
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
COMPUTER SYSTEM CROSS-FERTILIZATION: MAKING YOUR TI 980 PLAY
YOUR TMS 9900

Permalink
https://escholarship.org/uc/item/1vz517x5

Author
Meng, J.D.

Publication Date
1979-02-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1vz517x5
https://escholarship.org
http://www.cdlib.org/

To be presented at the Eighth Texas
Instruments- Members Information Exchange
Conference, Atlanta, Georgia, March 27-30,
1979 C C- P

LBL-8755
f.. f 6) 0 '6 6 iS • - /

COMPUTER SYSTEM CROSS-FERTILIZATION: MKING YOUR TI 98C
PLAY YOUR TMS 9900

John D. Meng

February 1979

Prepared for the U. S. Department of Energy
under Contract W-7405-ENG-48

MASTER

(2) LBL 8755
However, several age-old problems existed back in 1976. There were

no development systems available for the TMS 9900 and even if there were,
our budqet was not ready to accept what would have been a relatively
expensive item for developing a system around an as-yet untried product.
Al; , althouqh assembly language is fine for some simple jobs (and
ren red for some fast jobs), it can be a very trying and expensive diet
if U<en too reqularly.

G n.ing started, we attacked these various problems in qood engineer
ing ft. hion; one at a time, and using our available resources, mainly a
TI 080 A system which we inherited from a defunct series of experiments.
Our initial thought was to develop a simple cross-assembler so we could
at. leas: jse the editing capabilities of the 980. From the depths of
despair ^r thinkinq about this idea, however, came what proved proved
to be an .spiration. The 980 assembler allows the definition of new
op-codes iJPD, Operation Define) using existing instruction'formats. It
also allows the user to define fields for new instruction's fFRM, Format a
New Instruction). Using these two features allowed us,to produce an
assembler for the TMS 9900 which executed on our TI ,9'80-A system, the
entire project [after the initial inspiration) requiring less than an
hour to implement. The TMS 9900 assembler,incliding comments, consists
of exactly 130 lines of code.

Of course, there are some small irreconcilable differences between
the a80 anrl the 9900, but like the Wright Brothers we were off the ground
at last.

Certr.in 9900 instructions correspond in form with 980 instructions.
(See Fiqure i) These, of course, fit directly into the the 980 assembler
(with an PPD directive for each.) These are 9900 formats 2, fi, 7, and 8
which correspond in form to 980 formats, respectively, 1, 3, 5, and 6 as
illustrated in Fiqure 1. The remaining 9900 instructions are implemented
in the 980 assembler via the FRM directive. One directive is used per
class of instruction, fol iwed by EOU (equivalent) statements to define
the appropriate 9900 mnemonics. Figure 2 is a listing of "SAL 99003."
This 130-line block must preceed each assembly. Notice that a JMP
instruction goes in as:

JMP ARG
whereas a MOV instruction becomes:

ART MOV,D,0,1,13.

, J' L8L 8755
ADD becomes:

ART A,X,0,X,0
DATA SOURCE,DESTINATION

The system is not ideal. Routines written this way cannot be run
verbatim into any assembler existing on any 9900-based system. Also,
since the 980 assembler only recognizes 8 registers (but fortunately will
accept 16-regi'ster codes), we get meaningless error flags for some 9900
format 6 instructions. However, as a group which never had the opportu
nity to become accustomed to 9900-based assembly language, we quickly
became fluent in our own version.

A fundamental difference between the 9900 and the 980 is memory
addressing. The 9900 uses byte addressing, except for JMP instructions,
JMP instructions use word-relative addressing, making them compatible
with 080 field mnemonics. For example, 9900 Format 3 instructions (arid,
subtract, move, compare, and, or) require:

ART FRM 4,?,4,?,4,

the first field corresponding to an operation code and the subsequent
fields setting up addressing. Next, to allow mnemonic references to the
five fields, the following equivalences are defined fusing MOV as an
example):

MOV FQU >C
D EQU 0
I EQU 1
X EOU 2
XINC EQU 3

The D,I,X and XINC equivalences define mnemonics for use in the two
2-bit fields (fields 2 and 4) which specify addressing type. D is for
register direct, I for indirect, X for indexed and XINC for indirect/auto
incrementing. A move instruction which is designed to move a word of data
into register 0 from a location pointed to by register 2, for example, is
mnemonically written as:

ARI MOV,D,0,1,2.

(4) LBL 8755

To move a word of data from some arbitrary memory location:

ARI M0V,D,0,X,0
DATA SOURCE+SOURCE

SOURCE DATA VALUE

Where SOURCE is a pointer to the data word containing VALUE. In 980
language, memory addresses are assumed to be 16-bit word addresses. In
9900 language, memory is addressed by bytes. Consequently, an address
which the 980 assembler defines as a memory address must be doubled to
produce tne correct 9900 memory address. This is the reason for repre
senting the location of SOURCE in the above statement as SOURCE+SOURCE.
The statement source*2 could be used if the result of the multipication
is less than 32,768 (most significant bit reset). Otherwise, the
hardware multiply instruction used by the 980 assembler may reset this
bit, producing an incorrect value (980 hardware assumes the most
significant bit of each half of a multiply result to be a sign bit.) Our
one-hour assembler is displayed in Figure 2. Since we have never had the
legitimate 9900 assembler to learn on, the peculiarities of our own
version have become conventions to us, no longer seeming particularly
clumsy or illogical.

CARRYING ON

Now we were assembling programs for our embryonic systems. However,
as anybody who has tried it knows, debugging computer programs with just
an oscilloscope and selected test points (without the benefit of a
control panel) is, at best, tedious.

One possible solution to this dilemma would have been to build a
control panel complete with lights, switches and debugging features. Our
solution was to connect a 9900 chip to our 980 via a standard 16-in/16-out
data module. This connection allowed us to program the 980 to use a
reserved block of its memory as the memory space of the 9900. Enough
logic was added to the connection to allow the 980 to micro-step the
9900, to generate 9900 interrupts and to implement the CRU channel (see
Figure 3).

(5) LBL 8755
Next we wrote a 980 program to drive the 9900, allowing the 980 to

intervene in selected memory accesses. For example, the 980 can record
and display every memory access. Or it can select only Instruction
Acquisition (IAQ) accesses to record and display. The 980 can also
display only-write or only-read accesses; or accesses only to selectrd
memory locations, or only to selected IAO locations. The 980 can set
breakpoints at arbitary points and then operate the 9900 chip until it
reaches a breakpoint.

Now we could write a program and run through its execution in enough
detail to be sure it would not suffer software hangups. Of course, the
9900 was not being operated at top speed, and many 9900 input/output
operations were not practical to emulate with this scheme. However, our
economy bootstrap routine was running.

LANGAUAGE DEVELOPMENTS

As mentioned earlier, we deal in one-of-a kind hardware projects.
Our latest has been an X-ray fluorescence trace element analysis system
which counts secondary X-radiation from a series of samples mounted in
carriers and moved through the counting station hy a nechanical transport
mechanism. The 9°00 subsystem in this is responsible for monitoring and
moving the mechanical pieces as well as for reading and recording the raw
data in a large attached paged memory. The heavy analysis for the system
is done on an attached desk-top programmable calculator. It is desirable
for us to produce a system which is easy to change and for which simple
changes do not require delving into the details of an assembly-language
program. Consequently, we have done our 9900 assembly language program
ming in smali packets which do specific jobs for specific hardware. Each
small packet is affiliated with a driver routine which simultaneously
services several of the packets. By passing appropriate arguments to
this driver routine, the appropriate packet or sequence of packets is
called to perform the necessary job.

In order to simply and efficiently make these routines accessable to
a user in a flexible way, we have utilized the unique context-switching
capability of the 9900-based subsystem. The 9900 executes a short loop,
which controls a pseudo program-counter stepping through a list of
pseudo-instructions. The pseudo-instructions form the body of a language
tailor-made to operate the attached hardware.

f 6) LBL 8755
Each pseudo-instruction is defined by a workspace pointer/program

counter pair which form the calling parameters for a 9900 BLWP instruc
tion (Figure 4) . The op-code for the pseudo-instruction is defined as
the pointer to the appropriate workspace pointer/program counter parame
ter pair. To execute ;, program in pseudo-language requires the 9900 loop:

START

RUN

LI 0,PROGM

MOV I,0,D,2
JEQ START
INCT D,0
BLWP I,?
,1MP RUN

POINTER TO FIRST STEP
(PSEUOO-PC)
OPCODE IS PARAMETER POINTER
ZERO OP CODE MEANS RESTART
STEP PSEUDO PC
EXECUTE THE PSEUDO-INSTRUCTION
LOOP

Each instruction execution is a context switch. A user program example
would be:

PROGM PSCAL RESET RESET SCALER
PTIMR RESET RESET TIMER
PTIMR START START TIMER
PADC ON TURN ON ADC
FIN END. RESTART

The operations (such as SCAL, TIMR) are defined in 980 assembly language
directives, and the 0 preceeding the mnemonic (@SCAL, @TIMR) forces the
Q80 a-semhler to reserve an extra instruction word. Location START in
the execution loop resets the pseudo program-counter (register 0) to
point to the first statement of the user program (PROGM). Op code 0 is
the FIN statement which signals the end of the user program (and forces a
restart). Next, the pseudo program-counter is stepped to point to the
next location in the user program. This is the location of the parameter
RESET. The SCAL routine will pick up this parameter and use it to direct
resetting the scaler. The SCAL routine steps the pseudo program-counter
after getting the parameter (INCT 1,13), thus preparing for an exit via
RTWP after its job is finished.

(7) LBL 8755

EPILOG

What we have described is not a tutorial on what to do. Nearly
everything we have done has been superceded in economic and efficient
fashion by material now available from Texas Instruments. We still use
our cross assembler simply because we have it and we are very familiar
with it. However, TTBUG achieves much of what we were attempting with
our cross-connection between the 980 and a 9900 chip, and the recent
introduction of POWER BASIC supercedes our own pseudo-language develop
ments.

What we have described is, first of all, history. It is a story of
challenges successfully met when a new and apparently useful device
appear 'r! without much manufacturer support. It is also a story of how to
learn in great depth about a new device. Finally it is a story about the
immeasurable value of ingenuity in the face of crucial challenges coupled
with a perenial budget crunch.

ACKNOWLEDGMENTS

References to a company or product name does not imply approval or
recommendation of the product by the University of California or the
United States Department of Energy to the exclusion of others that may be
suitable.

REFERENCES

1. Texas Instruments Engineering Staff: TMS 9900 Microprocessor 3ata
Manual. Texas Instruments, Inc. Dec, 1976.

?. Texas Instruments Digital Systems Division: Model 980 Computer
Assembly Language Programmers Reference Manual. Texas Instruments,
Inc. March 1976.

3. Texas Instruments, Inc.; Model ^90 Computer Programming Card,
November, 1975.

4. Texas Instruments, Inc.; Programmer Reference Card for Model 980-A
Computer, September, 1973.

FORMAT: FORMAT :

2 (JUMP)

6 (PROGRAM)

7 (CONTROL)

(IMMEDIATE)

OPCODE DISPLACEMENT

10 12

OPCODE TS S

11

OPCODE UNUSED

1112
OPCODE W

TMS 9900

1 (REG-MEM)

3 (REG-REG)

5 (STATUS SKIP)

6 (SENSE SWITCH)

OPCODE DISPLACEMENT

0 9 12

OPCODE SR DR

0

OPCODE

0 12

OPCODE SWITCH

980

XBL 791-7833

Fig. 1: The correspondence between 9900 and 930 instruct ion format, allowing some simple op-code
redef in i t ions. The 980 OPD di rect ive defines a 16-bi t op code independent of the *\ze determined
by the above f i e l d de f in i t ions .

(9)
LBL 8755

3.1

0001 UHL
0002 IDT SAL990
0003 *
0004 HED SAL9900 3
0005 HEO DEFINE TMS9900 FORMAT 1 INSTRUCTIONS <ARI
0006 DEF 8FB0T,BF£R
0007 *
0008 ARI FRH 4,2,4,2,4
0009 *
0010 D EQU 0
0011 I EGU 1
0012 X EQU 2
0013 XINC EOU 3 TD/TS OPTIONS
0014 *
00IS A EQU >A ADD
0016 AB EQU >B ADD BYTES
001? C EQU >8 COMPARE
0018 CB EOU >9 COMPARE BYTES
0019 MOV EQU >C MOVE
0020 MOVB ESU >D HOVE BYTES
0021 S EQU >fa SUBTRACT
0022 SB EOU >7 SUBTRACT BYTES
0023 S2C EQU 4 AND
0024 SZCB EQU 5 AND BYTES
0025 SOC EQU >E OR
0026 SOCB EQU >F OR BYTES
00^7 *
0028 *
0029 HEO PEFINE FORMAT 2 INSTRUCTIONS <JMP)
0030 *
0031 JEQ OPD >1300,1 J MP EQUAL TO
0032 OCT OPD >1500,1 J MP GREATER THAN
0033 JH OPD >1B00,1 JMP HIGH
0034 J HE OPD >1400,1 JMP HIGH OR EQUAL
0035 JL OPD MAOO.l JMP LOW
0036 JLE OPD >1200,1 JMP LOU OR EQUAL
0037 JLT OPD >1100,1 JMP LESS THAN
0038 JMP OPD >1000,1 JUMP
0039 JHC OPD > 1700,1 JMP NO CARRY
0040 JNE OPD >1600,1 JHP NOT EQUAL
0041 JNO OPD >1900,1 JHP NO OVERFLOW
0042 JOC OPD >1800,1 JHP OH CARRY
0043 JOP OPD >1C00,1 JHP ODD PARITY
0044 *
0045 BIT FRH 8,8
0046 *
0047 TB EQU >1F
0048 SBO EQU >1D
0049 SB2 EQU >1E
0050 *
0051 *
0052 HED FORMAT 3,9,4 INSTRUCTIONS (LOG., MPY/OIV,
0053 *
0054 EXT FRM 6,4,2,4
0055 *
0056 MPY EQU >E
0057 OIV EQU >F
0058 COC EQU 8 COMPARE ONES CORRESPONDING
0059 CZC EQU 9 COMPARE ZEROS CORRESPONDING
0060 LDCR EQU >C LOAD CRU RFG
0061 STCR ECU >t> STORE CRU KEG
0062 XOP EQU >B EXTENOED OPERATION
0063 XOR EQU >A EXCLUSIVE OR
I10G4 *

Fig. 2: A listing of SAL 9900.3 - TMS 9900 assembly language defined in
TI 980 terms. Formats 2,6,7, and 8 (9900 language) are defined with the
OPD directive. The remainder use the FRM directive and EQUalities for
complete instruction definitions.

(10)
LBL 8755

3D

0065 HED FORMAT 5 INSTRUCTIONS (SHIFT)
0066 »
006? SHF FRH 8,4.4
0068 *
0069 SLA EQU >A SHIFT LEFT ARITHMETIC
0070 SRA E9U >8 SHIFT RIGHT ARITHMETIC
0071 SRC EQU >B SHIFT RIGHT CIRCULAR
0072 SRL EQU >9 SHIFT RIGHT LOGICAL
0073 *
0074 •
0075 •
0076 HED FORMAT 4 INSTRUCTIONS (PROGRAM)
0077 *
0078 ABS QPD >740,2 ABSOLUTE VALUE
0079 8 OPD >440,2 BRANCH
0080 BL OPD >680,2 BRANCH. LINK
0081 BLUP OPD MOO.2 BRANCH; LOAD WORKSPACE POINTER
0082 CLR OfO >4C0,2 CLEAR
0083 DEC OPD >600,2 DECREMENT
0084 OECT OPD >640.2 DECREMENT BY 2
0085 INC OPD >580,2 INCREMENT
0086 INCT OPD >5C0,2 INCREMENT BY 2
00C.7 INV OPD >540,2 INVERT
008«> NEC OPD >500,2 NEGATE
0089 SETO OPD >700,2 SET ONES
0090 SUPB OPD >6C0,2 SWAP BYTES
0091 XEQ OPD >480,2 EXECUTE
0092 •
0093 -* -
0094 *
0095 HED FORMAT 7 INSTRUCTIONS (CONTROL)
0096 •
0097 CKOF OPD >3C0,5
0098 CKOH OPD >3A0,5
0099 IDLE OPD >340,5
0100 RTUP OPD >380.5
0101 •
0102 *
0103 *
0104 HED FORMAT 8 INSTRUCTIONS (IMMEDIATE)
0105 *
0106 AI OPD >220.7 ADD IMMEDIATE
0107 ANDI OPD >240,7 AND IMMEDIATE
0108 CI OPD >280,7 COMPARE IMMEDIATE
0109 LI OPD >200,7 LOAD IMMEDIATE
0110 LIHI OPD >300.7 LOAD INTERRUPT MASK, IMMEDIATE
0111 LUPI OPD >2E0.7 LOAO UORKSPACE PTR IMMEDIATE
0112 ORI OPD 1240.7 OR IMMEDIATE
0113 STST OPD >2C0,7 STORE STATUS REGISTER
0114 STUP OPD >2A0.7 STORE UORKSPACE POINTER
0115 *
01U «
0117 *
0118 « START Of THS 9900 MEMORY
0119 »
0120 ORG 0
0121 8FB0T EQU $ 0122 8FER EOU * 0123 HED SAL9900 .3
0124 LIS
0125 »
0126 * END OF PROGRAM MUST CONTAIN }
0127 * BUFTOP EQU * 0128 * BLEHG EQU 16384-BUFTOP
0129 * BSS BLENG
niin i cuis

FIG. 2 page 2

(11)

LBL 8755

TO CRU CARD

X8L 791-7835

Fig. 3: Logic required to connect the 980 as 9900 memory and control

USER PROGRAM
(LIST OF PRE-DEFINED

OPERATIONS)
EXECUTOR

RO : (PSEUDO - PC) -

RUN MOV R O - » R 2

INCT RO

BLWP I.RO

PSEUDO - PC

STEP PSEUDO • PC

EXECUTE A 5TEP

RETURN POINT

USER OP

I ARG)

USER OP
l

RO —

Rl —
l
I
I

R13 (REVERSE POINTER)

BLWP TABLE
FOR PREDEFINED OPS

R13 POINTS TO
PSEUDO - PC WHICH

POINTS TO ARG

GET ARG
STEP PSEUDO • ?C

PERFORM OP

RTWP (EXIT)

XBL 791-7834

Fig. 4: Linkage required for running the user program in the user pseudo-language.

