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ABSTRACT OF THE THESIS 
 

Optimizing Repartitioning Parallel Sort in AsterixDB 
 

By 
 

Mikhail Lychagin 
 

Master of Science in Computer Science 
 

 University of California, Irvine, 2019 
 

Professor Michael J. Carey, Chair 
 
 

As big data evolves, more and more databases are incorporating a parallel architecture. 

Sorting a dataset on a key value is a required operation of any database. The hope is that a linear 

increase in computing power given to a database results in a linear increase in performance. One 

of these databases is AsterixDB, which has Repartitioning Parallel Sort, or RPS, as its sort 

operator. 

The goal of this thesis is to optimize RPS to fully utilize the parallel nature of AsterixDB 

in all cases. Currently, the sort operator performs poorly when faced with an input dataset whose 

sort attribute is skewed on one or more identical values. In this thesis, we first discuss the current 

state of sorting in AsterixDB and the problems associated with it. Second, we go over a proposed 

optimization to the sort operator. Third, we compare the old approach with the new one with 

performance testing. Finally, we discuss some future work that can be done to further improve 

sorting in AsterixDB. 

 



 

 

Chapter 1 

Introduction 

The desire for parallelism has skyrocketed over the last several decades. At first, it started on a 

small scale, with computers having multiple processors running in parallel and sharing memory. 

It became more cost-effective to bundle multiple processors (now cores) together than to have 

one higher-speed processor. The challenges of coding shared memory systems then led architects 

to build message-based multicomputers (now clusters) to create larger systems. Engineers began 

writing programs to fully utilize all the processors available to them within a single machine. 

Then, with the advent of high-speed networks, the internet, and long-range communication, 

data/computing centers were able to be linked to solve very large computing problems. Database 

management systems have long incorporated the use of multiple partitions and partitioned 

parallelism to speed up computation [2]. Partitions are logical units of a database that can be 

accessed in parallel with each other. These partitions store data and execute operators but each 

only do a fraction of the storage/computing work needed for the entire database. 

 

Nowadays, a database system typically runs on a cluster of machines to handle large amounts of 

data. Each machine can house multiple partitions. One database system that incorporates such a 

structure is AsterixDB [3]. Data in AsterixDB is hash-partitioned across all machines in an 

attempt to even out the computing and storage load. However, with data being spread across 
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multiple machines, extra steps must be taken to assemble the correct final result for a query. 

AsterixDB queries are broken down into a series of operators [5] that partitions execute to 

compute a result. A set of operators can run in either a parallel or serial mode. In parallel mode, 

each partition concurrently executes an instance of the operator locally, and in serial mode, only 

a single partition is executing while the others are waiting. The operator of interest in this thesis 

is the sort operator. AsterixDB currently uses a Repartitioning Parallel Sort [6] as a basis for its 

sort operator. The specifics of RPS will be discussed later on in the thesis, but for now, know 

that RPS assigns each partition a range of data values to sort. Each partition sorts the data given 

to it, and the next operator then picks up the result set based on the ranges each partition was 

given. A problem arises if a majority of the data has an identical sort key value (or a small set of 

such values). In such a case, a large amount of data gets sent to one partition instead of being 

equally distributed amongst all partitions. In this thesis, we attempt to equally load balance all 

partitions to get the fastest execution time possible when confronted with data skewed on one or 

more values. We analyze two algorithms that deliver promising results when compared to the 

original AsterixDB sort implementation. 

 

The rest of the thesis is laid out in the following manner. Chapter 2 goes over related work in the 

area of parallel sorting with skewed values. Then, in Chapter 3, we go over the current 

architecture of AsterixDB as well as an outline of RPS, followed by our work to enhance the sort 

operator. In Chapter 4, we present the results of performance testing with the previous approach 

and our new ones. Finally, in Chapter 5, we conclude the thesis and briefly discuss possible 

future work. 
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Chapter 2 

Related Work 

The idea of range partitioning during a sort has been around for a long time, dating back to the 

1990s. The problem addressed in this thesis involves data distribution with a splitting vector. The 

work below might have different algorithms or mediums, but the idea is the same. For example, 

[7] outlines an identical algorithm to the one AsterixDB currently uses, except its medium is a 

multiprocessor. A single node first collects local samples from all other participating nodes and 

produces a splitting vector, i.e., a plan for how to spread the sort across all nodes. The splitting 

vector is then sent back to each node and is used to redistribute all the data. However, there is no 

protection against heavy hitter values or any mention of a protocol to employ when multiple split 

values are the same. The authors have two different splitting modes, “probabilistic splitting” and 

“exact splitting.” The “probabilistic” approach relies on sampling a small subset of the data, 

while the “exact” approach examines all the data before redistribution. As we will see here later, 

there is an inherent flaw in using a splitting vector, as it does not address the distribution of 

duplicate values at each of the split points. In [9], the authors follow a similar sorting approach, 

but they provide a custom splitting vector to the sort operator. (There is a similar feature in 

AsterixDB today, which allows users to give the sort operator a custom splitting vector.) In this 
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case, there is no need for a sample aggregation step, and each partition receives the custom 

splitting vector. The data is then repartitioned and sorted. However, there is no new information 

on how to deal with skewed values in that paper.  

 

Joining is known to be negatively affected by skewed datasets. Although sorting and joining are 

different operations, they both require data redistribution. In [8], the authors propose doing joins 

with range partitioning instead of the typical hash partitioning. The authors found an elegant 

solution for handling repeat data values in a splitting vector: they follow a “weighted range 

partitioning” approach in which percentages at split points are also taken into account when 

redistribution occurs. If two split points share the same value, then that value will be sent in 

appropriate cardinalities to the partitions associated with those two split points. This approach is 

the closest that we have seen to an actual cardinality distribution. 
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Chapter 3 

Design and Implementation 

3.1 Overview of AsterixDB 

Figure 3.1: AsterixDB System Architecture 

 

This section gives a brief introduction to the architecture “under the hood” of AsterixDB. Figure 

3.1 shows an overview of the system architecture for AsterixDB [3]. As stated before, AsterixDB 
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runs on a cluster of machines. There is a single node, known as the cluster controller, which 

interacts with the user and sends query plans composed of operators to the other nodes. 

AsterixDB follows a shared-nothing model in which each node has separate memory and 

storage. A hash function, based on the primary key of a dataset, is employed to distribute data 

amongst the partitions. The hope is that data will be distributed evenly and in an unbiased form 

across the partitions. 

Figure 3.2: Query Processing Steps 
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As shown in Figure 3.1, data enters AsterixDB through loading, insertion queries, or a feed of 

continuous data. Figure 3.2 outlines the process by which a query is broken down into operators. 

The cluster controller is the main point of contact which handles all user requests. Once a query 

has been received, an abstract syntax tree is created. Then, Algebricks [4] breaks down the 

syntax tree into logical operators which are manipulated in the query optimization step. Finally, 

the resultant logical operators are compiled into Hyracks [5] jobs, which are expressed as 

Directed Acyclic Graphs (DAGs) consisting of operators and connectors. Each node controller 

then executes the job in a pipelined fashion. Finally, the result is stored on all nodes and returned 

to the user when requested [12]. 

 

The operators in a query DAG often have dependencies between them, as is the case with RPS. 

In such instances, nodes will have to wait for previous operators to finish before continuing with 

their operators. AsterixDB incorporates a push-based architecture in which data is pushed 

between operators in the form of frames. A frame is a collection of tuples. In AsterixDB, the 

fields in a tuple may have heterogeneous data types. Furthermore, some attribute values may be 

completely missing from a tuple. 

 

3.2 Parallel Sort Global Merge 

 

Before [6] introduced Repartitioning Parallel Sort, the default sort operator in AsterixDB was 

Parallel Sort Global Merge (PGSM). Figure 3.3 depicts the logical plan for PGSM. Each 

partition does a local scan and generates sorted runs for data relevant to the search predicate. 
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Each partition then merges all of its generated runs into one run. As each partition generates its 

final run, they push the result to a single partition. This partition merges the resulting runs from 

all of the partitions and generates a final sorted run with all of the data from all partitions present. 

Figure 3.3: PGSM Plan 

3.3 Repartitioning Parallel Sort 

3.3.1 Overview 

 

The current AsterixDB sorting operator has seven phases, as seen in Figure 3.4 (taken from [6]). 

Initially, a scan is done to collect all relevant data to the sort query. Then, the data is sent to the 

local sampling operator and the forward operator. To achieve sending data to two different 

operators, AsterixDB requires the use of a replicate operator. The forward operator’s job is to 

 
8 



block sort execution on each node until all incoming operations are completed. Note that there is 

a blocking edge between the forward operator and the range computation step. As a result, the  

Figure 3.4: RPS Plan 

 

local sampling and range computation will always finish before the forward operator executes. In 

the local sampling step, each partition takes a sample of the dataset. Currently, the default 

number of samples per partition is 100, but this number can be configured. Then, the samples 
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from all partitions are sent to a single partition using the M:1 random merge exchange. The 

receiving partition constructs a RangeMap based on the incoming samples in the range 

computation step. (The rest of the partitions wait while the RangeMap is being computed.) As of 

right now the RangeMap only holds the splitting vector. Once created, the RangeMap is 

broadcast back to each partition. Now, armed with the RangeMap, each partition’s forward 

operator participates in an M:N exchange operator in which the data to be sorted is distributed 

based on the RangeMap. Each partition then sorts the data they were given by the previous step. 

Finally, the next operator can pick up the sorted data by accessing the resulting partitions in an 

ordered fashion. We will discuss the steps relevant to this thesis in greater depth below, along 

with the proposed changes. 

 

3.3.2 Sampling 

 

Collecting samples from a partitioned dataset is an area that has had a lot of attention from the 

research community [7,10]. Prior work has mainly focused on finding the optimum number of 

samples to take from a dataset when constructing a splitting vector. While there can be 

optimizations done to the number of samples collected in the current sort operator, we’ll leave 

such improvements to future work. The problem we are addressing here is the way (order) in 

which samples are collected. Currently, a linear scan is done, and the first 100 samples are taken 

per partition. This shouldn’t cause an issue if the data is uniformly distributed. However, if the 

input is already sorted, the RangeMap will assign ranges to partitions based upon an 

unrepresentative sample. In this case, the last partition will receive all values not present in the 
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initial sample, which typically is the bulk of the dataset. Therefore, it’s essential to ensure that 

the RangeMap is constructed with data points that are indeed randomly selected. Fortunately, the 

current AsterixDB sampling stage iterates through all the tuples, so the only necessary 

improvement is to enforce a better selection policy. For such a task, we have chosen Algorithm R 

(for “reservoir sampling”) from [11] (pp. 144-145). 

 

The improved sampling algorithm is quite simple, and Figure 3.5 provides its basic pseudocode. 

In our case, k is always 100. After the k-item sample array is full, each new incoming value is 

given a chance to replace a value in the sample array. (Note that this algorithm could also be 

modified to increase k as the number of values seen increases.) 

Figure 3.5 Pseudocode for Reservoir Algorithm 

 

3.3.3 Splitting Vector 

 

Now that we possess a much more random sample set, it’s time to create a splitting vector. First, 

we define the exact semantics of the splitting vector. The definition below is adapted from [7]. A 

splitting vector, v[i], is defined as having 1 ≤ i < k, such that all tuples assigned to partition 1 
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have a sort key less than or equal to v[1]. All tuples assigned to partition 2 have a sort key value 

greater than v[1] but less than or equal to v[2], and so on, until all tuples assigned to partition k 

have a sort key greater than v[k-1]. In RPS, the splitting vector is found by sorting the samples 

and dividing them into k equally sized buckets. Then, the values at the borders of the buckets are 

selected as entries in the splitting vector. 

 

In RPS today, assigning a tuple to a partition of the sort is reasonably straightforward. A tuple, 

with its sort key t, is assigned using a linear scan on the splitting vector until v[i] > t to determine 

the tuple’s partition assignment. If multiple split values are equivalent, the partition on the right 

of the last such split value will be chosen. As a result all the tuples with identical sort keys will 

be routed to the same partition. In an extreme case where 100% of the tuples have identical sort 

key values, they will all end up in the last partition. The last partition will then be forced to sort 

the entire dataset locally. As we can see, RPS doesn’t have a protocol in place for handling a 

massive influx of identical values. 

 

3.3.4 Distribution 

 

As we have just seen in the previous section, there is a major flaw in the way distribution is 

handled in RPS. To improve the tuple distribution, our goal would be to correctly spread the 

identical values to all partitions that can accept them. One way to accomplish such a goal is to 

incorporate the weighted policy mentioned in [8]. To do so, an auxiliary structure to the splitting 

vector will need to be created to hold the percent distribution at each split point. We will refer to 
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it as the “percentage list” or PL for short. The PL list, p[i], is defined as having 1 ≤ i < k, such 

that the i’th partition has p[i] percent of keys with value v[i]. Note that the PL and the splitting 

vector have the same number of entries. Constructing the PL is fairly simple and requires a linear 

scan of the samples list once the splitting vector has been determined. Figure 3.6 shows the 

algorithm to calculate the percentage list. 

Figure 3.6 Percentage List Algorithm 

 

A change must be made to the current distribution method in order to utilize the PL list. Let’s 

return to the previous example with a tuple that has a sort key of t. A linear scan on the splitting 

vector is still performed. However, there is a special case when t = v[i]. Figure 3.7 displays 
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pseudocode for the algorithm that is executed after the first equivalent split value is found. The 

algorithm returns the index of the partition that the tuple is to be assigned to. 

Figure 3.7 Percent Distribution Algorithm 

 

Figure 3.8 shows a small example of a splitting vector of [2,2,3] with a percentage list of 

[20,80,50]. Twenty percent of the values of 2 will go to Partition 1 while the remaining eighty 

percent will go to Partition 2. The values of 3 will be evenly split between Partitions 3 and 4. 

Figure 3.8 Splitting Vector & Percentage List Example 
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3.4 Skewed Range Map Algorithm 

 

The goal of this thesis is to optimize RPS to achieve the fastest runtime possible, given any data 

distribution. The runtime of RPS will be dependent upon the highest sorting time of any single 

partition. Therefore, we are going to be constructing an algorithm that minimizes the maximum 

sorting time of any partition. We will call this algorithm the Skewed Range Map Algorithm, or 

SRM for short. Apart from RPS, SRM can designate partitions as “sorting” or “non-sorting.” A 

skewed value in a dataset can be assigned to separate partition(s) that will only receive that 

particular value. Since they receive only one value, they won’t have to sort the incoming data, 

leading to faster linear execution time. The result is a RangeMap based upon a work analysis that 

accounts for skewed datavalues. It is also noteworthy that the resulting sorted data will be 

eventually distributed over the nodes (partitions) in the cluster, avoiding the potential for 

overloading one node’s storage capacity. 

 

3.4.1 Cost Functions 

 

Similarly to RPS, SRM assigns samples to partitions to construct a RangeMap. Since SRM does 

a work analysis, it needs to know the “cost” of a partition when it’s assigned a particular set of 

samples. Partitions come in two flavors, “sorting” and “non-sorting,” which require separate cost 

functions. The goal is that these cost functions should accurately estimate the execution time of 

the sort. Figure 3.9 shows the required cost functions. The number of samples defaults to 100 but 

is adjustable by setting ‘compiler.sort.samples’.  
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Figure 3.9 Cost Functions 

 

For this thesis, we have chosen to experiment with two cost functions. First, there is a CPU cost 

function. Given an input size of n samples, the CPU cost function returns a value of n for a 

non-sorting partition and a value of n * log(n) for a sorting partition. Second, there is an IO cost 

function which is more complex and takes into account the total number of frames encompassing 

the dataset. Given n samples, the IO cost function determines how many frames those samples 

represent. Then, if the partition is non-sorting, the number of frames is returned. If the partition is 

sorting, the number of input frames and memory buffer size are used to calculate the total 

number of sort passes needed. Finally, the result is the number of frames multiplied by this 

number of passes. 
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3.4.2 Non-Sorting Restrictions 

 

If a partition receives only one value, e.g.,, all NULLs, a sort does not have to be done. All of the 

tuples share an identical sort key value and are therefore already in an acceptable order. Now, a 

distinction can be made between partitions that must sort and partitions that don’t have to sort. 

Not all SRM partitions can be non-sorting; several prerequisites must be met for a partition to 

avoid having to sort. First, the partition with the lowest index always has a lower bound value of 

negative infinity, and the partition with the greatest index has an upper bound of positive infinity. 

(This approach also works for heterogeneous data values as long as they can be compared.) The 

reason is that since the splitting vector is created using a relatively small sample of values, the 

entire spectrum of possible domain values must still be accounted for. Second, two adjacent 

partitions can only both be non-sorting if they share an identical sort key value. Otherwise, there 

could exist unsampled in-between values that would compromise the non-sorting integrity of one 

of the partitions. Figure 3.10 puts the above restrictions into pseudocode.  The function returns 

true if a partition is able to be non-sorting and false otherwise. 
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Figure 3.10 Partition Sorting Restrictions 

 

3.4.3 Greedy Assignment 

 

Given a maximum per-partition cost, the origin of which we will explain in the next section, 

calculating the splitting vector to balance the sorting process can be achieved using a greedy 

approach guided by the maximum cost. Starting from the first partition, each partition is assigned 

as many samples as it can hold before it exceeds the maximum cost. Each partition is assumed to 

be sorting when first assigned and is converted to a non-sorting partition if the criteria mentioned 

previously are satisfied. If a partition is converted to non-sorting, more samples will  then be 

assigned if they share identical values. In addition, if a partition is converted to non-sorting and 

no new samples are added, then the partition is converted back to sorting.(Otherwise, even if the 

next partition met the "non-sorting" criteria, it would be forced to sort as it would be 

"non-sorting" over a different data value than the current partition.) Since there are n samples 
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total, the complexity of assigning all samples to partitions is O(n). The greedy assignment returns 

true if all the samples were successfully assigned and returns false otherwise. Figure 3.11 has the 

pseudocode for the greedy step. 

Figure 3.11 Greedy Assignment Algorithm 
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3.4.4 Binary Search 

 

The SRM algorithm does a binary search using the greedy algorithm to compute the split vector. 

Specifically, the SRM algorithm is looking for the lowest maximum cost for which the greedy 

algorithm returns true. The cost-finding outer loop of the SRM algorithm is a simple binary 

search on a boolean function and is depicted in Figure 3.12. The return value for this algorithm is 

the minimum cost for which an assignment can be made. This cost can then be plugged into the 

greedy step to get the final splitting vector. 

Figure 3.12 Binary Search on Maximum Cost 

 

3.4.5 Running Time 

 

Let’s analyze the running time of the algorithm. In the explanation below, n is the number of 

samples, and p is the number of partitions. If every partition is non-sorting, the lower bound for 
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the maximum cost is n / p. In the case that every partition has to sort, the upper bound maximum 

cost is (n / p) * log (n / p). As stated above, the cost of computing one greedy assignment is O(n). 

There are a total of log( (n / p) * log (n / p) ) steps to the binary search. Therefore, the running 

time of the SRM algorithm is O(n * log((n/p) * log(n/p))). 

 

3.4.6 Examples 

 

Figure 3.13 displays an example assignment by the greedy algorithm. In this case, the chosen 

maximum cost is 5. A sorting partition can be assigned a maximum of 3 samples here, while a 

non-sorting partition can hold 5 samples. In the example, only the second partition can be labeled 

as non-sorting. Although the third partition has all identical sample values (5’s), it is adjacent to 

a partition that is non-sorting on a different value (4’s). If the full data set contains a 

(non-sampled) tuple with a key value of 4.5, that tuple would be assigned to the third partition 

during distribution. The resulting splitting vector, in this example, would be [3,4,5]. The 

percentage list is [100,100,75]. Also, since all of the samples were successfully assigned, the 

greedy algorithm would return a value of true. 

 

 

Figure 3.13 Adjacent Example 
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Another edge case of the greedy algorithm is demonstrated in Figure 3.14. The maximum cost in 

this example is again 5. When initially assigned, partition two was assumed to be sorting at first. 

It was assigned 3 samples (as is the maximum for this example). However, all three of those 

samples had an identical value of 3. The partition was converted to non-sorting, and more 

samples equivalent to 3 were attempted to be assigned. However, the next sample value is 5, and 

adding it to partition two would violate the non-sorting state of partition two. According to the 

greedy assignment algorithm, if a partition is converted to non-sorting, but no new samples were 

added, then that partition is reverted back to sorting. Keeping the partition as non-sorting 

wouldn't incur any benefit to execution time and would only prevent the next partition from 

being non-sorting. Note that if partition two were non-sorting, then partition three would have to 

be sorting since partition two and three contain different values. The last sample (9) isn’t 

assigned to any partition, and therefore the return value of the greedy algorithm is false - it 

wasn’t able to assign all samples to compute a splitting vector that keeps all partitions under the 

maximum specified cost. 

Figure 3.14 Sorting All Identical Samples Example 
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The final example in Figure 3.15 exemplifies what would happen in the case where all the 

samples share an identical value. Again, the maximum cost is 5. Notice that the first partition has 

to remain as a sorting partition in case the full dataset contains some entry with a key value less 

than 3 (and similarly the last partition remains sorting). The greedy function would return true 

with a splitting vector of [3,3,3]. The percentage list in this example is [21.5, 35.7, 35.7]. 

 

Figure 3.15 All Identical Sample Example 

 

3.4.7 Optimistic Optimization 

 

The SRM algorithm works reasonably well in most cases, as we will see later, but there are a few 

instances where some of the restrictions could be relaxed for better performance. One in 

particular is the requirement for the first and last partition to be sorting, and another is two 

non-sorting partitions only being adjacent when they share the same value. Figure 3.16 illustrates 

a problematic edge case. The maximum cost is 5 for this example as well. Notice how there are 

three partitions and 3 different values, all of which have cardinalities of 4. 

Figure 3.16 SRM Optimistic Pre 
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The first partition is forced to sort because it's the first partition. The second and third partitions 

sort because they didn't get assigned all of the same value, and the last one sorts because it's the 

last partition. The SRM algorithm is optimized for the underlying dataset to potentially have 

in-between values that could compromise a partition's ability to not have to sort the data given to 

it. However, as we can see in this example, such precautions can severely limit the number of 

samples that can be assigned. If we disable these extra precautions, we could risk in-between 

values getting into partitions labeled as "non-sorting." However, the local sort operator can be 

assigned to only behave as "non-sorting" if it can verify that all of the data values are the same. 

Therefore, the worst that can happen is that a partition labeled as "non-sorting" will end up 

having to sort. More importantly, the computed (sorted) result will still be correct. Let's look at 

an optimistic approach to the problem then, as featured in Figure 3.17. Now, the first and last 

partition can be marked as non-sorting, and two adjacent partitions can be non-sorting even if 

they contain different values. 

Figure 3.17 SRM Optimistic Post 

 

In this case are able to assign all of the samples given the same maximum cost constraint. 

However, now we aren’t guaranteeing that a partition marked as non-sorting will ultimately 
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always receive identical values. In such a case, the partition will have to sort (leading to a longer 

execution time). 
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Chapter 4 

Performance Evaluation 

In this chapter, we present the results of a set of  experiments that compare the old RPS 

implementation against the SRM algorithm. The SRM algorithm will be tested using a CPU 

estimated cost function as well as an IO estimated cost function. These two cost functions each 

come in two flavors, optimistic and pessimistic. Our experiments also include a “cardinality” and 

lead balancing approach, that consists of the PL (Percentage List) changes but not the cost-based 

SRM algorithm. Furthermore, for the “cardinality approach”, we adjusted the percentage 

algorithm to ignore thresholds below 5% (to avoid one sample causing a partition to sort). 

AsterixDB’s current handling of identical values in the RPS RangeMap is less than ideal and will 

serve as a strawman in our experiments. The cardinality approach and the SRM algorithm both 

address the skew value issue. However, it is not clear whether the extra overhead added by the 

cost based SRM algorithm merits its usage. In addition, all of the tests except for PGSM and 

RPS include the added sampling improvements discussed in 3.2.2. All of the tested algorithms 

are depicted in Table 4.1.  
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Table 4.1: Tested Algorithms 
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Name Splitting Vector Percentage List 

PGSM None No 

RPS Even Splitting Vector (RPS) No 

Cardinality Even Splitting Vector (RPS) Yes 

Pess CPU Pessimistic SRM with CPU 
cost functions 

Yes 

Pess IO Pessimistic SRM with IO cost 
functions 

Yes 

Opt CPU Optimistic SRM with CPU 
cost functions 

Yes 

Opt IO Optimistic SRM with IO cost 
functions 

Yes 



The chapter is outlined as follows. First, we will go over the experimental setup. Second, we will 

determine appropriate cost functions for AsterixDB in the testing environment. Third, we will go 

over various performance tests that pit the three approaches against each other. Finally, we will 

do a general analysis and discuss which method produces the best performance. 

 

4.1 Experimental Environment and Setup 

 

The experiments listed in this chapter were conducted on a cluster of 6 nodes. For some of the 

experiments, the number of nodes was varied to study speedup. Each node was a Dell 

PowerEdge 1435SC with 2 Opteron 2212HE processors and 8GB of DDR2 memory. Each node 

had two 1TB hard disk drives with a 7200 RPM speed. Since there were two disks per node, 

AsterixDB was configured to run with two partitions per node. The AsterixDB sort memory 

budget was set to 2048KB, and the JVM was given 4GB of RAM to operate with. The use of a 

low sort memory budget was critical in forcing the sort operator to do multiple passes. 

Otherwise, we wouldn't have tested the full functionality of the IO cost function. The data we 

sorted on had the schema presented in the Wisconsin Benchmark [14]. The only modification 

was to generate tuples of approximately 600 bytes [1]. Listing 4.1 depicts the AsterixDB DDL 

statements for the generated data.  
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Listing 4.1 Experiment dataset definition 

The sizes and cardinalities of the datasets we used for testing are indicated in Table 4.2. 
 

Table 4.2: Experiment Datasizes 
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Number of Tuples(Million) Total Dataset Size(JSON) 

30 16 GB 

60 32 GB 

90 47 GB 

120 63 GB 

150 78 GB 

180 94 GB 



The primary key of each dataset was unique1 and the sort key varied between experiments. 

Listing 4.2 shows the two query types executed in the experiments. The NULL query tests a sort 

key with unique values intermingled with NULL values. Normally, the Wisconsin dataset doesn't 

have any NULL values in the unique2 field. However, the data generator [1] allows the field to 

have a certain percentage of NULL values. The domain query tests a sort key which has a small 

subset of values. 

Listing 4.2: SQL++ queries 

 

4.2 Results and Analysis 

4.2.1 Varying Degrees of Nulls 

 

In this experiment, we measure the execution time for sorting datasets with varying degrees of 

data skew. For each query, we sent a request to the database via a curl command. We set the data 

mode to deferred, which causes the query not to return any values to the requester (to avoid 

counting return network traffic from the server). We stress-test the algorithms by increasing the 

number of NULL values being sorted on in increments of 20%. The sort key for this experiment 
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//NULL Query 
SELECT VALUE w 
FROM Wisconsin 
ORDER BY w.unique2; 
 
//Domain Query 
SELECT VALUE w 
FROM Wisconsin 
ORDER BY w.four; 



is unique2 with the percentage of NULL values ranging from 0% to 100%. The test ran on 12 

partitions with 180M tuples. The goal of this experiment is to determine which algorithms 

perform the best under stressed conditions. Figure 4.1 displays the results. 

Figure 4.1: Varying Null 

 

As explored in [6] RPS is much faster than PGSM for sorting. However, RPS introduced a new 

problem, as its tuple-to-partition distribution method is susceptible to skewed values. PGSM 

didn't have this problem, which is why PGSM remains consistent as the data becomes more and 

more skewed. RPS on the other hand does not remain consistent with the increasing amount of 

 
31 



NULL values, which is to be expected. As the number of nulls increases, RPS stops utilizing all 

of the available partitions, and the number of partitions that are actively sorting decreases. 

Eventually, RPS became significantly worse than PGSM, the sorting algorithm which it was 

supposed to be far superior to. Since the disparity between RPS/PGSM and the SRM algorithm 

was so large, Figure 4.2 zooms in to show how just the variants of the SRM algorithm did with 

respect to one another. 

Figure 4.2: Varying Null Close Up 

 

As we can see, within the SRM family, the IO cost functions did a lot better than CPU and plain 

cardinality. At 20% NULL values, there aren't enough null values to warrant an entire partition 
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being assigned as non-sorting. At around 40% NULL values, there are enough null values in the 

sample set to assign an entire partition to non-sorting on NULL values. The IO cost function had 

a slight in execution time, while the CPU cost function had a noticeable spike. The CPU cost 

function overestimated the number of tuples that could “fit” into a partition that doesn’t sort, 

which caused the non-sorting partition to execute for longer than the sorting ones. The 

cardinality method performs worse at higher NULL percentages because it doesn't take into 

account the work difference between sorting and not sorting. Finally, at 100% NULL values 

none of the partitions are sorting anymore. 

 

4.2.2 Speedup 

 

The above experiment isn’t necessarily the most realistic scenario when it comes to a typical 

query. A benchmark by the name of PigMix [13] contains fields with 20% NULL values when 

dealing with NoSQL data. Accordingly, in this experiment, we used a Wisconsin-style dataset of 

105M tuples with 20% of the unique2 field values being NULL. The number of partitions was 

varied between 4 and 12 (i.e, we used cluster sites of 2-6 nodes). Figure 4.3 shows the results of 

this experiment, which divided a total fixed dataset size of 56GB over an increasing number of 

nodes. Speedup here is defined by the ratio of the execution time at 4 partitions (the starting 

point on the left) over the execution time of any subsequent datapoint. 
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Figure 4.3: Speed Up Results 

 

Since data distribution is irrelevant to PGSM, there was no significant change in the speedup. 

For RPS, there is a decrease in speedup at the 10 partition mark because there are then enough 

NULL values in the RangeMap to cause RPS not to send any tuples to the first of the ten 

partitions. In this experiment, the pessimistic cost functions outperformed the optimistic cost 

functions. When NULL values get sorted, they are placed at the start of the number line, before 

0. At the 10 partition mark there are enough NULL values for the optimistic cost functions to 

dedicate an entire partition to NULL values. The pessimistic cost functions dedicate the second 
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partition to NULL values because they cannot mark the first partition as non-sorting. In the 

pessimistic case, the NULL values are split between the first and second partition, while in the 

optimistic case, only the first partition receives the NULL values. However, the optimistic cost 

functions can load balance and spill the NULL values to adjacent partitions. If the cost functions 

accurately predicted the difference between sorting and non-sorting, then the optimistic variants 

would always outperform the pessimistic variants in this example. Therefore, the cost functions 

are not perfect, although we can say that the IO cost function outperforms the CPU cost function.  

 
4.2.3 Scaleup 

 
Another standard test we did was the scaleup test, which scales the cluster size and the data size 

proportionally. This test ran with 30M tuples per node with the data-set having 20% null values. 

Scaleup is defined by the ratio of the first data point’s execution time over the execution time of 

any subsequent datapoint, and the ideal ratio is 1.0. The results are shown in Figure 4.4 and 

Figure 4.5.  

 

As demonstrated in [6] PGSM has poor scaleup because the final step involves a single partition 

merging data from all other partitions. Again, at around the 10 partition mark, RPS starts to 

decline rapidly. For SRM, the optimistic functions start assigning a single partition to NULL 

values a lot earlier than the pessimistic functions. At the 8 partition mark, the optimistic cost 

functions have already dedicated a single partition to the NULL values. In comparison, it takes 

the pessimistic functions until the 10 partition mark because pessimistic functions must label the 

first partition as sorting. However, once the pessimistic functions do detect the NULL values, 
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they are still comparable in scaleup to the optimistic functions. In this specific test, as the number 

of partitions is increased, the difference between the optimistic and pessimistic functions 

decreases. There is only one skewed value in the dataset, and the pessimistic functions are only 

missing out on the first partition being able to be non-sorting. As we will see in the next 

experiment, pessimistic performance degrades as the number of skewed values increases. 

Figure 4.4: Scale Up Results 
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Figure 4.5 Scale Up Execution Time 

 

4.2.4 Varying Domain Size 

 

The goal of this experiment is to see how the cost functions perform with a very limited sort field 

domain size. For example, a domain size of 1 has all of the same values, while a domain size of 2 

has two different values present in the sort key. The experiment ran with 180M tuples sorted 

over 12 partitions. The results are in Figure 4.6. 
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Figure 4.6: Varying Domain Results 

 

Since PGSM isn’t reliant on the domain or distribution of the data, PGSM stays at around the 

same execution time. However, RPS drops dramatically. When the domain size is one, RPS 

sends all of the values to the same partition. The number of partitions RPS fully utilizes is equal 

to the domain size. It’s perhaps surprising to see that RPS with two partitions is better than 

PGSM with 12 partitions. In the end, RPS is able to use 6 out of the 12 partitions available for 

the range of domains considered here. 
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Figure 4.7: Varying Domain Close Up 

 

Taking a zoomed-in look at SRM, in Figure 4.7, it’s evident that the optimistic functions do a lot 

better than the pessimistic ones. The cardinality function ignores percent split point percentages 

that are above a certain threshold to protect non-sorting partitions from receiving a small number 

of values that would force a sort. However, at the domain size of 3 mark, this threshold was 

broken, and we see an increase in the execution time. For the rest of this experiment, the 

cardinality method performed as expected. On the pessimistic side, the CPU cost function did a 
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fair bit worse than the IO cost function. However, the optimistic cost functions stayed reasonably 

even. 

 

4.2.5 Worst Case Optimistic 

 

The optimistic cost functions have performed fairly well up to this point. This test is aimed to 

expose the flaws in the optimistic approach. As explained in section 3.4.7, the optimistic 

algorithm allows for two non-sorting partitions that are assigned different values to be adjacent 

to one another. However, in-between values could linger in the dataset and not be represented in 

the samples. One of these in-between values could get into a non-sorting partition and force it to 

sort. (Recall that the optimistic approach doesn't provide a guarantee that non-sorting partitions 

will never have to sort.)  In this test, "Worst Case CPU" and "Worst Case IO" have their sort 

operator always conduct a sort, even if all the input values are identical.. This experiment was 

done identically to the varying null experiment. There are 12 partitions which will sort 180M 

tuples. Figure 4.8 holds the results. 

 

When forced to always sort, the CPU cost function shows as much as a 100% increase in 

execution while the IO cost function has a slightly smaller increase of 30%. The dramatic spikes 

in the CPU cost function results are due to an overestimation of how many tuples can be 

assigned to a non-sorting partition. For the optimistic CPU, the bottleneck (at around the 40% 

NULL mark) was the non-sorting partition being assigned all of the NULL values. Therefore, 

when that partition was actually forced to sort, it doubled the overall execution time. The IO cost 
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function predicted the difference in load balancing between non-sorting partitions and sorting 

partitions more accurately than the CPU cost function. As a result, the optimistic IO cost 

function wasn't bottlenecked by the non-sorting partition and therefore suffered less penalty 

when forced to sort. 

Figure 4.8: Optimistic Control Results 
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Chapter 5 

Conclusion and Future work 

5.1 Conclusion 

 

This thesis has presented an optimized repartitioning parallel sort for skewed data. We started by 

highlighting “holes” in the current AsterixDB RPS implementation, namely that skewed data 

values are all sent to the same partition. Then, we discussed the SRM algorithm. SRM accounts 

for skewed data and assigns values to partitions based upon a work analysis in which partitions 

receiving one value have the option to not sort their data. We discussed various cost functions 

which attempt to predict the work difference between a sorting partition and a non-sorting 

partition. Then, we tested the SRM algorithm, with its various cost functions, against PGSM, 

RPS, and a basic cardinality distribution approach. It is apparent that our methods provide a 

better execution time in the use cases we have tested them on so far. The cardinality approach 

did fairly well in all realistic scenarios, beating out the pessimistic functions in most cases. We 

believe that more work needs to be done on the cost function for the SRM algorithm in order for 

it to be a truly viable solution.  
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5.2 Future Work 

 

For SRM to be viable, there needs to be more research done to create an accurate cost function. 

The IO cost function performed well in all tests except for the speedup test. A cost function 

could be created that incorporates both the CPU cost and the IO cost of a query. Furthermore, it 

could be adjusted based upon the observed execution times of previous queries. In a different 

direction, each partition has to scan the entire dataset to produce the samples before the 

RangeMap is created. There could be an architecture in place to prevent having to do such an 

expensive full scan. 
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