
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Speechless Reader Model: A neurocognitive model for human reading reveals cognitive 
underpinnings of baboon lexical decision behavior.

Permalink
https://escholarship.org/uc/item/1w2718xx

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

ISSN
1069-7977

Authors
Gagl, Benjamin
Weyers, Ivonne
Mueller, Jutta L.

Publication Date
2021
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1w2718xx
https://escholarship.org
http://www.cdlib.org/


Speechless Reader Model: A neurocognitive model for human reading reveals 
cognitive underpinnings of baboon lexical decision behavior. 

Benjamin Gagl (benjamin.gagl@univie.ac.at) 

Ivonne Weyers (ivonne.weyers@univie.ac.at) 

Lukas Wurth (lukaswurth@hotmail.com) 

Jutta Mueller (jutta.mueller@univie.ac.at) 
 

Department of Linguistics, University of Vienna,  
Sensengasse 3a, 1090 Vienna 

 
Abstract 

Animal reading studies have shown that word/non-word 
decision behavior can be performed by baboons and pigeons, 
despite their inability to access phonological and semantic 
representations. Previous modeling work used different 
learning models (e.g., deep-learning architectures) to 
successfully reproduce baboon lexical decisions. More 
transparent investigations of the implemented representations 
underlying baboons’ behavior are currently missing, however. 
Here we apply the highly transparent Speechless Reader 
Model, which is motivated by human reading and its 
underlying neurocognitive processes, to existing baboon data. 
We implemented four variants that comprise different sets of 
representations—all four models implemented visual-
orthographic prediction errors. In addition, one model included 
prediction errors derived from positional letter frequencies, one 
prediction errors constrained by specific letter sequences, and 
finally, a combinatory model combined all three prediction 
errors. We compared the models’ behavior to that of the 
baboons and thereby identified one model which most 
adequately mirrored the animals’ learning success. This model 
combined the image-based prediction error and the letter-based 
prediction error that also accounts for the transitional 
probabilities within the letter sequence. Thus, we can conclude 
that animals, similarly to humans, use prediction error 
representations that capture orthographic codes to implement 
efficient reading-like behavior. 

Keywords: Animal reading; Baboons; Lexical categorization; 
cognitive modeling; transparent orthographic representations   

Introduction 
The invention of writing systems is a critical cultural 
achievement underlying the success of human societies. 
Reading involves letter recognition, their sequential 
combination and conversion to vocal word forms and finally, 
the extraction of meaning from the written text (e.g., 
Coltheart et al., 2001). Recent comparative cognitive 
research studied reading-like behavior in baboons (Grainger 
et al., 2012; Rajalingham et al., 2020) and pigeons (Scarf et 
al., 2016), investigating the evolutionary basis of reading. 
These studies examined if animals can differentiate written 
words from non-words, when rewarded for correct responses. 
Both studies showed that this classic lexical decision task, 
which is also often used to investigate human reading (e.g., 

Balota & Chumbley, 1984), can be solved by non-human 
animals with high accuracy (~74%), yet after considerable 
training. These datasets sparked a lively debate on how 
animals address these tasks (Hannagan et al., 2014; Linke et 
al., 2017) and how comparable animals’ lexical 
categorizations are to human reading (Katz et al., 2012). 

The apparent difference between animal word/non-word 
categorization and human reading is that the former lacks 
speech and meaning processing (Katz et al., 2012). In other 
words, human readers likely decipher the orthographic code 
via linguistic processing routes, mapping the written words 
onto their corresponding speech representations (e.g., 
Coltheart et al., 2001). In contrast, animals solving the lexical 
categorization task for a reward. So that they have not learned 
to perform grapheme-to-phoneme conversion and do not 
have this linguistic route at their disposal, therefore, animals 
and humans likely differ notably in how they process written 
input. As an objection, it has been argued that humans might 
still exploit the characteristics of orthographic codes 
similarly to baboons, namely on the lower, non-linguistic 
level, to optimize their reading performance (Grainger et al., 
2012). Supporting evidence for this notion comes from recent 
studies (e.g., Gagl, Richlan, et al., 2020) using models that 
describe lexical categorization in a way that is naive to 
phonology and semantics. The research shows that lexical 
categorization, which baboons and pigeons also master, is 
possibly implemented in a left-ventral occipito-temporal 
region in the human cortex known to be highly relevant for 
reading, namely the visual word form area (Dehaene & 
Cohen, 2011). Similarly, Rjalingham et al. (2020) found that 
neuronal activity collected from macaque monkeys exposed 
to several orthographic processing tasks not only closely 
mirrored baboon performance (Grainger et al., 2012), but 
highlighted the inferior temporal cortex as a possible 
precursor to human brain networks involved in reading. Thus, 
current evidence suggests that the cortical areas involved in 
human reading might be built upon visual processing 
networks present in primates, which already allow for low-
level, non-linguistic computations to be performed on 
orthographic input. Assuming such a shared origin, animals 
and humans could similarly exploit the orthographic code of 
written stimuli to reach very different goals.  
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Yet, an explicit model capable of describing how 
animals (and humans) use the characteristics of the 
orthographic code to achieve efficient reading or lexical 
categorization is still amiss. Several model-based 
investigations used learning approaches with different 
architectures to successfully reproduce the baboon data 
(Hannagan et al., 2014; Linke et al., 2017). Learning models 
are great for investigating complex system behavior and 
differences in computational architectures (Cichy & Kaiser, 
2019; Ma & Peters, 2020). Comparing the deep-model 
structure implemented by Hannagan et al., and the "flat"-
model structure by Linke et al., is intriguing. Both models 
simulate the baboon data well, but the "flat" model is much 
simpler, suggesting that lexical categorization can be 
achieved based on non-hierarchical reinforcement learning of 
visual features. Precisely, the "flat" model consists of only 
one layer that learns the association of 14,476 visual features 
to either represent words or non-words based on the Rescorla-
Wagner learning rule (Rescorla & Wagner, 1972). Thus, even 
with a low number of layers, learning models typically 
implement a high number of free parameters, i.e., parameters 
set during model training. This model characteristic is 
beneficial for achieving highly accurate predictions in 
various contexts (Cichy & Kaiser, 2019; Ma & Peters, 2020). 
For example, researchers have successfully used such models 
to investigate occipitotemporal brain activation in humans 
during object recognition (Güçlü & Gerven, 2015). Still, the 
use of free parameter setting comes at the cost of 
transparency of the implemented representations (Cichy & 
Kaiser, 2019; Ma & Peters, 2020) and naturally reduces these 
models' explanatory value. Thus, if one wants to understand 
how animals achieve accurate lexical categorization 
performance, "flat" or "deep" learning models, able to 
implement numerous different task, might not be the best 
option.  

Here we implement a computational model that was 
developed specifically for reading like tasks, i.e., lexical 
categorization. The Speechless Reader Model combines 
previously evaluated assumptions describing human 
neurocognitive processes implemented in the 
occipitotemporal cortex during reading (Gagl, Davis, et al., 
2020; Gagl, Richlan, et al., 2020; Gagl, Sassenhagen, et al., 
2020). Like animals and previously used models, the 
Speechless Reader Model is naive to phonological and 
semantic processing. The specificity to one group of tasks 
allows that the model implements highly transparent 
representations and algorithms with the goal of correct lexical 
categorization while dispensing with any free parameters. 
The model presented here for the first time is based on 
previously developed model components relevant to human 
reading (Gagl, Davis, et al., 2020; Gagl, Richlan, et al., 2020; 
Gagl, Sassenhagen, et al., 2020). Thus, these general model 
characteristics sets it apart from previous investigations using 
domain-general learning models. From this study, we expect 
an increased understanding of (i) the underlying 
representations and algorithms implemented in baboons' 
lexical categorization and of (ii) the relation between humans' 

and baboons' cognitive processes in response to written 
words.  

Previously, e.g., Linke et al. questioned if baboons 
implement any orthographic representations at all, as their 
model successfully mimicked baboon behavior while only 
processing visual features. To further address this question, 
we compare four models that include orthographic 
representations of different complexity. The most 
straightforward one is based on only word images, i.e., 
representations primarily including visual features similar to 
Linke et al.’s model on a conceptual level (see Gagl, 
Sassenhagen, et al., 2020 for more details). The second model 
further encodes positional letter frequencies. The third, then, 
includes sequential letter information. The fourth and final 
model ultimately combines the learning parameters of the 
second and third models. As a control model, we will include 
simulation data from the domain-general reinforcement 
model by Linke et al.. This characterizing of the orthographic 
cues used by baboons allows the investigation of similarities 
and differences between baboons and human reading. 
 
The Speechless Reader Model 
 
The Speechless Reader Model combines multiple component 
models implemented to describe neuro-cognitive processes in 
adult readers. For the first time in this form, prediction error 
representations based on the visual appearances of words 
(Gagl, Sassenhagen, et al., 2020) are combined with 
prediction error representations based on letter frequencies 
with and without accounting for the letter sequence (Gagl, 
Davis, et al., 2020). The prediction errors are accumulated 
before a word/non-word categorization process is initiated. 
This process functions as a gatekeeper, i.e., it prevents further 
semantic processing for unknown letter sequences in humans 
(Gagl, Richlan, et al., 2020). Previously, visual-orthographic 
prediction errors have been shown to correlate with posterior 
occipitotemporal brain activation (Gagl, Sassenhagen, et al., 
2020) and letter-based prediction errors with parietal brain 
activation (Gagl, Davis, et al., 2020). Finally, lexical 
categorization difficulty was associated with the activation in 
the so-called visual word form area during word recognition 
(Gagl, Richlan, et al., 2020). Additionally, both the prediction 
errors and the word/non-word categorization process have 
been shown to successfully explain the variance in behavioral 
data from humans performing a lexical decision task similar 
to the baboon experiment (e.g., Gagl, Sassenhagen, et al., 
2020). As such, the prediction errors, as well as the 
categorization process assumed in the Speechless Reader 
Model have been successfully correlated with behavioral and 
neurophysiological data. We therefore argue that the 
Speechless Reader Model offers a suitable alternative to 
domain-general learning models, as it rests upon domain-
specific assumptions and evidence. 
 Based on the mentioned components, we assume the 
following hierarchical structure of the model: 

1. Orthographic prediction error estimation based on 
the visual image of words. 
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2. Letter-based and sequence-sensitive prediction error 
estimation. 

3. Probability estimation for categorizing a letter string 
as “word” by accumulating the prediction errors 
computed for all elements before. 

4. Lexical categorization, i.e., deciding if the letter 
combination is a word.  

In Figure 1, we present the structure of the Speechless Reader 
Model.  

The visual-level prediction error is estimated based 
on all words that have been entered into the lexicon, which 
are transformed into grayscale images. After that, the model 
calculates a pixel-by-pixel mean across all known word 
images. When a specific pixel is black in a high number of 
previously encountered words, for instance, the model (or a 
human reader) will expect this pixel to be black with a high 
probability in any upcoming word. Gagl, Sassenhagen, et al. 
(2020) provides a more detailed description of the estimation 
of the visual-only image-based prediction. We furthermore 
implemented two prediction errors on the level of letters: (i) 
one based on the frequency of a letter in one of the four 
possible positions (e.g., the probability of encountering an "i" 
in the first position of a word), and (ii) one based on the 
sequential appearance of letters (the transitional probabilities 
between adjacent letters, i.e. the probability of encountering 
a "g" in second position after an "i" was the initial letter in 
the sequence). 
 All words already included in the lexicon are 
considered, and from these, the model estimates how often an 
individual letter is present in one of the four positions. For 
instance, the letters "e" and "s" are likely to occur at the end 
of English words. They would therefore receive relatively 
high values in the prediction for the final position if the model 
was trained on an entire English lexicon. The second letter-
based prediction is sensitive to both letter frequencies and 
letter sequence. Suppose, for instance, the first letter of a 
word is an "s" and the model is now tasked with predicting 
the following, second letter. It will now not merely base its 
prediction on how frequently each possible candidate appears 
in the second position (as in i), but rather checks all known 
words for how often each candidate letter follows the initial 
"s". In other words, for letter-based prediction error that 
accounts for the letter sequence, the model will consider only 
words in the lexicon with the same preceding letter (or 
sequence of letters) to estimate the frequency of the 
upcoming letter(s). Thus, this letter-based prediction also 
includes the transitional probabilities between letters, i.e., the 
reader's knowledge about letter sequences (see Gagl, Davis, 
et al., 2020 for more details). 

The estimations for both image- and letter-level 
prediction errors similarly follow the computational 
principles described by the predictive coding theory (i.e., top-
down predictions to achieve efficient bottom-up prediction 
error processing, see Clark, 2013 for more details). 
Accordingly, the model combines all word knowledge to 
predict the upcoming letter sequence before a stimulus is 
presented.  These predictions are based on all words that have 

been included in the lexicon so far. There are no words in the 
lexicon initially, but the model will learn more and more 
words with training. A word does not become part of the 
lexicon after the first presentation, but only after it has been 
correctly categorized as a word by the baboon at least five 
times out of seven presentations (71% accuracy). Accuracy 
rates for each word are continuously updated throughout 
training and thereby also allow for the possibility that the 
monkey might forget an already learned word. The criterion 
implemented for forgetting is that if the baboon repeatedly 
categorizes a word as a non-word, and accuracy drops below 
71% for this word, the model will remove the word from the 
lexicon. Consequently, the size of the lexicon is continuously 
changing and prediction errors are recalculated for each new 
stimulus.  

 

 
Figure 1: Schematic depiction of the Speechless Reader 

Model, including all three prediction error representations 
(visual level orthographic prediction error, OPE; letter-

based prediction error, LPE; letter-based sequence 
sensitive prediction error, SPE). Gray arrows depict the 
predictions that originate from all words included in the 
lexicon. Black arrows represent the input to the model 

parts, and blue arrows show prediction error representation 
flow. Sum signs indicate prediction error accumulation, 

e.g., accumulating the individual pixel values from image-
based prediction errors (OPE). The scaled sum of all 

available prediction errors enters the lexical categorization 
stage that differentiates between words and non-words.  

 Until now, we have only described the predictions 
implemented in the model (depicted by the gray arrows in 
Figure 1), i.e., the model's state before a word is presented. 
When a word is shown to the model, the predictions inhibit 
the expected sensory input before processing. Thus, only the 
residuals, i.e., the unpredicted information, have to be 
processed. This process increases neuronal processing 
efficiency (e.g., Price & Devlin, 2011). The orthographic 
prediction error is implemented by a pixel-by-pixel 
subtraction of the sensory input image from the prediction 
computed from on all stored images. For the letter-based 
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predictions, we subtract the letter frequency at a specific 
position (which is a value between 0 and 1) from 1, which 
would describe the situation that a letter cannot be predicted 
(i.e., highest prediction error possible). The prediction errors 
are then summated within each level. That is, for image-based 
prediction errors, the pixel-by-pixel values are added; for 
letter-based prediction errors, the values of all four letters are 
summed. In the models that include more than one prediction 
error, all prediction errors are transformed to the same scale 
and again summated (see sum signs and blue arrows in Figure 
1). 

The final step implements lexical categorization 
based on the accumulated prediction errors (see Summerfield 
& de Lange, 2014 for a similar idea). Here we estimate, for 
all models with different prediction error combinations 
individually, the probability that a presented four-letter 
combination is a word based on the distribution of prediction 
errors from all previously encountered words and a subset of 
non-words of equal size. The expectation here is that 
accumulated prediction errors for words should be smaller 
than for non-words, since they are based on learned words 
and training should therefore improve prediction accuracy 
(Gagl, Sassenhagen, et al., 2020; Price & Devlin, 2011). In 
contrast, the orthographic appearance, letter combinations 
and/or letter sequences of non-words should be unexpected 
and produce larger (accumulated) prediction errors. As a 
result, the distributions of prediction errors for words and 
non-words should not or only partially overlap (Balota & 
Chumbley, 1984). Thus, one can estimate the probability of a 
given input representing a word, p(Word), based on its 
prediction error value (see Figure 1; see Gagl, Richlan, et al., 
2020 for more details this probability estimation based on 
classical orthographic similarity measures). To evaluate 
model performance on lexical decision accuracy, we fitted a 
decision boundary. This boundary allowed the model to 
decide if a presented letter string is a word or not. 

 
Methods 

 
Dataset. The present investigation used the baboon lexical 
decision data by Grainger et al. (2012). The dataset comprises 
accuracy data from more than 300,000 individual word and 
non-word trials of six baboons performing a lexical 
categorization task. 
 
Simulations. We compared simulations from four model 
implementations with different sets of prediction errors: 

1. Orthographic prediction error only (O PE 
Simulation). 

2. OPE plus the letter-based prediction error (OL PE 
Simulation) . 

3. OPE plus the letter-based sequence sensitive 
prediction error (OS PE Simulation). 

4. One model combining all three prediction errors 
(OLS PE Simulation).  

Comparing these four implementations allows us to draw 
conclusions about which of these prediction errors (or 

combination thereof) are likely involved in baboon lexical 
decision. We consider the underlying representation 
necessary for the computation of the orthographic prediction 
error (O PE) to be the one with the lowest complexity since 
it is only based on the words' visual features. The letter-based 
prediction error (OL PE) is of higher complexity because it 
includes the ability to store and recognize individual letters. 
The sequence-sensitive prediction error (OS PE) is then even 
more elaborate, as all previously encountered letter 
combinations are stored and considered for PE computation. 

In addition, we used the simulations by Linke et al., 
(2017) as a control model to compare with our four 
Speechless Reader Model simulations. R-based programs 
estimated model performance by calculating trial-specific 
predictions based on the presented words up to a particular 
trial. In preparation for each trial, the model dynamically 
updates the lexicon that updates all predictions. When the 
model gets new input from the next stimulus, it calculates 
prediction errors based on the current status of predictions set 
before. After that, the prediction errors are combined as the 
accumulated prediction error. This parameter then is the basis 
for calculating the probability of the input being a word 
(p(Word)). Based on this parameter, the model implements 
the lexical categorization. Finally, one parameter, the 
decision boundary for lexical categorization, is set to .5. 
Hence, whenever the probability p(Word) exceeds .5, the 
lexical categorization results in a “word” response; whenever 
it is lower, the model response is “non-word”.  
 
Analysis. We implemented statistical model comparisons and 
the comparison of simulation and baboon data based on 
generalized linear mixed models (using the glmer() function 
of the lme4 package in R). First, we estimated a baseline 
model that included stimulus category (word vs. non-word) 
and the normalized log.-transformed trial number as fixed 
effects. We normalized the trial number to obtain numeric 
values in a smaller range and we log-transformed the value to 
account for the log.-shaped learning effect shown in the 
original baboon study (e.g., Grainger et al., 2012). As random 
effects on the intercept, we included stimulus and baboon. 
Since the data was binary (0 for incorrect and 1 for correct), 
we assumed a binomial distribution for our statistical 
analysis. We added the simulated model performances from 
our four Speechless reader implementations as fixed effects 
to the statistical models. We compared the Akaike 
information criterion (AIC) from the statistical models 
against the baseline model to learn if model simulations in 
general increased model fit and to compare them against each 
other, to discover which model assumptions represented the 
data best. 

 
Results 

 
When comparing the performance data of all four Speechless 
Reader simulations (Figure 2, plotted in blue), they all follow 
a similar, classical learning pattern: a steep initial increase 
that levels out. Compared amongst each other, the four 
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alternative prediction error-based models result in different 
behaviors, and model simulations differ individually for all 
baboons (due to different individual stimulus sequences, cf. 
Grainger et al. 2012). With increasing experience, the 
models' performance implementing the simpler prediction 
errors, i.e., O PE only and OL PE, dropped below the 
baboon's performance (cp. Red vs. dark blue lines in Figure 
2). The average accuracy achieved by these two models was 
at 59% and 65%, respectively. In contrast, the two models 
that implemented the sequence-specific prediction error (OS 
PE and OLS PE, light blue lines in Figure 2) performed better 
than the models without and were closer to the baboons’ 
accuracy rate (74%) with average accuracies of 74% and 
77%, respectively. Interestingly, these latter two models also  
fitted the baboon performance better than the model by Linke 
et al. (2017; yellow graph in Figure 2). Their domain-general   

Figure 2: Model and baboon 
performance plotted separately for 
each baboon, headings specify the 

baboons’ names. Number of trials is 
plotted on the x-axis and accuracy on 
the y-axis. Dots represent changes in 

mean accuracy across 2,000 trials.  Red lines show the 
individual baboon’s performance, respectively; blue lines 

show the performance of the four Speechless Reader Model 
simulations; and the yellow lines indicate simulation results 

by Linke et al. (2017). 

model exhibits a much higher performance than both the  
baboons and all of our simulations,  particularly in early trials  
(average accuracy: 88%). Thus, the learning curve of their  
model is much steeper than that of both the baboons and our 
Speechless Reader Model implementations. 

In the generalized linear mixed model analysis of 
the baboon data, we found significant effects of the log. trial 
number (Estimate (Est.) = 0.03; Standard error (SE) = 
0.01;  t =4.1; p <.001) and stimulus category (Est. = 0.65; SE 
= 0.06;  t =10.6; p <.001), reproducing previously published 
analyses (Grainger et al., 2012). Entering the Speechless 
Reader and domain-general models’ performances as 
parameters into the models resulted only in small numerical 
changes of these two effects. For the model parameters, we 
found significant positive effects on baboon performance for 
all models (O PE model: Est. = 0.43; SE = 0.02;  t = 23.6; p < 
.001; OL PE model: Est. = 0.86; SE = 0.03;  t = 34.0; p < 
.001; OS PE model: Est. = 1.59; SE = 0.02;  t = 78.1; p < 
.001; OLS PE model: Est. = 1.48; SE = 0.02;  t = 60.5; p < 
.001; Linke model: Est. = 0.18; SE = 0.02;  t = 9.2; p < .001). 
In model comparisons (Figure 3), we found that all models 
explained more variance than the baseline model (i.e., all 
Chi-Squared > 221; all p's < .001). The OS PE model 
explained more variance than all other contrasted models 
(i.e., all Chi-Squared > 115; all p's < .001). This relative 
difference was present for all phases of the experiment (i.e., 
when tested in steps of 10,000 trials) and for each but one 
baboon individually. When running the model comparisons 
for each baboon separately, we discovered that for five 
baboons (ART, ARI, DAN, DOR, VIO), the relative 
differences were the same as in the overall sample (see Fig. 
3). For CAU, the OLS PE model including all prediction 
errors was slightly better than the OS PE model. 
 

 
Figure 3: Model fits of all four models (OPE only model: O; 

OPE plus LPE: OL; OPE plus SPE: OS; OPE plus LPE 
plus: OLS), in AIC differences in relation to a baseline 
model without the model parameters, using the entire 

dataset.   
 

Discussion 
 

In the present study, we investigated the mental 
representations and algorithms on which baboons base their 
lexical decision behavior. We implemented a cognitive 
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model, the Speechless Reader Model, which combines 
previous component models of human visual word 
recognition computationally. The model allowed us to 
investigate if baboons implement mere image-based or 
higher-level, letter-based prediction error representations to 
achieve high performance in lexical decisions. We found that 
all model simulations correlated positively with the baboon 
performance. The model implementation combining the 
image-based prediction error and the letter sequence-based 
prediction error explained the largest amount of variance in 
baboon behavior overall. In other words, our simulations 
clearly show that baboons’ representations most likely go 
beyond mere storage and processing of a large number of 
low-level visual features representing the written input, as 
suggested by Linke et al. (2017). It seems rather that in 
addition to such visual features (which one might already 
classify as orthographic, for a discussion, see Gagl, 
Sassenhagen, et al., 2020), the monkeys also rely on 
representing the transitional probabilities from letter-to-letter 
in a letter sequence.  
 The finding that monkeys are sensitive to 
transitional probabilities in linguistic material is not new. 
Several studies investigating different primate species show 
behaviors that can be explained by representations that 
implement transitional probabilities (for reviews, see 
Santolin & Saffran, 2017; Wilson, Marslen-Wilson & 
Petkov, 2017). Specifically, baboons can learn even non-
adjacent dependency relationships between temporally 
separated units in the visual modality (Malassis, Rey & 
Fagot, 2018). 

New here is that we used a model to explain the 
neurocognitive processes underlying human reading (Gagl, 
Davis, et al., 2020; Gagl, Richlan, et al., 2020; Gagl, 
Sassenhagen, et al., 2020) to model baboon lexical decision 
performance. This implementation showed that to solve 
lexical decisions, baboons likely use prediction error 
representations similarly to how humans use these 
representations during visual word recognition. Even if these 
processes are likely different from human "linguistically" 
motivated reading, they seem to share certain features with 
the reading process (Grainger et al., 2012). Even more so, in 
successfully modeling the baboon data with the Speechless 
Reader Model, we demonstrated that this model specific to 
the domain of reading outperformed a domain-general model 
such as the one by Linke et al. (2017). This finding is 
surprising because one would not expect reading-specific 
representations and algorithms to be implemented by animals 
lacking phonological and semantic, i.e., linguistic, 
information. These findings suggest that some aspects that 
have been considered and modeled as pertaining exclusively 
to the linguistic domain may originate from more domain-
general capacities shared by humans and primates. Thus, 
human reading could be rooted in the cognitive capabilities 
shared with our closest phylogenetic relatives. 
  When comparing previous modeling studies with 
the present one, domain-general models (e.g., Hannagan et 
al., 2014; Linke et al., 2017), using procedures that make 

critical model representations intransparent, could hardly 
identify which cognitive processes underly baboon behavior. 
These models implement a high number of parameters fitted 
to a specific input so that it is almost impossible to infer 
which information is actually represented (e.g., see Güçlü & 
Gerven, 2015 for examples from object recognition). In 
contrast, the Speechless Reader Model does not include any 
free parameters, and only the predictions are adapted when a 
new word enters the lexicon. This way, one can trace each 
prediction or prediction error value down to the words 
included in the lexicon and eventually to the visual input of 
the model.   

Even though these previous models were able to 
extract somewhat critical information from the visual 
features of the letter strings to differentiate between words 
and non-words, they ultimately performed much better in the 
categorization task than both the baboons and our Speechless 
Reader Model. In other words, these implementations are not 
necessarily representative of the processes implemented by 
baboons. However, the Speechless Reader Model (i) better 
represented the baboon behavior as its categorization 
accuracy was more similar to baboons, and (ii) the 
simulations could explain more of the variance in the baboon 
data. Notably, the transparent representations of the 
Speechless Reader Model further allowed specifying a likely 
combination of prediction error representations and 
categorization algorithms implemented by baboons. 

This investigation of baboon behavior with the help 
of a transparent reading model will now motivate new 
studies, including further studies on human reading. A critical 
difference between baboons and efficient human readers is 
that human lexical decision accuracy can be much higher 
(i.e., around 90% correct; Balota et al., 2004). So that new 
studies could investigate if this increase in accuracy can be 
explained by additionally considering phonological and 
semantic information for the Speechless Reader 
implementation. Interesting could also be the investigations 
of beginning readers, dyslexic readers, and adults at different 
ages. Of significant interest will be how the different 
prediction error representations change during development 
or are dependent on individual differences such as reading 
experience or reading speed. 

In sum, this Speechless Reader Model-based 
investigation showed that baboons implement image- and 
letter-based representations, including transitional 
probabilities, to achieve relatively high lexical decision 
performance. The combination of prediction error style 
representations and evidence accumulation has proven to be 
a valuable tool to model baboon lexical categorization 
behavior. Since the model components have been motivated 
by human behavior and neuronal processes, the current 
investigation suggests that both human and baboon behavior 
can in part rely on a similar set of representations and 
algorithms.  
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