
UC San Diego
UC San Diego Previously Published Works

Title
Metallic Nanoislands on Graphene for Monitoring Swallowing Activity in Head and Neck 
Cancer Patients

Permalink
https://escholarship.org/uc/item/1vx03059

Journal
ACS Nano, 12(6)

ISSN
1936-0851

Authors
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Abstract

There is a need to monitor patients with cancer of the head and neck post-radiation therapy, as 

diminished swallowing activity can result in disuse atrophy and fibrosis of the swallowing 

muscles. This paper describes a flexible strain sensor comprising palladium nanoislands on single-

layer graphene. These piezoresistive sensors were tested on 14 disease-free head and neck cancer 

patients with various levels of swallowing function: from non-dysphagic to severely dysphagic. 

The patch-like devices detected differences in (1) the consistencies of food boluses when 

swallowed and (2) dysphagic and non-dysphagic swallows. When surface electromyography 

(sEMG) is obtained simultaneously with strain data, it is also possible to differentiate swallowing 

vs. non-swallowing events. The plots of resistance vs. time are correlated to specific events 

recorded by video X-ray fluoroscopy. Finally, we developed a machine learning algorithm to 

automate the identification of bolus type being swallowed by a healthy subject (86.4%. accuracy). 

The algorithm was also able to discriminate between swallows of the same bolus from either the 

healthy subject or a dysphagic patient (94.7% accuracy). Taken together, these results may lead to 
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noninvasive and home-based systems for monitoring of swallowing function and improved quality 

of life.

Graphical Abstract
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Multifunctional, wearable devices for health monitoring have the potential to reduce medical 

costs, increase patient comfort, and improve patient outcomes. These devices can do so by 

replacing or complementing invasive, painful, and costly diagnostic procedures with patch-

like devices that can be applied by the patient at home. The consequences of sporadic, 

incomplete monitoring are especially severe following radiation therapy in patients with 

cancer of the head and neck.1,2 In these patients, diminished swallowing activity and 

treatment effects lead to fibrosis, edema, disuse atrophy, and reduced function in 

swallowing. This paper describes a highly sensitive and flexible patch-like strain sensor that 

comprises palladium nanoislands on single-layer graphene. When attached to the skin in the 

submental region, below the chin, this piezoresistive sensor produces signals that indicate 

flexion of the swallowing muscles and passing of a bolus from the mouth to the esophagus. 

The objective of this work was to examine the hypothesis that these signals, combined with 

simultaneous readings from surface electromyography (sEMG), will allow detection of 

swallowing dysfunction, differentiation between swallowing and non-swallowing events, 

and differentiation of boluses of different consistencies by a machine learning algorithm.

In 2017, 30,360 new cases of laryngeal or pharyngeal cancers, and 6,710 deaths from those 

diseases, are expected in the U.S.3–6 Radiation therapy is commonly used for treatment, 

which can cause edema and eventually fibrosis (stiffening) of the swallowing musculature in 

up to 47% of head and neck cancer patients. These side effects of radiation contribute to the 

permanent development of moderate-to-severe dysphagia (abnormal or difficult swallowing) 

in up to 39% of head and neck cancer patients.7 The ability to monitor the development of 

fibrotic tissue and deteriorating muscle function in cancer patients post-treatment is 

imperative to monitor the development of dysphagia. The most common method to monitor 

the development and severity of dysphagia is videofluoroscopy, commonly referred to as a 

modified barium swallow (MBS) exam. An MBS exam involves the video recording under 

continuous X-ray of a patient swallowing boluses of different consistencies.8,9 Using 

videofluoroscopy, clinicians can grade the severity of dysphagia of a patient on a numerical 

scale (a grade of 1 corresponds to mild dysphagia and a grade of 4 corresponds to profound 

dysphagia).10 While the MBS provides clinically useful data, it requires that the boluses be 

Ramírez et al. Page 2

ACS Nano. Author manuscript; available in PMC 2019 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



impregnated with barium to be detected and exposes patients to radiation. Furthermore, 

equipment for videofluoroscopy is expensive, requires trained personnel, and is only 

available in the clinic. Due to the limited access of speech pathologists trained in the 

treatment of head and neck cancer and the cost of gold-standard modified barium swallow 

(MBS) tests, radiation-induced dysphagia is often diagnosed after there is little hope of 

restoring normal function.11–15

Techniques to measure physiological signals from the surface of the skin offer the potential 

for non-invasive monitoring without the need for visits to the clinic. sEMG monitors the 

electrical activity of a muscle when it is contracting. There are ongoing attempts to use 

sEMG to identify and monitor dysphagia in head and neck cancer patients, but such 

techniques have not been widely adopted because standard protocols were only recently 

established, and because of the limitations of the type of data available to sEMG.16–20 When 

used alone, however, sEMG is limited in the types of activities it can monitor. For example, 

sEMG monitors the electrical activity of muscles when they are actively contracting, but the 

relaxation of the swallowing muscles cannot be monitored. Continuous sensing of 

mechanical strain on the surface of the skin can in principle follow the contractions and 

relaxations of the submental muscles as a bolus is taken into the mouth and swallowed. 

Wearable sensors that use a piezoresistive mechanism are ubiquitous.21 Researchers have 

used devices that consist of carbon-based nanomaterials,22–25 as well as composite 

materials,26–28 to detect subtle motions of the throat, such as respiration, speaking, and 

swallowing. Multiple groups have used various sensing modalities to assay swallowing 

activity.29–34 However, these studies did not monitor the mechanical activity of muscle 

groups in the submental region, which are particularly susceptible to fibrosis following 

radiation therapy.13 Here, we present a wearable piezoresistive sensor that comprises 

palladium nanoislands on single-layer graphene and its use in measuring the swallowing 

activity of head-and-neck cancer patients after radiotherapy. These palladium-graphene 

composites are used to detect swallowing activity by measuring the strain of the skin when a 

patient swallows a bolus. These sensors, when combined with conventional sEMG and a 

machine learning algorithm, can be used to monitor patients in real time, while 

differentiating between signals that arise due to coughing, turning of the head, and 

swallowing of boluses of different consistencies.

RESULTS AND DISCUSSION

Characterization of strain sensor device

As shown in Figure 1A, palladium nanoislands were deposited onto single-layer graphene 

by thermal evaporation using a stainless-steel mask to pattern the nanoislands into a dog-

bone shape. The composite film was then transferred to a polyimide tape by a water transfer 

method (described in the Experimental Methods). The nanoscale morphology of 8 nm 

palladium on single-layer graphene supported by copper foil is depicted in Figure 1B. 

Morphologically, this palladium film consists of small islands that are separated by 

nanoscale gaps. The electrical resistance of the film is mediated in part by tunneling across 

these gaps, and thus it is highly sensitive to mechanical strains.35,36 Demonstrated in Figure 

1C, the composite film had a piezoresistive response to a 0.02% bending strain, and was able 
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to reversibly detect this strain up to 115 cyclic bends (see Figure S1). A strain of 0.02% was 

chosen as it was similar to the strain the skin in the submental region experiences during 

swallowing. This approximation was determined by observing the change in the normalized 

resistance (R/R0) to the bending strain and comparing it to the change in normalized 

resistance when a head and neck cancer patient (Figure 3) swallowed 10 mL of water as a 

reference. The similar piezoresistive response to a patient swallowing a bolus and the 

bending strain confirm that our sensor on polyimide tape can easily detect strains that are 

physiologically relevant during swallowing.

On-body experiments: healthy subject

On-body experiments were performed with a healthy subject (age 24, male) prior to placing 

the sensors on head and neck cancer patients. As shown in Figure 2, swallows of different 

boluses resulted in distinctive and identifiable strain signals from the sensor. The signal from 

the patient performing a dry swallow can be seen in Figure 2A. The plot depicts multiple 

small events of tensile and compressive strain, followed by a brief instance of relaxation, and 

finished with a large tensile strain at the end of the swallow. On average, it took the healthy 

subject approximately 4 s to complete one dry swallow. The signal from the patient 

swallowing 10 mL of water is shown in Figure 2B. The swallowing signals contain two 

distinct tensile strain events, with the second being greater in magnitude than the first. The 

total time to complete the swallow of 10 mL of water was approximately 2 s. For the strain 

signal from the subject swallowing a tablespoon (15 mL) of yogurt, seen in Figure 2C, the 

first incidence of tensile strain was almost twice as large and narrower as the second tensile 

strain, and the swallow was performed in approximately 2 s. The signal from the subject 

swallowing a bite of a cracker, seen in Figure 2D, was similar to the signal from swallowing 

a tablespoon of yogurt, as the first instance in tensile strain was larger and narrower than the 

subsequent tensile strains. However, the tensile strains arising from the subject swallowing a 

cracker are greater in magnitude when compared to the signals of the subject swallowing a 

tablespoon of yogurt. Additionally, the time to perform the swallow for a cracker was longer 

than the time to swallow the yogurt bolus, and the signal from the subject swallowing a 

cracker contains a minor strain event, around 1 s, not observed in the signal from swallowing 

the yogurt. Further investigation demonstrated that the piezoresistive response of the device 

to swallowing events is not affected by an elevated heart rate in the human subject but can 

possibly be affected by the placement of the sensor with respect to the submental region (see 

Figure S2 and Figure S3). The differences in the strain signals, namely strain magnitude and 

duration, allow for the identification of each bolus by visual observation.

On-body experiments: head and neck cancer patients

We further evaluated the practical utility of the palladium nanoisland sensors by detecting 

the flexion on the submental region of head and neck cancer patients with varying degrees of 

dysphagia during the ingestion of different bolus types. The placement of the strain sensor 

on the submental region of a patient, and the signals from dysphagic and non-dysphagic 

patients as they swallowed 10 mL of water are shown in Figure 3A and Figure 3B 

respectively. The degree of normalcy in the swallowing function of a non-dysphagic patient 

can be evaluated by comparing the piezoresistive signal produced by the swallows of these 

patients to that produced by a healthy subject (age 24, male) (Figure 2). Two distinct 
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increases in the resistance were observed due to the tensile strain experienced by the skin 

during a normal swallow. The first tensile strain event (Figure 3B, i) may reflect the 

contraction of submental muscles during the first phase of swallowing. Subsequently, the 

skin relaxed slightly, which caused the resistance to decrease before the second increase in 

resistance (Figure 3B, ii). This second peak is greater in magnitude than the first and may 

represent the larger strain experienced by the skin as the muscles contract to elevate the 

larynx and hyoid bone during the pharyngeal transit phase of the swallow. Completion of the 

swallowing process took approximately 2 s, as detected by the strain sensor, which was 

consistent with the completion time for the normal healthy subject. However, in dysphagic 

patients, the sensor detected strain signal patterns that were substantially different from the 

two distinct increases in normalized resistance detected for the non-dysphagic patients. The 

sensor detected more than two events of tensile and compressive strain for dysphagic 

patients, that may reflect successive muscle contractions as they swallowed, as shown in the 

left column of Figure 3B. Additionally, the total time for the dysphagic patient to swallow 

the bolus was significantly longer than for the non-dysphagic patient. We observed a 

correlation between the amount of struggle and the severity of dysphagia a patient had when 

swallowing the bolus by examining the number of instances of tensile and compressive 

strain and the total time it took each patient to complete the swallow. Struggle manifests as 

unusually long times to swallow and many undulating features in the plots of resistance. We 

hypothesize that these characteristics may suggest the development of dysphagia.

The time and effort required to swallow a bolus also depends on bolus consistency, once 

chewed and mixed with saliva. The signals from the strain sensor for three different boluses 

(water, yogurt, and a cracker) from a single non-dysphagic patient are shown in Figure 3C. 

The signals arising from swallowing these boluses were differentiated by (1) the magnitudes 

of tensile and compressive strains and (2) the timing and duration of these strain events. For 

the most fluid boluses (water and yogurt), the general shape of the curve and the time 

needed to complete the swallow were similar, but not identical. Small differences in the 

mechanical properties of these boluses (liquid vs. viscoelastic liquid) affected the 

magnitudes of the strains measured at the surface of the skin. The consistency of the chewed 

cracker, however, was that of a thick paste, and the time needed by the patient to swallow the 

bolus increased. These observations of the properties of the boluses (i.e., liquid vs. paste) 

versus the time required to perform the swallow agree with previous studies for normal 

swallowing.37

Measurement of swallowing activity by strain alone can be confounded by motion artifacts 

(non-swallowing events). For example, coughs and head turns, which do not engage the 

swallowing muscles, may produce signals similar to those produced by swallowing. In order 

to detect a swallowing event unambiguously, we measured strain and electrical activity 

simultaneously. The signals observed in both sensing modalities can offer further insight into 

the electrical stimuli and mechanical actuation of the muscles in the submental region during 

swallowing. The strain and sEMG signals of a non-dysphagic patient as they turned their 

head from left to right (yellow) before facing forward and ingesting 10 mL of water (red & 

green) is shown in Figure 3D. By comparing the results from both the strain and sEMG 

sensors, we observed that the head turns from the non-dysphagic patient produced only a 

small signal in the sEMG, but a large signal in the strain plot. Additionally, the movements 
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stemming from the non-dysphagic patient opening the mouth to take in the water, as well as 

swallowing the water, were clearly detectable by both the sEMG and the strain sensor. 

Another example of the identification of non-swallowing events using both sensing 

modalities can be seen in the adjacent plot, which depicts the signal of a strain sensor and 

sEMG sensor as the same non-dysphagic patient coughed three times, sipped and held 10 

mL of water, and finally swallowed the water. Similar to the signals observed when the 

patient turned their head, the three coughs performed by the patient produced a negligible 

signal by the sEMG sensor that was difficult to distinguish, but produced three distinct strain 

signals detected by the strain sensor (Figure 3D, purple). While the coughs of the patient 

were not detected simultaneously by both the sEMG and strain sensing modalities, the 

activity in the submental region as the patient took in 10 mL of water (Figure 3D, red) and 

swallowed the bolus (Figure 3D, green) was detected by both modalities. Due to the fact that 

the strain sensor device detects larger strains for the non-swallowing events when compared 

to the swallowing events, the use of both sensing modalities can be useful in order to 

differentiate these non-swallowing artefacts from the swallowing events that clinicians are 

interested in. The bimodal plots also offer insight into muscle behavior, as the time for the 

strain sensor to relax was longer than that for the sEMG sensor. The difference in relaxation 

time suggests that the time it took for the electrical stimulus to actuate the muscle 

contraction to perform the swallow was shorter than the time it took for the muscles to 

perform the muscle contraction mechanically. The fact that the signal detected from the 

sEMG sensor was shorter in duration than the signal from the strain sensor may also be 

attributed to the time it took for the submental region to fully relax (i.e., skin and biological 

tissue is viscoelastic). The combination of the two sensing modalities can help speech 

pathologists gain more information about the swallowing function of a patient with respect 

to the electrical actuation of the muscles in the submental region and their mechanical 

performance. During the cohort study on head and neck cancer patients, we observed the 

quality of data acquired by these sensors may be reduced by the presence of loose skin and 

subcutaneous fat or edema. The elasticity of the skin in the submental region can be 

compromised due to many factors such as weight fluctuation, fibrosis, and the age of a 

patient. Furthermore, the formation of a dewlap on head and neck cancer patients, as a side 

effect, after radiation treatment can cause further separation of the skin surface from the 

swallowing muscles.38 This separation can lessen the amount of strain and electrical signal 

detected on the surface of the skin due to the contraction of the muscles when swallowing.

Comparison of strain data to videofluoroscopy

A device meant for home use is only valuable to the extent that the data collected by it 

matches data produced by procedures used in the clinic. We thus sought to assign features in 

the data obtained from the sensors to actual events occurring in the mouth and pharynx. In 

order to correlate the swallowing function recorded by the wearable sensors to actual 

swallowing activity, we compared the data to images of swallowing events obtained by 

videofluoroscopy performed after radiation therapy but not simultaneously acquired with 

sensor experiments due to the impracticality of obtaining these data concurrently. The strain 

signals of a dysphagic and non-dysphagic patient with snapshots of their respective 

videofluoroscopy data overlaid at the appropriate time points is shown in Figure 4. By 

monitoring the strain signal of the non-dysphagic patient and comparing it to the snapshots 
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from the videofluoroscopy of the patient while swallowing a liquid barium solution of 

similar volume, we observed that the two distinct instances of tensile strain experienced on 

the skin may be attributed to the normal contractions of the muscles during a regular 

swallowing event (Figure 4A).39,40 The first (smaller) strain event detected by the sensor 

appears attributed to the oral transit phase of the swallow, where the tongue propels the 

bolus to the back of the mouth and toward the pharynx. The second and larger tensile strain 

appears attributed to the pharyngeal phase of the swallow, which involves the contraction of 

the mylohyoid, digastric, and geniohyoid muscles as well as longitudinal pharyngeal 

muscles to protect the airway as the bolus moves toward the esophagus.41–43 Conversely, the 

signal from the dysphagic patient, differs significantly from the signal of the non-dysphagic 

patient with respect to the duration of the swallow and number of events where the skin in 

the submental region undergoes tensile and compressive strain (Figure 4B). By observing 

the videofluoroscopy results for this patient for a similar bolus to the one used during the 

strain measurements, the multiple peaks during the swallow and the longer time to complete 

the swallow might be attributed to the multiple swallows performed by the patient to ingest 

the bolus completely. Similar studies made by previous groups have determined that the 

swallowing complications of dysphagic patients will require them to ingest a single bolus by 

multiple successive swallows. The successive swallows arising from these complications 

will increase the duration to swallow a given bolus when compared to a non-dysphagic 

patient.

Development of machine learning algorithm

Building upon visual analysis of the swallowing signals from on-body trials, we developed a 

machine learning algorithm to perform preliminary tasks in order to differentiate swallowing 

signals as a proof-of-concept. The machine learning algorithm was developed to automate 

identification tasks for multiple swallowing signals, either from a healthy subject (age 24, 

male) or a dysphagic patient, to perform two classification tasks. The first task of the 

machine learning algorithm involved identifying a given swallowing signal from the healthy 

subject as the signal of the subject swallowing either 10 mL of water, 15 mL of yogurt, or 6 

g of a cracker. The first task has relevance when considering that speech pathologists use 

food groups of different consistencies in order to make a more complete assessment of a 

patient’s swallowing function. A schematic diagram of the development of the machine 

learning algorithm, with the task of identifying a bolus used as an example is shown in 

Figure 5. Shown in Figure 5A, the algorithm was trained with multiple swallows of the three 

boluses (red gradient) to develop the classifier models for each signal (blue). Before 

developing the classifier models, the signals were preprocessed by interpolating the data to 

have regular time intervals per resistance measurement and by fitting an approximate smooth 

curve to minimize the amount of noise among signals of the same bolus (see Figure S4). The 

signals were then aligned with respect to time, and the features of the bolus signals were 

extracted by unsupervised learning (see Figure S5). After the extraction of the features, the 

three classifier models were developed to perform the bolus classification task, where the 

accuracy of the bolus identification algorithm was tested through cross-validation 

techniques. Figure 5B depicts a scenario in which a new swallowing signal (green) is 

identified as the signal of one of three boluses using the three classifier models as scoring 

metrics for identification. An efficient classification model based on the L1-distance of the 
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per-class average (seen in Equation S1) was the most accurate model, with an accuracy of 

86.4% for the first task.

The second task involved identifying an unknown swallow (10 mL water) as either that of 

the healthy subject (age 24, male) or a patient exhibiting mild dysphagia (Patient H in Table 

S1). The signals generated by the mildly dysphagic patient were similar to the signals 

generated by the healthy subject with respect to timescale and magnitude of strain, and thus 

we presented an intentional challenge to the machine learning algorithm. This task was 

designed to demonstrate whether or not the algorithm could detect cases of gradual 

deterioration in swallowing function on the way to dysphagia. This task, which used the data 

of a patient with mild dysphagia, mimics the creeping development of dysphagia more so 

than would comparing a healthy subject and a severely dysphagic patient. Given the ideal 

application for this device as a daily complement to the MBS exam, which can only be 

administered periodically (1 exam every 3–6 months), the device paired with the machine-

learning algorithm would have to detect the gradual evolution in swallowing activity over 

time. Shown in Figure 6A, the algorithm was trained with multiple swallows of either the 

healthy subject or the dysphagic patient (red gradients) to develop the classifier models for 

each situation (blue). After the extraction of the features, the two classifier models were 

developed to perform the subject classification task, where the accuracy of the algorithm was 

tested through cross-validation techniques. Figure 6B depicts a scenario in which a new 

swallowing signal (green) is identified as either the swallow of a healthy subject, or the 

swallow of a dysphagic patient, using the classifier models as scoring metrics for 

identification. Similar to the first task, the classification model based on the L1-distance of 

the per-class average was the most accurate model, with an accuracy of 94.7%. The tasks 

performed by the machine learning algorithm demonstrate the potential to combine 

algorithms with wearable sensors to monitor and potentially identify degradation in the 

swallowing function of head and neck cancer patients. Moreover, the use of machine 

learning algorithms which combine input from both strain and sEMG measurements could 

potentially be used to differentiate degradation in swallowing activity arising from radiation 

therapy from degradation arising from other diseases of the head and neck.

CONCLUSIONS

The wearable and flexible strain sensor presented here demonstrates the potential for remote 

monitoring of patients outside of the clinic. Its distinctive morphology, resulting from the 

growth of palladium nanoparticles on graphene, produces a piezoresistive response 

sufficiently sensitive for detecting strains of physiological importance. By exploiting the 

exceptional piezoresistive properties, we fabricated a device capable of detecting swallowing 

activity for the remote monitoring of dysphagia. The real-world utility of this device was 

investigated by recording the swallowing activity of 14 head and neck cancer patients when 

placed on the submental region. The strain sensor was able to detect differences in 

swallowing activity based on (1) the type of boluses being ingested by a healthy non-cancer 

subject and a non-dysphagic patient and (2) functional vs. dysphagic swallow status in head 

and neck cancer patients who had been treated with radiation to the throat. Combining the 

piezoresistive sensing modality with sEMG also provided further insight as to how the 

muscles in the submental region are actuated and how they relax after swallowing. 
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Comparison of these non-invasive methods with videofluoroscopy—the current gold 

standard, in which a paste containing barium is swallowed under X-ray irradiation—

suggests that our patch-like devices have the potential to produce data of sufficient clinical 

value to permit self-monitoring, and ultimately increase the quality of life of head and neck 

cancer survivors. A proof-of-concept machine learning algorithm was developed to identify 

the bolus being swallowed by a healthy subject and to distinguish between the signals of a 

healthy subject and a dysphagic patient swallowing the same bolus, highlighting further 

potential use of wearable devices by clinicians.

METHODS

Wearable palladium nanoisland sensor.

Single-layer graphene, supported on a copper foil substrate, was purchased from Graphenea. 

A nominal thickness of 8 nm of palladium nanoislands was deposited on top of the graphene 

on copper foil using thermal evaporation on an Orion System (AJA International) at a rate of 

0.02 Å/s. A stainless steel stencil (Metal Etch Services, San Marcos, CA) was used to 

deposit the palladium nanoislands in a dog bone shape, as shown in Figure 1. 50 nm of 

aluminum was deposited at 1.5 Å/s on top of the palladium by sputtering. The aluminum 

layer served as a mask to selectively etch off the graphene around the dog bone pattern. The 

graphene surrounding the dog bone was then etched by oxygen plasma for 5 min. Afterward, 

the graphene on the back of the copper foil was etched off by oxygen plasma for 5 min. 

Similarly, the aluminum film was etched by submerging the sensor films into 0.025 M KOH 

in water (Fisher Scientific) for 1 min, leaving the dog bone shape that comprises palladium 

nanoislands on a single layer of graphene. After etching the aluminum film, 4% PMMA (by 

mass) (Alfa Aesar) in anisole (Acros Organics) was deposited on top of the palladium 

nanoislands/graphene/copper by spin coating (4000 rpm, 4000 rpm/s, 60 s). The film was 

then heated to 150 °C for 10 min to remove residual solvent. The supporting copper foil was 

etched away in 0.05 g/mL ammonium persulfate (Acros Organics) in water. The film of 

PMMA/palladium nanoislands/graphene was transferred out of the ammonium persulfate by 

adhering the edge of the film to a glass slide, lifting out the film from the ammonium 

persulfate, and plunging the glass slide into a water bath, releasing the film on the surface of 

the water. The PMMA/palladium nanoislands/graphene film was then transferred onto the 

final receiving substrate (Caplinq, product number PIT0.5S UT/25.4) by adhering one edge 

of the film onto the polyimide tape, supported on a glass slide, and plunging the glass slide 

into the water bath. The transfer results in the PMMA film being adhered to the polyimide 

tape, with the graphene facing upward (graphene/palladium nanoislands/PMMA/polyimide 

tape). The substrate used to develop the strain sensor for this study—a polyimide tape that is 

13 μm thick—offered mechanical robustness and flexibility sufficient to accommodate 

mechanical deformations of the submental region during swallowing. The sensor was then 

addressed with copper wire, with a carbon paint painted on the contact area (DAG-T-502, 

Ted Pella, Inc.) and left to dry.

Cantilever strain experiment.

For the cantilever strain experiment. The device was adhered to a 1 × 2 in willow glass 

substrate (Corning), as a cantilever substrate. The device on willow glass was then partially 
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suspended, clamped at a 1 cm overlap, over a step edge of a 1.25 mm using Si wafers 

(University Wafer), with the strain sensor fully suspended in air. The tensile strain applied to 

the sensor device was calculated using a simple continuum mechanics model.44 The axial 

strain is modeled analytically by the equation εZZ = 6bh

4L2 − 5aL + a2 , where b is the step edge 

height, h is the thickness of the substrate, a is the distance from the clamped end to the 

nanowire, and L is the total length between clamped end and displaced end. By the 

dimensions of our experimental setup on AutoCAD, we determined the strain experienced 

by the device during the cantilever experiment corresponds to a radius of curvature of 

approximately 58 cm.

Strain and sEMG sensor placement and data acquisition.

Before placing the wearable strain sensor on the submental region of the human subject or 

head and neck cancer patients, the area of interest was wiped with isopropanol to remove oil 

and dirt from the skin. A makeup adhesive (Spirit Gum, Mehron) was brushed onto the 

adhesive side of the tape of the sensor substrate. The makeup adhesive was left to dry for 

approximately 5 min, before placing the sensor onto the skin. The sensor was placed on the 

surface of the skin in the submental region, where the mylohyoid and geniohyoid muscles 

are. Conventional sEMG electrodes were used in parallel with the strain sensor. In clinical 

practice using sEMG biofeedback for therapeutic applications with dysphagic populations, 

the most common placements are in the submental region and lateral to the larynx. For the 

sEMG sensing modality, the reference electrode was placed on the skin surface near the 

carpal bone of the left wrist. The working and counter electrodes were placed on the surface 

of the skin in the submental region, symmetrically across from the strain sensor and atop the 

same muscle groups next to where the strain sensor was placed. The sEMG circuit was 

configured to use a low-pass filter of 2 kHz and a high-pass filter of 30 Hz. The signal was 

amplified with a minimum gain of 550 and a max gain of 1600. sEMG Red Dot electrodes 

were purchased from 3M (Model 2560) and used as received. The strain sensor device was 

addressed to a Keithley 2601B SourceMeter to acquire the strain sensor data and the sEMG 

data was acquired by a Keithley 2400 SourceMeter. Both the strain and sEMG data was sent 

to LabVIEW for recording and processing.

On-body experiments on head and neck cancer patients.

On-body tests were first performed on a completely healthy subject (age 24, male) before 

being conducted on fourteen head and neck cancer patients who were previously treated 

with radiation therapy. This study consisted of twelve male and two female patients of ages 

ranging from 43–83 years. Seven out of these fourteen patients were diagnosed based on 

videofluoroscopy with at least moderate dysphagia (DIGEST grade ≥2). In 6 out of the 7 

dysphagic cases, DIGEST scores (grade ≥2) were commensurate with self-reported status. In 

the 7th case, a recent MBS was not available but patient’s dysphagic status was verified with 

physician observation, based on long-term gastrostomy dependence with poor secretion 

management. All seven patients who suffered from dysphagia underwent radiation therapy 

to bilateral cervical fields. All on-body experiments on head and neck cancer patients were 

performed with approval from an Internal Review Board (protocol number 2016–0597) of 

MD Anderson Cancer Center. For the swallowing experiments, the boluses consisted of a 
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small sip of water (10 mL), a tablespoon (15 mL) of yogurt, or a bite from a cracker (~6 g). 

The healthy subject and patients were asked to take in a bolus into their mouth, hold the 

bolus in their mouth until the signals from the strain sensor baselined, and then were asked 

to swallow the bolus.

Machine learning analysis

Machine learning algorithms have recently been implemented in applications that involve 

interpreting and analyzing sensor data.45,46 We developed a machine learning algorithm 

around our strain sensor data to determine if statistical models could correctly classify new 

swallowing signals. First, we established whether or not swallowing signals for a given 

subject could be classified based on the bolus being swallowed (liquid, yogurt, or cracker). 

Second, we determined if the swallowing signal of a healthy subject (age 24, male) could be 

distinguished from that of a dysphagic one (DIGEST grade 4). Performing tasks such as 

identifying boluses being swallowed by a patient and identifying abnormal swallowing could 

offer swallowing information, usually acquired in a clinic, to a speech pathologist remotely 

and without the need to limit the diet of a patient. Wearable systems that can obtain and 

analyze data could help clinicians monitor the development of dysphagia in head and neck 

cancer patients and potentially obtain a much earlier diagnosis than is possible using current 

methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic diagram depicting the fabrication of the palladium nanoisland (PdNI) strain 
sensor.
(a) Fabrication process of the palladium nanoisland sensor on polyimide tape. (b) Scanning 

electron microscope (SEM) image of the morphology of palladium nanoislands on a single 

layer of graphene. (c) Piezoresistive response of the composite film under a 0.02% strain 

that was determined by a cantilever strain experiment
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Figure 2. Signals (normalized resistance vs. time) generated by the strain sensor as a healthy 
subject swallowed different boluses.
(a) Signal of healthy subject performing a dry swallow. (b) Signal of the healthy subject 

swallowing a thin sip of water (~10 mL). (c) Signal of the healthy subject swallowing a 

tablespoon of yogurt (15 mL). (d) Signal of the healthy subject swallowing a masticated bite 

from a cracker
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Figure 3. On-body experiments performed on dysphagic and non-dysphagic patients.
(a) Photographs depicting the palladium nanoisland sensor on single-layer graphene and 

sEMG sensor applied to the submental region of a dysphagic patient. (b) Signals from three 

dysphagic (left) and non-dysphagic (right) patients while swallowing 10 mL of water. (c) 

Signals from a non-dysphagic patient swallowing 10 mL of water, 15 mL of yogurt, and 6 g 

from a cracker. (d) Signals from a non-dysphagic patient performing non-swallowing and 

swallowing activities

Ramírez et al. Page 17

ACS Nano. Author manuscript; available in PMC 2019 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Correlation of strain data obtained from head and neck cancer patients with their 
corresponding videofluoroscopy experiments.
The strain signals of (a) a non-dysphagic patient (Patient E) and (b) a dysphagic patient 

(Patient A) when swallowing 10 mL of water were compared to videofluoroscopy 

experiments done on the patients at a previous time. Analysis of the videofluoroscopy 

experiments combined with strain signals indicate differences in the strain events and time to 

complete a swallow between the two patients. These differences are caused appear related to 

the altered swallowing function of the dysphagic patient, which forces swallowing 10 mL of 

water in multiple swallows
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Figure 5. Schematic demonstrating the development and testing of the classification machine 
learning algorithm, using the bolus identification task as an example.
The machine learning algorithm was (a) first trained on the strain data of three boluses (red). 

Once the main features of the training data are extracted, a classifier algorithm (blue) was 

developed to (b) classify new swallowing data (green) into one of the three bolus categories. 

The accuracy of the model was assessed to be 86.4% by cross-validation techniques (see 

Supporting Information). For details on model development and additional tasks performed, 

refer to the Supporting Information
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Figure 6. Schematic demonstrating the development and testing of the classification machine 
learning algorithm, using the bolus identification task as an example.
The machine learning algorithm (a) was first trained on the strain data of both human 

subjects (red). Once the main features of the training data are extracted, a classifier 

algorithm (blue) was developed to (b) classify new swallowing data (green) as either the 

swallowing of 10 mL by a healthy subject or a dysphagic patient. The accuracy of the model 

was assessed to be 94.7% by cross-validation techniques (see Supporting Information). 

Details on the model development and additional tasks performed can be seen in Supporting 

Information
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