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Abstract. Accurate vegetation mapping is critical for natural resources management, ecological analysis, and hydrological mod-
eling, among other tasks. Remotely sensed multispectral and hyperspectral imageries have proved to be valuable inputs to the
vegetation mapping process, but they can provide only limited vegetation structure characteristics, which are critical for differ-
entiating vegetation communities in compositionally homogeneous forests. Light detection and ranging (LiDAR) can accurately
measure the forest vertical and horizontal structures and provide a great opportunity for solving this problem. This study in-
troduces a strategy using both multispectral aerial imagery and LiDAR data to map vegetation composition and structure over
large spatial scales. Our approach included the use of a Bayesian information criterion algorithm to determine the optimized
number of vegetation groups within mixed conifer forests in two study areas in the Sierra Nevada, California, and an unsupervised
classification technique and post hoc analysis to map these vegetation groups across both study areas. The results show that the
proposed strategy can recognize four and seven vegetation groups at the two study areas, respectively. Each vegetation group has
its unique vegetation structure characteristics or vegetation species composition. The overall accuracy and kappa coefficient of
the vegetation mapping results are over 78% and 0.64 for both study sites.

Résumé. La cartographie précise de la végétation est essentielle entre autres pour la gestion des ressources naturelles, I’analyse
écologique, et la modélisation hydrologique. Les approches d’imagerie multispectrale et hyperspectrale par télédétection se sont
avérées de précieuses contributions au processus de la cartographie de la végétation, mais elles ne peuvent fournir qu’un nombre
limité de caractéristiques sur la structure de la végétation, qui sont essentielles pour différencier les communautés végétales
dans les foréts de composition homogenes. La télédétection par laser «light detection and ranging» (LiDAR) peut mesurer avec
précision les structures verticales et horizontales de la forét, et fournit une formidable opportunité de résoudre ce probleme. Cette
étude présente une stratégie qui utilise a la fois ’imagerie multispectrale aérienne et des données LiDAR pour cartographier la
composition et la structure de la végétation a grandes échelles spatiales. Notre approche comprenait I’utilisation d’un algorithme
du critere d’information Bayésien pour déterminer le nombre optimal de groupes de végétation dans les foréts mixtes de coniferes
sur deux zones d’étude dans les Sierra Nevada, en Californie, ainsi qu’une technique de classification non supervisée et une
analyse post hoc pour cartographier ces groupes de végétation dans les deux zones d’étude. Les résultats montrent que la stratégie
proposée peut reconnaitre quatre et sept groupes de végétation dans les deux zones d’étude respectivement. Chaque groupe de
végétation a des caractéristiques uniques de structure de la végétation ou de composition des especes de la végétation. La précision
globale et le coefficient kappa des résultats de la cartographie de la végétation sont de plus de 78% et 0,64 pour les deux sites
d’étude.

INTRODUCTION convey information about the dominant plant species present
Vegetation mapping is the process of characterizing vegeta- and the morphological structure of the vegetation (e.g., a mesic
tion units across a landscape from measured environmental pa- hardwood or a high-elevation meadow). Accurate and up-to-
rameters (Franklin 1995; Pedrotti 2012). Typically, these units date vegetation maps are critical for managers and scientists
because they serve a range of functions in natural resource man-

agement (e.g., forest inventory, timber harvest, wildfire risk con-

Received 7 May 2015. Accepted 30 November 2015. trol, wildlife protection), ecological and hydrological modeling,
*Corresponding author e-mail: guo.qinghua@gmail.com. and climate change studies (Chuvieco and Congalton 1988; Tal-
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bot and Markon 1988; Daly et al. 1994; Stephens 1998; Pearce
etal. 2001; Mermoz et al. 2005; Alvarez et al. 2013). Traditional
methods for vegetation mapping usually rely on field surveys,
literature reviews, aerial photography interpretation, and collat-
eral and ancillary data analysis (Pedrotti 2012). However, these
methods are expensive and time consuming. Consequently, veg-
etation maps produced by the traditional approaches reflect past
conditions when released and are not updated frequently (Daly
et al. 1994).

Remote sensing has proved to be a powerful tool for vege-
tation mapping by employing image classification techniques.
Multispectral remote sensing imagery such as Landsat, SPOT,
MODIS, AVHRR, IKONOS, and QuickBird are among of the
most commonly used. For example, Franklin (1986) used the
Landsat Thematic Mapper (TM) simulator data to discriminate
the composition of conifer forests in the Klamath Mountains in
northern California. Carpenter et al. (1999) produced a lifeform
map for the Sierra Nevada mountain range in California from
Landsat TM data by applying the ARTMAP neural network
method. Liu et al. (2006) mapped the distribution of forest dis-
ease, sudden oak death, in northern California from two-year
images obtained by Airborne Data Acquisition and a Registra-
tion system. Mallinis et al. (2008) used an object-based clas-
sification method to delineate vegetation polygons in a conifer
forest from Quickbird imagery. Wang et al. (2004) combined
pixel-based and object-based classification methods to map the
different mangrove canopy types along the Caribbean coast of
Panama. Zhang et al. (2003) and Knight et al. (2006) monitored
vegetation to produce phenology-based land cover maps from
MODIS data. As well as multispectral data, hyperspectral im-
agery is another frequently used data type in vegetation mapping
(Hirano et al. 2003; Li et al. 2005). The use of hyperspectral data
can produce more finely classified vegetation mapping results
than multispectral data can (Xu and Gong 2007; Adam et al.
2010), because hyperspectral sensors are designed to collect
data from hundreds of continuous spectral channels compared
with multispectral sensors with broad wavelength intervals.

All of these studies that use both multispectral and hyper-
spectral imagery usually focus only on mapping either the land
cover type or the vegetation composition. Examining the de-
tailed structure characteristics in forests has rarely been con-
sidered because of the limited penetration capability of mul-
tispectral and hyperspectral data. However, this information
also plays a very important role in many ecological studies.
For example, Lindenmayer et al. (2000) advocated that forest-
structure-based parameters can impact biodiversity and should
be taken into account in forest management. Zielinski et al.
(2006) and Garcia-Feced et al. (2011) demonstrated that for-
est structure information was critical for mapping the habitat
of Pacific fisher (Pekania pennanti) and California spotted owl
(Strix occidentalis occidentalis). Graham et al. (2004), Agee
and Skinner (2005) and Peterson et al. (2005) all pointed to the
important role that forest structure has on wildfire behavior and
argued that modifying forest structure through forest treatment

might be necessary to reduce fire risk in many dry conifer forest
types. Developing methods to integrate structure information
into the process of vegetation mapping is an important area of
research.

Light detection and ranging (LiDAR), an active remote sens-
ing technique, can accurately measure the three-dimensional
distribution of surface objects (Lefsky et al. 2002). The focused
and narrow laser beam used by LiDAR sensors has a strong
penetration capability in forest areas (Lim et al. 2003; Jensen
2009; Su and Guo 2014). It has been well documented that
LiDAR data can be used to derive highly reliable forest struc-
ture parameters such as tree height (Nilsson 1996; Andersen
et al. 2006; Su et al. 2015), canopy cover (Lim et al. 2003; Ko-
rhonen et al. 2011), leaf area index (Riafio et al. 2004; Jensen
et al. 2008), stand volume (Nilsson 1996; Naesset 1997), and
tree diameter (Popescu 2007; Huang et al. 2011). The capacity
to resolve forest structure parameters provides a great opportu-
nity for developing vegetation-mapping strategies (Kramer et al.
2014). Donoghue et al. (2007) and Heinzel and Koch (2011) ex-
plored the possibility of identifying tree species mixtures from
parameters derived from LiDAR data. @rka et al. (2009) and
Kim et al. (2009) used LiDAR intensity data to differentiate
broadleaf and needleleaf trees. Reitberger et al. (2008) used
full-waveform LiDAR data to classify deciduous and conifer-
ous trees. Holmgren and Persson (2004) identified individual
tree species, including Norway spruce (Picea abies L. Karst),
Scots pine (Pinus sylvestris L.), and deciduous trees, by analyz-
ing individual crown shape and rich tree structure parameters
derived from LiDAR data. However, due to the lack of forest
canopy spectral information, the accuracy of tree species clas-
sification from LiDAR data is limited in complex vegetation
conditions.

The integration of LiDAR data and multispec-
tral/hyperspectral imagery has been used to address the
limitation of using only LiDAR data in vegetation mapping.
For example, Cho et al. (2012), Colgan et al. (2012) and
Naidoo et al. (2012) mapped tree species compositions in
African savannas through the combination of LiDAR data and
hyperspectral data using maximum likelihood, Random Forest,
and Support Vector Machine classifiers, respectively; Dalponte
et al. (2012) and Hill and Thomson (2005) classified tree
species compositions of broadleaf and coniferous mixed forests
through the fusion of spectral and LiDAR data; Holmgren et al.
(2008) and Koukoulas and Blackburn (2005) used a maximum
likelihood classifier to identify individual tree species from
LiDAR-derived structure parameters and multispectral infor-
mation in deciduous and coniferous forests, respectively. It has
been reported that the integration of LiDAR data and optical
imagery can increase the vegetation composition classification
accuracy by 16%—-20% in rangelands, compared to using only
LiDAR data or optical imagery (Bork and Su 2007). However,
most of these studies on mapping vegetation units are still
focusing mainly on classifying vegetated from nonvegetated
areas or detecting differences in species composition. Forest
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FIG. 1. The geolocations and terrain information of the Last Chance and Sugar Pine study sites with the distribution of field plots.

structure characteristics, which can be estimated by statistical
imputation methods that incorporate field measurements with
LiDAR data and optical imagery (Falkowski et al. 2010;
Hummel at al. 2011; Wallerman and Holmgren 2007), are
rarely considered in classification systems.

The objective of this study is to develop and test a new strat-
egy to map vegetation communities in two mixed conifer forests
by considering both the dominant tree species composition and
vegetation structure characteristics. Multispectral aerial imagery
and airborne LiDAR data were integrated, along with a robust
network of systematically established field plots in the vegeta-
tion mapping process. An unsupervised classification scheme
using an automatic cluster determination algorithm based on
Bayesian information criterion (BIC) and k-means classifica-
tion was applied to the fused data to map the vegetation, and
a post hoc analysis based on field measurements was used to
interpret the ecological properties for each vegetation unit.

MATERIALS AND METHODS

Study Areas

Our two forest study sites are located in the Sierra Nevada
mountain range, California, USA (Figure 1). The northern site,
Last Chance, covers an area of 92.1 km?2, and the southern

site, Sugar Pine, covers an area of 72.8 km?2. The elevation
ranges from 280 m to 2190 m for the Last Chance site and
from 500 m to 2650 m for the Sugar Pine site, and the average
elevation for both study sites is over 1500 m. Trees common
to the Sierran mixed conifer and true fir forests dominate the
vegetation cover at both sites. The major species present include:
ponderosa pine (Pinus ponderosa), incense-cedar (Calocedrus
decurrens), sugar pine (Pinus lambertiana), white fir (Abies
concolor), California red fir (Abies magnifica), and Douglas-
fir (Pseudotsuga menziesii). Within the mixed conifer stands,
the major hardwoods are black oak (Quercus kelloggii) and
canyon live oak (Quercus chrysolepis). Forest cover is relatively
homogeneous at both the study sites, but the Last Chance site
has more heterogeneity than the Sugar Pine site.

Field Measurements

Plot measurements (12.62 m in radius and 500 m? in area)
were taken in the summer of 2007 and 2008 (Figure 1). The same
plot selection procedure was applied to determine the location
of 372 and 268 evenly distributed plots at the Last Chance
site and Sugar Pine site, respectively. A random point was first
chosen to be used as the center of the first plot in each study
site. Then, this plot center was taken as a seed point to build
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a grid on a 500 m spacing in the four cardinal directions, and
the following plot centers were placed on the intersections of
the grid. Within watersheds for specific research purposes (e.g.,
studying hydrological responses to forest fuel treatments), the
sampling was intensified to a 250 m by 250 m grid. The position
of each plot center in the field was located using a Trimble™
GeoXH GPS. If there were any landing or road surfaces within
the plot footprint, the plot center was randomly moved by 25 m
in one of the four cardinal directions.

Within each plot, field measurements on individual live trees
included: tree species, tree height, diameter at breast height
(DBH, breast height = 1.37 m) and height to live crown base.
Trees were defined as individuals at least 5 cm in DBH. More-
over, the plot-level canopy cover was measured using a sight
tube with 25 sampling points. The plot-level Lorey’s height and
total basal area were calculated from field measurements and
used in the vegetation mapping process in this study, and these
can be calculated from the following equations.

n,
Z BA, X H,'
LHZ _ i=1 _
> BA;
i=1
TBA, = ZBAi,

i=1

where LH,; and TBA, represent the Lorey’s height and total
basal area of the zth plot, and BA; and H; are the basal area and
tree height of the ith tree in the zth plot.

LiDAR Data

Small footprint airborne LiDAR data covering the Sugar Pine
site and Last Chance site were acquired in September 2007 and
September 2008 using an Optech GEMINI airborne laser ter-
rain mapper (ALTM) from the National Center of Airborne
Laser Mapping at the University of Houston. It was mounted on
atwin-engine Cessna Skymaster and was flown at 600 m—700 m
above the ground. The ALTM sensor was operated at 100 kHz
with a scanning frequency of 40 Hz-60 Hz and a total scan
angle of 24°-28°. The average swath width of a single pass
was around 510 m, and the overlap between two adjoining
swaths was 65% of the swath width. The point density was
610 points/m?, and positioning accuracy was about 10 cm hor-
izontally and 10 cm—15 cm vertically.

Overall, there are 13 layers derived from the raw LiDAR
point cloud for both study sites, including the canopy height
model (CHM), canopy cover, and 11 canopy quantile metrics.
The CHM was calculated by the difference between the LiDAR-
derived digital elevation model (DEM) and digital surface model
(DSM), which were interpolated from the LiDAR ground re-
turns and LiDAR first returns, respectively. The interpolation
algorithm used in this study was ordinary kriging, which has
been proved to be more accurate than other schemes (e.g., in-

verse distance weighted or spline) for interpolating DEM and
DSM from LiDAR -derived elevation points (Lloyd and Atkin-
son 2002; Clark et al. 2004; Guo et al. 2010).

The canopy cover was calculated by a CHM-based method,
a reliable and consistent approach for estimating canopy cover
from LiDAR data (Lucas et al. 2006). First, a fine resolution
CHM (1 x 1 m?) was calculated from the LiDAR point cloud
using the aforementioned algorithm, and the pixels above a
selected height threshold were coded as 1 or 0 otherwise. The
height threshold was set as 2 m in this study to match field-
based canopy cover measurements. Then, this coded CHM was
used to overlap with a 20 x 20-m? grid, and the canopy cover
was calculated as the percentage of the number of coded CHM
pixels with a value of 1 to the total number of coded CHM pixels
within each 20 x 20-m? grid. The final canopy cover layer was
produced in 20-m resolution to roughly match the scale of field
plots.

Canopy quantile metrics, representing the height below X%
of the LiDAR point cloud, are one of most frequently used
LiDAR products for estimating the forest parameters that cannot
be obtained directly from a LiDAR point cloud, e.g., DBH and
biomass (Lim and Treitz 2004; Thomas et al. 2006). In this
study, 11 quantile metrics, including 0%, 1%, 5%, 10%, 25%,
50%, 75%, 90%, 95%, 99%, and 100%, were calculated in 20-m
resolution directly from the LiDAR point cloud.

Aerial Imagery

The 2005 National Agriculture Imagery Program (NAIP)
color-infrared (CIR) aerial imagery in 1 x 1 m? resolution
(composed of green band, red band, and near-infrared (NIR)
band) are used in the vegetation mapping procedure of this
study. The NAIP program is run by the Farm Service of the US
Department of Agriculture (USDA) for the purpose of making
high-resolution digital orthographies available to maintain com-
mon land units. All NAIP images were taken under permitted
weather conditions, and followed the specification of no more
than 10%-cloud cover per quarter quad tile. The Aerial Pho-
tography Field Office has adjusted and balanced the dynamic
range of each image tile to the full range of digital number
(DN) value (0-255), and orthorectified each image file using
the National Elevation Dataset before releasing the data (Hart
and Veblen 2015). To ensure the NAIP imagery coregistered
with LiDAR data, we georeferenced the NAIP imagery using
over 20 correspondence points for each study site selected from
NAIP imagery and LiDAR-derived products (i.e., DEMs and
CHMs).

In addition to the three spectral bands, seven texture layers
(including mean, variance, homogeneity, contrast, dissimilarity,
entropy, and second moment) were extracted from each spectral
band using the gray-level co-occurrence matrix (GLCM) filter-
ing method. GLCM is defined over an image to be the distribu-
tion of co-occurring values at a given offset (Ax, Ay) (Haralick
et al. 1973; Anys et al. 1994; Soh and Tsatsoulis 1999), which
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FIG. 2. Procedure for the vegetation-mapping strategy used in this study.

can be mathematically described as

m n l,ifI(p,q)ziand

GLCMay ay(i. ) =Y Y 3 I(p+Ax.g+Ay) =
p=1g=1 | 0, otherwise,

where (i, j) is one DN values combination of the image I at the
given offset (Ax, Ay), (p, q) are the spatial position indexes in
the image I, and (m, n) are the number of rows and columns of
the image /. The offset (Ax, Ay) is determined by the angular
relation between the neighboring pixels and spatial resolution of
the image. The texture parameters for the corresponding GLCM
can be calculated using equations provided by Haralick et al.
(1973), and will not be discussed in detail here. In this study,
a 3 x 3 moving window was used to generate GLCMs and
calculate corresponding texture parameters for each cell. To
match the spatial scale of the field plots and LiDAR products,
the NAIP imagery and obtained texture layers were resampled
to the resolution of 20 x 20 m? using the weighted mean value
method (Jakubowksi et al. 2013). All of the following vegetation
mapping procedures used the resampled NAIP imagery and
texture layers.

Vegetation Mapping Strategy

There are, overall, 24 aerial imagery derived features (includ-
ing the spectral bands and derived texture layers) and 13 LiDAR-
derived features initially available for this analysis. This large
number of potential input layers for vegetation mapping could
negatively influence the results, given the likelihood of redun-
dant information captured by the layers. Many algorithms have

been developed to reduce the dimensionality of an input dataset,
e.g., principal component analysis (PCA), linear discriminant
analysis, correspondence analysis, and detrended correspon-
dence analysis. As one of the most commonly used techniques,
the PCA algorithm has been proven to be effective at remov-
ing redundant information in remotely sensed data (Mutlu et al.
2008; Pohl and Van Genderen 1998). Therefore, in this study,
the standardized PCA method was first applied separately to the
aerial-imagery-derived and LiDAR-derived features (Figure 2).
The first three PCA components from aerial-imagery-derived
features and the first three components from LiDAR-derived
features were combined as the input for the vegetation mapping
strategy. An unsupervised classification strategy and post hoc
analysis integrated with field measurements was then applied
on the six PCA components to define vegetation groups and
delineate the boundaries of different groups (Figure 2). The de-
tailed descriptions for the unsupervised classification strategy
and post hoc analysis are provided following.

Unsupervised Classification Strategy

The specific number and character of vegetation groups
within a particular forest are usually unknown prior to the
vegetation-mapping process. Thus, one of the main challenges
for vegetation mapping is to identify distinct vegetation groups
and delineate boundaries among groups. In this study, an au-
tomatic cluster-number determination algorithm based on BIC,
developed by Chiu et al. (2001), was combined with k-means
unsupervised classification to initially map the vegetation. BIC
is a robust measure for model selection among a finite set of
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models and is defined as:
BICk = —Zlk + ry IOgl’l,

where k is the cluster number, /; is the classification likelihood
function, r; is the number of independent parameters, and 7 is
the number of observations.

To obtain the optimized cluster number, a large maximum
cluster number was first defined. In this study we used the hier-
archical cluster analysis of species composition (linkage method
= Ward’s; distance measure = Euclidean) following the method
described in McCune et al. (2002) to determine the maximum
number of vegetation groups in both study sites. BIC values for
all possible cluster numbers (from one to the defined maximum
cluster number) were then calculated. With these BIC values,
the optimized number of clusters was determined in two steps.
First, the initial value of the cluster number was estimated. Let
dBIC(k) be the change of BIC values from two adjacent clus-
ter numbers (dBIC(k) = BIC; — BIC;_{),and rBIC(k) be the
ratio of BIC from k clusters and BIC from only one cluster
(rBIC(k) = BIC/BIC,;). If the dBIC(2) was larger than 0, the
initial cluster number was set as one; otherwise, the initial cluster
number was set equal to the number of clusters where rBIC(k)
was smaller than 0.04 for the first time. Second, if the initial
cluster number was one, the final cluster number was set as one;
otherwise, the ratio change in log-likelihood distance was fur-
ther used to optimize the cluster number. Let R(k) be the ratio
of log-likelihood distances (dj) from two adjacent cluster num-
bers (R(k) = di/di—1). The ratio of change in log-likelihood
was computed as R(k;)/R(k,), where k; and k, were the cluster
numbers of the two largest R(k) smaller than the obtained initial
cluster number. If the ratio of change was larger than 1.15, the
final cluster number was set equal to k;; otherwise, it was set
equal to the maximum value between k; and k,. It should be
noted that all the thresholds used in the BIC algorithm were
determined by statistical experiments by Chiu et al (2001).

With the optimized cluster number, we used a k-means clus-
tering algorithm to delineate the boundary of different vegetation
types. K-means divides observations into a predefined number
of clusters, and each observation belongs to the cluster with
the nearest mean (Hartigan 1975), which can be mathematically
described as:

kgic

argminz Z ||xj — U;

i=1 XjES,'

2

’

where kgic is the predefined number of clusters, x; is the jth
observation vector, S; is the ith set of observation vectors, and
W; is the mean point of the ith set. In this study, the maximum
iterations for k-means unsupervised classification was set to 10,
and the change threshold of the mean points was set to 5%.

Post hoc Analysis

Field measurements were used to describe the dominant tree
species composition and forest structure characteristics. The
unsupervised vegetation group for each plot was extracted by
overlapping the plot location with an unsupervised classification
result. Then, for all plots belonging to the same unsupervised
classification group, we analyzed their dominant tree species
and forest structure characteristics measured from the field. The
dominant tree species were defined by the proportions of differ-
ent tree species weighted by basal area, and the forest structure
characteristics were defined by the plot-level basal area, Lorey’s
height, and canopy cover. Finally, these plot-derived dominant
tree species information and forest structure characteristics were
used to determine the property of each unsupervised classifica-
tion group. It should be noted that approximately two-thirds of
the plots (273 in Last Chance and 177 in Sugar Pine) were ran-
domly selected and used to define vegetation group properties.
The other plots were reserved to validate the vegetation mapping
result.

Accuracy Assessment

PCA ordination analysis, one type of multivariate analy-
sis that can depict species relationships in low-dimensional
space (Gauch 1982), was used to evaluate the capability of
proposed vegetation mapping strategy on differentiating tree
species. It has been widely used as a complement to other data-
clustering techniques that help identify repeatable vegetation
patterns and discontinuities in species composition (Leps and
Smilauer 2003). In this study, relative species abundance for or-
dination analysis was represented by basal area (i.e., the ratio of
basal area for each tree species to the total basal area of all trees at
aplot). Moreover, the permutation test, a type of robust nonpara-
metric statistical significance test (Nichols and Holmes 2002),
was used to evaluate the capability of the proposed vegetation-
mapping strategy on recognizing different structure characteris-
tics, because the field-measured forest structure parameters are
not normally distributed based on the Shapiro-Wilk test (o =
0.05) (Table 1).

In addition, the total accuracy (TA) and kappa coefficient (k)
were also calculated for the purpose of evaluating vegetation-
mapping results, which can be denoted as

a
TA = —
N

_ Pr(a) — Pr(e)

© 1—Pre)

where a is the number of plots whose vegetation group agree
with the vegetation-mapping result, N is the total number of
plots used for accuracy assessment; Pr(a) is the relative ob-
served agreement, and Pr(e) is the hypothetical probability of
chance agreement. The 95% confidence interval for the TA was
calculated using the method provided by Foody (2009). About
one-third of the plot measurements at each study site were used
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TABLE 1
Tests of normality for the forest structure parameters using Shapiro—Wilk test

Last Chance Site

Sugar Pine Site

Statistic df Sig. Statistic df Sig.
Lorey’s Height 0.630 370 0.000 0.988 268 0.030
Basal Area 0.489 370 0.000 0.941 268 0.000
Canopy Cover 0.988 370 0.003 0.048 268 0.000

to calculate TA and «. The vegetation group assignments for
these test plots were determined by the minimum Mahalanobis
distance between these plots and the center of each vegetation
group. The parameters used for calculating the Mahalanobis
distance include the three forest structure parameters and the
coordinates on the primary and secondary axes from the ordina-
tion analysis. The center for each vegetation group was calcu-
lated by the means of plots used to name vegetation groups. To
minimize the influence of the different scales of parameters, all
parameters were normalized before calculating the Mahalanobis
distance.

RESULTS

Optimized Cluster Number Determination
In this study, the hierarchical cluster analysis result showed
that there was never any support for more than eight vegetation

classes at either study site. Thus, as a conservative starting point,
we approximately doubled the estimate from preliminary results
(i.e., 15 vegetation classes) and set it as the upper limit of the BIC
cluster number determination algorithm. As shown in Table 2,
all dBIC values for the Last Chance site were smaller than zero,
and the cluster number was 14 when the ¥rBIC was smaller than
0.04 for the first time. The initial cluster number was set as 14
for the Last Chance site. When the cluster number was smaller
than 14, the two largest R(k) values were from results having two
clusters and seven clusters. Due to the fact that the ratio between
these two R(k) was smaller than 1.15, the final optimized cluster
number for the Last Chance site was set to seven. Similarly, the
final optimized cluster number for the Sugar Pine site was set
to four. It should be noted that the initial cluster number for
the Sugar Pine site was set to 15 (i.e., the predefined maximum
cluster number) because all the rBIC values were larger than
0.04.

TABLE 2
The optimized cluster number determination results using Bayesian information criterion (BIC) algorithm for the Last Chance
and Sugar Pine study sites

Last Chance Site

Sugar Pine Site

k BIC dBIC* BIC® Rk Kk BIC dBIC* BIC”  R(KY
1 1390210.558 1 1478604.199

2 1132790048 —257420.510  1.000  1.942 2 1216658.927 261945272  1.000  2.154
3 1000327759 —132462.289 515 1386 3 1095132435  —121526492 464 1177
4 904805.63¢  —95522.126 371 1236 4 991913123 —103219312 394  1.920
5 827541566 —77264.068 300 1139 5 938229015  —53684.108 205  1.055
6 759733.224  —67808.342 263 1502 6 887345487 50883528  .194  1.140
7 714639.554  —45093.670 175 1774 7 842710399  —44635088  .170 1237
8 689292.817  —25346737 098 1139 8  806647.821 ~36062.578 138 1.461
9 667049.072  —22243744 086 1119 9 782010413  —24637.409 094  1.047
10 647181368  —19867.704 077 1318 10  758479.133 23531280  .090  1.029
11 632149235  —15032.134 058 1165 11  735610.756 ~ —22868.377  .087  1.009
12 619263.081  —12886.154  .050  1.098 12 712946401  —22664.355 087  1.008
13 607542700  —11720.381 046 1407 13 690455682 —22490.719 086  1.321
14 599259.290 —8283.410 032 1162 14 673467.151 ~16988.531 065 1058
15 592152.613 ~7106.676 028 1014 15 657416013  —16051.138 061  1.005

“The changes (dBIC) are from the previous number of clusters in the table.
bThe ratios of changes (rBIC) are relative to the change for the two-cluster solution.

“The ratios of distance measures (R(k)) are based on the current number of clusters against the previous number of clusters.
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FIG. 3. Labeled vegetation-mapping results for the Last Chance and Sugar Pine sites.

The vegetation mapping results for the Last Chance and
Sugar Pine sites are shown in Figure 3. Both sites are domi-
nated by Sierran mixed conifer trees. Specifically, 56% of the
Last Chance site was classified as the mature mixed conifer for-
est, 19% as young mixed conifer forest, and 12.6% as mixed
conifer woodland. The young mixed conifer forest was mainly
scattered within the mature mixed conifer forest (Figure 3(a)).
Pine- and open true fir-dominated forest types were less abun-
dant, covering 7.3% and 3.7% of the study area, respectively
(Table 3). These forest types were found mainly at the north
end of the study site, and their coverage increased with ele-
vation (Figure 1 and Figure 3(a)). The proportion of the low-
and high-shrub types were very small, both around 0.6%. At
Sugar Pine, the mature mixed conifer forest again was the
most common type, occupying 57.1% of the landscape (Figure
3(b)). Closed-canopy mixed conifer forest was the next most
common type, at 25.9% of area, with the greatest concentra-
tion in the middle of the study site. The pine-cedar woodland
and open pine-oak woodland were distributed at the southeast
and northwest of the study site, occupying 13.8% and 3.2%,
respectively.

The forest vertical structure information and dominant tree
species composition for each vegetation group are shown in Ta-
ble 3. Naming conventions for the unsupervised groups were
based on the dominant tree species (Table 3). If the tree species
composition for two vegetation groups is similar, the name rec-

ognizes the differences in the forest structures. For example, at
the Last Chance site, composition of the dominant tree species
for young mixed conifer forest and mature mixed conifer forest
are similar, but the mature mixed conifer forest has larger, taller
trees and greater canopy cover (Table 3). Note there is no tree
information for groups identified as low shrub and high shrub,
because no trees were measured with a DBH of 5 cm or greater
in these groups.

The capability of the proposed vegetation-mapping strategy
to differentiate among dominant species was evaluated by or-
dination analysis. In Figure 4, the first two axes for both study
sites represent over 50% information of all data. The tree species
composition among vegetation groups differ greatly with each
other at the Last Chance site (Figure 4 (a)). Although the tree
species composition of young mixed conifer forest and mature
mixed conifer forest are similar (Table 3), the proportion of
white fir for the mature mixed conifer forest is larger than that
of the young mixed conifer forest, and that for ponderosa pine is
smaller (Table 3). At the Sugar Pine site, the proportion of black
oak trees for open pine-oak woodland is higher than the other
three vegetation groups, which makes it unique among all four
vegetation groups (Figure 4 (b)). The tree species compositions
for the other three vegetation groups are similar, especially the
mature mixed conifer forest and closed-canopy mixed conifer
forest. The proportion of white fir and California red fir for
the pine-cedar woodland is relatively smaller, compared to the
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TABLE 3
Forest structure parameters and dominant tree species for each vegetation group obtained from the k-means unsupervised
classification procedure; the dominant tree species are evaluated by the relative basal area of each tree species(Note that certain
tree species with too-small relative basal areas for all groups (<1%) were not included in the table)

Basal Lorey’s Canopy
Area Height Cover

Dominant Tree Species®

Relative Basal Area (%)

Group ID Vegetation Type (m*ha) (m) (%) ABCO ABMA CADE PILA PIMO PIPO PSME QUKE LO
Last Chance Site

Gl Low Shrub N/A®  N/A* N/A? Manzanita (Arctostaphylos spp.)

G2 High Shrub N/A® N/A* N/A? Manzanita (Arctostaphylos spp.)

G3 Open True Fir 4.0 10.1 9.2 69 19 0 0 1 11 0 0 0

G4 Pine Woodland 1.2 132 218 15 5 0 22 0 41 17 0 0

G5 Mixed Conifer Woodland 203 156 364 44 2 8 5 0 21 18 3 0

G6 Young Mixed Conifer Forest 24.7 18.5  46.1 24 1 8 18 0 26 21 1 1

G7 Mature Mixed Conifer Forest 483 263  61.5 34 4 6 18 0 12 22 3 0

Sugar Pine Site

Gl Open Pine-Oak Woodland 114 122 147 0 0 0 3 0 72 0 24 0

G2 Pine-Cedar Woodland 198 176  38.1 11 1 20 11 0 30 0 10

G3 Mature Mixed Conifer Forest 47.3 253  66.8 26 1 28 8 0 19 0 8

G4 Closed-canopy Mixed Conifer 68.0 324  74.6 40 1 29 13 0 9 0 5

“N/A means the value is not available for corresponding blank.

bSpecies code: ABCO, white fir (Abies concolor); ABMA, California red fir (Abies magnifica); CADE, incense-cedar (Calocedrus decurrens);
PILA, sugar pine (Pinus lambertiana); PIMO, western white pine (Pinus monticola); PIPO, ponderosa pine (Pinus ponderosa); PSME, Douglas-fir
(Pseudotsuga menziesii); QUKE, black oak (Quercus kelloggii); LO, canyon live oak (Quercus chrysolepis).

mature mixed conifer forest and closed-canopy mixed conifer
forest.

The capability of the proposed vegetation-mapping strategy
to differentiate the forest vertical structure characteristics was
examined by permutation testing under the null hypothesis that
the means of vegetation vertical structure parameters among
vegetation groups have no difference. Because there were no
forest structure parameters for the plots within the low-shrub
and high-shrub groups at Last Chance, these two groups were
excluded from the permutation test. At the Last Chance site,
this null hypothesis is rejected for differences in parameters
among all vegetation groups (o < 0.05), except the difference
of Lorey’s height between open true fir and pine woodland
and that between pine woodland and mixed conifer woodland
(Table 4). For differences in Lorey’s height between these two
group combinations, the null hypothesis can still be rejected at
the significant level of « = 0.10. At the Sugar Pine site, the
variation in vegetation structure parameters among groups is
not as pronounced as at the Last Chance site. The vegetation
parameters for the closed-canopy mixed conifer forest are the
most distinct. The p-values for the differences in all three pa-
rameters among the closed-canopy mixed conifer forest and the
other three vegetation groups are all smaller than 0.05 except for
the difference in canopy cover with mature mixed conifer forest.

The basal area and Lorey’s height of the mature mixed conifer
forest are significantly different from all other groups (¢ < 0.05).
However, its canopy cover has no significant difference from all
other vegetation groups. The differences in all three parameters
between open pine-oak woodland and pine-cedar woodland are
not significant.

The accuracy of the vegetation-mapping results was evalu-
ated by the independent plot measurements (Table 5). As can
been seen, the overall accuracies of the vegetation-mapping re-
sults are around 80% with a 95% confidence interval of ~ 8% for
both study sites, and kappa coefficients are higher than 0.65. At
the Last Chance site, the commission errors and omission errors
for most vegetation groups are lower than 20%, except the com-
mission errors for the mixed conifer woodland and young mixed
conifer forest and the omission error for the mixed conifer wood-
land. At the Sugar Pine site, all commission and omission errors
are lower than 30%, except the omission error for the pine-cedar
woodland. The omission rate of the pine-cedar woodland is as
high as 41%, and six out of seven omitted pine-cedar woodland
plots were misclassified as mature mixed conifer forest.

DISCUSSION
Remote sensing technology has been shown to be extremely
helpful for mapping and monitoring vegetation over large spatial
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FIG. 4. Ordination analysis results for the Last Chance and Sugar Pine sites. The “+” symbol in each color represents the
centroid of the vegetation group represented by the corresponding color in each figure. Species code: ABCO, white fir (Abies
concolor); ABMA, Californiared fir (Abies magnifica); ALRH, white alder (Alnus rhombifolia); CADE, incense-cedar (Calocedrus
decurrens); CONU, mountain dogwood; LO, canyon live oak (Quercus chrysolepis); PILA, sugar pine (Pinus lambertiana); PIMO,
western white pine (Pinus monticola); PIPO, ponderosa pine (Pinus ponderosa); PSME, Douglas-fir (Pseudotsuga menziesii);
QUKE, black oak (Quercus kelloggii); SALIX, peachleaf willow (Salix amygdaloides); SEGI, giant sequoia (Sequoiadendron

giganteum).

scales (Xie et al. 2008). However, choosing a classification sys-
tem that comprehensively captures vegetation community com-
position and structure is still a major challenge for vegetation
mapping from remotely sensed data (Rapp et al. 2005). Tradi-
tionally, the number of vegetation units and/or the properties
of vegetation units within a forest have been predefined by the
prior knowledge of experts from previous experience or field
sampling data (Bork and Su 2007; Carpenter et al. 1999; Naidoo
et al. 2012). However, this could lead to biased or inconsistent
classification systems across regions and might not result in op-
timal breaks among different vegetation communities. Heinzel
and Koch (2011) found that the accuracy of vegetation mapping
can increase from 57% to 91% with corresponding decreases
in the number of vegetation classes from six to two. It is crit-
ical to determine the optimal number of groups that balances
the value of recognizing differences in vegetation structure and
composition with the reliability of identifying these differences.

By combining the LiDAR data and high-resolution aerial
image, this study used a novel automatic cluster number de-
termination algorithm and k-means unsupervised classification
to define an optimized classification system. The classification
of each vegetation group was determined by fully considering
both the vegetation structure characteristics and dominant tree
species composition. The results at both study sites show that
the proposed vegetation mapping strategy can differentiate veg-
etation groups by vegetation structure parameters or dominant
species composition or both (Figure 3). At the Last Chance

site, the small differences in the relative abundance of the com-
mon tree species were captured along with steep gradients in
structure (Figure 4a, Table 3, and Table 4). Although the tree
species composition for the young mixed conifer forest and
mature mixed conifer forest were very similar, trees in mature
mixed conifer forest were considerably larger than in young
mixed conifer forest (Table 3). Similarly, for the low-shrub and
high-shrub groups, which were both dominated by manzanita
(Arctostaphylos spp.), the latter was about 30 cm higher on
average than the former, based on the LiDAR-derived CHM.
At Sugar Pine, the unsupervised classification clearly detected
the pine-oak vegetation type from the matrix of mixed conifer
forests (Figure 4b) as well as the structural gradient present
(Table 3, Table 4).

Forest structure information, which has been difficult to in-
corporate in previous vegetation-mapping strategies, is an im-
portant factor that has influence on various ecological applica-
tions (Peterson et al. 2005; Zielinski et al. 2006) and should be
used in the procedure of developing vegetation maps for forest
management (Lindenmayer et al. 2000). This is particularly true
in more compositionally homogeneous forests. In these forests,
traditional vegetation-mapping methods, which rely on passive
remote sensing data, might miss the underlying structural differ-
ences within the forest. By including LiDAR data, the proposed
vegetation-mapping strategy can detect differences in vegetation
vertical structure characteristics that, in turn, inform the assess-
ment of wildlife habitat suitability, wildfire hazard, and water
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TABLE 4
The p-values of permutation test for the differences in forest structure parameters among different vegetation groups in the Last
Chance and Sugar Pine study sites

Basal Area

Lorey’s Height

Canopy Cover

G3* G4 G5 G6*  G7* G3* G4

G5 Ge6*  G7* G3* G4 G5t Goe*r G

Last Chance Site

G3* 1.000
G4*  0.004
G5*  0.001
G6* 0.000 0.000 0.013 1.000
G7* 0.000 0.000 0.000 0.000

Gl G2¢  G3¢ G4

0.004
1.000
0.002

0.001
0.002
1.000

0.000
0.000
0.013

0.000
0.000
0.000
0.000 0.001
1.000  0.000
N/A®  G1©  G2¢

1.000
0.066
0.009

0.066
1.000
0.078
0.001
0.000

N/AP
N/A?
N/A?

G1*  1.000
G2* 0.920
G3* 0.109

0.920
1.000
0.000

0.109
0.000
1.000

0.013
0.000
0.000

1.000
0.806
0.245

0.806
1.000
0.019

0.009 0.001 0.000 1.000 0.000 0.000 0.000 0.000
0.078 0.001 0.000 0.000 1.000 0.000 0.000 0.000
1.000 0.037 0.000 0.000 0.000 1.000 0.001 0.000
0.037 1.000 0.000 0.000 0.000 0.001 1.000 0.000
0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000
G3* G4¢ N/A® G3* G4* G5 G6* GT°
Sugar Pine Site
0.245 0.014 N/A® 1.000 0.403 0.684 0.000 N/A®
0.019 0.000 N/A’ 0403 1.000 0.613 0.000 N/A?
1.000 0.000 N/A® 0.684 0.613 1.000 0.334 N/A®
0.000 1.000 N/A’ 0.000 0.000 0.334 1.000 N/AP

G4* 0.013 0.000 0.000 1.000 N/A®> 0.014 0.000

“G3 to G7 and G1 to G4 for the Last Chance site and Sugar Pine site represent the corresponding vegetation group listed in Table 3.

’N/A means value is not available for corresponding blank.

yield. For example, the Sugar Pine site is dominated by three
vegetation types, pine-cedar woodland, mature mixed conifer
forest, and closed-canopy mixed canopy forest (Figure 3(b)),
which have similar tree species composition (Table 3). Without
considering forest vertical structure characteristics from LiDAR
data, these three vegetation groups might be classified only as
one larger group.

The field measurements of species composition and plot-
level forest structure support the results obtained by the un-
supervised classification strategy. The proposed vegetation-
mapping strategy can produce sufficiently high overall accura-
cies (nearly 80% in both cases) and kappa coefficients (over 0.64
at both sites) for most applications in which the vegetation map
provides the essential classification and scaling information.

TABLE 5
The confusion matrices and accuracy assessments for the vegetation mapping results of Last Chance site and Sugar Pine site

Last Chance Site

Sugar Pine Site

Reference Commission  Kappa Reference Commission  Kappa
Predicted G1? G2* G3* G4* G5* G6* G7* Error (%) Coefficient G1* G2* G3* G4* Error (%) Coefficient
GI1*? 1 0 0 0 0 O 0 0.0 0.70 1 0 0 0 0 0.64
G2 o 1 0 O 0 O 0 0.0 0 10 1 0 9.1
G3? o 0 4 0 0 O 0 0.0 0 6 42 5 20.7
G4* o o0 o 11 2 0 0 154 0 1 6 18 28.0
G5* 0 0 0 2 5 0 3 50 N/A® N/A® N/A® N/A®  N/A®
G6* 0O 0 0 O 3 12 6 429 N/A® N/A® N/AP N/AP N/AP
G7? 0O 0 0 0 1 3 46 8.0 N/AP N/A® N/AP N/AP N/AP
Omission 0.0 0.0 0.0 154 54.5 20.0 16.3 N/AP 0.0 412 143 21.7 N/AP
Error (%)
Overall 80.0%7.9 (95% confidence interval) 78.918.3 (95% confidence interval)
Accuracy
(%)

“G1 to G7 and G1 to G4 for the Last Chance site and Sugar Pine site represent the corresponding vegetation group listed in Table 3.

’N/A means value is not available for corresponding blank.
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Moreover, the overall accuracy and kappa coefficient obtained
from the proposed vegetation-mapping strategy are comparable
to most previous supervised vegetation-mapping strategies in-
tegrating LiDAR data and multispectral imagery (Bork and Su
2007; Dalponte et al. 2012; Cho et al. 2012).

Although the commission and omission errors for certain
vegetation groups were high, they might be caused by mis-
registration between plot measurements and remotely sensed
data (LiDAR data and aerial imagery). The plot locations were
measured using a GPS in the field. Although it can produce
centimeter-level positioning accuracy in most cases, the block-
ing effect of forest canopy can reduce the GPS positioning accu-
racy significantly (Sigrist et al. 1999). The possible positioning
error may lead to poor coregistration with remotely sensed data.
Particularly, this misregistration could have a pronounced effect
on the commission and omission errors of vegetation groups that
do not cluster together. For example, the young mixed conifer
forest in the Last Chance site had both a relatively high commis-
sion error and omission error. Instead of aggregating together,
young mixed conifer forest was mainly scattered within mature
mixed conifer forest (Figure 3(a)). A commission error of 66.7%
for young mixed conifer forest was due to the misclassification
as mature mixed conifer forest.

The quality of NAIP aerial imagery could be another fac-
tor that influences the vegetation-mapping accuracy. As known,
there is nonlinear color balancing effect existing in the NAIP
imagery due to the dynamic range of different image tiles and
different data-acquiring time (Hart and Veblen 2015). More-
over, the absolute horizontal accuracy for the NAIP imagery is
around 6 m at a 95% confidence level (USDA Farm Service
Agency 2015). Although this study has tried to reduce the in-
fluence of misregistration between NAIP imagery and LiDAR
products by matching correspondence points, it still cannot be
totally eliminated. Further study is still needed to address how
the nonlinear color balancing effect and horizontal accuracy in-
fluence the vegetation-mapping accuracy. Moreover, it has been
frequently reported that hyperspectral data outperformed multi-
spectral data in recognizing plant species (Adam et al. 2010; Xu
and Gong 2007), and there have been studies showing that the
integration of hyperspectral data and LiDAR data can produce
more accurate vegetation maps than the integration of multi-
spectral data and LiDAR data (Dalponte et al. 2012).

CONCLUSIONS

This study proposed a vegetation-mapping strategy through
the combination of multispectral aerial imagery and LiDAR
data. Both the vegetation structure and composition information
were taken into consideration of the determination of classifica-
tion system. The BIC algorithm was used to automatically op-
timize the number of vegetation units within two mixed conifer
forests, and the property of each vegetation group was identified
by post hoc analysis based on field measurements. The results
show that the proposed vegetation-mapping strategy is a robust
method to map vegetation in mixed conifer forests with a suffi-
cient high accuracy. The overall accuracy and kappa coefficient

are over 78% and 0.64 for both study sites. Each identified veg-
etation group can be differentiated from others by vegetation
structure parameters or dominant species composition or both.
The obtained vegetation maps have the potential to consider-
ably improve the identification of critical habitat for species of
concern (e.g., Pacific fisher and California spotted owl), as well
as identifying wildfire risk through characterizing ladder fuels
(Kramer et al. 2014).
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