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Abstract

Objective: Genome-wide association studies (GWASS) have identified single nucleotide
polymorphisms (SNPs) in chr11p15.5 region associated with asthma and idiopathic interstitial
pneumonias (11Ps). We sought to identify functional genes for asthma by combining SNPs and
MRNA expression in bronchial epithelial cells (BEC) in the Severe Asthma Research Program
(SARP).

Methods: Correlation analyses of mMRNA expression of six candidate genes (AP2AZ2, MUCS,
MUC2, MUC5AC, MUC5B, and TOLL/P) and asthma phenotypes were performed in the
longitudinal cohort (n = 156) with RNAseq in BEC, and replicated in the cross-sectional cohort (n
= 155). eQTL (n = 114) and genetic association analysis of asthma severity (426 severe vs. 531
non-severe asthma) were performed, and compared with previously published GWASs of 11Ps and
asthma.

Results: Higher expression of AP2A2and MUC5AC and lower expression of MUC5B in

BEC were correlated with asthma, asthma exacerbations, and T2 biomarkers (P< 0.01). SNPs
associated with asthma and I1Ps in previous GWASs were eQTL SNPs for MUC5AC, MUC5B,
or TOLL/P, however, they were not in strong linkage disequilibrium. The risk alleles for asthma
or protective alleles for I1Ps were associated with higher expression of MUC5AC and lower
expression of MUCS5B. rs11603634, rs12788104, and rs28415845 associated with moderate-to-
severe asthma or adult onset asthma in previous GWASs were not associated with asthma severity
(P>0.8).

Conclusions: SNPs associated with asthma in chr11p15.5 region are not associated with asthma
severity neither with 11Ps. Higher expression of MUC5AC and lower expression of MUC5B are
risk for asthma but protective for I1Ps.

J Asthma. Author manuscript; available in PMC 2024 October 01.
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Introduction

Airway mucus hypersecretion is associated with asthma and chronic obstructive pulmonary
disease (COPD) [1-2]. Four secreted gel-forming mucin genes (MUC6, MUCZ, MUC5AC,
and MUC5B) are clustered in human chromosome 11p15.5 region [3-4]. MUC5AC and
MUCS5B are predominantly expressed mucin genes in the airway, mainly expressed in the
tracheal and bronchial epithelium, and localized to goblet cells and submucosal gland,
respectively [4]. In this study, we investigated mMRNA expression of six candidate genes
(APZAZ, MUC6, MUC2, MUC5AC, MUC5B, and TOLL/P) in chrl1p15.5 region using
mRNA expression data in bronchial epithelial cells (BEC) from the SARP cohorts to dissect
the correlation of gene expression and asthma phenotypes.

rs7104956 in APZAZ2has been associated with asthma in European Americans and African
Americans (P= 2.4 x 1077 [5]. More recently, rs11603634 in MUC2-MUCS5AC region
has been reported to be associated with severe asthma (P= 2.3 x 1078; moderate-to-severe
asthma vs. healthy control) [6]; rs28415845 (P= 2.9 x 10713), rs12788104 (P= 1.4 x 1078)
and rs35225972 (P= 4 x 10710) in MUC2-MUCS5AC region has been associated with adult
onset asthma [7-8] and asthma [9-11]. In addition, multiple SNPs in MUC2-MUC5AC
region have been associated with asthma in a large meta-analysis of GWAS of asthma
(P<107°) [12]. The published GWASs have tested association of SNPs with asthma
susceptibility (asthma vs. healthy control) or severe asthma (moderate-to-severe asthma vs.
healthy control). In this study, we performed genetic association analysis of asthma severity
(severe asthma vs. non-severe asthma) in chrl1p15.5 region to investigate whether SNPs
associated with asthma or severe asthma are also associated with asthma severity.

GWASs have also identified SNPs in MUCZ, MUC5AC, MUCS5B, and TOLL/Passociated
with idiopathic interstitial pneumonias (11Ps) and idiopathic pulmonary fibrosis (IPF) [13-
19]. 1IPs are heterogeneous interstitial pulmonary diseases characterized by interstitial
inflammation and fibrosis with unknown etiology [20]. IPF is the most common
subphenotype of 1IPs. In this study, we comprehensively investigated all the SNPs identified
through GWASs of asthma and I1Ps in this region [21]. eQTL analysis was performed for
these candidate SNPs in BEC and compared with published eQTL in the lung tissue from
GTEX database [22] to dissect potential functional genes or SNPs for asthma and I1Ps.

In order to delineate the functional genes for asthma in this region, we utilized a unique
dataset of MRNA expression in BEC from patients with asthma. We hypothesize that
combining SNP data and mRNA expression data, we will be able to determine the functional
asthma genes in this complicated chromosomal region.

J Asthma. Author manuscript; available in PMC 2024 October 01.
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Study participants

The main goal of SARP is to characterize severe asthma in comparison to non-severe
asthma. The earlier SARP cohort was a cross-sectional study [23-25] and the current SARP
cohort is an ongoing longitudinal study [26-28]. Participants were extensively phenotyped
using standardized procedures, which included asthma-related quality of life, spirometry,
and sputum induction. The longitudinal cohort has three-year longitudinal data and the
cohort is still being followed (www.severeasthma.org). Bronchoscopy was performed on a
subset of SARP cohorts to obtain epithelial cells from brush biopsies for mRNA expression
analysis. SARP studies were approved by institutional review boards, including informed
consent from all participants.

Statistical Analyses

Whole-genome sequence (WGS) and standard quality control (QC) process of sequencing
data in SARP (dbGaP accession: phs001446) were performed through NHLBI-sponsored
TOPMed Program (www.nhlbiwgs.org). SNPs were extracted (hg38: AP2A2to TOLLIP,
chr11:925,881-1,309,622) using PLINK 1.9 software [29]. Further QC of participants and
SNPs were performed as described before [30-31].

A set of 26 candidate SNPs was selected based on GWASs of asthma and 11Ps (P< 107°)
from NHGRI-EBI GWAS catalog (www.ebi.ac.uk/gwas/; accessed on August 18, 2022)
[21] and related GWAS [12]. The SNPs associated with asthma (P < 107°) were extracted
from a large meta-analysis of GWAS of asthma (TAGC study; EMBI-EBI access number:
GCST006862) [12]. Linkage disequilibrium (LD) was estimated with 95% confidence
intervals of D’ to define LD blocks and LD plots of 26 candidate SNPs were generated
for 1,016 non-Hispanic Whites in SARP using Haploview [32].

Logistic regression, assuming a genetic additive model, was used for genetic association
analysis of asthma severity (426 severe asthma vs. 531 non-severe asthma) in SARP
non-Hispanic White adults (age = 12 years old), adjusted for age, sex, and the first five
components from the multidimensional scaling analysis of genome as described [31]. Due to
relative small sample size, only 26 candidate SNPs were tested and nominal p-value of 0.05
was considered as significant.

RNAseq data from human BEC brushing in the longitudinal cohort were extracted for five
candidate genes (except for MUCZ, which failed QC). In brief, Illumina HiSeq RNAseq
reads were quality filtered and mapped to human genome hg38 using STAR package

[33]. Read counts were regularized logarithm transformed using DESeq2 package [34].
The RNAseq data have been deposited (dbGaP accession: phs001446) [31,35]. Agilent
Whole Human Genome Microarray 4x44K v2 expression data of six candidate genes
were extracted from BEC in the cross-sectional cohort as described previously [31,36—
37]. The microarray expression data have been deposited (GEO accession: GSE63142 and
GSE43696).

J Asthma. Author manuscript; available in PMC 2024 October 01.
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Correlation analysis of mMRNA expression levels and asthma-related phenotypes was
performed as described [31]. In brief, a linear or logistic model was used to test

correlation between mRNA expression levels of six genes and asthma-related phenotypes
with adjustment of age, sex, race, BMI, and batch effect. The primary phenotype studied was
asthma susceptibility, and other related phenotypes were also tested. The longitudinal cohort
was used as discovery dataset, and the cross-sectional cohort was used as replication dataset.
P-value less than 0.0083 (0.05/6 genes) was considered as significant level for asthma
susceptibility. P-value less than 0.05 was considered as significant for other asthma-related
phenotypes.

Gene expression correlation analysis between six candidate genes and five gene expression
biomarkers (POSTNand /L13[Th2], ILI2A[Th1], /L17A[Th17], /L6 [inflammation]) in
BEC in the longitudinal cohort was performed using Spearman rank test. P-value less than
0.0017 (0.05/30 tests) was used as significant level.

eQTL analysis was performed as described previously [31]. In brief, a linear additive genetic
model was used to test association between SNPs and inverse normalized mRNA expression
data in the longitudinal cohort with WGS and RNAseq in BEC (n = 114). Due to relative
small sample size, eQTL analysis was only performed on 26 candidate SNPs and hominal
p-value of 0.05 was considered as significant. Candidate SNPs were also checked for
significant eQTLs in the lung tissue (n = 383) from Genotype-Tissue Expression (GTEX)
database [22].

Expression Analyses

Six candidate genes in chr11p15.5 region (Figure S1) were selected for investigation based
on the published GWASs of asthma and I1Ps [21]. Correlation analysis of mMRNA expression
levels and asthma phenotypes was performed in BEC in the longitudinal cohort (n = 156),
and replicated in the cross-sectional cohort (n = 155) (Table S1).

In the longitudinal cohort, higher mRNA expression levels of AP2ZA2and MUC5AC

or lower mRNA expression levels of MUC5B were significantly correlated with asthma
susceptibility (P< 0.05/6 = 0.008) (Table 1 and Figure 1). At nominal p-value of 0.05, the
higher mRNA expression levels of AP2ZAZ2were correlated with asthma severity (P= 0.05)
in the cross-sectional cohort and greater number of exacerbations due to asthma in the last
12 months (£ =0.0008) and in the prospective three years (£ = 0.03) in the longitudinal
cohort. The higher mRNA expression levels of MUC5AC were correlated with lower
baseline % predicted FEV1 in the longitudinal cohort (2= 0.004) and the cross-sectional
cohort (P= 0.03), greater number of exacerbations in the last 12 months (= 0.03) and in
the prospective three years (£ = 0.007) in the longitudinal cohort, and greater percentage
of emergency room (ER) visit or hospitalization due to asthma in the last 12 months in

the cross-sectional cohort (P= 0.009). The lower mRNA expression levels of MUC58
were correlated with asthma susceptibility in the cross-sectional cohort (2= 0.0003), lower
baseline % predicted FEV1 (P=0.009), and greater number of exacerbations in the last 12
months in the longitudinal cohort (£ = 0.004).

J Asthma. Author manuscript; available in PMC 2024 October 01.
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In addition, the higher mRNA expression levels of AP2ZAZ2and MU5AC or lower mRNA
expression levels of MUC5B were significantly correlated with T2 biomarkers (P < 0.05),
such as blood and sputum eosinophils, fractional exhaled nitric oxide (FeNO), total serum
IgE levels in the longitudinal cohort (Table 2 and Figure 2), and these findings were
replicated in the similar trend in the cross-sectional cohort. Furthermore, the ratio of
MRNA expression levels of MUC5ACto MUC5B was significantly correlated with asthma
phenotypes (Table 1-2). The mRNA expression levels of MUCZ, MUC6, and TOLLIPwere
either not significantly or not consistently correlated with asthma phenotypes. These results
indicated that the higher mRNA expression levels of AP2AZ2and MUC5AC or the lower
MRNA expression levels of MUC5B were correlated with asthma phenotypes.

Gene expression correlation between six candidate genes and five biomarkers (POSTN and
IL13[Th2], IL1IZA[Thl], /IL17A[Th17], and /L6 [inflammation]) was tested (Table S2).
The mRNA expression levels of MUC5AC were positively correlated with POSTN and
negatively correlated with /L12A and /L6. The mMRNA expression levels of MUC5B were
positively correlated with /L 12A and negatively correlated with /L13and POSTN. These
findings indicated that MUC5AC and MUC5B might be involved in Th2 and Thl pathways,
respectively.

Comparison of GWASs and eQTL

To investigate gene expression regulation in this region, eQTL analysis was performed in
BEC in the longitudinal cohort (n = 114; Table S1) and the results were compared with
public eQTL database of GTEx [22], and GWASs of asthma and I1Ps [12,21] (Table 3).

LD analysis of 26 GWAS-identified candidate SNPs in 1,016 non-Hispanic Whites in SARP
identified four LD blocks (Figure S2).

rs7104956 in AP2AZ2 has been associated with asthma [5] and the risk allele C for asthma
was associated with higher mRNA expression of MUC5AC in SARP (P = 0.03). Two SNPs
(rs7934606 and rs6421972) in MUCZ2 (LD block 1) have been associated with 11Ps [13-14],
however, they were not associated with asthma in previous GWASs neither with mRNA
expression levels of six candidate genes in this study.

11 SNPs in MUC2-MUC5AC region (LD block 2) have been associated with asthma
[6,8-12] and the risk alleles for asthma were associated with higher mMRNA expression

of MUC5AC and/or lower mRNA expression of MUC5B. For example, rs11603634 has
been associated with severe asthma (P= 2.3 x 1078; moderate-to-severe asthma vs. healthy
control) [6]. G allele of rs11603634 was the risk allele for severe asthma and associated
with higher mMRNA expression of MUC5AC in BEC (P= 2.5 x 107°) [6] and in BEC in
SARP (P=0.006). Two SNPs (rs12788104 and rs28415845) in MUC2-MUC5AC region
have been associated with adult onset asthma [7-8] and the risk alleles for adult onset
asthma were associated with higher mRNA expression of MUC5AC and/or lower mRNA
expression of MUC5B in SARP. Importantly, these three SNPs (rs11603634, rs12788104,
and rs28415845) were not associated with asthma severity (0.98 < Odds ratio < 1, P>

0.8; severe asthma vs. non-severe asthma) in SARP. In conclusion, the SNPs in MUCZ2-
MUCS5AC (LD block 2) region were associated with asthma but not associated with asthma
severity nor IIPs in previous GWASs.

J Asthma. Author manuscript; available in PMC 2024 October 01.
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Two SNPs (rs28403537 and rs35288961) in MUC5AC associated with [1Ps [14] were not
associated with asthma severity in SARP. T allele of rs35288961 was the risk allele for

I1Ps [14] and associated with lower mRNA expression of 7OLL/Pin SARP (P=0.04).
Three SNPs (rs34595903, rs2672794, and rs35705950) in MUC5B (LD block 3) were
associated with I1Ps [13-19] and the risk alleles for 11Ps were associated with higher mRNA
expression of MUC5B and/or lower mRNA expression of MUC5AC in SARP. Four SNPs
in TOLL/P (LD block 4) were associated with 11Ps [13,16] and the risk alleles for 11Ps
(except rs5743890) were associated with lower mRNA expression of 7OLL/Pin the lung
tissue [16]. T allele of rs5743890 was the risk allele for 11Ps [16], however, it was associated
with higher mRNA expression of 7OLL/Pin SARP (P = 0.004). In conclusion, the SNPs

in MUC5AC, MUCS5B, and TOLL/P (LD blocks 3 and 4) associated with 11Ps were not
associated with asthma or asthma severity.

In summary, SNPs associated with asthma or 11Ps are eQTL SNPs for MUC5AC, MUC5B,
or TOLL/P. SNPs associated with asthma were not associated with asthma severity. SNPs
associated with asthma and I1Ps were not overlapped nor in strong LD. Higher mRNA
expression of MUC5AC and lower mRNA expression of MUC5B are risk for asthma but
protective for 11Ps.

Discussion

In this study, we comprehensively investigated the mRNA expression of six genes in
chrl1p15.5 region. Expression analyses indicated that higher mRNA expression levels of
AP2A2and MUC5AC or lower mRNA expression levels of MUC5B were significantly

and consistently correlated with asthma phenotypes in BEC. In addition, the ratio of

MRNA expression levels of MUC5ACto MUC5B was significantly correlated with asthma
phenotypes. Previous studies have indicated that the ratio of MUC5AC to MUC5B sputum
protein levels is higher in patients with asthma [38] or acute asthma [39] compared with
healthy controls. All these findings consistently indicate that higher expression of MUC5AC
and lower expression of MUC5B or higher ratio of MUC5ACto MUCS5B are associated
with asthma and may be used as biomarkers for asthma.

The higher mRNA expression of AP2ZAZ2and MUC5AC or lower mRNA expression of
MUC5B were correlated with T2 biomarkers such as blood and sputum eosinophils, FeNO,
and total serum IgE levels. In addition, the mRNA expression levels of MUC5AC were
positively correlated with POSTN, which encodes periostin (Th2 biomarker), and negatively
correlated with /L 12A (Th1 biomarker) and /L6 (neutrophilic inflammation biomarker). By
contrast, the mRNA expression levels of MUC5B were positively correlated with /L2124 and
negatively correlated with /L13and POSTN. In a previous gene expression study, patients
with Th2-high asthma have elevated MUC5AC and repressed MUC58 mRNA expression in
BEC compared with healthy controls [40]. In a recent study, mucus plugs have been found
to be correlated with airway obstruction and eosinophilia in subjects with severe asthma
[41]. All these findings indicate that MUC5AC and MUC5B are involved in Th2 and Thl
pathways, respectively.

J Asthma. Author manuscript; available in PMC 2024 October 01.
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In this study, we found that SNPs associated with asthma were not associated with asthma
severity. Shrine et al. performed a GWAS by comparing patients with moderate-to-severe
asthma and non-allergic healthy controls and identified three novel genes (MUC5AC,
GATAS3, and KIAA1109) [6]. This type of comparison is more likely to identify the same
set of genes associated with asthma susceptibility and/or allergy. Our findings indicate
that SNPs in MUC2-MUC5AC region associated with asthma susceptibility are correlated
with higher mRNA expression of MUC5AC and/or lower mRNA expression of MUC5B,
however, these SNPs are not associated with asthma severity. Our previous study also
indicated that Th2 pathway genes are associated with asthma susceptibility, however, Thl
pathway genes and lung function genes are associated with asthma severity [42]. We also
identified that SNPs associated with asthma and 11Ps were not overlapped nor in strong
LD. Thus, although SNPs in chr11p15.5 region have been associated with asthma and I1Ps,
different sets of SNPs are associated with asthma or 1IPs.

The gene expression patterns of MUC5AC and MUC5B are not consistent for different
pulmonary diseases. In patients with cystic fibrosis, sputum MUC5AC and MUC5B
protein levels are lower in mucus than healthy controls [43]. In patients with chronic
rhinosinusitis, mMRNA levels of MUC5AC and MUC5B are higher than healthy controls
[44]. In patients with COPD, increased sputum MUC5AC protein levels are associated with
COPD development, progression, and exacerbations [45]. A COPD study has indicated
that sputum MUCS5AC and MUCSB protein levels are higher in smokers than non-smokers
and higher in subjects with chronic bronchitis than those without chronic bronchitis [46].

In this study, we showed that higher mRNA expression of MUC5AC and lower mRNA
expression of MUCS5B are risk for asthma but protective for 11Ps and distinct sets of SNPs
are associated with asthma or I1Ps, which may indicate different gene expression regulatory
mechanisms in asthma and 11Ps.

MUCSB is the predominant mucin in the normal airway and required for mucociliary
clearance to reduce inhaled particles and control infections in the airway [47-48]. The
overexpression of MUCS5B in 1IPs may be due to a repair process for airway epithelial
progenitors and may lead to mesenchymal cell proliferation and fibrosis [48]. MUC5AC

is a “response” mucin that is inducible by allergens and viruses and required for allergic
airway hyperresponsiveness [49]. MUC5AC enrichment in mucus may impair mucociliary
transport by tethering airway epithelial cells and form mucus plugs in asthma [50].

In the pathogenesis of asthma, higher expression of MUC5AC may lead to airway
hyperresponsiveness and mucus plugs and lower expression of MUC5B may weaken airway
defense. These two processes may work together to worsen asthma symptoms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Association of MUC5AC and MUC5B8 mRNA expression levels in bronchial epithelial cells
with (A and D) asthma susceptibility and asthma severity, (B and E) baseline pre-BD FEV;
% predicted, and (C and F) asthma exacerbations in prospective 3 years in the SARP (Severe
Asthma Research Program) longitudinal cohort. MUC5AC and MUC58B mRNA expression
levels have been natural logarithm (In)-transformed in the (A-F) SARP longitudinal cohort.
Pre-BD=pre-bronchodilator.
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Association of MUC5AC and MUC5B8 mRNA expression levels in bronchial epithelial cells
with (A and D) blood eosinophil counts, (B and E) sputum percentage eosinophils, and (C
and F) fractional exhaled nitric oxide (FeNO) values in the SARP (Severe Asthma Research
Program) longitudinal cohort. MUC5AC and MUC5B mRNA expression levels have been

natural logarithm (In)-transformed in the (A-F) SARP longitudinal cohort.
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