
Lawrence Berkeley National Laboratory
LBL Publications

Title
toughio: Pre- and post-processing Python library for TOUGH

Permalink
https://escholarship.org/uc/item/1w22k5rd

Journal
The Journal of Open Source Software, 5(51)

ISSN
2475-9066

Author
Luu, Keurfon

Publication Date
2020-07-27

DOI
10.21105/joss.02412
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1w22k5rd
https://escholarship.org
http://www.cdlib.org/


toughio: Pre- and post-processing Python library for
TOUGH
Keurfon Luu1

1 Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
DOI: 10.21105/joss.02412

Software
• Review
• Repository
• Archive

Editor: Jeff Gostick
Reviewers:

• @rreinecke
• @ma-sadeghi

Submitted: 16 June 2020
Published: 27 July 2020

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Statement of Need

TOUGH is a widely used general purpose numerical simulator designed for fluid and heat
flows of multiphase, multicomponent fluid mixtures in porous and fractured media, which has
been applied to many real-world problems such as underground geological storage, geothermal
reservoir engineering or nuclear waste disposal, to name a few.
When setting up a model, the most time-consuming part is preparing the input data required
to run a TOUGH simulation due to its error-prone text-based fixed-format input files and the
lack of proper built-in meshing tool to model complex geological structures. In addition, a
TOUGH mesh is optimally represented by a Voronoi graph as TOUGH uses an integral finite-
difference formulation (Narasimhan & Witherspoon, 1976) to solve the coupled fluid and heat
flow equations. A TOUGH mesh is only represented as a set of elements and connections
without any reference to a coordinate system usually required for post-processing with common
visualization softwares (e.g. ParaView, Tecplot and VisIt).

Summary

In the recent years, many softwares have been developed and published to address the lack
of pre- and post-processing features of TOUGH family of codes, mostly in the form of
Graphical User Interfaces (GUIs) such as (free) TIM (Yeh, Croucher, & O’Sullivan, 2013),
TOUGH2Viewer (Bondua, Berry, Bortolotti, & Cormio, 2012), (commercial) Leapfrog (New-
son et al., 2012), mView (Avis, Calder, Walsh, & Engineering, 2012) or PetraSim (Yamamoto,
2008). While GUIs provide a convenient integrated working environment since they do not
require to have any programming knowledge, users are often limited to the features imple-
mented in the softwares and pre- and post-processing outputs are hardly reproducible due to
closed or proprietary formats. Besides, automation of runs or coupled simulations (e.g. with a
mechanical simulator) cannot be carried out through a GUI. All of the aforementioned issues
can be addressed by using a high level scripting language such as Python.
toughio is a lightweight, object-oriented and vectorized Python library that aims to provide
user-friendly routines to facilitate pre- and post-processing of a TOUGH simulation. Currently,
to the best of our knowledge, only PyTOUGH (Croucher, 2011) offers an exhaustive list of
features to carry out a complete TOUGH simulation using a scripting language. toughi
o and PyTOUGH share the same objectives, yet with different approaches. On the one
hand, a PyTOUGH mesh is represented as a MULGRAPH geometry where elements can be
unstructured horizontally but only layered vertically (usually referred to as 2.5D). On the
other hand, although it provides basic meshing features, toughio mostly relies on common
third-party softwares (e.g. Abaqus, FLAC3D, Gmsh (Geuzaine & Remacle, 2009), LaGriT) to
generate the mesh by importing and converting it to a TOUGH mesh, which also conveniently
facilitates the coupling of TOUGH with any other simulator that also supports the same

Luu, K., (2020). toughio: Pre- and post-processing Python library for TOUGH. Journal of Open Source Software, 5(51), 2412. https:
//doi.org/10.21105/joss.02412

1

https://doi.org/10.21105/joss.02412
https://github.com/openjournals/joss-reviews/issues/2412
https://github.com/keurfonluu/toughio
https://doi.org/10.5281/zenodo.3961279
http://pmeal.com
https://github.com/rreinecke
https://github.com/ma-sadeghi
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02412
https://doi.org/10.21105/joss.02412


mesh formats. In addition, toughio mainly targets the latest version TOUGH3 (Jung, Pau,
Finsterle, & Pollyea, 2017) and supports most of its new features such as the new input data
blocks, the new output formats, and variable length element names. Nevertheless, toughio is
backward compatible with TOUGH2 (Pruess, Oldenburg, & Moridis, 2012) and can read/write
TOUGH2 input/output files.
Figure 1 shows the result of a sample CO2 sequestration simulation where supercritical CO2
is continuously injected during 3 years in a reservoir near a fault modeled as a finite-thickness
element with high permeability. The model has been entirely set up using toughio with a
mesh generated by Gmsh imported and pre-processed in Python thanks to meshio (Schlömer
et al., 2020). The conversion from a finite-element mesh to its dual-graph representation
as required by TOUGH is automatically handled by toughio when exporting the mesh for
TOUGH. Outputs of the TOUGH simulation have been imported and remapped into the
original finite-element grid and directly visualized in Python thanks to pyvista (Sullivan &
Kaszynski, 2019).

Figure 1: Example of simulation of CO2 upward leakage along a fault completely developed with
toughio. Mesh has been generated with Gmsh and imported in Python by meshio. Output figure
has been prepared and exported by pyvista.

toughio offers a complete set of features to pre- and post-process a TOUGH simulation
in Python. Finite-element meshes generated by third-party softwares can be imported and

Luu, K., (2020). toughio: Pre- and post-processing Python library for TOUGH. Journal of Open Source Software, 5(51), 2412. https:
//doi.org/10.21105/joss.02412

2

https://doi.org/10.21105/joss.02412
https://doi.org/10.21105/joss.02412


converted to a Voronoi graph for TOUGH, simulation parameters can be defined using a
human-readable and jsonable dictionary automatically converted to a fixed-format input file
for TOUGH, and simulation results can be imported in Python for post-processing and visu-
alization.

Acknowledgements

This material is based upon work supported by Lawrence Berkeley National Laboratory under
U.S. Department of Energy Award No. DE-AC02-05CH11231.

References

Avis, J., Calder, N., Walsh, R., & Engineering, G. (2012). mView - A powerful pre- and
post-processor for TOUGH2, 8.

Bondua, S., Berry, P., Bortolotti, V., & Cormio, C. (2012). TOUGH2Viewer: A post-
processing tool for interactive 3D visualization of locally refined unstructured grids for
TOUGH2. Computers & Geosciences, 46, 107–118. doi:10.1016/j.cageo.2012.04.008

Croucher, A. (2011). PyTOUGH: A Python scripting library for automating TOUGH2 simu-
lations. New Zealand, 6.

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with
built-in pre- and post-processing facilities. International Journal for Numerical Methods in
Engineering, 79(11), 1309–1331. doi:10.1002/nme.2579

Jung, Y., Pau, G. S. H., Finsterle, S., & Pollyea, R. M. (2017). TOUGH3: A new efficient
version of the TOUGH suite of multiphase flow and transport simulators. Computers &
Geosciences, 108, 2–7. doi:10.1016/j.cageo.2016.09.009

Narasimhan, T. N., & Witherspoon, P. A. (1976). An integrated finite difference method for
analyzing fluid flow in porous media. Water Resources Research, 12(1), 57–64. doi:10.
1029/WR012i001p00057

Newson, J., Mannington, W., Sepulveda, F., Lane, R., Pascoe, R., Clearwater, E., &
O’Sullivan, M. J. (2012). Application of 3D modelling and visualization software to
reservoir simulation: Leapfrog Geothermal and TOUGH2, 6.

Pruess, K., Oldenburg, C., & Moridis, G. (2012). TOUGH2 User’s guide, (September). Re-
trieved from http://esd.lbl.gov/TOUGHPLUS/manuals/TOUGH2_V2_Users_Guide.pdf

Schlömer, N., McBain, G., Luu, K., Li, T., Tsolakis, C., Mataix Ferrándiz, V., Barnes, C., et
al. (2020). Nschloe/meshio v4.0.15. Zenodo. doi:10.5281/zenodo.3888325

Sullivan, C., & Kaszynski, A. (2019). PyVista: 3D plotting and mesh analysis through a
streamlined interface for the Visualization Toolkit (VTK). Journal of Open Source Soft-
ware, 4(37), 1450. doi:10.21105/joss.01450

Yamamoto, H. (2008). PetraSim : A Graphical User Interface for the TOUGH2 Family of
Multiphase Flow and Transport Codes. Ground Water, 46(4), 525–528. doi:10.1111/j.
1745-6584.2008.00462.x

Yeh, A., Croucher, A. E., & O’Sullivan, M. J. (2013). Tim – Yet Another Graphical Tool for
TOUGH2. 35th New Zealand Geothermal Workshop: 2013 Proceedings, (November).

Luu, K., (2020). toughio: Pre- and post-processing Python library for TOUGH. Journal of Open Source Software, 5(51), 2412. https:
//doi.org/10.21105/joss.02412

3

https://doi.org/10.1016/j.cageo.2012.04.008
https://doi.org/10.1002/nme.2579
https://doi.org/10.1016/j.cageo.2016.09.009
https://doi.org/10.1029/WR012i001p00057
https://doi.org/10.1029/WR012i001p00057
http://esd.lbl.gov/TOUGHPLUS/manuals/TOUGH2_V2_Users_Guide.pdf
https://doi.org/10.5281/zenodo.3888325
https://doi.org/10.21105/joss.01450
https://doi.org/10.1111/j.1745-6584.2008.00462.x
https://doi.org/10.1111/j.1745-6584.2008.00462.x
https://doi.org/10.21105/joss.02412
https://doi.org/10.21105/joss.02412

	Statement of Need
	Summary
	Acknowledgements
	References




