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ABSTRACT OF THE THESIS

TypEMG: A Framework for Acquisition, Processing and Classification of EMG Signals

by

Deniz Orkun Eren

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Jonathan Kao, Chair

Traditional input methods to interface with computer systems prove to be challenging for

individuals with amputations or paralysis. Although several brain-machine interfaces were

developed to address this problem, their invasive nature prevents widespread adoption. Al-

ternatively, developing interfaces using non-invasive signals has been shown to be effective

but they require large, non-intuitive gestures to function. In this work, we propose a frame-

work to decode the subtle finger movements that occur naturally during typing via analyzing

non-invasive EMG signals. Here, we establish synchronized communication with an amplifier

to get signal recordings, perform signal preprocessing and utilize deep learning architectures

for feature extraction and classification. Our approach achieves a within-session accuracy

of up to 89.23% in detecting individual finger movements during a randomized typing task,

with an average accuracy of 77.64% across all sessions. The time needed for classification is

4.16 ms per sample, making our framework suitable for real-time operation. Our framework

demonstrates the possibility of identifying finger movements during typing in real-time using

non-invasive EMG signals and provides a starting point for future work to allow individuals

with amputations or disabilities to communicate effectively with computers.
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CHAPTER 1

Introduction

Over the past few decades, the importance of accessing information has become vital for

the personal and professional lives of many individuals. This development makes interfacing

with computers essential, with the keyboard or a touchscreen being the conventional ways of

providing input. However, for individuals with tetraplegia or loss of limbs, such means pose

significant barriers to accessing and using these technologies due to limited mobility and

dexterity. To overcome this barrier, recent progress on Brain-Computer Interfaces (BCIs)

offers a viable alternative for such individuals, by allowing them to interface with computers

via cursor movement and typing [3, 4, 5]. However, the need for surgery for these applications

mitigates the potential of widespread usage while posing additional risks to the user [6].

As an alternative to BCIs to decode user intention, detection and classification of move-

ment through the analysis of non-invasive signal recordings has been shown to be a viable

approach. One such example of this kind of signal is electromyography (EMG), which is

obtained by recording the electrical activity generated by the motor neurons during muscle

contraction [7]. There have been several works throughout the years that demonstrate the

feasibility of using EMG signals to decode finger movements of users [8, 9, 10]. Although

these methods have been shown to be effective, their reliance on manual feature extraction

prevents extending them to multiple use cases, as such features are found to be inconsistent

across applications [11]. To overcome this disadvantage, recent work in classifying EMG

signals focuses on utilizing deep learning techniques to extract the needed features automat-

ically [12, 13]. These results show that it is possible to get state-of-the-art performance for
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EMG signal classification without the need for manually defining features.

In addition to their usage in healthy subjects, EMG signals have been shown to be

applicable for detecting movement intention in individuals with amputations [14, 15]. The

work of Tenore et al. shows that it is possible to decode finger extension/flexion in amputees

with 90% accuracy by utilizing surface EMG (sEMG) signals [15]. More surprisingly, the

work of Ting et al. shows that sEMG signals can be detected and classified with deep

learning methods for individuals with tetraplegia, where an individual has no control of any

limb [6]. These results show that using EMG signals is a viable approach for determining

the intended movement for disabled individuals.

Furthermore, using EMG signals has been shown to be effective in developing non-

conventional means of interacting with computers. Recent demonstrations by CTRL-labs

prove that it is possible to build real-time computer interfaces by determining hand move-

ments and forces using EMG signals obtained from a simple wristband sensor attached to

the forearm of a subject [16]. In addition, the recent work done by Crouch et al. at Bell

Labs shows the feasibility of building a real-time typing system by decoding forearm muscle

activity from sEMG signals [17].

In light of these developments, the main goal of our project dubbed TypEMG is to

build a real-time typing interface for individuals with disabilities such as amputations or

tetraplegia by decoding surface EMG signals using deep learning methods. Although there

have been other attempts at using sEMG signals to allow people with amputations to perform

typing [18], to our knowledge there has not been any work in building a real-time typing

system for individuals with disabilities by decoding the distinct subtle finger movements that

occur naturally during typing instead of relying on grand gestures.

This thesis will first provide a background for EMG technology and the foundations of

the deep learning architecture utilized in this project. Then, the data collection, signal

processing and classification pipeline will be further evaluated. Next, the results obtained

so far will be conveyed and the next steps of the project will be outlined.
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1.1 Contributions

The main contributions of this thesis can be summarized as follows:

• We introduce our TypEMG framework for acquisition, processing and classification of

EMG signals.

• We show the validity of using a modified EEGNet, which is a deep learning architecture

for EEG classification, to classify EMG signals and detect the individual subtle finger

movements that occur during typing.

• We demonstrate that our system works well in a within-session classification scenario,

with minimal operation time and training data requirements.

• We propose simple methods such as increasing the channel amount of the electrodes

and changing the electrode orientation to improve classification accuracy and determine

the effect of these changes on overall performance.
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CHAPTER 2

Background

2.1 Electromyography

Electromyography (EMG) deals with the measure of the electrical activity in response to a

nerve’s stimulation of the muscle. During muscle contraction, the brain sends signals through

a specific set of neurons in the motor cortex, which is located in the frontal lobe of the brain.

These signals travel down through the spinal cord and out to the muscle via a long, thin

nerve called an anterior horn cell, which is the name for a specific type of motor neuron that

is responsible for ensuring connectivity between the spinal cord and muscle fibers [19]. The

combination of the anterior horn cell, its axon and terminal branches, their neuromuscular

junctions, and all the individual muscle fibers they innervate is referred to as a Motor Unit

(MU) [1].

When an anterior horn cell is activated, all of the muscle fibers inside a motor unit

are depolarized synchronously. This depolarization, accompanied by a movement of ions,

generates an electric field near each muscle fiber, which is referred to as the motor unit

activation potential (MUAP). This waveform is then recorded by the EMG electrodes [7].

There are two main types of EMG electrodes: surface electrodes and needle electrodes.

Surface electrodes are made up of small adhesive patches that are placed on the surface of

the skin overlying the muscle of interest. On the other hand, needle electrodes, also called

intramuscular electrodes, are made up of thin, needle-like electrodes that are directly inserted

to the muscle that is going to be examined. Needle electrodes are highly selective, capable
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Figure 2.1: An illustration of the motor unit [1]. The motor unit is comprised of the

anterior horn cell, its axon and terminal branches, their neuromuscular junctions, and all

the individual muscle fibers they innervate. The electrical activity generated during the

activation of the anterior horn cell is what is detected in an EMG signal.

of getting single MUAPs with high signal-to-noise ratio. However, their invasive nature and

difficulty of usage restricts them mostly to specialized clinical settings. On the contrary,

surface electrodes are much easier to use, as they do not need to be inserted into the muscle

and are non-invasive, which makes them safer and more convenient. However, the sEMG

recordings obtained through such electrodes have low signal to noise ratio and offer low

selectivity, as they contain the cross talk signal originating from surrounding muscles [20].

Nonetheless, their non-invasive nature makes them a popular choice for developing EMG

applications.

For sEMG electrodes, the obtained signal can be modeled by the following equation [21,

22]:

yi(n) =
K∑
i=1

L−1∑
l=0

cij(l)tj(n− l) + vi(n) (2.1)

Where yi(n) is the obtained EMG signal at time-step n on channel i, cij(l) is the MUAP
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of motor unit j detected by channel i at time l, tj(n) is a unit pulse train representing the

MUAP times of motor unit j, where there is a pulse at time n if motor unit j is activated

and vi(n) is a zero mean additive white Gaussian noise that represents the system noise,

which is independent of the motor units. As can be seen from the equation, the convolution

operation is over a time period between 0 to L-1, due to the assumption that an MUAP lasts

L time steps, and therefore only MUAPs happening in the last L time steps contribute to

the signal at time 0 [21, 22].

sEMG electrodes can further be examined in two categories: bipolar and unipolar. Bipo-

lar sEMG electrodes are made up of two metal surfaces placed close to each other on the

skin over the muscle of interest. The goal is to detect the same MUAPs twice but spatially

shifted along the muscle. The amplification of the difference of these two signals results in

a reduction of noise while retaining the signal of interest [23]. On the other hand, unipolar

sEMG electrodes consist of one metal plate that is placed on the skin over the examined

muscle and a reference electrode placed somewhere else on the body. The unipolar electrode

then measures the electrical activity of the muscle relative to the reference electrode and it

is capable of representing the entire information about motor unit activity near the mea-

surement point. One major drawback of bipolar electrodes when compared to their unipolar

counterparts is that they require alignment of the electrodes with the muscle fiber direction.

Achieving this alignment is difficult for most settings as the orientation of the muscle may

change as a function of joint position and muscle force. In contrast, unipolar electrodes

do not have an alignment constraint. However, their low spatial selectivity makes them

susceptible to noise from stray-potentials, movement artifacts, and possible cross talk [23].

2.2 EEGNet

EEGNet is a deep learning architecture developed by Vernon J. Lawhern et al. in 2018 that

aims to analyze and classify electroencephalogram (EEG) signals, which are measured by
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Table 2.1: Architecture of EEGNet [2]. C is the number of channels, T is the number

of time points, F1 is the number of temporal filters, D is the depth multiplier (number of

spatial filters), F2 is the number of pointwise filters and N is the number of classes.

surface electrodes placed on the scalp of the subject and reflect the electrical activity of the

brain [2]. The main motivation behind EEGNet is to build a single architecture that is able

to achieve high performance in a multitude of EEG classification tasks, while also having

the model be as compact as possible to allow real-time usage. The details of the model can

be found in the paper “EEGNet: a compact convolutional neural network for EEG-based

brain–computer interfaces” [2]. In TypEMG, we utilized a modified version of EEGNet to

perform our initial decoding experiments.

The full architecture of EEGNet can be summarized in Table 2.1. An important point to

note in this architecture is that EEGNet makes use of both spatial and temporal features of

the EEG signal. To be more specific, the first convolutional layer examines the data in the

direction of the time axis. This allows the generation of feature maps containing the EEG

7



signal at different band-pass frequencies. Then, the authors use a depthwise convolution to

learn spatial filters for each temporal filter, thus enabling the efficient extraction of frequency-

specific spatial filters. In block 2 of the architecture, the authors make use of a separable

convolution layer, which aims to reduce the number of parameters of the model while also

explicitly decoupling the relationship within and across feature maps.

EEGNet was tested on multiple EEG classification datasets. The first dataset, which is

referred to as the P300 dataset, is related to the neural response to different visual stimuli,

the second, nicknamed the ERN dataset is about the perturbations in EEG following an

erroneous or unusual event in the subject’s environment or task. The third dataset and the

one most relevant to our project is about classification of finger digits from EEG signals.

This dataset is referred to as MRCP in the paper. Finally, the fourth dataset, coded SMR,

is related to classifying four imaginary movements namely, left and right hands, feet and

tongue from EEG data.

For all tasks and for both within-subject and cross-subject classification scenarios, it was

observed that EEGNet either achieves state-of-the-art performance or offers a performance

very close to models that are designed specifically for a single task [2]. This is especially

impressive considering that EEGNet has significantly less parameters than the specialized

models, as shown in Table 2.2.

Although the results demonstrated in the paper are surely noteworthy, a natural question

one may ask is why a network designed for EEG classification was utilized in TypEMG, which

deals with the analysis and classification of EMG signals. There are a couple of key points

that validate the usage of this network in our implementation. First of all, EEGNet was

tested on a dataset that aims to detect finger movement from EEG signals [24] and was

able to achieve close to state-of-the-art results [2]. As our task is also related to detecting

and classifying finger digit movements based on physiological signals, it stands to reason to

assume that EEGNet will perform well in our task as well. Moreover, in our project we

needed an architecture that is capable of achieving real-time performance. Work done by
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Table 2.2: Number of trainable parameters of EEGNet and other architectures

for EEG classification [2]. EEGNet-4,2 refers to an EEGNet configuration with 4 tem-

poral filters and 2 spatial filters and EEGNet-8,2 refers to an EEGNet configuration with 8

temporal filters and 2 spatial filters. The models with the least amount of parameters are

highlighted in bold.

Wang et al. demonstrates that EEGNet can be used to build real-time interfaces [25], which

shows that the model is applicable in our case.

In addition to the relevancy of the capabilities of the EEGNet architecture for our ap-

plication, there are also significant similarities between EEG and EMG signals. Much like

EEG signals, EMG signals are spatiotemporal signals. This is because in addition to the

time-dependent features, they contains spatial attributes due to the characteristics of the

motor unit such as depth, number of muscle fibers, motor endplate zone and fiber distri-

bution [26]. As EEGNet has convolutional layers that aim to extract both temporal and

spatial characteristics, it is reasonable to assume that such an architecture will also fare well

with EMG data. Furthermore, it has been shown that in voluntary muscle movement, such

as the movement we are trying to detect, there is significant correlation between EEG and

EMG signals [27]. Finally, previous work has shown that some deep learning architectures

designed for classifying EEG signals can be utilized in the classification of EMG signals with

high performance [28].

Based on the relevance of the model and similarities between EEG and EMG signals,

it was deemed appropriate to use EEGNet for the initial EMG decoding experiments of

our project. However, to accommodate for our experiment and changes in the structure of
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the acquired data, some modifications were made to the original EEGNet architecture, the

details of which can be found in the Methods section of this thesis.
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CHAPTER 3

Methods

This chapter will provide more detail into the steps completed to acquire and analyze EMG

signals in the TypEMG project. Namely, we will discuss the experiment and data collection

setup, give information regarding the collected dataset and explain the signal processing and

decoding methodology employed so far.

3.1 Data acquisition hardware

In order to record the EMG signals that are generated during typing, we utilized the Twente

Medical Systems International (TMSi) SAGA 32+/64+ High Density Amplifier. In the

unipolar mode, this amplifier supports 32 or 64 channel recordings with a sampling rate of 4

kHz. Each unipolar channel has an RMS noise of less than 1 microVolt for signals between

0.1 to 100 Hz with a resolution of less than 20 nanoVolts. The amplifier also has a built-in

1.6 kHz anti-aliasing filter. The experiments for the project were conducted in the unipolar

mode with common referencing, where the difference between each unipolar input channel

and a reference electrode placed on the body was taken as the collected signal. Further details

regarding the technical specifications of the amplifier can be found in its datasheet [29].

To record the MUAPs occurring over the muscles of interest, we made use of the 4-8-L

HD-EMG electrodes provided by TMSi. These are unipolar surface EMG electrodes that

contain 32 channels, with an inter-electrode distance of 8.75 millimeters (mm) and each

individual channel having a contact area of 4 mm diameter with the skin. Surface EMG
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(a) (b)

Figure 3.1: Hardware components of the experiments. a) TMSi SAGA 32+/64+

High Density Amplifier. b) TMSi 4-8-L HD-EMG Electrode layout. The EMG activity that

occurs during typing is detected via the TMSi 4-8-L HD-EMG Electrodes, which have 32

channels equally spaced out. The detected signals are then collected by the TMSi SAGA

32+/64+ High Density Amplifier.

electrodes were chosen instead of needle electrodes due to their non-invasive nature and

easier application during experiments. Furthermore, unipolar electrodes were preferred over

bipolar options in order to avoid alignment concerns during data collection. More details

about the electrodes can be obtained from their datasheet [30].

3.2 Establishing communication between TMSi SAGA amplifier

and local workstation

In order to establish synchronized communication between the TMSi SAGA amplifier and

the local workstation the data would be stored at, a custom software interface was cre-

ated. This interface was based on Stanford Brain Interface Laboratory’s Linux Comodular

Realtime Interactive Computation Engine (LiCoRICE) platform [31], which was previously

successfully used in our lab to record EEG recordings. For our project, we modified the
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Figure 3.2: An illustration of the communication setup between the TMSi SAGA

amplifier and local workstation. In our setup, two parallel threads are run to collect data.

The TMSI thread initiates data collection from the amplifier and stores the collected data in

an internal buffer. Buffer contents are periodically transferred trough a Transmission Control

Protocol (TCP) connection to the Real-Time Asynchronous Python (RASPy) thread. This

thread synchronizes input from the keyboard with the acquired data and moves the data to

the local workstation, which was an HP Elite Desk for our experiments.

existing codebase to be suitable to read EMG data from our TMSi amplifier.

A simplified illustration of the created communication setup can be seen in Figure 3.2.

The communication system works by running two parallel threads. The first one, dubbed

the TMSi thread, is responsible for initiating data collection from the amplifier. As data

is collected, it is stored in an internal buffer. The contents of the buffer are periodically

transferred to a bipartite buffer in the other parallel thread through a Transmission Control

Protocol (TCP) connection. This thread is called the Real-Time Asynchronous Python

(RASPy) thread and it has two main purposes: storing the EMG data in the local storage

by periodically emptying the contents of the bipartite buffer and running the experiment
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setup used to collect data from a subject. As the user types on a computer, this thread runs

a key logger that records each key press and release. When the system detects a key press or

release, the index of the associated signal that is moved from the buffer to the local storage

is noted. This allows us to determine between which EMG signal indices a specific key event

occurred.

3.3 PyGame for key collection

To aid in the data collection process and guide the subjects through the experiment, a

simple PyGame was created. In the PyGame, the subject is presented with a sequence

of characters to press, where each character corresponds to a specific finger. During the

initial calibration phase, only five characters are displayed and the key that the subject will

press for that character is recorded. After the calibration phase, the subject is displayed

random permutations of the five characters used during calibration, with a random sequence

length between a minimum of 20 characters and a maximum of 30 characters. During the

experiment, each key press is recorded, even if the pressed key does not match the character

displayed on the screen. However, it is important to note that the subject is instructed to

always use the same finger to press a specific key. This ensures that even if the recorded key

press is different than what is prompted on screen, it can still be treated as a data sample for

a specific finger digit. At the end of the experiment, we obtain a dataset with five distinct

labels, each corresponding to a different key that is pressed with a specific finger digit. The

amount of data for each class is kept approximately the same throughout the experiment.

3.4 EMG data collection

In order to create the dataset to perform decoding on, data was collected from three healthy

male subjects, with ages 24, 27 and 31 as the PyGame explained in Section 3.3 was running.
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Figure 3.3: PyGame screen presented to the subject during the experiment. The

display of the PyGame is quite simplistic. The subject is presented with a random sequence

of characters that are defined during calibration. As the subject types, the correctly pressed

characters on the screen change color from white to green. Once the final character on screen

is typed, the next sequence is randomly generated and the screen is updated.

Here, each key press the subjects performed was recorded along with the associated EMG

signals. Although the subjects were instructed to press the keys approximately once per sec-

ond, it was observed that the subjects showed variations in typing speeds among themselves

and across different data recording sessions.

To get the EMG signals, the 32 channel TMSi electrodes were placed on the right fore-

arms of the subjects covering the proximal part of the anterior superficial muscles: flexor

carpi radialis, palmaris longus, pronator teres and flexor carpi ulnaris in a vertical orientation

parallel to the muscle fibers. The position of the electrodes was chosen to cover the muscle

groups most associated with movements that occur during typing [32]. During data collec-

tion, the TMSi SAGA amplifier was set to be in common reference mode, where for each

channel the unipolar inputs were referenced against another electrode. For our experiments,
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Figure 3.4: Positioning of the electrodes. For data collection, the 32 channel electrodes

were placed vertically along the proximal part of the anterior superficial muscles of a subject’s

right forearm. This ensured maximum coverage of the muscle groups most associated with

typing. Before the experiment began, the electrodes were fixed in place with tape to minimize

movement artifacts.

this reference electrode was placed on the right external oblique muscles. The location of

the reference was chosen to minimize any movement artifacts that may affect signal quality

during the experiment.

Each data collection session lasted approximately one hour, resulting in an average of

3527 recorded key presses per session. Details of the data collection from each subject can

be summarized in Table 3.1. For all data collection sessions, the amount of data for each of

the five classes was evenly distributed.
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Table 3.1: Amount of data collected from each subject per session. Session refers

to an hour of running the experiment and collecting data. Overall, a total of 21161 samples

of key presses were recorded for feature extraction and classification.

3.5 Signal processing

In order to remove the noise and maximize the information that can be obtained, the acquired

EMG signals were band-pass filtered between 20 Hz and 500 Hz. The reason 20 Hz was chosen

as the lower cutoff frequency was to account for the noise originating from the inherent

instability of the signal as done in various other literature [7, 6]. Although our experiments

show that performing filtering with lower cutoff frequency at 10 Hz as was done in the work

of Crouch et al. [17] can lead to better classification results in some cases, we wanted to

keep the lower cutoff at 20 Hz as was done in the work of Ting et al. [6] in order to remove

artifacts that may arise from movement, since our end goal is to develop a system that will

be used by disabled or tetraplegic individuals.

After filtering, the acquired signal was average referenced by taking the average of all the

channels at a time t and subtracting this result from the data of each channel at that time.

This was done to eliminate the common noise generated by our data collection system in the

acquired signal. After that, the signal was downsampled 4 times to be at a frequency of 1

kHz. The motivation behind downsampling the signal was to reduce the computational load

on our model during training. The higher cutoff frequency of 500 Hz set during band-pass

filtering ensured that no aliasing effects would occur after downsampling.

In order to shape the data in a way that will be suitable for our deep learning architecture,
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a window of 250 milliseconds (ms) was fit around each key press, with 75 ms of samples

recorded before the key press and 175 ms of samples recorded after. This window size and

setup allowed us to have a fixed signal duration of 250 samples for each key press while

also ensuring that the taken window for each key will not coincide with the data from a

subsequent key press as much as possible. After this operation, we were able to obtain an

EMG signal with 32 channels and 250 samples for each key press in our dataset.

3.6 Training and classification

In order to train our model, the data obtained from a single session was first split to train-

ing, validation and test sets, with 80% of the data reserved for training, 10% reserved for

validation and the remaining 10% reserved for testing. After this step, the data was fed to

our implementation of the EEGNet architecture. The model was trained using the Adam

optimizer with the cross-entropy loss function. Training was performed for 1000 epochs with

a batch size of 64. After training, the model was tested on both the test set from the same

data session training was performed on and the data obtained from other data collection

sessions to see if generalization across sessions is possible.

Due to the different structure of our data compared to the datasets used by Lawhern et al.

in the EEGNet paper [2], we made some modifications to the original EEGNet architecture

in our implementation. The main differences between our version and the original EEGNet

can be summarized as follows:

• After getting the 250 (length of data window) by 32 (number of channels) data sample,

a padding of 25 units to the top and 24 units to the bottom was performed. This

padding ensured that the output of the first convolution matched the dimensions of

the original input data.

• We removed all the batch normalization layers in our version, as we got better perfor-
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mance in our experiments this way.

• Before the separable convolution layer, we applied 6 units of padding to the top and

6 units of padding to the bottom, so that the output dimension of this convolution

matches the input dimension to this layer.

• We set the final dense layer to have 5 outputs, one for each finger digit.

• We changed the sizes and the amount of filters in the first temporal convolution layer

and the separable convolution layer based on our hyperparameter search results.

• We changed the size of the final average pooling layer from (1,8) to (5,1).

A more detailed view of our architecture can be seen in Table 3.2. As can be seen, our

implementation is quite compact, with only 2805 trainable parameters.

19



Table 3.2: The full architecture of our EEGNet implementation. The input data

is first passed through a padding layer. Then, the first temporal convolution is applied.

This is followed by the spatial convolution. After ELU activation, average pooling and a

dropout layer with probability 0.5, another padding is applied. The result is passed through

the final separable convolution layer. After another ELU activation, average pooling and

dropout with probability 0.5, the resulting tensor is flattened and passed through a dense

layer, which generates the probabilities for each finger digit.
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CHAPTER 4

Results

In this section, we will cover the different experimental setups that our framework was utilized

in and quantitate the performance of our model in decoding individual finger movements from

one hand that occur during typing.

4.1 Within-session decoding results

For this section, the model was trained and tested with data of one subject from one recording

session. The dataset from the session was divided using a 80/10/10 train/validation/test split

and the test accuracy results were noted. This process was repeated for each subject and

recording session. On the test dataset, an overall average accuracy of 77.64% was observed

across all subjects and data collection sessions. A more detailed view of the performance of

our framework for each subject can be seen in Figure 4.1.

As seen in Figure 4.1, we are able to get high accuracy values for each subject in a within-

session scenario, indicating the validity of our approach. The reason that results for subject

3 are not as accurate as the ones for the other subjects was determined to be related to the

typing speed, as during the initial data collection session subject 3 typed significantly faster

than the expected rate of one key press per second. During the second data collection session,

the subject paid more attention to matching the requested typing speed, which resulted in

an accuracy increase of 21.2%. The reason that fast typing speeds degrade performance is

that in those cases, the 250 ms window used for each key press contains artifacts from the
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Figure 4.1: Within-session accuracy for each subject across data collection ses-

sions. Bars represent the average of the test accuracies across each data collection session

the subjects participated in. The error bars indicate the highest and the lowest within-session

accuracies obtained on a single data collection session of a subject.

previous and following key presses. This makes it more difficult for the model to differentiate

between different classes during training.

Let us now examine the nature of the errors our model makes based on the confusion

matrix in Figure 4.2. As can be seen, the majority of the errors are made between adjacent

pairs of finger digits. This is in line with the findings of Crouch et al. [17]. Furthermore, the

model seems to have a predilection for predicting the pinky finger (also known as the little

finger) even when the ground truth is not a finger digit adjacent to the pinky.

4.2 Across-session decoding results

In order to determine the performance of the created system on one subject across different

data recording sessions, the model was trained on all data of a subject from one session and
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Figure 4.2: Confusion matrix for within-session performance. All of the ground truth

labels and the model predictions for each subject and data collection session were bundled

together to generate this confusion matrix. The matrix is row normalized, so that the sum

of each row is 100%.

then tested on the data from all the other sessions that subject participated in. This process

was repeated for all sessions of subject 1 and subject 3. Subject 2 was not included as he

only participated in one session. The goal of the experiment was to see if a trained model

for a single subject can successfully be used without any parameter tuning on sessions from

different days.

From Figure 4.3, it appears that the performance of the model is slightly above chance

when tested on a dataset from a different session than it was trained on, even if the subject

stays the same. Inter-session variability has been known to be a significant factor in reduced

performance for EMG applications due to electrode displacement and the distance of the

data across different sessions in the input space [33]. The results show that our TypEMG

framework is also susceptible to such perturbations. Therefore, in a practical setting, a

training or calibration phase before classification must be conducted for each session of a
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Figure 4.3: Across-session accuracy for subjects 1 and 3. Bars represent the average

of the test accuracies on data from the sessions the model was not trained on and the error

bars indicate the highest and the lowest across-session accuracies obtained for each subject.

subject in order to get satisfactory results.

4.3 Time requirement for classification

As our end goal is to build a real-time system for individuals with amputations or tetraplegia

that will allow them to interface with computers through typing, we need to ensure that

the framework we created is able to perform classification without any delay. To test this

capability, we trained a model with only 5% of the available dataset, making up a training

set of 1161 samples. After training, we tested the model on the remaining 20000 samples

and measured the amount of time it took to make a prediction for all of the test data.

In total, the time it took to perform filtering on all 21161 samples was 86.82 seconds,

indicating an average time requirement of 4.06 ms per sample. For average referencing

and downsampling, the time needed to process all of the samples was 2.006291 seconds,
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meaning an average time of 94.81 microsecond (µs) per sample. For classification, it

took our model 0.1128695011 seconds to make a prediction for 20000 samples with our

hardware setup, indicating an average of 5.64 µs per sample. Overall, the amount of time

needed to preprocess, downsample and classify a sample was found to be 4.16 ms. Since

an operation that takes less than 100 ms of processing time can be thought as capable of

real-time usage [17], we can state that our approach is suitable for real-time operations.

4.4 Amount of data needed for calibration

As can be inferred from Sections 4.1 and 4.2, it is clear that in a practical application of our

TypEMG framework a certain amount of data samples must be used to train and calibrate the

model before the subject can engage in typing. In order to determine the minimum amount of

data needed for within-session training to reach satisfactory performance, the within-session

experiment was repeated with differing portions of the entire set reserved for training. For

this experiment, 20% of the dataset collected from a session was randomly selected and

reserved for testing. The remaining data was randomly sampled to create the training set.

The amount of training data ranged from 10% of the overall session data to the maximum

of 80% in 10% increments. Reserving the test set at the beginning and performing tests

on this set alone ensured that all training data amount configurations could be accurately

compared. This entire process was repeated for all of the available data collection sessions

and the overall results of the experiment can be seen in Figure 4.4.

As seen in Figure 4.4, there seems to be a positive correlation between the amount of

used training data and performance on the test set, with the worst performance observed

when 20% of the session data is used for training and the best performance observed when

all of the available data is used to train the model. Overall, it can be inferred that the

biggest improvement in performance happens when 40% of the data is used for training and

the performance improvements start to plateau after the training data makes up 60% of the
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Figure 4.4: Effect of training data amount ratio on within-session test accuracy.

The training data ratio reflects how much of the overall data for each within-session scenario

was used for model training. Maximum is 0.8 as 0.2 of the data in the set was reserved

for testing in the beginning. SubjectASessB in the legend refers to the performance of the

TypEMG framework on data obtained from the Bth data collection session of subject A.

entire set.

After seeing the trend between training data amount percentage and performance, a

new model was trained on a subset of data generated by randomly sampling 40% of the

entire dataset from the first session of subject 1, as this was the data recording session

that led to the highest within-session classification accuracy. After testing the model on the

remaining samples of this session, an accuracy of 87.42% was observed. Instead, when 60%

of the entire data from the session was used during training, the accuracy on the remaining

test set jumped to 88.81%, indicating that there is not much practical difference between

these training data percentages. Since 40% of a data collection session which lasts an hour

is enough to get satisfactory performance, it can be inferred that in an actual practical

setting, a mere 24 minutes of data collection is enough to calibrate the model and perform
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Figure 4.5: Alternative placement of the electrodes. To determine the effect of elec-

trode orientation, the alignment of the electrodes was changed to be perpendicular to the

anterior superficial muscles of the forearm in a horizontal position. To minimize movement

artifacts, the electrodes were secured in place with adhesive tape.

accurate finger digit decoding for that session. This conclusion not only shows the validity

of our EMG classification framework but also demonstrates the practical applicability of our

system. The confusion matrices obtained during this section of the experiment can be found

in the Appendix section of the thesis.

4.5 Electrode orientation

So far, the electrodes used during data collection were placed vertically, parallel to the an-

terior superficial muscles of the forearm. As an alternative, an additional data collection

session was performed with subject 1 where the electrodes were placed perpendicularly to
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(a) (b)

Figure 4.6: Effect of electrode orientation on within-session accuracy for subject

1. a) Within-session confusion matrix of data from subject 1 session 1. b) Within-session

confusion matrix of the session with horizontal electrode placement. Session 1 of subject 1

was chosen for comparison as this set had the highest within-session accuracy for subject 1.

Matrices are row normalized, so that the sum of each row is 100%.

the muscles, in a horizontal orientation on the forearm. The main motivation behind this ex-

periment was the fact that action potentials travel longitudinally inside the muscle fibers [34].

This implies that if we record many points along the longitudinal axis, the signals we get will

be highly correlated as the electrodes will be reading the same action potential propagating

along the muscle fibers. Instead, by changing the electrode orientation we aimed to decrease

the correlation of the channels and capture information about more muscle groups.

The new placement of the electrodes can be seen in Figure 4.5. With this configuration,

a new data collection session was run for approximately 1 hour, resulting in a total of 3571

collected key presses. Afterwards, the same train/validation/test split, filtering and model

training steps were performed as described in the Methods section of the thesis to determine

the performance of the model.

On the data obtained with the alternative electrode orientation, an accuracy of 92.1%
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was observed across all finger digits, indicating an approximate 3% increase in accuracy

when compared to the performance on the data collection session of subject 1 with the

highest within-session accuracy. The confusion matrices of the two compared sessions can

be seen in Figure 4.6. From the figure, it can be inferred that when the electrodes are placed

horizontally, the errors of the model are concentrated between the pinky and thumb digits,

whereas when the electrodes are placed vertically, in addition to the errors between pinky

and thumb the model also seems to confuse adjacent finger digits.

Based on the results of this experiment, the reader is encouraged to increase the coverage

across different relevant muscles instead of focusing on a single muscle group when building

a system to decode finger digit movement from EMG signals.

4.6 Electrode channel amount

Until this point, the 4-8-L HD-EMG electrodes provided by TMSi were used for recording

the sEMG signals that occur during typing. In order to determine the effect having more

channels per electrode would have on model performance, an additional data collection

session was conducted with subject 3. This time, the TMSi 8-8-L HD-EMG electrodes were

utilized to record the EMG activity. These electrodes have the same specifications as the

4-8-L HD-EMG electrodes, with the main difference being that the 8-8-L HD-EMG has 64

channels instead of 32 [30]. The 64 channel electrodes were placed parallel to the to the

anterior superficial muscles of the forearm as was done in the Methods section of the thesis.

The data collection session lasted approximately one hour, with a total of 4603 key presses

collected. The preprocessing, train/validation/test split and model training steps described

in the Methods section were performed to decode finger digits. To compare the effect of

increasing the channel amount, another dataset with less number of channels was created

by concatenating the readings from the 32 channels in the middle of the 8-8-L HD-EMG

electrode grid. Afterwards, the same training process done in the Methods section was
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Figure 4.7: Positioning of the 64 channel electrodes. The 64 channel electrodes were

placed on subject 3 in parallel with the anterior superficial muscles of the forearm in the

same manner as was done in the Methods section. Adhesive tape was used to secure the

electrodes in place.

performed with this reduced feature set to establish a baseline for comparison.

The comparison in within-session decoding accuracy between using only the 32 electrode

channels in the middle of the electrode grid and using all 64 channels of the grid can be

found in Figure 4.8. Overall, an accuracy of 84.5% was obtained when 64 channels were

utilized, an increase of 8.4% when compared to using only the 32 channels in the middle

of the grid. Based on these results, it can also be understood that using 64 channels leads

to a performance improvement of 6.1% when compared to the best within-session decoding

accuracy of subject 3 on data recorded with the 4-8-L HD-EMG 32 channel electrodes.

The results of this experiment indicate that increasing the amount of channels, thus in-

creasing the area covered during typing results in better decoding performance. However,

when considering the increased cost per session due to having more channels on the elec-

trode grid and the fact that placing the electrodes horizontally leads to similar performance
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(a) (b)

Figure 4.8: Effect of electrode channel amount on within-session accuracy for

subject 3. a) Within-session confusion matrix of data from subject 3 when the 32 electrode

channels in the middle of the grid are used. b) Within-session confusion matrix of data from

subject 3 when all 64 electrode channels are used. Matrices are row normalized, so that the

sum of each row is 100%.

improvements, it may be more suitable for future experiments to first simply try using elec-

trodes with less channels in a horizontal position as done in Section 4.5 and seeing if the

framework is able to achieve satisfactory performance.
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CHAPTER 5

Conclusions

In this thesis, we showed our TypEMG framework to acquire, process and classify sEMG

signals obtained from the forearm to decode finger movements that occur during typing, with

the end goal to build a system that will allow individuals with amputations or tetraplegia to

interface with computers seamlessly via typing in real-time. For this purpose, we established

a synchronized communication between the local workstation and the TMSi SAGA amplifier

via a TCP connection to acquire sEMG recordings from the TMSi 4-8-L HD-EMG surface

electrode sensors, devised a PyGame that guided the test subjects during data collection

and acquired data from three different subjects over six individual sessions, each session

lasting approximately one hour. We performed filtering and average referencing on the ac-

quired signal to reduce noise elements, performed downsampling to reduce computational

load and windowed the signal around the key presses to prepare a dataset with uniform

sample length, where each sample corresponds to a specific key press. Afterwards, we imple-

mented a modified version of the EEGNet architecture [2] and trained the model to perform

feature extraction and classification of finger digits. Using this approach, we were able to

build a system that can accurately decode the subtle finger movements that occur on one

hand during typing from sEMG signals, with applicability in a real-time operation setting.

The results show that our system is able to get an average accuracy of 77.64% across all

test subjects in a within-session classification scenario. In addition, our system requires only

24 minutes of data collection to perform calibration for a new decoding session and get

satisfactory performance. Furthermore, with a mere 4.16 ms time requirement to preprocess
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and classify a data sample, our system can be said to be eligible for real-time usage.

Experiments with different electrode configurations show that focusing on a larger variety

of muscles involved during typing as opposed to attempting to isolate a smaller muscle group

leads to improved classification results. Furthermore, it has been shown that increasing the

amount of channels of the electrodes, thus increasing the surface area the electrodes cover,

also leads to considerable improvements. Therefore, it is suggested that continuations of

our work utilize electrodes with an increased number of channels and more coverage of the

forearm muscles.

In addition to the experiment findings, it is hypothesized that utilizing language infor-

mation in the model can be an important research direction to follow. This can be achieved

by incorporating recurrent networks in the model architecture, as was done by Crouch et

al. [17] or by making use of pretrained language models. Finally, improving the signal pre-

processing scheme to extract MUAPs directly from the sEMG signals is expected to improve

classification performance. For this purpose, the work of Holobar and Zazula [21] and Negro

et al. [35] can be examined as starting points. After an algorithm to decompose sEMG

signals to the MUAPs they are made of is developed, the extracted MUAPs can be provided

as input for finger digit classification. Finally, once the desired performance levels are met

on healthy subjects, the designed framework must be tested on data from amputated or

disabled individuals to ensure proper operation.

This concludes the work done for the TypEMG project throughout the duration of my

graduate studies. Although the work is not complete and we are still trying out different

approaches to improve our results, our work shows that performing classification of the

subtle finger movements that occur naturally during typing by using non-invasive sEMG

signals is possible. We hope that our framework will serve as a potential starting point for

sEMG applications with a focus on typing while bringing us one step closer to having a fully

functioning real-time system that will allow individuals with amputations or disabilities to

effectively interface with computers in their day-to-day lives.
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APPENDIX A

Additional Confusion Matrices

For the sake of completeness, this appendix includes all of the confusion matrices generated

during the within-session, across-session and limited training data experiments.
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Figure A.1: Confusion matrix for within-session performance on subject 1 session

1 data. Matrix is row normalized, so that the sum of each row is 100%.

Figure A.2: Confusion matrix for within-session performance on subject 1 session

2 data. Matrix is row normalized, so that the sum of each row is 100%.
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Figure A.3: Confusion matrix for within-session performance on subject 1 session

3 data. Matrix is row normalized, so that the sum of each row is 100%.

Figure A.4: Confusion matrix for within-session performance on subject 2 session

1 data. Matrix is row normalized, so that the sum of each row is 100%.
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Figure A.5: Confusion matrix for within-session performance on subject 3 session

1 data. Matrix is row normalized, so that the sum of each row is 100%.

Figure A.6: Confusion matrix for within-session performance on subject 3 session

2 data. Matrix is row normalized, so that the sum of each row is 100%.
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Figure A.7: Confusion matrix for across-session performance when subject 1 ses-

sion 1 data used for training. The model was trained on the session 1 data of subject 1

and tested on the data from the remaining sessions of subject 1. Matrix is row normalized,

so that the sum of each row is 100%.
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Figure A.8: Confusion matrix for across-session performance when subject 1 ses-

sion 2 data used for training. The model was trained on the session 2 data of subject 1

and tested on the data from the remaining sessions of subject 1. Matrix is row normalized,

so that the sum of each row is 100%.
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Figure A.9: Confusion matrix for across-session performance when subject 1 ses-

sion 3 data used for training. The model was trained on the session 3 data of subject 1

and tested on the data from the remaining sessions of subject 1. Matrix is row normalized,

so that the sum of each row is 100%.
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Figure A.10: Confusion matrix for across-session performance when subject 3

session 1 data used for training. The model was trained on the session 1 data of subject

3 and tested on the data from the remaining session of subject 3. Matrix is row normalized,

so that the sum of each row is 100%.
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Figure A.11: Confusion matrix for across-session performance when subject 3

session 2 data used for training. The model was trained on the session 2 data of subject

3 and tested on the data from the remaining session of subject 3. Matrix is row normalized,

so that the sum of each row is 100%.
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Figure A.12: Confusion matrix for within-session performance when 40% of sub-

ject 1 session 1 data used for training. The model was trained with 40% of the data

from session 1 of subject 1 and tested on the remainder. Matrix is row normalized, so that

the sum of each row is 100%.
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Figure A.13: Confusion matrix for within-session performance when 60% of sub-

ject 1 session 1 data used for training. The model was trained with 60% of the data

from session 1 of subject 1 and tested on the remainder. Matrix is row normalized, so that

the sum of each row is 100%.
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