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ABSTRACT OF THE DISSERTATION

Energy and Bandwidth Efficient Edge Computing for the Internet of Healthcare Things

By

Delaram Amiri

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Irvine, 2020

Associate Professor Marco Levorato, Chair

Recent advances in the Internet of Things (IoT) technologies have enabled the use of wear-

ables for remote patient monitoring. Wearable sensors capture the patient’s vital signs, and

provide alerts or diagnosis based on the collected data. Unfortunately, wearables typically

have limited energy and bandwidth, making their use challenging for healthcare applications

where monitoring must continue uninterrupted long time, without the need to charge or

change the battery. Edge computing can alleviate these problems by offloading computa-

tionally intensive tasks from the sensor layer to edge servers, thereby not only meeting the

sensors’ limited computational capacity but also enabling the use of local closed-loop energy

and bandwidth optimization algorithms to increase the battery life. By incorporating the

patient’s contextual information, a desired quality of experience can be achieved by creat-

ing a dynamic balance between energy-efficiency and measurement accuracy. In addition,

transmitting representation of a signal instead of the raw signal can minimize the bandwidth

consumption of the sensor. We first present a run-time distributed control-based solution to

find the most energy-efficient system state for a given context while keeping the accuracy

of decision making process over a certain threshold. We propose two approaches, myopic

and Markov Decision Processes (MDP) to consider both energy constraints and risk factor

requirements for achieving a two-fold goal: energy savings while satisfying accuracy require-

ments of abnormality detection in a patient’s vital signs. Vital signs, including heart rate,

xiv



respiration rate and oxygen saturation (SpO2), are extracted from a Photoplethysmogram

(PPG) signal and errors of extracted features are compared to a ground truth that is modeled

as a Gaussian distribution. We control the sensor’s sensing energy to minimize the power

consumption while meeting a desired level of satisfactory detection performance. We present

experimental results on realistic case studies using a reconfigurable PPG sensor in an IoT

system, and show that compared to non-adaptive methods, myopic reduces an average of

16.9% in sensing energy consumption with the maximum probability of abnormality mis-

detection on the order of 0.17 in a 24-hour health monitoring system. In addition, during

four weeks of monitoring, we demonstrate that our MDP policy can extend the battery life

on average of more than 2x while fulfilling the same average probability of misdetection com-

paring to myopic method. We illustrate results comparing, myopic, MDP and non-adaptive

methods to monitor 14 subjects during one month. Implementation of myopic, and Markov

Decision Processes scheme are based upon implementation of optimization schemes using

Matlab coding. We then, propose a framework to dynamically optimize the resolution of

an electrocardiogram (ECG) signal transferred to an edge server to detect heart diseases in

real-time. Our objective is two fold: maximizing the detection probability of abnormal ECG

cycles while satisfying requirements on wireless channel usage. Based on sequential hypoth-

esis testing and hierarchical wavelet representation, the framework establishes a control loop

between the sensor and the edge server to iteratively determine the subset of wavelet coef-

ficients of the ECG heart cycle based on the signal itself. Numerical results show that the

sequential hypothesis testing selects different subsets for normal and abnormal ECG cycles.

In addition, we show that the signal representation should be personalized, as the system

selects different sets of coefficients for different patients. Results over 14 subjects indicate

that average channel usage is reduced an average of 43% over non-adaptive optimization to

achieve the same accuracy of classification. This work is implemented using Convolutional

Neural Network using TensorFlow library and Python programming to achieve the goal.
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Chapter 1

Introduction

Wearable devices have enabled out of hospital monitoring of patients in everyday settings.

In fact, the use of health monitoring post-operative patients can predict and prevent deterio-

ration and death in chronic patients and improve care outcomes. Industrial technologies can

only fulfill the needs of in-hospital settings, where the patients are monitored in a controlled

environment and situation. However, when the patients are discharged from the hospital,

they are left vulnerable without proper monitoring. Achieving clinical-level monitoring in

everyday settings would have a tremendous impact on patients health, but is a technological

challenge that has not been solved yet.

Internet of healthcare Things (IoT) technologies have been proposed to provide continu-

ously monitoring subjects, acquiring a variety of biosignals [20, 42, 28]. However, these

technologies have several limitations that make continuous high-quality sensing difficult. In

fact, these biomedical sensors have limitations in terms of storage, computation load, band-

width consumption and energy supply. Furthermore, different from hospital environments,

in everyday settings the activities the monitored subject engages may cause a degradation

of the quality of the signals due to the movement between the skin and the sensor. Some
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wearable sensors, such as, Photoplethysmogram (PPG), and Electrocardiogram (ECG) are

particularly influenced by this effect and may suffer a significant loss of accuracy [5].

Interestingly, different activities may cause a different degree of degradation. For instance,

motion artifacts affecting the measured signal when the subject is “Running” are much

larger compared to those generated when the person is “Sitting” or “Sleeping”. Achieving

the same Signal-to-Noise Ratio (SNR) in all the activities and, thus, the same detection

quality, requires the tuning of the sensing power to that of the noise. In other words, higher

sensing energy could be used when the patient is “Running”, and a lower energy could

be used when the patient is “Sitting”. Nonetheless, wearable sensors are manufactured in

industry for worst case scenario in terms of noise level, corresponding to a large sensing

power, which results in a high energy consumption and a short battery lifetime. The layered

and pervasive IoT infrastructure can be used to support solutions enabling the adaptation

of sensing parameters to the joint person-technology system state. Herein, we extend this

notion across the layers of the IoT infrastructure, and focus patient’s activity as a main

driver of adaptation due to the specific application domain.

In the computing literature, the general notion of context captures the state of the system,

including any descriptor of the user’s state. User’s activity is considered as a subclass

of context information, whose estimation and tracking requires the acquisition of signals

from sensors and the implementation of inference algorithms. Intuitively, imposing a further

burden on the sensor to have them connect with each other and implement algorithms is not a

suitable option. Therefore, the needed “semantic” support necessarily comes from the higher

layers of the IoT infrastructure, which has sufficient resources to perform signal fusion and

processing. In particular, fog and edge computing resources [53, 52], which are connected to

the mobile devices through 1-hop low latency wireless links, are particularly indicated to host

compute-intense tasks informing system-level control. Implementing optimization algorithms

controlling sensors on the edge devices can avoid imposing overheads to the sensor layer while
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being able to rapidly respond to changes thanks to the local control. Edge computing is an

architecture that takes advantage of sensors interoperating with the edge layer to store, and

process the data and coordinating with the sensor regularly to send proper configuration

settings. Settings such as, sampling rate, sensing energy level, duration of sensing, and

scheduling sleeping times are among the sensor settings that can be configured to impact

the energy efficiency.

In this thesis, we focus on two aspects of “bandwidth” and “energy” efficiency of sensors in

healthcare IoT. We propose approaches using the real-time connection between the sensors

and the edge device to build a context-aware control loop determining the sensing power

used by wearable sensors for PPG signal to optimize “energy” of sensors. To this aim, we

develop two distinct strategies. The first strategy is myopic, meaning that the sensing power

is selected solely based on the current activity. The linear time complexity of myopic results

in a minimal communication between the edge and sensor layers as well as a lightweight

computation at smart gateways making the local control at the edge significantly agile.

Conversely, the second strategy builds a statistical model of person’s activities and battery

State of Charge (SoC) dynamics, which are then used to locate decisions optimal over an

extended period of time. Our proposed framework includes the following:

• A hardware prototype of a reconfigurable wireless PPG sensor node

• An edge-based adaptation algorithm for wearable sensors in the context of abnormality

detection

• A Gaussian model of the sensing accuracy as a function of activity and input sensor

current from real-world measurements to calculate the probability that an abnormal

signal is not detected

• Formulation of an optimization problem that enables a trade-off between detection of

abnormalities, and sensing energy consumption in the sensor.

3



In summary, this thesis makes the following contributions:

• An edge-based adaptation algorithm for wearable sensors in the context of abnormality

detection

• A Gaussian model of the detection accuracy as a function of activity and input sensor

current from real-world measurements.

• A myopic strategy optimizing the trade-off between detection of abnormalities and

sensing energy consumption.

• A Markov Decision Processes (MDP) solution to track the time-evolving, physical

activity of an individual along with the state of the battery.

• Extensive evaluation and results based on a real-world trial involving 20 pregnant

women for seven months (ethically approved human subject trial).

In addition, we propose a form of adaptive compression for ECG signal to optimize “band-

width” efficiency of ECG sensors. This work is novel since we are implementing a semantic

methodology, meaning that the representation of ECG signal is tuned to the classification

goal, rather than aiming at the accurate reconstruction of of the signal.

In summary, this thesis makes the following contributions regarding “bandwidth” efficiency

in ECG sensors:

• We propose a an iterative and “semantic” form of compression guided by a Sequential

Hypothesis Testing core and based on a wavelet representation of an ECG signal.

• We develop a Convolutional Neural Network model to detect 4 types of arrhythmia

from the ECG signal harvested by a sensor. The CNN classifier achieves 4% of False

Positive Rate in the detection of abnormal heart cycles when using the original ECG

signal.
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• We present and discuss extensive results based on real-world ECG trials.Two sets of

data, the MIT-BIH arrhythmia database and MIT-BIH Supraventricular arrhythmia

database(MIT-SVDB), are used to evaluate the system we propose. These data sets

involve 63 subjects to train the Sequential Testing model and 14 subjects to test the

proposed system. Numerical results show that the sequential hypothesis testing selects

different sets of coefficients for normal and abnormal ECG cycles. In addition, we

show that the signal representation is personalized, as the system selects different sets

of coefficients for different patients. Results over 14 subjects indicate that average

channel usage is reduced by up to 43% to non-adaptive optimization to achieve the

same accuracy of classification.

Chapter 2 discusses state of the art in efficiency of IoT systems. Chapter 3 discusses the chal-

lenges in monitoring patients out of hospital, the IoT system architecture, and the benefits

of edge computing in healthcare IoT. Chapter 4 is based upon work introduced as efficiency

in bandwidth using edge computing [3, 7]. Chapter 5 is discussing the topic of bandwidth

efficiency in edge computing [6]. Chapter 6 concludes the dissertation and discusses the

future work.
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Chapter 2

Literature Review

In this chapter, we focus on reviewing the current literature on energy and bandwidth effi-

ciency methods. Wearable sensors are necessarily battery-powered devices. Thus, one of the

key problems in continuous monitoring of vital signs acquired by these sensors is their limited

energy supply. Algorithms to reduce the energy consumption of sensors have been proposed

in previous work and widely studied. Recent research has begun to study the energy effi-

ciency of IoT architectures. Scheduling sleeping intervals [70, 75, 74, 71, 29], determining

duty cycles [1] in the sensor layer and implementing packet routing [68] are among the meth-

ods to deliver energy efficiency to the sensor networks. However, the state-of-the-art lacks

the attention towards designing adaptive healthcare IoT architectures capable of controlling

system level parameters based on the context of environment and the state of patients. In

2017, Kaur et al. [33] presented a solution to determine sleep intervals of sensors based on

their residual battery level, usage history, and quality of the measured signal. In 2017, Tunic

et al. [66] proposed to model as a Markov chain the charging/discharging process of sensors

equipped with energy harvesting units. Based on the resulting model, the authors computed

the outage probability in a finite time horizon.
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Techniques to implement energy efficient networks for bio-sensors known as, Wireless Body

Area Network (WBAN) are proposed. Chang et. al proposed a routing protocol for WBAN,

considering expected transmission count and remaining energy units for optimal path selec-

tion [13]. Pradhan et. al compared energy consumption in four protocols, 802.15.4, IEEE

802.15.6, SMAC and TMAC as hybrid MAC protocols in healthcare [51].

All the above are exemplars of contributions addressing energy efficiency for IoT sensors.

However, none of the authors focused on context-aware models. Herein, we propose a context-

aware approach to optimize the energy consumption of the sensors without compromising

the probability of detecting anomalous signals.

In 2012-2014, Zois et al. [76, 62, 77] proposed MDP based approaches to detect the activity of

a monitored subject by means of imperfect observations acquired by noisy wearable sensors.

The framework proposed in the papers, which is based on Partially Observable Markov

Decision Processes, enable to explore the trade-off between energy consumption, sampling

rate and estimation accuracy. Herein, we use a Markov chain [12] to model the activity,

but use that information to build an optimal detector of anomalies in biosignals. Note that

the two approaches could be merged to obtain a holistic activity estimation and anomaly

detection.

There is a broad literature review on methods of saving bandwidth in wearable devices.

Data compression in wearables has been studied widely in the literature. Hooshmand et

al. [27] uses a lossy compression algorithm to decrease energy consumption in ECG sensors.

Raju et al. [54] proposes a lossless data compression method to improve the compression

ratio in wearable sensors. However, the aforementioned work does not study the impact of

compression on the performance of abnormality detection in ECG signal. Many solutions to

classify arrhythmia automatically already exist. Sayatan et al. [21] used Gaussian-Bernoulli

deep belief network with support-vector machine (SVM), where three separate classification

models were used to detect different kinds of arrhythmia types. Xu et al. [73] introduced
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using deep neural networks both in ECG classification and feature extraction. In this thesis,

we focus on the detection/classification of arrhythmia in real-time and study methodologies

to determine an optimal representation of signal sections by means of a collaboration across

the system’s layers.

Sequential Hypothesis Testing, the engine of the framework proposed here, is a decision-

making problem formulated in a way that the agent can sequentially choose between several

hypotheses based on the outcome of experiments. Karktik [32], proved theoretically that

the agent can update the belief on a set of hypotheses by performing a fixed number of

experiments. Naghshvar et al. [48, 49] proposed an M-ary active sequential testing using

a strategy based on Dynamic Programming. Their aim was to minimize the probability of

making a wrong decision while minimizing the time needed to make the decision, i.e., the

stopping time. In the framework, a representation based on Partially Observable Markov

Decision Processes (POMDP) is used. All the above examples focus on a single agent

minimizing the probability of misclassification. In this thesis, we build on these results

to optimize the communication strategy on a sensor-edge server system whose task is to

classify an ECG signal. Importantly, the strategy is a function of the signal itself (e.g.,

normal vs abnormal), and signal statistics (influenced by the subject), thus resulting in a

“personalized” decision maker making specific choices for different signal sections. Connected

to our problem, Thakor [63] introduced Sequential Hypothesis Testing to detect abnormality

by creating a sequence of binary representation based on a threshold. In other words, the

ECG signal is compared to a threshold and a sequence of zeros would be created. Whenever

the corresponding ECG signal takes values higher than the corresponding threshold, ones

will be added to the sequence. Later, the sequential testing is used based on the binary

sequence to detect abnormal ECG cycles from normal cycles. However, in this thesis, we are

focusing on using the optimal stopping time to determine the optimal number of coefficients

to represent an ECG signal as it is forwarded to an edge server and we denoise the signal

with three different filters.
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Sequential testing has been used in sensor networks, for instance to detect security threats

to local networks. Wei [72] proposes a method to detect rogue Access Points in a Wireless

Local Area Network (WLAN) by performing sequential testing on packet-header data. The

use of Sequential Hypothesis Testing has been proposed in sensor networks to determine the

most informative sensor. Li [37] sets the end goal to minimize the accumulated samples to

the constraints of error probabilities. Li et al. [38], consider a setting where each sensor

may observe different samples, and use a sequential test to determine how to accumulate

information from neighboring sensors and performs. To the best of our knowledge, our work

is the first using Sequential Hypothesis Testing in the context of healthcare applications.
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Chapter 3

Design Challenges

We proposed our energy efficient system architecture based on PPG sensors. Herein, we

discuss the limitations and challenges of implementing an IoT architecture based on a PPG

sensor. As we discussed earlier, a remote patient monitoring system is expected to make the

patients’ vital signs available and collectible for healthcare professionals wirelessly. Further-

more, it was mentioned that the PPG signal is a good source for at least three vital signs.

Even though the use of PPG signal is a good source of data, it imposes the system to several

challenges. The first challenge is the behavior of the PPG signal in different contexts. The

typical PPG signal displayed in Figure 3.1 is recordable in the hospital setting when the

patient is sitting or lying on the bed without movement. This typical PPG signal consists

of two parts: AC part which oscillates with each heartbeat and DC part which forms the

baseline of the signal. The AC part is the result of the changes in the amount of oxygenated

hemoglobin in the blood and the changes in the DC part are due to the pressure applied

from other body tissues to the blood vessels. For example, during the respiration process,

the change in the size of lungs applies pressure to blood vessels and causes a low-frequency

oscillation in the DC part. These kind of changes in the DC part enable us to measure

the respiration rate from the DC part oscillation frequency by filtering the AC part. Such
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Figure 3.1: PPG waveforms and the four features extracted for SpO2 calculation

changes in the DC part creates a challenge in signal processing when the patient has some

activities. Each body movement causes a change in the DC part and more intense activities

make larger changes in the signal baseline. When the amplitude of changes is larger than the

amplitude of AC part, the detection of heartbeat peaks would be more difficult. In addition,

when the body movements are rhythmic (e.g. walking, jogging, running) with a frequency

close to respiration, the calculation of respiration rate is also rather difficult.

The other challenge in the PPG signal acquisition is the amount of noise in the signal.

Ambient light diffuses to the exposed body tissues close to the sensor spot and causes a level

of noise to the recorded signal. Although increasing the brightness of LEDs in the PPG

sensor reduces the effect of ambient light noise, it increases also the power consumption in

the sensor node.

The last PPG-related challenge is that the most parts of signal processing are not possible

to carry out with low power microcontrollers of wearable sensor nodes. The sensor node

should send the raw signal to a gateway or cloud server for further processing. This, in turn,

requires more power for radio transmission.

In addition, we implemented bandwidth efficient algorithms using an ECG sensor. The ECG

sensor is primarily used to record the heart cycle of a user. The different
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Figure 3.2: IoT system architecture

In the following sections, we describe the solutions to cover the mentioned challenges.

3.1 IoT System Architecture

Internet of Things is a term for describing methods that enable us to sense and control

a variety of parameters and objects wirelessly through the Internet. Developing a system

based on IoT has several benefits in comparison to traditional wireless sensors and remote

control approaches. The most significant characteristic of IoT is its well-organized distri-

bution of energy sources, data storage, and processing power. As shown in Figure 3.2 a

common architecture of IoT-based remote health monitoring application consists of three

layers. The first layer belongs to the sensor nodes that are recording and reporting the pa-

tient state including medical parameters, activity level, posture, location, and environment

properties. Sensor nodes send the collected data to one or more gateway devices which are

placed close to the patients so that energy cost of radio communication between sensors and

gateways remains at a low level. In the gateway layer, the devices have their own storage

and processing units powerful-enough to perform pre-processing and fog-computing actions

before transferring data to the cloud server. The pre-processing actions may include data

filtering, data fusion, data analysis, compression, and encryption. Fog-computing methods

may be used to offload a portion of cloud-based tasks to the gateway device at the edge of
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the network to reduce the bandwidth need, data size, and server load. In the cloud layer,

the server receives collected data from several gateways and stores the data recorded from

all patients. Such a huge amount of data enables the cloud server to compare patients with

their earlier conditions, with other patients in the same condition, and the consequences of

the current condition in other patients. The server then would be able to learn from the

patients’ history and predict the future of patients’ health.

In our setup, we use a battery-powered microcontroller connected to a digital I2C PPG

sensor, a 3D accelerometer sensor, a temperature sensor, and a WiFi transmission module

as our sensor devices. The amount of power required to drive LEDs in the PPG sensor

is configurable, the sensors node is able to receive configurations from the gateway device

remotely. The other configurable parameters are the recording and hibernation durations.

The gateway is a WiFi-enabled Linux machine which receives the recorded data, performs

fog-assisted optimization algorithms, decides about the configuration of the next recording

period, and sends the new settings back to the sensor device. The cloud server gets updated

with all collected data and updates the RMSE values for the gateway over longer periods of

time.

3.2 Edge Computing in healthcare IoT

Fog computing leverages the concept of Geo-distribution of networks at the edge, enabling

local/hierarchical data analysis, decision making, and storage [11, 52, 53]. Prevalence of

connected devices and IoT-based systems demands an intermediary layer of computation, in

which the local solutions provide low-latency responses, load balancing, and adaptivity for

system behavior.

With the growth of IoT-based systems, a rapid increase in the number of connected devices
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has led to a massive volume of data that needs to be processed [15, 16]. Cloud computing

has, thus far, provided scalable and on-demand storage and processing resources to fulfill

the requirement of IoT. However, most recent IoT-based applications require mobility, low-

latency response, and location-awareness [57]. Moreover, the latency of data transmission

between the edge and the cloud is unsatisfactory especially in latency-sensitive systems such

as health monitoring [16]. In this regards, Cisco states that ”Today’s cloud models are not

designed for the volume, variety, and velocity of data that the IoT generates.” [59]. Therefore,

fog computing can be considered as a complementary solution for the cloud computing

paradigm to enable such latency demanding applications [40] as it can relocate location

dependent, time-dependent, massive scale, and latency-sensitive tasks from the cloud server

to the edge of the network [26].

Edge computing provides several lightweight services at the edge of the network, locally

analyzing data collected from heterogeneous connected devices. Depending on the computa-

tional [55, 56] capacity of the edge servers or gateway devices, such edge-based services can

include not only conventional tasks such as protocol conversion but also local data processing

applications, some of which are outlined as follows. There is a variety of applications such

as data filtering and data fusion to ensure high-level data quality at the edge, improving

the data accuracy and performing data abstraction [53, 9]. Such applications can decrease

the amount of data that should be sent to the cloud server and subsequently save external

bandwidth. Moreover, local decision-making is a solution at the edge by which the sys-

tem’s availability and reliability are increased particularly when the Internet connection is

poor [8]. Adaptive sensing and actuation is another application that intelligently tunes the

system’s configuration at the edge according to the context information [4]. Such a dynamic

reconfiguration can considerably improve the system-driven quality attributes such as energy

efficiency. Certain security related services can be also performed at the edge, protecting

data from unauthorized access (e.g., authentication, data encryption/decryption, anomaly

detection, etc.) [53, 58].
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Chapter 4

Energy Efficient Edge-Assisted

Control

The development of wearable systems for clinical-level continuous monitoring of patients

in everyday setting presents some critical challenges: (a) the energy supply available to the

sensors is severely constrained due to weight and size constraints; and (b) motion artifacts due

to body movements diminishes the quality of the acquired signals [46]. Problem (b) especially

affects sensors measuring vital signs such as Photoplethysmogram (PPG), Electrocardiogram

(ECG), and Electromyography (EMG). The Signal-to-Noise-Ratio (SNR) of the signals can

be improved by increasing the sensing energy. This strategy can further shorten the lifetime

of the sensors.

The overarching objective of this chapter is to mitigate the issues mentioned above by propos-

ing an edge computing-based architecture supporting a context-aware form of control of the

sensors. Specifically, we observe that noise differently affects the collected signal as the

monitored subject engages in different activities. For instance, if the person is sleeping, the

noise power is much smaller compared to that affecting the same signal acquired when the
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person is running. Intuitively, knowing the current activity of the person would allow to set

a corresponding sensing energy level to reach a desired SNR level.

Intuitively, wearable sensors are not suitable to host such complex reasoning, as detecting the

activity would require to process another set of signals – for instance from accelerometers.

Therefore we propose to use the edge servers as the central components of a distributed

context-aware system: the edge server assisting the sensors will collect their signals, extract

the context – in our case the activity of the monitored person – and control the sensing

parameters using predefined messages. By adapting the sensing energy used by the sensors to

the activity, the system can prolong the lifetime of the sensors, thus improving the integrity of

the acquired signal over long periods of time, without compromising the quality of the signal.

Based on this general concept and architecture, we fully develop a specific application whose

objective is to detect abnormalities in vital signs extracted from PPG sensors [61, 4, 7].

PPG is a low-cost and miniaturized optical sensor widely used in medical and wearable

sensors (e.g., fitness trackers, smart rings, smart earrings) which can continuously capture

several vital signs such as heart rate, heart rate variability, respiration rate, and blood

oxygenation [46]. Based on real-world data, we build a model for normal and abnormal

signals, and define corresponding regions in a feature space. In this context, the edge server

will detect the current activity of the monitor person and adjust the power used by the PPG

sensor to ensure that the misdetection probability is below a predetermined threshold while

maximizing the lifetime of the sensor.

To this aim, we develop two distinct strategies. The first strategy is myopic, meaning that

the sensing power is selected solely based on the current activity. The linear time complexity

of myopic results in a minimal communication between the edge and sensor layers as well as a

lightweight computation at smart gateways making the local control at the edge significantly

agile. Conversely, the second strategy builds a statistical model of person’s activities and

battery State of Charge (SoC) dynamics, which are then used to locate decisions optimal
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over an extended period of time. Our proposed framework includes the following:

• A hardware prototype of a reconfigurable wireless PPG sensor node

• An edge-based adaptation algorithm for wearable sensors in the context of abnormality

detection

• A Gaussian model of the sensing accuracy as a function of activity and input sensor

current from real-world measurements to calculate the probability that an abnormal

signal is not detected

• Formulation of an optimization problem that enables a trade-off between detection of

abnormalities, and sensing energy consumption in the sensor.

In summary, this chapter makes the following contributions:

• An edge-based adaptation algorithm for wearable sensors in the context of abnormality

detection

• A Gaussian model of the detection accuracy as a function of activity and input sensor

current from real-world measurements.

• A myopic strategy optimizing the trade-off between detection of abnormalities and

sensing energy consumption.

• A Markov Decision Processes (MDP) solution to track the time-evolving, physical

activity of an individual along with the state of the battery.

• Extensive evaluation and results based on a real-world trial involving 20 pregnant

women for seven months (ethically approved human subject trial).
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4.1 Edge-assisted Adaptation Control

Based on the edge-assisted architecture described in the previous section, the IoT system we

propose uses information related to the context of the monitored subject – the activity in the

case study considered here – and the model at the cloud layer to adjust sensing energy. The

optimization formulation aims at the minimization of cost measured as energy expense of

the sensor node and maximization of the probability an abnormality will be detected. As the

first step to formulate the abnormality detection, we model the accuracy of sensor output as

a function of the different activities and energy levels.

In Section 4.1.1, the accuracy model as a function of Gaussian distribution for vital signs is

derived. Section 4.1.2 discusses the stochastic model considering both the activity and the

battery model. Section 4.1.2 presents a myopic method, which only considers the current

patient’s activity to determine the sensing configuration. We build a model for the dynamics

of the State of Charge (SoC) of the sensor’s battery in Section 4.1.2. In addition, we present

a MDP formulation and algorithm which optimizes the current level over a finite horizon

based on the activity model stored at the cloud layer.

4.1.1 Problem Formulation

Based on the biometric PPG signal generated from the pulse oximeter sensor, the Gateway

calculates vital signs of the monitored person including heart rate, respiration rate and SpO2.

We remark that the current level U and the activity X will determine the SNR of the signal

used to calculate the features. In order to evaluate the accuracy of the PPG sensor, we use

an ECG sensor as a reference for heart rate, an airflow sensor for respiration, and another

PPG sensor with higher signal quality – and therefore energy consumption – as a reference

for SpO2.
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Based on the reference signals, we compute the error vectors of the three features: heart rate

error e1(U,X), respiration rate error e2(U,X) and oxygen saturation error e3(U,X). We

calculate the weighted total error vector e(U,X) = {γ1e1(U,X) + γ2e2(U,X) + γ3e3(U,X)}.

The variables γ1, γ2, γ3 are positive weights such that γ1+γ2+γ3=1.

We denote as ρ(e(U,X) | U = u,X = x) the Probability Density Function (PDF) of the

total error as a functions of extracted features during an activity state,

X ∈ {Sleeping, Sitting, Walking, Jogging, Running}

, and current level U ∈ {U1, U2, ..., U5}.

For practicality reasons, we assume that the PDF is Gaussian, that is ρ(e(U,X) | U =

u,X = x) ∼ N (0, σ(U,X)).The variance of error σ(U,X) can be derived from the error

vector e given current level U and activity state X. The error probability is calculated as

the tail probability of the normal distribution. Threshold T corresponds to the maximum

total RMSE tolerance in the estimated vital signs. Therefore, the error probability is the

following,

Perror(T ) =

∫ T

−∞
ρE(e(U,X) | U = u,X = x)de (4.1)

The formulation derived for error probability, can be used to calculate the abnormality

misdetection probability. In fact, the abnormality misdetection probability is a function

of sensor’s error probability (e.g. Perror(T ) in Eq. 4.1) and probability of abnormal vital

sign regions. The abnormality misdetection probability formulates the probability that an

abnormal event in vital signs is not captured considering the error margin in the sensor’s

measurements. Error margin in the sensor’s measurements can be controlled and adjusted
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by the threshold T in Perror(T ). for instance, smaller value of T results in accepting smaller

values of error probability in the system. Thus, the abnormality misdetection probability

will take smaller values forcing the system to decide more conservative on the optimal power

level in the sensor which may increase the sensor’s energy consumption.

To formulate the abnormality misdetection probability, we define regions of abnormal vital

signs. We assume that the PDF of the vital signs – heart rate, y1, respiration rate, y2 and

oxygen saturation y3 – is Gaussian both in normal and abnormal conditions. We calculate

the mean of normal vital signs µn =
∑3

i=1 µn,iγi and variance σ2
n =

∑3
i=1 σ

2
n,iγ

2
n,i. Note that

these parameters are calculated based on the combined features y = γ1y1 + γ2y2 + γ3y3, we

assume that the combined features follow a Gaussian distribution. Abnormal vital signs also

follow a Gaussian distribution with mean µa =
∑3

i=1 µa,iγi and variance σ2
a =

∑3
i=1 σ

2
a,iγ

2
a,i.

In order to detect the normal vital signs from abnormal ones we set the threshold τ =∑3
i=1 τiγi over the thresholds {τ1, τ2, τ3} of each individual feature. We, then, define PDE

as when the abnormality misdetection probability is detecting the abnormal vital signs as

normal. Similar formulation considering normal regions of vital signs can be used to model

the misdetection of normal vitals as abnormal. In summary, the probability density functions

of abnormal vital signs (e.g. fa(y|U,X)) and error (e.g. ρ(e|U,X)) follow independent

Gaussian distributions.

Let PDE = P(α, β, η) be the abnormality misdetection probability defined as the probability

of the following events:

• sensor’s error tolerance α= {e(U,X) < T},

• region of abnormal vital signs β= {y > τ}, and

• activity state and current level η= {U =u,X =x}.
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Using the chain rule, the joint misdetection probability can be written as,

PDE = P(α | β, η)P(β | η)P(η). (4.2)

Consider the following upper bound for P(η), with no prior knowledge about U and X,

PDE ≤ P(α | β, η)P(β|η). (4.3)

Intuitively, although the distribution of abnormal vital signs is a function of the activity, it

is independent with respect to the sensor’s current level. Thus,

PDE ≤ P(α | η)P(β | X =x) = PUB. (4.4)

Assuming P(α | η) ∼ N (0, σ) and P(β | X = x) ∼ N (µa, σa), we obtain

PUB =

∫ T

−∞
ρE(α | η)de

∫ ∞
τ

fa(β | X =x)dy. (4.5)

By substituting the error probability in Eq. 4.1, we finally obtain

PUB =Perror(T )

∫ ∞
τ

fa(β | X =x)dy. (4.6)

We use this form of PUB along with the energy consumption in PPG sensor as the main

optimization parameters in section 4.1.2 and 4.1.2.
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4.1.2 Stochastic Model

The PPG sensor is equipped with a battery of finite capacity. A key part of our model tracks

the dynamic of the battery’s SoC to enable energy-aware optimization of the used current

level. Herein, we consider that ∆t is a time slot equal to 15 minutes.

The battery capacity is uniformly quantized to create discrete battery states. Specifically,

the SoC in a given time Qk takes values in Q = {Q1, ..., QK}. In the following, we consider

the maximum number of battery states K to be 30. The sensing energy consumption is a

function of the used sensing current level, which are determined by the control U taking

values in the action set {U0, U1, U2, ..., U5}.

We set the states so that the sensor consumes 1 charge level of the battery in 1 hour if the

lowest sensing current level U1 is used. Thus, the maximum number of hours the sensor

can continuously function is equal to 30. The highest current level U5 consumes 5 levels

of battery charge in an hour. Therefore, the battery will be drained in 6 hours using the

highest current level. Action U0 indicates that the sensor is in sleeping mode, during which

the SoC remains the same.

The dynamics of the battery state can be written as,

Q′k =max{Qk − E(U), 0}, (4.7)

where E(U)∈E=E1, ..., E5 indicates the number of battery levels consumed at a given time.

Denoting the power consumption of the sensor as CTX(U), Eq. 4.7 can be rewritten as,

Q′k =max{Qk − CTX(U)∆t, 0} (4.8)
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We consider that sensing starts with the maximum full charged battery at time 0, that is, Q30.

Choosing an optimal solution for the current level, the sensor consumes the corresponding

energy budget. The discharging probability in the battery depends on the current level

chosen as an optimal action. The sensor consumes energy changing the state of battery from

Qk to Qk′ where k′ < k. Therefore the transition probability during discharging can be

defined as,

qk/k′ , P (Q′k|Qk, U) (4.9)

The sensor is forced to choose a lower current level U during the critical situation when the

battery level at a given time is less than the optimal action . For instance, consider that the

sensor’s optimal current level was chosen to be U4 but the battery’s critical battery level Q2

doesn’t allow sensing for the next hour. Therefore, the optimal action will be forced to be

U2 to afford the continuation of sensing.

We consider that sensing stops when battery is drained to the lowest level Q1 forcing the

sensor to choose sleeping action. The user charges the battery only if they are not “Walking”,

“Jogging” or “Running”, and the sensor’s optimal action would be sleeping mode U0. During

charging state, the sensor goes to a sleep mode by choosing the current level to be U0. During

charging, the state of battery changes from Qk′ to Qk where k′ > k. Therefore, the transition

probability during charging will be,

qk/k′ =P (Qk′|Qk, U0) (4.10)

Considering the probability of charging and discharging defined above, the dynamics of the

battery during the time can be modeled as a Markovian process with states defined with

temporal evolution in Figure 4.1.
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Figure 4.1: Markov chain of battery states during charging and discharging modes

The stochastic model considers the activity of the monitored person. In particular, we define

a Markov process X whose state space is {Sleeping, Sitting, Walking, Jogging, Running}.

Figure 4.2 shows the connectivity structure of the Markov chain governing the dynamics of

X.

Importantly, the statistics of activity dynamics change over time following daily cycles. We

capture this characteristic by making the transition probabilities of X. Specifically, we build

four different models for daily activities each corresponding to a 6 hour period. Based on

the time of the day, the corresponding Markov chain computed from the history of the

activity of the subject will be used to calculate the optimal solution. Assume that each

model corresponding to each period of time is denoted by i ∈ {1, 2, 3, 4} during a 24 hour

activity. For instance, transition probability from activity “Sitting” to “Walking” for first

period is denoted as P(X3(1)|X2(1)) . Transition probabilities during period i from activity

Xj(i) to Xj′(i) is defined as,

pj/j′(i) =P (Xj′(i)|Xj(i)) (4.11)

Markov model corresponding the ith period of 6 hour per day( e.g. i ∈ {1, 2, 3, 4}), will

be used to solve the optimization problem. Note that the dynamics of activity change over
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time, and the model needs to be periodically updated. This becomes particularly apparent

in the considered case-study, where daily activities are measured in pregnant women. Not

only optimization needs to be context-aware, but also needs to be specific to the person

and the change over time of the person’s habits. The idea of this model demonstrates the

necessity of self-aware system to adapt its dynamics throughout the time. In view of the

foregoing, our proposed model in adapting the context-aware system to the activity of the

subject results in personalization of the system.

Figure 4.2: Markov chain of activities of an individual during one period of 6 hour activity

The overall system state Z is defined to be the composition of the battery state Qk and the

patient’s activity state Xj(i),

Z(i) = (Xj(i), Qk), (4.12)

with Z ∈ Z = X ×Q. Note that the dynamics of the battery are deterministic and fully

defined by the action U and the current SoC Qk. During the time period i , it is assumed that

the transition probabilities between activities are static but then the transition probability

will be updated entering the new period. Since the transition probability between activity
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X and battery level Q are independent, the joint transition probabilities can be written as,

P(Z ′(i)|Z(i), U) = P (Qk′|Qk, U)× P (Xj(i)|Xj′(i)) .

or, equivalently,

P(Z ′(i)|Z(i), U) = pj/j′(i)× qk/k′

(4.13)

where, P (Qk′|Qk, U) captures the the dynamics of the battery as a function of Qk and the

chosen action U and P (Xj(i)|Xj′(i)) captures the dynamics of activity. We remark that

the probability P (Xj(i)|Xj′(i)) depends on the time period i. At the end of each time

horizon i a new model of Markovian chain with different transition probabilities will be

calculated. Therefore, the total transition probability of joint battery and activity states

updates in each time slot. In addition, transition probability P(Z ′(i)|Z(i), U) depends on

chosen action U . For instance, if the user is “Sitting” and the battery state is fully discharged

(e.g. Z2 = (X2, Q1) in Figure 4.2), the system transitions to the user with “Walking” and

battery state Q2( denoted as Z8 = (X3, Q2) ) given the possible action U0, with probability

q1/2×p2/3. An example of resulting Markov chain is illustrated in Figure 4.3. The transition

Figure 4.3: Markov chain of joint activity and battery state during one period of 6 hours

probabilities P(Xj(i)|Xj′(i)) are specific to an individual, meaning that the Markov chain is

built with the statistics collected over time at the cloud layer. For simplicity, here we assume

that the probabilities P(Xj(i)|Xj′(i)) are known. Figure 4.4 demonstrates the dynamics of
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Figure 4.4: Markov chain of joint activity and battery states from period 1 to 4 with 6 hours
of duration

joint activity and battery states during 24 hour. In this case, the transition probability

between activity states pj/j′(i) is shown as a function of period i. The activity model for the

corresponding period i can be used to calculate the total transition probability between joint

states. Therefore, dependency of pj/j′(i) on period i results in dependency of total transition

probabilities between states on period i as well. This model allows the system to evolve in

time based on dynamics of the user’s context.

Myopic Strategy

Based on the upper bound for the misdetection probability provided in Eq. 4.6, we define

the optimization problem controlling the trade off between sensing power consumption CTX

and probability of misdetection PUB. The myopic optimization problem trades off between

sensing power consumption CTX and the probability PUB in each time slot as follows

minimize
U

CTX(U)

subject to PUB ≤ θ

or, equivalently,

P(α | η) ≤ θ

P(β | X = x)
= ζ.

(4.14)
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We define the Lagrangian multiplier λ to solve the equivalent optimization problem,

L(U, λ) = CTX(U) + λ(P(α | η)− ζ). (4.15)

Taking the derivative with respect to the sensor’s current level,

∂CTX(U)

∂U
+ λ

∂P(α | η)

∂U
= 0. (4.16)

We obtain a linear relation between power consumption and current level:

aU + λ
∂P(α | η)

∂α

∂α

∂U
=0. (4.17)

Given the Gaussian PDF of α and linearity between α and U , we have

aU + λbU

N∑
i=1

1[U = Ui]
∂Φi(α)

∂α
= 0 (4.18)

The optimal (U∗, λ∗) can be then calculated as

N∑
i=1

1[U = U∗]
∂Φi(α)

∂α
=− aU

λ∗bU
(4.19)

Using this formulation, we developed the Algorithm 1 to determine the optimal current level

in each slot. If the number of possible current levels is equal to N , the complexity this search

is O(N).

Optimization Over a Finite Horizon

The myopic method solves the optimization problem with linear time complexity. In this

section, we propose the second method to optimize in longer perspective. In our prototype
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Algorithm 1 myopic method to control sensor’s current

1: procedure Solution(τ, T ) . τ and T are thresholds at a given time t
2: Extract Activity level X
3: for U ∈ {U1, ..., U5} do
4: Calculate the variance of the error e(U,X).
5: Calculate tail Gaussian P(e | U = u,X = x)
6: Estimate PDE using PUB.
7: if PUB < τ then return u
8: else
9: continue

10: until the system is terminated

system, the edge layer keeps track of patient’s activity state along with the battery state

of PPG sensor. The cost function in this method is defined as a function of the power

consumption and the upper bound for misdetection probability (e.g. Eq. 4.6). The two

fold goal is to minimize the cost while tracking the system and patients’ states. To this

end, we must propose a method that determines the sensor’s current level to minimize the

accumulative cost over a finite time horizon.

Optimal Strategy: The Markov process defined earlier in Section 4.1.2 allows the computation

of strategies optimizing the current level over a temporal horizon, which is moved in a

sliding window fashion. Optimality is defined over a cost jointly capturing sensing power

consumption and misdetection probability in the upper bound form provided in the previous

section. In fact, misdetection probability PUB as a function of activity state X and current

level U directly directly influence the total cost. Therefore, the total cost C(Z,U) can be

written as a function of joint state Z and current level, U ,

C(Z,U) = ωPUB(U,X) + (1− ω)CTX(U) (4.20)

Given an initial state X(0) ∈ X and Q(0) ∈ Q, and the finite horizon T , we calculate an
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average expected reward under the action U ,

J (Z,U) =
1

T

[
T −1∑
t=0

γtC(Z,U)|Z(0)

]
(4.21)

where we find the expected function under action U : Z ′ → Z. Note that discount factor

0 ≥ γ < 1 is typically chosen close to one.

Optimal Action: The goal is to minimize J over a finite time horizon with a given initial

state Z(0) that achieves the minimum cost

U∗ = argmin
U
J (Z,U) (4.22)

Using this optimization formulation, we developed Algorithm 2 to determine the optimal

current level in a given time. In other words, the edge processor determines the current level

such that the total cost as a function of misdetection probability and the sensor’s power

consumption will be minimized.

Algorithm 2 MDP method to control sensor’s current

1: procedure Solution(τ, T ) . τ and T are thresholds at a given time t
2: Extract Activity level X
3: Estimate battery level Q
4: Calculate the variance of the error e(U,X).
5: Calculate tail Gaussian P(e | U = u,X = x)
6: Estimate PDE using PUB.
7: Find the transition matrix Pz’z(U) based on time t on the portion of the day
8: for state Z ∈ {Z1, ..., Z150} do
9: for state U ∈ {U0, ..., U5} do

10: Use Equation 4.20 to compute cost C(Z,U) for transition matrix Pz’z(u)
11: Use Equation 4.22 to find optimal action U∗

12: until the system is terminated
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4.2 Setup and Data

In this section, we first describe in detail the system setup in Section 4.2.1 and, then, in

Section 4.2.2, describe the clinical trial at the base of this study and its output data.

4.2.1 Setup

We now provide some specifics of the IoT system we developed. The sensing device, besides

the actual PPG sensor, is equipped with a microcontroller to read data from the sensor, a

Flash memory to store data temporarily, and a wireless data transmission module to send the

recorded data. We use the ESP8266-12E board which integrates all the mentioned compo-

nents in a single board. In the specific board we used, a full TCP/IP stack is integrated with

an L106 32-bit RISC microprocessor core running at 80 MHz, with 96KB on-chip SRAM and

4MB external Flash memory. For the sensor, we use a MAX-REFDES117 PPG sensor board

which is highly configurable and provides a digitized signal through I2C communication. We

program the microprocessor using C programming language to configure the sensor board

internal registers. The sensing device connects to the Edge device via a WiFi connection. It

has a permanent configuration memory which records the user information and credentials of

three different WiFi networks. At the beginning of the operation, the sensor node connects

to a WiFi network and asks the Edge device to send initial configuration instructions, which

include the PPG LED power, recording duration, and hibernate state duration. Then, the

sensing device begins to record PPG signal on the Flash memory and then goes to the hiber-

nation mode for the duration defined in the configuration instructions. After the hibernation

period, it connects again to the Edge device via the WiFi connection, sends the recorded

data, waits for the Edge device to process the transferred data, receives the results as a new

set of configuration instructions, and initiates a new recording cycle. Note that the sensor

turns the radio communication circuitry off during the record and hibernation to save the

31



Figure 4.5: Local data analysis to extract vital signs from raw PPG signals.

energy. Table 4.1 summarizes the system’s power consumption specifications.

Table 4.1: System states with sensing power consumption

State Power consumption

Recording mode: LEDs setting: 0.8mA 69.30mW

Recording mode: LEDs setting: 3.5mA 73.26mW

Recording mode: LEDs setting: 6.2mA 79.86mW

Recording mode: LEDs setting: 9.3mA 84.15mW

Recording mode: LEDs setting: 12mA 89.43mW

The Edge device is a Linux-based computer running an Apache web server. It receives each

set of the recorded data from the sensing device via several HTTP Upload POST requests,

merges data chunks into one file, analyzes the data, and returns the new configuration in

reply to the latest HTTP request. As shown in Figure 4.5, local data analysis on the Edge

device consists of two sequential phases: 1) bio-signal extraction and 2) vital signs detection.

1) Bio-signal extraction: Respiratory and heartbeat signals are extracted from the raw PPG

signal. Different studies proposed various techniques which can be categorized into two

major classes: feature-based extraction and filter-based extraction [14, 50]. The former

class first derives features from the waveform to extract respiratory and heartbeat signals

[31]. These methods might be, nevertheless, inappropriate in real-world applications since

the features quality is highly susceptible to motion and ambient noise. Such artifacts are

inevitable in wearable devices as patients engage in different activities in non-clinical settings.

On the contrary, filter-based extraction techniques remove the artifacts before deriving the

bio-signals, filtering the raw PPG signal [22].
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We adopt a filter-based technique by designing two band-pass filters for heartbeat and respi-

ratory signals extraction. In general, the bio-signals have different frequency ranges: 0.1− 1

Hz (6− 60 breath/minute) and 0.5− 3.3 Hz (30− 180 heartbeat/minute). The boundaries

could be selected as the filters’ cutoff frequency. However, such a naive approach leads to

high error rates as the pass range is too broad. Then, we select the cutoff frequency using the

peak values in the power spectral density (PSD) of the PPG signals [39]. Figure 4.6 shows

the PSD as a function of frequency for a one-minute PPG signal while the user is sleeping.

The peak in the heart rate (HR) frequency range reflects the heartbeat signal frequency.

Similarly, the respiratory signal frequency is selected using the peak in the respiration rate

(RR) frequency range. As the RR frequency range might contain the HR frequency peak, we

first extract the heartbeat signal and remove the HR peaks; then we acquire the respiratory

signal. The filter’s cutoff frequencies are dynamically selected during the monitoring with

respect to the incoming signals. Note that an acceptable SNR is necessary as an excessive

distortion of the signal would impair the process.

Figure 4.6: Power Spectral Density (PSD) of one-minute PPG signal while the user is sleeping

2) Vital signs detection:

Several time-domain and frequency-domain techniques can be exploited to derive respiration

rate and heart rate from the bio-signals [14]. In our setup, we use a peak detection algorithm

where the peaks are obtained by detecting local maximum points in the derivative of the
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bio-signals. The period between two consecutive peaks reflects the respiration rate and heart

rate values.

In contrast to the respiration rate and heart rate, SpO2 (blood oxygen saturation) is calcu-

lated using a feature-based technique. As indicated in Figure 4.7, four features – ACRED,

DCRED, DCIR, and ACIR – are acquired from the infra-red (IR) and red signals. Such

features are obtained by mapping consecutive local extrema of the heartbeat signals into the

raw PPG signals. The SpO2 is calculated using the following equations:

R =
ACRED.DCIR
ACIR.DCRED

, SpO2 = αR2 + βR + γ (4.23)

where α, β and γ are constants determined by the sensor’s specification [41].

Figure 4.7: Features in the PPG signals for SpO2 Calculation

4.2.2 Data Collection

In order to evaluate the accuracy model of PPG sensor’s measurements, we first collect

data for PPG signal during different activities. We conduct our 5 hour experiment with 25

different combinations, in which a healthy subject is monitored during “Sleeping”, “Sitting”,
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“Walking”, “Jogging” and “Running” and the sensor’s current level is varied with different

values (e.g., 0.8 mA, 3.5 mA, 6.3 mA, 9.2 mA and 12 mA). Each experiment lasted for 12

minutes. Windows of 30 seconds were used to calculate the vital signs from the PPG signal.

The PPG signal from the sensor is preprocessed, filtered and the features SpO2, heart rate,

and respiration rate are evaluated for each combination of current level and activity.

Simultaneously, we use three different reference sensors, to compare the calculated vital

signs from our proposed PPG sensor with a ground-truth. We use a chest strap ECG

sensor to capture the reference heart rate, an airflow sensor for respiration reference, and

another PPG sensor with higher signal quality as a reference for SpO2. We then calculated

the error between calculated vital signs and the reference signal to model the accuracy of

measurements.

In order to model and test our proposed algorithms, physical data is recorded. The physical

activity data is part of a longitudinal study conducted to investigate the maternal body

changes on pregnant women for seven months (i.e., six months of pregnancy and one month

postpartum). The study was performed in collaboration with the Department of Nursing

Science, University of Turku (UTU) and Turku University Hospital (TYKS), and in accor-

dance with the code of ethics of the World Medical Association (Declaration of Helsinki). In

addition, it was approved by the joint ethics committee of the hospital district of Southwest

Finland (35/1801/2016) and Turku University Hospital (TYKS).

Between May 2016 and June 2017, twenty pregnant women were selected and recruited in

Southern Finland, considering different criteria such as “singleton pregnancy”, “18 as the

lower age limit” and “Gestational age less than 15 weeks.” Data collection was performed

24/7 via a lightweight fitness tracker (i.e., Garmin Vivosmart R© HR) [23] consisting of a

PPG sensor and an Inertial Measurement Unit (IMU). The data were regularly transferred

to remote computers for storage and post-processing. The physical activity data utilized in

this chapter was abstracted from the user’s steps and hand movements in every 15-minute
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interval [65, 64]. Data from 6 subjects were rejected due to discontinuity in data recording,

with more than 50% of missing data. The output of the study allowed us to build the

transition probabilities capturing the dynamics of the activity engaged by the monitored

person. Note that the model evolves over time, and is specific to a person. Therefore, the

cloud layer continuously updates the model and periodically sends it to the edge server.

4.3 Numerical Results

In this section, we provide extensive results assessing the performance of the proposed system

and optimization framework. To assess the accuracy, the features extracted through the PPG

sensor are compared to a ground truth. We first calculate the total variance of RMSE to

determine errors in the sensor with different activities and different PPG sensor’s current

levels. Figure 4.8 shows that the variance decreases when the current level is increased.

The variance increases in strenuous activities, such as “Jogging” or “Running” due to noise

caused by motion artifacts. Using the total variance of RMSE, we model the probability

of misdetection in abnormality to follow a Gaussian distribution. PDF of two activities is

Figure 4.8: (a) Total Error variance for activity X and current level U . (b) Error probability
for activity X and current level U with maximum RMSE = 2

shown in Figure 4.9. Higher values of variance in lower current levels resulted in higher values

of probability of error (e.g., Perror in Eq. 4.1). Figure 4.9 shows the PDF of “Sitting” and

“Running” with the calculated error variance. Higher values of variance in lower current
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levels lead to higher values of the error probability Perror. The shaded regions in Figures

4.9 (a) and 4.9 (b) correspond to Perror with a threshold of RMSE, T = 2. Decrease in

probability of error with higher current level during vigorous decreases is more evident. In

addition, Perror is one during “Running” or “Jogging” with the minimum current level of

0.8mA. Thus the heart rate, respiration rate or SpO2 cannot be extracted from the acquired

signal due to the vigorous movements of the subject. 3.5mA is the lowest acceptable current

level for activities such as “Running” or “Jogging”.

Figure 4.9: Error probability when RMSE = 2 for different current levels during two states:
(a) sitting, (b) running

Myopic Strategy: First, We evaluate the myopic strategy presented in Section 4.1.2. We

first monitor a healthy individual for 24-hour. 3D acceleration signal is used to continuously

estimate the user’s physical activity. The accelerometer sensor is placed at the user’s hand

and hand movements are tracked to extract user’s steps. The acceleration signal is filtered,

mitigating ambient noise, and steps are counted in each time interval. Moreover, when the

user is still (i.e., no step is detected), the orientation of the user is leveraged to differentiate

sitting and sleeping.

First, we set T = 2 to be the predefined threshold of the RMSE. We then calculate the

error probability for all possible power levels. The myopic algorithm chooses the lowest

power level that satisfies the maximum misdetection probability PUB calculated in Equation

4.14. Vigorous activities necessitate accurate monitoring which leads to choosing higher

power levels. In contrast, lower power levels can satisfy the same constraint on the proba-
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bility of error in activities such as, sleeping or sitting. In the results, we set the maximum

probability of error to ζ = 0.17 and set the weights as γ1 = 0.25, γ2 = 0.35, γ3 = 0.4. Us-

ing these weights, we determine the mean and variance of abnormal vital signs for each

activity. In the considered case and chosen parameters, the aggregate of normal vital

signs y follows the distribution N (µn, σn) with µn = {57.72, 60.43, 74.29, 83.97, 91.53} and

σn = {0.25, 0.73, 1.17, 1.45, 0.62} in the order of “Sleeping”, “Sitting”, “Walking”, “Jogging”

and “Running”, respectively. Abnormal vital signs follow the distribution N (µa, σa), where

we set µa = {56.83, 61.07, 74.15, 81.50, 97.00} and σa = {2.02, 0.71, 2.29, 1.67, 2.88}, respec-

tively, and each element of the vectors corresponds to a different activity as indicated earlier.

The threshold τ defined in Equation 4.5 is the intersection of two Gaussian distributions

corresponding to normal and abnormal vital sings. The Cumulative Distribution Function

(CDF) for abnormal vital signs is calculated with τ = {57.20, 60.73, 72.76, 82.68, 89.58}.

Based on these parameters, the probability P(β | X =x) = {0.57, 0.68, 0.72, 0.76, 0.99} is

then derived according to Equation 4.5. Assuming the predefined threshold ζ = 0.17 in error

probability of sensor and P(β | X =x), the new threshold is set for the probability of misde-

tection to fulfill the upper bound θ = ζ × P(β | X =x) (see Equation 4.14). The threshold

θ = {0.09, 0.11, 0.12, 0.13, 0.17} is the final vector corresponding to the desired upper bound

of misdetection probability PUB in the order of “Sleeping”, “Sitting”, “Walking”, “Jogging”

and “Running”, respectively.

We first evaluate myopic method to monitor a subject for 24 hour. We monitor their activity

and compare constant power consumption with myopic method. The user’s physical activity

is estimated using the 3D acceleration signal. Placing the accelerometer sensor at the user’s

hand, we use hand movements to extract user’s steps. The acceleration data is filtered,

and steps are counted in each time interval. In addition, when no steps are detected, the

orientation of the user is leveraged to differentiate between sitting and sleeping activities.

Figure 4.10 (a) shows the activity level labeled “Sleeping”, “Sitting”, “Walking”, “Jogging”
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Figure 4.10: 24-hour health monitoring of a healthy person. (a) user’s activity level. (b)
sensor’s sensing power consumption. (c) Error probability in abnormality detection expected
regarding the user’s activity. The red line, yellow line and blue line indicate the baseline of
highest, lowest and our proposed platform sensing power consumption, respectively.

and “Running” as {1, 2, 3, 4, 5} respectively.

Considering T = 2 as the predefined threshold of RMSE, we calculated the error probability

for each current level. At each given time, based on the activity level, we are able to choose

the lowest current level that satisfies the misdetection probability PUB shown in Equation

4.14. High activity levels necessitate accurate monitoring that require choosing high current

levels.

In contrast, low activity levels, can fulfill the same threshold of probability of error with

lower current levels. In the experiment shown in Figure 4.10 (a), we set the maximum

probability of error to ζ = 0.17 and set the weights as γ1 = 0.25, γ2 = 0.35, γ3 = 0.4. In

the results, we define the mean and variance of abnormal vital signs for each activity. In

particular, the aggregate of normal vital signs y follows the distribution N (µn, σn) with

µn = {57.72, 60.43, 74.29, 83.97, 91.53} and σn = {0.25, 0.73, 1.17, 1.45, 0.62} in the order of

“Sleeping”, “Sitting”, “Walking”, “Jogging” and “Running”, respectively.

In case of abnormal vital signs, y followsN (µa, σa) with µa = {56.83, 61.07, 74.15, 81.50, 97.00}

and σa = {2.02, 0.71, 2.29, 1.67, 2.88}, respectively. The threshold τ in Equation 4.5 is
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the intersection of two Gaussian distributions for each activity. The probability of ab-

normal vital signs is calculated using the Cumulative Distribution Function (CDF) with

τ = {57.20, 60.73, 72.76, 82.68, 89.58}. Based on this parameters, the probability P(β |

X =x) = {0.57, 0.68, 0.72, 0.76, 0.99} is then calculated according to Equation 4.5. Based

the predefined threshold ζ = 0.17 in error probability of sensor and P(β | X =x), we

calculate the new threshold for the probability of misdetection to fulfill the upper bound

θ = ζ × P(β | X =x) (see Equation 4.14). The threshold θ = {0.09, 0.11, 0.12, 0.13, 0.17}

corresponds to the desired upper bound of misdetection probability PUB for each activity.

Figure 4.10 (b) illustrates the comparison between our proposed methodology, and static

current levels corresponding to the lowest and the highest sensing power. The lowest sensing

power consumption in the sensor leads to unacceptably high error probability, while the

highest current level leads to an excessively high energy consumption. During the 24-hour

experiment, we measured 5983.4J and 7721.4J consumed by the lowest and highest sens-

ing power, respectively. Our energy efficient algorithm reduced the energy consumption to

6417.5J. Average sensing power consumption of 74.32mW was observed which amounts to a

16.9% reduction compared to 89.43mW of the highest sensing power level. Figure 4.10 (c)

shows the error probability associated with each current level. Note that using the lowest

current level leads to an unacceptable Perror = 1 during “Jogging” and “Running”.

Figure 4.11 illustrates the trade-off between the constraint on the maximum error probability

and overall energy consumption in a 24-hour temporal period. The myopic algorithm can

detect abnormalities with maximum tolerance threshold of RMSE = 50 by choosing the

lowest current level. This setting leads to an energy expense equal to 5983.4J. Setting the

maximum error tolerance to RMSE = 0.1 or less, results in choosing the highest current

level with the lowest probability of error inevitably. In this case, the total sensing energy

consumption during a 24-hour period is equal to 7721.4J. Values between these two extreme

cases influence the maximum probability of error and the sensing energy consumption in
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Figure 4.11: Sensing energy consumption as a function of maximum probability of error with
different RMSE levels.

the sensor layer. For a specific value of the RMSE threshold, increasing the maximum

probability of error will let the system monitor the subject less accurately using a lower

current level. Therefore, the sensing energy consumption in the sensor will decrease.

MDP Strategy: The myopic strategy only considers the instantaneous state of the system.

Intuitively, a strategy incorporating a longer-term evaluation of the outcome of actions can

control the current level to avoid outage, which inevitably reduces performance, saving energy

until the subject is more likely to charge. We emphasize that this planning is performed on

a non-homogeneous model, where transition probabilities are a function of the time of the

day. This further emphasizes the need for a wise planning aligning energy availability with

periods of the day most likely presenting vigorous activities. We further remark that such

planning is informed by highly personalized models, capturing the dynamics of the specific

person wearing the sensor.

Figure 4.12 (a-d) shows the transition probabilities over the 24% for one of the monitored
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subjects obtained training the model over one week. This specific subject’s activities mostly

included sleeping between 12 AM to 6 AM, with a probability of 0.937 to remain in the

sleeping state and 0.063 of transitioning to the sitting state. The probability of staying

in sleeping state reduces to 0.58 and transitioning to sitting state increases to 0.42 in the

temporal period between 6 PM to 12 AM because of decrease in sleeping state. In addition,

Markov chain for each period can be updated after each week. Figure 4.13 shows the transi-

tion probabilities extracted between 12 PM to 6 PM trained over a one month period. The

individual has a decrease in probability of staying in sleeping state from 0.65 to 0.50 in the

span of four weeks. Meanwhile, the probability of remaining in the sitting increased from

0.34 to 0.44.

(a) 12 AM to 6 AM, first week (b) 6 AM to 12 PM, first week

(c) 12 PM to 6 PM, first week (d) 6 PM to 12 AM, first week

Figure 4.12: Markov chain of activities of a subject in a 24 hour period with average transition
probabilities calculated from first week in one month

Figure 4.14 illustrates how the activity of this specific individual evolves over one month.
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(a) 12 PM to 6 PM, first week (b) 12 PM to 6 PM, second week

(c) 12 PM to 6 PM, third week (d) 12 PM to 6 PM, fourth week

Figure 4.13: Markov chain of activities of a subject between 12 PM to 6 PM with average
transition probabilities calculated from weekly activities in the span of four weeks

For instance, the subject had a decline in walking time from the first week to the third week,

but then an increase in her fourth week. In contrast, the sleeping state had an increase of

8% from week one to week three and dropping by 4% on week four. Clearly, these changes

should be reflected in the control strategy and planning.

Figure 4.15 compares the myopic and MDP strategies for the aforementioned subject over a

48 hours monitoring period. We set the threshold for the probability of error (e.g. ζ in Eq.

4.14) to 0.002. The MDP cost function, which captures a trade-off between the upper-bound

misdetection probability and energy consumption, is a function of the weight 0 ≤ ω ≤ 1. If

the value of ω is close to zero, the control strategy tends to privilege lower current levels and

higher probability of misdetection. In contrast, a value of ω close to one pushes the actions
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Figure 4.14: Weekly activity percentage for one month

to compromise energy saving to achieve a lower error probability. In this experiment, we set

ω = 0.176 to have the closest probability of misdetection to that of the myopic strategy in

the previous results.

Figure 4.15 (b) shows the optimal current level selected by the myopic and MDP methods.

Figure 4.15 (b) and (c) show the actions and dynamics of the battery state induced by the

two methods actions, respectively. The system tracks the battery state for both methods

with 30 being the highest charging state. Based on the optimal action taken, the battery

state will be updated at each given time during sensing. During each time the user charges

the battery the sensing stops and the state of battery will be updated.

Figure 4.15 (d) shows the probability of error corresponding to current level chosen in optimal

current level chosen based on Figure 4.15 (b). At each given time, the system chooses an

optimal action based on the user’s activity. Myopic strategy chooses the optimal action by

considering the current activity of an individual. However, MDP strategy plans based on the

current state of the battery and the activity of a user. Therefore, the battery is drained after

a longer time in MDP method compared to myopic. Myopic method chooses the optimal

action without taking into account that the action chosen will drain the battery faster and

this will increase the possibility that the battery will be drained during a strenuous activity

such as, walking, jogging and running. the battery will not be charged till the user is sleeping

or sitting. Myopic method chooses a higher current level that will have lower probability

of misdetection compared to MDP in a short term. However, the frequency of necessity to
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Figure 4.15: 48-hour health monitoring of a healthy person during first week of monitoring.
(a) user’s activity level. (b) sensor’s sensing power consumption. (c) battery state tracking
based on sensor’s power consumption. (d) Probability of error expected regarding the user’s
activity. The red line, and blue line indicate the myopic and MDP methods, respectively.

charge the battery will be decreased in MDP resulting in using the resource of the battery

more wisely. For instance, between 6 PM to 10 PM of the first 24 hour monitoring, the user

was walking but due to drainage of battery, sensor was in sleeping mode. However, MDP

strategy chose the current level U1 and monitored the user for longer time.

To update the activity model, the system retrains the MDP model weekly. MDP model

based on activity history from the first week is used to find the optimal solution in Figure

4.16. Respectively, Figures 4.17 and 4.18 show the results of 48 hours of monitoring during

third and week of results starting at 10 PM and ending 48 hours later.

Figure 4.19 shows the probability of error over the entire day as a function of the average

energy consumption averaged over a month. We compare the three methods – myopic, MDP

and static power allocation.
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Figure 4.16: 48-hour health monitoring of a healthy person during second week of monitoring.
(a) user’s activity level. (b) sensor’s sensing power consumption. (c) battery state tracking
based on sensor’s power consumption. (d) Probability of error expected regarding the user’s
activity. The red line, and blue line indicate the myopic and MDP methods, respectively.

Figure 4.17: 48-hour health monitoring of a healthy person during third week of monitoring.
(a) user’s activity level. (b) sensor’s sensing power consumption. (c) battery state tracking
based on sensor’s power consumption. (d) Probability of error expected regarding the user’s
activity. The red line, and blue line indicate the myopic and MDP methods, respectively.

46



Figure 4.18: 48-hour health monitoring of a healthy person during fourth week of monitoring.
(a) user’s activity level. (b) sensor’s sensing power consumption. (c) battery state track-
ing based on sensor’s power consumption. (d) Error probability in abnormality detection
expected regarding the user’s activity. The red line, and blue line indicate the myopic and
MDP methods, respectively.

Note that the sensor has 5 current levels, that is,

U ∈ {0.8 mA, 3.5 mA, 6.2 mA, 9.2 mA, 12 mA}

.

We take into account the time slots in which the sensor is off due to battery outage, impacting

the average energy consumption and the probability of misdetection in abnormality. Note

that the highest current level (e.g., 12 mA) consumes the highest amount of energy, but

quickly drains the battery, thus inducing outage approximately every 6 hours. Note that

due to the frequent outages, and thus the frequent 1.5 hours charging periods, the average

energy consumption over the 24 hours is smaller than in other current levels. However, during

the charging mode, the probability of abnormality misdetection is equal to one, resulting to

a large misdetection probability. Using a constant current level of 0.8 mA increases the
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Figure 4.19: Average of probability of error as a function of energy consumption (KJ) in one
month for one subject. Comparison between three methods of MDP, myopic and static power
consumption.Myopic method is evaluated based on ζ ∈ {0.0002, 0.002, 0.045, 0.07, 0.1} in Eq.
4.14. MDP is evaluated based on, ω ∈ {0.172, 0.176, 0.177, 0.188, 0.3, 0.4, 0.5, 0.6, 0.7} in Eq.
4.20. Static power consumption is evaluated based on current levels U ∈ {0.8, 3.5, 6.2, 9.2, 12}
mA

average 24 hour energy consumption, but leads to a low probability of detecting anomalies

in difficult states. The dynamic context-aware selection operated by the myopic and MDP

frameworks is therefore instrumental to achieve good performance.

To derive the MDP-based strategy we set the parameter of cost function (e.g. ω in Eq.

4.20 to {0.172, 0.176, 0.177, 0.188, 0.3, 0.4, 0.5, 0.6, 0.7} to determine the importance of energy

consumption over error probability. Comparing MDP with myopic and constant current

level, we see a great reduction in energy consumption when the probability of error is around

0.25. In order to compare the battery lasting for the three methods, we chose the parameters

to ssatisfy the fixed probability of error 0.26. In this case, the parameter for MDP cost

function (ω = 0.176), parameter for upper bound probability of error in myopic method

(ζ = 0.1) and static current level is chosen as 6.2 mA.

Using the settings mentioned above, we calculated the average time between consecutive bat-

tery outages and compared the methods in Figure 4.20. We also included the battery lasting
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Figure 4.20: Average Battery lasting during one month

using highest and lowest current level in the sensor (e.g., 12 mA and 0.8 mA accordingly).

Results indicate that MDP achieves a high efficiency than using the lowest current level.

This is because MDP policy chooses the sleeping mode in the sensor when the battery has

very low charge leading to longer periods between battery outages. Results show that the

MDP doubles the battery duration compared to the myopic strategy.

We observe a considerable increase of battery lasting in the third week granted by the myopic

approach compared to the other weeks for this specific user. The increase is motivated by

the evolution of the statistics of the activity pattern, illustrated in Figure4.14. The user

has an increase in the fraction of time spent sleeping and sitting, which grow to 46% and

24%. Therefore, based on our model, this user had a higher probability to charge her

wearable. Consequently, the battery was fully charged more often compared to other weeks.

Furthermore, during these activities the sensor can use a lower power level, resulting in a

longer battery duration even when using a simple approach.

Figure 4.21 shows the comparison between MDP, myopic and static power allocation strate-

gies averaged over 14 subjects. We set a fixed value of average probability of error to 0.32.
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Figure 4.21: Average probability of error as a function of energy consumption (KJ)
in one month averaged over 14 subjects. Comparison between three methods of
MDP, myopic and static power consumption. Myopic method is evaluated based on
ζ ∈ {0.0002, 0.002, 0.045, 0.07, 0.1} in Eq. 4.14. MDP is evaluated based on ω ∈
{0.172, 0.176, 0.177, 0.188, 0.3, 0.4, 0.5, 0.6, 0.7} in Eq. 4.20. Static power consumption is
evaluated based on current levels U ∈ {0.8, 3.5, 6.2, 9.2, 12} mA

The MDP strategy consumes 3.7 KJ over one month, while myopic method consumes 4.42

KJ and the static power allocation strategy consumes 4.4 when using current level 9.2 mA.

Therefore, MDP has an average of 12% reduction in energy consumption fulfilling the same

probability of error compared to myopic and static power consumption.
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Chapter 5

Bandwidth Efficiency in Edge

Computing

One of the many challenges in developing clinical-level monitoring systems, is that such sys-

tems often require the execution of complex algorithms analyzing the morphology of biosig-

nals, rather than tracking the simple features that can be extracted by resource-constrained

sensors [52, 35]. However, while wearable devices do not possess the needed computing ca-

pacity to analyze these signals, transmitting the raw signal to compute-capable devices – as

in edge computing frameworks – requires a stable and high capacity channel, which may not

be available in real-world settings.

In this chapter, we focus our attention on electrocardiogram (ECG) signals used to detect

early signs of heart arrhythmia to prevent heart failures. Specifically, the 4 different classes of

heart arrhythmia we aim to detect in this work are Ventricular Ectopic Beat, Supraventricular

Ectopic Beat, Fusion Beat, and Unknown Beat. Importantly, this difficult detection task

necessitates extensive computing capacity due to the high complexity of the classification

algorithms.
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Recent work in this area and application focuses on offline classification [34, 2, 10], where

the acquired signal is assumed to be available at the device executing the algorithm. Due to

the limited computational capacity of wearable sensors, most prior work has assumed local

storage of the signal for later processing on fixed machines. In contrast, in this chapter we

focus on real-time monitoring [47], where classification is necessarily performed at a remote

device, which is interconnected to the sensor by means of a communication channel - often

composed of wireless link and, possibly, a series of wireline links. Herein, we specifically

consider an edge computing system, where a compute-capable device located at the network

edge server, assists the sensor in performing the classification task. In such a setting, the

volatility of the wireless channel capacity may impair the ability of the sensor to timely

deliver ECG segments to the edge server for analysis.

To facilitate this transfer, we propose a form of adaptive compression. Unlike prior contri-

butions on ECG compression [30, 19], the methodology we propose is semantic, meaning

that the representation is tuned to the classification goal, rather than aiming at the accurate

reconstruction of the signal. Specifically, we propose to use Sequentially Hypothesis Testing

[69] to enable the collaborative selection of an optimal set of wavelet coefficients associated

with ECG cycles. Guided by the output of the classifier – which is repeatedly executed as

new coefficients are received – the Sequential Hypothesis Testing framework guides the selec-

tion of the coefficients to be requested by the edge server. To the best of our knowledge, this

chapter is the first contribution proposing the use of this family of algorithms in sensor-edge

server systems for healthcare.

Notably, one of the main benefits of the technique we propose is to make the representation

of ECG segments specific to the characteristics of the signal in the interval. For instance,

the set of coefficients that are sent by the end of the iterative process might be different for

abnormal and abnormal cycles, as well as, for different subjects.

In summary, this chapter makes the following contributions:
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• We propose a an iterative and “semantic” form of compression guided by a Sequential

Hypothesis Testing core and based on a wavelet representation of an ECG signal.

• We develop a Convolutional Neural Network model to detect 4 types of arrhythmia

from the ECG signal harvested by a sensor. The CNN classifier achieves 4% of False

Positive Rate in the detection of abnormal heart cycles when using the original ECG

signal.

• We present and discuss extensive results based on real-world ECG trials.Two sets of

data, the MIT-BIH arrhythmia database and MIT-BIH Supraventricular arrhythmia

database(MIT-SVDB), are used to evaluate the system we propose. These data sets

involve 63 subjects to train the Sequential Testing model and 14 subjects to test the

proposed system. Numerical results show that the sequential hypothesis testing selects

different sets of coefficients for normal and abnormal ECG cycles. In addition, we

show that the signal representation is personalized, as the system selects different sets

of coefficients for different patients. Results over 14 subjects indicate that average

channel usage is reduced by up to 43% to non-adaptive optimization to achieve the

same accuracy of classification.

The rest of the article is organized as follows. Section 5.1 describes the problem formulation

and high-level system architecture. Proposed solution using Sequential Hypothesis Testing

is presented in Section 5.2. Details of ECG arrhythmia classification proposed in solution is

described in Section 5.3. Section 5.4 presents and discusses numerical results.

5.1 System Overview

We consider an edge computing-based system, where a wearable sensor collecting an ECG

signal is used to detect abnormal heart cycles. The sensor records and transmits the ECG
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signal to the edge server, which executes the classification algorithm. We remark that while

edge computing overcomes the energy and computing capacity limitations of wearable sen-

sors, its use necessitates the transmission of the acquired signal over a wireless channel. Due

to capacity constraints and fluctuations that affect wireless channels, the transfer of the raw

signal might be unfeasible. Thus, we first need to identify a suitable representation of the

signal. We propose to use a wavelet based representation, where wavelet coefficients are

transmitted in lieu of the signal time series for each heart cycle. As transmitting the coef-

ficients over the channel might exceeds its capacity, we use Sequential Hypothesis Testing

to build a collaborative and sequential compression strategy between the sensor and the

edge server to control the subset of coefficients sent by the sensor. Then, the edge server

reconstructs the signal based on the received coefficients and executes the classifier. We use

a Convolutional Neural Network (CNN) to classify abnormal ECG cycles from normal cycles

using the received coefficients. Figure 5.1 depicts the schematics of the proposed system.

Intuitively, the set of coefficients influences the accuracy of the reconstruction at the edge

server and, thus, has an impact on the accuracy of the classification’s output for each cycle.

The core of our framework is an optimization problem whose associated cost functions reflect

channel usage and classification accuracy. To describe the former measure, we estimate the

channel usage as a function of the subsets of coefficients.

The sensor-edge server system uses an iterative procedure, which we realize by means of

a Sequential Hypothesis Testing engine, to determine how many and which coefficients are

transmitted for each ECG cycle.

Let’s focus on an individual ECG cycle, which is represented using a series of wavelets

coefficients’ sets C1, C2, . . . , Cn, and suppose that the sensor transmits the set C1 first. The

edge server reconstructs the signal, applies the classification algorithm, and based on its

output uncertainty decides to request more coefficients. Then, the sensor transmits the set

C2, and this process continues till the desired accuracy of classification is fulfilled. At time
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slot j, if the sequence of coefficients C = {C1, C2, . . . , Cj} achieves the desired accuracy of

classification γ(C) then the process is terminated.

Clearly, while transmitting more coefficients reduces the error in the reconstructed signal, it

also increases channel usage. Here, channel usage is computed considering that transferring

coefficient Cj : ∀j ∈ {1, . . . , k} requires Bj number of bits. As the full representation of the

signal requires B bits using all the coefficients.

The general optimization problem can be defined as the following,

k = maximize γ(C1, . . . , Cj)
j

subject to
Bj

B
≤ θ (5.1)

Where k determines the optimal number of coefficients to reach a desired accuracy of classifi-

cation. In this case, channel access is the ratio of bandwidth used by k number of coefficients

over the number of bits to represent the total number of possible coefficients as B.

The problem, then, is to find for each ECG cycle the sequence that allows accurate classi-

fication while satisfying the requirements for channel usage. Notably, the sequence is not

the same for each cycle, as it depends on its features, and cannot be predetermined. The

objective of the Sequential Hypothesis Testing framework is to determine that sequence in

real-time based on the outcomes of the classifier in each cycle. For instance, the most efficient

sequence might be different for normal vs abnormal cycles, and for different subjects.
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Figure 5.1: High-level schematics of the proposed System

5.2 Optimal Solution

In this section we provide the optimal solution to the problem we presented in Section 5.1. In

Section 5.2.1, we propose Sequential Hypothesis Testing as an approach to solve the problem

of determining the optimal stopping time, intended as the iteration at which the edge server

does not request more coefficients to the sensor. Specifically, we adopt the optimal stopping

time based on calculating the log-likelihood ratio of the coefficients, and prove that an

optimal stopping time can be reached having statistical information of the signal. Section

5.2.2 discusses wavelet transform as a way to represent ECG based on number of coefficients.

5.2.1 Sequential Hypothesis Testing

Let C1, C2, ..., Cj be a finite sequence of j coefficients to represent the signal at the edge

server. As we explained in Section 5.1, the goal is to achieve the desired accuracy while

saving communication bandwidth. To achieve this, the edge server and the sensor determine

the optimal number of coefficients to represent a signal with a desired threshold of accuracy

of classification. In the case of not fulfilling a threshold of accuracy, the edge server will

request the sensor to transmit additional coefficients to reconstruct the signal accurately,
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since if too few coefficients have been transmitted the edge device is not able to reconstruct

the signal adequately.

Typically, coefficients leading to high signal reconstruction accuracy require a larger amount

of channel usage. Hence it is critical to choose the coefficients that minimize the channel

access while still being able to provide the desired accuracy. Figure 5.2 shows how the

system works. Suppose at each given time that the sensor transmits the coefficient Cj where

j ∈ {1, 2, . . . , n} with n being the maximum number of coefficients, we observe an accuracy

of γj with channel access of
Bj
B

. During the time slot j+ 1, the sensor receives feedback from

the edge server. If more coefficients are requested, then, the sensor chooses the combination

of coefficients (Cj, Cj+1) such that the accuracy of classification will satisfy a threshold while

channel access is minimized. If the desired accuracy is not met, the edge device asks for

more coefficients. The Sequential Hypothesis Testing stops at iteration k, corresponding to

k coefficients transmitted, when the threshold of accuracy is fulfilled. The accuracy of
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Figure 5.2: Proposed Sequential Hypothesis Testing method

classification is the performance of the classifier in terms of abnormality detection using the
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reconstructed signal as a function of a wavelet transform with k coefficients, more formally:

p0k(C1, . . . , Ck) = P{H(k) = H0 | C1, . . . , Ck} (5.2)

We now formally define the Sequential Hypothesis Test. Suppose that before the coefficients

are chosen, there exists a-priori probability that an abnormality is detected under hypothesis

H0 and this probability is determined. We define this a-priori probability as pj. In addition,

we also define another a-priori probability of the alternative hypothesis H1, which is defined

as 1− pj. After observing k time slots, the probability of detecting an abnormality in heart

cycles pj will be updated. According to Bayes formula the a-posteriori probability that H0

is true can be calculated as,

g0j =
pjp0j(C1, . . . , Cj)

pjp0j(C1, . . . , Cj) + (1− pj)p1j(C1, . . . , Cj)
(5.3)

In this notation, pj(C1, . . . , Cj) shows the probability density of observations from 1 to j

under the hypothesis H0. The sequence of coefficients {C1, . . . , Cj} is denoted as C for read-

ability. The a posteriori probability that alternative hypothesis H1 is true can be calculated

as follows

g1j =
(1− pi)p1j(C)

pjp0j(C) + (1− pj)p1k(C)
(5.4)

Suppose that at each given time, we want to form a sequential test such that the conditional
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probability g0k ≥ ζ.

pjp0j(C)

pjp0j(C) + (1− pj)p1j(C)
≥ ζ (5.5)

According to Equation 5.3, the fraction of a priori distribution can be written as,

p0j(C)

p1j(C)
≥ ζ(1− pj)

(1− ζ)pj
(5.6)

Note that probability of occurrence of abnormal ECG cycles is independent with respect

to the sequence of coefficients C = {C1, . . . , Cj}. Therefore, we can write the joint the

probability in Equation 5.6 as the likelihood ratio,

Λ(C) =
p01(C1)p02(C2) . . . p0j(Cj)

p11(C1)p12(C2) . . . p1j(Cj)
≥ ζ(1− pj)

(1− ζ)pj
(5.7)

We model the distribution of the abnormal ECG cycle with a Gaussian Probability Density

Function (PDF) f0 with zero mean and variance σ2
0, and normal ECG cycles with a Gaussian

distribution f1 with zero mean and variance σ2
1, we calculate the log-likelihood ratio function

for one sample x as follows:

log Λ(C) = log

{
f0
f1

}
(5.8)
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Substituting the Gaussian distribution in the log-likelihood ratio,

log Λ(C) = log

{√
2πσ2

1

2πσ2
0

e
− C2

2σ0
2+

C2

2σ1
2

}
(5.9)

= log

{√
σ2
1

σ2
0

}
− C2

2σ02
+

C2

2σ12
(5.10)

The cumulative sum of log-likelihood ratio functions over the sequence of coefficients is

computed as

Sj =

j∑
i=1

log Λ(Ci) (5.11)

= j log

{√
σ2
1

σ2
0

}
−
(

1

2σ02
− 1

2σ12

) j∑
i=1

Ci
2 (5.12)

Leveraging the Sequential probability Ratio Test (SPRT) developed by Wald [69], the optimal

stopping is achieved when

A < Sj < B : Continue sampling

Sj ≤ A : Accept H1

Sj ≥ B : Accept H0,

(5.13)

where H1 represents a normal ECG cycle detection and H0 represents the detection of

an abnormal cycle. The thresholds can be determined based on the desired probability

of detection PD and false alarm PFA. The probability of abnormality detection given the
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sequence of coefficients, C = {C1, . . . , Cj}, is R = {C : Λ(C) > exp (B)},

PD =

∫
R

p0j(C)dC =

∫
R

p0k(C)

p1j(C)
p1j(C)dC (5.14)

= Λ(C)p0j(C) ≥ exp (B)

∫
R

p0j(C) = exp (B)PFA (5.15)

Similarly with R0 = {C : Λ(C) > exp (A)},

1− PFA = 1−
∫
R

p1j(C)dC =

∫
R′
p1j(C)dC

=

∫
R′

p1j(C)

p0j(C)
p0j(C)dC =

∫
R′

Λ−1(C)p0j(C)dC

≥ exp−1(A)

∫
R′
p0j(C)dC =

1

exp(A)
(1− PD)

(5.16)

Therefore, A and B can be calculated as,

A ≈ log
1− PD
1− PFA

and, B ≈ log
PD
PFA

(5.17)

Algorithm 3 Sequential Hypothesis Algorithm: Edge Server

1: procedure Solution(C1, C2, ..., Cj)
2: Calculate Sj according to Equation 5.12
3: if A < Sj < B then
4: Send a Request to the sensor for more coefficients

5: if Sj ≤ A then
6: Return C1, . . . , Cj, normal ECG cycle

7: if Sj ≥ B then
8: Return C1, . . . , Cj, abnormal ECG cycle

9: until the system is terminated

Algorithm 3 shows the sequential hypothesis testing on the edge server to determine the
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optimal stopping time. The sensor then determines the coefficients such that it satisfies the

constrained bandwidth requirement and achieves the desired accuracy of classification.

5.2.2 Wavelet Transform

We propose Wavelet Transform as a methodology to transform the raw signal into a sequence

of coefficients. In this section, we describe how to reconstruct a signal based on accumulated

coefficients and introduce a metric to measure the difference between the reconstructed signal

and the original signal. The wavelet transform uses scalable modulated windows to convolve

the wavelet functions with the original signal. In other words, the output signal is the result

of a convolution of the raw signal with a cutting window, and the window is shifted with

every position on which the spectrum is calculated [67]. The reconstructed signal with k

optimal coefficients on orthonormal basis functions {ψi,j : i, j ∈ Z} can be written as:

x̂k =
∑
i∈k

∑
j

〈x[m], ψi,j[m]〉ψi,j[m] (5.18)

The mother wavelet ψi,j is defined as,

ψi,j[m] =
1√
2i
ψ

[
m− j2i

2i

]
(5.19)

The wavelet coefficient φk,j of signal x, then, is the projection of x onto wavelet ψi,j,

φij =
∑
m

x[m]ψk,j[m] (5.20)

Where i and j are the scale and shift parameters respectively. The Percent Root Difference

(PRD) is a metric to determine the accuracy of the reconstructed signal compared to the
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original signal, defined as follows

αk =

√√√√(∑M
m=1[x[m]− x̂k[m]]2∑M

m=1 x
2[m]

)
(5.21)

We summarize again the information flow in Figure 5.3. In this system, the ECG sensor

collects the raw data x and transmits the coefficient Cj to the edge server. The edge server

reconstructs the signal x̂j, using the accumulated coefficients C1, . . . , Cj. The convolutional

neural network classifier uses the reconstructed signal and generates the Probability Density

Function πj for arrhythmia and normal ECG signal. The output of the PDF classifier will be

used in Sequential Hypothesis Testing using Algorithm 3 to determine the optimal stopping

time. The sequential test performs the Wald test introduced in Equation 5.13 and decides

whether to send a request for more coefficients or detect abnormal vs arrhythmia ECG cycle.

Meanwhile, the sensor receives the request from the edge server to determine the specific

coefficient to be transmitted. The sensor chooses the coefficient such that the accuracy

of classification in the edge is maximized while the bandwidth consumption is less than a

desired threshold.

ECG sensor
Sequential
Hypothesis
Test

DWT IDWT CNN
x(t) Cj x̂j πj

Sensor Layer Edge Layer

Request for Coefficients/Stopping time

Figure 5.3: Block Diagrams of the System
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5.3 Arrhythmia Classification

In the previous sections we assumed a classifier exists at the edge server, supporting both the

main task of the system (cycle classification), and the selection of the coefficients. Herein,

we specify the architecture of the classifier we used in our experiments.

We use a one-dimensional convolutional neural network (CNN) to classify ECG cycles into

five different classes, presented by Takalo-Mattila et al. [60]. With CNN based classification

we are able to minimize the need of feature engineering and utilize filtered ECG as an

input signal for the classifier. In our approach, the labeled ECG heart cycles are fed to the

classification model together with heart cycles before and after the labeled heart cycle. This

is how our classifier can automatically utilize both morphological features of the heart cycle

and temporal relation between its neighboring heart cycles.

5.3.1 Data

Two different clinical ECG signal databases are used in this study, namely, MIT-BIH ar-

rhythmia database (MIT-BIH) and MIT-BIH Supraventricular Arrhythmia database (MIT-

SVDB) [45, 25, 24]. All datasets used in this study are shown in table 5.1. The MIT-BIH

database contains 48 samples of thirty minutes obtained from two-channel ECG recordings

from a total of 47 patients, with a sampling rate of 360 Hz. The MIT-SVDB dataset contains

78 samples of thirty minutes ECG recordings sampled at 128 Hz. With both databases we are

using the recommendation of the Association for the Advancement of Medical Instrumenta-

tion (AAMI) to arrange MIT-BIH and MIT-SVDB arrhythmia labels into five classes, which

are Normal (N), Supraventricular Ectopic beat (SVEB), Ventricular Ectopic beat (VEB),

Fusion Beat (F) and Unknown beat (Q) [18]. Figure 5.4 shows the raw signal of an ECG

cycle with Ventricular Ectopic Beat.
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Figure 5.4: Raw ECG signal with Ventricular Ectopic Beat cycle

We remove 4 ECG records in the MIT-BIH database as they contain paced beats. The MIT-

BIH database is divided into training and test dataset using the convention presented by De

Chazal et al. [17]. In this dataset we divide patients into training and test sets, so that no

patient is present in both sets. Hence, we can also estimate the generalization capability of

the classifier more realistically.

In addition to MIT-BIH arrhythmia database, MIT-SVDB is used for evaluating the classi-

fication performance. With this dataset, we can test how our classification approach would

work in practical clinical work. The classifier is trained using dataset DS1, whose subset

DS11 is used in actual training and DS12 is used in the validation phase. Finally, the clas-

sifier is evaluated using datasets DS2 and SVDB. Each of these datasets contains ECG data

from different patients. Specific patient numbers in MIT-BIH based datasets are the same

that were used by Takalo-Mattila et al. [60]. In SVDB dataset, all the patients from SVDB

database are used.
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Table 5.1: Databases and datasets in the study

Database Dataset Number of patient files

MIT-BIH [43]

DS1 22
DS11 11
DS12 11
DS2 22

MIT-SVDB[44] SVDB 78

5.3.2 Classification approach

There are two main steps in our arrhythmia classification approach. At first, the quality of

ECG signal is improved using a lightweight preprocessing. Secondly, the classification model

is trained using preprocessed ECG samples.

In the preprocessing phase the time series ECG signal is filtered using:

• 0.5 Hz high pass filter for removing baseline wander

• 100 Hz low pass filter for removing electromyographic (EMG) noise

• 60 Hz band stop filter for removing power line noise

Eventually the ECG signal is normalized to range [-1,1] after filtering. Filtered and normal-

ized time series ECG signals are segmented into a set of heart cycles, where one segment

contains a set of heart cycles with 500 samples before and 500 samples after R-peak that

represents typically the largest wave in QRS complex. Using the datasets presented in Sec-

tion 5.3.1 one segment contains three to seven separate heart cycles. Figure 5.5 shows the

layers of the CNN architecture used in the system.

The CNN architecture in this thesis contains four convolutional layers and a fully connected

layer. The set of heart cycles is used as input data for a one dimensional convolutional
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Figure 5.5: Architecture of CNN

layer. Convolutional neural networks are often used in image analysis, but can be utilized

also to learn features from other types of signals, such as ECG data. In a convolutional

layer, the input is modified by the set of filters that slides through the whole input of layer.

Max pooling and dropout layers are used between convolutional layers, as their role is to

prevent overfitting and computational cost. Max pooling reduces the size of the input by

taking the maximum value from the filter region and creates a new output smaller than the

original input. In dropout layers some neurons are randomly dropped in the training phase,

to prevent overfitting. The dense layer finally performs the actual classification based on the

features learned in previous convolutional layers. The fully connected layer has 512 neurons

in our architecture, and the probability distribution of the heart cycle class is calculated

using the softmax function and the predicted class is calculated using the argmax function.
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5.4 Experimental Results

In this section, we illustrate the performance of the proposed system. Figure 5.6 evaluates

the PRD of DWT with different number of the coefficients defined in Equation (5.21), where

we used different combinations of DWT coefficients and reconstructed the signal based on the

information those coefficients provide. We, then, calculate the PRD according to Equation

(5.21), where the reconstructed signal degradation is compared to the original raw signal.

Intuitively, increasing the number of coefficients helps in reconstructing the signal more

accurately, which results in a decreased PRD. Since different combinations of coefficients

create different error values, we used bar plots to show the range of PRD changes compared to

the average error as a function of the number of coefficients. As it can be seen, the maximum

number of DWT coefficients reconstructs the signal with an error close to zero. Thus the

transmission of the full set enables accurate reconstruction, which leads to performance

analogous to those obtained with the original signal. However, we are interested in evaluating

the impact of transmitting a lower number of coefficients on signal distortion. We remark

that the DWT of a signal is calculated by using a series of filters as shown by Lee et al. [36].

The signal is decomposed into high and low frequency ranges and then down-sampled in a

cascading fashion. As an example, results show that with k = {1, 2, ..., 7} coefficients, we

can achieve a mean PRD percentage of {90%, 79%, 68.3%, 56%, 42%, 25%, 8.4e− 14%}.

We divide our experiments into two phases. The first one is the training phase and the

second one is the testing phase. During the training phase, the CNN classifier is evaluated

with different coefficients. Eventually, the Testing phase evaluates Sequential Hypothesis

Testing using the results obtained through the training phase. In the following we describe

better each phase.

Training Phase: in this phase, we use the SVDB data set to train the algorithm. In total

63 patients were used to calculate the positive predictivity of normal ECG cycles, SVEB and
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Figure 5.6: PRD of the reconstructed signal compared to the original signal

VEB. We recall that the positive predictivity is defined as rate of true positives by total true

positives and false positives, more formally

Pp =
TP

TP + FP
. (5.22)

This metric shows the performance of the model to predict the positive class. Values close

to 1 indicates an accurate model, while lower values show an increasing number of False

Positives classifications. As we increase the number of coefficients, the average positive

predictivity for normal ECG, and abnormal cycles with SVEB and VEB diseases increases.

Results from the Training phase on the SVDB dataset are shown for the following number

of DWT coefficients k = {1, 2, 3, 4, 5, 6, 7}.

In this case, Pp ranges in {0.886, 0.887, 0.89, 0.892, 0.895, 0.898, 0.899}. In addition, SVEB

positive predictivity with mean,

{0.14, 0.21, 0.25, 0.27, 0.29, 0.3, 0.29}

,
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and VEB is {0.38, 0.49, 0.56, 0.64, 0.69, 0.7, 0.7}.

The goal of the optimization problem in Equation 5.1 is to minimize the bandwidth us-

age while targeting for a threshold of accuracy classification. Accuracy targets trained

for the training data set with coefficients varied from 1 to 7 while ranging in the set of

{0.872, 0.873, 0.874, 0.876, 0.879, 0.88, 0.88}.

The false positive rate (FPR) is defined as

FPR =
FP

TN + FP
,

which is the ratio of false positives divided by total true negatives and false positives(total

actual negative events). The FPR normal metric is

{0.93, 0.914, 0.891, 0.866, 0.84, 0.816, 0.8},

and FPR Sup is

{0.015, 0.016, 0.017, 0.017, 0.017, 0.017, 0.019},

and FPR Vent is

{0.002, 0.002, 0.003, 0.003, 0.004, 0.005, 0.006}.

Figure 5.7 shows the performance of CNN classifier using different combinations of DWT

coefficients. What is interesting to see is that although a larger number of coefficients

yields better results, even with a reduced number of coefficients, the results are reasonably

high. Moreover, FPR normal achieves almost identical results with respect to the positive

predictivity, while FPR Sup and FPR Vent have almost zero false positive rate regardless of

the number of coefficients.

Testing Phase: We used the remaining 14 subjects in the SVDB dataset to evaluate the
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(a) (b)

Figure 5.7: Results from the training phase. In Figure 5.7a We show the Positive Predictivity
and the model accuracy. It is clear how the normal ECG can be recognized well regardless of
the number of coefficients, while Supraventricular and Ventricular ECG states benefits from
more coefficients to reconstruct the signal. Figure 5.7b shows instead the FPR.

Testing phase. In this case, 2/3 of each patient’s data is used to calculate the variance of

probability in the CNN classifier. The Variance of probability distribution over the different

classes of abnormal and normal ECG cycles can be used to derive the Gaussian distribution

defined in Equation 5.10. Using all combinations of the coefficients, the variance of proba-

bility for normal cycles is compared to 4 arrhythmia classes, including Ventricular Ectopic

Beats(VEB), Supraventricular Ectopic Beats(SVEB), Q beats and F beats. We plot in Fig-

ure 5.8 the variance of corresponding cycles for a single user. To determine the variance

of probability in CNN classifier, we use the personalized statistical information to test the

Sequential testing for the rest of 1/3 of data.

Using the data from the user in Figure 5.8, we calculate the optimal stopping time for a single

abnormal ECG cycle, which we show as an example in Figure 5.4. This raw signal includes an

ECG cycle with Ventricular Ectopic Beat. During the first time slot, the sensor chooses the

first coefficient that maximizes the accuracy of classification in the edge server while satisfying

a threshold of bandwidth usage. Figure 5.10a shows the reconstructed signal in the edge

server using the first coefficient that was transmitted from the sensor. While receiving the
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Figure 5.8: Convolutional Neural Network performance as a function of DWT coefficients
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Figure 5.9: Bandwidth percentage as a function of DWT coefficients

first coefficient, edge server classifies the reconstructed signal using CNN trained during the

training phase. The classifier outputs a model’s prediction probability, following which we

calculate the log likelihood of the corresponding output of the CNN classification. Sequential

Hypothesis Testing evaluates classifier’s probability using Wald stopping time, as we already

discussed in Section 5.2.1. It determines whether more coefficients are needed in order to

correctly classify the data, or it detects abnormal/normal ECG cycle based on the collected

coefficients. In this case, we set an accuracy of CNN classification for abnormality detection

as 88 percent. Clearly, higher thresholds would increase the number of coefficients needed,
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while lower thresholds may be satisfied with a lower number of coefficients. Figure 5.10 shows

Sequential Hypothesis Testing required 6 coefficients to achieve this target. Requiring more

coefficients helps to reconstruct the signal more accurately. Therefore, the reconstructed

signal in Figure 5.10 f resembles to the original raw signal recorded by the sensor in Figure

5.4, at the cost of an increased bandwidth usage.

Figure 5.11 shows the Sequential of DWT coefficients that the sensor chooses for the men-

tioned abnormal cycles discussed earlier. At each time slot, the corresponding coefficient

which satisfies the overall threshold of bandwidth consumption is chosen.

The Percent Root mean square Difference (PRD) discussed in Equation 5.21 between the

reconstructed signal and the original signal is calculated for each time slot. This percentage

value determines the distortion between the reconstructed signal and the original signal.

Higher values of PRD demonstrate higher distortion compared to the original signal.

In this experiment, we set the goal of reaching 88% of accuracy of classification in the

edge device with the threshold of bandwidth consumption of 80%. We select 88% as target

accuracy as it can show better than others the difference between normal and abnormal

classifications, but any accuracy can be selected according to the applications’ requirements.

Bandwidth consumption is assumed to be the percentage of set of coefficients compared to a

full representation of signal using all the coefficients. For instance, the first coefficient that

is transmitted, which we show in Figure 5.10a, consumes only 1 percentage of bandwidth

with PRD 96.01%. VEB disease is misdetected as a normal cycle and the edge server

sends a request for more coefficients to reach the goal of 88% accuracy of detection. The

sensor transmits the second coefficient and the edge server reconstructs the signal using the

first and second coefficients. The output of CNN classifier is the probability distribution of

arrhythmia versus normal cycle and the Sequential Hypothesis Testing method calculates the

log likelihood of probability for collected coefficients and based on predefined thresholds in

Equation 5.17. It is worth mentioning that the CNN classifier misdetects an abnormal cycle
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(b) Reconstructed signal with two coeffi-
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(c) Reconstructed signal with three coeffi-
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(d) Reconstructed signal with four coeffi-
cients
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(e) Reconstructed signal with five coefficients

0 200 400 600 800 1000
Samples

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

EC
G 

Si
gn

al

(f) Reconstructed signal with six coefficients

Figure 5.10: ECG signal with Ventricular Ectopic Beat cycle for Patient “One”
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Figure 5.11: Sequential Testing for an abnormal cycle for Patient “One”

as normal. Therefore, more coefficients are needed to detect the abnormality with higher

accuracy of classification. We used data for aforementioned user and tagged them as patient

“One”. Table 5.2(a) shows PRD, bandwidth consumption, sequence of coefficients chosen,

the type of arrhythmia, and output of CNN classifier during the sequential hypothesis are

shown. The percentage of bandwidth consumption is calculated according to the maximum

bandwidth, which is consumed when all the coefficients are transmitted. In addition, Table

5.2(b) shows the performance of sequential hypothesis for a single normal ECG cycle of

patient “One”. Results show that optimal stopping time for an abnormal cycle is higher

than a normal cycle. This can be useful since the classifier can detect an abnormality

with a higher confidence since the higher number of coefficients provide a more accurate

representation of the ECG signal.

Table 5.3 shows performance of Sequential Hypothesis Testing for another patient tagged as

patient “Two”. In this case, the sequence of coefficients are different from patient “One”.

This concludes that the proposed system is working as a personalized model since the Train-

ing phase on finding the variance of probability using CNN classifier is trained on each patient
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PRD Bandwidth Coefficients Heart Condition Detection
96.01 0.015 {0} VEB Normal
94.09 0.51 {0, 6} VEB Normal
85.50 0.53 {0, 6, 1} VEB Normal
58.05 0.56 {0, 6, 1, 2} VEB VEB
51.13 0.62 {0, 6, 1, 2, 3} VEB VEB
30.52 0.75 {0, 6, 1, 2, 3, 4} VEB VEB

(a) One abnormal ECG cycle

PRD Bandwidth Coefficients Heart Condition Detection
93.8 0.015 {0} Normal Normal
88.74 0.51 {0, 6} Normal Normal
87.57 0.53 {0, 6, 1} Normal Normal
80.99 0.56 {0, 6, 1, 2} Normal Normal

(b) One normal ECG cycle

Table 5.2: Performance of Sequential Hypothesis Testing for Patient “One”

individually. Therefore, the sequence of coefficients to reach the same accuracy as patient

“One” is different. We can conclude that bandwidth and sequence of coefficients are varied

among people and between normal and abnormal ECG cycles. Table 5.3 (a) demonstrates

that sequential testing for an abnormal cycle requires more coefficients than a normal cycles

in Table 5.3 for the same patient.

The performance of Sequential testing is evaluated based on achieving different goals of ac-

curacy in classification and are calculated on the average bandwidth consumption for normal

and abnormal ECG cycles for the aforementioned user. Figure 5.12 shows the bandwidth

consumption as a function of threshold in achieving accuracy of classification. In fact, in-

creasing the goal of accuracy eventually results in requesting more coefficients in the edge

server, hence consuming more bandwidth. With accuracies beyond 90% results in maximum

request for the coefficients for both abnormal and normal cycles with the average of 50%

bandwidth consumption. It is important to note that the abnormal cycles and normal cycles

require different number of coefficients to reach the same accuracy. In fact, between accuracy
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PRD Bandwidth Coefficients Heart Condition Detection
87.64 0.25 {5} VEB Normal
86.14 0.31 {5, 3} VEB Normal
72.29 0.34 {5, 3, 2} VEB VEB
69.82 0.36 {5, 3, 2, 0} VEB VEB
51.23 0.37 {5, 3, 2, 0, 1} VEB VEB
30.81 0.5 {5, 3, 2, 0, 1, 4} VEB VEB

(a) One abnormal ECG cycle

PRD Bandwidth Coefficients Heart Condition Detection
95.13 0.25 {5} Normal Normal
87.46 0.31 {5, 3} Normal Normal
83.38 0.34 {5, 3, 2} Normal Normal

(b) One normal ECG cycle

Table 5.3: Performance of Sequential Hypothesis Testing for Patient “Two”

of 80% to 87% abnormal cycles require 19% more bandwidth than the normal cycles. This

concludes that sequential testing chooses adaptive coefficients between normal and abnormal

cycles to reconstruct the abnormal cycles with more coefficients to detect abnormality more

accurately.

It is straightforward to understand that if high accuracies are needed, the reconstructed signal

should be as close as possible to the original raw signal. This would yield better results for

the CNN classifier, achieving the desired high accuracy. However, there may be scenarios

in which a lower accuracy would suffice, particularly for normal cycles. In Figure 5.12 we

plot the bandwidth needed to transmit the required as a function of the desired accuracy for

normal and abnormal cycles. For accuracies beyond 0.86, both normal and abnormal cycles

require the use of the same amount of bandwidth, since the signal has to be classified with

higher accuracy in order to meet the application requirement. However, for lower accuracies,

the normal cycle is easier to be recognized, as it requires less bandwidth compared to the

abnormal cycles. This shows that sequential testing chooses adaptive coefficients between
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Figure 5.12: Overall bandwidth consumption as a function of accuracy classification.

normal and abnormal cycles to reconstruct the abnormal cycles with more coefficients to

detect abnormality more accurately, while it sends a lower number of coefficients for lower

accuracies, in case a normal cycle has to be detected.

We evaluated the system performance based on the constraint of bandwidth. In this case,

we considered that the bandwidth consumption using Sequential method should satisfy a

specific threshold. The constant coefficients are chosen in cascading fashion from the highest

to lowest frequency such that the coefficients satisfy the bandwidth constraint. We plot in

Figure 5.13a the True Positive Rate as a function of False Positive rate known, also known

as the Receiver Operation Characteristic (ROC) curve. We compare the Sequential and con-

stant methods with three different values of bandwidth constraints (e.g. {10%, 50%, 90%}).

Results show that Sequential testing outperforms the constant method in Area Under the
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Curve (AUC) in ROC with lower bandwidth constraints. We also show in Figure 5.13b the

comparison of Sequential testing with constant coefficient method as a function of actual

bandwidth consumption in the sensor. The results show that for the same percentage of

bandwidth consumption, Sequential testing outperforms the constant policy, particularly for

lower bandwidth constraints. Bandwidth consumption of 0.5 and more shows the same AUC

for constant and Sequential testing methods.

(a) (b)

Figure 5.13: Classification results. Figure 5.13a shows the Receiver Operating Characteristic
(ROC) curve, while Figure 5.13b shows instead the Area Under Curve (AUC) as a function
of bandwidth consumption.

Table 5.4 shows the minimum bandwidth required to achieve accuracy ranging between .75

to .95. For instance, Sequential hypothesis requires minimum of 24 bandwidth percentage

to achieve accuracy of .95 while constant policy requires minimum of 55 bandwidth per-

centage which shows 56% bandwidth reduction in Sequential testing compared to constant

coefficients. Results show average of 43% of bandwidth reduction using Sequential testing.

Figures 5.14a,5.14b,5.14c show the gain of Sequential testing compared to policy of constant

coefficients as a function of the available bandwidth. On average, the gain for the Sequential

method of the recall score is 15.86% over the constant method, as Figure 5.14a shows.

Similarly the F1 score gain averages at 14.08%, and the AUG gain averages at 7.98%. Overall,
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AUC Constant Min Bandwidth Sequential Min Bandwidth Bandwidth Reduction
.95 .55 .24 56%
.92 .28 .19 32%
.90 .27 .12 55%
.86 .14 .10 28%
.75 .09 .05 44%

Table 5.4: Minimum Bandwidth required for a given accuracy and Bandwidth Reduction
Percentage of Sequential testing compared to constant policy

(a) Recall Gain (b) F1 score Gain (c) AUC Gain

Figure 5.14: Gain achieved using Sequential Testing compared to Constant coefficients as a
function of bandwidth consumption

these 3 figures show that the Sequential Hypothesis Testing always performs better than the

constant method, and the lower the bandwidth, the higher the gain, as the Sequential method

is able to better select the appropriate coefficients.
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Chapter 6

Discussions and Conclusions

The IoT paradigm, through a high-level network of connected devices, enables ubiquitous

health monitoring for patients at risk in everyday settings. Such a remote IoT-based health

monitoring system typically includes battery-powered sensors which require a satisfactory

energy-efficient control approach. Contemporary published approaches mostly focus on op-

timizing the power consumption of the sensor layer that may compromise the accuracy of

measurements.

In this thesis we proposed two frameworks, myopic and Markov Decision Processes (MDP)

to control the energy-constrained sensor layer. We used the key low-latency characteristics

of edge computing to build a context-aware control system whose objective is to adaptively

determine the sensing accuracy, and thus the energy dissipation, to maximize the sensor

lifetime. We modeled the accuracy of sensor measurement in capturing abnormality as a

Gaussian distribution. The optimization problem minimizes the energy consumption during

different contexts (e.g., activity), to achieve a satisfactory Probability of misdetection in

abnormality. We extend our implementations to monitor 14 healthy subjects for one month.

We demonstrated that the myopic method saves on average 16.9% compared to the non-

81



adaptive case in a 24-hour health monitoring period by adapting to an activity while assuring

a minimum level of Probability of misdetection in abnormality. Moreover, our results show

that MDP can increase the battery lasting with average of over 2x compared to myopic and

non-adaptive power consumption fulfilling the same probability of mis-detection during one

month. As the future work, we will investigate calculating the distance of adjacent policies

among different subjects.

In addition, we studied the bandwidth efficiency of wearable devices. Monitoring patients in

everyday settings necessitate the use of a medical sensor coupled with an edge device where

the sensor transmits the signal from the bandwidth constrained sensor to the edge server,

though transmitting raw signal over a constrained wireless channel is expensive. Therefore,

transmitting a representation of the signal instead of the raw signal opens new perspectives

of optimizing the bandwidth consumption between sensor and the edge device. To address

these issues, we proposed a framework to determine the optimal number of coefficients using

Sequential Hypothesis Testing to optimize the accuracy of detecting abnormal ECG cycles

while satisfying requirements for channel access between the sensor and the edge device.

Results show that an average of 43% of bandwidth is saved while satisfying the same accuracy

of arrhythmia detection on the edge server over 14 subjects compared to the constant method.

We have also shown that the proposed model is personalized on each user, as ECG cycles

are different hence require a different number of coefficients to be sent.
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