-frequency characteristic (i.e. 

the missing high frequency information accounts for a small fraction of the image variance). 

Our reproducibility of findings by the second study showed that these measures are robust to 

the high frequency information and population characteristics. Further, our analyses did not 

formally evaluate the contribution of these measures to known breast risk models. Given the 

modest associations and similarity to breast density estimates, however, it is not likely they 

will significantly change the Az for risk.

Conclusion

In summary, we investigated two generalized methods of measuring variation in 

mammograms for risk prediction and made comparisons with measures that capture dense 

tissue. V is a broadband metric whereas the Fourier measures are restricted. These measures 

have shown association with breast cancer over multiple studies and imaging platforms. 

The breast cancer associations with these generalized measures were similar to those 

produced by the volumetric density measures. The specific scale properties of the Fourier 

measures may be useful for informing other studies examining the biological aspects of 

breast density. Future work includes investigating interval versus screen-detected cancers 

with these measures. Whether these measures are useful in clinical applications will require 

further investigation.
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Fig. 1—. Mammogram Illustrations:
This shows four clinical display mammograms on (for presentation format used for viewing 

purposes only) with the rectangular regions of interest outlined. The mammogram in the 

top left (1.a) has a pronounced breast density pattern and large P1 value (75.0), whereas 

the mammogram on the top right (1.b) tends to have a more adipose characteristic with a 

low P1 value (1.4). The top-row illustrations (1.a and 1.b) were selected specifically. The 

mammograms in the bottom row were selected at random and tend have typical breast 

density patterns. The image on the bottom left (1.c) and bottom right (1.d) have more central 

P1 values (19.4 and 13.8 respectively). Fourier analysis was constrained to these regions.
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Fig. 2—. Fourier ring measurement illustration:
This shows the Fourier domain overlay (mask) or a coarse ring-width example. This overly 

is centered in the Fourier Domain. The zero frequency coordinate, (fx , fy) = (0, 0) is in the 

center , where fx an fy are Cartesian spatial frequency domain coordinates. There are 5 rings 

plus the center giving n = 6. The highest resolvable spatial frequency component is defined 

as fc. The coordinates of the SE, NE, NW, and SW corners are (-fc, fc), (fc, fc), (-fc, fc) and 

(-fc, -fc), respectively. Ring widths are given by fc/6 in a radial direction. In this numbering 

scheme, the center (white-disk) corresponds to m = 0 and the outer ring with m = n-1, where 

m is the ring index. This mask is used as an overlay for the power spectrum, where the 

sum over each ring produces a measure. The outer portion (dark regions) of the spectrum 

not included within the rings is referred to as the corners and can be used as an additional 

measure.
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Fig. 3—. Texture Captured by P1:
These show the structure captured by the first ring corresponding to the mammogram 

sections shown in the top row of Figure 1. The region on the left (3.a) corresponds with 

Figure 1.a and the region on the right (3.b) corresponds with Figure 1.b.
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Table 1.

Study Characteristics

Population Characteristics

Measure Case
n

Case Mean
(standard deviation) 
or relative frequency

Control
n

Control Mean
(standard deviation) 
or relative frequency

Total
n

Total Mean
(standard deviation) 
or relative frequency

Age at Mammogram 514 61.7 (11.4) 1377 61.6 (11.1) 1891 61.6 (11.2)

Race

 Caucasian 505 98.4% 1366 99.4% 1871 99.2%

 Asian 4 0.8% 2 0.1% 6 0.3%

 Other 4 0.8% 6 0.4% 10 0.5%

 Unknown 1 - 3 - 4 -

BIRADS

 1 81 15.8% 340 24.7% 421 22.3%

 2 208 40.5% 586 42.6% 794 42.0%

 3 188 36.6% 384 27.9% 572 30.2%

 4 37 7.2% 67 4.9% 104 5.5%

BMI 483 28.9 (6.3) 1346 28.7 (6.3) 1829 28.7 (6.3)

1st Degree Family History of 
Breast Cancer

 No History 360 70.3% 1075 78.1% 1435 76.0%

 History 152 29.7% 301 21.9% 453 24.0%

 Unknown 2 - 1 - 3 -

Age at First Birth

 Nulliparous 84 16.3% 186 13.5% 270 14.3%

 < 30 385 74.9% 1060 77.0% 1445 76.4%

 30+ 43 8.4% 129 9.4% 172 9.1%

 Unknown 2 0.4% 2 0.1% 4 0.2%

Menopausal Status

 Pre-Menopausal 107 20.8% 275 20.0% 382 20.2%

 Menopausal 397 77.2% 1069 77.6% 1466 77.5%

 Unknown 10 1.9% 33 2.4% 43 2.3%

Parous

 Nulliparous 84 16.3% 186 13.5% 270 14.3%

 Parous 430 83.7% 1191 86.5% 1621 85.7%

 Unknown 0 0.0% 0 0.0% 0 0.0%

Volpara 4 view VBD 514 8.7 (5.3) 1377 7.8 (5.1) 1891 8.1 (5.2)

Volpara 4 view DV 514 66.7 (34.1) 1377 58.5 (28.0) 1891 60.7 (30.0)

V(mean) 510 56.5 (31.2) 1373 50.9 (27.4) 1883 52.4 (28.6)

P1(mean) 510 18.9 (14.3) 1373 15.6 (14.1) 1883 16.5 (14.2)

p1(mean) 510 0.3 (0.1) 1373 0.3 (0.1) 1883 0.3 (0.1)

BI-RADS = Breast Imaging Reporting and Data System, BMI = body mass index, VBD = volumetric breast density, DV = dense volume, 
V=variation, P1 and p1 are Fourier measures
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Table 2.

Spearman rank correlation (coefficient and 95% confidence intervals) for mammographic measures

Measure VBD (Volpara) DV (Volpara) V P1 p1

VBD (Volpara) 1.00 0.30 (0.25, 0.34) 0.68 (0.65, 0.71) 0.80 (0.78, 0.82) 0.82 (0.80, 0.84)

DV (Volpara) 1.00 0.48 (0.43, 0.52) 0.33 (0.28, 0.38) 0.31 (0.26, 0.35)

V 1.00 0.74 (0.71, 0.76) 0.68 (0.65, 0.71)

P1 1.00 0.95 (0.94, 0.95)

p1 1.00

VBD = volumetric breast density, DV = dense volume, V = variation, P1 and p1 are variation measures from restricted regions in the Fourier 

domain
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Table 3.

Association of mammographic measures and breast cancer (514 cases and 1377 controls)

Model VBD (Volpara) DV (Volpara) V P1 p1

a. Continuous Model per SD measure 1.54 (1.33, 1.78) 1.34 (1.20, 1.50) 1.30 (1.16, 
1.46)

1.55 (1.35, 
1.77)

1.51 (1.33, 
1.72)

Az 0.61 (0.58, 0.64) 0.59 (0.57, 0.62) 0.59 (0.56, 
0.61)

0.61 (0.58, 
0.63)

0.60 (0.58, 
0.63)

b. Quartile Model Quartiles of 
measure

Quartile 1 0.72 (0.52, 1.01) 0.76 (0.55, 1.04) 1.04 (0.74, 
1.46)

0.64 (0.46, 
0.90)

0.64 (0.46, 
0.90)

Quartile 2 1.00 (REF) 1.00 (REF) 1.00 (REF) 1.00 (REF) 1.00 (REF)

Quartile 3 1.52 (1.13, 2.05) 1.18 (0.88, 1.58) 1.53 (1.12, 
2.10)

1.30 (0.96, 
1.74)

1.30 (0.97, 
1.76)

Quartile 4 2.01 (1.43, 2.82) 1.52 (1.13, 2.03) 2.12 (1.54, 
2.93)

1.94 (1.41, 
2.66)

1.92 (1.40, 
2.64)

Quartile Az 0.60 (0.57, 0.62) 0.58 (0.56, 0.61) 0.59 (0.56, 
0.61)

0.60 (0.58, 
0.63)

0.60 (0.57, 
0.62)

c. Continuous Model + 
DV Adjustment

per SD measure 1.37 (1.14, 1.65) -- 1.13 (0.97, 
1.31)

1.43 (1.23, 
1.66)

1.40 (1.21, 
1.61)

DV adjustment 
per SD

1.16 (1.01, 1.33) -- 1.24 (1.08, 
1.43)

1.15 (1.02, 
1.30)

1.17 (1.03, 
1.32)

Az 0.61 (0.59, 0.64) -- 0.61 (0.58, 
0.64)

0.61 (0.58, 
0.63)

0.60 (0.58, 
0.63)

VBD = volumetric breast density, DV = dense volume, V = variation, SD = standard deviation, Az = characteristic curve, P1 and p1= variation 

measures from restricted regions in the Fourier domain
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Table 4.

Mammographic measures and breast cancer associations for the generalization study (1474 cases and 2942 

controls)

Model VBD (Volpara) DV (Volpara) V P1 p1

a. Continuous Model per SD measure 1.48 (1.35, 1.62) 1.33 (1.24, 1.43) 1.24 (1.15, 
1.34)

1.31 (1.21, 
1.43)

1.33 (1.22, 
1.45)

Az 0.59 (0.57, 0.60) 0.58 (0.56, 0.60) 0.56 (0.54, 
0.58)

0.57 (0.55, 
0.59)

0.58 (0.56, 
0.59)

b. Quartile Model Quartiles of 
measure

Quartile 1 0.73 (0.60, 0.89) 0.79 (0.65, 0.96) 0.92 (0.76, 
1.12)

0.66 (0.55, 
0.81)

0.67 (0.55, 
0.82)

Quartile 2 1.00 (REF) 1.00 (REF) 1.00 (REF) 1.00 (REF) 1.00 (REF)

Quartile 3 1.44 (1.19, 1.74) 1.23 (1.02, 1.47) 1.44 (1.19, 
1.73)

1.18 (0.99, 
1.41)

1.22 (1.02, 
1.46)

Quartile 4 1.77 (1.43, 2.18) 1.56 (1.30, 1.87) 1.49 (1.23, 
1.80)

1.25 (1.04, 
1.51)

1.32 (1.09, 
1.61)

Quartile Az 0.58 (0.56, 0.60) 0.58 (0.56, 0.59) 0.55 (0.54, 
0.57)

0.57 (0.55, 
0.59)

0.57 (0.55, 
0.59)

c. Continuous Model + 
DV Adjustment

per SD measure 1.31 (1.18, 1.46) -- 1.08 (0.99, 
1.18)

1.20 (1.10, 
1.31)

1.21 (1.11, 
1.32)

DV adjustment 
per SD

1.18 (1.08, 1.28) -- 1.28 (1.18, 
1.39)

1.26 (1.17, 
1.36)

1.26 (1.17, 
1.36)

Az 0.59 (0.57, 0.61) -- 0.59 (0.57, 
0.60)

0.57 (0.55, 
0.59)

0.58 (0.56, 
0.60)

VBD = volumetric breast density, DV = dense volume, V = variation, SD = standard deviation, Az = characteristic curve, P1 and p1= variation 

measures from restricted regions in the Fourier domain
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