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spaceAbstract  Coupled  hydro-mechanical  (HM)
processes are significant in geological engineering such as
oil  and gas  extraction, geothermal  energy, nuclear  waste
disposal and for the safety assessment of dam foundations
and  rock  slopes,  where  the  geological  media  usually
consist  of  fractured  rock  masses.  In  this  study,  we
developed  a  model  for  the  analysis  of  coupled  hydro-
mechanical processes in porous rock containing dominant
fractures,  by  using  the  numerical  manifold  method
(NMM). In the current model, the fractures are regarded as
different  material  domains  from  surrounding  rock,  i.e.,
finite-thickness fracture zones as porous media. Compared
with  the  rock  matrix,  these  fractured  porous  media  are
characterized  with  nonlinear  behavior  of  hydraulic  and
mechanical  properties,  involving  not  only  direct
(poroelastic) coupling but also indirect (property change)
coupling.  By  combining  the  potential  energy  associated
with  mechanical  responses,  fluid  flow  and  solid–fluid
interactions, a new formulation for direct HM coupling in
porous  media  is  established.  For  indirect  coupling
associated with fracture opening/closure, we developed a
new  approach  implicitly  considering  the  nonlinear
properties by directly assembling the

& Yuan Wang 
wangyuanhhu@163.com; 
wangyuan@hhu.edu.cn

Mengsu Hu mengsuhu@lbl.gov

Jonny Rutqvist 
jrutqvist@lbl.gov

1 College of Civil and Transportation Engineering, Hohai 
University, Nanjing 210098, China

2 Energy Geosciences Division, Lawrence Berkeley National 
Laboratory, Berkeley, CA 94720, USA

spacecorresponding  strain  energy.  Compared  with
traditional  methods  with  approximation  of  the  nonlinear
constitutive  equations,  this  new  formulation  achieves  a
more accurate representation of the nonlinear behavior. We
implemented the new model for coupled HM analysis in
NMM,  which  has  fixed  mathematical  grid  and  accurate
integration, and developed a new computer code. We tested
the code for  direct  coupling on two classical  poroelastic
problems with coarse mesh and compared the results with
the  analytical  solutions,  achieving  excellent  agreement,
respectively.  Finally,  we  tested  for  indirect  coupling  on
models  with  a  single  dominant  fracture  and  obtained
reasonable  results.  The  current  poroelastic  NNM  model
with  a  continuous  finite-thickness  fracture  zone  will  be
further  developed  considering  thin  fractures  in  a
discontinuous  approach  for  a  comprehensive  model  for
HM analysis in fractured porous rock masses.

Keywords Direct  coupling  ·  Finite-thickness 
fracture zone · Fractured porous rock mass · Hydro- 
mechanical processes · Indirect coupling · Numerical 
manifold method

1 Introduction

Hydro-mechanical (HM) coupling refers to the interaction
between hydraulic and mechanical processes that may be
triggered by mechanical loading/unloading or fluid injec-
tion/extraction. This interaction is significant in geological
engineering,  such  as  oil  and  gas  extraction,  geothermal
energy, nuclear  waste disposal  and for  the safety assess-
ment of dam foundation and rock slopes where the geo-
logical media usually consist of fractured rock [26]. These
fractured rock masses may contain fractures with complex

space

spacegeometry and fillings and thus could be modeled as a
fractured porous media. Basically, the mechanisms of HM
coupling in fractured porous media may be categorized as
direct  and  indirect  couplings  [26].  Direct  coupling  is
associated with the instantaneous undrained (pore volume)
coupling  between  mechanical  and  hydraulic  fields.
Specifically,  the  fluid  pressure  changes  instantaneously
induce  deformation,  while  the  volume  change  instanta-
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neously  induces  changes  in  fluid  pressure.  Indirect  cou-
pling  refers  to  interaction  between  mechanical  and
hydraulic  fields  indirectly,  through  changes  in  material
properties.  Specifically,  the  effective  stress  changes,
affected  by  fluid  pressure  changes,  would  change  the
stiffness  of  fractures,  while  the  deformation  of  fractures
changes their hydraulic conductivities [26, 35].

Since the early 1980s, a number of numerical models
have  been  developed  for  modeling  coupled  hydro-me-
chanical  processes in fractured rock. In 1982, Noorishad
et al. [21] presented a finite element model for the coupled
HM processes in deformable fractured rock masses. In that
model,  the  constitutive  relationships  for  the  nonlinear
deformable fractures were formulated, which was compa-
rable to Biot’s equations [3] for porous media. After that,
increasing engineering demand has inspired development
of  many  computer  codes  capable  of  modeling  HM
behavior  of  fractured  rock  at  various  levels  of
sophistication [29],  including ROCMAS [22];  THAMES
[23, 24], MOTIF [9],
FRACON  [19,  20],  FEMH  [4]  applied  in  analysis  of
nuclear  waste  disposal;  FRIP [25],  FRACture  [15]  and
GEOCRACK  [33]  applied  in  analysis  of  geothermal
energy; and models applied for HM analysis of slopes and
dam foundations (Wang et al.  [34,  36,  37]).  Most of the
aforementioned models were developed based on the finite
element method.  With the development  of  discontinuous
methods,  fractures  could  be  explicitly  represented  as  a
displacement discontinuity as they are modeled as  inter-
faces of individual blocks. This includes both codes based
on  the  models  based  on  the  distinct  element  method,
including  the  commercially  available  UDEC  [11]  and
3DEC  [12]  codes,  and  models  based  on  discontinuous
deformation analysis (DDA), which may include coupled
fluid flow and deformations in discrete fractures, but with
the  blocks  between  fractures   assumed  impermeable
[13,  14].  Later,  models  based  on  the  enriched  finite
element  method  were  developed,  such  as  a  model  in
literature  [32],  in  which  simplified  jump  terms  were
constructed  to  realize  the  mechanical  displacement
discontinuity and hydraulic pressure continuity associated
with  fractures,  whereas  indirect  coupling  was  not
considered.

In order to realize the fully coupled HM processes in
fractured  porous  media  and  to  consider  both  direct  and
indirect couplings involving high nonlinearity and discon-
tinuity, we explore and develop a model within the

spaceframework  of  the  numerical  manifold  method
(NMM). NMM is a numerical method based on the theory
of mathematical manifolds invented by Shi [30,  31] and
has  been  successfully  applied  to  both  continuous  and
discon-  tinuous  media  in  rock  mechanics  [5,  17].  The
numerical meshes of NMM consist of two types of finite
covers:  mathematical  covers  and  physical  covers.
Mathematical covers consist of finite overlapping covers

that  occupy  the  entire  material  domain  and  define  the
approximation pre-  cision.  Conventional  meshes such  as
regular  finite  differ-  ence  grids,  finite  elements  or
convergence regions of series can be used as mathematical
covers, whereas physical covers are divided by boundaries
or  joints  from  mathe-  matical  covers  and  define  the
integration domain. The global function of an element is
the  weighted  average  of  the  function  on  each  physical
cover overlapping an ele- ment. Thus, the NMM is flexible
and  general  enough  to  include  and  combine  well-
developed analytical methods, the widely used FEM and
block-oriented DDA, all in a unified form. Based on above
definition, fluid flow models using NMM were developed,
such as for analysis of free- surface flow [38] and flow in
heterogeneous media [10].  For coupled HM problems in
fractured rock, the following features of the NMM can be
highlighted: (1) For large deformation, the NMM based on
finite covers can model large  deformation  using  fixed
mathematical  meshes  [17,  30]; (2) for local small-scale
fractures,  the  global  approximation  field  can  be  easily
enhanced  by  increasing  the  order  of  the  physical  cover
functions from spatially constant (as in the finite element
method) to linear or even defined by arbitrary user-defined
functions  [5];  (3)  for  complex  fracture  geometries  or
compositions, the simplex integration used in NMM [31]
achieves  exact  analytical  solutions  in  polygons  with
complex  shapes.  NMM  mod-  eling  of  coupled  HM
problems such as consolidation [16] or consolidation under
dynamic  loading  [40]  in  porous  media  was  developed,
involving direct coupling.

In this study, we first provide a mathematical statement
of the problem in Sect. 2. Based on the energy-work model
for  coupling  mechanical  and  analysis,  and  considering
finite- thickness fractures as continuous porous media, we
develop a new formulation for considering both direct and
indirect couplings in fractured porous rock, in Sect. 3. With
the new formulation, we then establish a new model based
on NMM in Sect. 4. In Sect. 5, we demonstrate our model
for  both  direct  and  indirect  couplings  with  several
examples.

2 Mathematical statement of the problem

To describe the coupled HM behavior in porous deform-
able media, Biot established a general theory of 3D con-
solidation in 1941 [3], expressed as:

space

spacer· r þ f ¼ 0 ð1Þ

o  ev c   o  h
r· v þ a 

ot 
þ 

M ot 
¼ 0 ð2Þ

where r is total stress tensor, f is body force vector, v is the
fluid  velocity  vector,  a  is  the  Biot–Willis  coefficient
(usually ranges between 0 and 1), ev is the volumetric strain



of the porous media,  M  is  Biot’s  modulus,  c  is  the unit
weight of the fluid, and h is the fluid hydraulic head, as the
sum of fluid pressure head p and the head associated with
elevation.  Equation  (1)  represents  the  static  mechanical
equilibrium, and Eq. (2) represents the mass balance for
fluid flow. These two equations are coupled through fluid
pressure head  p  and volumetric strain  ev. The Biot–Willis
coefficient as a factor multiplied to fluid pressure in Eq. (1)
signifies a  modification and generalization of Terzaghi’s
effective stress law to:

r ¼ r0-macp ð3Þ

where r0 is the effective stress tensor, mT = [1, 1, 1, 0, 0, 0]
for  3D analysis  or  mT =  [1,  1,  0] for  2D analysis.  This
theory  for  describing  coupled  HM  responses  in  porous
media  was  then  widely  used  in  its  original  form  or  in
extension  formulations  for  the  modeling  of  porous
deformable media, with linear or nonlinear properties.

For mechanical analysis of linear elastic porous media, 
we have:

r0 ¼ Ee ð4Þ

where E is the elastic constitutive tensor and e is the strain
tensor, which could be expressed in terms of displacements
for small-deformation analysis as follows:

e ¼ Au ð5Þ

where A is the strain–displacement matrix

spacea  constant  to  represent  the  zero-stress  state  of  the
fracture [2]. Here following Rutqvist et al. [27,  28], we
use a reformulation of Bandis’ [2] equation in terms of a
mechanical aperture bm which then is inversely
proportional to the effective normal stress rn

0, according
to (Fig. 1):

r0 ¼ 
   n    

þ r0 ð8Þ

where rn0
0 is related to a Bandis’ parameter, which is user-

defined, and n is a constant defined as:

n ¼ bmi r0
ni - r0

n0 ð9Þ

where  rni
0  and  bmi  are  the  effective  normal  stress  and

mechanical  aperture  at  the  initial  or  a  reference  state.
Moreover, in Fig. 1, bmr is a residual mechanical aperture
that can remain open (incompletely closed) even at very
high effective normal stress [27].

The relationship between shear displacement and shear
stress for a rock fracture as have been observed in shear
tests  conducted  under  constant  normal  stress  can
according  to  Goodman’s  classical  model  [8]  be
characterized  by  elastic,  peak  and  plastic  regions  as
depicted in Fig. 2a. The peak shear stress rsp is equivalent
to the peak shear strength, while the minimum post-peak
shear  stress  rsr is  the  residual  strength.  In  the  elastic
region, the shear stiff- ness is constant and independent of

the  normal  stress,  but  both  rsp and  rsr increase  with
increasing normal stress, as shown in Fig.  2b. The linear
shear stress–displacement relationship is expressed as:

Dr0
s ¼ ksDus ð10Þ

In order to be consistent with the relationship for normal
closure  behavior  in  Eq.  (8),  we  introduce  the following

space
o

0
x

o
A ¼ 0

y
o o
y x

spaceð6Þ

spaceand u is the displacement vector. For fluid flow in 
porous media, we assume that the fluid flow satisfies 
Darcy’s law:

v ¼ -KgradðhÞ ð7Þ

where K is the tensor of permeability coefficient.
For rock fractures, linear elasticity according to Eq. (4) is

not sufficient to describe the mechanical behavior, because
it  may be nonlinear  elastic  depending on effective stress.
Goodman [7] described the normal closure (closing defor-
mation normal to the fracture) as being inversely propor-
tional to the effective normal stress. Then Bandis introduced

space

Fig. 1 Mechanical constitutive model: relationship between normal 
effective stress and aperture (Bandis et al. [2], Rutqvist et al. [28])
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Fig. 2 Mechanical constitutive model: a relationship between shear 
stress and shear displacement. b Effect of normal stress r on the 
relationship between shear stress and shear displacement (Goodman 
[8])

spacerelationship to describe the behavior of fracture shear 
displacement under shear stress:

spacer · n ¼ -t    on Ct ð15Þ

as given traction boundary condition,
space

r0 ¼ 
           D  us            

spaceð11Þ

spacep ¼ p-

spaceon C

spaceð16Þ
space1 þ wDus
p

spacewhere  f  and  W  are  constants.  Equation  (11)  was
originally  used  to  describe  the  nonlinear  stress–strain
behavior of soil [6]. Examining Eq. (11) we find that when
W  =  0,  the  linear  behavior  is  also  included.  We  shall
implement this equation for fracture shear behavior in our
code  for  being  consistent  with  the  model  for  fracture
normal mechanical behavior.

For fluid flow in fractures, the hydraulic conductivity kf

of a fracture depends on the size of interconnected voids
between  the  two  fracture  surfaces  and  is  related  to  a
hydraulic fracture aperture bh that can be defined according
to Witherspoon et al. [39]:

b2qfg

spaceas given pressure head boundary condition,

v · n ¼ q-    on Cv ð17Þ

as given specific discharge condition and

uðx;0Þ¼ u0ðxÞ in X

ð18Þ

rðx;0Þ ¼ r0ðxÞ    in X ð19Þ

pðx;0Þ¼ p0ðxÞ in X ð20Þ

as initial conditions of displacement, stress and fluid 
pressure head, respectively.

3 Development of a new model for coupled HM
spacekf ¼
spaceh

12lf
spaceð12Þ

spaceanalysis in fractured porous media

spacewhere  qf and  lf are  the  fluid  density  and  dynamic
viscosity,  and  g  is  the  gravitational  acceleration,
respectively.  As  the  hydraulic  and  mechanical  apertures
could  be  very  different  [27],  in  Eq.  (12),  the  hydraulic
aperture bh is assumed to be:

bh ¼ bhr þ fbm ð13Þ

where  bhr is  the  residual  hydraulic  aperture  when  the
fracture is mechanically closed and  f  is a factor that com-
pensates for the deviation of flow in a natural rough frac-
ture from the ideal parallel smooth fracture surfaces.

The boundary and initial conditions for the fractured 
porous rock masses are:

space
In this section, using an energy-work model for  coupled
HM analysis, we first derive the equilibrium equations for
coupled behavior in porous media (Sect. 3.1). For fractured
porous media (e.g., fractured rock masses), where indirect
coupling is  more  significant,  we then  derive  a new for-
mulation for considering the fracture stiffness change in an
accurate, implicit approach (Sect. 3.2).

3.1 An energy-work model for coupled HM analysis
in porous media

In Ref. [30], Shi established the total potential energy

spaceu ¼ u-

spaceon Cu

spaceð14Þ
spaceassociated    with    each    component    of   
dynamic/static
mechanical  processes,  under  point/surface/body loadings,
spaceas  given displacement boundary condition,
possibly involving discontinuous and large deformation.

space

spaceIn Ref. [38] for fluid flow analysis, Wang et al. devel-
oped an energy-work seepage model for fluid flow analysis,
considering  all  the  work  done  by  fluid  flow  in  porous
media.  Later  in  order  to  better  model  Dirichlet  boundary
conditions  and  material   interfaces   for   fluid   flow
problems, Hu et  al.  [10] developed a Lagrange multiplier
method.  Herein,  the  energy-work  seepage model  [38]  is
extended  to  conduct  coupled  HM  analysis,  linked  by

s



‘‘work.’’  By  combining  the  work   associated   with
mechanical  responses,  the work  associated   with  fluid
flow and the work associated with solid–fluid interactions,
a new formulation  for  direct  HM  coupling in porous
media is established.

3.1.1 The work associated with mechanical responses

The work associated with mechanical responses in terms of
strain energy, initial stress, point loading, surface loading,
body loading and given displacement boundary condition
was derived by Shi [30]. They are as follows:

1. The strain energy Ge for elastic rock is expressed as:

spacetreated  as  porous  media  with  nonlinear  features
under  steady  mechanical  states.  Therefore,  the  work
associated  with  strong  discontinuities  and  dynamic
processes is deactivated.

3.1.2 The work associated with fluid flow

Based on an energy-work seepage model [38] for fluid
flow  analysis,  the  work  associated  with  fluid  flow  in
porous media, including domain flow, fluid gravity, was
derived.  Combined  with  a  Lagrange  multiplier  method
[10], the Dirichlet and Neumann boundary conditions can
be imposed with unconstructed mesh and the associated
work was also derived. Therefore, we can represent all the
components of work associated with fluid flow in terms of
the domain flow, fluid gravity and boundary conditions as
follows.

1. The work associated with domain flow in porous 
media is expressed as:

Ws ¼ c Z   vTrhdX þ 2c Z   
o   

r · vdXdt - c Z   hdvdX

X X X

spacePe ¼ Z

X spacee

r0T

0

spacededX ð21Þ
space

X X X ð27Þ

where  h  is  a  choice  vector  (0,  1)  denoting  the  gravity
2. spaceThe work Wr associated with initial stress is 

expressedas:
spacedirection. Substituting Eq. (2) into Eq. (27), we have:

spaceWr ¼ Z
space

eTr0 dX ð22Þ

spaceWs ¼ -c Z

spacerpTKrpdX - 2c Z

XZ
f               X

v

spacehKrpdX
Z

space
X

3. The work done by point loading Wp is:

Wp ¼ uTF ð23Þ
- space2c

spaceot
a 

ot 
þ 

M ot

spacedXdt - c

spacehdvdX
X

space
ð28Þ

4. spaceThe work done by surface loading Wt is:

Wt ¼ Z    uTFsdCt ð24Þ

C t

spaceRegardless of the effect of solid deformation, for work 
associated with fluid flow in porous media, we have:

Ws ¼ -c Z   rp  KrpdX - 2c Z   hKrpdX

5. spaceThe work done by body loading Wb is:
spaceX

- 2c

spaceo  p   1 o  p
spaceX

dXdt - c

spacehdvdX ð29Þ
spaceZ

T
X ot M ot

X
space

X
6. The work associated with given displacement 

boundary condition Wgd is expressed as

spaceWg ¼ c Z
space

hdvdX ð30Þ

spaceW ¼ - 
1 

g  ðu - u-Þ
T

ðu - u-Þ ð26Þ

3. spaceThe work associated with Dirichlet boundary 
condition is expressed as:

h

gd
2 

0

o
t

T

0
o
p

o
e

1 op

u FbdX

Z Z

X

X 2. The work done by fluid gravity is:

Z

X

Wb ¼
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spaceusing the penalty method [30] and assuming the 
stiffness g0

of the penalty spring.
For  discontinuous  analysis  of  fractures  as  strong dis-

continuities, Shi [30] developed the algorithms for contact
detection,  open–closed iteration and contact  enforcement
and derived the work associated with contact between

spaceWD ¼ -c Z

nTK
(
rpT þ hT

)
ðp - p-ÞdCD ð31Þ

CD

using the Lagrange multiplier method developed in [10].
4. The work associated with Neumann boundary condi- 

tion is:
spacediscontinuities. For dynamic analysis, the work 
associated with inertia is also considered. In this study, 
fractures are

spaceWN c
CN

spaceq-Tðp þ yÞdCN ð32Þ
space

3.1.3 spaceThe work associated with the fluid–solid 
interactions in porous media

Now we extend the energy-work seepage model [38] for
coupled HM analysis by deriving the work associated with
solid–fluid interactions. They are derived and explained as
follows.

1. The work done by the fluid flow on solid deformation
is  obtained  directly  from  the  excess  fluid  pressure
compared to the initial fluid pressure:

3.2 spaceA new approach to consider the 
indirect coupling in fractured porous 
media

In fractured rock masses, the main flow feature is seldom
a  simple  plane  single  fracture,  but  may  be  a  complex
geological  feature,  consisting  of  multiple  branching
fractures intermin- gled with mineral-filled sections and
damaged host rocks adjacent to fracture surfaces (Fig. 3a).
The basic property of such a flow feature is  its ability to
conduct water  along open and connected fracture parts,
with a very sensitive relation-

space
Wfs

space¼ c Z

spaceaðp - p  Þ
T
mTedX ð33Þ

spaceship  between  fracture  aperture  and  hydraulic
conductivity as in Eq. (12). Another related key property
is  the nonlinear relationship between stress and fracture
aperture as illustrated
2. spaceThe work done by solid deformation on fluid 

flow is

obtained  by  considering  how  the  solid  deformation
influences the mass  balance  of  fluid  flow.  From  Eq.
(27) we can see that  the work associated  with solid
deformation on fluid flow could be expressed   as:

W   ¼ -2c Z   
op 

a 
oev 

dXdt ð34Þ

X

Examining the expressions in this section, we see that all
the  components  of  ‘‘work’’  together  are  consistent  with
Biot’s  equations  and  corresponding  boundary  and  initial
conditions. The energy-work model provides a unique way
to transform differential equations to integral equations with
‘‘work’’  as  a  bridge  to  link  mechanical  to  fluid  flow
analysis.
spacein  Fig.  1.  Moreover,  such  a  flow  feature  is  also
associated with a mechanical weakness that may allow for
in-elastic  shear  slip  along  its  plane.  One  pragmatic
approach to model such a flow feature is to simplify it as a
finite-thickness  equivalent  porous  deformable  medium,
which has strongly nonlinear properties reflecting inherent
fracture  flow  and nonlinear fracture opening and/or shear
behavior, with con- sideration of effects of fracture filling.
The thickness of this equivalent porous media flow feature
in  the  model  may  far  exceed  the  real  fracture  width
including open fracture parts and filling. It can include part
of  the  host  rock  on  each  side  of  the  flow  feature,  still
retaining  the key  features  of  potential  fracture  flow  and
nonlinear deformation behavior. The model for such a flow
feature  is  depicted  in  Fig.  3b.  It  is  a  porous medium  of
thickness Id which includes both a dominant fracture flow
path and other materials such as fracture filling

space

Fig. 3 Schematic of the simplified porous fractured rock model
space

spaceand part of the host rock. For the dominant fracture flow 
path
spaceðiiÞ            n               

0

sf
ot
ot

Z¼

X



spacewe consider its aperture for calculating the hydraulic 
con-

ductivity, whereas the deformation behavior is affected by spacex ¼ en þ h

space0ðii-1Þ

space0  
i  

ðii-1Þ

spaceð38Þ
space

ductivity, whereas the deformation behavior is affected by spacenonlinear behavior  of  the fracture described  in  Eq.
(8)  as  well  as by  the solid fracture fillings and adjacent
host rock described to have linear elastic properties. As the
fracture zones are modeled as porous media with different
nonlinear

spaceDetailed derivation of  the above equations can be
found  in  ‘‘Appendix.’’ The  strain  energy  in  the  porous
medium representing a fracture zone is expressed as:
spaceproperties from the surrounding rock, the boundaries
of the fracture zones are regarded as material interfaces.
The  dis-  placement  continuity  across  these  material
interfaces are

spacePefn ¼ Z

Xspaceii
n

rn
0ðiiÞdeðiiÞdX ð39Þ

0spacerealized   by  penalty   method   [30],   and   the 
continuity  of
Combined with Eq. (37), Eq. (39) becomes:
spacehydraulic head as well as the normal flux is realized 
by the

Lagrange multiplier method developed by the authors in 
[10].

In the following we loosely define such a flow feature 
spaceZ   Z   

h
g
(
r0ðii-1Þ þ r0

ef
n

X 2
g

space\ þ xi

dxdspace

spa cea fracture zone. In this approach, we use an equivalent

concept to represent this material behavior as follows:
spaceZ   Z   rhffiffiffigffiffi(ffiffiffirffiffiffi0ffiðffiiffiiffi-ffiffi1ffiffiÞffiffiffi-

ffiffiffiffirffiffiffi0ffiffiffiffi\ffiffiffiffiþffiffiffiffixffiffiiffiffiffi2ffiffi-ffiffiffi4ffiffiffiffiffiffiffinffiffiffiffiffigffiffi

-
2g

dxdX

space

spaceeðiiÞ ¼ gdr0ðiiÞ þ 
bm - bm

spaceXð35Þ
spacen n

Iðii-1Þ

Combining Eq. (8), Eq. (35) becomes:
space
ð40Þ

By integration with Taylor expansion, and projected into
a local Cartesian fracture-zone coordinate system, Eq.  (40)

spacen n
is  expressed as:

rn
0ðiiÞ - r0   
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spacewhere g represents the compliance of fillings and 
adjacent

spacewhere the X(ii) and X(ii) are:
spacehost  rock  within  the  fracture  zone.  Note  that  the
nonlinear behavior of the fracture could be very strong (see
Fig.  1) so that we use an incremental algorithm to express
and solve

for displacement and stress.space
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space

for displacement and stress.Based on the above concept, in this model, we develop a
new formulation accounting for the nonlinear behavior  of 
the
finite-thickness   fracture   zone.   Specifically,   the  spacev

u
"ffiffiffiffiffiffi

(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

\
ffiffiffiffiffiffiffiffiffivffiffiðffiffiiiffi-
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n0spa ce

spacemechanical behavior of the fracture zone intrinsically 
influ-

ences the strain energy that could be stored in the material
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g
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þ v

ðii-1Þ

 

spaceunder deformation. Therefore, we directly introduce 
those

nonlinear relationships to energy strain as described in thespaceX2    ¼ 1 þ s,ffiffiffiffiffi
(
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nonlinear relationships to energy strain as described in thefollowing subsections for normal and shear deformation.

3.2.1 An implicit approach to consider the normal 
stiffness change with effective stress

spacen

vðii-1Þ ¼ 
         n         

n0

spacen0 ðii-1Þ
d

spaceðii-1Þ

d

space

ð42Þ

spaceThe normal constitutive model expressed in Eq. (36) 
could be rewritten as:

spaceAccording to coordinate transformation from 
global x–y

to local s–n coordinate system, we have:
space

r0
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space
h
g
(
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spacewhere ii represents the iith time step; n denotes the 
local normal direction and

spacewhere  CT = (sin2h,  cos2h,  -sinhcosh).  Then  we  
finally obtain:
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3.2.2 spaceAn implicit approach to consider the fracture

mechanical behavior in the shear directionspaceB0 ¼ B@ 
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C

A

xspace. Then we finally obtain:
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xspace
The shear constitutive model expressed by Eq. (11) could

be further expressed as:
spaceP ¼ 
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3.2.3 spaceFluid flow in deformable porous fracture 

zones
space1

where e
spacebmþ wes

= Du(ii)/b(ii-1).
spaceThe tensor of permeability coefficient H of the 
deformable porous fracture zones in local 2D coordinate 
system is

spaces s m

Similar to the approach for fracture normal mechanical
behavior, we directly express the associated strain energy
as:

spaceexpressed as:

H
kf 0
0 kfn
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spaceZ Z eðiiÞ
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spacewhere kfn denotes the hydraulic conductivity in
the normal

direction. The work done by domain flow in the fractures
is
expressed as:space
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spaceCombined with Eq. (46), Eq. (47) becomes:
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spaceway as for porous media, under coordinate 
transformation

from fractures-zone local coordinates to the global Carte-space

spaceSubstituting Eqs. (50)–(49), and projecting into the local 
Cartesian fracture-zone coordinate system, we have:

spacesian coordinate system.

spaceP ¼ 
 1 

bðii-1Þ
.

1

ZZ

space(eðiiÞ\2dsdn ð51Þ

space4 Coupled HM NMM analysis of fractured 
porous

rock massesspace

spaceAccording to coordinate from global x–y to local s–n
coordinate system, we have:

eðiiÞ ¼ C0TB0uðiiÞ ð52Þ
space

4.1 Fundamentals of NMM

Here we briefly describe the fundamentals of NMM for 
both

spaceo  s

dsdn
ox 

o  n
1 

ox

spaceo  s
oy 

dxdy Jdxdy 53
o  n
oy 

1

spacemechanical  and  fluid  flow  analysis,  including
mathematical  covers,  physical  covers,  elements,  cover
functions  and  weight  functions.  In this  study,  we use
triangles  to form mathematical  covers, because of their
proven good numerical performance

space

Fig. 4 Mathematical covers, physical covers and elements defined in 
NMM with uniform triangles as mathematical mesh

space[1].  As  shown  in  Fig.  4,  all  the  triangles  sharing  a
certain node (or ‘star’) form a  mathematical cover (i.e.,  a

hexagon such  as  P1,  P2 and  P3,  distinguished  by  different
colors). The
corresponding physical covers (P1 and P2, P1 and P2 and P1

spacestandard finite element analysis with constant cover
functions (called nodal  values  in  FEM),  f  and  s  are  the
vectors (1)T and the number of DOFs m associated with a
physical cover is 3
(2  for  displacements  and  1  for  pressure  head).  For
linear space1 1 2 2 3

spaceand  P2)  are  divided  from the  mathematical  covers  by
boundaries,  including  material  interfaces  if  they  are
regarded  as  discontinuities.  The  overlapping  areas  of
physical covers
are   defined   as  elements   (such   as  elements   P1P1P1 and
spaceapproximation of displacement, f could be written as
(1,  x,  y)T and the associated DOFs of  a  physical cover  in
the mechanical field become 6. Substituting Eqs. (61) and
(62)
back to Eqs. (58) and (59), the contribution of each physical

s
p
a
c
e
1
   
2
   
3

spaceP2P2P2, distinguished in Fig. 4 by different fill patterns).
spacecover to all corresponding elements is summed to form
the

space1 2 3

spaceIn NMM, the approximations of field variables (in-
cluding  displacements  for  mechanical  analysis  and  pres-
sure head for fluid flow analysis) within an element are the
weighted  average  of  functions  on  all  physical  covers
overlapping this element. They are expressed as:

u ¼ wTupc ð58Þ

p ¼ wTppc ð59Þ

where u and p are the variables on a certain element, upc and
ppc are the vectors of physical cover functions of
displacement  and  pressure  head,  and  wu and  wp are  the
vectors of weight functions of physical cover functions upc

and ppc on this element. For an individual physical cover i,
we have
( 

wi ðx; yÞ [ 0; wi ðx; yÞ [ 0 ðx; yÞ2 Ui

u p ispaceglobal approximation over the entire domain.
In this paper, we use linear weight functions and

constant physical cover functions for both mechanical and
fluid flow analysis with a triangular mesh. Note that even
though  Zienkiewicz  et  al.  [41]  indicated  that  T3/C3
elements failed in a patch test, we should note that Eq. (2)
in [41] and the boundary conditions in the test  are very
different  from  the  coupled  HM  problem  in  this  work.
Besides,  the  work  pre-  sented  in  [42]  showed  that  the
correct  assembling  of  the  equilibrium equations  for  this
problem could successfully overcome the restrictions of a
mixed formulation.
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4.2 NMM global equilibrium equations for coupled 
HM analysis

spacewi ðx; yÞ ¼ 0; wi ðx; yÞ ¼ 0  ðx; yÞ U
spaceð60Þ

spaceAccording to the energy-work theorem,

spacewhere Ui is the geometric range of physical cover i.
The cover functions upc and ppc can be a series of any 

order:

upc ¼ fTD ð61Þ

ppc ¼ sTP ð62Þ

where f and s are the vectors of the coefficients of the 
degrees of freedom  (DOFs)  D and P to be solved  in 
mechanical and

spaceWu þ Pu ¼ 0

ð63Þ

we can derive the potential energy associated with each
component  associated  with  coupled  HM  processes  in
fractured rock masses.  We further  combine with NMM
approximations expressed by Eqs. (49)–(53) and project
the integration into a 2D Cartesian coordinate system and
derive the potential energy for the solid as follows:

1. the strain energy for elastic porous rock is:
spacefluid  flow  fields,  respectively.  Specifically,  D
represents  DOFs  in  terms  of  displacements  and  P
represents  DOFs  in  terms  of  pressure  head.  For  2D
analysis, f and s are the

spacePe ¼

spaceDTBT

X

spaceEBDdxdy ð64Þspace2 2 Tspacewhere B = AwTfT.
spacesubsets of vector (1, x, y, x , y , xy, …) . For 
example in
u

space

2. the potential energy associated with initial stress is:
5. The potential energy associated with deformation

spaceP ¼ - Z

spaceDTBTr0 dxdy ð65Þ
spaceeffects on fluid flow is:

spacer 0
Psf ¼

space   2  ac 
Z

space
(

DTBTmTOP - D~T

space
BTmTOP

space\dxdy ð75Þ

3. spacethe potential energy associated with point 
loading is:

Pp ¼ -DTTTF ð66Þ

where T = wTfT.
4. the potential energy associated with surface loading is:

Z
ð Þ

spaceD

where D~ is the time-iteration choice for D.

For fracture zones modeled as deformable porous media
where  indirect  coupling  is  manifested  by  changes  in
material properties with effective stress or deformation, we
spacePt ¼- 

spaceDTTTFsdCt 67
Cs

spacederive the following expressions:

1. The strain energy:
space5. the potential energy associated with body loading is:

Z

spaceP   ¼ ZZ  r
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spaceT T

Pb ¼ - D  T  Fbdxdy ð68Þ

6.   the potential energy associated with a given
displacement boundary condition is:
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spaceð76Þ
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spacePgd ¼   g0 DTTT - u-T ðTD - u-Þ ð69Þ

7. the potential energy associated with the work done by 
fluid flow on the solid is:

spacewhere b B0TC0TC0B0

2. The potential energy associated with work done by 
domain flow

Pfs ¼ c Z 
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spaceAlso, we can derive the following potential 

energy for fluid flow:

1. The potential energy associated with domain flow in 
porous media is:

spaceThe other expressions are similar to the expressions
as for porous media after coordinate transformation from
frac- ture-zone local to global coordinates.

Adding the potential energy component expressed by

spacePs ¼ c Z

space1
PT

spaceG KGP þ 2hKGP
spaceEqs.  (64)–(70)   and   Eqs. (71)–(75),   we   have   
the total
potential  energy  Gm  for  mechanical   analysis  and  total

Gf

space2  ( )
Z

spacepotential energy
spacefor fluid flow analysis. The equilibrium

space
þ 

MD
spacePTOTOP - PTOTP~

spacedxdy þ c
spacehdvdX

X

ð71Þ
spaceequations are derived by minimization of the total
potential  energy  for  mechanics  and  fluid  flow.
Specifically,  equation  qGm/qdi =  0  represents  the
mechanical equilibrium on the

spacewhere  G = (q/qx,  q/qy)TO,  P~ is  the  time-
iteration  choice for P, and D is the time step, 
respectively.
2. The potential energy associated with fluid gravity is:
spaceith  physical  cover  and  qGf/qpi =  0  represents  the
equilib- rium of flux on the ith physical cover. The final
equilibrium equation is expressed as:

spaceP   ¼ -c Z   hdvdX ð72Þ
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Q3. spaceThe potential energy associated with Dirichlet 

boundary condition is:
spaceD

where Nij is the element of matrix N, representing the
space

PD c
CD

spacenTK
(
PTGTOP þ hTOP - PTGTp- - hTp-

)
dCD

spacemechanical contribution of physical cover j on 
physical cover i, derived by:

space2 m
spaceð73Þ

4. The    potential    energy    associated    with Neumann

spaceNij
spaceo P
¼ 

odiodj

spaceð79Þ
spaceboundary condition is:

PN ¼ -c Z
(
q-TOP þ q-Ty

)
dCN

CNspace
ð74Þ

spaceSij is  the  element  of  matrix  S,  representing  the
contribution  of  fluid  flow  of  physical  cover  j  on
deformation of physical cover i, derived by:

space

spaceo2Pm
Sij ¼ 

od op

spaceð80Þ

spacecolumn, (2) a porous elastic infinite-long layer, (3) a 
rock domain containing a dominant fracture and (4) a rockspacei j
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spaceCij is the element of matrix C, representing the fluid
flow  contribution  of  physical  cover  j  on  deformation  of
physical cover i, derived by:

o2Pf

spacepressure fluid injection. In the first two examples, we
compare our modeling results with analytical solutions and
present the results in terms of accuracy and convergence
efficiency.

space
Cij ¼ 

op op
spaceð81Þ

space
5.1 Example 1: modeling of direct HM coupling

spaceLj is the element of matrix L, representing loading term
and derived by:

Z¼

g @ A ¼

T

i

ST

ð78
Þ
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oPm

spacein a poroelastic column supporting vertical 
loading on the top

spaceLj ¼ - 
odspaceð82Þ

spaceIn order  to  demonstrate the efficiency and accuracy 
of the
new  NMM  code  for  modeling  coupled  HM  behavior of

spaceand flux term Qj as the element of matrix Q, derived 
by:

oPf

Qj ¼- 
op

ð83Þ

In the matrices N, L and C, Q, time step and previous time-
step  displacements  and  pressure  heads  may be  included
representing  inertial  and  compression  of  the  fluid–solid
system, respectively.  In  the equilibrium Eq.  (78),  all  the
terms are calculated by simplex integration. Simplex inte-
gration, proposed by Shi [31], achieves analytical solution
for polynomials over elements of arbitrary shape.

4.3 Time iteration

Following the original NMM for mechanical analysis by
Shi [30], we use the implicit scheme. The reason is that the
nonlinear behavior may be very strong, especially for the
porous  fractures,  and  thereby  the  changes  between
different time steps may be very large. So it is desirable to
use implicit scheme for high accuracy. In each time step,
the  displacement  increments  and  fluid  pressure  are
calculated.  After  each  time  step,  the  displacements  and
initial stress are updated as follows:

Dðiiþ1Þ ¼ DðiiÞ þ dDðiiþ1Þ ð84Þ

The stress is calculated by Eq. (37).
For this  nonlinear  problem, we use a  direct  solver  to

solve the global equilibrium equations for faster  conver-
gence rate.

5 Demonstration examples

On the  basis  of  the  above formulation  for  coupled  HM
behavior  in  fractured  rock masses,  we developed a  new
computer code. To demonstrate the accuracy and compu-
tational efficiency of the NMM model and computer code,
we employed four example problems: (1) a porous elastic
spaceporous deformable media, we simulate the common
veri- fication example of a poroelastic column supporting
ver-  tical  loading  on  the  top  boundary.  We choose  the
same model geometry, boundary conditions and properties
as in [16]. The model geometry and boundary conditions
are shown in Fig.  5. The column is 80 m high and 20 m
wide.  The  Young’s  modulus  is  3.7  9  106 Pa,  and  the

Poisson’s ratio is 0.35. The permeability coefficient is 2 9
10-8 m/s.  The  loading  is  evenly  applied  on  the  top
boundary of the column with a boundary stress of 200 kPa.
First,  we  set  an  infinite  Biot’s  modulus  and  use  the
developed NMM code with fixed mesh of different sizes
when kv = 2, kv = 4,  kv = 8 and kv = 16 to simulate this
problem,  where  kv  represents  the  half  number  of  mesh
layers.  The mesh geometry of  different mesh sizes  is  as
shown in Fig. 6, and

Fig. 5 Model geometry and boundary conditions
space

j

j
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spaceFig. 6 Mesh geometry with different sizes

Table 1 Comparison of computation parameters of different mesh
space

       4 1

pðy; tÞ¼ F0

space    1             
1
-ðð2nþ1ÞpÞ

2
ct

/

space

sin
space
   ð  2  n   þ   1  Þ  py

spacesizes

spaceap
n¼0 

ð2n þ 1Þ
space2hc

space
ð86Þ

space

solution [3]

kv is the half number of mesh layers

the computation parameters are listed in Table  1.  As we
can see the deviation of the calculated settlement from the
analytical  solution  is  no  more  than  0.02  %,  herein  the
larger  deviation  with  denser  mesh  may be  due  to  small
elements along the vertical boundaries, on which the given
displacement  boundary  condition  is  realized  by  penalty
method with large penalty spring stiffness.

The analytical solution of the settlement and the fluid
pressure evolution for  this problem was derived by Biot
[3], expressed as:

spacewhere hc is the height of the column and a and c are
the  final  compressibility  and  consolidation  constants
defined by Biot [3].

We compare  the  calculated  results  of  the  settlement
evolution  for  different  mesh  sizes  to  the  analytical
solution in Eqs. (85) and (86). The time step we used for
the sim- ulation is 100 days, and the simulated time span
is as long as 20,000 days. From Fig. 7a we see that even
with the coarsest mesh using 4 layers and 12 elements, we
could achieve excellent results. We further choose a point
A located at (10, 40 m) and calculate the fluid pressure
evolution  and  compare  with  the  analytical  solution
according to Eq. (86). We find good agreement in Fig. 7b
between the numerical results and the analytical solution,

with slight deviation for the coarsest mesh involving only
12 elements  (kv  =  2).  Furthermore,  we study the  sensi-
tivity  of  the  calculation  with  different  choices  of  Biot’s
modulus. Figure  8 shows the evolution of settlement and
fluid  pressure   with  different  values  of  Biot’s  modulus.
Good  agreement  between  analytical  and  numerical solu-

space   8 1         1        
ws t ahcF0 1 e

n¼0 ð2n þ 1Þ

space1
-ðð2nþ1ÞpÞ

2
ct

/

space

ð85Þ

spacetions, for example when the Biot’s modulus is 6 MPa,
verifies the accuracy for the transient problems involving
Biot’s modulus. As we can see, Biot’s modulus may play
an important role in this transient processes, slowing down

space

Fig. 7 Comparison of the calculated a settlement (m) and b fluid 
pressure (Pa) evolution with NMM using different sizes of mesh and 
the analytical solution by Biot [3]

2h
c
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2h
c

X

e

X
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Number of
element

Number of physical
covers

Settlement
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kv = 2 12 13 -2.69362
kv = 4 40 31 -2.69352

kv = 8 144 93 -2.69348

kv = 16 642 367 -2.69339

Analytical – – -2.693841



Fig. 8 Sensitivity of a settlement (m) and b fluid pressure (Pa) with 
the different choices of the Biot’s modulus

space
the  settlement  and pressure  dissipation  process.  With  an
increase of  Biot’s modulus,  its  influence on the coupled
HM process is reduced. Specifically, if Biot’s modulus is
20 MPa, its effect on this problem can be ignored. How-
ever,  in  order  to  eliminate  the  transient  effect  by Biot’s
modulus  and  focus  on  the  fluid–solid  interaction  as  a
transient term, we set infinite values in other examples.

From this example, we show that our new NMM model
for coupled HM modeling in porous media is accurate even
when using a rather coarse mesh.

5.2 Example 2: modeling of direct coupled processes 
in an infinite poroelastic layer subjected
to loading on the top face

Figure 9 shows a semi-infinite poroelastic media subjected
to a 6-m-long strip loading  with  a  stress  magnitude  of
20 kPa on the top face.

We first choose the 100 m 9 100 m numerical model
with drained top boundary and impermeable bottom

space

Fig. 9 Model geometry and boundary conditions

boundary (Fig. 10a). The Young’s modulus is 4 MPa, and 

the  Poisson’s  ratio  is  0.  The  permeability  coefficient is
2.5 9 10-8 m/s. By symmetry we extract the right half of 
the model from the line passing through AC to simulate 
the

space

Fig. 10 a NMM mesh and comparison of the evolution of calculated 
vertical displacements at b point A and c point B with the analytical 
solution by McNamee and Gibson [18]

space

Fig. 11 Evolution of vertical displacement of points A, B and C

coupled HM behavior. Points A and B located at (0, 100)
and (3, 100) are points used for comparison of numerical
and analytical results. McNamee and Gibson [18] provided
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the analytical solution for this problem when the Poisson
ratio is 0. We calculate the evolution of vertical displace-
ments at points A and B using a coarse mesh (Fig. 10a) and
compare with the analytical solution as shown in Fig. 10b,
c. We see that our model result agrees very well with the
analytical solution for this case.

Then we change the model dimension to  30  m wide
and 12 m high with Poisson’s ratio 0.3. We first calculate
the evolution  of vertical displacement at the three points
A (0, 6), B (0, 12), C (3, 12), as shown in Fig.  11. Note
that  the  points  A,  B  and C are  different  from the  ones
shown in  Fig.  9;  therefore,  the  vertical  displacement  at
point  B  is  the largest.  Furthermore,  we output  the  fluid
pressure distribution at different stages calculated by our
NMM code, as shown in Fig.  12. From Fig.  12 we can
clearly  see  the  process  of  fluid  pressure  dissipation  at
different times.

space
5.3 Example 3: NMM modeling  of  direct 

and indirect coupled  HM  processes 
under vertical loading and fluid 
injection

In order to demonstrate the formulation for considering
both  direct  and  indirect  coupled  hydro-mechanical  pro-
cesses in rock with fractures, we simulate a rectangular
rock  domain  containing  a  fracture  zone  subjected  to
instantaneous  vertical  loading  and  a  constant  pressure
fluid injection. The model geometry, boundary conditions
and the mesh are as shown in Fig.  13a, b, respectively.
The material parameters are listed in Table 2. In this case,
the initial thickness of the fracture zone is 0.1 m, whereas
the  mechanical  fracture  aperture  for  the  assumed
dominant fracture  flow  path  is  1 9 10-4 m  (0.1 mm)
and  with  an
equivalent   hydraulic   aperture   of   5 9 10-5 m   (50
lm). This is at an initial effective vertical stress of -8
MPa (a  negative  stress  values  signifies  compressive
stress) involving  an  initial  total  vertical  stress  of  -8
MPa  and  a  zero initial fluid pressure. Note that the
given displacement  boundary  conditions  and  material
interfaces  for  mechanical  analysis  are  realized  by  the
penalty method and the stiff- ness of the penalty spring
g0 is determined as suggested by Shi [30].

Since the developed nonlinear finite-thickness fracture-
zone model is new and there is no available closed-form
solution or numerical results for comparison of the tran-
sient HM response for this case, we run this simulation
step-by-step to confirm that the results are reasonable. As
the model development for fluid flow analysis was pre-
sented  and  verified  previously  [10]  and  the  direct
coupling was verified in Examples 1 and 2, here we focus
on veri- fication of the indirect coupling algorithms. First
we  applied  the  instantaneous  vertical  loading  with
magnitude  of  10  MPa  on  the  top  of  the  model  and

conducted  a  mechanical  analysis  without  fluid  injection.
This  results  in  an  instantaneous  closure  of  the  fracture
considering its

space

Fig. 12 Simulated fluid pressure (Pa) distribution at different times

space

Fig. 13 Schematic of a the numerical model, the boundary condi- tions
and b the mesh



nonlinear  normal  closure  behavior  with  changing
normal  stiffness.  We  get  the  final  results  with  a
mechanical frac- ture  aperture  of  6 9 10-5 m  (60  lm)
at  the  final  steady

spacestate, which is accurate according to Eq. (8)
(because the initial  stress  is  -8 MPa,  rn0

0 = -5 MPa,
and  the  initial mechanical aperture is 1 9 10-4 m, while
the final stress is
-10 MPa.   Therefore,   according   to   Eq. (8),   the
final mechanical aperture should be: (-8 9 106 ? 5 9
106) 9
1 9 10-4/(-10 9 106 ? 5 9 106) = 6 9 10-5 m).  Then
we conducted a simulation considering only indirect cou-
pling, i.e., we deactivate the fluid–solid interaction terms
for direct coupling associated with Eqs. (33) and (34). In
this  case,  the  coupling  occurs  only  one  way,  i.e.,
mechanical deformation affects permeability, but there are
no influences of fluid pressure on mechanical field. The
mechanical and hydraulic property changes of the fracture
under  loading  and  injection  with  constant  pressure  of
8 MPa at the left end of the fracture zone and the pressure
at  the  right  end  of  the  fracture  zone are  fixed  at  zero.
Lastly,  we run our full  package considering both direct
and indirect couplings. We output some of  the  results  in
Figs. 14 and 15.

We compare the distribution of fluid pressure in cases 
without considering coupling, only considering indirect

space

spaceTable 2 Computation parameters for coupled modeling of the con- 
stant pressure injection in rock domain with a fracture zone in Fig. 13

Material Parameter Value

Fluid Mass density (qf) 1000 kg/m3 

Dynamic viscosity (lf) 1 9 10-3 Ns/m2

Rock matrix Young’s modulus 4 GPa

Poisson’s ratio 0.2

Permeability coefficient 5 9 10-9 m/s

Biot–Willis coefficient (a) 1

Biot’s modulus (M) ?

Initial vertical effective stress -8 MPa

5.4 spaceExample 4: NMM analysis of coupled 
HM processes under constant injection in rock 
mass with a single dominant fracture

Using  the  similar  material  properties  as  in  Example  3
listed in   Table 3,   we   enlarge   the    model    dimension
to 10 m 9 10 m with the 0.1 m fracture zone in the middle
(Fig.  16).  The model is  initially balanced with 10 MPa
initial  stress,  and we inject  fluid  at  the  left  end  of  the
fracture zone with a constant pressure of 1 MPa. The right
end pressure is  set  as 0.  We conduct  this modeling for
studying  the  changing  processes  of  fluid  flow  pressure
and
spaceFracture zone

spaceMass density 2300 kg/m3 Initial normal 

effective stress -8 MPa Bandis’ parameter 

(rn0
0) -5 MPa Initial thickness of 

fracture zone 0.1 m

spacedeformation in fracture zone and surrounding rock.
Figure  17 shows the fluid pressure distribution in the

whole  domain  at  different  times  after  the  start  of  the
injection. We find that the pressure distribution is not

spaceInitial mechanical aperture of fracture

space0.1 mm
spacesymmetric from the left to right during the 
transient phase
just after injection while becomes symmetric after 
20  days

space

Penalty
spring

spaceShear constant (f) 10-11 Pa-1

Shear constant (W) 0

Factor (f) 0.5

Residual  hydraulic aperture (bhr) 0

Biot–Willis coefficient (a) 1

Biot’s modulus (M) ?

Stiffness 1.6 9 1011 N/m

spaceof injection, indicating that  a steady state has been
reached. We further choose points A, B, C located within
the frac- ture zone at (1, 5), (2, 5) and (5, 5), respectively,
to  see  the  pressure  evolution  (Fig.  18).  We observe  an
increase  of  pressure  due  to  injection for  each point  and
then reach steady after 10 days of injection.

In order to study the local hydro-mechanical behavior in
the fracture, we extract a profile located at  y = 5.01 m of
the fluid pressure distribution at different times, as shown
in Fig. 19. We see that from the beginning till 7 days after
spacecoupling  and  considering  both  direct  and  indirect
coupling, respectively, as shown in Fig.  14. The difference
of  fluid  pressure  distribution  between  Fig.  14a,  b  is  not
obvious, indicating that a steady state is reached for only
considering  indirect  coupling  after  30-day   injection.
However,  in  Fig. 14c, a steady state has not reached and
fluid continues to  dissipate  from  the  left  to  right.  This
difference could be explained by that in figure b with only
indirect coupling, a steady state is reached when mechanical
deformation no longer occurs, whereas in case for Fig. 14c,
the final steady state will be reached till a balance is reached
between the interaction of mechanical and fluid flow fields.
Overall, the effects of pressure on solid deformation are not
obvious. Further, we compare the aperture change with time
at the injection point under these two conditions, shown in
Fig. 15. Ignoring the no more than 1.7 % oscillations due to
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penalty  method  for  material  interface  conditions  in
mechanical analysis, we see that the aperture at the final
stage reduces to  6 9 10-5 m (60 lm) when only
considering indirect cou-  pling. This value is the same as
the one in the case of pure mechanical analysis, proving its
verification.  However,  when considering both direct  and
indirect  couplings,  the  aperture remains steady at 6.5 9
10-5 m (65 lm) under the effect of fluid pressure on the
solid skeleton.
spaceinjection, the pressure tends to distribute linearly 
along the fracture, indicating that a steady state is reached.

The vertical displacements relative to the mechanical
fixed bottom boundary are shown in Fig. 20. The vertical
displacement  responds  to  vertical  strain  caused  by  the
pressure changes that are first progressing along the frac-
ture from the left to the right and also by fluid pressure
diffusion into the surround rock that causes deformations
both within the fracture and in  the  surrounding  rock
(Fig.  17).  Because  of  that,  we  see  uplift  in  the  entire
domain under  effects  of  fluid diffusion and expand the
porous system with mechanically fixed bottom and free
upper  boundaries.  The  final  total  uplift  at  the  top
boundary is 6 cm, and most of this uplift is caused by the
vertical  expansion  taking  place  within  the  rock
surrounding the fracture zone. Nevertheless, this example
demonstrates the ability of the model to simulate transient
HM  processes  in a  fractured  rock  mass  during  fluid
injection into a dominant flow feature.

Corresponding to  Fig.  20,  we show the evolution of
vertical displacement at profile x = 1.0 m in Fig.  21. We
obviously see that the vertical displacement increases due
to expansion under increasing fluid pressure and reaches
steady state after 7 days.

space

Fig. 14 Distribution of fluid pressure head (m) for a flow analysis 
without considering coupled effects, 30 days after injection, b only 
considering indirection coupling and c considering both direct and 
indirect coupling

Fig. 15 Aperture change with time at the injection point in simulation a 
only considering indirect coupling and b considering both direct and 
indirect coupling

6 spaceConclusions and Perspectives

In this study, we developed a new NMM model for coupled
hydro-mechanical  processes  in  porous  rock  containing
dominant  fractures.  We used  an  approach  to  model  frac-
tures  as  finite-thickness  flow  features,  or  fracture  zones,
considered as porous media that possesses similar behavior
to  that  of  the  surrounding  rock  under  direct  coupling.
However,  fracture  zones  are  distinguished  from  the  sur-
rounding  rock  because  of  their  nonlinear  behavior  of
hydraulic  and  mechanical  properties,  as  they  are  very
sensitive to deformation. This new model includes:

• A new formulation for analyzing direct HM coupling in
porous  media.  Based  on  an  energy-work  model,  we
stringently established all components of the work



spacerelated to fluid flow and mechanical processes in
a  unified  form  and  their  interaction  appeared  as  a
direct  coupling  and  these  work  components  are
consistent  with Biot’s equations together with initial
and boundary conditions.

• A  finite-thickness  fracture-zone  model  with  an
accurate  implicit  technique  to  account  for  indirect
coupling  associated  with  changes  in  the  nonlinear
hydraulic and mechanical properties of the fractures.
We proposed  a  new  model  denoted  finite-thickness
fracture zone rep- resenting the composite effect of a
dominant fracture, mineral fillings and part of adjacent
rock  matrix,  with  both  linear  and  nonlinear
constitutive  features.  We  derived  an  implicit
formulation by directly assembling the corresponding
strain energy to consider the

space

spaceTable 3 Computation parameters for coupled modeling of the con-
stant pressure injection in rock domain with a fracture zone in Fig. 16

Material Parameter Value

Fluid Mass density (qf) 1000 kg/m3 

Dynamic viscosity (lf) 1 9 10-3 Ns/m2

Rock matrix Young’s modulus 100 MPa

Poisson’s ratio 0.2

Permeability coefficient 5 9 10-9 m/s

Biot–Willis coefficient (a) 1

Biot’s modulus (M) ?

Initial vertical effective stress -10 MPa

spacereduced.  With  the  cover-based  approximation,
instead  of  nodal-based  approximation,  the
approximation order  could  be  flexibly increased for
intense  changes  around  fractures.  With  simplex
integration,  high  accuracy  could be achieved on
arbitrarily shaped polygons.

• An  implicit  time-marching  algorithm  and  an
incremen- tal formulation to solve the displacements
and initial stress for this strongly nonlinear problem.
We used the incremental formulation for solving the
displacements and initial stress in different time steps
and  implicit  time-marching  algorithm  for  better
accuracy  of  this  nonlinear  problem.  With  the  new
model, we developed

spaceFracture zone

spaceMass density 2300 kg/m3 Initial normal 

effective stress -10 MPa Bandis’ parameter 

(rn0
0) -2 MPa Initial thickness of 

fracture zone 0.1 m

spacea new computer code in our NMM package.

We first simulated a classical poroelastic problem of a
column under loading and compared the results with the 
analytical solution derived by Biot. We found excellent

spaceInitial mechanical aperture of
fracture

space0.1 mm

spaceagreement of our NMM solution with very 
coarse mesh

space

Penalty
spring

spaceShear constant (f) 10-8 Pa-1

Shear constant (W) 0

Factor (f) 0.5

Residual  hydraulic aperture (bhr) 0

Biot–Willis coefficient (a) 1

Biot’s modulus (M) ?

Stiffness 4.0 9 1010 N/m
spacewith Biot’s analytical solution, showing the accuracy 
and
efficiency of our formulation for direct coupling. Then we
modeled a poroelastic problem of an infinite layer under
loading and showed the processes of displacement changes
and fluid pressure dissipation with exact agreement to an
analytical solution. We tested the new model on a model
with a single dominant fracture. As the direct coupling was
verified in the two first examples, we compared the results
of a case considering the fracture with only indirect cou-
pling and the results of a case considering the fracture as
nonlinear porous media with  both  direct and indirect cou-

spacenonlinear  properties  of  the  fracture  zones.
Compared  with  traditional  approximations  of  the
nonlinear consti- tutive equations, this new formulation
achieves more accurate representation of the nonlinear
behavior.

• Implementation  in  NMM  with  unconstructed  mathe-
matical  mesh,  cover-based approximation and simplex
integration.  We implemented  this  new  formulation  in
NMM.  With  unconstructed  mathematical  mesh in
NMM, meshing efficiency could be dramatically

spaceplings.  We  found  reasonable  results  from  these
compar-  isons  and  showed  the  importance  of  full
consideration  of  both  direct  and  indirect  couplings  in
coupled HM analysis involving dominant flow features.

The approach established in this analysis for the model-
ing of finite-thickness dominant flow features is a
continuous  equivalent  porous  media  with  strongly
nonlinear properties. The flow features can be conveniently
discretized explicitly within the fixed mathematical mesh,
and the boundary

space
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Fig. 16 Schematic of a the numerical model, the boundary conditions 
and b the mesh

space

Fig. 17 Simulated fluid pressure head (m) distribution at different times

Fig. 18  Evolution of fluid pressure at points A, B and C
Fig. 19 Evolution of fluid pressure distribution of profile y = 5.01 m

spaceconditions  are  realized  by  penalty  method  and
Lagrange multiplier method for mechanical and fluid flow
analysis, respectively. This method is suitable for modeling
dominant



spaceflow  features  in  a  fracture  rock  mass,  including
major fractures, and minor faults as well as major faults.
In the case of faults, the cross-fault permeability can be

space

Fig. 20 Contour of vertical displacement at different times

space

Fig. 21 Evolution of vertical displacement at profile x = 1.0 m

spacesubstantially  different  from  the  along-fault
permeability, including the effects of a permeable damage
zone and an impermeable fault core. Such difference in
cross-fault versus  along-fault  mechanical  and  hydraulic
properties  could  be  readily  modeled  using  the  finite-
thickness continuous mod- eling approach. However, for
modeling  small-scale,  thin  unfilled  fractures,  an
alternative discontinuous approach may be preferable. In
that case, the fluid flow will be con- ducted mainly in the

direction  along  the  fractures  and  interaction  between
fractures  and  surrounding  rock  is  by  fluid  pressure  and
continuity of displacements on the sur- faces of fractures.
Together with further development for thin fractures, the
new  model  presented  in  this  study  can  provide  a
comprehensive model applicable for coupled HM analysis
fractured  rock  masses,  including  a  wide  range  of  flow
features.

space

7 spaceAppendix: Derivation of the effective normal 
stress in the nonlinear finite-thickness fracture 
zone
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