
UC Berkeley
UC Berkeley Previously Published Works

Title
High-performance I/O: HDF5 for lattice QCD

Permalink
https://escholarship.org/uc/item/1vx8w9m9

Authors
Kurth, T
Pochinsky, A
Sarje, A
et al.

Publication Date
2014

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1vx8w9m9
https://escholarship.org/uc/item/1vx8w9m9#author
https://escholarship.org
http://www.cdlib.org/

High-Performance I/O: HDF5 for Lattice QCD

Thorsten Kurth
Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Department of Physics, University of California, Berkeley, CA 94720, USA
E-mail: tkurth@lbl.gov

Andrew Pochinsky
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
E-mail: avp@mit.edu

Abhinav Sarje
Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA
94720, USA
E-mail: asarje@lbl.gov

Sergey Syritsyn
RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
E-mail: ssyritsyn@quark.phy.bnl.gov

André Walker-Loud∗†

Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, USA
Theory Group, Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606, USA
E-mail: walkloud@wm.edu

Practitioners of lattice QCD/QFT have been some of the primary pioneer users of the state-of-the-
art high-performance-computing systems, and contribute towards the stress tests of such new ma-
chines as soon as they become available. As with all aspects of high-performance-computing, I/O
is becoming an increasingly specialized component of these systems. In order to take advantage
of the latest available high-performance I/O infrastructure, to ensure reliability and backwards
compatibility of data files, and to help unify the data structures used in lattice codes, we have
incorporated parallel HDF5 I/O into the SciDAC supported USQCD software stack. Here we
present the design and implementation of this I/O framework. Our HDF5 implementation outper-
forms optimized QIO at the 10-20% level and leaves room for further improvement by utilizing
appropriate dataset chunking.

The 32nd International Symposium on Lattice Field Theory,
23-28 June, 2014
Columbia University New York, NY

∗Speaker.
†presented on behalf of Thorsten Kürth.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

ar
X

iv
:1

50
1.

06
99

2v
1

 [
he

p-
la

t]
 2

8
Ja

n
20

15

mailto:tkurth@lbl.gov
mailto:avp@mit.edu
mailto:asarje@lbl.gov
mailto:ssyritsyn@quark.phy.bnl.gov
mailto:walkloud@wm.edu

HDF5 for LQCD André Walker-Loud

1. Introduction

The current era of peta-scale computing has brought lattice QCD (LQCD) to a mature state
where the results of calculations are routinely compared with basic physical quantities measured
experiments to both help understand the measurements as well as search for physics beyond the
Standard Model, see for example [1]. These advancements have led to efforts to solve increasingly
complex problems ranging in application from relatively simple quantities needed for high-energy
phenomenology to the more complex and computationally demanding quantities needed for basic
nuclear physics. As with all fields in need of high-performance-computing (HPC), data I/O is
becoming an increasingly important aspect of the calculations. Compared with other fields [2], the
I/O needs of LQCD are relatively mild. However, the development of parallel file systems, such
as Lustre, have lead to the need for increasingly specialized I/O software both to achieve good
I/O performance and also to take advantage of the advanced user options available on these file
systems. In an effort to alleviate particular I/O bottlenecks LQCD is beginning to face, to prepare
for future Exascale computing, and to encourage the use of a community wide professional I/O
standard, we were motivated to incorporate I/O software that: is portable, is standardized (i.e. third-
party applications can read/write the files such as Mathematica, Python, MATLAB, ...), is stable
(IT-supported), is not proprietary, supports fast and reliable parallel I/O, supports flexible data
types and simplifies data organization (a single file can contain configs, propagators, correlators,
etc...). We have found the Hierarchical Data Format v5 (HDF5) [3] fulfills all these needs quite
proficiently.

We report here on our implementation of parallel HDF5 into the USQCD Software Stack
(supported by SciDAC [4] grants). This implementation currently exists in QDP++ and Qlua [5].

2. HDF5

Hierarchical Data Format 5 (HDF5) is a technology suite designed to organize, store, discover,
access, analyze, share and preserve diverse, complex data in continuously evolving heterogeneous
computing and storage environments [3]. HDF5 (and previous versions) is supported by the HDF
Group with open-source software distributed at no cost. HDF5 files are highly portable and can
be accessed with many software interfaces such as MATLAB or Mathematica or via API libraries
provided for programming languages such as C, C++, Java, Fortran90, Python, etc.. HDF files are
self-describing, i.e. they contain information about endianness, dimensions of arrays and size of
stored datatypes, floating point representation, etc.. They further allow users to specify complex
data relationships and dependencies. HDF5 supports many pre-defined datatypes as well as the
creation of an unlimited variety of complex user-defined datatypes, allowing a single HDF file
to contain many different data structures. HDF files contain binary data stored naturally in n-
dimensional arrays, where each element of the array may itself be a compound object, i.e. a color
matrix, a propagator. These objects are themselves comprised of other compound objects, namely
complex numbers. The binary data is organized under a highly efficient metadata map (structured
similar to a linux/unix directory) allowing for very fast access to portions of very large datasets.
HDF supports user defined metadata descriptions which can be stored as dataset/group attributes
or as separate datasets in the data file. Importantly, HDF also supports parallel I/O and is standard

2

HDF5 for LQCD André Walker-Loud

software at many HPC centers, often being used to stress test new parallel I/O file systems. In other
words, HDF provides a natural, efficient and subsidized home for lattice objects in a professionally
maintained software environment that is accessible with standard scientific libraries and software.

3. Implementation

Many international research groups who perform calculations in lattice QCD use parts of the
USQCD [6] software stack [7]. The stack is comprised of four layers: the bottom layer con-
tains three packages containing optimized linear algebra (QLA) and parallelization routines (QMP,
QMT). The second layer contains software packages which provide the most basic functionality
necessary for performing LQCD calculations (QDP/QDP++) including a variety of data types for
describing lattice objects such as gauge configurations, quark propagators, etc. This second layer
also contains the QIO package which is designed to provide fast parallel I/O of lattice objects. The
frameworks we have focussed on so far are QDP++ and Qlua [8]. We also have an initial interface
to the HDF5 extension of QDP++ in Chroma [9].

3.1 QDP++

Inspired by the commonly used XMLWriter/XMLReader interface of QDP++, we imple-
mented the classes HDF5Writer and HDF5Reader. These classes act as a C++ wrapper for the
C HDF5 interface. Their base class HDF5 cannot be instantiated by the user, but contains members
common to both children, such as closing the current file, reading data, traversing the group hier-
archy, etc. The HDF5Writer provides additional capabilities such as writing to a file, deleting
objects, etc. The user can also create groups and attach attributes to objects, and thus can freely
organize the content of the file. The syntax resembles that of the XMLWriter/XMLReader dis-
cussed above, but it also contains additional features: the user can navigate through the group
hierarchy by using the member function cd(path), which resembles the corresponding UNIX
command. The current working directory is returned by pwd(). Functions which resemble other
useful UNIX commands such as ls(path) will be added in future releases.

The most important aspect of our implementation is reliable and performant parallel I/O, es-
pecially of large lattice objects. The lattice sites are always arranged into lexicographical order:
the components of gauge configurations and lattice quark propagators are thus ordered (from slow-
est to fastest) [t,z,y,x,µ,c2,c1] and [t,z,y,x,s2,s1,c2,c1] respectively. Here, the ci,si are the color
and spin components respectively and µ is the direction of the corresponding link. Note that the
memory layout in QDP/QDP++ for a gauge configuration is [µ, t,z,y,x,c2,c1], hence the direc-
tional index µ is the slowest. We reorder the data since different µ-components reside on the same
node allowing for I/O operations to be performed on chunked rather than on strided data, gaining
a significant speedup in performance. By default, datasets are not stored in H5D_CHUNKED lay-
out, however, the user can enable chunking by calling the set_stripesize member function
of HDF5Writer with a non-negative integer number in the argument representing the number of
chunks.

An important aspect of our HDF5 implementation is data integrity. All objects are closed as
soon as they are not needed any more: datasets and attributes are closed immediately after reading
from or writing into them. Only the current group (that returned by pwd()) as well as all its parent

3

HDF5 for LQCD André Walker-Loud

groups are kept open until the file is closed. However, any time a cd(path) command is issued,
it is checked if open groups can be closed. This is the case if the user changes to a location higher
in the tree or a different branch of the tree. This behavior minimizes data loss in case the main
QCD application crashes before the HDF5 file was closed, as HDF5 protects the closed objects
from data corruption.

3.2 QLUA

The Qlua [8] interface to HDF5 follows the narrow interface design approach used for Qlua’s
QIO. In Qlua, there are separate HDF5 writer and reader objects used for output and input respec-
tively. This reflects the I/O pattern found in LQCD applications and allows the implementation to
be optimized separately for read and write operations.

When a HDF5 writer is opened or created, the user can specify global file options (e.g., which
HDF5 file driver to use, how large chunks should be, and some other HDF5 parameters) as well
as the default options for writing objects into the file. All write operations are dispatched from a
single procedure, hf:write(path, object[, options]). The write procedure decides
on data representation depending on the type of the object. Components of path are created in
the file as needed. The datatype of the data element is computed and looked up in the file; if this
datatype was not used before, it is stored in the file, otherwise, a clone of the existing datatype is
used for this object. One can overwrite the default options by providing an options table. All
options, including the width of floating point can be controlled this way. Data is always written in
the big-endian byte order.

For each stored object, a checksum is computed and stored in an object’s attribute sha256.
For sequential data, this is the standard SHA-2 checksum [10]. For parallel data, checksums are
computed on each lattice site from the site data and lattice coordinates and are XORed together.
This approach allows one to compute the checksum in parallel; the result is believed to provide
sufficient collision resistance.

For each data object, the value of the kind attribute is determined by the type of the object.
Qlua also writes a timestamp in microseconds since the UNIX epoch into time attribute.

The Qlua HDF5 reader by default expects to find kind and sha256 attributes. It uses the
value of the kind attribute to select an appropriate reader for the object, and checks bits read from
storage against the stored checksum to detect corrupted data. It is possible to read non-conformant
data by overwriting kind. The data integrity check can be disabled if needed. Both kind and
checksum can be controlled on per-object level.

The library also provides a set of convenience methods, h:ls(path) returns a list of object
names in a group, h:stat(path) returns a table of attributes and the type of the object, and
h:chdir(path) changes the current location in the HDF5 file. In all calls the path parameter
is interpreted as starting from the root group if path begins with a slash "/", or as the relative
path to the current location otherwise. The current location can be queried by calling h:cwd().

4. Performance

We report on a few tests performed of the HDF5 implementation on several top ranking super-
computers: Hopper, a Cray XE6 system at NERSC; Edison, an XC30 system at NERSC and Titan,

4

HDF5 for LQCD André Walker-Loud

101

102

103

 1 2 3 4 5 6 7 8 9 1
0

 1
1

 1
2

Ti
m

e
[s

]

IO Geometry

QIO write
HD5 write
QIO read
HD5 read

101

102

103

 1 2 3 4 5 6 7 8 9 1
0

 1
1

 1
2

 1
3

Ti
m

e
[s

]

IO Geometry

QIO write
HD5 write
QIO read
HD5 read

Figure 1: The performance with different I/O geometries. Each I/O geometry represents a different config-
uration of the number of I/O node distributed along the four dimensions of the lattice. These are for a lattice
of size 64× 64× 64× 128, using 384 core (top) and 3,072 cores (bottom), with one I/O process per node
(24 cores). Examples of the geometries for the first case (16 I/O nodes) are, 1 : 13 ×16,2 : 1×1×16×1,5 :
2×1×1×8,10 : 24, and so on.

a Cray Xk7 system at OLCF. The tests were performed with lattice configurations with volumes
ranging from V = 323 ×48 to V = 1283 ×256.

4.1 HDF5 vs QIO

We optimized the performance of QIO, the I/O driver in the USQCD software stack, by utiliz-
ing the -iogeom flag on a striped Lustre file system. We found that the HDF5 implemen-
tation tended to be both faster and more stable, see Figure 1.

4.2 Scaling

We tested the weak and strong scaling of the HDF5 I/O on two architectures, Edison and Titan,
see Figure 2.

4.3 Lustre Striping

The I/O performance can be significantly influenced by the size and number of stripes as well
as the chunk size of the datasets, see Figure 3.

5. Conclusions

The I/O needs for LQCD have grown significantly in recent years and is now becoming an
important issue to deal with, as it is for all HPC consumers. Instead of continuing to modify our

5

HDF5 for LQCD André Walker-Loud

 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500

76
8

15
36

30
72

61
44

12
28

8

24
57

6

49
15

2

Ba
nd

w
id

th
 [M

B/
s]

Number of Cores

HDF5 read
HDF5 write

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

Ba
nd

w
id

th
 [M

B/
s]

Number of Cores

HDF5 read
HDF5 write

 80
 90

 100
 110
 120
 130
 140
 150
 160
 170
 180

76
8

15
36

30
72

61
44

12
28

8

24
57

6

49
15

2

98
30

4

Ba
nd

w
id

th
 [M

B/
s]

Number of Cores

HDF5 read
HDF5 write

 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70

15
36

30
72

61
44

12
28

8

Ba
nd

w
id

th
 [M

B/
s]

Number of Cores

HDF5 read
HDF5 write

Figure 2: HDF5 I/O weak- (top) and strong-scaling (bottom) on Edison (left) and Titan (right) on a 1283 ×
256 lattice.

existing QIO software, a task requiring increasing time and effort, we have opted to explore 3rd
party software to handle our I/O needs. The HDF Group has decades of experience dealing with
HPC parallel I/O and has developed a first rate software suite which is non-proprietary, highly
portable and easy to interface with standard scientific libraries. To ease the hopeful transition to
using HDF5, we have modeled the HDF5Writer and HDF5Reader classes after the QDP++
XMLWriter/XMLReader interface. A more significant LQCD community use of HDF5 will
also aid in forming more unified data structures aiding in the sharing of configurations and other
data files on the ILDG.

Acknowledgements

TK, AS and AWL acknowledge many helpful conversations with Bálint Joó. AS would also
like to thank Samuel Williams for input. This work was supported in part from the DOE SciDAC-
3 grants for the CalLat Collaboration (TK, AS, SS, AWL) and the USQCD Collaboration (AP).
Authors from Lawrence Berkeley National Laboratory were supported by the DOE Office of Ad-
vanced Scientific Computing Research under contract number DE-AC02-05CH11231 (AS). This
work was also in part funded by the U.S. Department of Energy Office of Nuclear Physics under
grant number DE-FG02-94ER40818 (AP).

6

HDF5 for LQCD André Walker-Loud

 100

 200

 300

 400

 500

 600

 700

1 8 18 36 72 14
4

Ba
nd

wi
dt

h
[M

B/
s]

Lustre Stripe Count

1M HDF5 read
1M HDF5 write

1M QIO read
1M QIO write

2M HDF5 read
2M HDF5 write

2M QIO read
2M QIO write

4M HDF5 read
4M HDF5 write

4M QIO read
4M QIO write

8M HDF5 read
8M HDF5 write

8M QIO read
8MQIO write

16M HDF5 read
16M HDF5 write

 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

1 8 18 36 72 14
4

Ba
nd

wi
dt

h
[M

B/
s]

Lustre Stripe Count

1M HDF5 read
1M HDF5 write
2M HDF5 read
2M HDF5 write
4M HDF5 read
4M HDF5 write
8M HDF5 read
8M HDF5 write

16M HDF5 read
16M HDF5 write

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

1 8 18 36 72 14
4

Ba
nd

wi
dt

h
[M

B/
s]

Lustre Stripe Count

1M HDF5 read
1M HDF5 write
2M HDF5 read
2M HDF5 write
4M HDF5 read
4M HDF5 write
8M HDF5 read
8M HDF5 write

16M HDF5 read
16M HDF5 write

 0

 200

 400

 600

 800

 1000

 1200

 1400

32 3x48

32 3x64

48 3x64

64 3x64

64 3x128

128 3x128

Ba
nd

w
id

th
 [M

B/
s]

Lattice Size

4 IO HDF5 read
4 IO HDF5 write

64 IO HDF5 read
64 IO HDF5 write

1024 IO HDF5 read
1024 IO HDF5 write

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

32 3x48

32 3x64

48 3x64

64 3x64

64 3x128

128 3x256

Ba
nd

w
id

th
 [M

B/
s]

Lattice Size

64 IO HDF5 read
64 IO HDF5 write

1024 IO HDF5 read
1024 IO HDF5 write
4096 IO HDF5 read
4096 IO HDF5 write
4096 IO HDF5 read
4096 IO HDF5 write

Figure 3: Performance dependence on stripe count and size for 4 (top), 64(middle-left) and 1024 I/O nodes
(middle-right) on Edison, and for 4 and 64 I/O nodes on Edison (bottom-left) and Titan (bottom-right).

References

[1] S. Aoki, Y. Aoki, C. Bernard, T. Blum, G. Colangelo, M. Della Morte, S. Dürr and A. X. El Khadra et
al., Eur. Phys. J. C 74, no. 9, 2890 (2014) [arXiv:1310.8555 [hep-lat]].

[2] S. Byna, A. Uselton, Prabhat, D. Knaak and Y. He, “Trillion Particles, 120,000 cores, and 350 TBs:
Lessons Learned from a Hero I/O Run on Hopper”, Cray User Group meeting 2013,
http://sdav-scidac.org/images/publications/Byn2013a/cug13.pdf.

[3] The HDF Group. Hierarchical Data Format, version 5, 1997-2014. http://www.hdfgroup.org/HDF5/.

[4] Scientific Discovery through Advanced Computing, http://www.scidac.gov.

[5] T. Kurth, A. Sarje, A. Pochinsky, S. Syritsyn and A. Walker-Loud, to be published.

[6] US Lattice Quantum Chromodynamics. [Online]. http://www.usqcd.org.

[7] USQCD Software [Online]. http://usqcd-software.github.io.

[8] Qlua Software [Online]. http://usqcd-software.github.io/QLUA.html.

[9] R. G. Edwards and B. Joó [SciDAC and LHPC and UKQCD Collaborations], Nucl. Phys. Proc.
Suppl. 140, 832 (2005) [hep-lat/0409003].

[10] “Secure Hash Standard (SHS)", Federal Information Processing Standards Publication 180-4, 2012

7

http://arxiv.org/abs/1310.8555
http://sdav-scidac.org/images/publications/Byn2013a/cug13.pdf
http://www.hdfgroup.org/HDF5/
http://www.scidac.gov
http://www.usqcd.org
http://usqcd-software.github.io
http://usqcd-software.github.io/QLUA.html

