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ABSTRACT 

 

APPLYING MOLECULAR CHIRALITY TOOLS TO AMYLOID β AND ALZHEIMER’S 

DISEASE 

Luis Alejandro Rodríguez Foley 

 

 Protein misfolding and amyloid formation is associated with several disorders, including type 

II diabetes (T2D), Alzheimer’s disease (AD) and Parkinson’s disease (PD). While these diseases are 

some of the most common and costly pathologies in the modern world, effective treatments to prevent 

and reverse them are still lacking. There is an urgent unmet need for novel approaches to understand the 

molecular mechanisms driving these diseases and to develop therapeutic strategies to prevent and stop 

these pathological processes.  

 A common mechanistic feature of protein misfolding disorders is a complex aggregation 

pathway that leads to the fibrillar state, where multiple, rapid-interconverting aggregation intermediates, 

i.e. oligomeric species, are generated upon the self-association of unfolded or partially folded 

conformations. These transient oligomeric entities are thought to be the most toxic species during the 

aggregation cascade. Nonetheless, oligomers are exceedingly difficult to target therapeutically due to 

their heterogeneous and dynamic nature, and thus classical structure-activity relationships are 

exceedingly hard to determine and to implement in drug design.  

 One of the most prominent characteristics of AD pathology is the deposition of amyloid fibrils 

of the amyloid β (Aβ) peptide in brain tissue. Aβ is an intrinsically disordered peptide, majorly consisting 

of 40-42 amino acids, and its assembly into oligomers and amyloid fibrils is thought to lead to the 

development of AD. The molecular mechanisms by which Aβ oligomerizes and interacts with the 

cellular environment are still not fully understood. The work performed in this thesis aims to provide 
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new insights into these mechanisms using molecular chirality as the main mechanistic tool, and  

combined techniques ranging from chemical synthesis to biophysics  and cellular assays.   

 In Chapter 2, we designed a focused chiral mutant library (FCML) of Aβ, and identified several 

point D-substitutions that allowed us to modulate Aβ aggregation propensity and biological activity. 

Surprisingly, the reduced propensity towards aggregation and the stabilization of oligomeric 

intermediates did not always correlate with an increase in toxicity. This directly challenges the current 

working hypothesis of AD research, where these soluble aggregation intermediates are thought to 

represent the most neurotoxic species of Aβ. Additionally, we found that the subtle L-Ser26 to D-Ser26 

mutation (S26s) led to reduced fibril formation propensity and inhibited toxicity, which appears to be 

related to the resultant peptide’s lack of ability to adopt a fibril-seeding conformations based on NMR 

and DFT results.  

 In Chapter 3, we employed mirror-image Aβ as a strategy to enhance fibril formation and 

prevent oligomer formation of the Aβ peptide. This was accompanied by an almost complete 

abolishment of toxicity, setting one of the few examples of enhancing aggregation as an alternative 

approach to inhibit Aβ toxicity. Furthermore, we determined  that the non-aggregating segment 

comprising amino acids 1-30 of Aβ, i.e., Aβ(1-30), is taken up by cells in a stereoselective fashion (about 

3-fold difference), and found Aβ(1-30) cellular internalization to depend on cellular prion protein PrPC 

in the cellular membrane. To the best of our knowledge, this is the first time that Aβ aggregation and its 

cellular, receptor-mediated neuronal uptake have been disentangled. 

 The work performed in this thesis highlight how chirality can be a powerful tool for studying 

Aβ structure-activity relationships. Additionally, the concepts presented here should be broadly 

applicable to study many other amyloidogenic proteins and peptides    
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CHAPTER 1: 

Introduction 
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 The phenomenon of protein misfolding and amyloid formation is associated with over fifty 

different disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and type II diabetes 

(T2D.(1, 2) In this pathologies, abnormal aggregates of specific proteins are found in the affected organs, 

such as amyloid β (Aβ) protein aggregates in brain tissue of AD patients,(3) α-synuclein (α-syn) protein 

aggregates in brain tissue of PD patients,(4) and human islet amyloid polypeptide aggregates (hIAPP) in 

patients suffering from T2D.(5) Due to their unstructured nature, these proteins/peptides are classified 

as intrinsically disordered proteins (IDPs). Unlike proteins with a defined three-dimensional structure, 

IDPs do not have a well-defined native state.(6). Rather, IDPs have a relatively flat energy landscape, 

with low energy barriers that facilitate the coexistence of a vast array of aggregation intermediates, 

ranging from monomers to oligomeric and protofibrillar structures.(7, 8) Ultimately, these intermediates 

aggregate into insoluble fibrillar assemblies with β-sheet structure,(9, 10) which are thought to be the 

most thermodynamically stable state.(11–13) 

 A common mechanistic feature of protein misfolding and amyloidogenic diseases is the 

conception that the aggregation process causes a detrimental effect on surrounding cellular tissue, 

ultimately leading cell dysfunction and death.(2, 14) While amyloid fibrils have been shown to be 

cytotoxic and were originally thought to be the most toxic species in amyloidogenic diseases,(15, 16) 

current models suggest that oligomeric intermediates are the most toxic entities in the aggregation 

cascade.(14, 17–20) From a structural point, high-resolution fibril structures of amyloidogenic proteins 

are progressively becoming more available,(21–26) however, although important advances on the 

structural nature of oligomeric intermediates have been made,(27–33) obtaining structure-activity 

relationships of these oligomers still represents a challenge due to their heterogeneous and dynamic 

nature.  

 AD is the most prevalent amyloid disease, and also the most common neurodegenerative 

disorder, with nearly 50 million people currently suffering from AD or related dementia,  and with an 

estimated world population count  of 131 million affected by 2050.(34) AD was first reported in 1906 

by Dr. Alois Alzheimer, who had identified abundant neuritic plaques and a neurofibrillary tangles in 
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the post-mortem brain of Auguste Deter, a patient suffering dementia and cognitive disfunction.(35) As 

observed in the brain, this pathology was also accompanied by a remarkable brain tissue loss in diseased 

patients compared to healthy individuals (Figure 1).  

 However, it was not until 1984 when researchers G. Glenner and C. Wong identified "a novel 

cerebrovascular amyloid protein" in diseased AD patients brains, which was termed amyloid β (Aβ).(36) 

More than a hundred years later from their initial discovery, and with over four hundred failed clinical 

trials,(37)  a cure for AD remains elusive, and over 100 agents are currently active in clinical trials for 

Alzheimer’s disease (AD) (source: clinicaltrials.gov). From these, 96 target disease modification, from 

which 40% are focused on Aβ.(34) Nowadays, it is known that Aβ is an intrinsically disordered, majorly 

39-43 amino acid long peptide produced upon the proteolytic cleavage of the amyloid precursor protein 

(APP) and the majority component of amyloid plaques.(38) Initial hypotheses, such as the amyloid 

cascade hypothesis, pointed to amyloid fibrils as the seminal etiological agent of the disease,(39, 40) 

however, it is now believed that Aβ soluble intermediates, i.e. oligomers, represent the most toxic entities 

during the amyloid aggregation cascade.(18, 41, 42) Unfortunately, the lack of mechanistic and structural 

information on Aβ oligomers limits the development of therapies to treat AD. Thus, a better 

understanding of the structure and molecular mechanisms underlying Aβ oligomer and fibril formation 

in in vitro and in vivo settings are needed to deepen our knowledge of AD progression. To this end, 

Figure 1. Brain deterioration in AD.. Healthy individual (left) vs AD brain 
(right). Source: National Institute on Aging. 
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developing new tools to modulate Aβ aggregation, stabilize aggregation intermediates, and determine 

how the latter interact with cellular environments, are of great relevance for improving our understanding 

of the molecular mechanisms underlying AD.   
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Thesis outline and objectives 

 This thesis focuses on determining the molecular mechanisms driving Aβ  aggregation and 

neurotoxicity. The objective of the work presented in this thesis is to obtain novel molecular-level 

information of Aβ neurotoxic intermediates and to understand how these species interact with the cellular 

environment. Creating new knowledge of the structure-function relationships of these species will allow 

the rational design of new therapeutic approaches to prevent AD. 

 As an overall theme in this thesis, the use of strategies based on fundamental concepts of 

molecular chirality offers important  advantages  to study amyloidogenic systems. The rationale for this 

approach is further extended in Chapter 2 introduction.  Adopting this strategy was possible due to the 

approach followed in this thesis. The work performed here combines three areas of research: chemical 

synthesis, biophysics, and cellular biology. This cross-disciplinary approach has provided me the 

necessary means to stablish a solid and systematic understanding of the structure-function properties of  

Aβ. 

 Chemical synthesis: Each of the research projects associated with my dissertation begin with 

the solid-phase peptide synthesis of Aβ, offering the opportunity to introduce point D-amino acid 

mutations (or full-length D-Aβ) into the Aβ sequence. Additionally, it also allows for introducing 

fluorescent tags at the N-terminus of the rein-peptides. The peptides are then purified by reverse-phase 

high performance liquid chromatography (HPLC) to afford peptides with purities exceeding 95% purity. 

This is of seminal importance for the Aβ research given the issues with cross-laboratory reproducibility 

usually observed in this field. This important point is further addressed in the reprinted manuscript 

included in this chapter (Foley et al. ChemBioChem 2020). 

 Biophysics: Next, a biophysical characterization of these peptides is performed, including 

studying the kinetics of aggregation and fibril formation by fluorescence assays and CD spectroscopy, 

the size and morphology of the newly generated structures by electron microscopy, and atomic force 
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microscopy, and the atomic-level interactions that arise in these new structures by nuclear magnetic 

resonance, and density functional theory computational analysis (performed by Prof. Raskatov).    

 Cellular biology: Finally, to obtain structure-activity relationships of the Aβ system, we 

investigate how the Aβ peptides induce cellular toxicity in model cell lines, as well as measuring 

differences in the cellular uptake by flow cytometry and confocal microscopy. Combining results from 

biophysical and biological studies allowed  to identify key regions and amino acids that modulate Aβ 

structure-function properties, offering novel information that can be exploited by novel therapies to 

attenuate Aβ aggregation and toxicity.   

 Applying this approach in different ways has allowed to stabilize and characterize Aβ 

aggregation intermediates  though the use of chiral mutant libraries of the Aβ peptide (Chapter 2), and 

provided with key mechanistic structural insights into Aβ aggregation and toxicity and its interaction 

with  cellular environments and cellular receptors (Chapter 3).  
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Reprinted (adapted) with permission from (ChemBioChem 2020, 21, 2425–2430). John Wiley and 
Sons. License Number 4922721503141 
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Reprinted (adapted) with permission from (ChemBioChem 2019, 20, 1722-1724). John Wiley and 
Sons. License Number 4922730204453 
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CHAPTER 2: 

D-amino acid substituted frameworks to study structure-activity relationships of Aβ and to 
stabilize Aβ conformations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

Introduction to Chapter 2 

 One of the key milestones that still remains elusive in AD and Aβ research is the structural 

elucidation of Aβ neurotoxic oligomeric intermediates at atomic level and high resolution. This is 

because these metastable species do not tend to adopt well-defined three dimensional and stable 

structures, but rather generate dynamic and heterogeneous populations of conformers including multiple 

shapes and aggregation states. This includes monomers, oligomers, and protofibrils, with Aβ oligomers 

reported to adopt spherical,(43) annular,(44) cylindrical barrels,(45) and protofibrillar (46) shapes, 

among others. In addition, each of these species can potentially contribute to Aβ toxicity in different 

ways.(17) For example, oligomeric Aβ*56 (a 56-kDa dodecameric, soluble Aβ assembly) has been 

directly linked with memory impairment in triple AD transgenic (3×Tg-AD) mice,(47) and one of the 

genetic familial AD mutations (FAD) leading to early onset AD, the “Arctic” (E22G) FAD, is 

characterized by its tendency to stabilize Aβ protofibrils.(48) Therefore, stabilizing Aβ oligomeric 

intermediates and establishing defined structure-activity relationships for these species becomes critical 

to advance our understanding of Aβ toxicity.  

 To this end, the work performed in this thesis, and as outlined in this chapter, describes the use 

of chiral point mutations (which we refer to as chiral editing) within the Aβ sequence as strategy to 

stabilize Aβ aggregation intermediates. This approach offers the advantage of keeping the 

physicochemical properties of Aβ unaltered, such as such as side-chain size, flexibility, hydropathy, 

charge, or polarizability, and it allowed us to solely focus on how the side chain orientation of the 

mutated residues influenced the overall conformation of the generated species.   Through this strategy, 

we were able to stabilize Aβ aggregation intermediates and to elucidate interactions that dramatically 

change the aggregation and toxicity properties of Aβ.   
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Reprinted (adapted) with permission from (J. Org. Chem. 2020, 85, 3, 1385–1391). Copyright (2019) 
American Chemical Society 
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Reprinted (adapted) with permission from (ACS Chem. Neurosci. 2019, 10, 8, 3880–3887). Copyright 
(2019) American Chemical Society 
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Reprinted (adapted) with permission from (Chem. Eur. J. 2016, 22, 11967-11970). John Wiley and 
Sons. License Number 4936251138584 
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Reprinted (adapted) with permission from (Chem. Eur. J. 2016, 22, 11967-11970). John Wiley and 
Sons. License Number 4936251322804 

  

 



38 
 



39 
 



40 
 



41 
 

 

 

 

 



42 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3:  

Mirror-image peptides as structural modifiers of amyloidogenic peptides and proteins and as 
mechanistic tools to study cellular interactions 
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Introduction to Chapter 3 

 In addition to introducing chiral point mutations within the Aβ sequence, using full-length D-

amino acid Aβ (D-Aβ), i.e. mirror-image Aβ, also provided with a powerful strategy to modulate Aβ 

aggregation and to determine how Aβ interacts with biological systems. In this sense, the use of D-Aβ 

in the work performed in this thesis has resulted valuable to develop novel mechanistic approaches to 

accelerate Aβ fibril formation, and to understand how Aβ peptides are uptaken into cells.  

 Mixtures of enantiomeric proteins or polymers can result in the generation of structurally 

different systems. For example, enantiomeric peptide assemblies can lead to distinct hydrogels when 

compared to its homochiral counterparts, originated from different interaction patters at the nanoscale 

level, which also leads to changes in hydrogel rigidity.(49) This phenomenon has also been observed in 

self-assembling, fibrillary-prone peptides, where a mixture of (poly(D-lysine) and poly(L-lysine)), 

which adopt α-helical structures when enantiopure, resulted in the generation  racemic β-sheet 

aggregates.(50) These observations led us to hypothesize that Aβ aggregation could be modulated by the 

addition of mirror-image Aβ. Upon mixing L- and D-Aβ at equimolar ratios, we observed that the 

generated new system  led to rapid Aβ aggregation with an accompanied loss of cellular toxicity.(51) 

This strategy, which we termed Chiral Inactivation (CI), relies on the principles of molecular chirality, 

and it is a clear example of how racemic mixtures exhibit reduced solubility when compared to the 

enantiopure counterparts.(52)  This approach, as discussed in the reprinted manuscript (Dutta et. al. 

2019), also highlights that acceleration of fibril formation can be an alternative strategy to inhibit 

oligomer formation and Aβ toxicity.  

 The results discussed above also exemplify how enantiomeric Aβ can also be used as a 

mechanistic probe to study biological interactions. Enantiomeric peptides are typically used to discern 

between receptor mediated mechanisms (where the stereochemistry of the peptide play a critical role), 

and non-receptor-mediated mechanisms, i.e. lipid membrane-based uptake such as pinocytosis, where 

chiral interactions play a minor role.(53–55) The work in this chapter describes how using mirror-image 

Aβ can unveil cellular interactions leading to Aβ cell internalization. Specifically, by adopting a mirror-
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image, fragment-based approach, in this chapter (Foley et. al. 2020) we show that a specific region within 

the Aβ sequence may be majorly responsible for Aβ cellular uptake, and that it is also dependent on 

receptor-mediated interactions (i.e. cellular prion protein (PrPC), also showing for the first time that Aβ 

uptake may not be dependent on its aggregation state,  as believed thus far.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 

Reprinted (adapted) with permission from (Angew. Chem. Int. Ed. 2017, 56,11506-11510). John Wiley 
and Sons. License Number 4922730463216 
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 More than 12,000 documents mentioning “amyloid beta aggregation” have been published 

since Dr. Alois Alzheimer filled the first reported case of Alzheimer’s disease (AD) based on his 

observations on the postmortem brain of August Deter in 1906, with this number exponentially 

increasing year by year. While our understanding about the mechanisms of AD progression has vastly 

increased over the years, a successful therapy to prevent and slowdown its progress remains elusive, 

highlighting the huge challenge that represents to decipher this system.  

 While this thesis has been focused on studying structure-activity relationships of the Aβ peptide 

from a biophysical and cellular activity perspective, it is important to note that AD pathology involves 

much more than Aβ. In fact, the tau protein, usually expressed and found in brain cells, is considered the 

second pathological hallmark of AD, where toxic, modified (hyperphosphorylated) versions of the tau 

protein are found forming neurofibrillary tangles in AD patients. Additional proteins and genetic 

components are also believed to play an important role, such as the apolipoprotein E4 (ApoE4), whose 

carriers have a 4-fold increased risk factor for AD. Additionally, patients of another amyloidogenic 

protein-causing disease, type II diabetes, have also been hypothesized to be predisposed for AD 

development. But it is not proteins that are considered to be the only disease culprits. Brain inflammation 

is thought to have major influence on disease progression, mitochondrial failure and generation of 

reactive oxygen species (ROS) are typically observed in diseased neurons, and additional factors such 

as imbalances in calcium homeostasis, impairment on metal ion transport, and a compromised blood-

brain barrier, are also pathologies observed in AD patients. What is a cause and what is a symptom in 

AD is still a hard question to answer. Perhaps the reason why we have not still disentangled this system 

is because, surprisingly, we still have limited knowledge about some of the main components of this 

disease. Quoting my mentor Prof. Jevgenij Raskatov, “the fact that the amyloid precursor protein (APP) 

is named after its proteolytic by-product (Aβ) already tells us how little we understand the system”. And 

this is in fact true. How come we have put so much focus and resources on studying the Aβ peptide, 

when we still do not know what the functions of APP are? Asking this question is undoubtedly much 

easier than studying APP. Nonetheless, it seems that the Aβ peptide, at least for nowconclussions, is 
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offering us the most plausible working hypothesis; molecules and antibodies targeting Aβ aggregation 

and toxicity have proven to be successful in vitro and in animal studies, and although still not reaching 

phase IV of clinical trials, phase III has been reached by several Aβ and β-site amyloid precursor protein 

cleaving enzyme 1 (BACE1) targeting drugs.  

 The work from this thesis has focused on studying the mechanisms of Aβ oligomer and fibril 

formation. Because of its aggregation-prone properties and unstructured nature, the Aβ peptide is not a 

trivial system to study.  Consequently, research performed on Aβ needs to be exceptionally particularly 

rigorous, so meaningful results can be obtained and reproduced by other laboratories. It seems an obvious 

statement, but as stated in Chapter 1 (Foley and Raskatov, ChemBioChem 2020), this issue has been 

pointed as one of the possible main reasons on why drugs targeting Aβ fail when taken from the bench 

to clinical trials. Aβ aggregation and toxicity levels are exquisitely dependent on experimental 

conditions, and thus, results obtained for this system should always be benchmarked against different 

sources (laboratory purified, expressed, or synthetic) and even testing multiple synthetic batches of Aβ 

to ensure reproducible results. The latter was an approach consistently applied on the work performed 

in this thesis.  

 The aggregating nature of Aβ is also a major hindrance for Aβ research. While mounting studies 

show high-resolution Aβ fibrillar structures (Chapter 1: Foley and Raskatov ChemBioChem 2019), high-

resolution structures of the most neurotoxic, intermediate oligomeric species remain elusive. In the 

Raskatov laboratory, and as main theme of this thesis, we thought on molecular chirality as a tool to 

obtain novel structure-activity relationships of Aβ aggregation intermediates. Our hypothesis was that, 

by introducing chiral point mutations, we would be able to stabilize and characterize toxic Aβ 

aggregation intermediates. We based this hypothesis on the fact that chiral mutations only modify the 

side chain functional groups orientation (Ramachandran space) of Aβ, and therefore the size, charge, 

polarity, hydropathy, and flexibility of the resultant Aβ mutant peptide remain the same. Thus, this 

allows to introduce mutations that solely focus on conformational changes. To achieve this, in Chapter 

2 we designed a focused chiral mutant library (FCML) of Aβ, and introduced D-amino acid mutations 
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at specific regions of the Aβ sequence which we hypothesized to have an important role on Aβ 

aggregation and toxicity (Foley et al. J. Org. Chem. 2020). The obtained results supported our 

hypothesis, with the chiral mutant peptides all having different aggregation propensity and/or biological 

activity compared to wild-type Aβ. A further and extended analysis on one of the chiral variants, which 

had  D-Ser at position 26 (S26s) of Aβ provided with important molecular interactions leading to Aβ 

amyloidogenesis (Foley et al. ACS Chem. Neurosci. 2019). Specifically, we showed that upon S26s, Aβ 

slowed aggregation (approximately 4-fold), and also became non-toxic. By NMR and computational 

(DFT) calculations, we observed that this was due to the formation of an intramolecular H-bond 

interaction between Ser26 and the neighbor amino acid Asn27. This disrupted the ability of Asn27 to 

engage in the fibrillogenic side chain-to-side chain H-bonding, revealing that intermolecular stabilizing 

interactions between Asn27 side chains are a key element controlling Aβ aggregation and toxicity. It 

will thus be important to further study this effect within Aβ, for example, by mutating the remaining Asn 

amino acids of the Aβ sequence, to probe this stabilizing interaction. A distinctly interesting position 

would be Asn27, given that it is located within the electrostatic-rich and loop region of Aβ, which has 

been postulated to be particularly important for the generation of Aβ toxic species. Asn27 cannot only 

be mutated to D-Asn, but also to amino acids with side chains which could provide with destabilizing 

interactions. Fox example, by mutating Asn to Asp, which would turn the stabilizing Asn intermolecular 

H-bond to negatively charged, repulsive carboxylate electrostatic interactions. Evaluating the impact of 

Asn sidechain interactions as an amyloidogenic-promoting interaction would not only important for Aβ, 

but for fibrillogenic systems in general. Finally, generating the Aβ-S26s system and stabilizing 

aggregation intermediates through this mutation has also allowed us to start advanced structural studies 

in collaboration with the Eisenberg laboratory at the University of California Los Angeles. A successful 

outcome would provide a breakthrough finding, since it would lead to the first atomic-level structure of 

Aβ oligomers ever reported, with many implications for the structural and biological understanding of 

Aβ aggregation and pathology in AD. 
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 The use of chirality as a molecular probe is not only limited to introducing point D-amino acid 

substitutions. Chapter 3 focuses on using mirror-image Aβ as a structural modifier and mechanistic tools 

to study cellular interactions. On a project led by Dr. Subrata Dutta, we developed a novel mechanism 

to prevent Aβ toxicity, which we termed the chiral inactivation strategy (Dutta et al. Angew. Chem. Int. 

Ed. 2017). We showed that this approach, based on enhancing the aggregation of the peptide by mixing 

L- and D- enantiomers of Aβ, can drastically reduce its toxicity. A morphological and structural analysis 

on the obtained racemic fibrils revealed that racemic fibrils had distinct morphology when compared to 

enantiopure fibrils, exhibiting a ~2-fold narrowing in fibril diameter (Dutta et al. Pept. Sci. 2019). 

Additionally, racemic fibrils appeared flat, in contrast to enantiopure fibrils, which exhibited a twist, 

suggesting that the fibril architecture of racemic fibrils may be different. This was indeed already 

proposed by Pauling and Corey in 1953, which hypothesized that a heterochiral polypeptide system 

should adopt a rippled β-sheet structure, rather than the pleated β-sheet structure usually adopted in 

homochiral systems (see Chapter 3: Dutta et al. Pept. Sci. 2019). However, a high-resolution 

experimental structure confirming this arrangement has not been obtained thus far. In this regard, our 

laboratory and my late work as a PhD student has been focused on establishing a collaboration with Dr. 

Robert Tycko (NIH). For this ongoing collaboration, I synthesized D-Aβ with point 15N-Gly labels, and 

Dr. Tycko is personally growing racemic fibrils along his own 15N-L-Aβ. By performing solid-state 

NMR experiments, our goal here is to obtain the first in vitro, high-resolution, rippled cross-β structure 

ever reported, which will allow the understanding of the structural elements that lead to the suppression 

of Aβ toxicity.  

 Lastly, also in Chapter 3, we employed the mirror-image strategy to study the mechanisms of 

uptake of Aβ and its interaction with cellular membranes, in particular with the cellular prion protein 

(PrPC) (Foley et al. Proc. Natl. Acad. Sci. USA 2020). PrPC has been reported to be a high-affinity 

receptor of Aβ, and its interactions with Aβ have proven to cause toxic effects. In collaboration with the 

Millhauser and Lokey labs at University of California Santa Cruz, we investigated how Aβ is uptaken 

into cells, since this is a mechanism reported to initiate its toxicity. By using enantiomeric Aβ, we were 
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able to determine a specific domain within the Aβ sequence (amino acids 1 to 30) that is responsible for 

stereospecific interactions with potential cellular membrane receptors. This was an important finding, 

since this Aβ(1-30) domain does not fibrillize, unlike full-length Aβ, yet it recapitulates its uptake 

properties. We could then use this domain as a model to look for cellular Aβ receptors that could be 

novel targets for drug development. For example, PrPC had been shown to mediate Aβ uptake and 

toxicity. By using this Aβ(1-30) peptide, we were also been able to obtain  Aβ-PrPC binding insights 

through flow cytometry, confocal microscopy, and solution state NMR. This was the first time that Aβ 

aggregation and its cellular, receptor-mediated neuronal uptake were disentangled. 

 Overall, the work performed on this thesis has proven the potential of chiral editing and the use 

mirror-image peptides/proteins to provide with novel mechanistic information of Aβ and AD 

pathogenesis. This work shows how molecular chirality can be used as a tool to either control the 

aggregation state, to stabilize oligomeric intermediates, or to elucidate the nature of the cellular 

interactions of amyloidogenic peptides and proteins, thus being a powerful tool for studying aggregation-

prone systems. The concepts and results presented here should be broadly applicable to many other 

proteins and peptides involved in  amyloidogenic diseases.  
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