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However, several age-old problems existed back in 1976. There were 

no development systems available for the TMS 9900 and even if there were, 
our budqet was not ready to accept what would have been a relatively 
expensive item for developing a system around an as-yet untried product. 
Al; , althouqh assembly language is fine for some simple jobs (and 
ren red for some fast jobs), it can be a very trying and expensive diet 
if U<en too reqularly. 

G n.ing started, we attacked these various problems in qood engineer
ing ft. hion; one at a time, and using our available resources, mainly a 
TI 080 A system which we inherited from a defunct series of experiments. 
Our initial thought was to develop a simple cross-assembler so we could 
at. leas: jse the editing capabilities of the 980. From the depths of 
despair ^r thinkinq about this idea, however, came what proved proved 
to be an .spiration. The 980 assembler allows the definition of new 
op-codes iJPD, Operation Define) using existing instruction'formats. It 
also allows the user to define fields for new instruction's fFRM, Format a 
New Instruction). Using these two features allowed us,to produce an 
assembler for the TMS 9900 which executed on our TI ,9'80-A system, the 
entire project [after the initial inspiration) requiring less than an 
hour to implement. The TMS 9900 assembler,incliding comments, consists 
of exactly 130 lines of code. 

Of course, there are some small irreconcilable differences between 
the a80 anrl the 9900, but like the Wright Brothers we were off the ground 
at last. 

Certr.in 9900 instructions correspond in form with 980 instructions. 
(See Fiqure i) These, of course, fit directly into the the 980 assembler 
(with an PPD directive for each.) These are 9900 formats 2, fi, 7, and 8 
which correspond in form to 980 formats, respectively, 1, 3, 5, and 6 as 
illustrated in Fiqure 1. The remaining 9900 instructions are implemented 
in the 980 assembler via the FRM directive. One directive is used per 
class of instruction, fol iwed by EOU (equivalent) statements to define 
the appropriate 9900 mnemonics. Figure 2 is a listing of "SAL 99003." 
This 130-line block must preceed each assembly. Notice that a JMP 
instruction goes in as: 

JMP ARG 
whereas a MOV instruction becomes: 

ART MOV,D,0,1,13. 
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ADD becomes: 

ART A,X,0,X,0 
DATA SOURCE,DESTINATION 

The system is not ideal. Routines written this way cannot be run 
verbatim into any assembler existing on any 9900-based system. Also, 
since the 980 assembler only recognizes 8 registers (but fortunately will 
accept 16-regi'ster codes), we get meaningless error flags for some 9900 
format 6 instructions. However, as a group which never had the opportu
nity to become accustomed to 9900-based assembly language, we quickly 
became fluent in our own version. 

A fundamental difference between the 9900 and the 980 is memory 
addressing. The 9900 uses byte addressing, except for JMP instructions, 
JMP instructions use word-relative addressing, making them compatible 
with 080 field mnemonics. For example, 9900 Format 3 instructions (arid, 
subtract, move, compare, and, or) require: 

ART FRM 4,?,4,?,4, 

the first field corresponding to an operation code and the subsequent 
fields setting up addressing. Next, to allow mnemonic references to the 
five fields, the following equivalences are defined fusing MOV as an 
example): 

MOV FQU >C 
D EQU 0 
I EQU 1 
X EOU 2 
XINC EQU 3 

The D,I,X and XINC equivalences define mnemonics for use in the two 
2-bit fields (fields 2 and 4) which specify addressing type. D is for 
register direct, I for indirect, X for indexed and XINC for indirect/auto 
incrementing. A move instruction which is designed to move a word of data 
into register 0 from a location pointed to by register 2, for example, is 
mnemonically written as: 

ARI MOV,D,0,1,2. 
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To move a word of data from some arbitrary memory location: 

ARI M0V,D,0,X,0 
DATA SOURCE+SOURCE 

SOURCE DATA VALUE 

Where SOURCE is a pointer to the data word containing VALUE. In 980 
language, memory addresses are assumed to be 16-bit word addresses. In 
9900 language, memory is addressed by bytes. Consequently, an address 
which the 980 assembler defines as a memory address must be doubled to 
produce tne correct 9900 memory address. This is the reason for repre
senting the location of SOURCE in the above statement as SOURCE+SOURCE. 
The statement source*2 could be used if the result of the multipication 
is less than 32,768 (most significant bit reset). Otherwise, the 
hardware multiply instruction used by the 980 assembler may reset this 
bit, producing an incorrect value (980 hardware assumes the most 
significant bit of each half of a multiply result to be a sign bit.) Our 
one-hour assembler is displayed in Figure 2. Since we have never had the 
legitimate 9900 assembler to learn on, the peculiarities of our own 
version have become conventions to us, no longer seeming particularly 
clumsy or illogical. 

CARRYING ON 

Now we were assembling programs for our embryonic systems. However, 
as anybody who has tried it knows, debugging computer programs with just 
an oscilloscope and selected test points (without the benefit of a 
control panel) is, at best, tedious. 

One possible solution to this dilemma would have been to build a 
control panel complete with lights, switches and debugging features. Our 
solution was to connect a 9900 chip to our 980 via a standard 16-in/16-out 
data module. This connection allowed us to program the 980 to use a 
reserved block of its memory as the memory space of the 9900. Enough 
logic was added to the connection to allow the 980 to micro-step the 
9900, to generate 9900 interrupts and to implement the CRU channel (see 
Figure 3). 



( 5 ) LBL 8755 
Next we wrote a 980 program to drive the 9900, allowing the 980 to 

intervene in selected memory accesses. For example, the 980 can record 
and display every memory access. Or it can select only Instruction 
Acquisition (IAQ) accesses to record and display. The 980 can also 
display only-write or only-read accesses; or accesses only to selectrd 
memory locations, or only to selected IAO locations. The 980 can set 
breakpoints at arbitary points and then operate the 9900 chip until it 
reaches a breakpoint. 

Now we could write a program and run through its execution in enough 
detail to be sure it would not suffer software hangups. Of course, the 
9900 was not being operated at top speed, and many 9900 input/output 
operations were not practical to emulate with this scheme. However, our 
economy bootstrap routine was running. 

LANGAUAGE DEVELOPMENTS 

As mentioned earlier, we deal in one-of-a kind hardware projects. 
Our latest has been an X-ray fluorescence trace element analysis system 
which counts secondary X-radiation from a series of samples mounted in 
carriers and moved through the counting station hy a nechanical transport 
mechanism. The 9°00 subsystem in this is responsible for monitoring and 
moving the mechanical pieces as well as for reading and recording the raw 
data in a large attached paged memory. The heavy analysis for the system 
is done on an attached desk-top programmable calculator. It is desirable 
for us to produce a system which is easy to change and for which simple 
changes do not require delving into the details of an assembly-language 
program. Consequently, we have done our 9900 assembly language program
ming in smali packets which do specific jobs for specific hardware. Each 
small packet is affiliated with a driver routine which simultaneously 
services several of the packets. By passing appropriate arguments to 
this driver routine, the appropriate packet or sequence of packets is 
called to perform the necessary job. 

In order to simply and efficiently make these routines accessable to 
a user in a flexible way, we have utilized the unique context-switching 
capability of the 9900-based subsystem. The 9900 executes a short loop, 
which controls a pseudo program-counter stepping through a list of 
pseudo-instructions. The pseudo-instructions form the body of a language 
tailor-made to operate the attached hardware. 
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Each pseudo-instruction is defined by a workspace pointer/program 

counter pair which form the calling parameters for a 9900 BLWP instruc
tion (Figure 4 ) . The op-code for the pseudo-instruction is defined as 
the pointer to the appropriate workspace pointer/program counter parame
ter pair. To execute ;, program in pseudo-language requires the 9900 loop: 

START 

RUN 

LI 0,PROGM 

MOV I,0,D,2 
JEQ START 
INCT D,0 
BLWP I,? 
,1MP RUN 

POINTER TO FIRST STEP 
(PSEUOO-PC) 
OPCODE IS PARAMETER POINTER 
ZERO OP CODE MEANS RESTART 
STEP PSEUDO PC 
EXECUTE THE PSEUDO-INSTRUCTION 
LOOP 

Each instruction execution is a context switch. A user program example 
would be: 

PROGM PSCAL RESET RESET SCALER 
PTIMR RESET RESET TIMER 
PTIMR START START TIMER 
PADC ON TURN ON ADC 
FIN END. RESTART 

The operations (such as SCAL, TIMR) are defined in 980 assembly language 
directives, and the 0 preceeding the mnemonic (@SCAL, @TIMR) forces the 
Q80 a-semhler to reserve an extra instruction word. Location START in 
the execution loop resets the pseudo program-counter (register 0) to 
point to the first statement of the user program (PROGM). Op code 0 is 
the FIN statement which signals the end of the user program (and forces a 
restart). Next, the pseudo program-counter is stepped to point to the 
next location in the user program. This is the location of the parameter 
RESET. The SCAL routine will pick up this parameter and use it to direct 
resetting the scaler. The SCAL routine steps the pseudo program-counter 
after getting the parameter (INCT 1,13), thus preparing for an exit via 
RTWP after its job is finished. 
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EPILOG 

What we have described is not a tutorial on what to do. Nearly 
everything we have done has been superceded in economic and efficient 
fashion by material now available from Texas Instruments. We still use 
our cross assembler simply because we have it and we are very familiar 
with it. However, TTBUG achieves much of what we were attempting with 
our cross-connection between the 980 and a 9900 chip, and the recent 
introduction of POWER BASIC supercedes our own pseudo-language develop
ments. 

What we have described is, first of all, history. It is a story of 
challenges successfully met when a new and apparently useful device 
appear 'r! without much manufacturer support. It is also a story of how to 
learn in great depth about a new device. Finally it is a story about the 
immeasurable value of ingenuity in the face of crucial challenges coupled 
with a perenial budget crunch. 
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FORMAT: FORMAT : 

2 (JUMP) 

6 (PROGRAM) 

7 (CONTROL) 

(IMMEDIATE) 

OPCODE DISPLACEMENT 

10 12 

OPCODE TS S 

11 

OPCODE UNUSED 

1112 
OPCODE W 

TMS 9900 

1 (REG-MEM) 

3 (REG-REG) 

5 (STATUS SKIP) 

6 (SENSE SWITCH) 

OPCODE DISPLACEMENT 

0 9 12 

OPCODE SR DR 

0 

OPCODE 

0 12 

OPCODE SWITCH 

980 

XBL 791-7833 

Fig. 1: The correspondence between 9900 and 930 instruct ion format, allowing some simple op-code 
redef in i t ions. The 980 OPD di rect ive defines a 16-bi t op code independent of the *\ze determined 
by the above f i e l d de f in i t ions . 
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3.1 

0001 UHL 
0002 IDT SAL990 
0003 * 
0004 HED SAL9900 3 
0005 HEO DEFINE TMS9900 FORMAT 1 INSTRUCTIONS <ARI 
0006 DEF 8FB0T,BF£R 
0007 * 
0008 ARI FRH 4,2,4,2,4 
0009 * 
0010 D EQU 0 
0011 I EGU 1 
0012 X EQU 2 
0013 XINC EOU 3 TD/TS OPTIONS 
0014 * 
00IS A EQU >A ADD 
0016 AB EQU >B ADD BYTES 
001? C EQU >8 COMPARE 
0018 CB EOU >9 COMPARE BYTES 
0019 MOV EQU >C MOVE 
0020 MOVB ESU >D HOVE BYTES 
0021 S EQU >fa SUBTRACT 
0022 SB EOU >7 SUBTRACT BYTES 
0023 S2C EQU 4 AND 
0024 SZCB EQU 5 AND BYTES 
0025 SOC EQU >E OR 
0026 SOCB EQU >F OR BYTES 
00^7 * 
0028 * 
0029 HEO PEFINE FORMAT 2 INSTRUCTIONS <JMP) 
0030 * 
0031 JEQ OPD >1300,1 J MP EQUAL TO 
0032 OCT OPD >1500,1 J MP GREATER THAN 
0033 JH OPD >1B00,1 JMP HIGH 
0034 J HE OPD >1400,1 JMP HIGH OR EQUAL 
0035 JL OPD MAOO.l JMP LOW 
0036 JLE OPD >1200,1 JMP LOU OR EQUAL 
0037 JLT OPD >1100,1 JMP LESS THAN 
0038 JMP OPD >1000,1 JUMP 
0039 JHC OPD > 1700,1 JMP NO CARRY 
0040 JNE OPD >1600,1 JHP NOT EQUAL 
0041 JNO OPD >1900,1 JHP NO OVERFLOW 
0042 JOC OPD >1800,1 JHP OH CARRY 
0043 JOP OPD >1C00,1 JHP ODD PARITY 
0044 * 
0045 BIT FRH 8,8 
0046 * 
0047 TB EQU >1F 
0048 SBO EQU >1D 
0049 SB2 EQU >1E 
0050 * 
0051 * 
0052 HED FORMAT 3,9,4 INSTRUCTIONS (LOG., MPY/OIV, 
0053 * 
0054 EXT FRM 6,4,2,4 
0055 * 
0056 MPY EQU >E 
0057 OIV EQU >F 
0058 COC EQU 8 COMPARE ONES CORRESPONDING 
0059 CZC EQU 9 COMPARE ZEROS CORRESPONDING 
0060 LDCR EQU >C LOAD CRU RFG 
0061 STCR ECU >t> STORE CRU KEG 
0062 XOP EQU >B EXTENOED OPERATION 
0063 XOR EQU >A EXCLUSIVE OR 
I10G4 * 

Fig. 2: A listing of SAL 9900.3 - TMS 9900 assembly language defined in 
TI 980 terms. Formats 2,6,7, and 8 (9900 language) are defined with the 
OPD directive. The remainder use the FRM directive and EQUalities for 
complete instruction definitions. 
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3D 

0065 HED FORMAT 5 INSTRUCTIONS (SHIFT) 
0066 » 
006? SHF FRH 8,4.4 
0068 * 
0069 SLA EQU >A SHIFT LEFT ARITHMETIC 
0070 SRA E9U >8 SHIFT RIGHT ARITHMETIC 
0071 SRC EQU >B SHIFT RIGHT CIRCULAR 
0072 SRL EQU >9 SHIFT RIGHT LOGICAL 
0073 * 
0074 • 
0075 • 
0076 HED FORMAT 4 INSTRUCTIONS (PROGRAM) 
0077 * 
0078 ABS QPD >740,2 ABSOLUTE VALUE 
0079 8 OPD >440,2 BRANCH 
0080 BL OPD >680,2 BRANCH. LINK 
0081 BLUP OPD MOO.2 BRANCH; LOAD WORKSPACE POINTER 
0082 CLR OfO >4C0,2 CLEAR 
0083 DEC OPD >600,2 DECREMENT 
0084 OECT OPD >640.2 DECREMENT BY 2 
0085 INC OPD >580,2 INCREMENT 
0086 INCT OPD >5C0,2 INCREMENT BY 2 
00C.7 INV OPD >540,2 INVERT 
008«> NEC OPD >500,2 NEGATE 
0089 SETO OPD >700,2 SET ONES 
0090 SUPB OPD >6C0,2 SWAP BYTES 
0091 XEQ OPD >480,2 EXECUTE 
0092 • 
0093 -* -
0094 * 
0095 HED FORMAT 7 INSTRUCTIONS (CONTROL) 
0096 • 
0097 CKOF OPD >3C0,5 
0098 CKOH OPD >3A0,5 
0099 IDLE OPD >340,5 
0100 RTUP OPD >380.5 
0101 • 
0102 * 
0103 * 
0104 HED FORMAT 8 INSTRUCTIONS (IMMEDIATE) 
0105 * 
0106 AI OPD >220.7 ADD IMMEDIATE 
0107 ANDI OPD >240,7 AND IMMEDIATE 
0108 CI OPD >280,7 COMPARE IMMEDIATE 
0109 LI OPD >200,7 LOAD IMMEDIATE 
0110 LIHI OPD >300.7 LOAD INTERRUPT MASK, IMMEDIATE 
0111 LUPI OPD >2E0.7 LOAO UORKSPACE PTR IMMEDIATE 
0112 ORI OPD 1240.7 OR IMMEDIATE 
0113 STST OPD >2C0,7 STORE STATUS REGISTER 
0114 STUP OPD >2A0.7 STORE UORKSPACE POINTER 
0115 * 
01U « 
0117 * 
0118 « START Of THS 9900 MEMORY 
0119 » 
0120 ORG 0 
0121 8FB0T EQU $ 0122 8FER EOU * 0123 HED SAL9900 .3 
0124 LIS 
0125 » 
0126 * END OF PROGRAM MUST CONTAIN } 
0127 * BUFTOP EQU * 0128 * BLEHG EQU 16384-BUFTOP 
0129 * BSS BLENG 
niin i cuis 

FIG. 2 page 2 
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TO CRU CARD 

X8L 791-7835 

Fig. 3: Logic required to connect the 980 as 9900 memory and control 



USER PROGRAM 
(LIST OF PRE-DEFINED 

OPERATIONS) 
EXECUTOR 

RO : (PSEUDO - PC) -

RUN MOV R O - » R 2 

INCT RO 

BLWP I.RO 

PSEUDO - PC 

STEP PSEUDO • PC 

EXECUTE A 5TEP 

RETURN POINT 

USER OP 

I ARG) 

USER OP 
l 

RO — 

Rl — 
l 
I 
I 

R13 (REVERSE POINTER) 

BLWP TABLE 
FOR PREDEFINED OPS 

R13 POINTS TO 
PSEUDO - PC WHICH 

POINTS TO ARG 

GET ARG 
STEP PSEUDO • ?C 

PERFORM OP 

RTWP (EXIT) 

XBL 791-7834 

Fig. 4: Linkage required for running the user program in the user pseudo-language. 




