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INTERVIEWS

BSJ: What initially fueled your interests in protein modeling 
and the field of computational biology as a whole? 

JM : In some sense, it was somewhat of an accident. The initial 
experimental work on protein folding was done by a man 

named Christian Anfinsen in the early 1960s. I became a graduate 
student in 1965. At one point, my supervisor asked me, “Why don’t 
you go and solve this protein folding problem in your spare time?” 
I was not able to do anything about it at that time, but I did get 
intrigued by the problem, and gradually this interest had more and 
more of an impact on the research I did later.

BSJ: What are some of the challenges associated with 
determining the 3-D structure of proteins?

JM : From a computational point of view, determining 
the 3-D structures of proteins comes with three main 

difficulties. First is the size of the search space, which describes the 
set of possible orientations of a protein. An unfolded polypeptide is 
very complex, and you can think about the number of ways it can 
be arranged in 3-D space in many different ways. One way I like 
to think about it is how DeepMind [subsidiary of Alphabet, Inc., 
whose research aims to construct AI systems] puts it. They compare 
the complexity of an unfolded polypeptide chain with that of the 
game of Go, where you have 19 by 19 positions. There are three 
states for each position: blank, black, or white. Therefore, there are 
3361 total possibilities. You can think of a polypeptide chain with 
the same number of amino acids (361) as having roughly the same 
number of possible conformations if you approximate that there are 
only three conformations per amino acid; however, even this is an 
underestimate. 

The second difficulty comes from the folding of the protein. As a 
protein begins to fold and become compact, an increasing number of 
limitations on its movement arise since polypeptide chain bits cannot 
move through each other. The third difficulty comes from the fact 
that the free energy difference between the unfolded and folded states 
is small compared to the individual interactions between atomic 
groups within a protein. These three difficulties combine to make 
it computationally challenging to determine protein 3-D structure.

BSJ: You co-founded the Critical Assessment for Structure 
Prediction (CASP) challenge in 1994. At the time, what 

was your main intention in creating this challenge?

JM :  Our purpose was to try to accelerate progress in solving 
this one problem: computing 3-D structure from sequence. 

The issue can be summarized as follows: when doing work in a virtual 
world, one can create a digital twin of a protein, but in doing so, 
this virtual world gives the individual too much leeway as to how 
they can arrange the protein. You end up losing the normal rigor of 
experimental science. The idea of CASP was to come up with a simple 
way of putting the rigor back into the process. 

There has been tremendous progress toward this goal since 
we started the challenge. We can now employ several techniques in 
protein modeling. For example, modeling using homology to other 
proteins has had a lot of steady progress and has become a very useful 
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technique. The more fundamental problem of, “Can you calculate the 
structure without using much homology information?” has proven 
much tougher. We have seen several incremental improvements 
over the years, but it is in the past six years that certain methods have 
really taken off in order to address this problem. 

BSJ: What is deep learning, and how has it altered the way we 
predict biological structures?

JM : Deep learning has emerged from the application of neural 
networks or other machine learning methods to predict 

experimental outcomes from data. While practical applications of 
modeling protein structure using machine learning began in the 
1990s, these methods were highly restricted because of technical 
difficulties with the algorithms. Around 2010, there were a series 
of breakthroughs in addressing this problem. One allowed for the 
ability to construct much bigger networks. The word “deep” in deep 
learning actually refers to the number of layers you have in a network. 
Whereas having more than three layers was previously considered 
“deep,” there are now networks with hundreds of layers. With deep 
learning, rather than having to pre-process the data, you can give the 
network raw data and it will sort out what is important.

BSJ: Recently, there has been a lot of excitement about one 
CASP14 project in particular that utilizes deep learning: 

AlphaFold 2. How does it work differently from prior approaches?

JM : There are some significant differences from other 
approaches. Earlier, I mentioned that there have been 

several major improvements in the field of protein modeling over 
the past six years. The first thing that happened was that traditional 
statistical methods became successful at predicting which amino 
acids are in contact in the protein’s three-dimensional structure. 
These predictions now provide some restraints to the possible 3-D 
structures you can predict for the protein. Then, about four or five 
years ago, people recognized that you could represent the set of 
contacts between the amino acids in a folded protein as an image. 
To do this, you make an amino acid sequence by an amino acid 
sequence array with n2 pixels, where n is the number of amino acids 
in the sequence. You fill in a pixel if there is contact between the 
amino acids. Otherwise, pixels remain blank. The result is a two-

dimensional image. This is where deep learning comes in, and it has 
been very successful with image recognition. In a previous CASP 
round about two years ago (CASP13), a number of groups began 
applying these ideas—treating the contact maps as images and 
training convolutional neural networks to successfully predict the 
folds of most proteins. This was a very exciting advancement since 
the general topology of most proteins could be correctly modeled. 
However, atomic details were still elusive. 

In that CASP, DeepMind was the most successful, which was 
very impressive since they came in from outside the field. They built 
on the ideas that others had already developed within the community. 
In the following two years, they realized that they were stuck; with 
the way they were approaching the problem, they were not going to 
get to atomic-level accuracy in their models. So, they abandoned 
most of the previous technology and, as they say, explored at least a 
dozen other methods through the prototype stage. As a result, a few 
critical algorithmic changes were introduced. The first was getting 
rid of using a convolutional framework, which is not ideally suited 
to these types of images. Instead, they decided to use the currently 
emerging technique of attention learning. The second change they 
made was to the final stage of the network. Rather than outputting 
a set of predicted contacts, the network’s final stage now produces 
three-dimensional coordinates through the use of newly emerging 
technology. They also built some protein properties directly into 
the network structure. These changes resulted in advancing us from 
getting the fold right two years ago to now achieving atomic accuracy. 

BSJ: What do you aim to address as the future targets of CASP_
Commons and CASP15? 

JM : CASP_Commons has been an attempt to, rather than test 
how well methods work against an experiment, actually 

Figure 1: The left panel illustrates 
the crystal structure of the 
354-residue domain ESKIMO 
1 (6CCI) compared to its most 
accurate CASP13 prediction 
model on the right. Colors in the 
image represent the accuracy of 
the model, showing high accuracy 
in the core with green and blue 
and lower accuracy in the edge 
loop regions with orange and red. 
Image copyright © 2019 by Wiley 
Periodicals, Inc; reprinted under 
fair use.

“These changes resulted in 
advancing us from getting 
the fold right two years ago 

to now achieving atomic 
accuracy.”
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use the CASP community to address issues of significance. It has 
been quite successful recently in producing models of some of the 
most difficult-to-get SARS-CoV2 structures. Now that we have 
experimental data, we can confirm that some of these predictions 
have turned out to be very good. Of course, we are going to try to 
keep pursuing this line of research, but the main goal of CASP is to 
advance methods for protein modeling. Our real next challenge is 
predicting the structures of protein complexes. The folding problem 
was defined a long time ago when we thought about single proteins, 
but we now know that biology is really all about protein-protein 
interactions, and we want to be able to predict these. There are 
methods which already display some progress on this problem, 
but they do not quite nail down a solution. The expectation going 
forward is that the same sort of deep learning I mentioned previously, 
along with some tweaks, will be successful at solving this problem. 
Seeing whether this approach will be successful or not is the real 
source of excitement for the next CASP. 

BSJ: Much of your research is currently focused on the 
application of computational methods to model not just 

proteins, but biological systems. What drew you to computational 
biology?

JM : I got a taste for doing things computationally with my 
work on the protein structure problem, and from there, I 

began to see that the broader field of computational biology would 

be central to the future of biology. I think it is going to be like theory 
in physics in that it is going to drive the experimental process. In 
terms of my specific pathway into the field, my lab and I were initially 
interested in the question of how genetic variants affect disease. 

BSJ: You have helped create MecCog, a framework for 
representing biological mechanisms, especially those 

connecting genetic variants with disease outcomes. What prompted 
MecCog’s creation?

JM : The reasons are similar to those that led to CASP’s 
creation. The institutions and the procedures individuals 

have created in order to do science are really amazing, but they are 
not perfect; they have a sort of inertia. As the science we do changes, 
the way that we go about it does not change fast enough. One field 
of study this particularly applies to is the study of complicated 
biological systems. Individuals are not able to measure exactly 
what they want to measure and do not have a way to efficiently 
organize existing data. For example, my lab and I are interested in 
Alzheimer’s disease, where the focus is the human brain, something 
as inaccessible as you can get in terms of measurement. Of course, 
you can do autopsies, scans, and so on, but you cannot really make 
molecular measurements in living human brains. Instead, you have 
to make measurements in mice or in cells and extrapolate from those 
measurements the mechanism behind the disease. In principle, that 
is not difficult, but in practice, it gets very, very messy.

Figure 2: Schematic of a previous generation of DeepMind’s protein structure predictive system, AlphaFold. The structure-prediction neural 
network is shown in green. Specifics for the most recent version of the network have not yet been released publicly. Image copyright © 2020 by 
the authors; reprinted under fair use.
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JM : We can think of mechanisms, particularly disease 
mechanisms related to genetic variation, as a series of steps. 

You start with the DNA, which is an “entity,” and you perturb it; 
this could be a base change in DNA. In the language of MecCog, 
this change is called a “substate perturbation,” where the state is the 
state of the DNA. Then, a mechanism module or “activity” links 
this change at the DNA level to the protein level. For this example, 
transcription and translation would link this base change in DNA to 
changes in the amino acids of a protein.

Essentially, an entity that is perturbed, in this case the DNA, 
is linked by some activity to a change in another entity, such as a 
protein. We can thus think of a mechanism as a string of perturbed 
entities linked by a string of perturbed or normal activities. Of 
course, causal networks are fairly well established, but the difference 
with MecCog is that you can label the edges in a causal network with 
these mechanism modules or activities.

BSJ: Could you give us an example of how one might analyze 
the interaction between genetic variation and disease 

phenotype through MecCog’s framework?

JM : My previous example on Alzheimer’s and the APOE4 
variant really illustrates the benefits of using MecCog. 

Normally, if you think about how a base change affects disease 
phenotype, there might be one or at most five different mechanisms 
linking the two. However, by my count, 22 different mechanisms have 
been proposed and supported by data for how APOE’s base change 
affects the risk of Alzheimer’s. 

Let us take one of these mechanisms as an example. Within this 
mechanism, there are two different inputs: the APOE4 base change 
and environmental perturbation. This environmental perturbation 
refers to stress on neurons, which happens under injury conditions 

Now, in Alzheimer’s, there is one gene variant called APOE4 
that predisposes you to developing the disease. If you have two 
copies of this variant, you are around 30 times as likely to develop 
Alzheimer’s compared to if you had the normal variant. Obviously, 
there has been a lot of interest in this one variant, and there are 
around 10,000 published papers on the protein APOE. However, 
if you wanted to treat patients with this disease variant, you would 
not know whether it would benefit the patient to have more or less 
activity of this protein. We have 10,000 papers on the protein, and 
yet we still cannot answer the most basic qualitative question. Why 
is that? It is because of the remoteness of the experiments and the 
inability to organize the information you do have. MecCog is an 
attempt to come up with a framework that does exactly that; it solves 
this problem of how we can systematically think about mechanisms 
in a way that helps us sort out what we know, what we do not know, 
and what experiments to do.

BSJ: In the language of MecCog, what are “entities” and 
“activities,” and what role do they play within a mechanism? 

Figure 3: General layout of the MecCog disease mechanism schema. The schema shows decreasing levels of certainty in evidence with the colors 
green, yellow, and red respectively. Black circles represent unknown mechanisms, and blue octagons indicate possible sites for therapeutic 
intervention. Mechanism modules are abbreviated as MM and substate perturbation as SSP. Image licensed under CC BY 4.0.

“The institutions and the 
procedures individuals 

have created in order to do 
science are really amazing, 

but they are not perfect; 
they have a sort of inertia.”
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or with age. Stressed neurons produce more of this APOE4 protein, 
which is less thermodynamically stable than the normal protein. 
The less-stable protein, which is an entity, is more susceptible 
to proteolytic cleavage into two pieces. In turn, that allows the 
mechanism module of cleavage to go faster than it does with the 
normal protein. Thus, the next altered entity or substate perturbation 
in this mechanism is this state of having more cleaved protein than 
you would get with a normal protein. The cleaved protein goes on to 
bind to a protein called tau, one of the major players in Alzheimer’s. 
Tau is normally associated with microtubules, but its interaction with 
the cleaved APOE protein appears to detach it from microtubules. 
Ultimately, the increased aggregation of tau is one of the drivers of 
neural deterioration.

BSJ: As of now, data for mechanism schemas must be manually 
inputted by researchers. How do you see this process 

changing over time?

JM : When you do something like read a paper and say, “Okay, 
the relevant event for this mechanism step is the cleavage 

of this protein,” your mind has extracted information from the paper 
and formalized it into a MecCog-type arrangement. Currently, there 
are no methods for automatically replicating that. Of course, there is a 
huge amount of AI work going on in interpreting language. However, 
if you actually look at what has been achieved in the biological 
sciences, it is pretty disappointing. Current methods cannot even 
succeed in reliably identifying which proteins are referred to in a 
given text. So we are a long way from automating this process and 
directly mining information from papers, but it is really intriguing 
to think about how you might do this. What is happening now is 
this application of things called transformers to language, where 
you essentially transform the relationship between the words in 
order to make them nearer to the concepts. I am not sure, but maybe 
something like that is going to have an impact here. One thing this 
all emphasizes is the strange way in which we use language. How we 
use language in science is a very flexible and powerful thing, but its 
very flexibility makes it hard to deal with computationally.

BSJ: Finally, what kinds of developments do you foresee 
MecCog leading to within the biological sciences, such as 

the medical field?

JM : With 10,000 papers, I believe there is no way individuals 
or research groups can make sense of all the information 

out there or accurately model 22 schemas for each proposed 
mechanism. MecCog is designed as a crowdsourcing tool. For key 
diseases like Alzheimer’s, we are hoping to build a repertoire of all of 
these mechanisms to see what we know and what we do not know. 
Once we have these things laid out, we can then think of potential 
therapeutic strategies.

What serendipitously came out of this was that if you have 
multiple inputs into a disease, you can draw an intersecting graph 
of all the different schemas. This results in a sparse neural network 
connecting genetic inputs to a disease output. If you have enough 
data, you can then train this model to predict disease state from an 
input. Additionally, if you have the topology of the model right, you 

“How we use language in 
science is a very flexible and 
powerful thing, but its very 

flexibility makes it hard to deal 
with computationally.”

will generate the right functions at each node in that sparse neural 
network. For example, we constructed a network to model part 
of Crohn’s disease. Six DNA variants in the input for this network 
contribute to an unfolded protein response, represented by one 
of the internal nodes. The network correctly learns the complex 
relationship between these inputs and elicits a response depicting 
a sigmoidal set-in. We did not tell the network that this is the sort 
of set-in it should give, but it learnt that this is what happens at that 
node. And now, with this network, you can ask, “If I were to drug 
the patient at one of these nodes, how would the network respond? 
Would administering the drug decrease the probability of disease?” 
Because we have so much data, in the future, I envision that we 
could have something loosely analogous to deep neural networks 
representing biological systems. To me, that is the really exciting 
way forward.

This interview, which consists of one conversation, has been edited for 
brevity and clarity.

IMAGE REFERENCES

1. Headshot: [Photograph of John Moult]. Institute for Bioscience 
& Biotechnology Research. https://www.ibbr.umd.edu/
taxonomy/term/445

2. Figure 1: Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K., 
& Moult, J. (2019). Critical assessment of methods of protein 
structure prediction (CASP)-Round XIII. Proteins, 87(12), 
1011–1020. https://doi.org/10.1002/prot.25823

3. Figure 2: Senior, A. W., Evans, R., Jumper, J., Kirkpatrick, J., 
Sifre, L., Green, T., Qin, C., Žídek, A., Nelson, A., Bridgland, A., 
Penedones, H., Petersen, S., Simonyan, K., Crossan, S., Kohli, 
P., Jones, D. T., Silver, D., Kavukcuoglu, K., & Hassabis, D. 
(2020). Improved protein structure prediction using potentials 
from deep learning. Nature, 577(7792), 706–710. https://doi.
org/10.1038/s41586-019-1923-7

4. Figure 3: Darden, L., Kundu, K., Pal, L. R., & Moult, J. (2018). 
Harnessing formal concepts of biological mechanism to analyze 
human disease. PLOS Computational Biology, 14(12), Article 
e1006540. https://doi.org/10.1371/journal.pcbi.1006540


	Emergence Production.pdf



