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Abstract. Nonlinear transfer processes between large-scale edge flows and the
ambient broadband fluctuations have been shown to play a significant role in the
dynamics of edge turbulence, including spreading power from coherent modes and
suppressing turbulence at the formation of edge transport barriers. In order to
predict thresholds of confinement regimes, both the transition dynamics and the
parametric dependence of the nonlinear energy transfer must be studied. Since
the expected flow damping terms depend on ion collision rates and local safety
factor, recent experiments aimed also to explore the nonlinear drive at various
values of the plasma current, density and amount of auxiliary heating. Nonlinear
interactions between zonal flows and turbulence in L-mode are estimated using
bispectral as well as time-resolved methods based on gas-puff-imaging in Alcator
C-Mod[1].
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1. Introduction

Through the past decade, a considerable amount of effort has been put toward
both experimental studies[2, 3, 4, 5, 6, 7, 8, 9, 10] and modeling[11, 12, 13, 14] of
nonlinear transfer mechanisms in magnetically confined plasmas. Most of the resulting
works have concentrated on the three-wave coupling mediated spectral transfer of
density, energy and vorticity fluctuations. Of these mechanisms, the development and
evolution of flow structures on a large spatial scale occupies a special place due to its
significant influence on macroscale dynamics, and thus on heat and mass transport
across the magnetic field.

The most striking change of these transport processes is no doubt the rapid change
from the low- to the high-confinement plasma state[15], or L-H transition. The recent
literature of the field has shown an increasing interest in developing a physics based,
quantitative model to predict the threshold level of plasma heating power at which
the transition occurs for any set of operating parameters. The task is composed of
two parts. On the one hand, one needs to understand the microscopic physics of the
direct trigger to the transition. However, to predict the L-H transition threshold,
it is also necessary to understand the evolution of turbulence nonlinearities in low-
confinement (L-mode) plasmas as they approach the transition. Of particular interest
is the dependence of these nonlinearities on the amount of cross-field heat flux, which in
turn is directly influenced by the auxiliary heating power, plasma current and plasma
density.

Recent research has demonstrated the microphysics which leads directly to the
L-H transition, both experimentally and in models, as the depletion of turbulence
power via nonlinear kinetic energy transfer to zonal flows (ZF). A critical level of
transient nonlinearity was determined, and a detailed quantitative comparison of both
turbulence suppression and the Reynolds stress mediated nonlinear transfer showed the
latter to be more than sufficient to account for the former. While the result established
the significance of nonlinear transfer as a turbulence suppression mechanism, the large
margin (up to a factor of 50 in some cases) by which transfer exceeded turbulence loss
clearly calls for further investigation. The present contribution aims to underpin this
argument by resolving the observed discrepancy as far as experimentally possible.

In terms of the parametric dependences of turbulence, progress has been largely
experimental. The most relevant result to date[5] addressed the physics of turbulence-
ZF interaction in strongly heated L-mode plasmas in a relatively tenuous, limited
tokamak plasma without magnetic shaping. In particular, it showed a competition
between low-frequency zonal flows [16] and geodesic-acoustic modes (GAM) [17] for
the free energy of turbulence, as well as a monotonically increasing trend in the ZF
branch against applied heating power. A similar analysis in a strongly shaped plasma
with a more reactor relevant design, fine density control and tests of trends against
other operating parameters is an absolute necessity for connecting L-mode plasma
physics to a more general threshold prediction.

This paper reports the first direct measurements of nonlinear kinetic energy
transfer rates in the edge plasma of a high performance, diverted tokamak operating
in L-mode. Since in plasmas whose poloidal cross sections exhibit an X-point, the
direction of the ∇B ×B has been known to affect the threshold on auxiliary heating
power necessary for accessing high confinement regimes, this represents a crucial
step in understanding the route to confinement transitions. Bispectral estimates are
presented from several experiments, exploring the dependence of nonlinear energy
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transfer on heating power and plasma current, and its effect on the H-mode threshold.
The paper also expands on recent results on the L-H transition dynamics by
presenting the first completely radially resolved quantitative comparison of turbulence
suppression to the nonlinear transfer of kinetic energy.

The paper is organized as follows. Experimental setup and conditions are
explained in Section 2. The basic equations which motivate the time-resolved analysis
methods are reiterated in Section 3, and the results of this analysis are shown
demonstrating the sequence of the L-H transition. Once the onset criteria are
established, Section 4 addresses the parametric dependence of the nonlinear energy
transfer whose critical value represents the physical threshold in L-mode.

2. Experimental setup

All the experiments reported in this paper were performed on the Alcator C-Mod
tokamak[1], a compact (R0 = 0.68m, a ≃ 0.21m) toroidal device with a high magnetic
field (up to Bφ ≤ 8T, with a typical Bφ = 5.4T). The next sections discuss two
types of experiments. Plasmas discussed in Section 3, exhibiting a fully realized L-
H transition, were produced with currents of Ip = 0.8 − 1.0MA and magnetic field
geometries in an H-mode “favorable” ∇B × B direction (i.e. towards the active
X-point). L-mode plasmas, shown in Section 4, were produced with currents of
Ip = 0.8 − 1.2MA and an H-mode “unfavorable” geometry (i.e. drift away from
the active X-point), in lower single null (LSN) geometries. The additional heating
that is required for the eventual formation of the temperature pedestal is provided by
ion-cyclotron resonance heating (ICRH) with a maximum coupled power of 2.1MW
for these experiments.

The immediate trigger of the L-H transition was determined by focusing on the
few millisecond time interval just before and after the transition. Two-dimensional
fluctuation data was acquired via gas-puff-imaging (GPI)[18] on the low-field-side
midplane of the device. A poloidal section of Alcator C-Mod is shown in Figure 1
with the outboard GPI views overlaid. GPI records fluctuations of the intensity of
light emitted by a locally introduced diagnostic neutral gas.

The diagnostic gas puff enters from a nozzle mounted in the limiter, 2.54 cm
below the height of the magnetic axis. The GPI viewing array covers a two-
dimensional area of considerable size at this location, extending both into the region
of closed flux surfaces and into that of open field lines. The viewing area is
3.5 cm(radial) × 3.9 cm (vertical), with an in-focus spot size of 3.8mm for each of
the 9 × 10 individual channels. All views are coupled to avalanche photodiodes
(APD) sampled at 2MHz. In order to enhance the gas-puff-enhanced-to-background
brightness ratio, we used He puffs into D plasmas, therefore the recorded intensities
are band-pass filtered for the HeI (33D → 23P ), λ = 587.6 nm line. Velocimetry is
based on time-delay-estimation (TDE) optimized for the fast 2D APD array[19]. The
method, presented in more detail in [10], yields edge plasma velocities at a fast time
resolution (∼ 10µs) with an effective Nyquist frequency of 50 kHz.

3. The L-H transition

Recent experiments performed on Alcator C-Mod[10] have demonstrated the sequence
of events directly triggering the L-H transition. Results show that the suppression
of turbulence takes place as a lossless nonlinear transfer of kinetic energy from the
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Figure 1. (color online) Configuration of the GPI viewing array (blue square)
in a poloidal cross section view with a representative lower single null (LSN)
magnetic equilibrium. The solid (red) D-shape curve represents the last closed
flux surface (LCFS). The 10 vertical chords of the FTCI are overlaid in blue with
the chord whose signals plotted in Figure 2(d) in cyan. Measurement locations of
Thomson scattering (solid purple circle) and ECE grating polychromators (GPC,
black) are also displayed.

turbulence into radially localized, large spatial scale, slowly evolving components
of the velocity fluctuation spectrum, commonly known as zonal flows. Detailed
quantitative analysis showed that the normalized amount of kinetic energy converted
was consistently quite substantially (up to ×50) larger than the observed reduction in
turbulence power, albeit with large error bars on both quantities. While this result
is not inconsistent with the nonlinear transfer playing the key role in turbulence
suppression, resolving the discrepancy between the above central quantities of the
transition is important for making a strong argument.

Here we will briefly recall the analysis method used in demonstrating the above
result and the set of equations it is based on, which highlight the connection to the
now well-known predator–prey model of edge turbulence[14]. The rest of the section
concentrates on refining the quantitative comparison methods involved in evaluating
the turbulence nonlinearity.

Starting from the poloidal component of incompressible fluid equations and
performing a Reynolds decomposition, a few well-founded assumptions lead to a simple
form of the predator–prey model as

∂tK̃ = γeffK̃ − P − ∂rT̃ (1a)

∂tK̄ = P − ∂rT̄ − νLFK̄ (1b)



Nonlinear transfer in heated L-mode 5

where we introduced the notations

P = 〈ṽr ṽθ〉∂r〈vθ〉;

K̃ =
1

2
〈ṽ2⊥〉, T̃ =

1

2
〈ṽr ṽ

2

θ〉

K̄ =
1

2
〈vθ〉

2, T̄ = 〈ṽr ṽθ〉〈vθ〉,

similarly to the analysis presented in [7, 11, 20, 21, 22]. The mean in the definition
of the Reynolds stress can be understood as either temporal or spatial averaging.
Since the paper is focused on slowly evolving zonal flows, 〈.〉 will represent both a
time averaging and a poloidal averaging of the available spatio-temporal data. As in
Ref. [22], we refer to P as the zonal flow production term, and note that P − ∂rT̄
represents the Reynolds work, while the total loss of local turbulent kinetic energy
due to nonlinearity is P + ∂rT̃ , where ∂rT̃ is turbulence spreading. By balancing the
terms on the RHS of (1a), one obtains the condition for the onset of rapid turbulence
suppression:

RT ≡
P + ∂rT̃

γeffK̃
> 1 (2)

meaning that there is enough energy transfer into the zonal flow to overcome the
turbulence drive. Here we introduced the dimensionless production parameter,
denoted as RT , in order to match the convention of recent publications [23] The
dynamic variables in this condition are directly measured, while the effective growth
rate of the turbulence is estimated from (1a) itself using data obtained in regular,

time-stationary L-mode as γeff =
[

(P + ∂rT̃ )/K̃
]

.

Figure 2 shows the evolution of a typical L-H transition in Alcator C-Mod at
the location of maximal nonlinear transfer, rLCFS − r = 0.7 cm inside the separatrix.
The time history of the normalized production parameter RT is highlighted at the top
of the figure. The turbulent kinetic energy K̃ changes are consistent with previous
observations. As shown in reported experiments, turbulence suppression occurs when
RT surpasses the threshold, marked by the blue dashed line in the graph. This trigger
often follows a short transient increase in turbulence, Figure 2(b), which then leads to
a stronger zonal flow drive, which in turn pushes the plasma over the threshold. The
fastest acceleration in the zonal flow, Figure 2(c), occurs very near the time when RT

peaks, and as expected, when turbulence power decreases most rapidly too. The first
1ms of the increasing trend in line integrated density has been shown to correspond
to the formation of the pedestal, which takes place just as the turbulence reaches its
lowest amplitude, marked by the orange dashed line in Figure 2(d). As the zonal
flow is nonlinearly driven by the turbulence, when turbulence is suppressed, the flow
is damped out through collisional effects. If, as in Figure 2(e), the pressure gradient
grows sufficiently strong during this time, the turbulent transport stays weak due to
the well-known pressure gradient induced radial electric field shear.

Given the short time span of the excursion in RT , the total transferred power
was previously estimated from RT and compared to the loss of turbulence as a
consistency check, that is, to confirm the nonlinear interaction as the primary cause
of the transition. For this quantitative test, we note that γeff is not expected to vary
until the edge gradients are significantly increased in the transition. Thus the test
was formulated from the model equation as comparing the two dimensionless integrals

ln
(

K̃L/K̃m

)

to
∫ tm
t0

(RT − 1)γeff dt, with K̃m = K̃(tm) is the amount of turbulence
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Figure 2. Complete sequence of the L-H transition; a) nonlinear kinetic energy
transfer normalized to estimated rate of growth RT , b) turbulent kinetic energy,
c) E × B drift at the same location, estimated from GPI, TS and ECE, d) line-
integrated electron density as measured by FTCI, d) evolution of the total electron
pressure gradient at the location of turbulence suppression.

at the time the positive burst in RT is over, while t0 denotes a time before the
transition when the average level of turbulence is equal to the L-mode value preceding
the transition.

While that comparison is mathematically correct and its relationship to RT

is clearly intuitive, it is not optimal from an experimental point of view for the
following reason. All forms of velocimetry carry a significant level of systematic
error, which carries through, and in fact increases in, the estimation of turbulent
velocities. Accordingly, very small turbulent velocity fluctuations can be completely
overwhelmed by fluctuations of systematic errors, leading to a gross underestimation of
the turbulence suppression ratio K̃L/K̃min, as instead of the true K̃min, the ratio would
feature the error level δK̃. Therefore, a more reasonable estimate can be achieved by
a more direct approach, that is, integrating against time the total amount of transfer,
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Figure 3. (color online) Radial profiles of key quantities in the L-H transition;
a) total turbulent kinetic energy K̃, and b) total kinetic energy transfer P + ∂r T̃ ;
in L-mode (black) and during the L-H transition (red).

instead of RT , and compare

Itr ≡

tmin
∫

tmax

P + ∂rT̃ − γeffK̃ dt (3)

to

−

tmin
∫

tmax

∂tK̃ dt = ∆K̃; (4)

where tmin and tmax stand for the time instances when the turbulent kinetic energy
is minimal and maximal (L-mode level) in the transition, respectively, and ∆K̃ =
K̃(tmax) − K̃(tmin) is the absolute loss of turbulent kinetic energy. This correction,
due to the lack of division by K̃, is bound to bring the compared linear and nonlinear
quantities to a better agreement, as much of the systematic noise can be effectively
eliminated.

For the complete consistency of the argument, one further point must be
considered. The turbulent kinetic energy, measured using time-delay estimated (TDE)
phase velocities of emission features in GPI, is plotted against radial position in
Figure 3(a). The graph shows a high level of fluctuation in the edge, becoming smaller
in the near scrape-off-layer (SOL), i.e. the open field line region, in which single
coherent filaments take over. The comparison between the radial extent of this highly
spatially coherent turbulence and that of the production term P in Figure 3(b) is
striking. Unsurprisingly, turbulence in its entire radial correlation length is suppressed
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Figure 4. Observed loss of kinetic energy over the entire edge region against the
total amount of nonlinear transfer into the zonal flow.

in the initial phase of the transition. At the same time, however, the overwhelming
majority of transient zonal flow production occurs in a relatively narrow radial region.
Consequently, a quantitative analysis of the total spectrally transferred kinetic energy
must consider the full radial extent of the turbulence.

Datasets were therefore restricted to the shots which included at least one
correlation length depth of the edge turbulence radially for Figure 4, which shows
the total nonlinear transfer in excess of the L-mode level against the observed change
of turbulence power. Thus, the diamonds in the figure correspond to P + ∂rT̃ − γeffK̃
integrated radially over the edge and with respect to time between tmax and tmin. As
such, the analysis whose result is plotted in the graph addresses all three concerns
mentioned above, namely: a) the mismatch between the radial regions of energy
transfer and turbulence reduction, b) the underestimation of turbulence reduction due
to small fluctuations becoming comparable to or smaller than systematic noise, and c)
the limits of integration being restricted to the shortest interval in which turbulence
changes are significant.

As can be observed from Figure 4, the total amount of kinetic energy estimated
to be transferred from the broadband turbulence to the low frequency flows is
still larger than the observed loss of turbulence. The dashed line in the figure
represents

∫

Itrdr =
∫

∆K̃dr, while the thick solid line is a best fit with a tangent of
∫

Itrdr/
∫

∆K̃dr = 3.5; which is a substantial improvement over the discrepancy (up
to a factor of ∼ 50) the new analysis intended to address. The contributions which
the three listed changes to the method of comparison make to this improvement are
explained in further detail in the Appendix.

These results strongly corroborate the argument that the lossless nonlinear kinetic
energy transfer mechanism is largely responsible for the initial reduction of edge
turbulence amplitude, which is thought to lead to the L-H transition. Hence we turn
our attention to the path leading to the transition, i.e. to the parametric dependences
of nonlinear transfer.
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4. Nonlinear transfer in L-mode

As pointed out in the introduction, the ultimate goal of the experiments reported
here and similar studies of nonlinear processes in the edge plasma turbulence has been
the physically based prediction of the L-H transition threshold. Having reasonably
established its direct trigger, i.e. the immediate threshold condition with edge flows,
one needs to investigate the way plasmas reach this condition. As there are currently
no tested models for the parametric dependence of the nonlinear transfer processes in
the plasmas leading up to the transition itself, experimental studies are the primary
tools at the physicist’s disposal. These experiments must, naturally, be conducted in
L-mode, with a relatively cold edge, which is thus collisional and which nevertheless
has strong turbulence.

It is known that seed Er shear naturally exists without external heating, and
this shear has been demonstrated to increase with heating power. Nonlinearity is
expected to follow this trend. In addition, there are a few key macroscale operating
parameters – such as plasma density and current, magnetic topology, etc – which are
known to have an effect on the transition threshold. Previous studies of nonlinear
transfer processes in the edge have shown a difference between the behavior of ZF
and GAM.[5] Therefore the L-mode experiments of this section were all performed in
the H-mode-unfavorable geometry, since GAM activity is more likely to occur in this
setup in Alcator C-Mod[19].

The spectral transfer of fluctuation power is commonly studied in a time averaged
sense using cross-bispectral techniques. [3, 5, 13, 24, 25, 26] The transition itself
does not have to be achieved or even closely approached in this case, which allows
experiments to run in stationary L-mode over a time interval long enough for the
measurements of third order spectra. The three-wave coupling terms of primary
interest arise from the same convective nonlinearities which stood in the focus of
the previous section, and take the form q (v · ∇q), with a Fourier decomposition

Tq(f, f1) = −Re(〈q̃∗(f) ṽi(f − f1) ∂iq̃(f1)〉) (5)

for the convective part in the time derivative of |q|2, where z∗ is the complex conjugate
of the complex number z, and q̃(f) and ṽ(f) are the Fourier transform of q and v,
respectively. Generally then, the study of these Tq transfer functions is based on
a two-field approach to turbulence, in which the correlations of multiple fluctuation
fields are involved in the analysis. For kinetic energy evolution in the edge due to
fluctuating shear flows, we are interested in

Tv(f, f1) = −Re(〈ṽ∗θ (f) ṽr(f − f1) ∂r ṽθ(f1)〉) . (6)

The 〈.〉 in all the above expressions is an average over a large number of
realizations, and can represent ensemble averaging as well as averaging with respect
to a slow time variable. For the measurements reported in this section, the brackets
represent an average over the small poloidal extent of the GPI view and a time average
over a period of several hundred milliseconds. Consequently, on the one hand no time
evolution is represented in Tq, but on the other hand one gains the advantages of
both being able to reduce errors compared to the time resolved measurements of the
previous section and resolving the coupling components by the so-called source (f1)
and target (f) frequencies. This nomenclature is explained by a further advantage
of evaluating the two-field transfer function Tv(f, f1) instead of the more frequently
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analyzed bicoherence spectrum, defined as

b2(f, f1) =
|〈ṽ∗θ (f) ṽr(f − f1) ∂r ṽθ(f1)〉|

2

〈

|ṽθ(f)|
2
〉〈

|ṽr(f − f1) ∂r ṽθ(f1)|
2
〉 . (7)

The bicoherence is an excellent measure of the strength of phase coupling between
components, and as evident from the definition, takes values bounded between 0
and 1, leaving the most important questions of energy transfer rate and direction
unanswered. The transfer functions are defined such that Tv(f, f1) takes a positive
value (of arbitrary magnitude) if the q̃(f) Fourier component gains power in the
interaction with q̃(f1), and a negative one if it loses power. It follows from the
definition that for a digitally sampled signal f ∈ [0, fN ] and f1 ∈ [−fN , fN ] or any
consecutive section of length 2fN , where fN is the Nyquist frequency of the sample.

Figures 5(a) and 5(b) show the full two-dimensional transfer function Tv(f, f1)
for an ohmic (PICRF = 0MW) and a strongly heated (PICRF = 1.6MW) discharge,
respectively. While the function is featureless in the ohmic case, showing no significant
transfer into any scale, the heated case exhibits a clear positive band at low target
frequencies. The fluctuations affected are precisely the ones identified in the previous
section as zonal flows, in the 0 kHz− 3 kHz range. Furthermore, the source frequency
(f1) resolution reveals that the nonlinear ZF drive comes from a broad range of
frequencies between 5 kHz and 40 kHz, although the estimation of the interaction
could potentially be limited near the upper bound of the effective Nyquist frequency
fN = 50 kHz.

Although the poloidal velocity spectrum exhibits no coherent feature, it is
important to note two gaps in the ZF drive spectrum, marked by arrows in Figure 5
around f1 = ±20 kHz. This is, in fact, the expected frequency range of GAM activity.
Thus the ZF does not directly gain power from the spectral space in which GAM
should be, nor is there any evidence for changes in the shear flow driving any GAM.

In order to see the overall effect of these nonlinear interactions, it is also instructive
to calculate the net frequency resolved transfer function Tv(f) =

∑

f1
Tv(f, f1),

which provides a measure of the rate of change of kinetic energy; and the summed
bicoherence B2(f) =

∑

f1
b2(f, f1), which indicates the total amount of coupling to

a given frequency component. However, to give an impression of how far the power
pump-out rate is from the ones in transitions, the net kinetic energy transfer can
also be normalized completely analogously to the “production term” of the previous
section, yielding an effective nonlinear growth rate γNL(f) = Tv(f)/K̃(f). Spectra
of Tv(f)/K̃(f) and B2(f), plotted in Figures 7(a) and 7(b), respectively, both have
a peak at the ZF; and the transfer into the other scales is negative on average, as
might be expected. The distinction between the two spectra is an important one to
make, as it is clear, once again, that no nonlinear driving is detected at the GAM
scale, however, the bicoherence spectrum indicates that there is a significant amount
of phase coupling at this frequency. The latter will be discussed further in the next
section in light of GAM activity, or the lack thereof, in Alcator C-Mod.

All the above nonlinear estimates were calculated from a large number of
realizations (N > 500) to ensure that bispectra were converged statistically and can
thus be considered meaningful. The number of required independent realizations was
established in a convergence study. Due to the transfer function taking both positive
and negative values, its convergence is more difficult to ascertain rigorously than that
of the bicoherence, in which the statistical variance is expected to converge as 1/N [27]
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Figure 5. Nonlinear kinetic energy transfer measured by GPI velocimetry for a)
ohmic plasma, b) PICRF = 1.6MW; shown with respective bicoherence spectra
for both the c) ohmic and d) heated cases.

owing to the appearance of the modulus and the normalization. The dependence of
bicoherence on the number of realizations used in its calculation can then be examined.
Convergence occurs in Figure 7 from right to left, as the summed bicoherence at the
ZF and the GAM frequencies is plotted against 1/N . After some initial excursions all
show a linear dependence on 1/N , confirming convergence. From this point the total
bicoherence of each feature can be obtained in the limit when N goes to infinity by a
linear fit. The limit value of bicoherence at the ZF B2

∞(f = 0.5 kHz) is found to be
0.22 ± 0.03, and that at the GAM B2

∞
(f = 20.5 kHz) is 0.10 ± 0.02. Similar values

can be found by assuming the baseline of Figure 6(b) to be set by noise alone. This is
justified by a random segment of the spectrum, away from both features (f = 30 kHz),
demonstrated to converge to zero within error. Through both methods, one can show
that the bispectral signal is reasonably distinguishable from noise by a number of
realizations above N > 280, as can also be seen in Figure 7 by the excellent linear fit.

The same analysis was performed on the data from a number of experiments, each
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Figure 6. Single frequency measures of nonlinearity; a) net kinetic energy
transfer, b) summed bicoherence, showing both ZF and GAM coupling.
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bispectrum tested for convergence. The effective nonlinear ZF growth rates shown in
Figure 8 are restricted to those with confirmed convergence. The measured rate of
nonlinear zonal flow drive is seen to increase monotonically, indeed near linearly, as
ICRF heating is increased. Although data is insufficient at this point to derive any
relationship between transfer and plasma density, the densities were restricted for
each plasma current to fall within 10% of each other to avoid any ambiguity as to
the source of the parametric dependence demonstrated in the figure. In addition to
heating power, the transfer rates in Figure 8a are also found to increase with plasma
current. This trend is quite sensitive too: the figure shows that a ∼ 30% decrease in Ip
means a ∼ 55% decrease in transfer rate, which could only be compensated by a more
than twofold increase of the heating power, as evidenced by the difference between the
blue and the orange curves.

Motivated by the observation of this trend, the same data is shown reorganized
in Figure 8(b), against the total loss power Ploss = P abs

RF
+POH−dW/dt, where P abs

RF
is

the absorbed power from the ICRF waves, estimated at 80% of the coupled power, W
is the stored energy, held steady in the reported experiments, leading to a negligible
contribution from this term, and finally POH is the ohmic heat generated by the plasma
current, and thus a major difference between the three sets of measurements. Note in
the figure that errors in the measured nonlinear transfer rates are significantly reduced
relative to those in L-H transitions due to the long period over which the bispectra are
collected. The magnitude of errors can be estimated by making use of the convolution
theorem to rewrite Tv(f) as the product of two Fourier series as

Tv(f) = Re
(

F (vθ)
∗
F (vr∂rvθ)

)

, (8)

where F(.) denotes Fourier transformation. For a Gaussian distribution of signal
amplitudes, the standard error of Fourier components is (σ2

v/N)1/2, equally distributed
over the entire spectrum, where σv is the variance of the original signal, and N is the
number of samples used. Since the steady-state L-mode experiments span a time
period approximately 400 times longer than the transition (demonstrated in Fig. 2),
the error decreases by about a factor of 20 for a single component. In order to obtain
the same frequency-resolution as the fully two-dimensional bispectrum, and cover
the range of the ZF (∼ 2 − 5 kHz), a few frequency components are added together
(the exact number of which depends on the length of the steady-state segment); a
conservative estimate gives the final value as the sum of errors, leading to a final
improvement in the relative error of a factor ∼ 5 still a substantial improvement.

As the measured nonlinear transfer rates in the figure are lined up tightly along
a single curve, Figure 8(b) demonstrates the importance of the cross-field heat flux in
determining the amount of nonlinear coupling and zonal flow drive in the turbulence.

Note that the figure contains only the transfer rates into the low-frequency zonal
flow structures, and gives no information on GAM. Standard L-mode discharges on
Alcator C-Mod do not exhibit any GAM activity, and so the transfer rates at the
GAM frequency are negligible, as expected.

5. Summary and discussion

First, this study presented the first complete measurements of nonlinear zonal flow
drive at the L-H transition at a fine temporal and radial resolution from the plasma
edge, where the transport barrier forms. Utilizing the full depth of edge turbulence
to its radial correlation length and introducing an experimentally robust test of
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turbulence loss and nonlinear transfer, we resolved a previously reported discrepancy
between these two measured quantities. While the total estimated transferred
power during transition is still observed to be a factor of ∼ 3.5 larger than the
turbulence reduction, the new result represents an improvement of more than an
order of magnitude. Due to the limited poloidal extent of the observations and the
highly asymmetric character of turbulence, this is as good an agreement as can be
experimentally expected. Further, mostly simulation based, studies involving the
entire three-dimensional structure of edge turbulence are, therefore, highly desirable
for the ultimate goals of understanding turbulence reorganization and predicting
transitions.

Perhaps more importantly, we reported the first measurements of the L-mode level
of nonlinearity in a high performance, diverted tokamak. Our experiments significantly
expand the range of auxiliary heating power (×3) over those reported previously
from circular, limited tokamak plasmas. In agreement with previous research, results
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showed a monotonic increase in the total amount of nonlinear zonal flow drive as the
heating power increases. Furthermore, kinetic energy is transferred to zonal flows
from the entire detected range of turbulent frequencies (5 kHz − 45 kHz), with the
notable exception of expected GAM frequencies. Contrary to previous experiments, it
is found that GAM activity, and consequently any nonlinear transfer from turbulence
to GAM can be negligible even at moderate levels of heating. In addition, a current
scan experiment revealed the nonlinear transfer’s parametric dependence on plasma
current for the first time. These two new observation taken together make it clear
that the parametric dependences of both GAM and ZF transfer warrant further
investigation. The accuracy of all nonlinear estimates was tested by studying the
statistical convergence of bicoherence spectra. Unlike autopower spectra, the latter
did show significant coupling, though not transfer, at the GAM frequency.

It should be noted here that GAM fluctuations have only ever been detected
in the I-mode regime in Alcator C-Mod. In this case, however, they have been
shown to contribute considerably to the dynamics of edge fluctuations.[19] The I-
mode, a high energy confinement, low mass confinement regime, is typically produced
in the H-mode-unfavorable B × ∇B drift topology. Indeed, that is why the L-mode
studies of this paper were performed in this geometry, in an attempt to investigate the
interplay between GAM and ZF. Due to the currently unknown origin of the so-called
weakly-coherent mode (WCM), a characteristic edge fluctuation of I-mode plasmas,
imaging studies alone can not study the low frequency flow behavior in this regime.
Cross-calibration studies with direct bulk flow measurements via charge exchange
spectroscopy are currently conducted and should form the material of later reports.
Resolving the competition or interplay between GAM and ZF will also be invaluable
for the investigation of L- to I-mode, as well as I-H transitions.

For a complete predictive capability of transition thresholds, future work must
also include similar studies in the H-mode favorable magnetic geometry, as well as
simulations necessary for providing a fully 3D picture of turbulence. All these should
aim to resolve poloidal asymmetry, so we can gain a better understanding of the
quantitative analysis shown herein, as well as of the well-known favorable/unfavorable
asymmetry.
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Appendix

The present study provided an improved comparison of the loss of turbulence kinetic
energy to nonlinear transfer over a previous publication. The contributions which the
three listed changes to the method of comparison make to this improvement are as
follows.

Firstly, upon selection of experiments in which the full radial correlation length
of edge turbulence is covered in GPI views, a least squares fit yields a tangent of

m =
∫ tm
t0

(RT − 1)γeff dt/ ln
(

K̃L/K̃m

)

≈ 33.7. The error in the measurement of
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kinetic energy is δK̃ ≈ 1 km2/s2, while the measured turbulent kinetic energy right
at the collapse of edge turbulence is also K̃m ≈ 1 km2/s2. Due to the fact that the
measured kinetic energy is a quadratic form of the velocity measurement, errors of
this magnitude are systematically positive. In other words, this result is consistent
with the systematic error dominating the empirical values of K̃ at the end of the
transition. Even if the mean K̃ in the fully quenched state of turbulence is in fact
K̃m = δK̃, this causes a minimal systematic shift of ln 2 towards smaller values
(which can be as much as a 50% shift), and a relative error of δK̃/K̃ ≈ 0.6. If this
shift were systematically applied to the whole range of data a tangent of m′ = 28.7
would be obtained. In contrast, using ∆K̃ has the advantage of introducing a total
error of δ∆K̃ = δK̃L + δK̃m ≈ 1 km2/s2 + 1km2/s2, resulting in a relative error of
only δ∆K̃/∆K̃ ≈ 0.2, and any shift due to systematic overestimation of collapsed
turbulence is 10% in the worst case.

Secondly, similarly to the error propagation in the measure of turbulence loss,
the large relative error in kinetic energy at the collapse of turbulence δK̃/K̃m . 1.0
is inherited in RT as relative error, i.e. at the end (but not the beginning) of the
transition δRT /RT ≈ δP/P + δK̃/K̃ . 1.0. This has two consequences: 1) the
integral of RT will carry a large error due to the error of the integrand; 2) if the upper
limit of the integration is determined by the evolution of RT , as in [10], there will
be an additional error due to the uncertainty in determining the integration limit. In
contrast, the expression in (3) reduces both effects, as the absolute error in the integral
(taking a representative case) is δ(P − γeffK̃) ≈ 1.6 × 105 km2/s2 + 5 × 104 km2/s2,
i.e. approximately 30%. Selecting the limits by the evolution of K̃ invariably yielded
a shorter integration interval, with some portions of the integrand with large values –
but also large errors – excluded. A fit in this case provides a tangent of Itr/∆K̃ = 15.4.

Finally, the layer in which the nonlinear transfer is significant is much narrower
(. 3.8mm) than the region in which turbulence exists and is reduced in the transition
(∼ 1.5 cm). Once a summation is performed in the radial direction over the entire
visible range of edge turbulence, the tangent gains the value quoted in the main text
of the paper, i.e.

∫

Itrdr/
∫

∆K̃dr = 3.5.
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