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The	brain	is	able	to	construct	a	visual	representation	of	the	world	by	parallel	

processing	of	cortical	neurons	that	prefer	increasingly	complex	stimuli.	One	way	the	visual	

cortex	has	accomplished	parallel	processing	is	by	creating	functionally	organized	modules	

that	are	tuned	to	unique	features	and	linking	them	in	multiple	processing	stages	of	cortex.	

For	example,	primary	visual	cortex	(V1)	sends	functionally	distinct	information	to	higher	

visual	areas	(HVAs),	which	are	more	specialized	in	their	processing	of	spatiotemporal	

information.	Inherently	coupled	to	this	process	is	the	convergence	of	eye-specific	inputs	in	

visual	cortex.	Shifting	the	eye-specific	tuning	of	neurons	in	primary	visual	cortex	by	

monocular	deprivation	in	early	life	is	known	to	disrupt	tuning	for	spatial	frequency	in	

adulthood.	Combining	space	and	time	better	characterizes	the	segregation	of	HVAs.	To	

begin	to	understand	if	eye-specific	responses	could	be	linked	to	tuning	properties	

important	for	the	segregation	of	HVAs,	we	characterized	eye-specific	spatiotemporal	tuning	

of	layer	2/3	excitatory	cells	within	the	binocular	zone	of	V1	and	two	HVAs	grouped	into	the	

putative	ventral	and	dorsal	streams,	LM	and	PM,	using	two-photon	GCaMP6s	imaging	of	

awake	mice.	An	asymmetry	was	found	at	the	level	of	V1,	such	that	responses	driven	
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primarily	by	the	contralateral	eye	were	biased	towards	high	spatial	frequencies,	low	

speeds,	cardinal	directions,	and	were	more	direction	selective	than	binocular	or	ipsilateral	

eye-driven	responses.	Eye-specific	inputs	in	V1	are	tuned	to	different	speeds	and	also	have	

different	degrees	of	speed	tuning,	where	contralateral	eye	inputs	are	more	speed	tuned	

than	ipsilateral	eye	inputs.	The	proportions	of	eye-specific	neurons	of	LM	and	PM	matched	

the	expected	preferences	based	on	eye-specific	spatial	frequency	tuning	found	at	the	level	

of	V1.	A	similar	contralateral	bias	for	distinct	features,	most	notably,	spatiotemporal	tuning,	

was	found	within	LM	and	PM,	linking	neurons	with	similar	eye-specific	preferences	to	their	

tuning	for	early	feature	detectors	important	for	stream	specialization.	To	determine	if	V1	

sends	eye-specific	functionally	distinct	information	to	HVAs,	we	injected	AAV-Syn-

GCaMP6s	into	the	binocular	zone	of	V1	and	imaged	the	afferents	that	targeted	either	LM	or	

PM.	We	found	that	V1	afferents	to	LM	and	PM	were	distinct	in	their	distributions	for	ocular	

dominance,	suggesting	that	eye-specific	projections	from	V1	to	HVAs	contribute	to	their	

functional	specificity.	To	determine	if	the	functional	specialization	of	HVAs	depend	upon	

eye-specific	developmental	mechanisms,	we	deprived	mice	of	visual	experience	through	

the	contralateral	eye	(CMD)	during	the	ocular	dominance	critical	period	and	assessed	eye-

specific	spatiotemporal	tuning	of	V1,	LM	and	PM	in	adulthood.	We	found	that	CMD	

diminished	the	functional	specificity	of	V1,	LM	and	PM,	resulting	in	areas	without	

differentiated	spatiotemporal	preferences.	Moreover,	the	eye-specific	functional	

segregation	was	also	disrupted	with	CMD.	Altogether,	our	data	demonstrates	that	the	

maturation	of	higher	visual	areas	is	dependent	on	proper	binocular	visual	experience	and	

suggests	that	the	functional	specialization	of	eye-specific	responses	could	be	an	efficient	

routing	mechanism	to	differentiate	higher	visual	areas.	
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CHAPTER	1:	INTRODUCTION	

Overview:	

A	fundamental	goal	of	neuroscience	is	to	understand	how	the	brain	is	able	to	

construct	an	internal	representation	of	an	external	world.	A	model	of	hierarchical	parallel	

organization	has	played	a	fundamental	role	in	understanding	how	the	visual	system	is	able	

to	accomplish	such	a	feat.	The	model	suggests	that	neurons	in	each	stage	filter	and	

distribute	information	related	to	form,	color,	orientation/direction	and	spatial/temporal	

frequency	to	higher	visual	areas	suited	for	more	complex	visual	representations	(Zeki,	

1978;	Mishkin	et	al.,	1983;	Van	Essen	et	al.,	1992).	A	common	facet	to	all	mammalian	

species	is	the	simultaneous	process	of	combining	inputs	from	the	two	eyes.	In	primates,	

primary	visual	cortex	has	long	been	attributed	as	the	first	site	where	inputs	from	the	two	

eyes	converge	(Hubel	and	Wiesel	1959;	Hubel	and	Wiesel	1962;	Hubel	and	Wiesel	1969;	

but	see	Howarth	et	al.,	2014;	Jaepel	et	al.,	2017;	Zeater	et	al.,	2015).	Hubel	and	Wiesel,	who	

first	demonstrated	the	columnar	organization	of	eye-specific	responses	in	primary	visual	

cortex	(V1)	in	primates,	established	a	relationship	between	eye-specificity,	which	they	

termed	“ocular	dominance,”	and	orientation	when	they	discovered	that	maps	(neighboring	

neurons	with	similar	feature	preferences)	for	orientation	and	ocular	dominance	are	

orthogonal	with	similar	periodicities	(Hubel	and	Wiesel	1974a,	1978).	More	recently,	it	has	

been	demonstrated	that	the	maps	for	spatial	frequency,	ocular	dominance	and	orientation	

tuning	are	aligned	in	primate	V1	(Nauhaus	et	al.,	2016).	Particularly,	maps	for	spatial	

frequency	run	parallel	to	eye-specific	maps:	binocular	neurons	are	high	spatial	frequency	

tuned	and	monocular	neurons	are	low	spatial	frequency	tuned.	Consequently,	the	columnar	

organization	of	eye-specificity	is	intrinsically	linked	to	early	encoding	for	stimulus	features	
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in	visual	cortex.	However,	the	extent	by	which	eye-specific	developmental	mechanisms	

play	a	role	in	shaping	hierarchical	processing	remains	unknown.	Examining	the	association	

between	eye-specificity	and	early	feature	detection	will	enable	a	better	understanding	of	

how	the	visual	system	is	wired	during	development,	how	visual	information	may	be	

transformed	downstream,	and	the	potential	impact	of	this	organization	on	developmental	

disorders	of	visual	impairment,	particularly	amblyopia.	We	propose	that	ocularity	is	

intrinsically	linked	to	spatiotemporal	selectivity	in	the	mouse,	as	it	is	in	primates,	and	that	

the	asymmetry	of	the	spatiotemporal	tuning	of	eye-specific	responses	may	sculpt	higher	

visual	area	selectivity.		

In	Chapter	1,	I	will	briefly	discuss	the	background	literature	for	the	study,	

emphasizing	the	premise	behind	the	hypothesis	of	the	thesis,	which	is	to	relate	eye-specific	

organization	with	parallel	stream	processing.	The	relevant	background	will	be	divided	in	

three	main	sections.	First,	I	will	discuss	the	classical	model	for	hierarchical	organization	of	

visual	cortex,	relating	to	parallel	stream	processing	and,	when	applicable,	eye-specificity.	

Our	current	understanding	of	this	framework	is	largely	based	on	experiments	from	

primates	and	carnivores.	The	second	section	will	focus	on	species	relevance,	where	I	

introduce	the	mouse	visual	system,	the	current	knowledge	of	mouse	higher	visual	areas	

and	the	putative	dorsal-ventral	stream	subnetworks	for	mice.	I	would	like	to	point	out	

similarities/differences	between	primates,	our	working	model	for	understanding	the	

development	of	human	vision,	and	mice,	as	well	as	the	advantages	and	limitations	of	using	

mice	to	study	visual	system	processing.	The	third	section	will	focus	on	visual	cortical	

plasticity	and	development,	as	it	relates	to	ocular	dominance	and	other	important	early	

features	linked	to	parallel	stream	specialization.		
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In	Chapter	2,	I	will	describe	a	study	where	we	demonstrate	that	primary	visual	

cortex	contains	eye-specific	visual	responses	with	distinct	spatial	frequency	and	direction	

preferences.	The	findings	suggest	that	ocularity	and	spatial	frequency	tuning	may	be	

coupled	in	mouse,	and	that	the	functional	specificity	of	eye-specific	responses	at	the	level	of	

V1	may	encompass	distinct	channels	of	information	for	downstream	parallel	processing.		

In	Chapter	3,	I	extend	the	findings	from	V1	to	two	higher	visual	areas:	LM	and	PM,	

grouped	into	the	putative	ventral	and	dorsal	stream.	I	will	demonstrate	that	the	functional	

specificity	of	eye-specific	responses	is	not	restricted	to	V1,	but	is	found	at	higher	levels	of	

cortex.	Moreover,	I	will	further	demonstrate	that	eye-specific	tuning	may	be	coupled	to	

orientation	and	direction	selectivity.	The	findings	of	these	experiments	suggest	that	eye-

specific	responses	may	be	instrumental	in	determining	the	functional	specificity	of	higher	

visual	areas.	I	will	also	describe	experiments	where	we	characterized	the	functional	

specificity	of	V1	afferents	to	areas	LM	and	PM.	I	will	demonstrate	that	these	afferents	carry	

information	related	to	both	ocularity	and	spatial	frequency,	which	match	the	preferences	of	

the	target	areas.	These	findings	suggest	that	V1	output	specificity	may	play	an	active	role	in	

the	tuning	of	the	cells	within	higher	visual	areas.	

In	Chapter	4,	I	will	describe	a	set	of	experiments	where	we	visually	deprived	mice	

through	either	the	contralateral	or	ipsilateral	eye	for	two	weeks	during	the	ocular	

dominance	critical	period	and	assessed	the	spatiotemporal	tuning	of	V1,	LM	and	PM.	I	will	

demonstrate	that	contralateral	eye	deprivation	leads	to	a	de-differentiation	of	higher	visual	

areas.	The	deprivation	also	impacts	the	functional	specificity	of	eye-specific	responses.	I	

will	conclude	that	the	specialization	of	higher	visual	areas	depends	upon	proper	binocular	
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visual	experience,	and	that	eye-specific	response	properties	are	required	for	the	

establishment	of	higher	visual	area	selectivity.		

In	Chapter	5,	I	will	summarize	the	findings	of	the	dissertation	and	provide	

concluding	remarks	on	the	studies.	I	will	also	provide	ideas	for	future	studies	that	will	

deepen	our	understanding	and	the	impact	of	the	findings.	

	

1.1:	Hierarchical	Organization		

There	are	two	routes	of	visual	information	flow	from	retina	to	cortex:	the	

retinogeniculate	and	extrageniculate	pathway.	In	the	retinogeniculate	path,	widely	

described	as	the	central	visual	pathway,	information	from	the	retina	is	relayed	to	cells	of	

the	lateral	geniculate	nucleus	(LGN),	which	in	turn	project	to	primary	visual	cortex	(V1),	or	

the	first	cortical	processing	stage	in	this	circuit.	In	the	extrageniculate	path,	retinal	

information	is	relayed	to	the	superior	colliculus	and	pulvinar	before	projecting	to	visual	

cortex.	For	primates,	the	central	visual	pathway	is	the	predominant	route	by	which	

information	from	the	two	eyes	reach	visual	cortex	(Perry	et	al.,	1984).	Consequently,	the	

central	visual	pathway	has	been	extensively	studied	to	understand	visual	processing	in	

non-human	primates,	carnivores,	and	mice	alike.	Much	of	our	understanding	about	the	

transformation	of	simple	spatiotemporal	attributes	within	distinct	stream	processing	

pathways	(Figure	1)	stems	from	studies	on	the	retinogeniculate	pathway.	The	

extrageniculate	pathway	has	received	less	attention	since	the	superior	colliculus	receives	a	

minority	of	RGC	innervation	in	primates,	but	it	does	seem	to	play	a	role	in	processing	

movements	(Dec	et	al.,	1978;	Liu	et	al.,	2011).	V1	cells	send	their	afferents	to	many	higher	
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visual	areas	of	cortex,	who	further	project	to	even	higher	levels	and	eventually	association	

areas	(Mishkin	and	Ungerleider,	1982).			

	

	

Figure	1.1:	Hierarchical	model	of	the	visual	system.	M	and	P	pathways	of	the	primate	originating	
in	the	retina	convey	distinct	spatiotemporal	properties.	These	diverging	and	converging	pathways	can	be	
traced	into	distinct	lamina	of	LGN	and	V1,	known	as	the	magnocellular	layers	and	parvocellular	layers.	
Further	transformations	of	early	features	are	used	to	construct	more	complex	receptive	fields	in	higher	visual	
areas.	Higher	visual	areas	are	important	for	two	broad	classes	of	visual	processing:	the	dorsal	stream	in	
visuospatial	analysis	and	the	ventral	stream	in	the	object	recognition.	From	Van	Essen,	David	C.,	Charles	H.	
Anderson,	and	Daniel	J.	Felleman.	"Information	processing	in	the	primate	visual	system:	an	integrated	
systems	perspective."	Science	255.5043	(1992):	419-423.	Reprinted	with	permission	from	AAAS.	

	
Hubel	and	Wiesel	were	the	first	to	describe	the	hierarchical	nature	of	the	visual	

system	when	they	postulated	that	a	feed	forward	circuit	arising	from	the	convergence	of	

LGN	inputs	could	construct	the	receptive	fields	of	simple	cells	in	primary	visual	cortex,	and	

the	convergence	of	simple	cell	inputs	could	in	turn	form	the	receptive	fields	of	complex	

cells	(Hubel	and	Wiesel	1962,	1965b).	Hierarchical	organization	has	since	been	described	

for	multiple	modalities	and	can	be	generalized	as	any	network	in	which	well	defined	levels,	

or	transformations	of	information,	exist.	The	mammalian	cerebral	cortex	is	hierarchically	

organized	and	processes	information	in	parallel	streams	(Felleman	and	Van	Essen,	1991).	
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Numerous	anatomical	and	physiological	studies	have	demonstrated	that	these	streams	

begin	in	the	retina	(Leventhal	et	al.,	1981;	Perry	et	al.,	1984;	Schiller	et	al.,	1977;	reviewed	

in	Wässle	2004),	flow	through	subcortical	regions	(Rezak	and	Benevento,	1979;	

Ungerleider	et	al.,	1984;	Adams	et	al.,	2000),	striate	and	extrastriate	cortex	(Blasdel	and	

Lund,	1983;	Hubel	and	Livingstone,	1987)	and	finally	to	distinct	areas	of	parietal	and	

temporal	cortex	(Mishkin	et	al.,	1983).	The	higher	visual	areas	of	parietal	and	temporal	

cortex	are	thought	to	process	distinct	types	of	visual	information,	one	suitable	for	spatial	

navigation	(dorsal	stream)	and	one	for	object	identification	(ventral	stream),	respectively	

(Mishkin	et	al.,	1983).	Similar	to	the	construction	of	simple	cells	from	the	convergence	of	

LGN	inputs,	the	selectivity	of	higher	visual	areas	are	presumed	to	be	based	upon	

convergence	from	lower	levels	of	cortex	specialized	for	distinct	visual	stimuli.	

Already	at	the	first	level	of	light	detection,	functional	segregation	exists	in	the	form	

of	rods	and	cones	in	the	retina.	The	rods	endow	scotopic	vision,	or	the	ability	to	see	under	

dim	lights	while	the	cones	endow	photopic	vision	and	enable	the	perception	of	color.	

Anatomical	and	physiological	evidence	suggests	that	there	is	functional	segregation	in	the	

output	of	the	retina	(the	ganglion	cells)	and	that	segregation	is	largely	maintained	in	the	

LGN,	termed	the	magnocellular	(M)	and	parvocellular	(P)	pathways	(Conley	and	Fitzpatrick	

1989;	Purpura	et	al.,	1990;	Schiller	and	Malpeli	1978;	Gouras	1969;	Kaplan	and	Shapley	

1982).	In	primates,	these	retinal	ganglion	cells	are	physiologically	distinct	and	differentially	

distributed	in	the	retina,	such	that	the	alpha	cells	(M	pathway,	related	to	Y	cells)	are	

concentrated	in	the	periphery	and	the	beta	cells	(P	pathway,	related	to	X	cells)	are	

concentrated	in	the	central	retina	(Gouras	1969).		The	alpha	cells	are	more	transient	in	

their	response	and	are	broadband,	encoding	information	about	luminance	contrast,	while	
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the	beta	cells	have	sustained	responses,	are	optimized	for	higher	temporal	frequencies,	and	

are	color-opponent	(Leventhal	et	al.,	1981;	Perry	et	al.,	1984).		There	is	partial	overlap	in	

the	spatiotemporal	information	that	these	cells	filter,	but	in	general,	the	P	cells	are	broadly	

tuned	to	spatial	frequencies	and	respond	to	low	and	moderate	temporal	frequencies	while	

the	M	cells	have	poor	resolution	(Figure	1,	Van	Essen	et	al.,	1992).		

The	cells	in	the	M	and	P	pathway	have	physiological	distinctions	in	conduction	

velocity,	contrast	sensitivity	and	color	sensitivity	(Gouras	1969;	Kaplan	and	Shapley	1982;	

Schiller	and	Malpeli	1978;	Purpura	et	al.,	1988;	Sclar	et	al.,	1990;	Shapley	et	al.,	1981;	

Derrington	and	Lennie	1984).	Most	relevant	to	the	current	study	are	differences	in	

sensitivities	to	temporal	and	spatial	frequencies.	The	cells	of	the	M	pathway	(parasol	

ganglion	cells)	have	higher	mean	preferred	temporal	frequency	and	lower	preferred	spatial	

frequency	than	cells	of	the	P	pathway	(midget	ganglion	cells),	although	overlap	of	cell	

preferences	exists	(Derrington	and	Lennie,	1984;	Hicks	et	al.,	1983).	However,	there	

appears	to	be	no	difference	in	spatial	resolution	or	receptive	field	size	between	the	cell	

types	(Blakemore	and	Vital-Durand	1986;	Crook	et	al.,	1988;	Derrington	and	Lennie	1984).	

The	specialization	of	the	M	and	P	pathways	for	distinct	spatiotemporal	tuning	has	been	

substantiated	by	lesion	studies	(Merigan	et	al.,	1991;	Merigan	and	Eskin,	1986).	Anatomical	

evidence	suggests	that	a	potential	reason	the	P	pathway	is	important	for	detecting	high	

spatial	frequency	stimuli	is	due	to	the	high	sampling	density	of	retinal	P	ganglion	cells	

compared	to	those	of	the	retinal	M	ganglion	cells	(Merigan	and	Katz	1990;	Perry	et	al.,	

1984;	Silveira	and	Perry	1991).		

A	third	parallel	pathway,	the	koniocellular	(K)	pathway,	has	been	described	for	

primates	(Hendry	and	Reid,	2000).	K	cells	are	also	organized	in	layers	of	macaque	LGN,	
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which	are	dominated	by	input	from	either	retina	(Yoshioka	and	Hendry	1999).	These	cells	

have	been	linked	to	the	cat’s	W	cells,	due	to	their	response	to	S-cone	stimulation	(Norton	

and	Casagrande,	1982).	K	cells	of	the	LGN	vary	broadly	in	spatiotemporal	tuning	and	the	

population	may	consist	of	multiple	subclasses	(Norton	et	al.,	1988;	Xu	et	al.,	2001).	K	cells	

have	been	thought	to	contribute	to	color	vision	due	to	the	input	they	receive	from	S-cones	

and	their	innervation	of	cytochrome	oxidase	stained	blobs	in	V1	(Hendry	and	Reid,	2000).		

Up	the	hierarchy,	the	M,	P	and	K	pathways	innervate	distinct	regions	of	V1	and	V2.	

The	segregation	is	mostly	maintained	in	V1,	with	projections	from	the	parvocellular	and	

magnocellular	layers	terminating	in	distinct	subregions	of	layer	4	(parvocellular	connects	

with	Layer	4Ca	and	magnocellular	with	Layer	4CB)	(Fitzpatrick	et	al.,	1985).	The	distinct	

regions	of	V1	further	innervate	distinct	regions	of	V2	and	beyond	(reviewed	in	Livingstone	

and	Hubel	1987).	In	the	magno	pathway,	the	thick	stripes	of	V2	innervate	MT	and	in	the	

parvo	pathway,	the	interblobs	project	to	the	pale	stripes	of	V2.	The	K	pathway	makes	the	

third	subdivision,	projecting	to	the	blobs	and	then	thin	stripes	of	V2.	The	different	

pathways	are	proposed	to	connect	to	higher	visual	areas	specialized	for	more	complex	

visual	processing.		

	

1.1.1:	Columnar	Organization	

A	cortical	column	is	a	group	of	cells	in	the	cortex	that	share	a	preference	for	one	

type	of	visual	stimulus.	Cortical	columns	share	feature	preferences	regardless	of	which	

layer	the	cell	is	in.	The	retinotopic	map	of	the	visual	field	is	a	fundamental	columnar	

organization	that	is	repeated	throughout	the	visual	cortex	in	different	layers	(Talbot	and	

Marshall,	1941;	Daniel	and	Whitteridge,	1961).	A	congruent	alignment	of	feature	maps	
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overlaid	on	the	retinotopic	map	permit	feature	detection	in	all	regions	of	the	visual	field	

and,	in	the	case	of	higher	areas	where	retinotopic	remapping	occurs,	in	a	hierarchical	

fashion.	Hubel	and	Wiesel	demonstrated	that	neurons	with	eye-specific	responses	form	a	

columnar	organization,	termed	ocular	dominance	columns	(ODCs),	in	V1	of	both	cat	and	

monkey	(Hubel	and	Wiesel	1965a,	1969).	Later,	they	related	ODCs	to	the	columnar	

organization	of	orientation	preference	(Hubel	and	Wiesel,	1974a).	In	their	discussion	on	

the	orthogonal	relationship	between	the	two	maps,	they	comment	on	the	advantages	of	

repeating	functional	modules	for	all	parts	of	the	visual	field,	stating:		

“The	tasks	that	a	given	region	of	cortex	must	fulfill	are	many	and	varied	and	include	

the	machinery	for	establishing	orientation	specificity,	direction	selectivity,	degree	of	

complexity,	selectivity	to	color,	and	binocular	convergence,	all	for	a	particular	region	of	visual	

field.	It	may	be	that	there	is	a	great	developmental	advantage	in	designing	such	a	machinery	

once	only,	and	repeating	it	over	and	over	monotonously,	like	a	crystal,	for	all	parts	of	the	

visual	field.	The	problem	is	to	achieve	the	uniformity	despite	the	great	difference	in	detail	of	

representation	between	central	and	peripheral	visual	fields.”	–	Hubel	and	Wiesel	1974a	

Hence,	in	V1	of	primates,	in	a	given	region	of	visual	space,	each	orientation	is	

represented	for	both	eyes,	and	this	pattern	is	repeated,	like	a	crystal,	for	other	regions	of	

visual	space.	One	way	by	which	the	visual	system	could	solve	the	issue	of	encoding	

stimulus	features	despite	differences	in	the	central	and	peripheral	visual	fields	is	by	having	

neurons	representing	the	central	visual	field	with	similar	receptive	field	properties	as	

those	in	the	“monocular”	region	of	V1.	The	functional	organization	of	orientation	and	

ocular	dominance	established	by	Hubel	and	Wiesel	has	been	extended	to	maps	of	other	

features.	Using	intrinsic	signal	imaging,	Bartfeld	and	Grinvald	revealed	the	alignment	of	
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maps	for	orientation	preference	pinwheels	and	ODCs	as	well	as	maps	for	cytochrome	

oxidase	stained	blobs/interblobs	and	pinwheels	(Bartfeld	and	Grinvald,	1992).	The	

cytochrome	oxidase	stained	blob/interblobs	(Horton	and	Hubel	1981),	convey	information	

of	spatial	frequency	(Tootell	et	al.,	1988)	and	color	(Livingstone	and	Hubel,	1984).	

Interestingly,	blobs,	which	are	specialized	for	color	detection,	fall	within	monocular	zones	

and	the	interblobs	tend	to	be	binocular	(Livingstone	and	Hubel,	1984).		

The	alignment	between	the	three	phase	maps	for	ocular	dominance,	spatial	

frequency	and	orientation	have	been	described	using	two-photon	calcium	imaging	of	

macaque	V1	(Nauhaus	et	al.,	2016).	Interestingly,	the	maps	of	ocular	dominance	and	spatial	

frequency	align	such	that	areas	of	cortex	with	preferences	for	high	spatial	frequency	

coinciding	with	binocular	regions.	A	direct	link	between	eye-specificity	and	spatial	

frequency	has	thus	been	demonstrated	in	non-human	primates.	This	raises	the	question	of	

how	these	phase	maps	are	aligned	during	development.	Does	visual	experience	and	

binocular	competition	play	a	role	in	the	organization	of	these	phase	maps?		

Is	the	same	columnar	organization	found	in	higher	visual	areas?	It	appears	that	area	

V2	in	macaque	also	contains	orthogonal	maps	for	ocularity	and	orientation.	The	columnar	

organization	of	V2	also	follows	a	similar	periodicity	as	that	of	V1,	~1mm	(Ts'o	et	al.,	2009).	

Reports	of	similar	patterns	for	feature	preferences	such	as	orientation,	direction	and	

disparity,	have	been	described	for	higher	visual	area	MT	(DeAngelis	and	Newsome,	1999;	

Malonek	et	al.,	1999).	What	are	the	implications	of	repeating	functional	modules	in	higher	

levels	of	cortex?	It	may	be	that	the	alignments	of	cortical	columns	are	a	strategy	to	improve	

coding	efficiency	(Nauhaus	et	al.,	2016).	What	drives	the	precise	architecture	of	cortex	
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during	development?	How	might	altering	one	of	the	feature	maps	perturb	others?	Would	

the	effects	of	this	change	be	restrictive	or	expand	downstream?		

 

1.1.2:	Areal	Organization	

The	visual	cortex	of	humans	and	primates	is	highly	evolved,	comprising	multiple	

representations	of	the	visual	field.	These	“extra”	representations	of	the	visual	field	are	

thought	to	offer	a	new	perspective	of	the	visual	field,	one	that	is	more	relevant	for	

understanding	the	outside	world	than	a	series	of	oriented	lines.	Subcortically,	the	levels	of	

the	visual	processing	hierarchy	are	intuitive	to	parse	out,	with	a	clear	starting	point	

(retina)	and	obvious	white	matter	tracts	innervating	thalamus	and	eventually	cortex.	

However,	the	delineation	of	higher	visual	areas	and	where	they	sit	in	the	visual	hierarchy	is	

not	so	intuitive.	Historically,	the	identification	of	visual	cortical	areas	has	been	based	on	the	

combination	of	three	techniques:	connectivity	analysis,	architectonics	and	topography	

(Felleman	and	Van	Essen	1991).	Connectivity	analysis	refers	to	the	tracing	of	the	inputs	

and	outputs	of	an	area.	When	a	visual	area	sends	dense	projections	to	a	second	area	we	

infer	that	it	is	closely	tied	to	that	area.	Felleman	and	Van	Essen	used	the	connectivity	

patterns,	specifically	the	laminar	projections,	to	determine	if	areas	were	sending	feed	

forward	information	(terminate	in	layer	4)	or	feedback	information	(terminate	in	

superficial	and	deep	layers)	and	to	order	areas	in	a	cortical	hierarchy.	Architectonics	

describes	the	morphology	of	areas	using	various	staining	techniques.	One	useful	

architectonic	method	to	delineate	V1	from	higher	areas,	in	particular,	is	to	locate	the	

callosal	projections	in	visual	cortex,	since	primary	visual	cortex	will	be	largely	devoid	of	

such	projections	(Zeki	et	al.,	1978;	Olavarria	and	Montero,	1989;	Wang	et	al.,	2007b).	
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Finally,	visual	areas	may	be	delineated	based	on	topographic	organization.	A	visual	area	

should	have	an	orderly	map	of	the	visual	field,	and	can	the	phase	reversals	of	the	

retinotopic	map	may	be	used	to	designate	boundaries	if	we	require	a	visual	area	not	

represent	a	redundant	region	of	visual	space	(Garrett	et	al.,	2014).	However,	and	as	is	the	

case	for	visual	areas	that	fall	at	higher	levels	of	the	hierarchy,	retinotopic	organization	can	

become	coarse	or	irregular,	but	one	would	assume	this	is	the	case	if	the	area	is	making	

higher	level	computations	of	the	visual	field.			

The	different	visual	areas	have	been	grouped	into	parallel	pathways	that	connect	to	

distinct	brain	regions	and	process,	concurrently,	distinct	types	of	visual	information	

(Merigan	and	Maunsell,	1993;	Mishkin	et	al.,	1983).	The	magnocellular	pathway	is	

accredited	with	motion	analysis,	depth	perception	and	figure-ground	separation	while	the	

parvocellular	pathway	is	believed	to	be	important	for	form,	color	and	pattern	

discrimination	(Livingston	and	Hubel,	1987).	Areas	grouped	in	the	dorsal	and	ventral	

streams	have	distinct	preferences	for	early	features.	For	example,	direction	selectivity	is	

important	for	the	processing	of	motion,	a	task	attributed	to	the	dorsal	pathway,	while	

orientation	selectivity	is	important	for	form	processing,	a	ventral	stream	task.	As	discussed	

previously,	preferences	for	orientation	and	direction	are	mapped	on	the	cortical	surface	in	

a	columnar	organization,	a	process	that	seems	to	be	independent	of	visual	experience.		

Many	lesion	studies	in	primates	have	demonstrated	that	higher	visual	areas	are	

required	to	perform	distinct	complex	visual	processing	tasks	(Klüver	and	Bucy,	1937;	

Mishkin	et	al.,	1983;	Mishkin	and	Ungerleider,	1982;	Newsome	and	Pare,	1988;	Maunsell	

and	Newsome	1987).	The	importance	of	understanding	the	function	of	the	multitude	of	

higher	visual	areas	arises	from	the	mismatch	between	visually	evoked	activity	in	V1	and	
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behavioral	readouts	(Kiorpes,	2016).	With	over	30	visual	areas	described	in	the	macaque,	

unraveling	the	function	of	all	of	these	areas	could	take	quite	some	time.	Perhaps	a	step	

towards	understanding	the	function	of	an	area	is	to	understand	the	general	principles	of	

how	visual	information	is	organized,	combined,	distributed	and	used	to	generate	more	

complex	receptive	fields.	Using	simple	features	as	stimuli	while	recording	from	different	

areas	and/or	inactivating	distinct	levels	of	the	cortex	helps	with	this	process.	Much	

progress	has	been	made	in	understanding	how	cortical	transformations	occur	in	the	visual	

hierarchy	and	in	relating	early	feature	detection	to	more	complex	visual	processing	

(Maunsell	and	Newsome,	1987;	Movshon	and	Newsome,	1996).	

The	validity	of	the	simplistic	dorsal-ventral	stream	segregation	has	been	called	into	

question	due	to	the	large	crosstalk	between	areas	designated	in	separate	streams	

(Felleman	and	Van	Essen	1991)	as	well	as	neurophysiological	(Malpeli	et	al.,	1981;	Ferrera	

et	al.,	1992)	and	behavioral	evidence	(Schiller	et	al.,	1990)	that	contradicts	strict	functional	

segregation.	An	approach	that	emphasizes	cell-type	specific	connectivity	over	laminar,	and	

perhaps	even	areal,	connectivity	seems	to	resolve	the	concerns	of	crosstalk	while	

preserving	fundamental	ideas	taken	from	the	hierarchical	model	(Nassi	and	Callaway,	

2009).	Thus,	an	understanding	of	cell-type	specific	connectivity	between	

layers/areas/columns	could	be	informative	for	resolving	the	significance	of	dorsal	vs.	

ventral	stream	processing	and	the	machinery	used	to	compute	different	visual	perceptions.		

	

1.2	Species	relevance:	Organization	of	Mouse	Visual	Cortex	

Much	of	our	understanding	of	vision	stems	from	studies	conducted	on	humans,	non-

human	primates	and	cats.	However,	the	mouse	is	emerging	as	a	prominent	model	organism	
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for	understanding	the	underlying	circuitry	involved	in	visual	processing	and	plasticity,	due	

to	the	amount	of	available	tools	we	can	use	to	dissect	neural	circuitry	in	vivo.	Novel	

techniques	in	neuroimaging	and	neuroanatomy	make	it	possible	to	reveal	detailed	

organization	of	the	mouse	visual	system	(Callaway	and	Luo	2015;	Osakada	et	al.,	2011).	

The	current	technological	advances	of	genetic	tools	available	in	the	mouse	allow	one	to	

reveal	cell-type	specific	circuitry	and	its	relation	to	anatomy	and	physiology.	Revealing	

what	the	mouse	visual	system	can	tell	us	about	human	visual	processing	is	becoming	

increasingly	valuable.	The	relatively	easy	access	to	the	entire	visual	cortex	and	surrounding	

areas	makes	studying	mouse	vision	highly	attractive.	Mice,	like	primates,	have	multiple	

visual	areas	which	can	be	grouped	into	a	hierarchical	framework	and	putative	parallel	

streams	(Wang	and	Burkhalter	2007a;	Marshel	et	al.,	2011;	Berezovskii	et	al.,	2011;	Wang	

et	al.,	2011;	Wang	et	al.,	2012;	D'Souza	et	al.,	2016).	Undoubtedly,	the	mouse	visual	system	

has	evolved	to	benefit	the	mouse	in	its	own	ecological	niche.	Consequently,	expecting	the	

mouse	visual	system	to	behave	as	a	miniature	primate	visual	system	is	impractical.	Despite	

the	multitude	of	dissimilarities	between	mice	and	primates,	there	are	some	fundamental	

resemblances,	and	the	feasibility	of	studying	mouse	visual	cortex	allow	researchers	to	

discover	detailed	levels	of	understanding	the	underlying	circuitry	and	potentially	

formulate	hypotheses	about	human	visual	processing.		

	

1.2.1	General	Architecture	of	the	Mouse	Visual	System	

Mouse	retinal	organization	is	somewhat	similar	to	that	of	the	primate	retina,	at	least	

in	the	peripheral	retina.	Rods	outnumber	cones	in	mice,	as	they	do	in	humans	and	non-

human	primates.	Mice	have	a	functional	cone	system	endowing	them	with	color	vision,	
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with	photoreceptors	sensitive	to	short	(centered	at	360nm,	or	ultraviolet)	and	medium	

(centered	at	510nm,	or	green)	wavelengths	of	light	(Calderone	and	Jacobs	1995).	The	

mouse	retina	contains	a	gradient	of	sensitivity	to	different	opsins,	which	endow	them	with	

specialization	for	coding	color	in	the	lower	vs.	upper	visual	field	(Applebury	et	al.,	2000;	

Baden	et	al.,	2013;	Haverkamp	et	al.,	2005;	Szel	and	Rohlick	1992).	This	is	recapitulated	in	

V1	and	higher	visual	areas	of	cortex	(Rhim	et	al.,	2017).	Despite	being	afoveate,	mice	are	

not	blind,	and	are	able	to	perform	complex	visual	tasks.	Interestingly,	the	densest	retinal	

ganglion	cell	(RGC)	type,	the	output	neurons	of	the	retina,	(called	“W3”)	in	mouse	retina	is	

sensitive	to	dark,	small	moving	objects	and	has	been	hypothesized	to	be	sensitive	to	

predators	in	the	sky	(Zhang	et	al.,	2012).	Interestingly,	this	RGC	type	exists	predominantly	

in	the	ventral	retina	where	the	cones	prefer	dark	contrasts	(Baden	et	al.,	2013).	The	

presence	of	many	different	retinal	ganglion	cell	types	and	densities	is	a	shared	property	of	

mice	and	primates	alike.		

Retinal	ganglion	cell	types	innervate	different	regions	of	the	thalamus,	often	

projecting	to	distinct	laminar	zones	(Ecker	et	al.,	2010;	Huberman	et	al.,	2008,	2009;	Kay	et	

al.,	2011;	Kim	et	al.,	2008;	Rivlin-Etzion	et	al.,	2011;	reviewed	in	Seabrook	et	al.,	2017,	

Figure	2).	Notably,	on-off	direction	selective	ganglion	cells	innervate	the	shell	of	the	LGN	

while	non-direction	selective	alpha	RGCs	innervates	the	core	(Bickford	et	al.,	2015;	Cruz-

Martin	et	al.,	2014;	Krahe	et	al.,	2011;	Seabrook	et	al.,	2017).	The	outputs	of	the	two	eyes	

also	innervate	different	regions	of	the	thalamus,	with	the	ipsilateral	RGCs	projecting	to	the	

core	region	of	LGN.	While	there	is	a	clear	demarcation	within	the	retina	of	RGCs	that	

project	to	the	contralateral	or	ipsilateral	eye	in	primates,	there	is	no	such	distinction	in	

mice	(Seabrook	et	al.,	2017).	Instead,	uncrossed	RGCs	are	overlaid	on	crossed	RGCs,	which	
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outnumber	them	greatly	(only	about	5%	of	ipsilateral	projecting	RGCs	(Dräger	and	Olsen	

1980)).	However,	the	core	and	the	shell	of	the	LGN	have	distinct	cell	types	that	can	be	

related	to	those	of	cat	and	primate:	the	X	and	Y-like	cells	are	densest	in	the	core	while	the	

W-like	cells	are	distributed	in	the	shell	(Krahe	et	al.,	2011).		

The	cells	of	the	shell	and	the	core	region	of	LGN	terminate	in	segregated	layers	of	V1	

(Figure	2,	reviewed	in	Seabrook	et	al.,	2017).	Cells	of	the	shell	region	are	tuned	to	both	

orientation	and	direction	and	innervate	the	superficial	layers	of	V1,	while	cells	of	the	core	

region	innervate	the	deeper	layers	(Bickford	et	al.,	2015;	Cruz-Martin	et	al.,	2014;	Kondo	

and	Ohki	2016;	Piscopo	et	al.,	2013;	Lien	and	Scanziani	2013;	Seabrook	et	al.,	2017).	These	

parallel	pathways	may	route	information	into	distinct	processing	streams,	akin	to	primates.	

Thus,	the	mouse	visual	system	has	a	functional	architecture	that	includes	morphologically	

distinct	retinal	ganglion	cells,	regionally	distributed	thalamic	cells	and	some	functional	

segregation	into	the	cortex,	akin	to	the	general	structural	properties	of	cats	and	primates.			
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Figure	1.2:	Schematic	of	mouse	retinal	ganglion	cells	and	their	connectivity	patterns	with	
thalamus.	A.	Left:	Primate	LGN	with	segregation	of	M	and	P	pathways,	each	layer	also	received	input	form	
one	eye.	Right:	Distinct	retinal	ganglion	cells	innervate	different	regions	of	mouse	LGN.	B.	Mouse	LGN	
contains	cells	that	are	X-like,	Y-like	and	W-like,	as	in	other	higher	mammals.	These	cells	innervate	different	
parts	of	the	thalamus	preferentially.	C.	Separation	of	core	and	shell,	which	contain	distinct	cell	types.	Y	and	X-
like	cells	are	found	in	the	core	while	W-like	cells	are	found	in	the	shell.	From	Seabrook,	Tania	A.,	et	al.	
"Architecture,	function,	and	assembly	of	the	mouse	visual	system."	Annual	review	of	neuroscience	40	(2017):	
499-538.	

	
As	mentioned	previously,	the	superior	colliculus	(SC)	is	an	alternate	route	for	RGCs	

in	the	mammalian	visual	system.	The	SC	is	especially	important	for	head	and	eye	

movements	(Wurtz	and	Goldberg	1972;	Harris	1980).	While	in	primates	only	10%	of	the	

RGCs	project	to	the	SC	(Perry	and	Cowey	1984),	almost	all	(90%)	of	mouse	RGCs	have	
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terminations	in	the	SC	(Ellis	et	al.,	2016).	Like	the	LGN,	the	SC	is	retinotopically	organized	

and	contains	eye-specific	segregation	(Mrsic-Flogel	et	al.,	2005;	Dräger	and	Hubel	1975,	

1976).	Interestingly,	the	SC	projects	to	the	outer	shell	of	the	dLGN	(Bickford	et	al.,	2015;	

Harting	et	al.,	1991),	a	region	which	is	known	to	contain	cells	that	are	highly	direction	

selective	and	dominated	by	input	from	the	contralateral	eye,	as	well	as	to	the	lateral	

posterior	nucleus	(LP),	the	pulvinar	equivalent	for	mice.	The	LP	is	connected	

bidirectionally	to	higher	visual	areas	(Hughes	1977;	Herkenham,	1980).	The	density	of	RGC	

projections	to	SC	vs.	LGN	in	mice	(90%	vs.	30-40%	(Martin,	1986)),	suggests	that	the	

extrageniculate	pathway	may	be	a	prominently	important	system	for	the	mouse	that	the	

non-human	primate	system	has	replaced	with	a	more	elaborate	retinogeniculate	system.	

The	LP	system	thus	remains	a	caveat	in	our	use	of	mouse	visual	cortex	as	a	working	model	

for	classical	hierarchical	organization,	especially	considering	that	inactivating	V1	does	not	

alter	the	spatiotemporal	tuning	of	HVAs	while	inactivating	SC	does	(Tohmi	et	al.,	2014).	

Moreover,	the	weaker	projection	from	the	SC	to	the	dLGN	has	also	been	demonstrated	to	

modulate	responses	in	V1,	in	a	manner	that	is	independent	of	LP	(Ahmadlou	et	al.,	2018).	

However,	similar	loss	of	function	of	some	HVAs	has	been	reported	with	SC	inactivation	in	

cats	(Lomber	et	al.,	2002;	Ogino	and	Ohtsuka	2000;	Dean	and	Redgrave,	1984a,b)	as	well	as	

in	primates,	albeit	less	robustly	(Bruce	et	al.,	1986;	Rodman	et	al.,	1990).	Thus,	the	

extrageniculate	system	in	any	species	tests	the	validity	of	the	canonical	classical	

hierarchical	framework	of	the	central	visual	pathway;	especially	considering	that	V1	

inactivation	does	not	alter	higher	visual	area	MT	activity	in	macaque	(Girard	et	al.,	1992;	

Rodman	et	al.,	1989).	In	addition	to	its	suggested	role	in	“blindsight”	(Brindley	et	al.,	1969;	
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Pasik	and	Pasik	1971),	the	extrageniculate	path	has	been	proposed	to	provide	context	and	

modulate	visual	processing	(Dean	and	Redgrave,	1984b;	Roth	et	al.,	2016).			

The	complexity	of	the	mouse	visual	system	has	recently	been	revealed,	first	with	

triple	anterograde	tracing	(Wang	and	Burkhalter,	2007),	and	later	established	with	

functional	imaging	of	retinotopic	maps	(Garrett	et	al.,	2014;	Wekselblatt	et	al.,	2016;	

Zhuang	et	al.,	2017).	Complex	visually	guided	behaviors	have	also	been	demonstrated,	

calling	to	question	how	rudimentary	the	mouse	visual	system	really	is	(Andermann	et	al.,	

2010;	Hoy	et	al.,	2016;	Poort	et	al.,	2015;	Prusky	et	al.,	2000).	Recent	evidence	suggests	

parallel	stream	organization	in	the	mouse,	akin	to	humans	and	primates,	with	some	visual	

areas	projecting	more	densely	to	ventral	regions,	and	some	visual	areas	projecting	more	

densely	to	dorsal	regions	of	the	brains	(Wang	et	al.,	2011;	Wang	et	al.,	2012).	

	

1.2.2	Identifying	Extrastriate	Areas		

Recent	efforts	to	gain	an	understanding	of	mouse	visual	cortex	have	led	to	an	

evolution	in	the	description	of	areas	surrounding	V1.	As	noted	previously,	retinotopic	maps	

can	be	used	to	segregate	regions	of	mouse	visual	cortex,	given	the	definition	that	a	visual	

area	does	not	contain	a	redundant	region	of	visual	space.	Olavarria	and	Montero	were	the	

first	to	study	the	organization	of	mouse	visual	cortex	using	tracer	injections	into	V1	in	

combination	with	tracer	injections	into	the	contralateral	hemisphere	as	a	way	to	label	

callosal	connections	(Olavarria	and	Montero	1989).	They	identified	8-9	patches	of	

projections	surrounding	V1	with	the	callosal	projections	serving	as	landmarks	between	V1	

and	surrounding	extrastriate	cortex.	Wang	and	Burkhalter	first	presented	the	widely	

accepted	area	map	of	visual	cortex	using	triple	anterograde	tracing	with	different	
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fluorescent	dextrans	into	V1	(Wang	and	Burkhalter,	2007).	Using	this	method,	in	

combination	with	retrograde	tracing	of	bisbenzimide	to	label	callosal	connections,	ten	

extrastriate	areas	were	identified	and	their	receptive	fields	mapped.	

Today,	the	area	map	of	visual	cortex	can	be	determined	using	intrinsic	signal	optical	

imaging	(Garrett	et	al.,	2014)	and	widefield	calcium	imaging	(Wekselblatt	et	al.,	2016;	

Zhuang	et	al.,	2017).	Garrett	et	al.,	2014	were	the	first	to	present	a	modification	to	the	

mapping	technique	of	Kalatsky	and	Stryker	(Kalatsky	and	Stryker,	2003),	which	used	a	

temporally	periodic	stimulus	(drifting	bar	in	azimuth	or	elevation	in	each	direction)	and	

Fourier	analysis	of	the	hemodynamic	signal	to	map	retinotopy.	The	modification	of	

stimulating	the	mouse’s	entire	contralateral	visual	field	and	holding	the	size	of	the	drifting	

bar	constant	at	the	edges	of	the	monitor	generates	azimuth	and	elevation	phase	maps	that	

may	be	used	to	generate	borders.	A	visual	field	sign	map	is	taken	as	the	sine	of	the	

difference	in	the	gradients	of	the	two	orthogonal	phase	maps.	Using	this	technique,	similar	

areas	were	identified	as	those	by	Wang	and	Burkhalter	2007,	with	a	total	of	10	extrastriate	

areas	identified.	Zhuang	et	al.,	2017	present	an	extended	retinotopic	map,	which	includes	

14	proposed	areas.	Zhuang	et	al	also	confirmed	borders	obtained	by	widefield	calcium	

imaging	at	the	cellular	level	using	two-photon	calcium	imaging.	Further,	they	illustrate	

nicely	how	the	higher	visual	areas	are	biased	to	certain	parts	of	the	visual	field,	specializing	

in	different	subfields.	The	use	of	widefield	calcium	and	intrinsic	signal	optical	imaging	to	

obtain	maps	of	higher	visual	areas,	which	can	then	be	probed	psychometrically,	has	already	

greatly	facilitated	our	understanding	of	the	function	of	higher	visual	areas	(Juavinett	et	al.,	

2015;	Juavinett	et	al.,	2017;	Rhim	et	al.,	2017).	
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1.2.3	Evidence	for	Hierarchical	Organization		

As	in	primates,	information	from	the	retina	may	reach	higher	visual	areas	of	mice	by	

two	routes.	Although	the	proportion	of	RGCs	that	project	to	the	dLGN	in	mice	is	far	fewer	

than	in	primates,	primary	visual	cortex	is	necessary	for	visual	tasks	(Glickfeld	et	al.,	2013b;	

Marques	et	al.,	2018).		In	the	classical	hierarchical	model,	LGN	projects	only	to	the	primary	

visual	cortex.	However,	the	LGN	of	both	mice	and	primates	projects	to	higher	visual	areas	

(Benevento	and	Yoshida,	1981;	Bullier	and	Kennedy,	1983;	Fries	1981;	Lysakowski	et	al.,	

1988).	Tracing	studies	based	on	laminar	projections	indicate	that	rodent	visual	cortex	is	

hierarchically	organized	(Coogan	and	Burkhalter,	1993;	Wang	and	Burkhalter,	2007;	Wang	

et	al.,	2011).	V1	projects	to	higher	visual	areas,	with	the	densest	projections	sent	to	areas	

LM,	AL,	RL,	A,	AM,	PM,	LI,	P	and	POR	(Wang	et	al.,	2007).	The	information	flow	from	the	

retina	may	also	be	as	follows:	superior	colliculus	to	the	lateral	posterior	nucleus	to	V1	and	

directly	to	all	higher	visual	areas.		

As	visual	information	is	relayed	to	higher	visual	areas,	receptive	fields	become	

larger,	magnification	factor	increases	(Espinoza	and	Thomas,	1983)	and	fewer	neurons	are	

responsive	to	simple	stimuli,	such	as	drifting	gratings,	preferring	more	complex	visual	

stimulation	(Marshel	et	al.,	2011).	In	the	primate	visual	cortex,	interareal	projections	either	

terminate	in	layer	4	if	they	are	feed	forward	or	superficial	and	deep	layers	if	they	are	

feedback	(Felleman	and	Van	Essen	1991).	For	the	mouse	and	rodent,	feedforward	

terminations	extend	all	areas	but	are	strongly	biased	towards	layer	2/3	and	4,	while	

feedback	terminations	are	densest	in	layer	1	and	least	dense	in	layer	4	(Coogan	and	

Burkhalter	1993,	D’Souza	et	al.,	2016).	Recently,	D’Souza	et	al.	2016	examined	the	laminar	

projection	biases	of	areas	V1,	LM	and	PM	using	anterograde-tracing	techniques.	They	
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injected	biotinylated	dextranamine	(BDA)	into	each	area	and	measured	the	density	of	

projections	in	different	layers	of	seven	higher	visual	areas.	By	calculating	the	ratio	of	the	

density	of	terminations	in	layer	2/3	and	4	to	layer	1,	with	the	terminations	in	layer	2/3	and	

4	indicating	feedforward	projections	(or	lower	to	higher	level	processing)	and	layer	1	

indicating	feedback	(or	higher	levels	to	lower	level	processing),	they	were	able	to	assess	

the	relative	contribution	of	each	area	to	other	areas	in	terms	of	feedforward	and	feedback	

processing.	Higher	layer	2/3	and	4	to	layer	1	ratio	indicates	more	feedforward	processing,	

and	V1	was	the	most	feedforward	processing	area	of	the	three,	indicating	it	was	at	the	

bottom	of	the	hierarchy	between	the	three.	PM	was	at	the	top,	with	the	smallest	layer	2/3	

to	layer	4	density	ratios.	They	also	found	evidence	of	a	scaling	down	of	the	

inhibition/excitation	ratio	from	the	most	feedforward	to	the	most	feedback.		

In	an	earlier	study,	Berezovskii	et	al.,	2011	found	distinct	circuits	for	feedforward	

and	feedback	information	by	using	retrograde	and	anterograde	tracing	techniques.	They	

counted	the	number	of	double-labeled	neurons	within	LM	after	injecting	a	retrograde	

tracer	into	AL	and	an	anterograde	tracer	into	V1.	Using	this	approach,	approximately	2%	of	

cells	were	double	labeled	in	LM.	This	suggests	feedforward	and	feedback	pathways	in	the	

mouse	involve	distinct	cell-type	specific	circuits.	It	has	been	shown	that	the	functional	

projections	of	V1	cells	to	higher	visual	areas	are	target-specific	(Glickfeld	et	al.,	2013a).	

However,	feedforward	projections	of	single	neurons	in	mouse	visual	cortex	often	target	

multiple	areas	at	a	time,	but	the	likeliness	of	their	connectivity	seems	to	link	areas	with	

similar	visual	tuning	properties	(Han	et	al.,	2018).	Thus,	it	seems	that	the	there	is	

functionally	specific	circuits	linking	different	levels	of	cortex,	as	expected	from	the	classical	

hierarchical	model.		
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Unfortunately,	despite	the	extensive	knowledge	we	now	have	on	the	regional	

connectivity	of	extrastriate	cortex,	we	still	do	not	know	the	function	of	many	of	these	

higher	visual	areas.	Moreover,	there	is	still	uncertainty	regarding	the	types	of	complex	

visual	processing	mice	are	capable	of.	Using	visual	stimuli	that	are	more	complex	than	

drifting	gratings,	others	have	identified	cells	that	participate	in	the	encoding	of	global	

motion	of	a	plaid	pattern	(Juavinett	and	Callaway	2015;	Muir	et	al.,	2015;	Palagina	et	al.,	

2017),	demonstrating	that	higher	visual	areas,	and	V1,	are	capable	of	processing	pattern	

motion.	A	study	on	rats	also	concluded	that	the	lateral	extrastriate	areas	LM,	LI	and	LL	

might	represent	an	object	identification	pathway	(Tafazoli	et	al.,	2017).	Thus,	although	we	

don’t	know	the	functions	of	each	individual	area	in	mouse	extrastriate	cortex,	evidence	

suggests	that	rodents	are	capable	of	more	complex	visual	processing	tasks	than	previously	

appreciated,	and	thus,	warrant	probing	into	the	underlying	circuitry	(Bussey	et	al.,	2001;	

Vermaerke	et	al.,	2012;	Tafazoli	et	al.,	2017;	Matteucci	et	al,	2019;	Hoy	et	al.,	2016;	

Baroncelli	et	al.,	2013).		

	

1.2.4	Evidence	for	parallel	stream	processing		

Functional	and	anatomical	evidence	suggests	that	mouse	visual	cortex	may	be	

parsed	into	putative	dorsal	and	ventral	streams.	Numerous	studies	have	established	that	

the	higher	visual	areas	have	distinct	spatiotemporal	frequency	selectivity	and,	in	general,	

are	more	selective	in	their	responses	to	drifting	gratings	than	V1	(Marshel	et	al.,	2011;	

Andermann	et	al.,	2011;	Roth	et	al.,	2012).	By	identifying	mean	area	preferences	in	spatial	

frequency,	temporal	frequency,	direction	and	orientation	selectivity,	the	segregation	of	

areas	into	dorsal	vs.	ventral-related	areas	began	to	be	inferred.	Moreover,	visual	



24	
	

stimulation	propagates	through	distinct	regions	of	visual	cortex	in	parallel	after	V1	is	

activated	(Polack	and	Contreras,	2012).	A	more	recent	study	examined	correlated	activity	

of	higher	visual	areas	through	development	and	found	two	distinct	subnetworks	whose	

areas	match	their	anatomical	assignments	of	dorsal	and	ventral	streams	(Smith	et	al.,	

2017).	Analysis	of	a	series	of	tracing	experiments	allowed	Wang	and	colleagues	to	group	

the	higher	visual	areas	into	putative	dorsal	and	ventral	streams	(Wang	et	al.,	2012).	In	each	

study,	LM	is	grouped	in	the	ventral	stream	and	PM	is	grouped	in	the	dorsal	stream.		

A	prominent	area	grouped	into	the	primate	dorsal	stream	is	area	MT,	the	motion	

responsive	area.	Early	filtering	for	motion	processing	is	selective	for	neurons	that	are	

sensitive	to	the	direction	of	a	visual	stimulus.	For	example,	area	MT	in	macaque	contains	a	

high	proportion	of	directionally	tuned	neurons—much	more	than	primary	visual	cortex	

(Movshon	and	Newsome	1996).	Further,	in	this	area	exists	neurons	that	respond	to	global	

motion,	or	motion	of	a	complex	pattern.	Using	antidromic	stimulation	of	area	MT,	Movshon	

and	Newsome	found	a	small	number	of	V1àMT	projections	that	were	highly	direction	

selective	and	responded	only	to	the	motion	of	the	components	of	patterns.	This	indicates	

that	in	the	primate	cortex,	cells	from	V1	may	send	functionally	specific	information	to	

higher	area	MT,	which	is	important	for	dorsal	stream	processing.	The	same	appears	to	be	

true	also	for	mice	(Glickfeld	et	al.,	2013).	Whether	cells	involved	in	one	stream	processing	

are	unique	to	those	involved	in	another	remains	elusive.	The	output	of	V1	is	functionally	

specific	to	the	target	regions	in	terms	of	spatiotemporal	selectivity	and	cells	linked	to	

different	target	areas	with	distinct	spatiotemporal	selectivity	appear	to	be	distinct	from	

another	(Kim	et	al.,	2017).		
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1.2.5	Area	LM:	Mouse	V2?	

Area	LM	has	been	described	as	mouse	V2	because	it	shares	the	vertical	meridian	

with	V1	and	V1	sends	its	densest	projections	to	LM	(Wang	et	al.,	2012).	LM	is	the	largest	of	

the	extrastriate	areas,	sitting	adjacent	to	V1	on	the	lateral	side,	adjacent	to	two	areas	

grouped	into	the	putative	ventral	stream,	LI	and	LL.	Due	to	its	bias	for	the	upper	nasal	

visual	field	(Zhuang	et	al,	2017),	LM	is	a	good	candidate	to	understand	the	transformations	

of	binocular	cells	along	the	cortical	hierarchy.	Perhaps	depending	on	the	state	of	the	animal	

and	stimuli	shown,	LM	may	have	a	similar	mean	spatial	frequency	tuning	as	V1	or	slightly	

lower	(Glickfeld	and	Olsen	2017).	Area	LM	has	been	associated	with	ventral	stream	

processing	(Wang	et	al.,	2012;	Smith	et	al.,	2017)	although	others	have	provided	evidence	

associating	it	with	dorsal	stream	processing	as	well	(Juavinett	and	Callaway,	2015).	Equally	

valid,	it	may	be	that	area	LM	is	more	like	V2,	in	that	it	contains	cells	that	are	functionally	

specialized	for	each	processing	stream.	In	line	with	possessing	ventral	stream	capabilities,	

rodents	are	able	to	discriminate	objects	(Bussey	et	al.,	2001;	Vermaerke	et	al.,	2012;	

Tafazoli	et	al.,	2017).	Evidence	for	an	object-processing	pathway	in	rodent	suggests	that	V1,	

LI	and	LL	comprise	a	hierarchical	cortical	object	identification	pathway	(Tafazoli	et	al.,	

2017;	Matteucci	et	al,	2019).	No	evidence	was	found	that	suggests	LM	is	grouped	into	this	

hierarchical	object	identification	pathway	(Tafazoli	et	al.,	2017).	Thus,	more	experiments	

are	needed	to	determine	the	role	of	LM	in	the	putative	dorsal/ventral	streams	of	mice.	

Anatomically,	it	appears	to	connect	preferentially	to	ventral	areas,	but	functionally,	there	is	

a	lack	of	evidence	for	this	area	in	object	processing.		
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1.2.6	Area	PM:	A	high	spatial	frequency	dorsal	area?	

Area	PM	sits	adjacent	to	V1	on	the	medial	side	and	is	more	biased	to	the	lower	

temporal	visual	field	(Zhuang	et	al.,	2017).	PM	has	consistently	been	shown	to	prefer	

relatively	high	spatial	frequencies	and	lower	temporal	frequencies	than	other	higher	visual	

areas	(Andermann	et	al.,	2011;	Marshel	et	al.,	2011;	Roth	et	al.,	2012;	Glickfeld	et	al.,	2013)	

as	well	as	a	bias	for	cardinal	directions	(Roth	et	al.,	2012).	Due	to	its	projections	to	

retrosplenial	cortex	and	cardinal	tuning	preferences,	it	has	been	proposed	that	PM	might	

be	important	for	visuospatial	navigation	(Roth	et	al.,	2012).	Excitingly,	mice	use	landmarks	

to	navigate	through	their	virtual	environment	and	exhibit	many	correlates	of	spatial	

navigation	in	the	hippocampus	and	retrosplenial	cortex	(Harvey	et	al.,	2009;	Czajkowski	et	

al.,	2014;	Mao	et	al.,	2017).	PM	has	been	shown	to	be	responsive	to	slow	speeds,	indicative	

of	dorsal	stream	processing	(Andermann	et	al.,	2011;	Roth	et	al.,	2012)	and	possibly	

playing	a	role	in	coding	natural	scenes	of	the	periphery	due	to	its	cardinal	bias	(Girschick	et	

al.,	2011;	Hansen	et	al.,	2003).	

	

1.2.7	How	Mouse	Visual	Circuitry	Informs	Our	Understanding	of	Visual	Processing		

Historically,	the	mouse	visual	system	was	largely	overlooked	due	to	their	low-

resolution	acuity.	Acuity	thresholds	for	mice	are	far	lower	than	humans	and	primates	and	

their	binocular	visual	field	is	quite	small.	Despite	these	differences,	mice	can	perform	

visually	guided	tasks	(Prusky	et	al.,	2000,	Bussey	et	al.,	2001;	Andermann	et	al.,	2010;	Hoy	

et	al.,	2016).	They	also	have	a	constellation	of	higher	visual	areas	surrounding	V1,	much	

like	primate	visual	cortex	with	properties	that	fall	within	dorsal	and	ventral	like	stream	

processing.	The	organization	of	cortex	is	also	similar,	although	by	no	means	reiterated,	in	
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the	mouse:	they	have	a	six-layer	cortex	whose	organization	seems	to	generally	follow	the	

feedforward	and	feedback	organization	of	primates,	inhibitory	and	excitatory	cell	types	

and	retinotopic	organization.	Moreover,	a	comparison	of	the	neurophysiology	of	cells	

within	V1	in	mice	and	primates	is	quite	similar.	For	instance,	both	contain	simple	and	

complex	cells	(Dräger	1975;	Niell	and	Stryker	2008;	Hubel	and	Wiesel	1974b)	

orientation/direction	tuned	cells,	spatial	frequency	tuning	and	cells	that	respond	

preferentially	to	one	of	either	or	both	eyes.	Thus,	understanding	the	underlying	circuitry	

involved	in	the	components	of	visual	processing	that	are	shared	by	primates	and	mice	alike	

could	reveal	much	about	how	these	cortical	computations	are	solved	in	primates.		

Owing	to	Hubel	and	Wiesel’s	discovery	of	ocular	dominance	columns	in	primates	

and	carnivores,	an	intensely	studied	process	is	binocularity	in	the	visual	cortex.	While	

primates	and	carnivores	have	prominent	ocular	dominance	columns,	mice	do	not	(Gordon	

and	Stryker,	1996;	Antonini	et	al.,	1999).	This	may	be	in	part	due	to	vastly	different	amount	

of	retinal	territory	dedicated	to	the	ipsilateral	eye	(Merlin	et	al.,	2013).	The	eyes	of	the	

mouse	are	placed	largely	on	the	sides	of	their	heads	so	their	binocular	visual	field	is	limited	

to	that	of	humans	and	non-human	primates	(30°	for	mice,	120°	for	humans).	Until	recently,	

it	was	widely	believed	that	V1	in	mice,	like	humans	and	primates,	was	the	first	site	of	

binocular	convergence,	but	studies	have	demonstrated	that	there	is	binocularity	in	LGN	of	

mice	(Howarth	et	al.,	2014;	Rompani	et	al.,	2017;	Jaepel	et	al.,	2017;	Huh	et	al.,	2018).	These	

studies	have	prompted	detailed	examination	of	primate	LGN	and	binocularity	has	also	been	

found	in	the	koniocellular	layers	of	primate	LGN	(Zeater	et	al.,	2015).	Moreover,	the	genetic	

tools	available	for	studying	mouse	circuitry	continue	to	improve,	allowing	researchers	to	

correlate	brain	activity	with	behavior.	Thus,	studies	of	the	mouse	visual	system,	in	light	of	



28	
	

the	known	species	differences,	can	inform	hypotheses	about	human	vision	which	can	be	

directly	tested	in	primates.		

A	shift	in	favor	of	using	the	mouse	as	a	model	organism	to	study	visual	processing	

coincides	with	an	expansion	in	the	use	of	genetically	encoded	calcium	indicators	(GECIs)	to	

understanding	neural	processing.	The	improvements	in	GCaMPs	and	coupling	CRE	

recombinases	allow	researchers	to	image	activity	deep	within	the	brain,	at	multiple	layers	

and	for	multiple	cell	types.	However,	the	switch	of	GECIs	for	electrophysiological	

techniques	results	in	trade	offs	for	each.	GECIs,	like	GCaMP,	are	correlates	of	neural	activity,	

detecting	calcium	transients	in	a	graded	but	non-linear	fashion	(Chen	et	al.,	2013).	

Although	improvements	to	GCaMPs	enable	the	detection	of	single	action	potentials,	insight	

into	electrophysiological	markers	of	physiologically	distinct	cell	types	(simple	vs.	complex,	

for	example)	are	lost	without	using	some	type	of	deconvolution	algorithm	to	transform	the	

fluorescence	signals	into	action	potentials,	or	a	very	fast	indicator.	Moreover,	the	ability	to	

detect	weak	signals	for	both	recording	techniques	is	likely	not	the	same	due	to	the	

difference	in	noise	characteristics	for	each	system.	Resolving	the	mounts	of	historical	data	

fathered	by	single	unit	recordings	with	the	explosion	of	new	data	generated	by	calcium	

imaging	is	a	challenge	that	is	still	ongoing.	However,	genetically	encoded	voltage	indicators	

may	bypass	the	need	for	this	resolution	(Panzera	and	Hoppa	2019).	Moreover,	a	benefit	to	

imaging	methods	in	comparison	with	electrophysiological	methods	is	the	ability	to	actually	

see	many	cells	during	a	single	experiment,	trace	their	activity	chronically	and	to	quantify	

cells	that	are	not	excited	by	probed	stimuli.	This	contributes	immensely	to	our	

understanding	of	the	types	of	processing	single	cells	and	whole	areas	are	capable	of.		



29	
	

There	are	numerous	practical	reasons	for	conducting	vision	studies	on	mice.	Mice	

are	inexpensive,	small,	can	be	trained	to	complete	behavioral	tasks	and	their	entire	visual	

cortex	can	be	studied	with	a	5	mm	cranial	window.	Many	more	caveats	exist	than	have	

been	explained	in	the	previous	sections	for	choosing	to	use	mice	in	vision	studies.	One	

important	caveat	is	the	emphasis	on	the	central	visual	pathway,	in	both	primates	and	mice,	

in	a	system	where	the	dominant	output	of	the	retina	is	to	the	superior	colliculus.	On	the	

other	hand,	extensive	probing	of	the	extrageniculate	pathway	in	mice	may	lead	us	to	a	

better	understanding	of	its	role	in	mediating	visually	guided	behaviors	in	primates.	Any	

potential	inconsistencies	between	mouse	and	primate	visual	systems	will	prompt	

researchers	to	consider	the	ethological	relevance/	implications	of	their	findings	and	to	

think	of	the	organism	as	a	whole,	thus	providing	a	context	by	which	to	move	forward	in	our	

understanding	of	brain	function.		

	

1.3:	Visual	Cortical	Plasticity-	Critical	Periods		

Although	mice	may	lack	some	of	the	cortical	functional	architecture	described	in	

cats	and	primates,	such	as	the	columnar	organization	(Gordon	and	Stryker,	1996;	Antonini	

et	al.,	1999;	Ohki	et	al.,	2005;	Ohki	and	Reid,	2007,	but	see	Fahey	et	al.,	2019),	they	share	

many	of	the	neurophysiological	characteristics	described	in	primates,	such	as	tuning	for	

eye-specificity,	orientation,	direction,	spatial	frequency	and	temporal	frequency.	Endowed	

with	the	machinery	to	perform	cortical	computations	important	for	more	complex	visual	

processing	downstream,	the	mouse	visual	system	has	become	the	most	prominent	model	in	

understanding	mechanisms	of	visual	cortical	plasticity.	Of	the	most	central	forms	of	cortical	

plasticity	are	those	that	arise	during	a	critical	period	in	life.	A	critical	period	is	assigned	
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when	experience	is	vital	for	the	maturation	of	some	form	of	processing.	The	critical	period	

usually	falls	within	a	discrete	window,	although	the	boundaries	can	be	fuzzy,	during	which	

absence	of	experience	leads	to	deleterious	effects	later	in	life.	There	are	many	critical	

periods	for	different	types	of	information	and	particular	visual	processing	already	

established	in	mice:	for	example,	ocular	dominance,	acuity	and	interocular	orientation	

matching	(reviewed	in	Espinosa	and	Stryker	2012;	Gordon	and	Stryker	1996;	Prusky	and	

Douglas	2003;	Wang	et	al.,	2010).	Historically,	much	of	the	research	on	these	forms	of	

plasticity	has	been	restricted	to	V1.	With	the	recent	rise	in	our	understanding	and	ability	to	

examine	mouse	extrastriate	areas,	fundamental	questions	about	the	development	and	

plasticity	of	higher	visual	areas	can	now	be	probed	in	mice.		

It	has	since	been	discovered	that	many	aspects	of	the	functional	architecture	of	the	

visual	system	do	not	require	external	visual	stimuli,	while	others	do.	For	example,	the	

retinotopic	map	formation	happens	before	eye	opening	but	is	dependent	on	spontaneous	

retinal	waves	(Cang	et	al.,	2008).	In	the	next	few	sections	of	the	chapter,	I	will	briefly	

review	what	is	known	about	the	development	and	experience-dependence	of	features	

discussed	in	the	dissertation:	ocular	dominance,	orientation	and	direction	selectivity,	

spatial	frequency	and	temporal	frequency.	I	will	conclude	the	section	with	what	is	

currently	known	about	the	development	of	mouse	higher	visual	areas.		

	

1.3.1	Ocular	Dominance	Plasticity	

In	their	early	studies,	Hubel	and	Wiesel	discovered	an	early	window	for	enhanced	

cortical	plasticity	by	depriving	animals	of	visual	input	through	one	eye	and	recording	the	

responsivity	to	visual	stimuli	later	in	life.	Generally,	neurons	respond	preferentially	to	one	
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eye	over	the	other,	termed	ocular	dominance	(OD)	by	Hubel	and	Wiesel	(Hubel	and	Wiesel,	

1962).	Depriving	an	animal	of	visual	experience	from	one	eye	(monocular	deprivation,	MD)	

during	the	critical	period	results	in	a	shift	in	responsiveness	away	from	the	deprived	eye	

and	towards	the	non-deprived	eye	when	probed	with	visual	stimuli,	typically	drifting	

oriented	lines	(Wiesel	and	Hubel,	1963;	Hubel	and	Wiesel	1970;	Hubel	et	al.,	1977).	This	

change	in	plasticity	is	accompanied	by	shrinkage	of	ocular	dominance	columns	(ODCs)	of	

the	closed	eye	in	favor	of	the	open	eye	(Hubel	et	al.,	1977;	Le	Vay	et	al.,	1980;	Swindale	et	

al.,	1981;	Horton	and	Hocking,	1997).	This	disruption	of	binocular	organization	and	shift	in	

ocular	dominance	tuning	is	called	ocular	dominance	plasticity	(ODP).	The	discovery	of	MD-

induced	ODP	and	its	long	lasting	effects	on	cortex	by	Hubel	and	Wiesel	led	to	an	explosion	

of	research	on	the	mechanisms	of	ODP	and	the	hunt	for	more	critical	periods.		

The	effect	on	the	shapes	of	ODCs	induced	by	early	monocular	deprivation	suggests	

that	the	initial	formation	of	ODCs	does	not	require	visual	experience.	In	fact,	the	functional	

organization	of	the	cortical	column,	in	terms	of	ocular	dominance	and	orientation,	does	not	

require	visual	experience	for	its	formation	(Wiesel	and	Hubel,	1963;	Sherk	and	Stryker,	

1976,	Crair	et	al.,	1998;	Rakic	1976;	Horton	and	Hocking,	1996;	Des	Rosiers	et	al.,	1978).	

Thus	the	initial	formation	of	the	functional	organization	of	cortex	appears	to	be	largely	

innate—although	visual	experience	can	modify	the	existing	columnar	organization	by	

modifying	column	widths,	switching	eye	territory	for	ODCs.	This	also	seems	to	be	the	case	

when	considering	V1	outputs	to	V2	(which	also	maintains	its	columnar	organization),	

where	visual	deprivation	does	not	alter	the	functional	segregation	of	V1	outputs	to	V2	in	

amblyopic	macaques	(Sincich	et	al.,	2012).	
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Is	there	any	information	on	how	monocular	deprivation	may	impact	one	stream	of	

visual	processing	over	the	other?	Horton	and	Hocking	found	that	the	ocular	dominance	

columns	in	the	parvocellular	layer	(Layer	4Cb)	were	more	impacted	than	those	in	the	

magnocellular	layer	of	V1	(Layer	4Ca)	and	no	discernable	effect	on	the	koniocellular	layer	

of	V1	(Layer	3)	(Horton	and	Hocking,	1997).	However,	to	date	there	is	little	information	on	

the	effects	of	monocular	deprivation	during	the	critical	period	on	ocular	dominance	

plasticity	of	higher	visual	areas.	One	study	compared	the	effects	of	monocular	deprivation	

in	V1	and	an	extrastriate	area	lateral	suprasylvian	(LS)	in	cats.	Despite	LS	having	an	earlier	

termination	of	its	critical	period	for	ODP,	the	effects	of	MD	were	comparable	in	magnitude	

in	regards	to	the	OD	shift	of	V1	(Jones	et	al.,	1984).	

The	genetic	tools	available	to	the	mouse	led	researchers	to	shift	their	attention	

toward	the	mouse	to	understand	cellular	and	molecular	mechanisms	of	ODP.	Cells	in	V1	of	

normal	adult	mice	have	a	high	contralateral	eye	bias	(Dräger,	1975;	Gordon	and	Stryker,	

1996),	which	shifts	towards	the	ipsilateral	eye	when	visually	deprived	through	the	

contralateral	eye	between	P19	and	32	(Gordon	and	Stryker,	1996).	Accompanied	by	this	

shift	in	ODP	is	a	decrease	in	acuity	(Prusky	and	Douglas	2003).	Initial	studies	

demonstrating	that	neurons	of	the	dLGN	did	not	display	functional	changes	after	MD	led	

many	to	believe	that	the	site	of	ODP	began	in	V1	(Wiesel	and	Hubel,	1963;	Blakemore	and	

Vital-Durand,	1986),	even	though	dLGN	afferents	do	differ	with	MD	(Shatz	and	Stryker,	

1978;	Antonini	and	Stryker,	1993;	Antonini	et	al.,	1999;	Coleman	et	al.,	2010).	Thus,	

extensive	work	has	evolved	from	the	initial	findings	that	MD	induces	ODP	in	mice,	

especially	on	the	effects	of	MD	in	V1	(reviewed	in	Levelt	and	Hübener,	2012).	However,	

recent	studies	have	demonstrated	ODP	at	the	level	of	the	dLGN	in	mice	(Huh	et	al.,	2018;	
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Jaepel	et	al.,	2017;	Sommeijer	et	al.,	2017),	pointing	towards	the	thalamus	as	an	earlier	site	

of	MD-induced	ODP.		

For	mice,	cats	and	primates	alike,	there	is	a	gap	in	our	understanding	of	the	critical	

period	for	ocular	dominance	plasticity	in	higher	visual	areas	of	cortex.	Filling	this	gap	is	

important	for	understanding	how	plasticity	is	relayed	downstream.	V1	has	been	described	

as	the	first	step	in	the	cortex	for	visual	processing,	yet	there	is	extensive	work	solely	

focusing	on	V1	plasticity.	If	the	critical	period	for	ODP	is	as	important	as	presumed,	it	

should	cause	perceptual	alterations	in	vision,	especially	if	ODP	is	used	as	a	model	for	the	

developmental	disorder	amblyopia.	Amblyopia,	which	is	associated	with	impaired	visual	

acuity,	is	insufficiently	described	by	functional	deficits	at	the	level	of	V1	alone	(Kiorpes	and	

McKee	1999;	Kiorpes	et	al.,	1998)	and	it	is	likely	that	higher	visual	areas	are	more	severely	

impacted	by	abnormal	visual	experience	(Kiorpes,	2016).			

	

1.3.2	Spatial	and	Temporal	Frequency	Tuning		

Acuity,	a	measurement	of	the	ability	to	see	fine	details,	matures	with	age	and	also	

appears	to	be	experience-dependent	(Boothe	et	al.,	1985;	Maurer	et	al.,	1999;	Kang	et	al.,	

2013).	Monocular	deprivation	(MD)	in	early	development	disrupts	the	proper	development	

of	acuity,	particularly	in	the	eye	that	is	deprived	(Dews	and	Wiesel,	1970;	Hess	and	Howell,	

1977;	Levi	and	Harwerth,	1977;	Fagiolini	et	al.,	1994;	Kiorpes	et	al.,	1998;	Prusky	et	al.,	

2000).	Although	the	shift	in	ocular	dominance	induced	by	MD	has	been	associated	with	a	

disruption	in	acuity,	recent	evidence	suggests	that	the	circuits	establishing	ODP	and	acuity	

are	distinct	(Stephany	et	al.,	2018).	The	effect	of	MD	on	maps	for	spatial	frequency	remains	

elusive.	However,	it	appears	that	disrupting	the	ocular	dominance	map	in	ferrets	via	
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monocular	enucleation	disrupts	the	layout,	but	not	the	presence,	of	maps	of	spatial	

frequency	and	orientation	in	the	hemisphere	contralateral	to	the	remaining	eye	(Farley	et	

al.,	2007).			

There	are	far	fewer	studies	on	the	development	and	experience-dependence	of	

temporal	frequency	tuning.	As	with	spatial	frequency	tuning,	temporal	frequency	matures	

after	eye	opening	(Zheng	et	al.,	2007).	Interestingly,	the	developmental	time	course	for	this	

maturation	is	faster	in	V1	than	it	is	in	V2.	It	appears	that	the	development	of	temporal	

modulation	sensitivity	is	experience-dependent,	with	monocular	deprivation	disrupting	

the	tuning	of	the	deprived	eye	in	particular	(Harwerth	et	al.,	1983).	While	functional	maps	

have	been	found	for	spatial	frequency,	a	modular	organization	for	temporal	frequency	

tuning	has	not	been	established	in	visual	cortex.	Notably,	Khaytin	et	al.,	2008	searched	for	

and	could	not	find	maps	of	preferred	temporal	frequency	in	primates	(Khaytin	et	al.,	2008).	

However,	neurons	may	change	their	response	properties	depending	on	stimulus	conditions	

for	spatial	frequency,	temporal	frequency,	orientation	and	direction	(Priebe	et	al.,	2006;	

Ayzenshtat	et	al.,	2016;	Basole	et	al.,	2003).	In	fact,	Basole	and	colleagues	found	that	many	

stimulus	conditions	could	activate	the	same	neural	populations,	and	argue	that	the	

functional	organization	of	V1	be	described	as	a	map	of	spatiotemporal	energy	(Basole	et	al.,	

2003).	Given	that	higher	level	processing	involves	the	integration	of	both	spatial	and	

temporal	frequency,	this	idea	of	V1	serving	as	a	spatiotemporal	energy	map	has	

implications	for	how	higher	visual	areas	could	acquire	their	distinct	responsiveness	for	

spatiotemporal	tuning,	providing	that	they	are	dependent	on	V1	output.	What	could	be	the	

downstream	consequences,	if	any,	of	altering	V1	spatiotemporal	tuning	early	in	

development?	
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1.3.3	Orientation	and	Direction	Selectivity	

Orientation	and	direction	are	early	features	that	can	be	linked	to	form	and	motion	

processing.	In	ferrets,	maps	for	direction	form	later	than	maps	of	orientation	(White	and	

Fitzpatrick,	2007).	Consequently,	developments	of	orientation	and	direction	tuning	in	

cortex	are	believed	to	be	independent	processes	in	ferrets	(Li	et	al.,	2006).	When	mice	are	

dark	reared,	orientation	and	direction	selectivity	appear	to	develop	normally	(Rochefort	et	

al.,	2011).	Orientation	selectivity	is	present	around	the	time	of	eye	opening	and,	unlike	

direction	selectivity,	appears	to	sharpen	during	the	course	of	development	(Chapman	and	

Stryker	1993;	Wiesel	and	Hubel,	1963;	White	et	al.,	2001;	Wiesel	and	Hubel	1974;	

Rochefort	et	al.,	2011).		Although	dark	rearing	does	not	appear	to	disrupt	the	orientation	

selectivity	of	cells	in	V1,	other	sensory	experience	manipulations	do	have	an	effect	on	

orientation	tuning	in	the	juvenile	(Kreile	et	al.,	2011;	Kim	and	Bonhoeffer,	1994;	Crair	et	al.,	

1997b;	Kang	et	al.,	2013).	Importantly,	monocular	deprivation	during	the	critical	period	

drastically	reduces	binocular	matching	for	orientation	tuning	(Wang	et	al.,	2010),	

demonstrating	that	the	two	are	linked	developmentally.	The	distinction	between	

orientation	and	direction	tuned	cells	and	their	association	with	stream	segregation	has	yet	

to	be	explored	in	depth	in	mouse	V1	and	HVAs.	If	and	how	orientation	and	direction	tuning	

are	selectively	perturbed	in	circuits,	or	even	if	they	are	separable	in	development	of	mouse	

visual	cortex,	has	still	yet	to	be	discerned.		

	

1.3.4	Development	of	Higher	Visual	Areas	

Much	of	the	work	centered	on	critical	period	plasticity,	particularly	in	mice,	or	the	

experience-dependence	of	some	visual	attribute	is	based	on	the	activity	of	V1.	This	is	
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largely	due	to	the	widely	accepted	fact	that	the	first	level	of	functional	differences	induced	

by	monocular	deprivation	appears	to	be	in	V1,	where	the	eye-specific	afferents	were	

altered.	The	development	of	more	complex	image	analysis	is	less	intensely	studied,	but	

perhaps	more	important	for	understanding	how	hierarchical	information	is	computed	

(Kiorpes,	2016).	The	limitations	of	restricting	studies	to	V1	are	demonstrated	by	the	

inability	to	describe	with	single	unit	recordings	from	V1	visual	perceptual	deficits	in	

models	of	amblyopia	(Kiorpes	et	al.,	1998).	A	cascade	of	developmental	trajectories,	

following	their	hierarchical	order	has	been	proposed	for	describing	the	development	of	the	

visual	system	(Kiorpes,	2016).	This	postulation	is	largely	based	on	the	fact	that	the	

detection	of	simple	visual	features	develops	faster	than	more	complex	ones	(Figure	1.3).		

What	do	we	currently	know	about	the	experience-dependence	of	higher	order	

features	or	higher	visual	areas?	In	one	study,	a	deficit	was	found	at	the	level	of	V2	in	

amblyopic	primates	in	terms	of	orientation	tuning	and	acuity,	where	none	could	be	found	

in	V1	(Bi	et	al.,	2011).	It	appears	that	amblyopia	induces	deficits	in	processing	motion	

(Tychsen	et	al.,	2004;	El-Shamayleh	et	al.,	2010)	and	difficulties	with	global	perception	

(Hess	et	al.,	1999;	Kovács	et	al.,	1999;	Kozma	and	Kiorpes,	2003;	Norcia	et	al.,	2005).	
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Figure	1.3:	Developmental	timeline	for	various	visual	functions.	Left	column	(a-d)	are	
developmental	trajectories	for	simple	features	(x-axis	indicates	Age	(weeks)).	Right	column	(e-h)	are	
developmental	trajectories	for	more	complex	visual	features.	Modified	(re-ordered)	from	Kiorpes,	Lynne.	
"The	puzzle	of	visual	development:	behavior	and	neural	limits."	Journal	of	Neuroscience	36.45	(2016):	11384-
11393.	

	
In	terms	of	the	mouse	literature,	only	recently	has	the	development	of	higher	visual	

areas	been	probed.	Two	studies	in	particular	have	pioneered	this	work,	but	neither	used	

monocular	deprivation.	Using	widefield	calcium	imaging,	Murakami	et	al.,	2017	

demonstrated	that	the	higher	visual	areas	gain	their	unique	spatiotemporal	tuning	profiles	

over	time,	and	become	more	functionally	segregated	with	increasing	days	of	eye	opening,	

until	they	plateau	around	~P25.	This	report	agrees	with	other	studies	using	cats	and	

monkeys	(DeAngelis	et	al.,	1993;	Chino	et	al.,	1997;	Zheng	et	al.,	2007).	With	intrinsic	signal	
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imaging,	Smith	et	al.,	2017	demonstrated	that	higher	visual	areas	grouped	into	the	putative	

ventral	stream	are	close	to	maturity,	in	terms	of	response	amplitude	elicited	by	visual	

stimulation,	at	the	time	of	eye	opening;	whereas	areas	grouped	into	the	putative	dorsal	

stream	take	longer	to	develop.	They	all	show	that	dark	rearing	preferentially	disrupts	the	

maturation	of	the	response	magnitude	of	dorsal	stream	areas.	However,	this	study	did	not	

examine	the	spatiotemporal	tuning	properties	of	areas	in	their	respective	streams	or	

determine	which	populations	in	particular	are	vulnerable	to	disrupted	visual	experience.		

How	might	the	developmental	maintenance	of	eye-specificity	in	the	cortex	shape	or	

instruct	the	spatiotemporal	selectivity	of	higher	visual	areas?	Orientation	has	been	coupled	

to	spatial	frequency	and	now	ocular	dominance	in	macaque.	Can	a	shift	in	ocular	

dominance	plasticity	coincide	with	a	consequential	disruption	in	other	tuning	properties,	

for	instance,	in	the	spatiotemporal	domain,	to	the	point	where	higher	visual	area	selectivity	

is	degraded	downstream?	If	the	higher	visual	areas	develop	in	a	hierarchical	fashion,	as	has	

been	hypothesized	in	higher	order	primates,	we	might	expect	that	the	deficits	seen	at	the	

level	of	V1	(shift	in	ODP,	disrupted	acuity)	may	just	be	the	first	step	in	a	developmental	

cascade	that	leads	to	a	immature	higher	cortical	organization.	Even	if	higher	visual	area	

selectivity	is	not	strictly	dependent	on	V1	during	the	development	and	HVAs	develop	

rather	independently	than	V1	(which	has	yet	to	be	determined),	the	extrageniculate	path	

houses	eye-specific	maps	in	the	SC	and	LP	and	may	also	yield	downstream	consequences	

for	HVA	selectivity.		
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1.4	Significance	Statement	

Understanding	the	circuits	underlying	mouse	vision	is	important	for	understanding	

principles	that	may	relate	to	human	visual	processing.	The	functional	architecture	of	the	

mouse	visual	system	is	closer	to	the	primate	than	previously	appreciated.	This	work	adds	

to	this	by	demonstrating	functional	motifs	at	V1	and	higher	visual	areas:	LM	and	PM.	It	

furthers	the	field	by	linking	ocularity	with	functional	specificity	at	multiple	levels	of	cortex	

and	then	determining	if	functional	specialization	is	dependent	on	eye-specific	visual	

experience.	By	using	monocular	deprivation	and	its	known	effect	on	ocular	dominance	

plasticity	as	a	way	to	determine	the	experience-dependence	of	higher	visual	area	

specialization,	we	may	also	provide	insight	into	models	of	amblyopia	(Hoyt,	2005).	
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CHAPTER	2:	Eye-specific	Functional	Properties	in	binocular	V1		

2.1	Introduction	

The	mammalian	visual	cortex	processes	spatial	information	using	neurons	that	are	

narrowly	tuned	to	specific	spatial	frequencies	(Maffei	and	Fiorentini,	1973;	Schiller	et	al.,	

1976a,b,	Movshon	et	al.,	1978a,b,	De	Valois	et	al.,	1982a).	Given	the	narrow	bandwidth	of	

cortical	responses,	neurons	tuned	to	the	highest	spatial	frequencies	should	set	the	limit	of	

visual	acuity.	Psychophysical	studies	have	long	suggested	that	binocular	vision	enhances	

spatial	acuity	over	monocular	viewing	by	enhancing	the	sensitivity	of	signal	detection	

(Pirenne,	1943;	Campbell	and	Green,	1965;	Blake	et	al.,	1981).	Together,	these	

observations	suggest	that	individual	neurons	in	visual	cortex	tuned	to	the	highest	spatial	

frequencies	are	likely	to	receive	eye-specific	inputs	whose	response	properties	are	well	

matched.	Hubel	and	Wiesel’s	initial	description	of	binocular	receptive	fields	reported	that	

eye-specific	inputs	to	cortical	neurons	are	similar	(Hubel	and	Wiesel,	1962).	Subsequent	

studies	that	explicitly	explored	spatial	frequency	tuning	in	binocular	neurons	found	

significant	but	quantitatively	modest	asymmetries	in	the	preferred	spatial	frequencies	and	

bandwidth	of	eye-specific	responses	(Skottun	and	Freeman,	1984;	Bergeron	et	al.,	1998;	

Saint-Amour	et	al.,	2004).	Other	studies,	however,	found	many	spatial	frequency	

mismatched	binocular	responses	in	cat	visual	cortex	(Hammond	and	Pomfrett,	1991;	

Hammond	and	Fothergill,	1994).	

The	mouse	system	has	emerged	as	a	prominent	model	for	studying	precise	wiring	

and	developmental	plasticity	in	the	central	visual	pathway	(Huberman	and	Niell,	2011;	

Espinosa	and	Stryker,	2012).	In	particular,	the	spatial	acuity	of	mouse	cortical	responses	

has	been	used	extensively	to	assess	cellular	and	molecular	mechanisms	for	binocular	
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system	development	(e.g.	Porciatti	et	al.,	1999;	Huang	et	al.,	1999;	Beurdeley	et	al.,	2012;	

Davis	et	al.,	2015).	Since	these	studies	used	indirect	measures	of	neuronal	activity,	such	as	

visually	evoked	potentials	and	intrinsic	signal	imaging,	they	cannot	address	whether	

binocular	responses	at	the	level	of	individual	cells	are	matched	at	the	highest	spatial	

frequencies.	Although	many	aspects	of	neuronal	response	properties	have	been	studied	

extensively	in	mouse	binocular	visual	cortex	(Dräger,	1975;	Wagor	et	al.,	1980;	Gordon	and	

Stryker,	1996;	Mrsic-Flogel	et	al.,	2007;	Wang	et	al.,	2010;	Scholl	et	al.,	2013),	the	

investigation	of	spatial	frequency	tuning	in	mice	has	been	largely	restricted	to	the	

monocular	zone	(Niell	and	Stryker,	2008;	Durand	et	al.,	2016;	Hoy	and	Niell,	2015).	Little	is	

known	about	binocular	matching	of	spatial	frequency	responses	in	mouse	visual	cortex	at	

the	level	of	single	neurons.	

In	this	study,	we	set	out	to	characterize	the	eye-specific	spatial	frequency	tuning	of	

neurons	in	the	binocular	zone	of	mouse	area	V1.	Using	calcium	imaging	of	excitatory	

neurons,	we	found	that	contralateral-eye	dominated	neurons	in	binocular	area	V1	are	

tuned	to	higher	spatial	frequencies	than	their	binocular	counterparts.	In	binocular	neurons,	

responses	that	are	matched	in	spatial	frequency	preference	are	matched	in	orientation	

preference,	whereas	cells	mismatched	in	spatial	frequency	preference	are	more	

mismatched	in	orientation	preference.	Furthermore,	we	found	that	contralateral	eye	

dominated,	high	spatial	frequency	tuned	neurons	are	biased	to	the	cardinal	axes.	These	

results	suggest	that	distinct	circuit	mechanisms	process	binocular	and	high	acuity	vision	in	

the	mouse	visual	system.	
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2.2	Materials	and	Methods	
	
2.2.1	Animals	

All	protocols	and	procedures	followed	the	guidelines	of	the	Animal	Care	and	Use	

Committee	at	the	University	of	California,	Irvine.	To	image	evoked	activity	in	excitatory	

neurons,	a	Camk2a-tTA	driver	line	(RRID:	IMSR_JAX:007004)	was	crossed	to	a	line	

expressing	the	calcium	indicator	GCaMP6s	under	the	control	of	the	tetracycline-responsive	

regulatory	element	(tetO)	(RRID:	IMSR_JAX:024742;	Wekselblatt	et	al.,	2016).	The	founder	

line	was	heterozygous	for	both	transgenes	and	maintained	by	breeding	with	wildtype	

C57BL/6	mice	(RRID:	IMSR_CRL:642).	Wildtype	mice	were	used	in	experiments	for	AAV-

mediated	expression	of	GCaMP6s.	Mice	were	weaned	at	P18-21	and	co-housed	with	one	or	

more	littermate	until	the	day	of	window	implantation	(P63-91).	In	awake	recordings,	4	

female	and	8	male	mice	were	used,	while	in	anesthetized	recordings	3	males	were	used.		

2.2.2	Cranial	Window	Implantation	

Mice	were	anesthetized	with	isoflurane	in	O2	(2%	for	induction,	1-1.5%	for	

maintenance).	Headplate	attachment	and	craniotomy	were	performed	in	one	surgery.	

Carprofen	(5	mg/kg,	s.c.)	and	topical	xylocaine	(2%,	20mg/mL)	was	administered	to	

provide	analgesia.	Dexamethasone	was	administered	4-8	hours	before	surgery	(4.8	mg/kg,	

i.m.).	Atropine	(0.15	mg/kg,	s.c.)	was	administered	to	reduce	secretions	and	aid	in	

respiration.	To	attach	custom-printed	ABS	headplates,	the	skull	was	cleared	of	connective	

tissue	and	dried	with	ethanol.	A	thin	layer	of	Vetbond	was	applied	to	the	skull	and	the	

headplate	was	attached	using	dental	acrylic	at	an	angle	parallel	to	the	site	of	imaging	(~20	

degrees	from	horizontal).	A	craniotomy	(5	mm	diameter)	was	performed	over	the	left	or	

right	hemisphere	using	previously	described	methods	(Figueroa	Velez	et	al.,	2017).	A	5	mm	
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glass	coverslip	(World	Precision	Instruments)	was	placed	over	the	exposed	brain	and	

sealed	with	Vetbond	and	black	dental	acrylic.	Sterile	eye	ointment	(Rugby)	was	used	to	

protect	the	eyes.	Body	temperature	was	maintained	at	37.0oC	using	a	heating	pad	under	

feedback	control	from	a	rectal	thermoprobe.	Mice	were	allowed	to	recover	on	a	warm	

heating	pad	following	surgery	(<15	minutes).	Mice	were	given	daily	injections	of	Carprofen	

(5mg/kg,	s.c.)	for	at	least	two	days	post-surgery.	

	2.2.3	GCaMP6s	Virus	Delivery	

To	assess	visual	responses	in	binocular	visual	cortex,	AAV-Syn-GCaMP6s	(Chen	et	

al.,	2013)	(Upenn	Vector	Core	AV-1-PV2824)	was	injected	into	wildtype	mice	two	weeks	

prior	to	imaging.	Virions	were	diluted	10-fold	with	ACSF	to	~2x1012	GC/mL	and	400nL	was	

injected	at	a	rate	of	10nL/min.	Lactated	Ringer’s	(0.2mL/20g/hr,	s.c.)	was	given	to	prevent	

dehydration.	Mice	were	allowed	to	recover	on	a	warm	heating	pad	following	surgery	(<15	

minutes).		

2.2.4	Widefield	Visual	Area	Mapping	

Mapping	of	the	visual	areas	was	performed	at	least	one	week	after	window	

installation	using	widefield	imaging	of	GCaMP6s	(Wekselblatt	et	al.,	2016;	Zhuang	et	al.,	

2017).	Widefield	fluorescence	images	were	acquired	using	a	SciMedia	THT	macroscope	

(Leica	PlanApo	1.0X;	6.5x	6.5	mm	imaging	area)	equipped	with	an	Andor	Zyla	sCMOS	

camera.	The	surface	vasculature	and	GCaMP6s	signal	was	visualized	using	a	blue	465	nm	

LED	(LEX2).	The	camera	was	focused	~600	µm	beneath	the	surface.	Image	acquisition	and	

visual	stimulus	presentation	was	controlled	by	custom	written	software	in	python	using	

the	PsychoPy	1.8	library.			
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2.2.4.1	Visual	Stimuli	for	Area	Mapping	

To	perform	visual	area	segmentation,	awake	mice	were	shown	a	20°	wide	visual	

noise	stimulus	that	swept	periodically	every	ten	seconds	in	each	of	the	four	cardinal	

directions.	The	sweeping	visual	stimulus	was	created	by	multiplying	a	band	limited	(<0.5	

c/d;	>2	Hz),	binarized	spatiotemporal	noise	movie	with	a	one	dimensional	spatial	mask	

(20°)	that	was	phase	modulated	at	0.1	Hz.		A	gamma	corrected	monitor	(54”	LED	LG	TV	

model	55LB5900)	with	maximum	luminance	of	30	cd/m2	was	placed	20	cm	from	the	

contralateral	eye	and	angled	at	approximately	30o	from	the	long	axis	of	the	animal.	The	

stimulus	was	spherically	corrected	to	cover	140o	visual	angle	in	elevation	and	120o	in	

azimuth.	The	stimulus	was	presented	to	the	contralateral	eye	for	5	minutes	for	each	

direction.	To	confirm	the	location	of	the	binocular	zone,	we	also	presented	the	sweeping,	

binarized	noise	stimulus	confined	to	the	central	30o	of	visual	azimuth.	

2.2.4.2	Analysis	for	Area	Mapping	

Retinotopic	maps	of	azimuth	and	elevation	were	used	to	generate	a	visual	field	sign	

map	(Sereno	et	al.,	1994;	Garrett	et	al.,	2014)	to	designate	borders	between	visual	areas.	

Recordings	from	binocular	V1	were	confined	to	regions	adjacent	to	the	intersection	of	the	

horizontal	and	vertical	meridians	at	the	border	of	V1	and	LM.	Recordings	from	monocular	

V1	were	confined	to	regions	medial	to	the	binocular	zone	of	V1	along	the	horizontal	

meridian.		

2.2.5	Two-Photon	Calcium	Imaging	

Fluorescence	was	gathered	with	a	resonant	two-photon	microscope	(Neurolabware,	

Los	Angeles,	CA)	with	920	nm	excitation	light	(Mai	Tai	HP,	Spectra-Physics,	Santa	Clara,	

CA).	Emissions	were	filtered	using	a	510/84nm	BrightLine	bandpass	filter	(Semrock,	
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Rochester,	NY).	A	16x	(Nikon	NA=0.8)	or	a	20x	water	immersion	lens	(Olympus	NA=1.0)	

was	used.	Image	sequences	typically	covered	a	field	of	approximately	700	µm	by	500	um	

and	were	acquired	at	7.7	or	15.4	Hz	(1024	lines)	using	Scanbox	acquisition	software	

(Scanbox,	Los	Angeles,	CA)	at	a	depth	of	200-250	µm	below	the	pia.		

2.2.5.1	Two-Photon	Visual	Stimuli	

Visual	stimuli	were	generated	by	custom-written	python	code	using	the	PsychoPy	

1.8	library.	Full	field	drifting	sinusoidal	gratings	were	presented	eight	orientations	(0-315,	

45o	steps)	and	six	spatial	frequencies	(0.03-0.96	c/d,	logarithmically	spaced)	at	a	fixed	

temporal	frequency	(2Hz)	using	an	Acer	V193	gamma	corrected	monitor	(53	x	33	cm,	60	

Hz	refresh	rate,	20	cd/m2).	The	visual	stimulus	was	spherically	corrected.	In	addition	to	the	

48	grating	stimuli,	we	also	showed	a	blank	condition	and	a	condition	in	which	the	whole	

monitor	flickered	at	2	Hz	(FF).	The	50	total	stimulus	conditions	were	presented	in	a	

random	order	for	each	of	the	10	repetitions.	In	one	subset	of	experiments,	20	repeats	were	

used.	For	each	trial,	the	stimulus	was	presented	for	2	seconds,	followed	by	3	seconds	of	

grey	screen.	For	anesthetized	recordings,	mice	were	sedated	during	recordings	using	

isoflurane	in	O2	(0.6-0.9%)	supplemented	with	chlorprothixene	(2	mg/kg,	i.p.).	For	awake	

and	anesthetized	recordings,	the	visual	stimulus	was	presented	either	first	to	the	ipsilateral	

or	the	contralateral	eye.	In	awake	recordings,	four	of	eight	animals	were	presented	with	the	

stimulus	through	the	contralateral	eye	first.	In	anesthetized	recordings,	two	of	three	mice	

were	presented	with	the	stimulus	through	the	contralateral	eye	first.	
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2.2.6	Data	Analysis	

2.2.6.1	Cellular	Responses	

Custom-written	Python	routines	were	used	to	remove	motion	artifact,	identify	cell	

ROIs,	extract	calcium	fluorescence	traces,	and	perform	analyses.	First,	we	implemented	

motion	correction	by	using	an	efficient	algorithm	that	corrects	for	translational	artifacts	by	

minimizing	the	Euclidean	distance	between	frames	and	a	template	image	using	a	Fourier	

transform	approach	(Dubbs	et	al.,	2016).	To	identify	the	region	of	pixels	associated	with	

distinct	neuronal	cell	bodies,	we	used	the	maximum	intensity	projection	of	the	images.	Only	

cell	bodies	that	could	be	visually	identified	throughout	the	80-minute	recordings	were	

included	in	analysis.	The	fluorescence	signal	of	a	cell	body	at	time	t	was	determined	

as	Fcell(t)	=	Fsoma(t)	–	(R	x	Fneuropil(t))	(Chen	et	al.,	2013;	Kerlin	et	al.,	2010).	R	was	empirically	

determined	to	be	0.7	by	comparing	the	intensity	of	GCaMP6s	signal	in	the	blood	vessels	to	

the	intensity	in	the	neuropil	across	recordings.	The	neuropil	signal	Fneuropil(t)	of	each	cell	

was	measured	by	averaging	the	signal	of	all	pixels	outside	of	the	cell	and	within	a	20	μm	

region	from	the	cell	center.		

To	determine	a	cell’s	response	to	each	stimulus	trial,	the	cell’s	trace	during	the	

stimulation	period	was	normalized	to	the	baseline	value	averaged	over	the	0.75	seconds	

preceding	stimulus	presentation.	The	cell’s	response	to	a	given	orientation	θi	was	defined	

as	the	average	response	across	the	10	repeats	of	each	condition:	F(θi).	An	estimate	of	the	

cell’s	spontaneous	calcium	fluctuation	was	determined	using	the	cell’s	trace	during	the	

blank	condition.	At	each	spatial	frequency,	a	cell’s	responsiveness	was	determined	using	a	

one-way	ANOVA	(p<0.01)	across	orientations	against	the	blank	condition	(Figure	2A).	To	

assess	spatial	frequency	tuning	and	directional	selectivity,	we	restricted	our	analysis	to	
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neurons	whose	responses	at	the	peak	spatial	frequency	reached	significance	and	whose	

responses	to	drifting	gratings	across	all	spatial	frequencies	reached	significance	when	

compared	against	the	blank	condition	(ANOVA	p<0.01;	Figure	2B;	analyzed	cells).		

2.2.6.2	Preferred	Orientation	

For	each	cell,	preferred	orientation	(θpref)	was	determined	at	the	spatial	frequency	

that	gave	the	strongest	response	by	calculating	half	the	mean	of	the	directional	vectors	

weighted	by	the	response	F(θ)	at	each	orientation:		

𝜃!"#$ =
𝐹(𝜃)𝑒!!"

𝐹(𝜃)
 

For	each	spatial	frequency,	a	tuning	curve,	R(θ),	was	determined	by	fitting	F(θ)	to	a	

sum	of	two	Gaussians	centered	on	θpref	and	θpref	+	π,	with	different	amplitudes	and	equal	

width,	and	a	constant	baseline.	The	amplitude	of	the	response	at	the	preferred	orientation	

(Rpref)	was	R(θpref).	

2.2.6.3	Preferred	Spatial	Frequency	

To	determine	the	preferred	spatial	frequency,	responses	at	the	preferred	

orientation	(Rpref)	across	all	spatial	frequencies	were	fitted	with	a	difference	of	Gaussians	

function	(DoG)	(Hawken	and	Parker,	1987).	For	each	fitted	neuron,	the	preferred	spatial	

frequency	was	determined	by	the	maximum	of	the	DoG	functional	fit.	In	addition,	the	

bandwidth	was	calculated	by	taking	the	square	root	of	the	width	at	half	the	maximum	of	

the	fit.			

2.2.6.4	Orientation	and	Direction	Selectivity	

Orientation	selectivity	for	a	cell	was	determined	using	a	method	derived	from	the	

circular	variance	of	the	cell’s	response	F(θ)	(Niell	and	Stryker,	2008;	Kerlin	et	al.,	2010,	Hoy	

and	Niell,	2015).	The	circular	variance	method	for	calculating	orientation	selectivity	is	
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closely	correlated	to	an	alternative	measure	that	uses	a	sum	of	two	Gaussians	(Velez	et	al.,	

2017).	Since	the	circular	variance	based	method	is	sensitive	to	the	sign	of	F	and	because	F	

fluctuates	above	and	below	0	at	baseline	(sd	=	±0.032%	dF/F),	we	added	an	offset	to	F	for	

each	cell	which	set	the	minimum	average	response	to	0:	F(𝜃!))=F(𝜃!)	-	min(F𝜃!).	Following	

this	correction,	the	orientation	selectivity	index	was	calculated	as	

OSI	= (𝐹 𝜃! ∗ sin(2𝜃!))!
! + (𝐹 𝜃! ∗ cos(2𝜃!))!

! 𝐹(𝜃!)! 	

The	direction	selectivity	index	was	calculated	as:		

DSI=	 (𝐹 𝜃! ∗ sin(𝜃!))!
! + (𝐹 𝜃! ∗ cos(𝜃!))!

! 𝐹(𝜃!)! 	

2.2.6.5	Ocular	Dominance	Index	

The	ocular	dominance	index	(ODI)	for	each	cell	was	calculated	as	(C-I)/(C+I),	where	

C	is	Rpref	for	the	contralateral	eye	and	I	is	Rpref	for	the	ipsilateral	eye.	Contralaterally	

dominated	neurons	have	an	ODI	value	near	1	and	ipsilaterally	dominated	neurons	have	an	

ODI	value	near	-1.	In	cases	where	no	significant	response	was	detected	for	one	eye,	Rpref	for	

that	eye	was	set	to	0.	Therefore,	responses	that	were	purely	a	result	of	contralateral	or	

ipsilateral	eye	stimulation	were	assigned	ODI	values	of	1	and	-1,	respectively.		

2.2.7	Pupil	Tracking	

Contralateral	and	ipsilateral	eyes	were	recorded	simultaneously	using	GigE	cameras	

(Teledyne	Dalsa,	Mako	G,	Waterloo,	Ontario,	Canada).	The	cameras	were	positioned	30°	

above	the	mouse’s	eyepoint	and	45°	from	the	mouse’s	midline	on	each	side.	The	eyes	were	

illuminated	by	the	infrared	laser	(MaiTai	HP,	Spectra-Physics,	Santa	Clara,	CA)	used	for	

two-photon	imaging.		

To	identify	the	pupils,	each	frame	was	thresholded	and	contours	were	extracted	

(Suzuki	and	Abe,	1985)	using	routines	from	the	OpenCV	library	(3.2.0).	Artifacts	that	
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distorted	the	pupil	contours	were	removed	by	1)	converting	all	contours	to	convex	hulls	

(Sklansky	1982),	2)	filtering	the	hulls	using	a	predefined	range,	and	3)	assigning	the	pupil	

to	be	the	hull	whose	centroid	was	located	closest	to	the	center	of	the	eye.	Frames	in	which	

the	contrast	dropped	significantly	or	those	in	which	the	mouse	blinked	produced	

erroneous	pupil	identification.	To	address	this	issue,	we	established	a	scoring	system	that	

would	exclude	frames	in	which	the	pupil	exceeded	a	maximum	circularity	score.	The	

circularity	score	was	determined	by	calculating	the	ratio	between	the	longest	distance	from	

the	centroid	to	the	hull	and	the	shortest	distance	from	the	centroid	to	the	hull.	A	score	of	

1.25	was	selected	as	the	cutoff	based	on	the	distribution	of	circular	scores	for	a	recording.	

2.2.8	Experimental	Design	and	Statistical	Analyses	

The	statistical	determination	of	cellular	responsiveness	is	described	in	detail	above.	

The	Kolmogorov-Smirnov	test	was	used	to	assess	differences	in	the	distributions	of	cellular	

spatial	frequency	preferences.	The	Mann-Whitney	U	test	and	Kruskal-Wallis	test	were	used	

to	assess	differences	between	groups	of	cells	(e.g.	monocular	vs.	binocular	cells).	For	

animal-by-animal	analyses	of	median	eye-specific	differences	in	binocular	responses,	we	

used	a	pair-wise	Wilcoxon	signed-rank	test	for	comparing	two	groups	and,	for	more	than	

two	groups,	a	Friedman	test	with	a	Dunn’s	multiple	comparison	post	hoc	test.	Correlations	

were	determined	using	Spearman	rank	correlation.	For	the	analysis	of	direction	selectivity,	

a	Mann-Whitney	U	test	was	used	to	determine	the	significance	of	cardinality	for	a	group	

and	a	Chi-squared	test	was	used	to	test	differences	in	cardinality	between	groups.	

Statistical	analyses	were	performed	using	Prism	v7.01	(GraphPad).	To	find	the	standard	

error	of	the	median	for	preferred	spatial	frequency	of	a	group	of	cells,	we	estimated	the	
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sampling	distribution	using	a	bootstrap	methodology	that	resampled	500	times	with	

replacement	(MATLAB,	Mathworks).		

	

2.3	Results	

To	systematically	probe	the	spatial	frequency	tuning	of	binocular	area	V1,	we	used	a	

transgenic	mouse	line	that	expresses	GCaMP6s	under	the	control	of	the	CaMK2	promoter	

(CaMK2-tTA;	tetO-GCaMP6s;	Wekselblatt	et	al.,	2016).	The	line	restricts	GCaMP6s	

expression	to	excitatory	neurons	only	and	excludes	inhibitory	interneurons,	which	are	

known	to	have	distinct	spatial	frequency	tuning	properties	(Kerlin	et	al.,	2010).	Binocular	

area	V1	was	identified	using	a	widefield	imaging	procedure	to	retinotopically	map	visual	

areas	in	posterior	mouse	cortex	(visual	field	sign	map;	Garrett	et	al.,	2014;	Figure	2.1a).	

Next,	GCaMP6s	imaging	of	cellular	responses	was	performed	using	2-photon	microscopy.		

Recordings	were	directed	to	the	central	visual	field	by	situating	the	field	of	view	adjacent	to	

the	map	coordinates	for	the	V1/LM	border	and	centered	on	the	horizontal	meridian.	

Cellular	imaging	was	performed	in	awake,	head-fixed	mice	that	were	acclimated	to	the	

setup	over	several	days.	Mice	were	shown	a	visual	stimulus	through	either	the	

contralateral	or	ipsilateral	eye	that	consisted	of	two	second	presentations	of	drifting	visual	

gratings	at	one	of	eight	directions	and	one	of	six	spatial	frequencies	(0.03-0.96	c/d	spaced	

logarithmically;	see	Figure	2.1b).	We	interleaved	the	presentation	of	a	full	field	flickering	

stimulus	with	the	gratings	to	detect	neurons	tuned	to	very	low	spatial	frequencies.	Each	

stimulus	condition	was	repeated	10-20	times	per	eye.	Eye	movement	and	pupil	dilation	

were	also	recorded	for	the	eye	shown	the	visual	stimulus.	Half	of	the	fields	were	imaged	

with	the	ipsilateral	eye	shown	the	stimulus	first	and	half	with	the	contralateral	eye	first.		
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Typical	excitatory	neurons	responded	to	low	spatial	frequencies	(<0.12	c/d)	and	had	

binocularly	matched	preferences	for	spatial	frequency	and	direction	(Figure	2.1c).		The	

contralateral	response	(black;	Figure	2.1c)	was	typically	stronger	than	the	ipsilateral	

response	(red).	Beyond	these	binocularly	matched,	low	spatial	frequency	preferring	

responses,	three	other	types	of	responses	are	also	found	in	binocular	area	V1:	cells	that	had	

mismatched	spatial	frequency	tuning	between	the	two	eyes,	cells	that	were	dominated	by	

the	contralateral	eye	and	cells	dominated	by	the	ipsilateral	eye	(Figure	2.1d).	A	typical	field	

of	view	reveals	overt	differences	in	the	spatial	frequency	tuning	of	the	contralateral	and	

ipsilateral	eye	inputs	to	binocular	visual	cortex	(Figure	2.1e,	f).	
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Figure	2.1:	Assessment	of	Binocular	Spatial	Frequency	Tuning	in	Primary	Visual	Cortex	Using	
GCaMP6s	Mice.	A.	Experimental	Setup.	(Top	Left)	Widefield	imaging	produces	a	visual	field	sign	map	that	
identifies	the	boundaries	of	primary	visual	cortex	(V1).	Scale	bar	is	1mm.		(Top	Right)	Two-photon	imaging	
was	done	in	central	binocular	cortex	adjacent	to	the	border	of	areas	V1	and	LM.	Visual	responses	were	
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measured	in	head-fixed,	awake	mice	while	they	viewed	drifting	sinusoidal	gratings.	Mice	walked	freely	while	
pupil	dilation	and	eye	movements	are	tracked	by	IR	camera.	B.	Each	trial	consists	of	a	two	second	
presentation	of	a	drifting	grating	at	one	of	eight	directions	and	one	of	six	spatial	frequencies,	followed	by	a	
three	second	off	period.	The	stimulus	was	shown	to	either	the	contralateral	or	ipsilateral	eye.	C.	Example	
binocular	responses	from	a	cell.	Grey	boxes	indicate	when	the	visual	gratings	were	shown.	Individual	trials	
shown	in	gray	traces,	averaged	traces	in	black	for	contralateral	eye	stimulation	and	red	for	ipsilateral	
stimulation.	This	cell	prefers	vertical	gratings	at	0.06	c/d	moving	along	the	horizontal	axis.	D.	Four	types	of	
spatial	frequency	responses	in	binocular	V1	revealed	by	contralateral	(black)	and	ipsilateral	(red)	eye	
stimulation:	spatial	frequency	matched	binocular,	spatial	frequency	mismatched	binocular,	contralateral	
monocular	and	ipsilateral	monocular	cells.	The	average	responses	at	each	spatial	frequency	are	overlaid	with	
a	Difference	of	Gaussians	fit.	Preferred	spatial	frequency	is	determined	by	the	maximum	of	the	fit.	E,	F.	Maps	
of	spatial	frequency	preference	for	contralateral	(E)	and	ipsilateral	(F)	eye	stimulation	shown	for	a	field	of	
view.	Scale	is	50	µm.	Most	neurons	are	tuned	to	low	spatial	frequencies	(yellow	and	green).	Higher	spatial	
frequency	tuning	(cyan	and	magenta)	is	found	predominantly	in	contralateral	responses.		
	

2.3.1	Higher	Spatial	Frequency	Tuning	of	Contralateral	Eye	Responses	

Altogether,	1850	cells	were	imaged	in	ten	animals.	Across	all	cells,	more	neurons	

responded	at	high	spatial	frequencies	for	contralateral	than	for	ipsilateral	eye	stimulation	

(Figure	2.2a,	all	cells).	To	characterize	spatial	frequency	selectivity,	we	restricted	our	

analysis	to	those	cells	(Figure	2.2b;	analyzed	cells)	whose	responses	at	the	peak	spatial	

frequency	reached	significance	and	whose	responses	to	drifting	gratings	across	all	spatial	

frequencies	reached	significance	when	compared	against	the	blank	condition	(p<0.01,	

ANOVA,	total:	61.6%;	contra:	48.97%;	ipsi:	34.59%).	These	cells	also	responded	to	high	

spatial	frequency	stimuli	through	the	contralateral	and	not	the	ipsilateral	eye	(Figure	2.2b).	

Composite	spatial	frequency	response	curves	for	all	(Figure	2.2c)	and	analyzed	(Figure	

2.2d)	cells	confirm	that	these	cells	responded	to	high	spatial	frequencies	through	the	

contralateral	and	not	the	ipsilateral	eye.	
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Figure	2.2:	Higher	Spatial	Frequency	Tuning	of	Contralateral	Eye	Responses	in	Binocular	Visual	
Cortex	A.	Percent	of	all	recorded	cells	are	plotted	with	significant	responses	at	each	spatial	frequency	for	
contralateral	eye	(black)	and	ipsilateral	eye	(red)	stimulation.	Error	bars	reflect	standard	error	of	percent	
responsive	across	ten	animals.	B.	Spatial	frequency	tuning	and	directional	selectivity	were	only	analyzed	in	
cells	whose	responses	at	the	peak	spatial	frequency	reached	significance	and	whose	responses	to	drifting	
gratings	across	all	spatial	frequencies	reached	significance	when	compared	against	the	blank	condition.	
Among	these	analyzed	cells,	the	percent	with	significant	responses	at	each	spatial	frequency	are	plotted.	
Error	bars	reflect	standard	error	of	percent	responsive	across	ten	animals.	C,	D.	Composite	tuning	curves	for	
responses	to	contralateral	(black)	and	ipsilateral	(red)	eye	stimulation	are	plotted	for	all	cells	(C)	and	those	
cells	that	met	our	statistical	criteria	for	spatial	frequency	tuning	analysis	(D).	In	both	cases,	the	composite	
spatial	frequency	responses	to	the	contralateral	eye	extended	to	higher	spatial	frequencies	than	the	
responses	to	the	ipsilateral	eye.	Error	bars	reflect	standard	error	of	response	strength	across	ten	animals.	
	

We	found	that	the	preferred	spatial	frequency	of	contralateral	eye	responses	in	

binocular	area	V1	was	overall	~35%	higher	than	ipsilateral	responses	(median	ipsi:	0.073	

c/d,	contra:	0.099	c/d	Figure	2.3a,	b).	The	animal-by-animal	distributions	of	preferred	

spatial	frequency	for	contralateral	(black)	and	ipsilateral	(red)	responses	show	a	consistent	
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pattern	of	higher	tuning	in	the	contralateral	pathway.	In	contrast,	we	found	that	the	spatial	

tuning	bandwidths	of	contralateral	and	ipsilateral	responses	were	nearly	identical	(Figure	

2.3c,	d).	The	amplitude	of	the	response	to	the	preferred	stimulus	across	cells	was	

somewhat	higher	for	contralateral	eye	recordings	(Figure	2.3e),	raising	the	possibility	that	

ipsilateral	responses	at	high	spatial	frequencies	were	too	weak	to	be	detected.	We	found,	

however,	no	relationship	between	spatial	frequency	preference	and	response	amplitude	in	

our	recordings	(Figure	2.3f;	all	responses:	r=-0.02;	p=0.556).	These	results	reveal	an	eye-

specific	asymmetry	in	the	responses	of	binocular	area	V1.	
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Figure	2.3:	Spatial	Frequency	Preferences	of	Contralateral	Responses	is	Higher	than	Ipsilateral	
Responses	in	Binocular	Visual	Cortex.	A.	Preferred	spatial	frequency	for	contralateral	(black)	and	
ipsilateral	(red)	eye	responses.	The	distributions	from	ten	mice	were	binned	and	the	mean	is	plotted.	Error	
bars	reflect	standard	error	of	the	mean.	The	preferred	spatial	frequency	for	contralateral	responses	is	
significantly	higher	than	for	ipsilateral	responses	(median	contra=	0.099	c/d,	n=908	neurons;	median	
ipsi=0.0653	c/d,	n=641	neurons;	KS	D=0.178,	p<0.0001;	MW(U)=245465,	p<0.0001).	B.	Data	grouped	by	
animal	confirm	that	the	preferred	spatial	frequency	of	contralateral	responses	is	significantly	greater	than	
ipsilateral	responses	(contra	median=0.108	c/d;	ipsi	median=0.0653	c/d;	Wilcoxon’s	rank	sum	test	(W)=-40,	
p<0.0391,	N=10	mice).	Error	bars	reflect	standard	error	of	the	median.	C.	The	spatial	frequency	bandwidth	
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for	contralateral	(black)	and	ipsilateral	(red)	responses	are	very	similar	(contra	median=1.867;	ipsi	
median=1.867).	Error	bars	reflect	standard	error	of	the	mean.	D.	Data	grouped	by	animal	confirm	that	the	
spatial	frequency	bandwidths	do	not	differ	by	eye	(contra	median=1.876	octaves;	ipsi	median=1.869	octaves,	
Wilcoxon	rank	sum	test	(W)=11,	ns,	p=0.6094,	N=10	mice).	Error	bars	reflect	standard	error	of	the	median.	E.	
Averaged	responses	at	the	peak	spatial	frequencies	are	shown	for	contralateral	(black)	and	ipsilateral	(red)	
eye	stimulation.	Responses	to	the	contralateral	eye	are	higher	than	responses	to	the	ipsilateral	eye	(median	
contra=	0.620	∆F/F,	median	ipsi=	0.518	∆F/F;	KS	D=0.084,	p<0.0099;	MW(U)=258651,	p<0.0002).	F.	Peak	
responses	for	contralateral	(black)	and	ipsilateral	(red)	stimulation	are	plotted	against	preferred	spatial	
frequency.	The	amplitudes	of	contralateral	responses	are	similar	at	low	and	high	preferred	spatial	
frequencies.		
	

2.3.2	Higher	Spatial	Frequency	Tuning	of	Monocular	Responses		

Next,	we	examined	the	binocularity	of	cortical	responses	in	binocular	area	V1	

(Figure	2.4a).	Surprisingly,	we	found	that	62%	of	neurons	recorded	in	binocular	area	V1	

responded	to	one	eye	only	(Figure	2.4b;	ipsi:	19%;	contra:	43%),	while	the	remainder	

responded	to	both	eyes	(gray).	The	spatial	distribution	of	monocular	responses	(ODI=1	or	-

1;	see	Figure	2.4a)	appeared	widely	dispersed,	discounting	the	possibility	that	our	

recordings	had	been	made	on	the	edge	of	the	binocular	zone.	The	number	of	trials	and	the	

order	of	eye	presentation	were	also	not	found	to	be	a	factor	in	the	prevalence	of	monocular	

responses.		

It	was	possible	that	the	prevalence	of	monocular	neurons	we	observed	in	binocular	

area	V1	stemmed	from	a	non-linear	sensitivity	of	calcium	signals	to	neuronal	firing.	The	

amplitude	of	the	monocularly	responsive	neurons	(red=ipsilateral,	black=contralateral)	

was	less	than	half	of	what	is	predicted	by	the	linear	extrapolation	of	the	eye-specific	

responses	from	binocular	neurons	(Figure	2.4c;	ipsi	monocular=0.743	±	0.059	∆F/F;	contra	

monocular=1.084	±	0.091	∆F/F;	y-intercept	ipsi	binocular=2.03;	y-intercept	contra	

binocular=2.38).	The	smaller	amplitude	of	the	monocular	responses	may	mean	that	non-

dominant	eye	inputs	to	these	cells	fall	below	a	detection	threshold	for	calcium	imaging.	
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Alternatively,	the	smaller	amplitude	of	these	monocular	responses	may	make	them	

challenging	to	detect	with	traditional	electrophysiological	recording	techniques.	

Next,	we	compared	the	spatial	frequency	tuning	of	contralaterally	dominated	

responses	with	their	binocular	and	ipsilateral	counterparts.	We	found	that	the	preferred	

spatial	frequency	of	contralaterally	dominated	responses	is	significantly	higher	than	for	

binocularly	responsive	and	ipsilateral	only	responsive	neurons	(Figure	2.4d;	p=0.0002;	

p=0.0161).	These	findings	reinforce	our	overall	observation	that	the	contralateral	pathway	

is	tuned	to	higher	spatial	frequencies	than	the	ipsilateral	pathway.		

In	some	animals,	we	also	recorded	from	a	monocular	region	of	area	V1	that	was	

centered	at	the	horizontal	meridian	in	the	visual	field	map.	The	spatial	frequency	tuning	of	

neurons	in	monocular	area	V1	(blue)	was	similar	to	contralaterally	dominated	neurons	

(black)	in	binocular	area	V1	(Figure	2.4d).	In	these	experiments,	we	showed	a	brief	

ipsilateral	stimulus	to	confirm	that	no	ipsilateral	responses	were	present.	Across	animals,	

the	contralateral-eye	dominated	neurons	were	found	to	consistently	prefer	higher	spatial	

frequencies	than	binocular	neurons	(Figure	2.4e;	p=0.0278)	and	ipsilateral-eye	dominated	

neurons	(Figure	2.4e,	p=0.0073).	Together,	these	results	reveal	that	contralateral-eye	

dominated	neurons	are	tuned	to	higher	spatial	frequencies	than	their	binocular	and	

ipsilateral	counterparts.	
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Figure	2.4:	Contralaterally	Dominated	Cells	are	Tuned	to	Higher	Spatial	Frequencies	than	Binocular	
and	Ipsilaterally	Dominated	Cells	A.	Ocular	dominance	index	(ODI)	was	calculated	as	C-I/C+I.	Single	cells	
are	color	coded	by	ODI	(N=10	mice,	n=994	cells)	for	cells	in	binocular	V1	(bV1).	Scale	bar	is	50	µm.	B.	
Binocular	cells	are	shown	in	gray,	cells	that	respond	to	the	ipsilateral	eye	only	are	shown	in	red	and	cells	that	
respond	to	the	contralateral	eye	only	in	black.	Error	bars	show	standard	error	across	animals	(Overall	
ODI=0.268;	Binocular	only	ODI=0.117,	n=994	cells,	N=10	mice).	C.	Binocular	responses	to	the	contralateral	
eye	(gray	dots)	and	ipsilateral	eye	(transparent	green	dots)	are	plotted	as	a	function	of	ODI.	Binned	averages	
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are	shown	in	solid	lines.	Monocular	responses	to	the	contralateral	eye	(solid	black	dots)	and	ipsilateral	eye	
(solid	red	dots)	are	shown	with	their	averages	plotted	as	squares.	D.	Preferred	spatial	frequency	for	
contralateral	monocular	(black),	ipsilateral	monocular	(red),	binocular	(gray)	cells	and	cells	recorded	in	
monocular	V1	(mV1;	blue).	The	preferred	spatial	frequency	of	the	dominant	eye	response	was	used	to	plot	
the	distribution	for	binocular	cells.	In	binocular	V1,	the	spatial	frequency	preferences	for	contralateral	
monocular	cells	are	higher	than	for	binocular	cells	and	ipsilateral	monocular	cells	(contra	only	median=0.113	
c/d,	n=481	cells;	binocular	median=0.0759	c/d,	n=426	cells,	KW,	p<0.0002;	ipsi	only	median=0.0687,	n=214	
cells,	KW	p<0.0161,	N=10	mice;	mV1	median=0.116	c/d	n=226	cells,	KW	ns,	N=3	mice).	E.	Data	grouped	by	
animal	confirm	that	the	preferred	spatial	frequency	of	contralateral	monocular	responses	is	significantly	
greater	than	ipsilateral	monocular	and	binocular	responses	(contra	only	median=0.115	c/d;	ipsi	only	median:	
0.0658	c/d,	Friedman	test	p<0.0073;	binocular	median=0.0850,	p<0.0278,	FM=9.8,	N=10	mice).	The	
preferred	spatial	frequency	of	contralateral	monocular	responses	is	not	different	from	monocular	V1	
responses	(mV1	median=0.0846	c/d,	Friedman	test	ns,	N=3	mice).	
	
2.3.3	Binocular	Matching	of	Spatial	Frequency	Tuning	and	Orientation	Preference	

During	the	ocular	dominance	critical	period,	the	eye-specific	orientation	preferences	

of	binocular	neurons	become	better	aligned	in	mouse	area	V1	(Wang	et	al.,	2010;	Wang	et	

al.,	2013).	These	binocular	matching	studies	were	performed	at	lower	spatial	frequencies	

(0.01-0.32	c/d)	than	in	this	study	(0.03-1.0	c/d).	In	this	lower	range	of	preferred	spatial	

frequencies,	we	found	that	neurons	are	largely	matched	in	spatial	frequency	preference	

and	orientation	tuning	(see	example	Figure	2.5a-left).	In	contrast,	at	high	spatial	

frequencies,	we	found	that	binocular	responses	are	more	mismatched	in	spatial	frequency	

and	preferred	orientation	(see	example	Figure	2.5a-right).	Overall,	we	found	that	

contralateral	and	ipsilateral	preferred	spatial	frequencies	are	moderately	matched	(Figure	

2.5b,	r=0.372,	p=0.0001).		

By	using	the	spatial	frequency	bandwidth	of	cells	as	a	threshold,	we	partitioned	the	

binocularly	responsive	population	into	spatial	frequency	matched	and	mismatched	groups	

(Figure	2.5b,	gray	area).	21.4%	of	binocular	responsive	neurons	are	mismatched	in	spatial	

frequency.	For	responses	matched	in	spatial	frequency	(black),	the	orientation	preferences	

of	contra-	and	ipsilateral	responses	are	also	similar	(Figure	2.5c;	mean	difference=18.5	

degrees),	in	line	with	previous	reports	(Wang	et	al.,	2010).	In	contrast,	for	cells	mismatched	
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in	spatial	frequency	preference	(gray),	orientation	preferences	are	more	discordant	(mean	

difference=36.8	degrees),	similar	to	the	mismatch	found	after	monocular	deprivation	

during	the	juvenile	critical	period	(Wang	et	al.,	2010).	We	observed	that	neurons	

mismatched	in	spatial	frequency	tend	to	be	more	mismatched	in	orientation	preference	at	

spatial	frequencies	in	which	both	the	ipsilateral	and	contralateral	eye	were	responsive	

(Figure	2.5d,	p<0.0001).	Moreover,	high	spatial	frequency	tuned	neurons	are	more	

mismatched	in	orientation	preference	than	low	spatial	frequency	tuned	neurons	(Figure	

2.5e,	p<0.0001).	These	results	reveal	a	significant	population	of	neurons	in	binocular	area	

V1	that	have	largely	discordant	response	properties	between	the	two	eyes.		
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Figure	2.5:	Binocular	Neurons	Mismatched	in	Spatial	Frequency	are	Also	Mismatched	in	Orientation	
Preference.	A.	(Left)	Example	cell	with	matched	ipsilateral	(red)	and	contralateral	(black)	eye	spatial	
frequency	tuning.	The	spatial	frequency	responses	are	overlaid	with	a	Difference	of	Gaussians	fit.	Polar	plots	
show	matched	orientation	preferences	of	the	ipsilateral	and	contralateral	inputs	at	the	peak	spatial	
frequencies.	(Right)	Example	cell	with	binocularly	mismatched	spatial	frequency	preferences.	The	orientation	
preferences	of	this	cell	are	mismatched.	B.	The	preferred	spatial	frequencies	of	binocular	cells	are	shown	for	
contralateral	and	ipsilateral	eye	stimulation	(n=425	cells,	N=10	mice).	Dashed	lines	indicate	a	bandwidth-
derived	threshold	(mean	bandwidth+2*s.d.)	used	to	separate	spatial	frequency	matched	cells	from	
mismatched	cells.	C.	The	binocular	differences	in	preferred	orientation	shown	for	spatial	frequency	matched	
(black)	and	mismatched	cells	(gray;	mismatched	n=75	cells;	matched	n=351	cells,	N=10	mice).	Cells	that	are	
binocularly	mismatched	in	spatial	frequency	are	also	binocularly	mismatched	in	orientation	(matched	mean	
orientation:	18.5	degrees,	mismatched	mean	orientation:	36.8	degrees;	MW(U)=7891,	p<0.0001;	KS	D=0.309,	
p<0.0001).	Error	bars	indicate	standard	error	across	animals.	D.	The	difference	in	preferred	orientation	for	
binocularly	matched	(black)	and	mismatched	(gray)	cells	calculated	across	all	spatial	frequencies	in	which	
there	are	significant	responses	to	both	the	contralateral	and	ipsilateral	eye.	Error	bars	indicate	standard	
error	of	the	median.	Mismatched	cells	are	more	orientation	mismatched	across	common	spatial	frequencies	
than	matched	cells	(matched	median	=9.85	degrees,	n=493	cells;	mismatched	median=	21.8	degrees,	n=87	
cells;	MW(U)=15181,	p<0.0001).	E.	The	binocular	difference	in	preferred	orientation	shows	that	high	spatial	
frequency	preferring	cells	(gray,	n=251	cells)	are	more	mismatched	in	orientation	than	low	spatial	frequency	
preferring	cells	(black,	n=175	cells;	high	spatial	frequency	cells	mean	difference	in	orientation:	27.5	degrees,	
low	spatial	frequency	cells	mean	difference	in	orientation:	17.6	degrees;	MW(U)=16593,	p<0.0001;	KS	D=	
0.206,	p<0.0003).	Error	bars	indicate	standard	error	across	animals.	
	
2.3.4	Spatial	Frequency	Preferences	are	Similar	for	Contralateral	Eye	Viewing	and	

Binocular	Viewing	

The	finding	that	contralateral	eye	responses	are	significantly	higher	in	preferred	

spatial	frequency	than	ipsilateral	eye	responses	and	dominant-eye	binocular	responses	

calls	to	question	how	binocular	viewing	might	influence	the	tuning	of	these	cells.	In	a	

subset	of	recordings,	we	imaged	responses	to	visual	stimulation	through	each	eye	as	well	

as	through	both	eyes	and	compared	the	single	cell	tuning	(Figure	2.6).	Spatial	frequency	

preferences	of	binocular	viewing	are	strongly	correlated	with	monocular	viewing	for	

responses	to	the	contralateral	eye	and	weakly	correlated	for	ipsilateral	responses	(Figure	

2.6,	contra:	r=0.992,	ipsi:	r=0.298).	When	we	determine	the	composite	spatial	frequency	

tuning	curve	for	ipsilateral,	contralateral	and	binocular	viewing,	we	find	that	the	spatial	

frequency	preferences	are	similar	for	contralateral	eye	stimulation	and	binocular	
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stimulation.	These	results	suggest	that	the	contralateral	eye	predominantly	determines	

binocular	cortical	responses	to	high	spatial	frequency	stimuli	in	mice.	

	

Figure	2.6:	Binocular	Viewing	Does	Not	Increase	Spatial	Frequency	Tuning	of	Contralateral	Eye	
Responses.	A,	B.	Spatial	frequency	preference	of	binocularly	responsive	cells	(A)	and	monocularly	
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responsive	cells	(B)	during	binocular	viewing	is	strongly	correlated	to	monocular	viewing	through	the	
contralateral	eye	(Binocular:	Pearson	r=0.922,	p<0.0001,	n=49	cells;	Monocular:	Pearson	r=0.934,	p<0.0001,	
n=67	cells).	C,	D.	Spatial	frequency	preference	of	binocularly	responsive	cells	(C)	and	monocularly	responsive	
cells	(D)	during	binocular	viewing	is	weakly	correlated	to	monocular	viewing	through	the	ipsilateral	eye.	
(Binocular:	Pearson	r=0.451,	p<0.0124,	n=30	cells;	Monocular:	Pearson	r=0.298,	p<0.03,	n=67	cells).	E.	
Composite	spatial	frequency	responses	shown	for	contralateral	(black),	ipsilateral	(red)	and	binocular	
viewing	(gray).	
	

2.3.5	Cardinal	Direction	Selectivity	of	Contralateral	Responses	

Next,	we	examined	the	direction	selectivity	of	responses	in	binocular	area	V1.	To	

highlight	the	differences	in	ipsilateral	and	contralateral	responses,	we	used	a	spatial	

frequency	threshold	of	one	standard	deviation	above	the	mean	preference	to	split	the	

contralateral	responses	into	high	and	low	spatial	frequency	subpopulations	(ipsi	responses	

in	red;	<0.24	c/d	contra	in	black;	≥0.24	c/d	contra	in	dashed	black).	We	found	that	the	

direction	selectivity	of	high	spatial	frequency	tuned	contralateral	responses	is	higher	than	

low	spatial	frequency	tuned	contra-	and	ipsilateral	responses	(Figure	2.7a).	We	also	found	

lower	orientation	selectivity	in	high	spatial	frequency	selective	contralateral	responses	

(Figure	2.7b).	It	may	be	that	the	absence	of	a	matching	ipsilateral	input	prevents	high	

spatial	frequency	selective,	contralateral	dominated	neurons	from	sharpening	orientation	

tuning	during	the	critical	period	for	binocular	orientation	matching	(Wang	et	al.,	2010).		

After	eye	opening,	cortical	responses	are	initially	biased	towards	cardinal	axes	(0-180	and	

90-270	degree	axes;	Rochefort	et	al.,	2011;	Hoy	and	Niell,	2015).	By	adulthood,	the	

directional	preference	of	cortical	responses	becomes	balanced	between	cardinal	and	

intercardinal	directions	(Hoy	and	Niell,	2015).	Whereas	the	orientation-tuned	ipsilateral	

(red)	and	low	spatial	frequency	preferring	(closed	black)	responses	in	our	recordings	are	

selective	for	both	cardinal	and	intercardinal	directions	(ipsi:	55%;	contra	low:	54%,	Figure	

2.7c)	the	high	spatial	frequency	preferring	neurons	(open	black)	prefer	cardinal	directions	
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(high	contra:	82%,	p=0.0001;	Figure	2.7c).	In	monocular	area	V1,	high	spatial	frequency,	

orientation-tuned	neurons	also	responded	with	a	strong	preference	for	cardinal	directions	

(Fig	2.5d;	mV1	low	55%;	mV1	high	91%,	p=0.0024).	Together,	these	results	reveal	the	

strong	cardinal	bias	of	high	spatial	frequency	tuned	contralateral	responses.		

	

Figure	2.7:	Higher	Direction	Selectivity	and	Cardinal	Preference	of	Contralateral	Responses.	A.	The	
direction	selectivity	for	ipsilateral	responses	is	shown	in	red	and	for	contralateral	responses	in	black.	High	
spatial	frequency	preferring	cells	(dashed	black)	were	separated	from	lower	spatial	frequency	preferring	
cells	(black)	using	one	standard	deviation	above	the	population	mean	(0.24	c/d).	Contralateral	high	spatial	
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frequency	selective	responses	are	more	direction	selective	than	contralateral	lower	spatial	frequency	
selective	and	ipsilateral	responses	(median	contra	high:	DSI=0.344,	n=161	cells;	median	contra	low:	
DSI=0.229,	n=627	cells,	p<0.0001;	median	ipsi	DSI=0.203,	n=561	cells,	KW,	p<0.0001,	N=10	mice).	
Contralateral	low	spatial	frequency	selective	responses	were	also	slightly	more	direction	selective	than	
ipsilateral	responses	(KW,	p<0.0405).	B.	Contralateral	high	spatial	frequency	tuned	responses	are	less	
orientation	selective	than	contralateral	lower	spatial	frequency	tuned	and	ipsilateral	responses	(contra	high	
median	OSI:	0.490,	n=161	cells;	contra	low	median	OSI:	0.629,	n=627	cells;	KW,	p<0.0001;	ipsi	median	OSI:	
0.611,	N=10	mice,	p<0.0001).	C.	Histograms	of	preferred	direction	are	shown	for	ipsilateral	responses	(red	
bars),	contralateral	responses	that	prefer	lower	spatial	frequencies	(<0.24	c/d;	black	bars)	and	contralateral	
responses	that	prefer	high	spatial	frequencies	(≥0.24	c/d,	black	open	bars),	in	all	cases	for	responses	that	are	
orientation	selective	(OSI>0.5).	Ipsilateral	and	contralateral	low	spatial	frequency	preferring	cells	are	not	
biased	towards	cardinal	directions	(ipsi:	55%	cardinal,	MW(U)=529,	ns;	contra	low:	54%	N=10	mice).	In	
contrast,	orientation	selective	high	spatial	frequency	preferring	contralateral	responses	are	more	biased	to	
cardinal	directions	(contra	high:	82%	cardinal	MW(U)=341.5,	p<0.0001,	N=10	mice)	than	ipsilateral	and	
contralateral	low	spatial	frequency	tuned	cells	(Chi-squared	test,	p<0.0001,	contra	high:	n=78	cells;	ipsi:	
n=388	cells,	N=10	mice).	D.	In	monocular	V1	(mV1),	high	spatial	frequency	tuned	cells	(≥0.24	c/d,	open	blue)	
are	more	biased	to	cardinal	directions	than	low	spatial	frequency	tuned	cells	(<0.24	c/d,	blue;	high	cells:	91%	
cardinal	n=24	cells,	low	cells:	55%	n=150	cells,	MW(U)=24,	p<0.0024;	Chi-squared	test,	p<0.0002;	N=3	mice).	
All	error	bars	reflect	standard	error	across	animals.	
	
2.3.6	Contralateral	Bias	for	High	Spatial	Frequencies	Present	in	Wildtype	Mice	

Since	we	were	using	transgenic	GCaMP6s	mice,	it	is	possible	that	the	eye-specific	

asymmetries	of	spatial	frequency	tuning	we	found	are	not	representative	of	typical	

responses	in	wildtype	mice.		To	confirm	our	findings	we	injected	AAV-Syn-GCaMP6s	into	

the	binocular	visual	cortex	of	wildtype	C57Bl6J	mice.	Despite	the	fact	that	this	injection	

method	does	not	label	excitatory	cells	exclusively,	we	found	a	similar	contralateral	bias	of	

high	spatial	frequency	tuning	in	virally	labeled	animals	as	compared	to	the	transgenic	

GCaMP6s	mice	(Figure	2.8a,	p<0.0001).	Although	the	spatial	frequency	preference	for	both	

contralateral	and	ipsilateral	eye	stimulation	is	overall	higher	with	AAV	injection,	the	ratios	

of	contralateral	to	ipsilateral	preferred	spatial	frequency	are	similar	(tetO-GCaMP6s	

median	ratio:	1.54,	AAV	injected	median	ratio:	1.7).	The	differences	in	spatial	frequency	

tuning	preferences	are	not	attributable	to	differences	in	bandwidth	(Figure	8b).	We	also	

found	a	similar	ocular	dominance	distribution	in	wildtype	and	the	transgenic	line	(Figure	

2.8c;	percent	ipsi	or	contra	only:	tetOGCaMP6s:	62.7%,	AAV	injected:	50.8%).	These	results	
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confirm	that	the	differences	in	spatial	frequency	tuning	between	contralateral	and	

ipsilateral	eye	stimulation	generalizes	to	the	wildtype	C57Bl6J	strain.		

	

Figure	2.8:	Spatial	Frequency	Preferences	of	Contralateral	Responses	is	Higher	than	Ipsilateral	
Responses	in	AAV-SynGCaMP6s	Injected	Mice.	A.	The	preferred	spatial	frequency	is	significantly	higher	for	
contralateral	(black)	than	ipsilateral	(red)	responses	(median	contra=0.251	c/d,	n=96	cells;	median	
ipsi=0.148	c/d,	n=76	cells;	KS	D=0.403,	p<0.0001;	MW(U)=1918,	p<0.0001,	N=2	mice).	B.	Distributions	of	
bandwidth	are	plotted	for	contralateral	(black)	and	ipsilateral	(red)	responses.	The	bandwidth	for	
contralateral	responses	and	ipsilateral	responses	are	very	similar	(contra	median=1.919;	ipsi	median=1.922;	
MW(U)=3579,	p=0.717;	KS(D)=0.139,	p=0.372).	C.	Histogram	of	ocular	dominance	for	neurons.	Binocularly	
responsive	cells	shown	in	gray,	cells	that	only	respond	to	the	ipsilateral	eye	shown	in	red	and	cells	that	only	
respond	to	the	contralateral	eye	in	black.	Error	bars	show	standard	error	of	the	mean	across	animals	(overall	
mean	ODI=0.202;	binocular	only	ODI=0.077,	n=116	cells,	N=2	mice).	
	

2.3.7	Contralateral	Bias	of	Tuning	Properties	Not	Explained	by	Behavioral	State	

The	animal’s	behavioral	state	can	strongly	regulate	the	level	of	visual	

responsiveness	in	area	V1	(Niell	and	Stryker,	2010;	Lee	et	al,	2014;	Fu	et	al.,	2014)	
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particularly	for	neurons	tuned	to	high	spatial	frequencies	(Mineault	et	al.,	2016).	Since	our	

recordings	were	performed	in	awake	animals,	we	sought	to	rule	out	the	possibility	that	

fluctuations	in	behavioral	state	produced	our	results.	We	repeated	our	characterization	of	

binocular	spatial	frequency	tuning	under	anesthesia	(Figure	2.9).	We	analyzed	582	neurons	

across	three	animals	(total	responsive:	70.32	±	8.08%;	contra	responsive:	62.57	±	8.11%;	

ipsi	responsive:	28.91	±	10.84%).	Just	as	in	awake	recordings	(Figure	3),	we	found	higher	

spatial	frequency	tuning	in	contralateral	responses	(Figure	2.9a;	median	contra=0.0928	

c/d	vs.	median	ipsi=0.068	c/d).	Approximately	half	of	anesthetized	cortical	responses	were	

monocular,	similar	to	the	percentage	in	our	awake	recordings	(Figure	2.9c;	anesthetized:	

60%;	awake:	62%).	Altogether,	these	results	discount	the	possibility	that	behavioral	state	

fluctuations	could	account	for	our	results.	
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Figure	2.9:	Higher	Spatial	Frequency	Tuning	of	the	Contralateral	Responses	Also	Found	in	
Anesthetized	Animals.	A.	Cumulative	distributions	of	preferred	spatial	frequency	to	contralateral	(black,	
n=332	cells,	N=3	mice)	and	ipsilateral	(red,	n=197	cells,	N=3	mice)	eye	stimulation	in	binocular	V1	of	
anesthetized	mice.	The	preferred	spatial	frequency	of	contralateral	responses	is	significantly	higher	than	for	
ipsilateral	responses	(median	contra=0.0928	c/d	vs	median	ipsi=0.068	c/d;	KS	D=0.179,	p=0.0007;	
MW(U)=29333,	p=0.0474).	B.	Spatial	frequency	bandwidth	distributions	are	similar	for	contralateral	and	
ipsilateral	responses	(median	contra=1.853	vs	median	ipsi=1.859;	KS	D=0.826,	p=0.826;	MW(U)=31645,	
p=0.752).	C.	Histogram	of	ocular	dominance	for	neurons.	Binocularly	responsive	cells	are	shown	in	gray.	Cells	
that	only	respond	to	the	ipsilateral	eye	are	shown	in	red	and	cells	that	only	respond	to	the	contralateral	eye	in	
black.	All	distributions	were	binned	and	the	mean	across	animals	plotted.	Error	bars	show	standard	error	of	
the	mean	across	animals.	
	

It	is	possible	that	other	visual	circuits	outside	of	binocular	visual	cortex	respond	

selectively	to	high	spatial	frequency,	cardinal	oriented	visual	gratings	and	trigger	a	change	

in	the	animal’s	behavioral	state.	If	so,	then	these	stimulus-dependent	behavioral	state	

changes	might	be	indirectly	responsible	for	producing	our	results.	Pupil	size	has	been	used	

as	a	sensitive	metric	for	behavioral	state	changes	in	visual	cortex	(Vinck	et	al.,	2015).	We	

examined	the	pupillary	dilation	and	eye	velocity	from	a	subset	of	our	experiments	(Figure	

10).	We	found	that	eye	velocities	during	ipsilateral	and	contralateral	recordings	were	

minimal,	similar	to	a	recent	study	of	awake	mice	shown	gratings	of	varying	spatial	

frequencies	and	directions	(Figure	10b;	Mineault	et	al.,	2016).	To	determine	whether	

certain	stimulus	conditions	modulated	behavioral	state	directly,	we	examined	the	pupillary	

dilation	across	trials	and	stimulus	conditions	according	to	the	eye	shown	the	stimulus	

(Figure	10c).	We	observed	no	obvious	relationship	between	pupil	dilation	and	stimulus	

condition.	Also,	the	pupillary	dilations	during	contralateral	and	ipsilateral	eye	imaging	

sessions	were	comparable,	suggesting	that	the	behavioral	state	was	not	systematically	

different	(Figure	10d).	Altogether,	these	analyses	do	not	reveal	any	overt	behavioral	state	

confound	in	our	study.	
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Figure	10:	Comparable	Eye	Movements	and	Pupillary	Dilation	during	Contralateral	and	Ipsilateral	
Recordings.	Sample	snapshot	of	the	contralateral	(left)	and	ipsilateral	(right)	eyes	revealed	by	two-photon	
IR	laser	light	scattered	through	the	brain.	B.	Spatial	histogram	of	angular	pupil	velocity	observed	during	
calcium	imaging	for	contralateral	(left)	and	ipsilateral	(right)	eye	presentation	(contra,	n=149,965	counts;	
ipsi,	n=109,225	counts;	N=2	mice).	Pupil	position	remains	largely	static	during	recordings.	C.	Pupil	diameter	
plotted	as	a	function	of	spatial	frequency	and	orientation	for	contralateral	(black)	and	ipsilateral	(red)	
recordings	(contra,	n=5	recordings;	ipsi,	n=4	recordings).	No	relationship	between	spatial	frequency	or	
orientation	and	pupil	dilation	is	observed.	D.	Histograms	comparing	pupil	diameter	during	contra	(black)	and	
ipsilateral	(red)	viewing.	Counts	are	normalized	as	the	percentage	of	total	counts	(contra,	n=133,747	counts,	
mean=1.19	mm,	SD=	0.36;	ipsi,	n=98,109	counts,	mean=1.26	mm,	SD=0.40,	N=2	mice).  
 
2.4	Discussion	
	

Our	study	of	the	spatial	frequency	tuning	of	eye-specific	cortical	responses	reveals	

pronounced	asymmetries	in	spatial	and	direction	processing	in	binocular	area	V1	of	mice.		

Previous	studies	of	binocular	response	properties	in	mouse	area	V1	only	probe	to	0.32	c/d	

(Wang	et	al.,	2010;	Vreysen	et	al.,	2012),	not	to	1.0	c/d,	as	in	our	study.	For	this	reason,	

previous	studies	likely	missed	many	mismatched	binocular	cells	and	the	highest	spatial	

frequency	tuned,	contralateral-dominated	cells.	Also,	previous	binocular	cortical	

recordings	were	performed	under	anesthesia.	Arousal	has	been	shown	to	influence	the	

spatial	frequency	tuning	of	cortical	responses	in	mice	(Mineault	et	al.,	2016).	Nevertheless,	

we	found	the	same	asymmetry	of	the	spatial	frequency	tuning	of	contralateral	and	

ipsilateral	responses	in	our	anesthetized	recordings	(Figure	2.9)	as	we	did	in	our	awake	

experiments	(Figure	2.3).		

We	found	more	contralateral	and	ipsilateral	eye	dominated	responses	in	binocular	

area	V1	(62%;	Figure	2.3)	than	has	previously	been	reported.	While	Dräger’s	initial	study	

of	binocularity	in	mouse	area	V1	reported	a	high	prevalence	of	monocular	neurons	within	

binocular	area	V1	(Dräger	1975:	~32%),	other	studies	reported	fewer	(Mrsic-Flogel	et	al.,	

2007:	5%;	Gordon	and	Stryker,	1996:	11-23%).	A	recent	study	using	the	calcium	indicator	

OGB-1	reports	~50%	monocularly-dominated	responses	in	binocular	V1	(Scholl	et	al.,	
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2017).	The	high	signal-to-noise	of	GCaMP6	recordings	may	have	allowed	us	to	pick	up	cells	

other	techniques	missed.	Indeed,	we	found	that	the	responses	from	monocular	neurons	

was	approximately	half	that	expected	from	binocular	responses	(Figure	2.3).	It	is	possible,	

however,	that	calcium	imaging	may	be	unable	to	detect	very	weak	responses,	missing	the	

non-dominant	eye	input	to	cells	that	we	identify	to	be	monocular.	Nevertheless,	the	ocular	

dominance	of	neuronal	responses	in	our	recordings	was	skewed	towards	the	contralateral	

eye	(mean	ODI=0.289),	in	agreement	with	previous	studies	of	single-cell	binocularity	

(Dräger	1975;	Gordon	and	Stryker	1996;	Mrsic-Flogel,	2007;	Wang	et	al.,	2010;	Gandhi	et	

al.,	2008).	Monocularly	dominated	neurons	in	binocular	area	V1	may	exhibit	other	

distinctive	response	properties	as	compared	to	binocular	cells.		

One	implication	of	our	findings	is	that	monocular	mechanisms	may	be	more	

important	than	binocular	interactions	in	determining	the	spatial	acuity	of	mice.	At	the	

limits	of	visual	detection,	binocular	visual	processing	has	been	shown	extensively	to	be	

more	sensitive	than	monocular	processing	(Campbell	and	Green,	1965;	Blake	and	Levinson,	

1977;	Anderson	and	Movshon,	1989).	The	perceptual	facilitation	of	visual	acuity	by	

binocular	viewing	was	initially	corroborated	by	evoked	potential	studies	of	human	visual	

cortex	(Campbell	and	Maffei,	1970;	Blake	et	al.,	1981).	Some	psychophysical	studies	

performed	above	contrast	threshold	later	revealed	that	binocular	facilitation	of	monocular	

processing	is	weak	at	high	spatial	frequencies	(Apkarian	et	al,	1981;	Bagolini	et	al.,	1988;	

Tobimatsu	and	Kato,	1996).	Our	observation	in	mice	that	binocular	neurons	have	lower	

spatial	frequency	tuning	than	contralaterally-dominated	cells	may	provide	a	possible	

explanation	for	the	lack	of	binocular	facilitation	at	high	spatial	frequencies	in	humans.		
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In	cat	visual	cortex,	there	is	a	strong	correlation	in	the	spatial	frequency	tuning	of	

each	eye	for	binocular	neurons	(Skottun	and	Freeman,	1984:	preferred	spatial	frequency	

r=0.92;	Saint-Amour,	2004:	r=0.82).	In	contrast,	we	find	a	moderate	degree	of	correlation	

in	the	preferred	spatial	frequency	tuning	of	binocular	neurons	in	mouse	visual	cortex	

(r=0.372,	Figure	2.5b).	One	study	in	cat	cortex	finds	more	prevalent	mismatch	in	the	spatial	

frequency	tuning	of	binocular	neurons	(Hammond	and	Pomfrett,	1991).	Another	study	

reports	a	small	but	significant	tendency	for	spatial	frequency	mismatch	in	monocularly	

biased	neurons	(Skottun	and	Freeman,	1984).	These	findings	may	reflect	functional	

asymmetries	in	eye	specific	visual	pathways	in	the	cat	visual	system	that	is	more	

pronounced	and	amenable	for	study	in	mice.	It	is	also	possible	that	our	findings	reveal	that	

housing	conditions	and/or	genetic	limitations	may	prevent	the	two	distinct	genotypes	of	

laboratory	mice	studied	here	(wildtype	c56/bl6	and	tetO-GCaMP6s)	from	developing	full	

high	acuity	binocular	vision.	

Our	results	in	mice	agree	with	classical	findings	that	cortical	neurons	with	the	

highest	spatial	frequency	tuning	are	more	directionally	selective	(De	Valois	et	al.,	1982b).	

The	asymmetry	of	contralateral	and	ipsilateral	cardinality,	however,	has	not	been	

examined	previously.	Humans	perform	better	at	making	judgments	about	stimuli	oriented	

along	the	cardinal	axes	(Girshick	et	al.,	2011).	Behavioral	studies	of	visual	acuity	in	mice	

typically	use	cardinally	oriented	stimuli	(Prusky	et	al.,	2000).	Since	we	have	found	that	the	

highest	spatial	frequency	responses	in	binocular	area	V1	are	cardinal	and	monocular,	

comparing	mouse	acuity	using	cardinal	versus	oblique	stimuli	may	reveal	a	monocular	

bias.		
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The	more	accurate	portrayal	of	binocular	spatial	frequency	tuning	elucidated	in	this	

study	supports	the	possibility	of	distinct	developmental	mechanisms	for	acuity	and	

binocularity.	Psychophysical	data	from	primates	suggest	that	the	critical	periods	for	spatial	

acuity	and	binocular	processing	may	be	distinct	(Harwerth	et	al.,	1986).	In	addition,	studies	

in	mice	(Kang	et	al.,	2013;	Stephany	et	al.,	2014)	and	in	cats	(Murphy	and	Mitchell,	1986)	

have	dissociated	acuity	development	from	binocular	plasticity.	Cellular	and	molecular	

studies	of	visual	acuity	development	in	mice	have	made	the	assumption	that	changes	in	

high	spatial	frequency	responses	reflect	binocular	mechanisms	yet	we	find	that	high	spatial	

frequency	responses	are	strongly	dominated	by	the	contralateral	eye.	Might	monocular	

visual	deprivation	have	distinct	effects	on	monocular,	contralaterally	dominated	responses	

in	binocular	visual	cortex	as	compared	to	their	lower	spatial	frequency	selective	binocular	

counterparts?	

The	contralateral	bias	of	cardinal	direction	selectivity	and	high	spatial	frequency	

tuning	we	find	in	mouse	binocular	visual	cortex	is	reminiscent	of	the	functional	segregation	

recently	found	in	early	stages	of	the	mouse	visual	pathway.	Direction	selectivity	along	the	

cardinal	axes	has	been	found	in	the	dendrites	of	retinal	ganglion	cells	(Yonehara	et	al.,	

2013)	while	orientation	selectivity	has	been	found	in	the	retina	(Nath	and	Schwartz	2016).	

Furthermore,	certain	types	of	ganglion	cells	specialize	in	processing	high	spatial	frequency	

information	(Jacoby	and	Schwartz,	2017).	Downstream,	in	the	lateral	geniculate	nucleus	

(LGN),	a	distinct	region	has	been	identified	that	contains	neuronal	responses	that	have	

direction	selectivity	and	cardinal	bias	(Marshel	et	al.,	2012;	Zhao	et	al.,	2013;	Piscopo	et	al.,	

2013).	Interestingly,	Piscopo	et	al.,	reported	that	these	direction	selective	cells	in	LGN	are	

higher	spatial	frequency	tuned.	More	recently,	thalamic	afferents	to	mouse	visual	cortex	
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have	also	been	reported	to	respond	with	directional	and	orientation	tuning	(Cruz-Martin	et	

al.,	2014;	Kondo	and	Ohki,	2016;	Sun	et	al.,	2016;	Roth	et	al.,	2016).	Furthermore,	

anatomical	(Rompani	et	al.,	2017)	and	functional	(Howarth	et	al.,	2014)	evidence	suggest	

that	there	may	be	eye-specific	segregation	of	response	properties	in	the	LGN.	Combining	

these	observations,	we	postulate	that	in	the	mouse	visual	system	high	spatial	frequency	

tuned	and	direction	selective	signals	from	the	eye	project	contralaterally	while	lower	

spatial	frequency	tuned,	non-or	weakly-	direction	selective	signals	project	ipsilaterally.	To	

confirm	whether	the	functional	segregation	we	find	in	binocular	visual	cortex	is	present	in	

the	thalamus,	tracing	and	eye-specific	functional	analysis	of	thalamocortical	axons	is	

needed.		

Recent	studies	suggest	that	higher	visual	areas	in	mouse	cortex	are	divided	in	a	

dorsal	and	a	ventral	stream	(Wang	et	al.,	2011;	Wang	et	al.,	2012;	Smith	et	al.,	2016).	Given	

that	area	V1	sends	functionally	specific	projections	to	different	higher	visual	areas	

(Glickfeld	et	al.,	2013),	it	may	be	that	binocular	low	spatial	frequency	tuned	and	monocular	

high	spatial	frequency	tuned	cells	bifurcate	into	dorsal	and	ventral	streams.	Since	area	LM,	

lateral	to	area	V1,	has	been	shown	to	be	broadly	tuned	to	spatial	and	temporal	frequencies	

(Marshel	et	al.,	2011),	we	might	predict	that	it	receives	input	from	binocular,	lower	spatial	

frequency	tuned	V1	neurons.	This	pathway	may	mediate	more	complex	binocular	visual	

processing.	Since	Area	PM,	medial	to	area	V1,	prefers	higher	spatial	frequencies	and	

cardinal	directions	(Andermann	et	al.,	2011;	Glickfeld	et	al.,	2013;	Roth	et	al.,	2012),	we	

might	predict	it	receives	input	from	contra-dominated,	monocular	high	spatial	frequency	

neurons.	Tracing	studies	with	calcium	imaging	can	test	these	predictions	about	the	

functional	segregation	of	visual	processing	in	mouse	visual	cortex.	
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CHAPTER	3:	Eye-specific	functional	properties	of	higher	visual	areas	LM	

and	PM	

3.1	Introduction	

	 The	functional	architecture	of	the	mammalian	visual	system	is	modular	and	

hierarchically	organized	(Felleman	and	Van	Essen,	1991;	Van	Essen,	1992).	Maps	of	

neurons	encoding	similar	stimulus	features	are	repeated	multiple	times	along	the	cortical	

hierarchy,	presumably	to	build	complex	representations	from	simpler	ones.	For	instance,	

the	visual	field	is	encoded	in	all	visually	defined	cortical	areas,	although	retinotopy	may	

vary	in	coarseness	and	have	biases	towards	certain	regions	of	visual	space	(Felleman	and	

Van	Essen,	1991;	Zhuang	et	al.,	2017).	The	re-mapping	may	allow	the	simultaneous	

processing	of	distinct	aspects	of	the	visual	scene	by	parallel	pathways	(Ungerleider	and	

Mishkin	1982;	Maunsell	and	Newsome,	1987;	Goldman-Rakic,	1988).	In	a	similar	manner,	

maps	for	spatial	frequency,	orientation,	direction	and	eye-specificity	are	parsed	and	

organized	among	higher	visual	areas,	which	are	specialized	for	processing	distinct	visual	

features	(Zeki,	1978;	Marshel	et	al.,	2011;	Andermann	et	al.,	2011;	Glickfeld	et	al.,	2013).	In	

primates,	the	functional	maps	of	spatial	frequency,	orientation	and	ocular	dominance	are	

interrelated	in	the	cortical	columns	of	primary	visual	cortex	(V1)	(Nauhaus	et	al.,	2016).	

Moreover,	the	output	of	V1	has	been	demonstrated	to	parse	functionally	specialized	

information	to	higher	visual	areas	(Movshon	and	Newsome,	1996).		

	 Akin	to	humans	and	primates,	mice	also	have	distinct	processing	streams,	

interconnecting	regions	important	for	spatial	navigation	and	form	processing	(Wang	et	al.,	

2011;	Wang	et	al.,	2012).	There	is	also	evidence	that	mouse	V1	is	modular	and	contains	a	

broad	distribution	of	spatiotemporal	frequency	tuned	cells,	capable	of	parsing	stream-
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related	information	to	higher	visual	areas	of	cortex	(Gao	et	al.,	2013;	Ji	et	al.,	2015).	Due	to	

a	lack	of	columnar	organization	of	orientation,	ocular	dominance	and	spatial	frequency	in	

the	mouse	visual	system,	little	is	known	about	the	relationship	between	these	functionally	

specific	neurons	or	how	they	relate	to	neurons	downstream	in	higher	visual	areas.	Despite	

a	lack	of	columnar	organization,	neurons	within	mouse	V1	share	fundamental	properties	

with	primate	V1.	V1	neurons	are	tuned	to	each	eye	distinctly,	carry	spatiotemporal	

frequency	information	and	vary	in	the	degree	of	tuning	for	direction	and	orientation	

(Drager,	1975;	Niell	and	Stryker,	2008).	The	relation	between	maps	for	ocularity,	spatial	

frequency	and	orientation	in	primate	V1	poses	the	question	if	the	parcellation	of	distinct	

spatiotemporal	tuning	properties	of	higher	visual	areas	is	linked	to	the	eye	by	which	the	

information	is	coming	from.		

	 We	have	recently	discovered	an	asymmetry	in	the	tuning	of	eye-specific	visual	

processing	within	mouse	V1	(Salinas	et	al.,	2017),	suggesting	that	the	functional	specificity	

of	V1	and	higher	order	cortex	could	be	regulated	by	eye-specific	mechanisms.	It	is	currently	

unknown	whether	eye-specific	visual	processing	relates	to	stream	segregation	outside	of	

V1.	We	sought	to	investigate	if	the	eye-specific	functional	organization	in	V1	is	also	present	

in	higher	order	areas	of	cortex,	potentially	serving	a	purpose	for	stream	specialization.	To	

characterize	the	eye-specific	spatial	and	spatiotemporal	frequency	tuning	of	neurons	in	the	

putative	ventral	and	dorsal	stream,	we	recorded	from	hundreds	of	excitatory	layer	2/3	

neurons	from	areas	V1,	LM	and	PM	while	mice	viewed	drifting	sinusoidal	gratings	through	

the	contralateral	or	ipsilateral	eye.	We	found	conserved	functional	motifs	in	V1,	LM	and	PM	

that	are	linked	to	eye-specificity	and	ocularity.	Contralateral-dominated	cells	are	tuned	to	

the	highest	spatial	frequencies,	binocular	cells	are	selective	for	orientation	and	monocular	
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cells	are	selective	for	direction.	The	distribution	of	eye-specific	responses	also	match	the	

expectation	based	on	their	spatial	frequency	tuning	profile:	PM	contains	more	contralateral	

dominated	cells	and	LM	contains	more	binocular	cells.	Differences	in	eye-specific	spatial	

frequency	tuning	could	be	a	reflection	of	differences	in	speed	preferences	between	the	two	

eyes.	Indeed,	we	do	find	contralateral	eye	responses	are	tuned	to	slower	peak	speeds	than	

ipsilateral	eye	responses	throughout	V1,	LM	and	PM.	These	results	suggest	that	eye-

specificity	and	ocularity	are	linked	to	feature	preferences	for	orientation,	direction,	spatial	

frequency	and	temporal	frequency	in	the	mouse.		

3.2	Materials	and	Methods	

Most	of	the	materials	and	methods	are	the	same	for	the	previous	experiments	

probing	eye-specific	spatial	frequency	tuning	in	binocular	V1	(Salinas	et	al.,	2017).	Refer	to	

the	materials	and	methods	section	for	more	information	on	previously	reported	methods.	

Exceptions	to	this	will	be	indicated.		

3.2.1	Animals	

All	protocols	and	procedures	followed	the	guidelines	of	the	Animal	Care	and	Use	

Committee	at	the	University	of	California,	Irvine.	To	image	evoked	activity	in	excitatory	

neurons	in	areas,	a	Camk2a-tTA	driver	line	(RRID:	IMSR_JAX:007004)	was	crossed	to	a	line	

expressing	the	calcium	indicator	GCaMP6s	under	the	control	of	the	tetracycline-responsive	

regulatory	element	(tetO)	(RRID:	IMSR_JAX:024742;	Wekselblatt	et	al.,	2016).	The	founder	

line	was	heterozygous	for	both	transgenes	and	maintained	by	breeding	with	wildtype	

C57BL/6	mice	(RRID:	IMSR_CRL:642).	Mice	were	weaned	at	P18-21	and	co-housed	with	

one	or	more	littermate	until	the	day	of	window	implantation	(P73-200).	Mice	of	either	sex	

were	used	in	the	experiments.		
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3.2.2	Cranial	Window	Implantation	

See	Section	2.2.2	Cranial	Window	Implantation	

3.2.3.	GCaMP6s	Virus	Delivery		

To	assess	visual	responses	of	boutons	from	primary	visual	cortex	to	higher	visual	

areas,	AAV-Syn-GCaMP6s	(Chen	et	al.,	2013)	(Upenn	Vector	Core	AV-1-PV2824)	was	

injected	into	wildtype	mice	two	to	three	weeks	prior	to	two-photon	imaging.	Intrinsic	

signal	imaging	maps	of	retinotopy	were	used	to	target	injections	into	the	binocular	zone	of	

primary	visual	cortex.	Virions	were	diluted	with	ACSF	to	~2x1011	GC/mL	and	80-

200nL	injected	at	a	rate	of	10nL/min	at	depths	of	250	um	and	450	um	below	the	

surface.	Lactated	Ringer’s	(0.2mL/20g/hr,	s.c.)	were	given	to	prevent	dehydration.	Mice	

were	allowed	to	recover	on	a	warm	heating	pad	following	surgery	(<15	minutes).			

3.2.4	Visual	Area	Mapping	

	 Retinotopic	maps	of	azimuth	and	elevation	were	used	to	generate	a	visual	field	

sign	map	(Sereno	et	al.,	1994;	Garrett	et	al.,	2014)	to	designate	borders	between	visual	

areas.	See	Section	2.2.4	for	retinotopic	mapping.		

3.2.5	Two-Photon	Calcium	Imaging	

Fluorescence	was	gathered	with	a	resonant	two-photon	microscope	(Neurolabware,	

Los	Angeles,	CA)	with	900-920	nm	excitation	light	(Mai	Tai	HP,	Spectra-Physics,	Santa	

Clara,	CA).	Emissions	were	filtered	using	a	510/84nm	BrightLine	bandpass	filter	(Semrock,	

Rochester,	NY).	A	16x	(Nikon	NA=0.8)	water	immersion	lens	was	used.	Image	sequences	

typically	covered	a	field	of	approximately	700	µm	by	500	um	for	cell	recordings	in	V1	and	

LM	or	approximately	500um	µm	by	400	um	for	cell	recordings	in	PM	and	were	acquired	at	
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7.7	or	12	Hz	(1024	or	660	lines)	using	Scanbox	acquisition	software	(Scanbox,	Los	Angeles,	

CA)	at	a	depth	of	200-250	µm	below	the	pia.		

Recordings	from	binocular	V1	were	confined	to	regions	adjacent	to	the	intersection	

of	the	horizontal	and	vertical	meridians	at	the	border	of	V1	and	LM.	Recordings	from	area	

LM	were	restricted	to	the	anterior	portion	of	LM,	as	close	the	central	visual	field	coverage	

as	possible,	while	recordings	from	PM	were	performed	in	both	the	anterior	portion	(more	

central	visual	field)	and	posterior	portion	of	PM	(more	peripheral	visual	field).	Although	we	

did	notice	an	enhancement	for	spatial	frequency	tuning	in	higher	elevations	of	PM,	we	

decided	to	pool	all	responses	to	increase	the	power.		

3.2.5.1	Two-Photon	Visual	Stimuli	

Visual	stimuli	were	generated	by	custom-written	python	code	using	

the	PsychoPy	1.8	library.	For	the	spatial	frequency	tuning	protocol,	full	field	drifting	

sinusoidal	gratings	were	presented	eight	orientations	(0-315,	45o	steps)	and	six	spatial	

frequencies	(0.03-0.96	c/d,	logarithmically	spaced)	at	a	fixed	temporal	frequency	(2Hz	for	

LM	and	V1,	1Hz	for	PM)	using	a	gamma	corrected	Acer	V193	monitor	(53	x	33	cm,	60	Hz	

refresh	rate,	20-30	cd/m2)	or	54”	LED	LG	TV	(model	55LB5900,	60	Hz	refresh	rate,	20-30	

cd/m2).	For	the	speed	tuning	experiment,	full	field	drifting	sinusoidal	gratings	were	

presented	at	four	orientations	(0,90,180,270),	five	spatial	frequencies	(0.03-0.48	c/d,	

logarithmically	spaced)	and	four	temporal	frequencies	(1-8	Hz,	logarithmically	spaced).	

The	visual	stimulus	was	spherically	corrected.	In	addition	to	the	48	grating	stimuli,	we	also	

showed	a	blank	condition	and	a	condition	in	which	the	whole	monitor	flickered	at	2	

Hz	(FF).	The	50	total	stimulus	conditions	were	presented	in	a	random	order	for	each	of	

the	8	repetitions.	For	each	trial,	the	stimulus	was	presented	for	2	seconds,	followed	by	2	
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seconds	of	grey	screen.	The	visual	stimulus	was	presented	either	first	to	the	ipsilateral	or	

the	contralateral	eye.		

3.2.6	Data	Analysis	

3.2.6.1	Cellular	Responses	

Custom-written	Python	routines	were	used	to	remove	motion	artifact,	identify	cell	

ROIs,	extract	calcium	fluorescence	traces,	and	perform	analyses.	See	Section	2.2.6.1	

To	determine	a	cell’s	response	to	each	stimulus	trial,	the	cell’s	trace	during	the	

stimulation	period	was	normalized	to	the	baseline	value	averaged	over	the	0.75	seconds	

preceding	stimulus	presentation.	The	cell’s	response	to	a	given	orientation	θi	was	defined	

as	the	average	response	across	the	8	repeats	of	each	condition:	F(θi).	An	estimate	of	the	

cell’s	spontaneous	calcium	fluctuation	was	determined	using	the	cell’s	trace	during	the	

blank	condition.	For	the	spatial	frequency	tuning	protocol,	at	each	spatial	frequency,	a	cell’s	

responsiveness	was	determined	using	a	one-way	ANOVA	(p<0.01)	across	orientations	

against	the	blank	condition.	For	the	speed	tuning	protocol,	a	cell’s	responsiveness	was	first	

determined	using	a	one-way	ANOVA	with	a	Bonferonni	correction	(p<0.05/(5	SFs	*	4	TFs)=	

p<0.0025).			

3.2.6.2	Preferred	Orientation	

	 See	Section	2.2.6.2	

3.2.6.3	Preferred	Spatial	Frequency	(Spatial	Frequency	Tuning	Protocol	

	 See	Section	2.2.6.3	

3.2.6.4	Orientation	and	Direction	Selectivity	

	 See	Section	2.2.6.4	



83	
	

3.2.6.5	Ocular	Dominance	Index	

	 See	Section	2.2.6.5	

3.2.6.6	Preferred	Speed	(Speed	Tuning	Protocol)	

To	determine	a	cell’s	preferred	speed,	responses	across	all	spatial	and	temporal	

frequencies	were	fit	with	a	two-dimensional	elliptical	Gaussian	(Priebe	et	al.,	2006;	

Andermann	et	al.,	2011):		

𝑅 𝑠𝑓, 𝑡𝑓 = 𝐴 𝑒𝑥𝑝
−(log! 𝑠𝑓 − log! 𝑠𝑓!)!

2 𝜎!"
!  𝑒𝑥𝑝

−(log! 𝑡𝑓 − log! 𝑡𝑓!(𝑠𝑓))!

2 𝜎!"
!  

where	A	is	the	neuron’s	maximum	responses,	𝑠𝑓!	and	𝑡𝑓!	are	the	preferred	spatial	and	

temporal	frequency	and	𝜎!"	and	𝜎!"	are	the	tuning	widths	for	spatial	and	temporal	

frequency.	From	this	fit	we	are	able	to	obtain	the	dependence	of	temporal	frequency	

preference	on	spatial	frequency	by	calculating	the	speed	tuning	index,	𝜉,	such	that	

log! 𝑡𝑓!(𝑠𝑓) =  𝜉 (log! 𝑠𝑓 − log! 𝑠𝑓!)+ log! 𝑡𝑓! .	A	neuron	with	a	speed	tuning	index	of	

𝜉 = 1	is	a	speed-tuned	cell,	while	𝜉 = 0	is	not	speed-tuned	and	𝜉 = −1	is	anti-tuned.	To	

measure	goodness	of	fit,	we	used	two	approaches.	First,	the	fitted	data	must	be	well	

correlated	with	the	raw	data	(fit	correlation	greater	than	0.5).	The	confidence	intervals	for	

preferred	spatial	and	temporal	frequency	must	not	exceed	2	octaves.	For	speed	tuning	

analysis,	the	confidence	intervals	for	the	speed-tuning	index	must	not	exceed	1.		

	

3.2.6.7	Experimental	Design	and	Statistical	Analyses	

Data	was	tested	for	normality	before	choosing	the	appropriate	statistical	tests	for	

differences	in	cellular	distributions.	One-way	ANOVAs	were	used	to	detect	differences	

between	areas	in	percent	responsive	and	Tukey’s	post	hoc	multiple	comparisons	test	was	
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used	to	detect	differences	between	area	pairs.	Kruskall-Wallis	tests	were	used	to	determine	

differences	in	cellular	distributions	between	areas	for	ODI,	preferred	spatial	frequency,	

orientations	selectivity,	direction	selectivity,	binocular	matching	for	orientation	and	spatial	

frequency,	speed	preferences	and	eye-specific	spatial	frequency	tuning	in	V1	to	LM	and	V1	

to	PM	afferents.	To	test	differences	in	eye-specific	speed	tuning,	and	in	V1	to	LM	or	V1	to	

PM	ODI	and	spatial	frequency	afferent	tuning,	both	Mann-Whitney	and	Kolmogorov-

Smirnov	tests	were	used.	Statistical	analyses	were	performed	using	Prism	v7.01	

(GraphPad).		

	

3.3	Results	

To	probe	eye-specific	spatial	frequency	tuning	of	V1,	LM	and	PM,	we	used	a	

transgenic	mouse	line	that	expresses	GCaMP6s	under	the	control	of	the	CaMK2	promoter	

(CaMK2-tTA;tetO-GCaMP6s;	Wekselblatt	et	al.,	2016).	Visual	areas	were	identified	using	

calcium	widefield	imaging	to	retinotopically	map	elevation	and	azimuth	(visual	field	sign	

map;	Garrett	et	al.,	2014;	Figure	1a,	bottom	left;	Figure	1b).	The	overlaid	maps	were	used	

as	a	guide	to	position	two-photon	microscopy	recordings	in	the	correct	areas.	Recordings	

were	directed	as	close	to	the	central	visual	field	as	possible	in	each	area,	although	biases	

exist	in	the	retinotopic	organization	of	areas	LM	and	PM	(Zhuang	et	al.,	2017).	Cellular	

imaging	was	performed	in	awake,	head-fixed	mice	that	were	acclimated	to	the	setup	over	

several	days.	Mice	were	shown	a	visual	stimulus	through	either	the	contralateral	or	

ipsilateral	eye	(Figure1a,	top	right)	to	probe	spatial	frequency	and	speed	tuning.	For	the	

spatial	frequency	tuning	protocol,	the	stimulus	consisted	of	two-second	presentations	of	

drifting	sinusoidal	gratings	at	one	of	eight	directions	and	one	of	six	spatial	frequencies	
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(0.03-0.96	c/d	spaced	logarithmically;	see	Figure	1c).	We	interleaved	the	presentation	of	a	

full	field	flickering	stimulus	with	the	gratings	to	detect	neurons	tuned	to	very	low	spatial	

frequencies.	Each	stimulus	condition	was	repeated	8	times	per	eye.	We	used	a	similar	

approach	to	probe	speed	tuning	with	these	few	exceptions:	the	visual	stimulus	consisted	of	

two	second	presentations	of	drifting	visual	gratings	at	one	of	four	directions	(cardinal),	one	

of	five	spatial	frequencies	(0.03-0.48	c/d	spaced	logarithmically)	and	one	of	four	temporal	

frequencies	(1:8	Hz	spaced	logarithmically).		

We	characterized	cellular	responses	to	stimulation	of	either	the	contralateral	eye	or	

ipsilateral	eye	separately	in	V1,	LM	and	PM	(example	traces	for	spatial	frequency	tuning	

protocol	in	Figure	3.1c).	Eye-specific	responses	(Figure	1d,	solid	lines)	were	fit	by	a	

difference	of	Gaussians	model	to	determine	preferred	spatial	frequency	(Figure	3.1d,	

dashed	lines).	In	each	area	we	found	cells	that	were	visually	responsive	to	both	eyes	

(Figure	3.1d,	see	V1	and	LM)	and	cells	that	were	only	visually	driven	when	the	stimulus	

was	presented	to	one	eye	(Figure	3.1d,	see	PM).	Altogether	we	imaged	5,503	cells	from	ten	

animals	(V1:	1855	cells,	LM:	1714	cells,	PM:	1934	cells).	We	restricted	our	analysis	to	cells	

whose	responses	at	the	peak	spatial	frequency	reached	significance	when	compared	

against	the	blank	condition	for	spatial	frequency	tuning	protocol	(p<0.01,	ANOVA)	or	for	

cells	whose	responses	reached	significance	when	compared	against	the	blank	condition,	

with	a	Bonferonni	correction	for	multiple	comparisons	for	the	speed	tuning	protocol	

(p<0.0025,	ANOVA).	Overall,	we	found	that	areas	V1,	LM	and	PM	were	well	driven	by	

drifting	sinusoidal	gratings	(Figure	3.1d;	Left:	spatial	frequency	tuning	protocol:	V1	mean	

and	SEM:	52.1	+/-	2.14%,	LM:	53.2	+/-	3.94%,	PM:	31.63	+/-	3.32%;	Right:	speed	tuning	

protocol:	V1	mean	and	SEM:	59.0%	+/-	6.36,	LM:	64.9	+/-9.75,	PM:	39.5+/-	4.79).	Area	PM	
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was	less	responsive	to	drifting	sinusoidal	gratings	than	V1	and	LM,	as	expected	by	

previously	reported	and	for	a	higher	visual	area	(Marshel	et	al.,	2011).		

	

Figure	3.1:	Assessment	of	Spatial	Frequency	Tuning	across	V1,	LM	and	PM	using	GCaMP6s	Mice.	A.	
Experimental	setup.	B.	Widefield	calcium	imaging	yields	retinotopic	maps	of	azimuth	(Left)	and	elevation	
(Middle),	which	are	used	to	produce	a	visual	field	sign	map	(Right).	The	visual	field	sign	map	identifies	
boundaries	between	visual	cortical	areas,	notably	V1,	LM	and	PM.	Scale	bar	is	1mm.	Corresponding	diagram	
for	mouse	visual	cortex	is	shown	in	bottom	right	corner.	C.	Visually	evoked	responses	across	V1	(left,	black),	
LM	(middle,	red)	and	PM	(right,	blue)	were	measured	in	head-fixed,	awake	mice	as	they	viewed	drifting	
sinusoidal	gratings.	For	the	spatial	frequency	protocol,	sinusoidal	gratings	of	six	spatial	frequencies	(0.03,	
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0.06,	0.12,	0.24,	0.48,	0.96)	in	eight	directions	were	presented	for	two	seconds	(white	box)	with	an	
intermittent	two-second	off	period	(grey	box).	Each	imaging	session	consisted	of	eight	repeats	shown	to	
either	the	contralateral	or	ipsilateral	eye.	D.	Spatial	frequency	tuning	curves	for	the	example	cells	shown	in	B.	
Filled	dots	correspond	to	responses	driven	by	the	contralateral	eye	and	open	dots	correspond	to	responses	
driven	by	the	ipsilateral	eye.	Fits	to	the	tuning	curves	are	shown	as	dashed	lines	(contra	viewing:	black,	ipsi	
viewing:	grey).	Cells	vary	in	degree	of	binocularity,	with	some	cells	being	visually	responsive	to	both	eyes	and	
some	cells	to	only	one	eye	(See	PM	example	cell,	which	was	only	visually	responsive	through	contra	eye)	E.	
Total	percent	of	visually	responsive	neurons	recorded	by	field	for	the	spatial	frequency	tuning	protocol	(left)	
or	the	speed	tuning	protocol	(right)	for	each	area	(V1:	black	open	squares;	LM:	red	open	squares	and	PM:	
blue	open	squares).	In	both	comparisons,	we	found	that	area	PM	was	less	responsive	to	drifting	gratings	than	
areas	V1	or	LM	(Spatial	frequency	tuning	protocol	by	field	Mean	and	SEM:	V1:	52.16%	+/-	2.14,	n=9	fields,	
N=10	mice;	LM:	53.16%	+/-	3.94,	n=10	fields,	N=10	mice,	PM:	31.63%	+/-	3.32,	n=16	fields,	N=10	mice,	one-
way	ANOVA	p<0.0001,	Tukey’s	multiple	comparisons	test:	V1	vs.	PM	p=0.0005;	LM	vs.	PM	p=0.0002;	Speed	
tuning	protocol	by	field	Mean	and	SEM:	V1:		59.00%	+/-	6.36	%,	N=6	mice,	n=6	fields,	LM:	64.99	+/-	9.75,	N=5	
mice,	n=5	fields,	PM:	39.46	+/-	4.79,	N=6	mice,	n=	9	fields,	one-way	ANOVA	p=0.0263;	Tukey’s	multiple	
comparisons	test:	LM	vs.	PM	p=0.0420;	V1	vs.	PM	p=0.0802).		
	
3.3.1	Distinct	spatial	frequency	and	eye-specific	tuning	in	V1,	LM	and	PM	

	 We	characterized	the	ocular	dominance	distribution	(ODI)	of	cells	in	V1,	LM	and	PM	

as	previously	described	(Salinas	et	al.,	2017).	All	three	areas	have	a	contralateral	bias	to	

their	ODI	distribution	(Figure	3.2a,	V1	median:	0.62;	LM:	0.39,	PM:	0.71).	However,	area	LM	

has	fewer	contralateral-dominated	neurons	than	area	PM,	as	noted	by	the	leftward	shift	in	

the	cumulative	distribution	of	ODI	(Figure	3.2b).	The	high	contralateral	bias	in	PM	could	be	

attributed	to	PM	containing	fewer	ipsilateral	only	responsive	neurons	than	V1	(Figure	

3.2c).	Area	LM,	known	to	prefer	relatively	lower	spatial	frequencies	(Marshel	et	al.,	2011),	

has	a	more	binocular	ODI	distribution	than	area	PM,	known	to	prefer	relatively	higher	

spatial	frequencies	(Marshel	et	al.,	2011;	Andermann	et	al.,	2011).	

	 We	verified	the	distinct	spatial	frequency	tuning	of	LM	and	PM	previously	reported,	

with	LM	preferring	lower	spatial	frequencies	than	PM	(Marshel	et	al.,	2011;	Figure	3.2d,e).	

The	contralateral	bias	to	high	spatial	frequencies	is	present	in	all	three	areas	investigated	

(Figure	3.2e),	suggesting	that	these	cells	may	play	a	role	in	high	spatial	frequency	

information.	The	eye-specific	response	properties	of	V1,	LM	and	PM	suggest	that	binocular	

cells	specialize	in	processing	low	spatial	frequency	information	while	contralateral-
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dominated	cells	process	higher	spatial	frequency	information.	Indeed,	within	all	three	

areas,	ODI	is	positively	correlated	with	spatial	frequency	tuning.	The	coupling	of	ocularity	

with	spatial	frequency	tuning	has	been	described	previously	in	primates	(Nauhaus	et	al.,	

2016).	Thus,	although	mice	lack	columnar	organization	for	ocular	dominance	columns,	it	

does	appear	that	eye-specificity	could	link	cell-type	specific	functional	circuitry	at	multiple	

levels	of	cortex.		

	

Figure	3.2:	Distinct	spatial	frequency	and	eye-specific	tuning	in	V1,	LM	and	PM.	A.	Ocular	dominance	
index	was	calculated	as	contra-	ipsi	/	contra	+	ipsi,	placing	contralateral	dominated	cells	with	an	ODI	near	1	
and	ipsilateral	dominated	cells	near	-1.	Cells	responsive	during	only	contra	or	ipsi	eye	viewing	were	given	an	
ODI	of	1	or	-1,	respectively.	Ocular	dominance	distributions	were	binned	by	field	and	the	mean	plotted	for	V1	
(black),	LM	(red)	and	PM	(blue).	Error	bars	represent	SEM.	B.	Cumulative	distribution	for	ocular	dominance	
indices	are	shown	for	V1,	LM	and	PM	of	the	same	animals.	Area	LM	has	fewer	cells	dominated	by	the	
contralateral	eye	than	area	PM	(Median	ODI	for	V1=	0.62,	n=986	cells;	LM	median=	0.39,	n=867	cells;	PM	
median=0.71,	n=527	cells,	KW(s)=8.709,	LM	vs.	PM	p=0.0099,	N=9	animals).	C.	Percentage	of	responsive	
neurons	grouped	into	the	three	categories	(ipsi	only	responsive,	binocular,	contra	only	responsive)	are	
plotted	for	areas	V1,	LM	and	PM.	Area	PM	has	fewer	cells	responsive	to	only	the	ipsilateral	eye	than	V1	(V1	
mean	ipsi	only	responsive:	24.45%,	LM	mean	ipsi	only	responsive:	21.06%;	PM	mean	ipsi	only	responsive:	
13.86%,	Two-way	RM	ANOVA,	Dunnett’s	multiple	comparisons	test	V1	vs.	PM	p=0.0245).		D.	Cumulative	
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distribution	of	preferred	spatial	frequency	for	all	neurons	in	each	area	for	the	same	animals	is	shown	from	
V1,	LM	and	PM.	Neurons	in	area	LM	are	tuned	to	lower	spatial	frequencies	than	those	in	V1	or	PM	(V1	median	
preferred	spatial	frequency:	0.105	c/d,	n=986	neurons	LM:	0.077	c/d,	n=916	neurons,	PM:	0.115	c/d,	n=527	
neurons,	KW(s)=24.6,	p<0.0001,	Dunnett’s	multiple	comparisons	test	V1	vs.	LM	p<0.0001,	LM	vs.	PM	
p=0.0009).	E.	Box	and	whisker	of	mean	preferred	spatial	frequency	of	ipsi	only	(left),	binocular	(middle)	and	
contra	only	(right)	responsive	cells	are	plotted	for	V1	(black),	LM	(red)	and	PM	(blue).	Binocularly	responsive	
cells	in	LM	were	tuned	to	lower	spatial	frequencies	than	V1	(V1	binocular	mean	preferred	spatial	frequency:	
0.139	c/d,	LM:	0.096	c/d,	PM:	0.129	c/d,	Mixed-effects	model	(REML),	eye-specificity	factor	p<0.0001,	area	
factor	p=0.0142;	V1	vs.	LM	p=0.0027,	Tukey’s	multiple	comparisons).	Contra	only	responsive	cells	in	LM	were	
tuned	to	lower	spatial	frequencies	than	PM	(V1	contra	only	mean	preferred	spatial	frequency:	0.238	c/d,	LM:	
0.172	c/d,	PM:	0.210	c/d,	V1	vs.	LM	p=0.0354,	Tukey’s	multiple	comparisons)	F.	Scatter	of	preferred	spatial	
frequency	and	ocular	dominance	index	is	shown	for	areas	V1	(black),	LM	(red)	and	PM	(blue)	with	linear	
regression	plotted	(lines).	Preferred	spatial	frequency	is	significantly	correlated	with	ocular	dominance	index	
in	each	area	(V1:	r=0.261,	n=986	neurons,	p<0.0001;	LM:	Pearson	r=0.114,	n=867	neurons	p=0.0007;	PM:	
Pearson	r=0.127,	n=561	neurons,	p=0.0036,	N=9	mice).	
	
3.3.2	Binocular	and	monocular	cells	are	tuned	to	orientation	and	direction	

	 Orientation	and	direction	are	important	precursors	for	ventral	and	dorsal	stream	

processing.	Orientation	is	closely	associated	with	form	processing	at	early	levels	while	high	

direction	selectivity	is	important	for	the	processing	of	motion	(Blasdel	and	Fitzpatrick,	

1984;	Movshon	and	Newsome	1996;	Maunsell	and	Newsome,	1987).	We	probed	

orientation	and	direction	tuning	in	V1,	LM	and	PM	to	see	if	eye-specific	or	ocular	biases	

exist	in	their	preference	for	these	features,	as	they	do	with	spatial	frequency.		In	LM	and	

PM,	we	find	that	the	binocular	cells	have	higher	orientation	selectivity	indices	(OSI)	than	

either	the	contralateral	or	ipsilateral	only	cells	(Figure	3.3a).	The	lack	of	such	a	distinction	

in	PM	may	account	for	the	overall	less	orientation	tuning	of	PM	than	LM	and	V1	(Figure	

3.3b,	p<0.0001).	It	may	be	that	the	binocular	cells	of	PM	are	a	result	of	convergence	from	

lower	orientation-tuned	contralateral	and	ipsilateral	only	cells	of	V1	and/or	LM.	We	

quantified	the	percentage	of	orientation-tuned	(OSI>0.5)	cells	by	animal	and	find	that	more	

binocular	cells	are	orientation-tuned	than	monocular	cells	in	V1	and	LM	(Figure	3.3c).	

Pooled	responses	for	all	three	areas	based	on	ocularity	suggest	that	binocular	cells	are	

overall	more	orientation-tuned	than	monocular	cells	(Figure	3.3d).	We	find	that	the	
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monocular	cells	have	higher	direction	selectivity	indices	(DSI)	than	the	binocular	cells	in	

V1,	LM	and	PM	(Figure	3.3e).	However,	we	did	not	find	any	areal	differences	in	the	

distribution	of	pooled	DSI	preferences	(Figure	3.3f).	A	higher	percentage	of	monocular	cells	

are	direction-tuned	than	binocular	cells	(Figure	3.3g-h).		
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Figure	3.3	Distinct	ocular	orientation	and	direction	tuning	in	visual	cortex.	A.	Cumulative	distributions	
of	orientation	selectivity	based	on	the	circular	variance	method	for	V1	(left),	LM	(middle)	and	PM	(right)	are	
plotted	based	on	eye	specificity	(binocular=	purple	dashed,	contra	only=	pale	blue	and	ipsi	only=	pink).	In	V1	
and	LM,	the	binocular	cells	are	more	orientation	selective	than	the	contralateral	or	ipsilateral-dominated	
neurons	(V1:	binocular	median:	0.713,	n=264	cells,	contra	only:	0.57,	n=470	cells,	ipsi	only:	0.61,	n=251	cells,	
Kruskal-Wallis	test,	p<0.0001,	KW(s)=28.66;	Post-hoc	Dunn’s	multiple	comparisons	test:	contra	only	vs.	
binocular	p<0.0001,	ipsi	only	vs.	binocular	p=0.0061,	N=9	mice;	LM:	binocular	median	and	SEM:	0.72,	n=306	
cells,	contra	only:	0.59,	n=356	cells,	ipsi	only:	0.61,	n=205	cells,	Kruskal-Wallis	test,	p<0.0001,	Post-hoc	
Dunn’s	multiple	comparisons	test:	contra	only	vs.	binocular	p<0.0001,	ipsi	only	vs.	binocular	p=0.0024,	N=9	
mice,	KW(s)=23.2).	B.	Cumulative	distributions	of	orientation	selectivity	are	plotted	for	all	cells	in	V1	(black),	
LM	(red)	and	PM	(blue).	Overall,	PM	is	less	orientation	tuned	than	V1	and	LM	(V1:	median:	0.62,	n=985	cells,	
LM:	0.64,	n=867	cells;	PM:	0.48,	n=526	cells,	Kruskal-Wallis	test,	p<0.0001,	KW(s)=	94.5,	N=9	mice).	C.	Box	
and	whisker	plots	of	the	percentage	of	orientation-tuned	(OSI>0.5)	cells	for	each	animal	based	on	ocularity	
(monocular=grey,	binocular=white)	are	plotted	for	V1	(left),	LM	(middle)	and	PM	(right).	In	V1	and	LM,	there	
are	significantly	more	orientation-tuned	binocular	cells	than	monocular	cells.	(V1	binocular	mean	and	SEM:	
77.7	+/-	3.93%,	monocular:	60.7	+/-	4.23%,	paired	t-test,	p=0.0033,	t=4.13;	LM	binocular	mean	and	SEM:	77.4	
+/-	1.78%,	monocular:	65.27	+/-	2.82%,	paired	t-test,	p=0.0018,	t=4.58,	N=9	animals).	D.	Cumulative	
distribution	of	orientation	selectivity	for	all	binocular	(dashed)	and	monocular	cells	(solid)	from	all	three	
areas.	Binocular	cells	were	more	orientation	tuned	than	monocular	cells	(median	binocular	OSI:	0.669,	n=750	
cells,	monocular:	0.57,	n=1629	cells,	Mann-Whitney	test,	p<0.0001,	Mann-Whitney	(U)=	515940).	E.	
Cumulative	distributions	of	direction	selectivity	based	on	the	circular	variance	method	for	V1	(left),	LM	
(middle)	and	PM	(right)	are	plotted	based	on	eye	specificity	(binocular=	purple,	dashed,	contra	only=	pale	
blue	and	ipsi	only=	pink).	In	all	three	areas,	the	monocular	neurons	(contra	only	and	ipsi	only)	are	more	
direction	selective	than	the	binocular	neurons	(V1:	binocular	median:	0.15,	n=264	cells,	contra	only:	0.26,	
n=470	cells,	ipsi	only:	0.26,	n=251	cells,	Kruskal-Wallis	test,	p<0.0001,	Post-hoc	Dunn’s	multiple	comparisons	
test:	contra	only	vs.	binocular	p<0.0001,	ipsi	only	vs.	binocular	p<0.0001,	N=9	mice,	KW(s)=39.78;	LM:	
binocular	median:	0.24,	n=306	cells,	contra	only:	0.16,	n=356	cells,	ipsi	only:	0.27,	n=205	cells,	Kruskal-Wallis	
test,	p<0.0001,	Post-hoc	Dunn’s	multiple	comparisons	test:	contra	only	vs.	binocular	p<0.0001,	ipsi	only	vs.	
binocular	p<0.0001,	N=9	mice,	KW(s)=36.08).	F.	Cumulative	distributions	of	direction	selectivity	are	plotted	
for	all	cells	in	V1	(black),	LM	(red)	and	PM	(blue).	G.	Box	and	whisker	plots	of	the	percentage	of	direction-
tuned	(DSI>0.5)	cells	for	each	animal	based	on	ocularity	(monocular=grey,	binocular=white)	are	plotted	for	
V1	(left),	LM	(middle)	and	PM	(right).	In	all	three	areas,	there	are	significantly	more	direction-tuned	
monocular	cells	than	binocular	cells.	(V1	binocular	mean	and	SEM:	13.46	+/-	3.28%,	monocular:	20.63	+/-	
2.33%,	paired	t-test,	p=0.0254,	t=2.68;	LM	binocular	mean	and	SEM:	7.15	+/-	1.91%,	monocular:	16.09	+/-	
1.3%,	paired	t-test,	p=0.0006,	t=5.49;	PM	binocular	mean	and	SEM:	7.02	+/-4.13%,	monocular:	20.64	+/-
3.90%,	Wilcoxon	matched-pairs	signed	rank	test,	p=0.0009,	Wilcoxon	(W)=97.00,	N=9	animals).	H.	
Cumulative	distribution	of	direction	selectivity	for	all	binocular	(dashed)	and	monocular	cells	(solid)	from	all	
three	areas.	Binocular	cells	were	more	orientation	tuned	than	monocular	cells	(median	binocular	DSI:	0.15+/-
0.007,	n=750	cells,	monocular:	0.26+/-0.014,	n=1629	cells,	Mann-Whitney	test,	p<0.0001,	Mann-Whitney	
(U)=	2104911,	N=9	animals).	Significance	stars	are	represented	by	****=p<0.0001;	***=p<0.001;	**=p<0.01;	
*=p<0.05.	
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Figure	3.4	Comparison	of	cardinal	preferences	of	eye-specific	responses	in	V1,	LM	and	PM.	A.	Preferred	
directions	were	binned	and	averaged	across	fields	for	contra	monocular	(top	left),	contra	binocular	(bottom	
left),	ipsilateral	monocular	(top	right)	and	ipsilateral	binocular	(bottom	right)	for	responses	from	V1	(black:	
cardinal,	grey:	intercardinal),	LM	(red:	cardinal,	grey:	intercardinal)	and	PM	(blue:	cardinal,	grey:	
intercardinal).	Contra	monocular	responses	in	V1	were	biased	to	the	cardinal	directions	(Chi-square	test	
p=0.0002)	while	contra	binocular	and	ipsilateral	responses	were	not	biased.	LM	responses	were	also	not	
biased	to	the	cardinal	directions.	In	area	PM,	almost	all	eye-specific	responses	are	biased	to	cardinal	
directions	(PM	contra	monocular	Chi-square	test=	p<0.0001,	PM	contra	binocular	Chi-square	test	p=0.0016,	
PM	ipsilateral	binocular	Chi-square	test	p=0.0012;	Number	of	neurons	for	each	group	are	indicated	on	graph,	
N=9	mice).		
	

3.3.3	Eye-specific	biases	to	cardinal	directions	in	V1,	LM	and	PM.		

	 We	previously	found	that	the	highest	spatial	frequency	tuned	cells	of	V1	were	

biased	to	the	cardinal	directions	(Salinas	et	al.,	2017).	We	asked	if	this	high	spatial	

frequency	bias	for	cardinal	directions	could	be	described	by	eye-specific	response	

properties.	In	V1,	the	contralateral	dominated	neurons	have	a	bias	for	the	cardinal	

directions,	while	other	eye	specific	responses	did	not	(Figure	3.4,	top	right).	LM,	which	is	

tuned	to	relatively	slower	spatial	frequencies	than	PM	and	V1,	did	not	exhibit	any	eye-

specific	bias	for	cardinal	directions	(Figure	3.4).	All	eye-specific	responses	of	area	PM	were	

biased	to	the	cardinal	directions,	although	the	finding	was	not	found	to	be	statistically	

significant	in	the	case	of	the	ipsilateral	only	responses.	Perhaps	this	finding	indicates	that	

V1	is	sending	functionally	specific,	cardinally	biased	information	to	PM,	and	facilitating	its	
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bias	towards	cardinal	directions.	Alternatively,	both	V1	and	PM	may	obtain	their	cardinal	

biases	from	similar	subcortical	sources	(LP,	for	example),	which	also	exhibit	eye-specific	

functional	organization.	The	two	alternatives	are	not	mutually	exclusive.		Nonetheless,	it	

may	be	that	the	contralateral-dominated	neurons	are	important	for	detection	of	landmarks	

during	spatial	navigation	(Girschick	et	al.,	2011;	Hansen	et	al.,	2003).		

 

3.3.4	Binocular	Cells	are	Better	Matched	in	Orientation	and	Spatial	Frequency	in	

Higher	Visual	Areas.		

	 The	preferred	spatial	frequency	of	the	contralateral	eye	and	ipsilateral	eye	are	

correlated	at	the	level	of	V1	in	mouse,	but	not	as	well	correlated	as	in	higher	mammals	

(Salinas	et	al.,	2017;	Skottun	and	Freeman,	1984:	cat,	r=0.92;	Saint-Amour,	2004:	r=0.82).	

At	the	level	of	V1,	binocular	matching	is	known	to	develop	over	time	post	eye	opening	

(Wang	et	al.,	2010).	The	extents	to	which	the	two	eyes	align	in	terms	of	spatial	frequency	or	

orientation	in	higher	visual	areas	of	mice	have	yet	to	be	investigated.	We	find	that	eye-

specific	tuning	of	binocular	cells	improve	up	the	cortical	hierarchy	with	V1	the	least	

correlated	and	PM	the	most	correlated	(V1	preferred	spatial	frequency	r=0.13,	LM	r=0.46,	

PM	r=0.78;	Figure	3.5a-b).	We	also	find	that	higher	visual	areas	are	better	matched	in	eye-

specific	orientation	in	higher	visual	areas	than	in	V1	(Figure	3.5c),	suggesting	that	the	

information	between	the	two	eyes	are	better	aligned	in	higher	visual	areas	than	in	V1.		
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Figure	3.5	Binocular	cells	are	better	matched	in	spatial	frequency	and	orientation	in	higher	visual	
areas.	A.	Scatter	of	ipsilateral	and	contralateral	preferred	spatial	frequency	for	V1	(left,	black),	LM	(middle,	
red)	and	PM	(right,	blue).	Preferences	between	the	two	eyes	were	significantly	correlated	for	each	area	but	
increase	in	correlation	hierarchically	(V1	r=0.1303,	p=0.0343;	LM	r=0.4586,	p<0.0001;	PM	r=0.7846,	
p<0.0001).	B.	Left:	Differences	in	preferred	spatial	frequency	were	binned	and	cumulative	distributions	
plotted	for	V1	(black),	LM	(red)	and	PM	(blue).	Area	LM	and	PM	have	significantly	lower	differences	in	
preferred	spatial	frequency	than	V1	(V1	median=	0.0384	c/d,	n=264	cells,	LM	median=	0.0163	c/d,	n=333	
cells;	PM	median=	0.0201	c/d,	192	cells;	V1	vs.	LM	p<0.0001;	V1	vs.	PM	p<0.0001,	KW(s)	=33.43).	Right:	By	
animal	median	difference	in	preferred	spatial	frequency	confirms	that	higher	visual	areas	LM	and	PM	are	
better	matched	in	spatial	frequency	than	V1	(Dunn’s	multiple	comparison’s	test,	V1	vs.	LM	p=0.0008;	V1	vs.	
PM	p=0.0094,	Friedman(s)=14,	N=9	mice).	Line	and	error	bars	reflect	median	and	standard	error	of	the	
median.	C.	Left:	Differences	in	preferred	orientation	were	binned	and	cumulative	distributions	plotted	for	V1	
(black),	LM	(red)	and	PM	(blue).	Area	LM	and	PM	have	significantly	lower	differences	in	preferred	orientation	
(V1	median=	9.16	degrees,	n=264	cells;	LM	median=	5.57	degrees,	n=333	cells;	PM	median=	6.67	degrees,	
n=192	cells;	V1	vs.	LM	p=0.0005,	V1	vs.	PM	p=0.0484,	KW(s)=14.46).	Right:	By	animal	median	difference	in	
preferred	orientation	(Dunn’s	multiple	comparisons	test,	V1	vs.	LM	p=0.0368,	Friedman(s)=6.22,	N=9	mice).	
Line	and	error	bars	reflect	median	and	standard	error	of	the	median.	Significance	stars	are	represented	by	
****=p<0.0001;	***=p<0.001;	**=p<0.01;	*=p<0.05.	
	
	
	
3.3.5	Divergent	eye-specific	tuning	for	speed	in	V1	and	PM	

	 Higher	visual	areas	are	known	to	prefer	unique	speeds	(Andermann	et	al.,	2011;	

Glickfeld	et	al.,	2013).	Speed	tuning	is	believed	to	better	distinguish	higher	visual	areas	

from	one	another	than	spatial	or	temporal	frequency	alone.	To	assess	if	eye-specificity	is	
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coupled	to	speed	tuning	in	the	mouse,	we	measured	visually	evoked	responses	to	eight	

different	speed	presentations	to	either	the	contralateral	or	ipsilateral	eye	(Figure	3.6a).	

Responses	were	well	fit	to	determine	preferred	spatial	frequency,	temporal	frequency,	

speed	and	the	degree	of	speed	tuning,	epsilon	(Priebe	et	al.,	2006,	Figure	3.6b).		

	 Eye-specific	responses	in	V1	were	uniquely	tuned	to	different	speeds.	The	

contralateral	eye	dominated	responses	were	tuned	to	the	slowest	speeds,	the	ipsilateral	

eye	dominated	responses	were	tuned	to	the	highest	speeds,	and	the	binocular	cells	were	

tuned	to	intermediate	speeds	(Figure	3.7a,	left).	In	LM,	a	similar	pattern	was	found,	but	the	

distinction	between	binocular	preferred	speeds	and	ipsilateral	only	preferred	speeds	is	not	

present	(Figure	3.7a,	middle).	In	PM,	the	contralateral	only	preferred	speeds	were	

significantly	lower	than	the	binocular	preferred	speeds.	Thus,	there	is	a	recurring	motif	

that	the	contralateral	only	responses	are	tuned	to	the	slowest	speeds	throughout	V1,	LM	

and	PM.	More	ambiguous	in	the	higher	visual	areas	is	the	distinction	between	binocular	

preferred	speeds	and	ipsilateral	only	preferred	speeds,	perhaps	due	to	a	higher	degree	of	

convergence	between	eye-specific	responses	onto	LM	and	PM	cells.	Overall,	the	three	areas	

are	tuned	to	unique	speeds,	with	V1	and	PM	preferring	overall	slower	speeds	and	LM	faster	

speeds	(Figure	3.7b).		

	 We	analyzed	the	degree	to	which	the	preferred	spatial	frequency	depended	on	the	

preferred	temporal	frequency	by	the	calculation	of	epsilon	from	the	fitted	responses.	A	

high	speed	tuning	index,	epsilon,	indicates	a	high	degree	of	speed	tuning	(Figure	3.7c,	bin	at	

epsilon=1).	In	LM	and	PM,	we	found	that	responses	driven	by	contralateral	eye	stimulation	

were	more	speed	tuned	than	responses	driven	by	stimulating	the	ipsilateral	eye	(Figure	

3.7c).	In	our	analysis,	we	also	find	that	area	LM	has	a	relatively	higher	proportion	of	speed-
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tuned	cells	than	area	PM	(Figure	3.7d).	Altogether,	these	results	suggest	that	eye-specific	

preferences	for	speed	may	drive	or	facilitate	the	specialization	of	higher	visual	areas.	

	

Figure	3.6	Assessment	of	eye-specific	speed	tuning.	A.	Example	of	a	single	cell’s	visually	evoked	responses	
measured	as	mice	viewed	drifting	sinusoidal	gratings	of	various	speeds	(temporal	frequency/	spatial	
frequency).	Drifting	sinusoidal	gratings	of	five	spatial	frequencies	(0.03,	0.06,	0.12,	0.24,	0.48	cycles/degree),	
one	of	four	temporal	frequencies	(1,	2,	4,	8	Hz)	in	four	directions	(0,90,180,270°)	were	presented	for	two	
seconds	(white	box)	with	an	intermittent	two-second	off	period	(grey	box).	Each	imaging	session	consisted	of	
eight	repeats	shown	to	either	the	contralateral	eye	(left)	or	the	ipsilateral	eye	(right).	Individual	traces	are	
shown	in	grey	and	average	traces	are	shown	in	red.	B.	The	average	response	matrices	for	each	spatial	and	
temporal	frequency	were	fit	by	a	two-dimensional	elliptical	Gaussian.	Calculated	preferences	for	spatial	
frequency	(SFp),	temporal	frequency	(TFp),	speed	and	speed-tuning	index	(epsilon)	is	shown	in	the	middle	
margin	for	contralateral	eye	viewing	(top)	and	ipsilateral	eye	viewing	(bottom).	The	confidence	itnervals	for	
the	fitted	data	and	a	fit	correlation	were	used	to	assess	wellness	of	fit.	To	be	considered	for	the	preferred	
speed	analysis,	the	lower	and	upper	bound	confidence	intervals	for	the	fits	of	preferred	spatial	and	temporal	
frequency	must	each	lie	within	two	octaves	and	the	fit	correlation	must	exceed	0.5.	To	be	considered	for	the	
degree	of	speed	tuning,	we	added	a	threshold	for	the	calculated	speed-tuning	index:	the	range	for	the	
confidence	intervals	for	epsilon	must	be	less	than	1.		
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Figure	3.7	Eye-specific	speed	preferences	and	speed	tuning	in	V1,	LM	and	PM.	A.	Cumulative	
distributions	of	preferred	speed	for	cells	that	passed	the	well-fit	criteria.	In	V1,	all	three	eye-specific	
responses	were	significantly	different	from	one	another	(contra	only	median	preferred	speed:	11.26,	n=419	
cells;	binocular:	18.06,	n=226	cells;	ipsi	only:	33.33,	n=174	cells,	Kruskal-Wallis	test,	p<0.0001;	Dunn’s	
multiple	comparisons	post	hoc	test:	contra	only	vs.	binocular	p=0.0426;	contra	only	vs.	ipsi	only	p<0.0001;	
binocular	vs.	ipsi	only	p=0.0001;	KW(s)=85.24;	N=8	mice).	In	LM,	contralateral	dominated	cells	were	tuned	to	
slower	speeds	than	binocular	cells	and	ipsilateral	only	cells	(contra	only	median	preferred	speed:	19.96,	
n=248	cells;	binocular:	32.93,	n=296	cells:	ipsi	only:	33.24,	n=101	cells;	Kruskal-Wallis	test,	p<0.0001;	Dunn’s	
multiple	comparisons	post	hoc	test:	contra	only	vs.	binocular	p<0.0001;	contra	only	vs.	ipsi	only	p=0.0125;	
KW(s)=22.29;	N=7	mice).	In	PM,	the	contralateral	only	cells	are	tuned	to	slower	speeds	than	the	binocular	
cells	(contra	only	median:	14.24,	n=245	cells;	binocular:	22.04	n=175	cells;	ipsi	only:	19.20,	n=68	cells;	
Kruskal-Wallis	test	p=0.0427;	Dunn’s	multiple	comparisons	post	hoc	test:	contra	only	vs.	binocular	p=0.0396	
KW(s)=6.308,	N=8	mice).	B.	Cumulative	distributions	for	all	well	fit	cells	of	each	area	(V1	black,	LM	red,	PM	
blue).	Each	area	preferred	unique	speeds	from	the	other,	except	for	V1	and	PM	(V1	median	preferred	speed:	
16.09,	n=819	cells,	N=8	mice;	LM:	28.05,	n=645	cells,	N=7	mice;	PM:	17.34,	n=488	cells,	N=8	mice;	Kruskal-
Wallis	test	p<0.0001;	Dunn’s	multiple	comparisons	post	hoc	test:	V1	vs.	LM	p<0.0001;	LM	vs.	PM	p<0.0001,	
KW(s)=73.28).	C.	Histograms	for	the	speed-tuning	index	(epsilon),	of	well-fit	cells	in	V1	(left),	LM	(middle)	
and	PM	(right)	for	contralateral	eye	viewing	(black)	and	ipsilateral	eye	viewing	(grey).	The	highest	degree	of	
speed	tuning	is	the	bar	centered	at	1,	and	indicates	that	this	group	of	cells	changes	temporal	frequency	
preference	as	a	function	of	spatial	frequency.	In	V1	and	PM,	contralateral	eye	viewing	responses	are	more	
speed-tuned	than	ipsilateral	eye	viewing	responses	(V1:	contra	median	0.359	n=35	cells;	ipsi:	0.08,	n=20	
cells;	Mann	Whitney	test,	p=0.0048,	MW(U)=	191,	N=8	mice;	Kolmogorov-Smirnov	test	p=0.0294,	
KS(D)=0.4071;	PM:	contra	median:	0.679,	n=36	cells;	ipsi:	0.106,	n=	24	cells;	Mann	Whitney	test	p=0.0006,	
MW(U)=986;	Kolmogorov-Smirnov	test	p=0.0187,	KS(D)=0.4028;	N=8	mice).	No	statistical	differences	were	
detected	for	LM	(contra	median:	0.309,	n=25	cells;	ipsi:	0.169,	n=29	cell;,	Mann	Whitney	test	p=0.0600,	N=7	
mice).	D.	Histogram	of	speed	tuning	indices	for	all	well	fit	cells	(contra	only,	binocular	and	ipsi	only)	from	
areas	V1,	(black),	LM	(red)	and	PM	(blue).	No	statistical	differences	were	found	in	degree	of	speed	tuning	
between	areas.	Significance	stars	are	represented	by	****=p<0.0001;	***=p<0.001;	**=p<0.01;	*=p<0.05.		
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3.3.6	Functional	specificity	of	V1	projections	to	LM	and	PM		

	 It	has	been	demonstrated	that	the	output	of	V1	to	higher	visual	areas	are	

functionally	specific	in	their	preferred	speed	(Glickfeld	et	al.,	2013)	as	well	as	in	their	

orientation	and	direction	tuning	(Matsui	and	Ohki,	2013).	Thus,	the	primary	visual	cortex	

may	play	a	role	in	the	processing	of	distinct	functional	specialization	of	HVAs.	We	asked	the	

question	if	this	functional	specialization	could	potentially	arise	from	the	eye-specific	

functional	specialization	we	have	observed	in	V1.	By	injecting	GCaMP6s	virus	in	the	

binocular	zone	of	V1	and	imaging	V1	afferents	in	LM	and	PM,	(Figure	3.8a)	we	were	able	to	

record	visually	evoked	responses	of	the	output	of	V1	and	characterize	eye-specificity	and	

spatial	frequency	tuning	preferences	of	single	boutons	(Figure	3.8b).		

	 We	find	that	the	eye-specific	output	of	V1	is	more	contralaterally	biased	in	PM	than	

it	is	in	LM	(Figure	3.8c).	This	matches	well	with	previous	findings	that	the	cells	in	PM	are	

more	contralaterally	biased	than	the	cells	in	LM	(Figure	3.2b).	V1	afferents	to	PM	were	also	

tuned	to	higher	spatial	frequencies	than	the	afferents	to	LM,	corroborating	previous	studies	

suggesting	that	the	V1	to	LM	and	PM	afferents	would	be	distinct	and	functionally	match	

their	targets	(Figure	3.8d).	We	also	analyzed	the	eye-specific	spatial	frequency	tuning	

properties	of	the	V1	boutons	sent	to	LM	and	PM,	and	find	that	there	is	eye-specific	

functional	segregation	at	the	level	of	LM,	but	not	at	PM	(Figure	3.8e).		The	contralateral	

only	responsive	V1	boutons	in	LM	are	tuned	to	higher	spatial	frequencies	than	the	

binocular	boutons,	just	as	we	have	found	in	the	cellular	distributions	of	V1,	LM	and	PM	

(Figure	3.8f).		
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Figure	3.8	Functional	specificity	of	V1	projections	to	LM	and	PM.	A.	Experimental	setup.	Mice	were	
injected	with	AAV-SynGCaMP6s	into	the	binocular	zone	of	V1	(top	left)	and	mapped	with	intrinsic	signal	
imaging	for	determination	of	injection	site	and	areal	borders	(top	right).	Summed	projections	of	imaging	
fields	in	LM	(left,	red	box)	and	PM	(right,	blue	box)	show	bright	synaptic	boutons.	B.	Example	traces	from	an	
LM	field	(left,	average	trace	shown	in	red)	and	a	PM	field	(right,	average	trace	shown	in	blue),	probed	at	six	
spatial	frequencies	and	eight	directions.	C.	Cumulative	distributions	of	ocular	dominance	indices	for	all	
significantly	responsive	boutons	of	V1	to	LM	(red)	and	V1	to	PM	afferents	(blue).	The	projections	to	PM	are	
more	contralaterally	biased	than	the	projections	to	LM.	(V1	to	LM	median	ODI:	1;	mean	ODI:	0.527,	n=576	
boutons,	N=5	mice;	V1	to	PM	median:	1.0;	mean:	0.656,	n=401	boutons,	N=5	mice;	Kolmogorov-Smirnov	test	
p=0.046;	KS(D)=0.0893).	D.	Cumulative	distributions	of	preferred	spatial	frequency	for	all	significantly	
responsive	boutons	of	V1	to	LM	(red)	and	V1	to	PM	afferents	(blue).	The	projections	to	PM	are	higher	spatial	
frequency	tuned	than	the	projections	to	LM.	(V1	to	LM	median:	0.189	cyc/deg,	n=576	boutons,	N=5	mice;	V1	
to	PM	median:	0.212	cyc/deg,	n=401	boutons,	N=5	mice;	Kolmogorov-Smirnov	test	p=0.0275;	KS(D)=0.0952).	
E.	Breakdown	of	the	preferred	spatial	frequency	tuning	of	the	afferents	from	V1	to	LM	(top)	and	V1	to	PM	
(bottom)	by	eye-specificity.	In	LM,	the	contralaterally	dominated	boutons	are	higher	spatial	frequency	tuned	
than	the	binocular	boutons	(Contra	only	median:	0.207	cyc/deg,	n=382	boutons,	binocular	median:	0.146	
cyc/deg,	n=98	boutons	N=5	mice;	ipsi	only	median:	0.205	cyc/deg,	n=86	boutons;	Kruskal-Wallis	test	
p=0.0063,	Dunn’s	multiple	comparisons	post	hoc	test,	contra	only	vs.	binocular	p=0.0069;	KW(s)=10.15;	N=5	
mice).	The	eye-specific	distinction	to	in	V1	afferents	does	not	appear	to	be	present	in	PM.	F.	Cumulative	
distributions	of	eye-specific	spatial	temporal	tuning	preferences	for	cells	recorded	in	V1	(top),	LM	(middle)	
and	PM	(bottom).	In	all	three	areas,	the	contralateral	dominated	cells	are	tuned	to	higher	spatial	frequencies	
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than	the	binocular	cells	(PM:	median	contra	only:	0.146	cyc/deg,	n=254	cells;	median	binocular:	0.087	
cyc/deg,	n=180	cells;	ipsi	only	median:	0.111	cyc/deg,	n=93	cells,	Kruskal-Wallis	test	p<0.0001;	Dunn’s	
multiple	comparisons	test,	contra	only	vs.	binocular	p<0.0001,	N=9	mice;	KW(s)=18.41).	In	V1,	there	is	also	a	
difference	in	the	contralateral	only	and	ipsilateral	only	responses.	(V1:	median	contra	only:	0.159	cyc/deg,	
n=470	cells;	median	binocular:	0.072	cyc/deg,	n=264	cells;	ipsi	only	median:	0.0716	cyc/deg,	n=252	cells,	
Kruskal-Wallis	test	p<0.0001;	Dunn’s	multiple	comparisons	test,	contra	only	vs.	binocular	p<0.0001;	contra	
only	vs.	ipsi	only	p<0.0001,	N=9	mice;	KW(s)=60.68).	In	LM,	there	is	also	a	difference	in	preferred	spatial	
frequency	for	binocular	and	ipsi	only	responses	(LM:	median	contra	only:	0.091	cyc/deg,	n=356	cells;	median	
binocular:	0.0687	cyc/deg,	n=304	cells;	ipsi	only	median:	0.0826	cyc/deg,	n=205	cells,	Kruskal-Wallis	test	
p<0.0001;	Dunn’s	multiple	comparisons	test,	contra	only	vs.	binocular	p<0.0001;	binocular	vs.	ipsi	only	
p<0.0345,	N=9	mice;	KW(s)=20.40).	Significance	stars	are	represented	by	***=p<0.001;	**=p<0.01;	*=p<0.05.	
	
3.4	Discussion	

The	goal	of	our	study	was	to	determine	if	the	functional	specialization	of	eye-

specific	responses	found	at	the	level	of	V1	is	also	present	in	higher	visual	areas	LM	and	PM.	

As	far	as	we	know,	we	are	the	first	to	probe	eye-specific	tuning	in	higher	areas	of	mouse	

visual	cortex.	Our	study	confirms	that	the	asymmetries	found	in	the	binocular	zone	of	V1	in	

the	spatial	frequency	tuning	of	each	eye	is	also	present	in	higher	visual	areas	of	cortex,	and	

extends	to	other	visual	stimulus	features.	The	contralateral	bias	to	high	spatial	frequencies	

appears	to	be	a	pronounced	feature	of	mouse	visual	cortex,	and	perhaps	serves	as	an	

explanation	for	the	bias	of	PM	towards	higher	spatial	frequencies	than	LM;	similarly,	the	

relatively	low	spatial	frequency	tuning	of	area	LM	may	also	be	owed	to	the	high	degree	of	

binocular	cells	in	this	area.		

	 The	contralateral	bias	towards	high	spatial	frequencies	extends	to	a	high	degree	of	

direction	selectivity.	This	also	applies	to	the	biases	found	to	the	cardinal	directions	(Salinas	

et	al.,	2017).	Although	we	did	not	find	an	eye-specific	functional	specialization	for	

orientation	and	direction	selectivity,	we	did	find	an	ocular	specialization.	Monocular	cells	

tended	to	be	more	direction	selective,	and	this	feature	seemed	to	be	conserved	in	both	LM	

and	PM,	while	binocular	cells	were	more	orientation	selective.	Moreover,	all	eye-specific	

responses	of	area	PM	are	biased	to	cardinal	preferences,	indicating	a	potential	role	for	PM	
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and	V1	contralateral	dominated	cells	in	spatial	navigation.	The	orientation	matching	for	

spatial	frequency	and	orientation	between	the	two	eyes	also	increases	up	the	proposed	

cortical	hierarchy	(V1>LM>PM),	suggesting	that	the	eye-specific	functional	segregation	at	

the	level	of	V1	may	scale	down	in	higher	visual	areas,	whose	selectivity	are	more	refined	to	

specific	types	of	stimuli	(Marshel	et	al.,	2011;	Andermann	et	al.,	2011;	Roth	et	al.,	2012).		

	 Because	spatiotemporal	tuning	has	been	determined	to	better	segregate	visual	areas	

from	one	another	(Glickfeld	et	al.,	2013),	we	probed	eye-specific	preferred	speeds.	We	

found	that	the	eye-specific	asymmetries	found	in	V1	for	spatial	frequency	tuning	also	

extend	to	preferred	speeds.	In	all	three	areas,	the	contralateral	only	responses	were	tuned	

to	the	slowest	speeds	(which	could	be	due	to	high	spatial	and	low	temporal	frequency	

processing).	In	V1,	binocular	cells	preferred	intermediate	speeds	while	ipsilateral	only	cells	

preferred	the	fastest	speeds.	Thus,	it	may	be	that	functional	specialization	of	higher	visual	

areas,	with	their	unique	speed	preferences,	could	be	in	part,	due	to	eye-specific	functional	

input	from	V1.	In	LM	and	PM,	there	appears	to	be	a	scaling	down	in	the	eye-specific	speed	

distinction	up	the	cortical	hierarchy—perhaps	owing	to	convergence	of	particular	eye-

specific	inputs	from	V1.	Given	out	current	results,	we	propose	that	the	eye-specific	

functional	output	of	V1	to	higher	visual	areas	could	be	important	for	their	unique	spatial	

and	temporal	frequency	preferences.		

	 We	determined	if	the	V1	afferents	to	areas	LM	and	PM	were	distinct	in	their	eye-

specificity	and	in	their	eye-specific	spatial	frequency	tuning	properties.	We	found	that	the	

output	of	V1	matched	the	target	areas	in	terms	of	ODI	and	spatial	frequency	tuning.	We	also	

found	that	the	output	of	V1	to	LM	contained	eye-specific	spatial	frequency	tuning,	with	the	

contralateral	dominated	responses	preferring	the	highest	spatial	frequencies.	While	we	
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were	unable	to	restrict	our	analysis	to	only	the	excitatory	cells	of	V1,	we	were	still	able	to	

discern	differences	in	spatial	frequency	and	ocular	dominance,	as	would	be	expected	if	V1	

is	a	participant	in	shaping	areal	selectivity	through	eye-specific	inter-areal	connections.	

This	may	align	with	current	hierarchical	models,	where	HVA	selectivity	is	dependent	on	V1.	

However,	it	may	also	be	that	eye-specific	functional	specialization	at	subcortical	levels	(i.e.	

LP)	drive	HVA	selectivity.		

Many	studies	have	established	the	relationship	between	the	columnar	organization	

of	ocular	dominance	and	orientation	pinwheels,	and	pinwheels	with	cytochrome	oxidase	

blobs/interblobs	(Hubel	and	Wiesel,	1974a;	Bartfeld	and	Grinvald,	1992;	Livingstone	and	

Hubel,	1984).	These	eye-specific	columns	are	preferentially	linked	to	same	eye-specific	

columns	in	primate	V1,	although	the	segregation	is	not	strict	(Malach	et	al,	1993).	More	

recently,	a	link	between	spatial	frequency	and	eye-specificity	has	been	revealed	in	primates	

using	two-photon	calcium	imaging.	The	monocular	regions	of	primate	striate	cortex	prefer	

lower	spatial	frequencies	than	binocular	regions	(Nauhaus	et	al.,	2016).	The	discrepancy	

between	our	findings	and	those	in	primates	may	be	due	to	anatomical	and	ethological	

differences	between	the	two	species.	Perhaps	thinking	about	how	the	visual	system	serves	

these	two	species	differently	may	guide	an	understanding	of	this	apparent	discrepancy.	

Primates,	whose	binocular	visual	system	is	very	similar	to	that	of	humans,	have	forward	

facing	eyes,	a	large	binocular	visual	field	and	have	acuity	thresholds	much	closer	to	

humans.	Mice,	on	the	other	hand,	are	afoveate	species,	with	eyes	placed	largely	on	the	sides	

of	their	heads	and	a	relatively	small	binocular	visual	field	(Dräger	1975).	Perhaps	a	

difference	in	predator	vs.	prey	species	could	manifest	in	visual	systems	primed	for	
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detecting	approaching	predators	in	the	periphery	or	finding	objects	in	the	central	visual	

field.			

While	orientation	and	direction	have	been	shown	to	be	important	early	features	for	

the	processing	of	form	and	motion,	respectively,	why	this	monocular-binocular	distinction	

exists	in	mice	remains	a	puzzle.	It	is	intuitive	to	think	that	binocular	cells	should	be	sharply	

tuned	for	orientation,	if	they	are	to	perform	form	and	object	identification	processing	

downstream.	Moreover,	sensitivity	to	motion	in	the	periphery	might	serve	as	a	useful	

function	for	looming	or	approaching	objects,	and	could	help	serve	as	an	attention	shifting	

mechanism.	These	operations	may	need	to	happen	in	parallel,	and	differences	in	ocularity	

may	be	an	important	mechanism	for	the	simultaneous	processing	of	that	information.	It	is	

still	possible	that	perhaps	eye-specificity	and	ocularity	hold	clues	about	the	organizing	

principles	that	establish	the	initial	setup	of	visual	cortex	during	development.	Perhaps	the	

mouse,	as	a	rudimentary	visual	system,	could	provide	a	glimpse	into	how	the	visual	cortex	

was	able	to	design	a	visual	system	capable	of	parallel	processing.	
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CHAPTER	4:	Effects	of	Monocular	Deprivation	on	eye-specific	functional	

properties	of	V1,	LM	and	PM		

4.1	Introduction	

The	mammalian	visual	system	has	been	classically	described	as	a	hierarchically	

organized	system	that	transforms	different	aspects	of	the	same	retinal	image	along	parallel	

streams	for	simultaneous	processing	(Van	Essen	et	al.,	1991,	Nassi	and	Callaway	2009).	

Early	in	these	streams,	distinct	retinal	ganglion	cells	process	functionally	distinct	

spatiotemporal	information.	Downstream,	V1	parses	and	transmits	the	spatiotemporal	

information	to	specialized	higher	visual	areas	(HVAs).	The	specialization	of	HVAs	is	crucial	

for	the	encoding	of	higher-level	feature	detection,	such	as	global	form	and	motion	

processing,	and	their	activity	is	more	closely	linked	to	visual	perceptual	tasks	than	V1	

(reviewed	in	Kiorpes,	2016).	The	functional	architecture	of	primate	V1	plays	a	key	role	in	

parallel	pathway	processing	(Hubel	and	Livingstone,	1987;	Nassi	and	Callaway	2009).	In	

mice,	V1	seems	to	play	a	similar	role,	containing	cells	that	vary	widely	in	their	

spatiotemporal	tuning,	supporting	the	encoding	of	multiple	visual	streams	(Gao	et	al.,	

2010;	Ji	et	al.,	2015).	V1	also	carries	distinct	information	to	HVAs	in	a	target-dependent	

manner	(Glickfeld	et	al.,	2013;	Matsui	and	Ohki,	2013).	Mouse	HVAs	have	been	grouped	

into	putative	dorsal	and	ventral	streams,	based	largely	on	their	anatomical	connectivity	

(Wang	et	al.,	2011;	Wang	et	al.,	2012).	HVAs	can	also	be	segregated	based	on	their	

functional	diversity	and	specific	preferences	for	spatiotemporal	and	orientation/direction	

selectivity	(Marshel	et	al.,	2011;	Andermann	et	al.,	2011;	Roth	et	al.,	2012;	Murakami	et	al.,	

2015,	Smith	et	al.,	2015).	
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Functional	maps	for	spatial	frequency,	eye-specificity	and	orientation	are	aligned	in	

primate	V1	(Bartfeld	and	Grinvald,	1992;	Obermayer	and	Blasdel,	1993;	Crair	et	al.,	1997a;	

Nauhaus	et	al.,	2012;	Nauhaus	et	al.,	2016)	and	the	modular	organization	of	these	feature	

maps	is	recapitulated	in	HVAs	(Ts’o	et	al.,	2009;	Ghose	and	Ts’o,	1997;	Ghose	and	Ts’o,	

2017).	While	the	basic	columnar	organization	has	been	demonstrated	to	be	largely	

independent	of	visual	experience	(Hubel	and	Wiesel,	1963;	Sherk	and	Stryker,	1976,	Crair	

et	al.,	1998;	Rakic,	1976;	Horton	and	Hocking,	1996;	Des	Rosier	et	al.,	1978;	Blasdel,	

Obermayer	and	Kiorpes	1995),	the	maintenance	and	relationship	between	some	feature	

maps	can	be	altered	with	abnormal	visual	experience	(Farley	et	al.,	2007).		

The	close	association	between	feature	maps	for	eye-specificity	and	spatial	frequency	

tuning	has	been	demonstrated	by	studies	of	ocular	dominance	plasticity	(ODP).	Closing	an	

eye	during	the	ocular	dominance	critical	period	can	cause	long-lasting	changes	in	the	

ocular	dominance	map	and	is	accompanied	by	a	loss	of	high	spatial	frequency	tuning	of	the	

deprived	eye	in	V1	(Wiesel	and	Hubel,	1963;	Dews	and	Wiesel,	1970;	Hess	and	Howell,	

1977;	Levi	and	Harwerth,	1977;	Fagiolini	et	al.,	1994;	Prusky	et	al.,	2000;	Gordon	and	

Stryker,	1996).	Given	the	hierarchical	model	suggesting	that	the	receptive	fields	of	HVAs	

are	built	upon	V1	input,	it	would	seem	likely	that	monocular	deprivation	may	have	

compounding	effects	on	HVA	specialization.	In	line	with	this,	amblyopic	primates	have	

severe	deficits	in	the	processing	of	higher-level	feature	detection,	including	contour	

integration,	motion	and	form	processing	(Kozma	and	Kiorpes,	2003;	Kiorpes	et	al.,	2006;	

Kiorpes,	2006).	However,	it	has	not	been	explored	whether	the	differentiation	of	HVAs	into	

distinctly	specialized	functional	modules	depends	on	visual	experience.		
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A	recent	study	using	intrinsic	signal	optical	imaging	indicates	that	the	areas	become	

more	distinct	after	eye	opening,	during	a	similar	time	window	as	the	classically	defined	

ocular	dominance	critical	period	(Murakami	et	al.,	2017).	Also	using	intrinsic	signal	

imaging,	a	second	study	reinforced	that	dorsal	and	ventral	stream	areas	have	somewhat	

independent	developmental	timelines	(Smith	et	al.,	2017).	However,	it	is	not	clear	whether	

visual	experience	is	driving	the	differentiation	of	the	areas	into	specialized	functional	

modules.	Moreover,	to	better	understand	the	functional	specialization	of	HVAs,	it	is	critical	

to	characterize	the	tuning	properties	of	individual	cells.		

	 We	recently	discovered	eye-specific	functional	segregation	at	the	level	of	V1	in	mice	

(Salinas	et	al.,	2017),	indicating	that	neurons	with	common	eye	dominance	properties	also	

share	similar	spatial	frequency	selectivity.	This	coupling	of	eye-specificity	with	spatial	

frequency	tuning	is	intriguingly	reminiscent	of	recent	findings	in	primate	V1,	where	maps	

of	spatial	frequency	run	parallel	to	ocular	dominance	maps	(Nauhaus	et	al.,	2016).	Given	

the	distinct	spatial	frequency	information	provided	by	the	two	eyes,	we	wondered	whether	

monocular	deprivation	(MD)	would	lead	to	a	disruption	in	the	functional	specialization	of	

HVAs.	Using	two-photon	calcium	imaging,	we	recorded	from	thousands	of	excitatory	

neurons	in	L2/3	of	areas	V1,	LM	and	PM	to	determine	the	spatiotemporal	and	eye-specific	

receptive	field	properties.	We	find	that	two	weeks	of	MD	during	the	ocular	dominance	

critical	period	disrupts	the	functional	segregation	of	HVAs	in	adulthood.	Moreover,	the	

functional	segregation	of	eye-specific	responses	in	V1,	LM	and	PM	are	disrupted	in	distinct	

manners,	suggesting	that	the	development	of	eye-specific	response	properties	may	be	

important	for	establishing	higher	visual	area	specificity.	

	



107	
	

4.2	Materials	and	Methods	

4.2.1	Animals	

All	protocols	and	procedures	followed	the	guidelines	of	the	Animal	Care	and	Use	

Committee	at	the	University	of	California,	Irvine.	To	image	evoked	activity	in	layer	2/3	

excitatory	neurons	in	multiple	visual	areas,	a	Camk2a-tTA	driver	line	

(RRID:	IMSR_JAX:007004)	was	crossed	to	a	line	expressing	the	calcium	indicator	GCaMP6s	

under	the	control	of	the	tetracycline-responsive	regulatory	element	(tetO)	

(RRID:	IMSR_JAX:024742;	Wekselblatt	et	al.,	2016).	The	founder	line	was	heterozygous	for	

both	transgenes	and	maintained	by	breeding	with	wildtype	C57BL/6	mice	(RRID:	

IMSR_CRL:642).	Mice	of	either	sex	were	weaned	at	P18-21	and	co-housed	with	one	or	more	

littermate	until	the	day	of	window	implantation	(P73-200).		

4.2.2	Monocular	deprivation	

For	monocular	deprivation	experiments,	one	eye	was	sutured	(either	right	or	left)	at	

P19	and	the	sutures	were	monitored	for	two	weeks	(Davis	et	al.,	2015).	Under	isoflurane	

anesthesia	(2%	for	induction,	1%	for	maintenance),	the	non-deprived	eye	was	covered	

with	ophthalmic	ointment	while	the	other	eye	was	sutured	closed	with	two-three	mattress	

sutures	(7-0	silk,	Ethicon).	If	the	eye	opened	at	any	time	before	the	two-week	window,	the	

mouse	was	removed	from	the	experiment.	Eyes	were	opened	after	two	weeks	and	

inspected	for	any	damage	under	a	microscope.	In	total,	we	gathered	data	from	8	No	MD,	6	

CMD	and	4	IMD	mice.	By	cell	analysis	included	data	from	all	18	animals.		

4.2.3	Cranial	Window	Implantation	
	

See	Section	2.2.2	Cranial	Window	Implantation	
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4.2.4	Visual	Area	Mapping	

	 Retinotopic	maps	of	azimuth	and	elevation	were	used	to	generate	a	visual	field	

sign	map	(Sereno	et	al.,	1994;	Garrett	et	al.,	2014)	to	designate	borders	between	visual	

areas.	See	Section	2.2.4	for	retinotopic	mapping.		

4.2.5	Two-Photon	Calcium	Imaging	

See	Section	3.2.5	Two-photon	Calcium	Imaging	

4.2.5.1	Two-Photon	Visual	Stimuli	

See	Section	3.2.5.1	Two-Photon	Visual	Stimuli	

4.2.6	Data	Analysis	

4.2.6.1	Cellular	Responses	

Custom-written	Python	routines	were	used	to	remove	motion	artifact,	identify	cell	

ROIs,	extract	calcium	fluorescence	traces,	and	perform	analyses.	See	Section	2.2.6.1	

To	determine	a	cell’s	response	to	each	stimulus	trial,	the	cell’s	trace	during	the	

stimulation	period	was	normalized	to	the	baseline	value	averaged	over	the	0.75	seconds	

preceding	stimulus	presentation.	The	cell’s	response	to	a	given	orientation	θi	was	defined	

as	the	average	response	across	the	8	repeats	of	each	condition:	F(θi).	An	estimate	of	the	

cell’s	spontaneous	calcium	fluctuation	was	determined	using	the	cell’s	trace	during	the	

blank	condition.	For	the	spatial	frequency	tuning	protocol,	at	each	spatial	frequency,	a	cell’s	

responsiveness	was	determined	using	a	one-way	ANOVA	(p<0.01)	across	orientations	

against	the	blank	condition.	For	the	speed	tuning	protocol,	a	cell’s	responsiveness	was	first	

determined	using	a	one-way	ANOVA	with	a	Bonferonni	correction	(p<0.05/(5	SFs	*	4	TFs)=	

p<0.0025).			
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4.2.6.2	Ocular	Dominance	Index/	Eye	Specificity	

	 Ocular	dominance	index	was	also	calculated	as	(C-I)/(C+I),	where	C	is	Rpref	for	the	

contralateral	eye	and	I	is	Rpref	for	the	ipsilateral	eye.	The	Rpref	was	taken	at	the	cell’s	optimal	

spatial	frequency	or	optimal	spatial	and	temporal	frequency	for	the	speed	tuning	protocol,	

for	each	eye	viewing	condition.	We	classified	a	cell	as	contralateral	only	if	the	cell	was	only	

significantly	responsive	during	contralateral	eye	viewing	conditions.	These	cells	were	

assigned	an	ODI	of	1.	A	cell	that	was	only	responsive	during	the	ipsilateral	eye	viewing	

condition	was	considered	ipsilateral	only	responsive	and	assigned	an	ODI	of	-1.		

4.2.6.3	Preferred	Speed	(Speed	Tuning	Protocol)	

To	determine	a	cell’s	preferred	speed,	responses	across	all	spatial	and	temporal	

frequencies	were	fit	with	a	two-dimensional	elliptical	Gaussian	(Priebe	et	al.,	2006;	

Andermann	et	al.,	2011):		

𝑅 𝑠𝑓, 𝑡𝑓 = 𝐴 𝑒𝑥𝑝
−(log! 𝑠𝑓 − log! 𝑠𝑓!)!

2 𝜎!"
!  𝑒𝑥𝑝

−(log! 𝑡𝑓 − log! 𝑡𝑓!(𝑠𝑓))!

2 𝜎!"
!  

where	A	is	the	neuron’s	maximum	responses,	𝑠𝑓!	and	𝑡𝑓!	are	the	preferred	spatial	and	

temporal	frequency	and	𝜎!"	and	𝜎!"	are	the	tuning	widths	for	spatial	and	temporal	

frequency.	From	this	fit	we	are	able	to	obtain	the	dependence	of	temporal	frequency	

preference	on	spatial	frequency	by	calculating	the	speed	tuning	index,	𝜉,	such	that	

log! 𝑡𝑓!(𝑠𝑓)) =  𝜉 (log! 𝑠𝑓 − log! 𝑠𝑓!)+ log! 𝑡𝑓! .	A	neuron	with	a	speed	tuning	index	of	

𝜉 = 1	is	a	speed-tuned	cell,	while	𝜉 = 0	is	not	speed-tuned	and	𝜉 = −1	is	anti-tuned.	To	

measure	goodness	of	fit,	we	used	two	approaches.	First,	the	fitted	data	must	be	well	

correlated	with	the	raw	data	(fit	correlation	greater	than	0.5).	The	confidence	intervals	for	
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preferred	spatial	and	temporal	frequency	must	not	exceed	2	octaves.	For	speed	tuning	

analysis,	the	confidence	intervals	for	the	speed-tuning	index	must	not	exceed	1.		

4.2.7	Experimental	Design	and	Statistical	Analyses	

Distributions	were	tested	for	normality	before	running	statistical	tests.	When	data	

was	not	normally	distributed,	nonparametric	tests	were	used	to	compare	groups.	To	

compare	ocular	dominance	index,	spatial	frequency,	temporal	frequency	and	speed	

preference	between	V1,	LM	and	PM	in	NoMD	and	CMD	mice,	the	Kruskal-Wallis	test	was	

used.	Similarly,	we	used	a	Kruskal-Wallis	test	to	compare	eye-specific	speed	preferences	in	

No	MD	and	CMD	mice.	To	compare	distributions	for	speed	preferences	in	NoMD	and	CMD	

mice	in	V1,	LM	and	PM,	we	used	a	Mann-Whitney	and	Kolmogorov-Smirnov	test.		

To	quantify	functional	segregation	of	HVAs	and	eye-specific	responses,	we	first	used	

a	box-cox	transformation	(XLSTAT),	optimized	for	all	control	data,	to	achieve	distributions	

of	spatial	and	temporal	frequency	that	were	more	likely	to	be	normally	distributed.	We	

then	ran	the	Mahalanobis	distance	test	with	a	Bonferonni	correction	for	the	number	of	

comparisons	(XLSTAT)	on	all	cellular	spatial	and	temporal	frequency	preferences	for	by-

cell	analysis,	or	on	preferences	obtained	from	the	same	animal	for	by-animal	analysis.	

Fisher	distance	p-values	are	reported	for	inter-areal	and	eye-specific	distance	comparisons.	

Results	of	the	Wilk’s	lambda	test	are	also	reported	to	show	if	the	mean	vectors	are	

significantly	different	from	one	another.	For	comparisons	of	HVA	functional	segregation,	

the	inter-areal	Mahalanobis	distances	for	each	animal	in	NoMD	and	CMD	mice	were	then	

tested	with	a	Two-way	ANOVA,	mixed-effects	(REML)	model,	with	each	inter-areal	

comparison	as	the	repeating	factor.	The	inter-areal	distances	for	NoMD	and	CMD	mice	

were	summed	and	then	compared	with	Welch’s	unpaired	t	test	to	determine	if	functional	
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segregation	was	impaired	with	CMD.	For	Eye-specific	segregation,	we	both	pooled	the	data	

from	V1,	LM	and	PM	to	determine	Mahalanobis	distances	between	eye-specific	responses	

and	restricted	analysis	to	each	area.	By	animal-analysis	was	not	used	to	quantify	eye-

specific	functional	segregation	for	two	reasons:	1)	There	are	differential	effects	of	MD	on	

the	eye-specific	functional	segregation	in	V1,	LM	and	PM,	as	demonstrated	by	the	

distributions	for	speed	preferences	and	2)	due	to	the	difficulty	of	achieving	a	good	sample	

size	for	each	eye-specific	response	category	within	each	area	in	a	single	animal,	especially	

in	the	case	of	PM.	Statistical	analyses	were	performed	using	Prism	v7.01	(GraphPad).	

4.3	Results		

4.3.1	Spatiotemporal	and	Eye-specific	Response	Properties	of	V1,	LM	and	PM	

To	probe	eye-specific	spatiotemporal	tuning,	we	used	a	transgenic	mouse	line	that	

expresses	GCaMP6s	under	the	control	of	the	CaMK2	promoter	(CaMK2-tTA;	tetO-GCaMP6s;	

Wekselblatt	et	al.,	2016).	We	used	a	visual	field	sign	map	to	delineate	areas	and	imaged	

visually	evoked	activity	of	excitatory	neurons	in	L2/3	of	adult	mice	(Figure	4.1a).	By	

presenting	mice	with	drifting	sinusoidal	gratings	of	various	temporal	and	spatial	

frequencies	to	each	eye	individually,	we	were	able	to	assess	eye-specific	tuning	for	spatial	

frequency,	temporal	frequency	and	speed	(Figure	4.1b,	d).	Speed	is	defined	as	temporal	

frequency/	spatial	frequency	and	tuning	for	speed	has	been	demonstrated	to	functionally	

segregate	HVAs	more	robustly	than	spatial	frequency	(Glickfeld	et	al.,	2013).	Response	

matrices	to	the	visual	stimuli	for	each	eye	viewing	condition	were	fit	with	a	2-dimensional	

Gaussian	(Priebe	et	al.,	2006;	Andermann	et	al.,	2011;	Glickfeld	et	al.,	2013)	to	generate	

spatial	and	temporal	frequency	tuning	curves	and	estimate	speed	tuning	(Figure	3.6).		
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In	normally	reared	adult	mice,	V1,	LM	and	PM	are	uniquely	responsive	to	stimuli	

from	each	eye	and	to	spatiotemporal	stimuli.	V1	contains	cells	that	span	a	broad	range	of	

spatiotemporal	frequencies,	while	LM	and	PM	are	more	selective	in	their	tuning	(Figure	

4.1b).	While	all	three	areas	contain	neurons	that	respond	to	each	or	both	eyes,	the	higher	

visual	areas	differ	in	their	distribution	of	contralateral	only,	binocular	and	ipsilateral	only	

neurons	(Figure	4.1c,	p=0.008).	Area	LM,	which	is	highly	binocular,	also	prefers	relatively	

lower	spatial	frequencies	and	faster	speeds.	Area	PM	on	the	other	hand,	contains	a	higher	

proportion	of	contralateral	only	responsive	cells	and	is	tuned	to	relatively	higher	spatial	

frequencies	and	slower	speeds	(Figure	4.1d).	Thus,	the	functional	specialization	of	HVAs	

and	their	eye-specific	proportions	parallel	our	findings	in	V1,	where	the	contralateral	eye	

dominated	neurons	were	tuned	to	higher	spatial	frequencies	than	the	binocular	or	

ipsilateral	only	responses	(Salinas	et	al.,	2017).	Given	the	divergence	in	eye-specific	tuning	

properties	of	LM	and	PM,	we	hypothesized	that	depriving	mice	of	visual	experience	

through	one	eye	during	the	ocular	dominance	critical	period	may	alter	the	spatiotemporal	

preferences	of	LM	and	PM.	
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Figure	4.1:	Spatiotemporal	and	Eye-specific	Response	Properties	of	V1,	LM	and	PM.	A.	Experimental	
setup.	Top	Right:	Widefield	visual	field	sign	map	were	used	to	delineate	higher	visual	areas	(from	lateral	to	
medial:	LM	(boxed	in	red),	V1	(boxed	in	yellow)	and	PM	(boxed	in	dark	and	light	blue).	Scale	bar	is	1mm.	Top	
left:	The	visual	field	sign	map	was	used	to	position	two-photon	calcium	imaging	experiments	carried	out	
while	mice	viewed	drifting	sinusoidal	gratings	of	various	spatial	and	temporal	frequencies	(speeds).	The	
stimulus	was	shown	to	either	the	contralateral	or	ipsilateral	eye	to	generate	eye-specific	speed	tuning	curves	
(Demonstrated	in	Figure	2).	B.	Top:	Maps	of	speed	preferences	for	LM,	V1	and	PM	for	the	same	animal.	
Notably,	LM	is	tuned	to	faster	speeds	while	V1	is	broadly	tuned	to	speed.	Bottom:	Maps	of	eye-specific	
responses	for	the	same	fields.	LM	contains	many	binocular	cells	while	PM	is	strongly	biased	by	contralateral-
dominated	responses.	C.	Top:	Maps	for	eye-specificity	in	V1,	LM	and	PM.	Contra	Only	responses	are	shown	in	
blue,	ipsi	only	responses	in	magenta	and	binocular	ODI	in	between	the	two	extremes.	Bottom:	Cumulative	
distributions	for	ocular	dominance	index,	with	contra	only	responses	at	1	and	ipsi	only	responses	at	-1.	LM	
and	PM	have	distinct	distributions	for	ocular	dominance	index	(V1	median:	1.0,	mean:	0.3078,	n=819	
neurons;	LM	median:	0.454,	mean:	0.281,	n=645	neurons,	PM	median:	1,	mean:	0.395,	n=488	neurons;	
Kruskal-Wallis	test,	p=0.0081,	Dunn’s	multiple	comparisons	post	hoc	test,	LM	vs.	PM;	p<0.0081;	
KW(s)=9.362,	N=8	mice).	D.	Left:	Cumulative	distributions	for	preferred	spatial	frequency	of	V1	(black),	LM	
(red),	and	PM	(blue).	All	distributions	differ	in	preferred	spatial	frequency	except	for	V1	and	PM	(V1	median:	
0.114	cyc/deg;	LM	median:	0.0768	cyc/deg;	PM	median:	0.132	cyc/deg;	Kruskal-Wallis	test,	p<0.0001;	Dunn’s	
multiple	comparisons	test,	V1	vs.	LM	p<0.0001;	LM	vs.	PM	p<0.0001;	KW(s)=55.45).	Middle:	Cumulative	
distributions	for	preferred	temporal	frequency.	All	distributions	differ	in	their	preferred	temporal	frequency	
except	for	LM	and	PM.	(V1	median:	1.38	Hz;	LM	median:	1.97	Hz;	PM	median:	1.85	Hz;	Kruskal-Wallis	test,	
p<0.0001;	Dunn’s	multiple	comparisons	test,	V1	vs.	LM	p<0.0001;	V1	vs.	PM	p<0.0044;	KW(s)=30.30).	Right:	
Cumulative	distributions	for	preferred	speed	of	V1	(black),	LM	(red),	and	PM	(blue).	All	distributions	differ	in	
their	spatial	temporal	preferences	except	for	V1	and	PM	(V1	median:	16.1	deg/sec;	LM	median:	28.1;	PM	
median:	17.34;	Kruskal-Wallis	test,	p<0.0001;	Dunn’s	multiple	comparisons	test,	V1	vs.	LM	p<0.0001;	LM	vs.	
PM	p<0.0001;	KW(s)=73.28).	
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4.3.2	Monocular	Deprivation	disrupts	the	functional	segregation	of	V1,	LM	and	PM	

	 To	determine	if	the	functional	specialization	of	higher	visual	areas	depend	upon	

proper	binocular	visual	experience	during	the	ocular	dominance	critical	period,	we	

monocularly	deprived	mice	of	vision	through	the	contralateral	eye	for	two	weeks	starting	

at	P19	and	assessed	eye-specific	spatiotemporal	tuning	in	adulthood.	We	again	used	the	

visual	field	sign	map	to	determine	areal	borders	and	found	no	overt	differences	in	the	maps	

between	normal	and	deprived	mice.	In	the	spatiotemporal	dimension,	CMD	shifts	speed	

preferences	in	V1	towards	faster	speeds	(Figure	4.2a,	left).	However,	in	area	LM,	which	is	

normally	tuned	to	lower	spatial	frequencies,	CMD	shifts	speed	responses	towards	slower	

speeds	(Figure	4.2a,	middle).	To	quantify	inter-areal	differences	in	spatiotemporal	tuning,	

we	used	the	Mahalanobis	distance.	In	No	MD,	the	spatiotemporal	preferences	of	each	area	

fall	within	distinct	clusters	(Figure	4.3c-d,	top).	Monocular	deprivation	impairs	the	normal	

functional	segregation	of	areas	from	on	another,	decreasing	their	Mahalanobis	distances	in	

the	case	of	LM-PM	and	V1-LM,	and	increasing	the	distance	between	V1	and	PM	(Figure	

4.3c-d,	bottom).	By	animal	analysis	further	demonstrates	these	shifts	in	inter-areal	

spatiotemporal	clustering,	diminishing	the	functional	segregation	between	areas	(Figure	

4.3e,f).	
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Figure	4.2	Monocular	Deprivation	disrupts	the	Functional	Segregation	of	Higher	Visual	Areas.	A.	
Cumulative	distributions	for	preferred	speed	in	No	MD	(black)	and	CMD	(light	blue)	mice	for	neurons	in	V1	
(left),	LM	(middle)	and	PM	(right).	In	V1,	CMD	shifts	speed	preferences	towards	faster	speeds	(No	MD	
median:	16.09	deg/sec,	n=819	neurons;	CMD	median:	19.43	deg/sec,	n=726	neurons;	Mann-Whitney	Test,	
MW(U)=266455,	p=0.0004;	Kolmogorov-Smirnov	test,	p=0.0010,	KS(D)=0.099,	NoMD	N=8	mice,	CMD	N=6	
mice).	In	LM,	CMD	shifts	speed	preferences	towards	slower	speeds	(No	MD	median:	28.05	deg/sec,	n=645	
neurons;	CMD	median:	22.2	deg/sec,	n=567	neurons;	Mann-Whitney	Test,	MW(U)=165937,	p=0.0054;	
Kolmogorov-Smirnov	test,	p=0.0068,	KS(D)=0.097,	NoMD	N=8	mice,	CMD	N=6	mice).	No	significant	
difference	in	speed	preference	was	found	with	CMD	for	PM	(No	MD	median:	17.3	deg/sec,	n=488	neurons;	
CMD	median:	21.1	deg/sec,	n=216	neurons;	Mann-Whitney	Test,	MW(U)=48079,	p=0.0634,	NoMD	N=8	mice,	
CMD	N=6	mice).	B.	Cumulative	distributions	for	preferred	speed	of	V1	(black),	LM	(red)	and	PM	(blue)	in	
CMD	mice	(V1	median:	19.4	deg/sec,	n=726	neurons;	LM	median:	22.2	deg/sec,	n=567	neurons;	PM	median:	
21.1	deg/sec,	n=216	neurons).	Data	for	control	mice	are	shown	in	lighter	colors.	Notice	that	the	areas	have	
lost	their	distinct	speed	distributions.	C.	Heatmap	of	inter-areal	Mahalanobis	distances	in	NoMD	(top)	and	
CMD	(bottom)	mice.	In	NoMD	mice,	each	area	is	functionally	segregated	from	the	other	(Summed	inter-areal	
Mahalanobis	distances:	0.401,	V1	vs.	LM:	0.202,	p<0.0001;	V1	vs.	PM:	0.033,	p=0.0064,	LM	vs.	PM:	0.167,	
p<0.0001,	N=8	mice).	CMD	results	in	diminished	functional	segregation	between	LM	and	PM	as	well	as	LM	
and	V1	(Summed	inter-areal	Mahalanobis	distances:	0.1623;	V1	vs.	LM:	0.033,	p=0.0058;	V1	vs.	PM:	0.093,	
p=0.0004;	LM	vs.	PM:	0.036,	p=0.058,	ns)	D.	Scatter	for	mean	preferred	spatial	frequency	and	mean	preferred	
temporal	frequency	for	V1	(black),	LM	(red)	and	PM	(blue)	in	NoMD	(top)	and	CMD	(bottom)	mice.	Each	
individual	point	is	an	animal	while	larger	points	represent	the	mean	of	the	means.	Control	data	is	shown	in	
grey	on	the	CMD	chart.	E.	By	animal	mean	inter-areal	Mahalanobis	distances	for	each	area	comparison	in	
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NoMD	(grey)	and	CMD	(blue)	mice.	Each	individual	point	represents	an	animal.	Error	bar	represents	SEM.	
Deprivation	significantly	alters	inter-areal	Mahalanobis	distances	(Two-way	ANOVA,	Mixed-effects	model	
(REML),	deprivation	factor	p=0.0218;	Sidak’s	multiple	comparisons	post-hoc	test,	LM-V1	p=0.0091,	No	MD	
N=5	mice,	CMD	N=3	mice).	F.	By	animal	mean	summed	Mahalanobis	distance	for	inter-areal	comparisons	in	
NoMD	(grey)	and	CMD	(blue)	mice.	Each	individual	point	represents	an	animal.	Error	bar	represents	SEM	
(Welch’s	unpaired	t	test,	p=0.0385,	mean	difference:	-0.6812	+/-	0.2012).	
	

4.3.3	Monocular	Deprivation	disrupts	the	functional	segregation	of	eye-specific	

responses	

We	have	previously	reported	eye-specific	asymmetries	in	tuning	for	spatial	

frequencies	in	binocular	V1	(Salinas	et	al.,	2017).	Here,	we	grouped	neural	responses	into	

three	eye-specific	categories	(contralateral	only,	binocular,	ipsilateral	only)	and	tested	

whether	these	groups	were	functionally	segregated	in	terms	of	spatiotemporal	tuning	

(Figure	4.3).	In	all	three	areas,	neurons	dominated	by	contralateral	eye	input	are	tuned	to	

the	slowest	speeds	(Figure	4.3a).	In	V1,	neurons	linked	by	eye-specificity	are	tuned	to	

distinct	speeds,	with	binocular	neurons	preferring	intermediate	and	ipsilateral-dominated	

neurons	preferring	the	fastest	speeds	(Figure	4.3a,	left).	Ipsilateral-dominated	neurons	of	

LM	are	also	tuned	to	significantly	faster	speeds	than	their	contralateral-dominated	

counterparts	(Figure	4.3a,	middle).	In	contrast,	in	PM,	neurons	linked	by	eye-specificity	are	

less	distinct	in	their	speed	preferences	(Figure	4.3a,	right).		

CMD	results	in	a	shift	of	the	speed	preferences	of	eye-specific	responses	in	V1,	so	

much	so,	that	the	binocular	speed	preferences	are	no	longer	distinct	from	the	ipsilateral-

dominated	speed	preferences	(Figure	4.3b,	left).	The	effect	of	CMD	on	shifting	eye-specific	

speed	preferences	in	LM	was	less	robust	(Figure	4.3b,	middle).	In	CMD	mice,	the	eye-

specific	speed	preferences	are	no	longer	distinct	(Figure	4.3b,right).	CMD	has	differential	

effects	on	intra-areal	eye-specific	clustering	(Figure	4.3d).	While	V1	and	LM	seem	to	lose	
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their	eye-specific	functional	segregation,	area	PM,	whose	neurons	linked	by	eye-specificity	

were	quite	matched	in	controls,	is	more	functionally	segregated	with	CMD	(Figure	4.3d).		
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Figure	4.3	Monocular	Deprivation	disrupts	the	Functional	Segregation	of	Eye-specific	Responses.	A.	
Cumulative	distributions	for	preferred	speed	of	contralateral	eye-dominated	(light	blue),	binocular	(purple)	
and	ipsilateral	eye-dominated	(magenta)	responsive	neurons	in	V1	(left),	LM	(middle)	and	PM	(right)	in	No	
MD	mice.	Left:	In	V1,	all	eye-specific	responsive	neurons	are	tuned	to	unique	speeds	(contralateral	only	
median:	11.26	deg/sec	n=419	neurons;	binocular	median:	18.06	deg/sec,	n=226	neurons;	ipsilateral	only	
median:	33.33	deg/sec,	n=174	neurons;	Kruskal-Wallis	test,	KW(s)=85.2,	p<0.0001;	Dunn’s	multiple	
comparisons	test,	Contra	only	vs.	binocular:	p=0.0002;	contra	only	vs.	ipsi	only:	p<0.0001;	binocular	vs.	ipsi	
only:	p<0.0001,	N=8	mice).	Middle:	In	LM,	contralateral	dominated	neurons	are	tuned	to	slower	speeds	than	
binocular	and	ipsilateral	neurons	(contralateral	only	median:	19.96	deg/sec,	n=248	neurons;	binocular	
median:	32.93	deg/sec,	n=296	neurons;	ipsilateral	only	median:	33.24	deg/sec,	n=101	neurons;	Kruskal-
Wallis	test,	KW(s)=22.3,	p<0.0001;	Dunn’s	multiple	comparisons	test,	Contra	only	vs.	binocular:	p<0.0001;	
contra	only	vs.	ipsi	only:	p=0.0125;	N=8	mice).	Right:	In	PM,	contralateral	dominated	responses	are	tuned	to	
slower	speeds	than	binocular	neurons	(contralateral	only	median:	14.24	deg/sec,	n=245	neurons;	binocular	
median:	22.04	deg/sec,	n=175	neurons;	ipsilateral	only	median:	19.2	deg/sec,	n=60	neurons;	Kruskal-Wallis	
test,	KW(s)=6.308,	p<0.0427;	Dunn’s	multiple	comparisons	test,	Contra	only	vs.	binocular:	p=0.0396,	N=8	
mice).	B.	Cumulative	distributions	for	preferred	speed	of	contralateral	eye-dominated	(light	blue),	binocular	
(purple)	and	ipsilateral	eye-dominated	(magenta)	responsive	neurons	in	V1	(left),	LM	(middle)	and	PM	
(right)	in	CMD	mice.	Control	data	is	shown	in	lighter	colors	for	reference.	Left:	In	V1,	all	eye-specific	
responsive	neurons	are	tuned	to	unique	speeds	except	binocular	and	ipsilateral	only	neurons	with	CMD	
(contralateral	only	median:	16.51	deg/sec,	n=391	neurons;	binocular	median:	27.92	deg/sec,	n=174	neurons;	
ipsilateral	only	median:	31.21	deg/sec,	n=161	neurons;	Kruskal-Wallis	test,	KW(s)=,	p<0.0001;	Dunn’s	
multiple	comparisons	test,	Contra	only	vs.	binocular:	p<0.0001;	contra	only	vs.	ipsi	only:	p<0.0001;	N=6	
mice).	Middle:	In	LM,	contralateral	dominated	neurons	are	tuned	to	slower	speeds	than	binocular	and	
ipsilateral	neurons	with	CMD	(contralateral	only	median:	18.03	deg/sec,	n=246	neurons;	binocular	median:	
26.44	deg/sec,	n=193	neurons;	ipsilateral	only	median:	25.78	deg/sec,	n=128	neurons;	Kruskal-Wallis	test,	
KW(s)=15.36,	p=0.0005;	Dunn’s	multiple	comparisons	test,	Contra	only	vs.	binocular:	p=0.0007;	contra	only	
vs.	ipsi	only:	p=0.0229;	N=8	mice).	Right:	No	significant	difference	in	preferred	speed	was	found	with	CMD	in	
PM	(contralateral	only	median:	17.48	deg/sec,	n=96	neurons;	binocular	median:	23.64	deg/sec,	n=81	
neurons;	ipsilateral	only	median:	21.48	deg/sec,	n=39	neurons;	Kruskal-Wallis	test,	KW(s)=2.14,	p=0.344,	
N=6	mice).	C.	Scatter	for	mean	preferred	spatial	frequency	and	mean	preferred	temporal	frequency	for	
contralateral	only	(light	blue),	binocular	(purple)	and	ipsilateral	only	(magenta)	in	No	MD	(top)	and	CMD	
(bottom)	mice.	Each	individual	point	is	an	animal	while	larger	points	represent	the	mean	across	animals.	
Control	data	is	shown	in	grey	on	the	CMD	chart.	D.	Heatmaps	for	intra-areal	eye-specific	Mahalanobis	
distances	in	V1	(top,	black),	LM	(middle,	red)	and	PM	(bottom,	blue)	for	No	MD.	Top:	In	V1,	No	MD	eye-
specific	responses	are	functionally	segregated	(No	MD:	Summed	Mahalanobis	Distance=1.42;	V1:	contra	only	
vs.	binocular:	0.142,	p<0.0001;	contra	only	vs.	ipsi	only:	0.926,	p<0.0001;	binocular	vs.	ipsi	only:	0.348,	
p<0.0001;	Wilk’s	lambda	test	p<0.0001,	N=8	mice).	V1	cells	of	CMD	mice	have	shorter	Mahalanobis	distances	
and	less	segregation	than	controls	(CMD	Summed	Mahalanobis	distance=	0.6813;	contra	only	vs.	binocular:	
0.243,	p<0.0001;	contra	only	vs.	ipsi	only:	0.396,	p<0.0001;	binocular	vs.	ipsi	only:	0.0423,	ns;	Wilk’s	lambda	
test	p<0.0001,	N=6	mice).	Middle:	In	LM,	No	MD	contralateral	only	responses	are	functionally	segregated	
from	other	eye-specific	responses	(No	MD:	Summed	Mahalanobis	Distance=0.310;	V1:	contra	only	vs.	
binocular:	0.156,	p<0.0001;	contra	only	vs.	ipsi	only:	0.1217,	p=0.0132;	binocular	vs.	ipsi	only:	0.0315,	
p=0.310,	ns;	Wilk’s	lambda	test	p<0.0001,	N=8	mice).	LM	cells	of	CMD	mice	have	shorter	Mahalanobis	
distances	and	less	segregation	than	controls	(CMD	Summed	Mahalanobis	distance=	0.228;	contra	only	vs.	
binocular:	0.140,	p=0.00057;	contra	only	vs.	ipsi	only:	0.079,	p=0.037,	ns;	binocular	vs.	ipsi	only:	0.008,	
p=0.713,	ns;	Wilk’s	lambda	test	p=0.0027,	N=6	mice).	Bottom:	In	PM,	No	MD	contralateral	only	responses	are	
functionally	segregated	from	binocular	neurons	(No	MD:	Summed	Mahalanobis	Distance=0.262;	V1:	contra	
only	vs.	binocular:	0.118,	p=0.0027;	contra	only	vs.	ipsi	only:	0.137,	p=0.0269,	ns;	binocular	vs.	ipsi	only:	
0.007,	p=0.847,	ns;	Wilk’s	lambda	test	p=0.0048,	N=8	mice).	The	functional	specializations	of	eye-specific	
responses	are	rearranged	in	PM	of	CMD	mice	(CMD	Summed	Mahalanobis	distance=	0.262;	contra	only	vs.	
binocular:	0.094,	p=0.132,	ns;	contra	only	vs.	ipsi	only:	0.357,	p=0.0081;	binocular	vs.	ipsi	only:	0.1002,	
p=0.271,	ns;	Wilk’s	lambda	test	p=0.0297,	N=6	mice).	
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4.3.4	Monocular	Deprivation	alters	eye-specific	speed	tuning	properties		

	 Visual	areas	of	mice	are	not	only	specialized	for	distinct	speeds,	but	also	have	

varying	degrees	for	speed	tuning,	or	the	dependence	of	temporal	frequency	preference	on	

spatial	frequency	(Andermann	et	al.,	2011).	Area	PM	has	been	demonstrated	to	have	a	

relatively	higher	degree	of	speed	tuning	than	area	V1.	We	assessed	if	CMD	had	an	affect	on	

the	overall	speed	tuning	of	areas	V1,	LM	and	PM	by	comparing	speed	tuning	indices	

obtained	from	the	fitted	data	(Figure	4.4a).	Speed	tuning	indices	of	1	are	speed-tuned	cells,	

while	speed	tuning	indices	of	0	have	no	speed	tuning.	The	distribution	for	speed	tuning	in	

V1,	although	slighted	shifted	to	the	left	with	CMD,	was	not	found	to	be	significantly	

different	between	the	groups.	However,	it	appears	that	there	may	be	less	speed-tuned	

neurons	in	V1	with	CMD	and	that	our	sample	size	could	have	affected	the	lack	of	difference	

in	the	distributions.	CMD	appeared	not	to	have	disrupted	the	degree	of	speed	tuning	in	LM	

and	PM.			

	 Since	speed	tuning	has	been	demonstrated	to	negatively	correlate	with	speed	

preferences	(Andermann	et	al.,	2011),	and	because	contralateral	eye-dominated	responses	

are	preferentially	tuned	to	higher	spatial	frequencies,	we	asked	if	there	was	an	eye-specific	

distinction	in	speed	tuning	NoMD	and	CMD	mice	(Figure	4.4b).	In	No	MD	mice,	in	areas	V1	

and	PM,	speed-tuning	indices	of	the	contralateral	eye	responses	were	significantly	more	

speed	tuned	than	ipsilateral	eye	responses.	Interestingly,	this	eye-specific	speed	tuning	is	

absent	in	CMD	mice.	In	CMD	mice,	both	areas	LM	and	PM	contain	eye-specific	speed	tuning.	

Since	CMD	resulted	in	a	shift	of	speed	preferences	in	V1	and	LM,	we	asked	if	speed	

preferences	for	speed-tuned	neurons	were	different	in	CMD	and	No	MD	mice.	We	find	that	

the	speed-tuned	neurons	of	PM	are	shifted	towards	slower	speeds	in	CMD	mice	(Figure	
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4.4c).	Our	results	suggest	that	CMD	during	the	critical	period	disrupts	eye-specific	speed	

tuning	in	V1	and	may	lead	to	shifted	speed	preferences	for	neurons	tuned	for	speed	in	area	

PM.		

 
Figure	4.4	Monocular	deprivation	effects	on	speed	tuning.	A.	Histograms	for	speed	tuning	indices	in	No	
MD	(black)	and	CMD	(light	blue)	for	all	cells	in	V1	(top,	median:	0.25,	mean:	0.28),	LM	(middle,	median:	0.34,	
mean:	0.41)	and	PM	(bottom,	median:	0.46,	mean:	0.49).	B.	Speed	tuning	indices	segregated	by	eye-specific	
responses	in	No	MD	(left	column)	and	CMD	(right	column)	mice	for	V1	(top),	LM	(middle)	and	PM	(bottom).	
Individual	points	on	the	graph	are	speed-tuning	indices	from	individual	cells.	Mean	and	SEM	are	plotted.	In	
No	MD	mice,	the	contralateral	eye	is	more	speed	tuned	than	the	ipsilateral	eye	in	both	V1	and	PM	(V1:	
contralateral	mean:	0.39,	median:	0.36,	n=35	neurons;	ipsilateral	mean:	0.053,	median:	0.085,	n=20	neurons,	
Welch’s	unpaired	t-test	p=0.0016,	r2=0.172;	PM:	contralateral	mean:	0.58,	median:	0.68,	n=36	neurons;	
ipsilateral	mean:	0.33,	median:	0.29,	n=24	neurons,	Kolmogorov-Smirnov	test	p=0.0187,	KS(D)=0.403;	LM:	
contralateral	mean:	0.48,	median:	0.31,	n=25	neurons;	ipsilateral	mean:	0.24,	median:	0.17,	n=29	neurons,	
Kolmogorov-Smirnov	test	p=0.118,	KS(D)=0.296).	In	CMD	mice,	eye-specific	tuning	for	speed	is	not	different	
in	V1	(contralateral	mean:	0.15,	median:	0.12,	n=16	neurons;	ipsilateral	mean:	0.13,	median:	0.18,	n=29	
neurons).	In	contrast,	in	CMD	mice,	both	LM	and	PM	responses	driven	by	the	contralateral	eye	are	more	
speed	tuned	than	those	driven	by	the	ipsilateral	eye	(LM:	contralateral	mean:	0.53,	median:	0.52,	n=22	
neurons;	ipsilateral	mean:	0.076,	median:	0.071,	n=25	neurons,	Kolmogorov-Smirnov	test	p<0.0001,	
KS(D)=0.658;	Mann-Whitney	test	p<0.0001;	mW(U)=84;	PM:	contralateral	mean:	0.69,	median:	0.67,	n=23	
neurons;	ipsilateral	mean:	0.30,	median:	0.24,	n=11	neurons,	Kolmogorov-Smirnov	test	p=0.118,	KS(D)=0.	
510;	Mann-Whitney	test	p=0.0064,	MW(U)=54).	C.	Cumulative	distributions	for	speed	preferences	of	cells	
that	are	tuned	for	speed	in	No	MD	(black)	and	CMD	(light	blue)	mice	are	shown	for	V1	(top),	LM	(middle)	and	
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PM	(bottom).	In	PM,	the	preferred	speeds	of	speed-tuned	neurons	are	significantly	shifted	towards	slower	
speeds	with	CMD	(No	MD	median:	28.9	deg/sec,	n=20	neurons;	CMD	median:	23.4	deg/sec,	n=17	neurons,	
p=0.0213,	KS(D)=0.497).		
	

4.4	Discussion		

Higher	visual	areas	have	distinct	spatiotemporal	tuning	properties	that	depend	upon	

binocular	visual	experience	in	early	life	

	 In	this	study	we	found	pronounced	effects	of	monocular	deprivation	during	the	

critical	period	on	the	functional	specialization	of	visual	areas.	CMD	shifted	speed	

preferences	differentially	in	V1	and	LM,	bringing	the	two	closer	together	in	the	

spatiotemporal	domain.	The	distribution	of	speed	preferences,	which	is	the	best	way	to	

segregate	higher	visual	areas	from	one	another,	became	nearly	identical	for	V1,	LM	and	PM	

with	CMD.	We	quantified	the	difference	between	inter-areal	clusters	in	the	spatiotemporal	

domain	with	the	Mahalanobis	distance	and	found	that	CMD	reduces	the	differences	

between	the	three	areas.	Overall,	there	is	a	reduction	in	the	differentiation	of	V1	and	HVAs	

in	mice	that	are	deprived	of	visual	input	through	the	contralateral	eye.		

	 It	has	been	shown	that	the	functional	specialization	of	HVAs	refines	over	the	course	

of	development	(Murakami	et	al.,	2017;	Smith	et	al.,	2017).	The	summed	Mahalanobis	

distances	for	HVAs	are	relatively	small	at	P20	and	adult-like	by	P25	(Murakami	et	al.,	

2017),	a	time	window	that	overlaps	with	the	ocular	dominance	critical	period.	Our	study	

demonstrates	that	CMD	during	this	time	window	can	dramatically	shift	spatiotemporal	

preferences	of	visual	areas	into	adulthood,	resulting	in	a	reduction	of	adult-like	areal	

segregation.	It	has	been	proposed	that	areas	of	the	putative	dorsal	stream	take	longer	to	

develop	than	areas	of	the	putative	ventral	stream	(Smith	et	al.,	2017).	Here,	we	show	that	

spatiotemporal	tuning	of	area	LM,	grouped	in	the	putative	ventral	stream,	was	altered	with	
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CMD,	while	the	selectivity	of	PM,	grouped	in	the	putative	dorsal	stream,	seemed	to	be	

unaffected.	Here,	areas	from	both	streams	appear	to	be	vulnerable	to	MD,	although	in	an	

eye-specific	dependent	manner.	The	difference	may	lie	in	the	type	of	manipulation	and	the	

measurement:	Smith	and	colleagues	dark	reared	mice	from	E14	to	P40	and	used	intrinsic	

signal	optical	imaging	to	compare	response	magnitude	to	visual	stimulation.		

Neurons	linked	by	eye-specificity	may	serve	as	an	efficient	routing	mechanism	from	

the	retina	to	functionally	specialized	HVAs	

	 We	have	found	an	asymmetry	in	the	eye-specific	tuning	for	spatial	frequency	in	V1	

of	mice,	whereby	cells	dominated	by	the	contralateral	eye	prefer	higher	spatial	frequencies	

than	binocular	and	ipsilateral	only	responses	(Salinas	et	al.,	2017).	In	normal	mice,	areas	

LM	and	PM	have	unique	proportions	of	eye-specific	responses	in	conjunction	with	

disparate	spatial	frequency	tuning:	LM	is	more	binocular	and	tuned	to	lower	spatial	

frequencies	while	PM	is	more	contralaterally-biased	and	is	tuned	to	higher	spatial	

frequencies.	Thus,	the	areal	distributions	parallel	the	eye-specific	functional	organization	

shown	in	V1.	Here,	we	asked	if	neurons	linked	by	eye-specificity	in	HVAs	are	functionally	

segregated,	as	in	V1,	and	if	this	segregation	is	experience-dependent.		

In	the	spatiotemporal	domain,	contralateral	only	responses	are	tuned	to	slower	

speeds	(low	temporal	frequency/	high	spatial	frequency),	binocular	cells	are	tuned	to	

intermediate	speeds	and	ipsilateral	only	cells	are	tuned	to	the	fastest	speeds	(high	

temporal	frequency/	low	spatial	frequency).	LM	and	PM	share	some	of	the	eye-specific	

functional	segregation	found	in	V1,	with	the	contralateral	only	cells	tuned	to	the	slowest	

speeds.	However,	the	distances	between	clusters	of	eye-specific	preferences	are	smaller	in	

LM	and	PM,	suggesting	that	convergence	of	functionally	specific	cells	may	lead	to	better	



123	
	

interocular	matching	of	features	in	downstream	areas	of	cortex.	CMD	disrupts	the	

functional	segregation	of	eye-specific	responses	most	pronouncedly	in	V1,	but	also	in	LM	

and	PM,	bringing	the	spatiotemporal	frequency	preferences	of	eye-specific	responses	

closer	together.		

Retinal	ganglion	cells	carry	distinct	channel	information	and	terminate	in	eye-

specific	zones	of	the	thalamus	and	superior	colliculus.	Subregions	of	the	dorsal	lateral	

geniculate	nucleus	house	functionally	distinct	cell	types,	which	project	to	distinct	layers	of	

cortex	(Krahe	et	al.,	2011).	For	example,	a	subset	of	highly	direction-selective	and	high	

spatial	frequency	tuned	cells	of	the	shell	region	projecting	to	superficial	layers	of	V1	(Cruz-

Martin	et	al.,	2014).	Thus,	the	functional	distinction	of	eye-specific	responses	in	V1	and	

HVAs	may	be	a	result	of	cell	type-specific	projections	from	subcortical	structures	that	

receive	input	from	the	retina	(reviewed	in	Seabrook	et	al.,	2017).	This	early	eye-specific	

functional	segregation	may	serve	as	an	efficient	routing	mechanism	for	organizing	the	

functional	architecture	of	V1	and	HVAs.		

The	mouse	visual	system	as	a	model	for	understanding	developmental	mechanisms	

of	higher	visual	area	processing		

	 CMD	led	to	a	reduction	in	the	functional	specialization	of	V1	and	HVAs,	but	it	did	not	

eliminate	speed	tuning	in	LM	and	PM.	However,	there	is	a	functional	specialization	of	eye-

specific	responses	for	speed	tuning,	with	neural	responses	to	the	contralateral	eye	carrying	

more	speed-tuned	information	than	the	responses	to	the	ipsilateral	eye.	This	eye-specific	

distinction	in	speed	tuning	suggests	that	a	subset	of	contralateral-dominated	neurons	may	

be	important	for	downstream	motion	processing.	This	agrees	with	our	previous	findings	of	

a	contralateral	bias	for	high	direction	selectivity	(Salinas	et	al.,	2017).	CMD	eliminated	the	
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eye-specific	speed	tuning	distinction	in	V1	and	exacerbated	it	in	LM.	While	the	eye-specific	

distinction	for	speed	tuning	was	not	disrupted	with	CMD	in	PM,	the	preferred	speeds	of	

speed-tuned	neurons	in	PM,	was	shifted	towards	slower	speeds.	These	findings	suggest	

that	CMD	causes	a	cascade	of	shifting	preferences,	impacting	the	tuning	of	cells	relevant	for	

motion	processing.			

	 In	primates,	visual	cortical	phase	maps	of	ocular	dominance,	spatial	frequency	and	

orientation	are	aligned	(Nauhaus	et	al.,	2017).	Multiple	studies	demonstrate	that	the	

functional	architecture	of	V1	is	repeated	in	HVAs	(Ts’o	et	al.,	2009;	Ghose	and	Ts’o,	1997;	

Ghose	and	Ts’o,	2017).	Here	we	provide	evidence	that	eye-specific	functional	specialization	

occurs	in	V1	and	HVAs	of	mice,	and	that	the	maintenance	of	this	organization	may	be	

required	for	proper	HVA	development.	This	finding	suggests	that	the	organization	of	

mouse	visual	cortex	is	fundamentally	similar	to	the	organization	of	primate	visual	cortex,	

even	without	columnar	organization.	The	collapse	of	HVA	selectivity	onto	one	another	in	

the	spatiotemporal	domain	with	CMD	could	be	indicative	that,	as	in	amblyopic	primates,	

monocular	deprivation	causes	disturbances	in	visual	processing	related	to	both	motion	

processing	and	form	detection	(Kozma	and	Kiorpes,	2003;	Kiorpes	et	al.,	2006;	Kiorpes,	

2006).	Our	study	provides	validation	in	studying	the	mouse	visual	system	to	understand	

how	MD	impacts	visual	processing	related	to	higher	order	feature	detection	and	to	reveal	

mechanisms	underlying	the	development	of	the	visual	system.	 	
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CHAPTER	5:	Discussion	

5.1:	Summary	
	

One	way	the	visual	cortex	has	tackled	visual	perception	is	by	creating	functionally	

organized	modules	with	neurons	that	prefer	similar	stimuli,	linking	them	and	stacking	

them	into	simultaneous	processing	stages.	This	repetition	allows	filtering	and	processing	of	

multiple	feature	dimensions	within	the	circuitry	to	complete	on-demand	tasks	

simultaneously	and	flexibly.	Spatiotemporal	filtering	is	one	of	the	earliest	stages	of	the	

process,	beginning	first	with	the	functionally	distinct	retinal	ganglion	cells	and	passed	on	to	

the	thalamus	and	visual	cortex.	The	parallel	channels	process	and	transform	distinct	

features	of	the	visual	scene	from	these	filters,	such	as	information	related	to	motion,	depth	

and	form,	into	two	proposed	streams	of	information	processing:	the	dorsal	and	the	ventral	

pathways	(Ungerleider	and	Mishkin	1982;	Maunsell	and	Newsome,	1987;	Goldman-Rakic,	

1988).		

Inherently	coupled	to	the	task	of	parallel	processing	is	the	eye-specific	organization	

arising	upon	the	mixing	of	inputs	from	the	two	eyes	in	later	stages	of	the	visual	system.	

Eye-specific	segregation	is	largely	maintained	in	the	thalamus	and	superior	colliculus.	

Inputs	from	the	two	eyes	first	converge	predominantly	in	primary	visual	cortex	(V1).	In	V1,	

at	least	in	mice,	neurons	vary	greatly	in	their	spatiotemporal	and	orientation	tuning	in	

what	largely	appears	to	be	a	random	“salt	and	pepper	fashion”,	although	weak	local	

clustering	exists	(Ohki	and	Reid	2007;	Ringach	et	al.,	2016).	Despite	this	apparent	

disorderliness,	hierarchically	higher	order	visual	areas	are	comprised	of	neurons	with	

unique	spatiotemporal	tuning	and	are	grouped	into	putative	dorsal	and	ventral	streams	

(Marshel	et	al.,	2011;	Andermann	et	al.,	2011;	Glickfeld	et	al.,	2013;	Wang	et	al.,	2012).	
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Electrophysiological	evidence	suggests	that	despite	its	broad	distribution	of	

spatiotemporal	tuning	(Niell	and	Stryker,	2008)	and	apparent	lack	of	obvious	functional	

domains	(but	see	Ji	et	al.,	2015),	V1	contains	distinct	channels	of	information,	which	differ	

substantially	in	their	tuning	for	spatial	frequency,	among	other	visual	properties	like	

contrast	sensitivity	and	temporal	frequency	(Gao	et	al.,	2010;	Ji	et	al.,	2015).		

One	possible	interpretation	of	how	higher	visual	areas	acquire	their	selectivity	is	

through	like-to-like	connectivity	from	V1,	such	that	the	cells	in	V1	which	share	the	

spatiotemporal	tuning	properties	of	a	higher	visual	area	make	synaptic	contacts	

preferentially	with	that	area.	There	is	evidence	that	such	target	specificity	exists	in	mice	

(Glickfeld	et	al.,	2013;	Matsui	and	Ohki,	2013).	However,	the	dependence	of	V1	activity	on	

the	functional	selectivity	of	HVAs	has	been	called	to	question.	Inactivating	adult	V1	does	

not	alter	spatiotemporal	tuning	of	HVAs	(although	inactivating	the	SC	seems	to	shift	

velocity	tuning	of	V1	and	HVAs,	Tohmi	et	al.,	2014).	Many	studies	have	demonstrated	that	

monocular	deprivation	(MD)	shifts	neural	preferences	towards	the	non-deprived	eye	and	

results	in	a	reduction	of	acuity	at	the	level	of	V1	(Prusky	and	Douglas	2003),	linking	a	shift	

in	eye-specific	responses	with	a	shift	in	spatial	frequency	tuning.	However,	there	is	an	

absence	of	understanding	how	early	visual	experience	shapes	higher	visual	area	

processing,	whose	activity	in	primates	is	thought	to	better	reflect	visual	percepts	(Kiorpes,	

2016).	In	the	case	of	MD,	when	interocular	inputs	have	been	disrupted	and	there	is	a	loss	of	

high	spatial	frequency	tuning	in	V1,	what	might	be	the	effects	on	higher	visual	area	

selectivity,	if	any?		

We	first	sought	to	understand	if	eye-specificity	is	linked	to	spatial	frequency	tuning	

at	the	level	of	binocular	V1	to	determine	if	eye-specificity	may	be	involved	in	carrying	
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distinct	channels	of	information	related	to	preferred	spatial	frequency.	We	imaged	visually	

evoked	activity	from	thousands	of	excitatory	neurons	in	L2/3	of	transgenic	mice	

expressing	the	genetically	encoded	calcium	indicator	GCaMP6s.	We	found	an	asymmetry	in	

the	tuning	for	spatial	frequency	between	the	contralateral	and	ipsilateral	eye,	such	that	

neurons	dominated	by	the	contralateral	eye	were	tuned	to	the	highest	spatial	frequencies	

and	were	prominently	direction	selective,	while	binocular	and	ipsilateral	responses	were	

tuned	to	lower	spatial	frequencies	(Salinas	et	al.,	2017).	Cells	preferring	high	spatial	

frequencies	were	tuned	to	the	cardinal	directions	(0,90,270,180o).	Cardinal	direction	

selectivity	is	a	known	feature	of	higher	visual	area	PM	(Roth	et	al.,	2012),	who	has	been	

postulated	to	play	a	role	in	spatial	navigation,	projecting	to	retrosplenial	cortex.	These	

asymmetries	in	V1	appear	to	link	eye-specificity	with	spatial	frequency,	a	now	known	

feature	of	primate	V1	(Nauhaus	et	al.,	2016),	and	a	potential	explanation	for	a	shift	in	

spatial	frequency	tuning	after	depriving	an	eye	during	the	ocular	dominance	critical	period.	

We	hypothesized	that	the	asymmetries	found	at	the	level	of	V1	may	be	repeated	in	higher	

visual	areas	(HVAs)	of	cortex,	as	has	been	demonstrated	with	the	functional	organization	of	

feature	maps	in	primates	(Ts’o	et	al.,	2009;	Ghose	and	Ts’o,	1997;	Ghose	and	Ts’o,	2017).		

We	assessed	if	these	eye-specific	tuning	biases	were	present	in	two	higher	visual	

areas	grouped	into	the	putative	ventral	and	dorsal	streams:	areas	LM	and	PM.	We	

characterized	tuning	properties	for	early	stimulus	features	(spatial	frequency,	temporal	

frequency,	orientation	and	direction)	and	found	motifs	between	the	three	areas,	which	

substantiated	our	hypothesis,	that	eye-specific	response	properties	in	V1	are	repeated	in	

higher	visual	areas,	potentially	linking	distinct	processing	channels.	Contralateral	eye	

dominated	responses	were	always	tuned	to	the	highest	spatial	frequencies	of	a	given	area.	
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The	eye-specific	bias	from	the	population	ODI	reflected	each	area’s	unique	spatial	

frequency	tuning	properties.	We	also	found	the	same	ocular	distinction	for	direction	and	

orientation	tuning	in	all	areas.	The	binocular	cells	were	more	selective	for	orientation	while	

cells	dominated	by	one	eye	were	more	direction	selective.	Moreover,	area	PM	was	biased	to	

the	cardinal	directions,	similar	to	the	contralateral	dominated	neurons	of	V1,	while	LM	

preferred	intercardinal	directions	just	as	much	as	cardinal	directions.	Next,	we	show	that	

information	regarding	eye-specificity	and	spatial	frequency	is	carried	from	V1	to	higher	

visual	areas	LM	and	PM	by	recording	from	V1	afferents	in	LM	and	PM.	Despite	the	

difference	in	eye-specific	tuning	for	spatial	frequency	found	in	LM	and	PM,	these	HVAs	

were	better	matched	in	interocular	preferences	for	spatial	frequency	and	orientation,	

suggesting	that	convergence	of	inputs	results	in	better	alignment	between	the	two	eyes	

downstream	from	V1.	Indeed,	when	we	assessed	the	eye-specific	spatial	frequency	tuning	

of	V1	afferents	to	LM	and	PM	we	detected	a	difference	in	eye-specific	spatial	frequency	

tuning	in	V1	afferents	to	LM,	but	not	PM.		

	 The	functional	motifs	we	find	in	V1,	LM	and	PM,	and	the	eye-specific	afferents	from	

V1	to	LM	and	PM	could	be	an	indication	that	neurons	linked	by	eye-specificity	are	

functional	channels	that	endow	higher	visual	areas	their	specialization.	This	finding	does	

not	depend	on	the	classical	hierarchical	cortical	model	(i.e.	that	V1	output	is	required	for	

HVA	specialization)	being	true	for	mice,	since	eye-specificity	from	subcortical	structures	

that	project	to	both	V1	and	HVAs	could	be	responsible.	For	example,	besides	the	central	

visual	pathway	(retina->dLGN->V1->HVAs),	there	is	also	the	extrageniculate	pathway	

(retina->SC->LP->HVAs)	as	well	as	a	minor	indirect	route	from	the	superior	colliculus	to	

the	dLGN	and	both	V1	and	HVAs	(Tohmi	et	al,	2014).	Eye-specific	inputs	remain	largely	
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segregated	in	the	dLGN,	but	binocularity	does	exist	(Huh	et	al.,	2018;	Zeater	et	al.,	2015).	In	

primates,	there	is	binocularity	in	the	SC	(Economides	et	al.,	2018).	Thus,	it	is	not	impossible	

that	eye-specific	routing	from	subcortical	structures	could	participate	in	HVA	selectivity.		

Because	speed	has	been	shown	to	better	segregate	the	functional	selectivity	of	

HVAs,	we	assessed	eye-specific	spatiotemporal	tuning	in	V1,	LM	and	PM.	Eye-specific	

responses	are	functionally	segregated	in	V1	and	appear	to	become	less	segregated	in	a	

hierarchical	fashion.	The	contralateral	eye	responses	were	also	much	more	speed	tuned	

than	the	ipsilateral	eye	responses.	Thus,	neurons	linked	by	eye-specificity	prefer	distinct	

features	in	terms	of	spatiotemporal	frequency,	orientation	and	direction	in	V1	and	higher	

visual	areas	of	mouse	visual	cortex.	Moreover,	the	eye-specific	responses	may	be	carrying	

information	related	to	distinct	stream	processing:	the	contralateral	dominated	neurons	are	

more	tuned	for	speed,	direction	selective	and	prefer	higher	spatial	frequencies.	The	

binocular	neurons	are	tuned	for	orientation	and	intermediate	speeds	while	the	ipsilateral	

only	responses	are	tuned	for	faster	speeds.		

We	then	perturbed	binocular	visual	processing	during	the	ocular	dominance	critical	

period	via	two	weeks	of	monocular	deprivation	through	the	contralateral	eye	and	assessed	

eye-specific	spatiotemporal	tuning	in	V1,	LM	and	PM.	We	find	that	monocular	deprivation	

through	either	the	contralateral	eye	results	in	a	de-differentiation	of	higher	visual	areas,	

such	that	the	spatiotemporal	tuning	of	V1,	LM	and	PM	become	more	similar.	Monocular	

deprivation	also	disrupted	the	eye-specific	functional	segregation	of	visual	cortex	found	in	

normally	reared	mice.	While	the	degree	of	speed	tuning	was	not	eliminated	with	CMD,	it	

was	impacted	in	area	PM,	an	area	much	more	speed	tuned	than	V1.	Altogether	our	data	

demonstrates	that	the	maturation	of	higher	visual	areas	is	dependent	on	proper	binocular	
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visual	experience	and	suggests	that	the	functional	specialization	of	eye-specific	responses	

could	be	an	efficient	routing	mechanism	to	differentiate	higher	visual	areas.		

	

5.2:	Limitations	

	 Using	two-photon	calcium	imaging	in	awake	mice,	we	were	able	to	record	from	

thousands	of	neurons	in	layer	2/3	of	visual	cortex	as	mice	transiently	viewed	visual	stimuli	

through	each	eye.		To	accomplish	these	experiments	we	took	advantage	of	a	transgenic	

mouse	model,	which	expresses	the	genetically	encoded	calcium	indicator,	GCaMP6s,	in	all	

excitatory	neurons.	While	GCaMPs	have	improved	substantially	since	they	were	first	

introduced	(Chen	et	al.,	2013)	and	have	been	demonstrated	to	detect	single	action	

potentials	in	soma	and	even	dendritic	spines,	calcium	imaging	is	still	a	correlate	of	neural	

activity.	One	limitation	of	our	experiments	is	thus	inferring	neural	activity	from	these	

calcium	transients.	Because	the	field	is	heavily	based	on	classical	electrophysiological	

experiments,	it	is	important	to	point	out	that	there	are	some	discrepancies	between	our	

reports	on	the	prevalence	of	eye-specific	responses	and	the	literature	using	

electrophysiological	measurements.	For	instance,	we	report	far	more	contralateral	

dominated	and	ipsilateral	dominated	neurons	in	binocular	V1	than	previously	described	

(Dräger,	1975;	Mrsic-Flogel	et	al.,	2007;	Gordon	and	Stryker,	1996).	While	some	of	the	

discrepancies	may	be	due	to	choice	of	stimulus	conditions	(using	only	lower	spatial	

frequencies	will	help	balance	out	the	percent	contralateral	and	ipsilateral	responsive	

neurons,	since	both	have	preferences	for	low	SFs),	it	is	also	possible	that	the	difference	lies	

in	the	technique.	Studies	using	calcium	indicators	also	report	higher	prevalence	of	

contralateral	dominated	neurons	(Scholl	et	al.,	2017).	It	could	be	that	the	difference	in	
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assessing	“baseline”	activity	using	calcium	imaging	is	inherently	different	than	in	

electrophysiology,	allowing	us	to	isolate	cell	responses	that	electrophysiological	recordings	

cannot.	The	fact	that	the	binocular	neurons’	response	amplitudes	are	greater	than	the	

contralateral	or	ipsilateral-dominated	neurons	substantiates	this.	It	is	also	possible	that,	

since	we	are	able	to	record	from	hundreds	of	cells	at	a	time,	that	our	sampling	size	is	far	

larger	and	less	susceptible	to	bias	from	searching	for	visually	responsive	cells.	On	the	other	

hand,	it	could	be	that	calcium	imaging	is	unable	to	detect	very	weak	responses,	missing	the	

non-dominant	eye	input	to	cells	that	we	identify	to	be	monocular.	We	were	able	to	

determine	that	contralateral	eye	responses	were	tuned	to	higher	spatial	frequencies	than	

ipsilateral	eye	responses	using	electrophysiological	techniques	(unpublished	data),	but	we	

were	unable	to	confirm	the	ODI	distributions	using	electrophysiological	methods.	Due	to	

the	rise	and	fall	time	of	the	indicator,	it	was	also	impossible	to	determine	if	the	eye-specific	

responses	related	to	complex	or	simple	cells,	which	would	have	been	informative	for	the	

interpretation	of	the	study.		

	 There	have	been	reports	that	locomotion	can	alter	visual	tuning	properties	in	mouse	

visual	cortex	(Niell	and	Stryker	2010;	Mineault	et	al.,	2016).	One	limitation	of	our	study	is	

we	did	not	measure	locomotion	or	relate	it	to	the	tuning	of	V1	and	HVAs.	However,	we	

measured	pupil	dilation	as	a	correlate	for	behavioral	state,	in	contralateral	and	ipsilateral	

eye	viewing	sessions	to	be	sure	that	there	were	not	behavioral	state	changes	potentially	

causing	the	differences	in	eye-specific	spatial	frequency	tuning.	This	was	substantiated	by	

similar	eye-specific	spatial	frequency	tuning	preferences	from	animals	that	were	

anesthetized.	Moreover,	it	has	been	demonstrated	that	peak	speed	preferences	are	not	

different	when	the	animal	is	stationary	vs.	when	the	animal	is	moving	for	V1,	PM	and	
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another	higher	visual	area,	RL	(Andermann	et	al.,	2011).	Still,	it	would	be	interesting	to	

know	if	locomotion	has	any	differential	effect	on	eye-specific	responses,	especially	since	

the	contralateral	eye	dominated	neurons	are	linked	to	early	features	important	for	motion	

detection.		Moreover,	all	higher	visual	areas	receive	direct	input	from	LP,	which	itself	

received	input	from	the	superior	colliculus	of	the	extrageniculate	pathway.	This	pathway	

may	provide	context	and	modulate	visual	processing	related	to	motion	(Dean	and	

Redgrave,	1984b;	Roth	et	al.,	2016).			

	 Our	recordings	were	restricted	to	layer	2/3	of	the	cortex.	While	this	is	the	

predominantly	feedforward	layer	in	primates,	mice	exhibit	even	less	of	the	strict	laminar	

segregation	of	primates,	and	layer	4	in	mice	is	also	a	feedforward	layer.	It	would	be	

informative	to	know	if	cells	of	layer	4	also	exhibit	the	same	eye-specific	response	

properties	of	cells	in	layer	2/3.	This	could	help	with	the	interpretation,	since	layer	4	is	the	

predominant	layer	receiving	input	from	the	dLGN,	while	superficial	layers	(including	layer	

2/3)	receive	input	from	the	LP.	If	no	such	eye-specific	functional	organization	could	be	

found	in	layer	4,	it	might	hint	that	the	inputs	are	coming	from	the	LP.	However,	to	aid	in	

this	limitation,	other	work	in	our	lab	has	demonstrated	that	inputs	from	the	dLGN	carry	

functionally	segregated	eye-specific	responses,	at	least	in	terms	of	spatial	frequency	tuning	

to	V1	(Huh	et	al.,	2018).		Thus,	our	findings	may	not	just	be	a	consequence	of	the	mouse	

visual	system	being	heavily	influenced	by	superior	colliculus	activity,	but	may	be	applicable	

to	understanding	hierarchical	primate	vision.		

	 We	have	found	interesting	effects	on	the	spatiotemporal	tuning	of	HVAS	with	CMD.	

While	these	experiments	are	useful	for	understanding	the	transformations	that	take	place	

from	V1	to	higher	visual	areas,	they	do	not	add	to	our	understanding	of	what	higher	visual	
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areas	of	mice	do.	While	inferences	can	be	made	based	on	preferences	for	early	feature	

detectors,	we	are	still	limited	in	what	we	can	say	about	mouse	higher	visual	area	

processing	due	to	the	fact	that	we	really	don’t	know	what	many	of	the	areas	do	or	have	

clearly	define	homologs	for	primate	visual	areas.	The	lack	of	an	understanding	of	HVA	

function	and	visual	processing	tasks	catered	towards	mice	make	it	difficult	to	relate	our	

findings	to	those	of	primates.	Still,	our	studies	demonstrate	that,	at	the	cellular	level,	the	

mouse	visual	system	is	fundamentally	similar	to	primates	and	warrants	further	exploration	

on	the	function	of	mouse	HVAs.		

5.3:	Recommendations	for	Future	Work		

	 There	are	many	implications	for	our	findings	that	eye-specific	responses	are	tuned	

to	unique	speeds	and	that	monocular	deprivation	during	the	ocular	dominance	critical	

period	disrupts	the	differentiation	of	higher	visual	areas.	It	may	be	that	MD	impairs	higher	

order	visual	processing	for	complex	features,	such	as	global	form	or	motion	processing.	

Future	studies	linking	eye-specific	responses	to	the	detection	of	higher	visual	processing	

tasks	would	make	the	findings	more	compelling	and	suggest	that	the	mouse	could	serve	as	

a	useful	model	for	understanding	mechanisms	of	amblyopia.	The	experiment	on	tuning	for	

plaids	vs.	gratings	would	be	a	great	experiment	to	do	under	each	eye	viewing	condition,	to	

see	if	the	eye-specific	responses	are	distinctly	important	for	stream	processing.		

	 We	were	able	to	characterize	eye-specific	V1	afferents	to	LM	and	PM,	but	we	did	not	

do	so	in	mice	that	were	visually	deprived.	It	would	be	interesting	to	know	if	the	eye-specific	

routing	of	information	from	V1	to	HVAs	is	perturbed	in	CMD.	Does	V1	start	to	send	higher	

spatial	frequency	tuned	information	to	LM?	It	would	also	be	beneficial	to	know	if	V1	

activity,	during	the	time	of	deprivation,	is	important	for	the	functional	segregation	of	HVAs.	
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Are	V1	and	the	HVAs	all	receiving	functionally	segregated	eye-specific	information	from	

subcortical	structures	or	are	the	HVAs	dependent	on	V1	activity	to	develop,	as	would	be	

expected	if	the	cortex	develops	hierarchically.		
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