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POLARIZATION AND ANGULAR CORRELATION

IN THE PRODUCTION AND DECAY OF PARTICLES OF SPIN £ AND SPIN %
Richard Spitzef and Henry P.‘Stapp*
Radiation Laboratory, University of California
Berkeley, California
June 5, 1957 | ' N

ABSTRACT

A general formélism describing the angular correlation and
polafization effects in the production and subsequent dgcay of particles
of arbitrary spins has been developed. it has been specialized to the
cases of production and decay of particles of spin 1 and %. Expressions
for the angular distribution and polarization of the decay vroducts have
been reduced_to tractable forms involving the vhysical vectors of the
problem and a minimal number of parameters describing the production and
decay igtf'gctions. ‘z?e results are discussed for two particular i
producti%ﬁ{processesvin order to determine what information on the svin

£ the hyperon and the production and decay mechanisms may ‘be obtained

from the analysis of the decay products.

This work was performed under the auspices of the U.5. Atomic Energy

Comeission.
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FOLARIZATION AND ARGULAR CORRELATION
IN THE PRODUCTION AND DECAY OF PARTICLES OF SPIN 4 AND SPIN %
Richard Spitzer and'Henny P. Stapp

Radiation Laboratory, University of California
Berkeley, California

dune 5, 1957

Section I Introduction

The angular distrlbutlon of the products of decay of a hyperon orovides

information regard;ng the hyperon spin. If this spih is one-half, then the
" probability that the direction of tﬁe final nucleon will lie in one 6f the
two polar coneé ( I cos ()'_[ .)> '% , where @ is thé center-of—ﬁéss
‘angle between’ the hyﬁeron velocity and the final nucleon velocity) must be
éxactly one~half. On‘tﬁe basié of reéent measurements of the angular
distribution of 2> ~decay products the probability that the spin of the
= is & is 5%.1 _Iﬁ view of ‘this indication that the spin of the

SC may;be greater than %; it is of intérest to determine the detailed
conéeqﬁencas of larger'&alues for the hypefon spin. The purpose of ihis
pépér is to examine the corfelation between the direction of the nucleon
emitted in the decay of the hyperon on the one hand and the directions
~ defined by the rroduction process on the other hand. The volarization of
.the final nucleon-is also treated.‘ Some general formulas are quoted in
this section and are applied to the case of spin~2 partlcles in the
following secﬁlons. Some analogous results for the spin*é case are given
for éomparison.- We use.an apparently nonrelativistic formulation, but the
results‘may be applied to the reiativisticcase if appropriate interpretations

énd‘corrections are made. These are discussed in Section III.
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‘states must be éonsidered, and a density matrix formulation is conveniént.
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In the analysis of polarization phenomena statistical mixtures.of
2

The - spin-svace denéity matrix WU (8¢) - is defined by the relation

<4>e¢ = T h o) S (1.1)

where : < A:>9¢ is the expectation value of a spin operator A if the
measurement is made on a particle in the beam moving in the direction eg.
Thé matrices: A‘ and 71,(9¢) are square matrices of dimension (25 + 1),
where S5 is the spin quantum number. It is cohvenient to introduce a

complets orthonormal set of matrices in this space. We use the matrices

Q A 3
f%a defined as follows:

1"

E A

2é + 1 : CS:QS:
(2s'+1 B

(1.2)

. Y
2Q + 1 '
(zs"“;‘i) g e K)o

.where the six-index symbols on the rlght are the usual Cleosch-Gordan

I Q
coefficients. , The matrices ?& are real and thelr hermitiah conjugates

~Q ‘ .
T are their resuective transposes By use of their completeness property

X
the 2L(9¢) may be expanded in the form

ulep) = :()f_(egi) 'T9' = o()f(esé) “ifi . | (1.3)

The coefficients '552?(6¢) and 5;;?(6¢) defined by the above equations

are complex conjugates owing to the hermiticity of the denéity matrix. In
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virtue of the -orthonormaiity condition

Q Qv . '
TrT T - S8 S

7 ' LI S VLR - (.-4)

- the -6(5(%). and J(&Q(egf)' may be expresséd as

Q o
<>f/k(eszf) = Tr ‘?,«:(eys)vff% ,
(1.5)

¥ ket = W(op) ‘-T_‘; .

We shall be interested in processes in which the initial states

»

_are described by the spin-orbit variables (S, ‘/,4,', 8', ¢') and the final
| stat.eé by the spin-orbit variables (S, 4,8, 7). The spin-space characteristis
of the initial system will be described by the coefficients qz)g,'(e';d')
ahd,'the final sy.stem will be si-.milari:ly described by the coeffic_ients
o 6{}2(695). If the initial s:ystem is a pldne wave moving in f.he direction
e'g! ﬁith a spin quantum number S', then the parameters O(AS(S’ ed),
which describe the spin-spsce charactei'istics of the reaction products
ihat emergey in thé dire'ction 8¢ and in the state with spin $, are given
" in terms of the‘ parametérs ' 0{)3',' (S' , e'¢'), which describe the spin-space

~ 5
characteristics of the initial plane wave, by the equation

. . - < J: Jio®
I(9¢) q’}d (Sx 9¢) = W P /s RSL;S'L' RSL";S'L”/
. . LL’L"LII/ JJ‘ .

- 2
(23 + 1)(207 + 1) £(2L + 1)(2L' + 1){2L" + 1)(2L” + 1)J‘

/

' E l . LL'A  L'LA L+L+A
x ¥/ (eg) YA,) (e'g") ® 00 %o OQ (-1)
ANYY '

(Eq. (1.6) cont.)
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Sx X ¢

. CoQr : ‘4V' 'l.' é
in »WK/(S.,G;J)(ZQ +1) :; (2z+-1) /1%20_.

e o | “Z g

x XML A,II2Z,85Q x@” L AL I Iz, 8080 Q) .
(1.6)

. R 6 m
'~ The X coefficient is the oné defined by Fano, the Y (e#)

g . ) . l& J _
.are the usual spherical harmonics, the R are reaction matrix

SL;S'L!
4‘ elements determined by the speclfic nature of the reaction,7 and the:
‘ coeff1c1ent N is a normalization factor. If the initial syétem is a
plane—wave ‘state with momentum k', and N is taken as (2 7/k! ) » then
I(6¢) is the differential cross section (sse Appendix A) ‘“The value of
I(6¢) may be determined by the condltlon (bnplled by Egs. (l 1), (1.4) (1.5)
ei'and‘the,requlrement_that the expeetation value of a pure number is equal
o that number) |
o f o | 6 : ' 4 E ' : |
T N G e = (sFDT L o
If the initial system is unpolarized (i.s., only cxoo(S' 8'g") X0),

Eq. (1.6) reduces to
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A LS, e STTST 4
Io(ef) X, (3, 0 0) =0 573 2_5 Bsussr Ropngsip
| | (47) LL'L"L”’ 9!

' : 3 2J1-Jd-31 + 10
1[(2J t 1)(2d'+ 1)(2L + 1)(2L" +1) j (-1)

" A AA[ LL" . . é
w2 rl e el (2Are

/\' 0 X ka OVOO 251 4+ 1

AN

[z 1
'z

J1 L' J; 81 A1)
(1.8)

where for simolibity the z axis has been taken to lie along the direction

Vof the outg01ng fermlon. The 2 coefficienﬁ is the coefficient defined

8
,by Blatt and Biedenharn.

In addition to- nrocesses in whlch the initial system is represented
by a olane wave, we shall be interested in cases in which the initial

state is an incoherent mixture of.various orbital angular momentum states.

'If the probability that the reactlon is 1n1tiated in a state of orbital

angular momentum L is WL , and if there is no nreferred directlon for

"the initial system, then the ﬁ{‘c(s, eg) describing the final system

are given by
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g
T(00) o (5, 0) =

o x _Sox ’n;L S e Yo St )é
" T , . e S ST, gLMeSIL? ,
o 1+7f' 251+ 1) LL"E;«? ’ T (Lt +1) { 25 + 1

Q-L-L" |
x (i) o z@esivd;sL), - (1.9)

" where the z axis has again been taken to lie along the velocity of the
Afinal fermion. If parity is conserved, the value of Q is restricted to
'even values, This ié a conseQuence of the'following relationship

s "satisfied by the Z coefficient:

C Q4+ L"-L ,
2(QSs L J; SL) = (-1) Z(QsL" J;8L) .

By extracting from the general formula given by Eq. (1.6) the
“contributions from initial S states, one obtains the formula for the o{ 's
. that describe the final system of the decay interaction in terms of the

ég 's that describe the spin-spacavcharacteristics of the decaying particle:

: . q ' : 3 : #
s N ' 7
Uep) X, 6, o) = ) (as'+ 1) ‘-g . Ustist P ogpmgse

- o . : : u‘" .

S o, <+ LL'A .

N . Qt : i ' ' .

2 - 'Q(-x'(s')(m' + 1)% (-l)L CA'Q, .Q x(L"L A; s's'Q', 55 Q) .
Qtx! ' o AR kK - B

- : ' - - (1.10)
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The combined process of production followed by decay may be described,

. £herefore, by first using Eq. (1.6), (1.8), or (1.9) to obtain the o 's

that describe the spin state of the intermediate par’ciClé, and then using

 Eq (1.10) to obtain the é{ 's that aescrlbe the polarization and angulér

distribution of the decay products

The above fonnulas relate thevexpectation values of operators in

| “the initial and final states., It is someﬁimés convenient to éonside: the

reaction matrix itself. According to the definitions giveh in Appendix A

the matrix element <S /“ [@(Gﬁ, org’) } St /aL > , when multiplied

by (27 /x') (v/v')2, where v' and v are the *nltlal and final relative

velocities, gives the reaction (or scatterlng) amplitude /A (6¢) when

fﬁe initial state is a plane wave of unit particle density in the spin
st ' ' ‘

state ;QAA . For the case in which the 2 axis is chosen to lie along

- - the outgoing direction the GE (6@; ©'#') matrix may be exnressed in the

fofm

. e Q - Q
{2 (o 0; e g = > a (5,0 0) T,
a K
. where _
"a.Q(s 00) = '(‘I)SI.S' 2 7 “-.RJ y (8'g")
I A - L . - 7S L; S'L! L
-k (47) =7 :
& L L'LG ‘
x (2L + 1)° (2d+ 1) (-1) ¢ Ww(LJQs'; SL'Y |,
k 0k

(1.11)
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W o whers W is the Racah §-ogff;cient_.lo If the initial and final spin
| | 1 quantum r?“mbérﬂ; S' and 8 respectively, are equal then the matrices
E‘ . 'Va.re sqpare'matri_ces.' ‘Otherw'i‘se they are nonsquare, with (25' + 1) .

columng and (25 t 1) rows.
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‘ Seqtion II. Reéction Formulas for Spin 4 and Spin

Y

" where k' is the incident'relaﬁive momentum, S
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3 .
% Particles.

In this section exﬁlicit expressions'are given for the angular

digtribution and polarization parameters for reactions in.which the initial

- and final states are composed of one particle of spin O and one particle,

‘which will be termed the fermion, of spin 4 of 4. The case in which the

initial and final fermions are both spin 4 is very simple and the genefal

formﬁlas given in Section I are not particularly useful. The results for

"this case will be quoted for comparison with‘the spin % case.

For the case in which the initial and final fermions both have

spin % the Q{ matrix can be written in the completely general form

@ (x , K) : ;z~7f/k-)'% [f('e) f'g_(é)cs-;q +h(e)6'1‘( ¥ h' (o) G;LL

(2.1)

A represents the Pauli

‘spin matrix G -4, amd the vectors N and L are unit vectors in
_directions K'x K and N x K respectively. The arguments of the

~ (®  matrix have been given as K' and K’ , unit vectors along the

initial and final velocities respectively, rather than 6'@' and 6f as

.in'Section I, because the dépendence upon coordinate systems has been
" removed from the expréésion appearing on.the right. The angle 6 in
'”f'Eq,_(Z.l), and in what follows; is the,ahgle between j& and §L.~4The

- nofmalizétioh is chosen sb that the différential reaction cross section:

1h_the reaction center-of-mass frame is
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R U I P L Y LR P LI I S MO
-+ 2 Re(hf)(P'-K) + 2 Re(n'f*)(P'-L) + 2 Im(gh*)(P' L)

- 2 Tagn ™) (B K) + 2 In(hh'*)(P ) N
| | - (2.2)

_iHere the vector P' 1s the polarization vector of the incident-barticle.'

It is defined by the emuation

; %(,(1;')' = 31+ P'.T7) . - (2.3)
. “The polarization Qector P of the final pax-gicle is defined in an éxactly'
amlogous : way and 1; given by |
 ’3§(;§, K') = ,i;‘l(*xw‘, K!) iz Re(gf )N + 2 In(h'h*)N + 2 Re(fhv*)L
+ 2 Re‘(fh*);gw',;’ 2 im(éﬁ*)& t 2 im(gn'*)g + |t /2.3' |
+'l;e'-:f"?; [2erm - 2] ,{ In(? [eewn -2 ]
+/ Q' ] 2 [2(3': ‘E)H’?é'J + ,é'lm(gf*)'(gj xN) + 2 Im(hf*Xi' x K)
) + 2 Im(h'f*)_(i' x E)} 2 Re(gh*)L(g ;g)x\z %(ﬁ'_'y‘);(«]
é S o |
o + 2'a‘e(gn'*)[;(ﬁ'.';g)y(g' ML ]+ 2 Re(hh'*)[(f_' 53)5%_’_(;; -5)5”

©(2.4)
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" If parity is conserved in the reaction, either h(8) and h'(8)

T are zero or f£(8) and g(8) are zero. These two cases represent the
possibilities that the relative intrinsic parities of the two initial
 particles are the same as, or alternately are opposite to, the relative

intrinsic parities of the two final particles.

When the initial fermion is unpolarized the differential cross

~section is a function only 6f the scattering angle 6 and of the reaction

matrix elements. It will be written as I5(8). 1If only the contributions
from'final KS, P, and D partial waves are included, Expression (2.1) for

the @ matrix becomes

oy Yo 32 s/ 3 3/2.
(hqf): {ROOF - R22 - % R22 + (R11 +-2_Rll Jcos 8

3/2 . 5/2 . 3
i— 3(R,, ‘+ 5 Ry Jeos™ 8 +14 sin 8 G [—Rn + Ry,

3/2 5/2
-~ 3(Ryy - R225/ )cos 6]

: 3 3/2 3 . 3/2 5/2
+ o% [Rlo -Ry, * (R, *t2 IR21 - %1223 )cos ©
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| ;If pariby is conserved in the production and if the initial and final
“intrinsic parlties are equal to each. other then the contributions to Io(e)

‘ from flnal S, P, and D waves give

2

100 = A4S [A + Beoso + C cos® @ + D cos> @ + E cosh e_]. ,

L
o (2.6)

' 3 % ) /2 | | 2%
= 2 Re(Ry, Rll% ) - ?O.RG(R113Z2 R223/ ) -9 Re(Rllé Rzzs/ )

3 3/ | y o 3/27

t LRe(RyTR o+ Ry Py )
L . 3/2 2 o 3/2 2 oo 5/é 2
- Fe }R11 f 3 / B [ - % !R22 ‘
EIEY. BTN b 5/2
f‘65“5m~ﬂm, + %1 11 )t 9Re(Rgy” R
: 3/2 . 5/
- 3§ Re(Rzz' ‘ R22 : ) )
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e
o - 3/2 3/ 3 5/ - 3/2 _ s5/2%

D’ -  18 Re(Rll. R,, ) :f 15 Recgll R,y ) + 12 Re(Rll sy ) ,
- 52 s 32 syt

e = 2 |Ry, | A RelRyy Byt )

. The polarization vector is, under the same conditions and in terms of the same

reéction_matrix elements, given by

L2 .
f/:..__2_.sine[F+Gcose+Hcosge+K00538]§/
4 . o

(2.7)

where

3 3/ 5
Bo TR0 Bu =R Ra R b

N
-2 Im(Ryy
% 5/ 3/2  s5/aw
-3 Im(Byy Ry; =Ry Ry ),

5/2% 3/2 5/

3 2% . 'l .
& /‘ 5 3/ ) - 15 Im(R,, R

, o %
6 Im(Ry)” Ry~ - Rog” Byt R Ry,

[}
"

32 /e b s 32 s/
- -18 Im(gll ’».RZZ )f+‘1? Im(Ryy Ryp ) +3 Im(Ryy" By

oom
I

32 sym
45 Im(Ry;  Rpp / ) -

The formulas-for the case in which the relative intrinsic parities differ

are the same as the formulas given above ekcept that the numerical values

- of L', the initial orbital angular momentum, are replaced by L' 1 1, the
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,ch01ce of sign being determined by the J value and the vector-addition law
'(e.g., -Rllé-—a»R é Rll 3/2 , ete.). The above formulas
e : 12
~apply to the associated nroductlon of K particles and hyperons in plon—nucleon
0011551ons (involving unpolarized nucleons) if the spins of X particle and
hyperon are O and 4 respectively, and ;f parity is conserved in this (strong)
production reactlon. '
The form of the angular distribution and polarization of the
. reaction products of the subsequent decay of the assumed spin-i hyperon
"(intdrone spin-zero particle and one spin-% particle) may also be obtained
~ from Eqs. (2.1) -through (2.5) by dfopping the contributionslfrom all initial
" states with L 7#‘ O.. If the unit vector aiong the momentum of the
fefmion iﬁ the decay products is denoted by V and the polarization vector of

T tha initial system is denoted by Pi, the angular distribution of the decay

"products is given by

4 2
I(V) = Tf [[RO + ‘R t 2 Re(R, Rl*)ﬂlj -yJJ )
‘ (2.8)

and the polarization is

PV) = 1) .%f_ {_2 Re(R, kl”)v - 2 In(Ry B, ) (P, x V) + | R | 221
L Do v Py x V) »

+ [ry) [ 2<si~z>1-si] %
A 2 2
E 1y~ i N [2 Re(Ro By )Y - 2 In(Ry B )(Pi x D+ Ry " 4 [ B DL

- ([ ro)” - }%/“Nﬁxﬁxi] -
(2.9)
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' 2. 2 .
If we take N =1 and normalize the Ry so that [ROI + [Rl) - 1,

~ then I(V)d 2~ is the probability that the final nucleon will have its

velocity in the solid angle d.n_ about the direction v,

The case in which the initial fermion is a spin-3 particle and

" -the final fermion is a spin-% particle may be described in a form similar to

- the above. For this purpose we introduce the symbols

: -1
T(uy) = 1/5'-57-’: Ylkn(gl) L

I’ Lk
T(}&zfl‘s) = ]557—7/ Yy QG u) T,

) | y ~3
Mo s ng) = {0 TG, 0 T (2.20)

, K
- Here the 4y are arbitrary vectors and the symbol YN (Bl’ °"’,BN)

represents the function of the vectors u; that is linear in each argument,
is symmetric in all its arguments, and which becomes YNK'(6¢) when all

- set equal to . :
its arguments are/the unit vector in the direction 6f. The 02. matrix

may be expressed as the following suverposition of these T matrices:

R, k) = {2 @ran™ [gl(e) T(N) + £,(8) T(K, K) + £5(8) T(K, K)

+8,(8) T(K!, K1) + 0y(8) TMK) + hp(8) T(K!) + hy(@) TN, K) +hy(e) T(H, K[ .

(2.11)
The explicit form of the g4 and hy when only:S— and P-wave final states
contribute is given in Table I. The normalization factors in Eg, (2.11)
have been chosen so that the differential reaction cross sedtion for the

case of an unpolarized initial fermion is
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N 2 2
IO(G) = ‘:ZIJ ( { 84 t + l hy \ )+ 2 Re(hl hz*)cos 8 i{ % Ee(h3 hA%)cos 8

+ 2 Re(g, gB*)cos 6 +2 Re(gs gh*)cos 8+ Re(g, gh*)(B cos? 8~ 1)

4,

2 . 2
- JhBI ¥ lhl‘l +Bm29 )gB\ (2.12)

If.parity is conserved in the reaction then the hi(e) will be zero for the
case in which the relative intrihsic parity of the initial partiéles is the
same as that of the final particles; the gi(e)~ will be zero.if these relative
intrinsic parifies are opposite,

If parity is conserved in the interaction and the initial fefmion
is unpolariged, the density'matrix describing the épin of the final particle |

must be of the form
UE, kD) = &+ b(0) T(N) + c(8) T(KK) + ¢'(8) T(KK') + ¢"(8) T(K'K!)
+-d(8) T(grg(l+ d'(e) T’(gxfg + d"(8) T(EK_:K:) .
| (2.13)

The coefficients in this expression as functions of the g;(8) and hi(e);
¥ are given in Table II. When only S and P final states contribute, the
differential reaction cross section reduces to the form

. 2 - ) ) ’
Ik, k') = A LA' + B' cos @ + C' cos e] , (2.14)
w2 "y |

where, for the case in which the relative intrinsic parities of the initial

and final states are the same,



g, ()

8,(8) .

g5(8)
8,(8)
}hl(e)

ny(0)

h3(8)

h,,(6)

o

J—‘l :r!
AN = -
Sl Bt
t w
o
w
N
1
Om
o
w e
~
N - .
e
' -
H
N N
)
e
.N .
P
w \m
N
0 =
’—’
o W
o W
[ ~.
N
@ | S
L‘—‘M

3 3/2 5/2
1 2
o [Rlo tE1% By + 342 Ry
- 2 — . 3/2
2 .2 & ¥ -3 /2 & / cos 8 - 2
W 1< Tov 315 "1z ]
=1 3/2 = 5/2
1 - 2 2
27 Z i3 z R12 + i 75 R12 ] sin 6
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TABLE II

» o | o ' e *
b‘9> = IO (8) g Z—i?;?e{%(hlhB*fﬁ b2hh*) = 2(8182*'+ glgh*%] '~;%§L Im(hlh2 )sin

+ 1l  Re [B(hlhh*-{- h2h3*) -2 glgB*.J cos 6

o5

- 9

(051
Y

? Im(2 g2g3 +2 ngA +h3h1+ + 4L gzgh cos 9)sm ej

B R R Y P A T TR SIS

F (2 sin 8)™" In(gyg3*+ byhy” - 2 hohy")
(2 oin® X gy |24 2 [0, D) -2 R'e(g2g3*)cos o

, cos 8 Im(gg - 1 hyha®) + 3 €05 8 Re(hqn,™)
+3m9 182 A13 %smg 3

N ‘-2‘
prome |y

sin ©
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TABLE II (Cont.)

c'(8) = I, (8) {-g Re(gags” + €38, + 2hphy + 2 hah)®)

-1 ey ' 2
+ (sin ©) 1'Im(glg,f - glgg*‘f $ hhy - 3 hzha*) t% 53‘ cos 8

-3 Re(gzga ) cos @ + % :zs g Im(h2h3 - hlhh )
n

- Caf®r 3 n] e 20~

- 308298 Re(han®) |
—--—-2— L
2 sin* @ >
2 2 2

-3 e - | ny

' . - . ' , -1 2
+ (2 sin 0)™" In(2 hyh,* - gray” - hohg”) + (2 sin® 0)71( [ gy] 4 %[h3j

-3 Re(g3gh )cos B + 089 1Im(3 hghh - glgh *)

sin e
43 cos® Re(hth{').+ 3 cos? § ) LY }2 ]
L sife 8 sin’e
Ca(e) = - 2 Relge,’ #hyhg®) - 2 In {j(qin e) hahy*
' e T

- gng‘ sin G]
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TABLE II (Cont.)

- ~2; Re(gy83" + hyh,” + hohg®)

3 cos 8 ¥ *
+ f=5=1 Im(m h3h14 + 808, | sin 6>

- -3 Re(gsg * + hoh Y = 3 Im (sin e)'l h3hh*
= ,_14 b 275 [

- ngl&* sin 9] .
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L e B2 3/2 2 3/2 2 5/2 . 2
LA | Rp® | + 2[Ry, |+ &Ry I +%IRD N
/7 b 3/ - 5/2*
Ff5-ReBy Ry ) 43 7-—2—- JURE NN
3 /g - 3/2 5/2%
T 5 76 Re(Rll R13 )
., 3/2% 32 32
B! = - zf?.Re(Rn% Roz . * -[%" Re(Ryy  Rop / )
+6 {8 Rer’ RS/?'*)
13 e(Roy  Fy3 ’
3/2 2 5/2, 2 57 3 3/2*
. 12 8 g 2
e 5/2% o 2 s
-9 Y% Re(Rué Ris / ) + %7‘6 Re(Ry; R135/2 )

(2.15)

When the contribution of the P final state is ruch smaller than that of
the S final state, the parameters in Eq. (2.13) are given in terms of
theée same reaction matrix elements by

_j{f sin © C{l ‘, ,

l& :

H

1,(8) b(6)

I4(8) ¢(8)

H
. o
-
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To(8) e'(8) = %L {2“3f%%f’
2 .
Ip(®) c"(8) = 0 50{2-50089 °{3} ’
Ip(6) a(8) = O ,
14(0) a1(e) = 0 ,
IO(Q) 4‘-’!"(9) ot —ﬁ— 551’1 6 <><5E ’
' 4
_ (2.16)
where the ..<><i ére . | ‘
b 3/2 3/2 _ 3/2% o 3/2 s/2
.0(1 = Iml [’]% "1 'Rozl + %Rn 02 + ‘;2]% Roz 13 ]
. P
] 3/2
L
o m~ o 3/2 5/2% - 3/2 3/2*]
. - R & !—6. k. .. : -—6-— R )
X3 = ?.[5 5 “o2 CO T 0z
| : -,' 3 3/2% p 3/2  3/2° 5 [g'_ 3/2 5/2"
Ny = R [{2 fn R 7 5% Fi Rz "5 75 P Fas
(1 o 3/2. 32 , v 32 st
= Im [‘15&3 Ry Ry - 2 76 By B3

(2.17)
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The case in which the iniiial and.finaliintrinsic parities are different is
described by these same formulas modified by the substitutions described
below Eq. (2.7). - |

The expressions given above may be applied to the associated
production of hypefons and K p%rticles in pion-nucleon collisions if the
K particleiand hyperons are spin O and spin 3/2 respectively.: In the
subsequent decay of this hyperon into a pion plﬁs nucleon, each term in the
hyperon density matrix 71,(§3 EL) 5' QX'H gives a characteristic angular
distribution and also a characteristic angular dependence for the
polarization of the final nucleon. In order'to eihibit_the angular dependences

in a convenient way we first express QAH in its most general form,

c > 7 i ' i -.
Uy = b + 2o 7y Tt + 2, 7,3 TQQJ:L‘BJ)
+ Z\k 'r 'r(u.h , u5 , k) .  (218)

n ’ . .
In this formula the ALy are vectors that are to be selected in & way

that gives the desired form of QA . For example we obtain the fqrﬁ of

1 1 1 o

Uy siven in Eq. (2. 13) by the choice Yoz X ouy o K oo '§9
2

K, u 2 = XK', etc. The angular distribution of the decay products

a2 = 2 Y3

is given in terms of the general varameters introduced in Iq. (2.18) by
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%(’ [® }2‘+«» E }2) t £ 5_'é Tli(ui~v)z; Re(RjR,")
- Zj ?21 [3(}513‘3)(“ V) - (u u )] (Rl t !R?.U

k _ k | k
-2 st T3 [5<31k 1) (1 1) (257) = () ) (g )

- Qék'f) (},‘.zk‘-‘ilk) - (Bsk“l,) (}Elkl'!&zk)] 6 Re(RqRy") j

. (2.19)
The polarization wvector of the nucleon in the final state is given by

2

. I(V)P = (z.w’)':L Ez'ae(xl R;)L

P

E g [ 7 D

2 | |
FaClr |- Ry x f x W)

- 8 In(Ry Ry )(ul x V)]

M

J i | )
/‘Vz -2 Re(R, R;f') L3(B,13'Y)(‘~*2-‘1'Q - (313'323)] L

<7 - k 2 2,
- \*‘k 52 T 5(( IRy |7+ |R, '_ NSRS
PR 17 - Ry OLx e - 2 maly R0 x|

. (s’(}gz"b-@f@ - 3(32-33>] + sy H

(2.20)
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The symbol Sym. in the above line represents the sum of the two terms

fneeaed to symmetrize the contents of the braces.

The expressions given above.apply to the production of hyperons in
pion-nucleon collisions. Under the conditions stated in Section I the

density matrix of the hyperon produced by K—partiéle absorption from -

. 'low-lying orbits may be obtained from Eq. (1.9). If ﬁarity is conserved

in the vroduction process the form of this'density matrix is pafticularly

"simple, Of the coefficients that appear in Fq. (2.13) only c¢(8) is

‘Adiffereht from zero. The coefficient <¢(8), which is in this case

independént of 6, completely determines the decay angular distribution.

- According to Eqs. (2.13) and (2.19), this angular distribution is given

by

I{X}_ = _(h7f)-; ( l R ,2 +.f R, )2) ljl - ¢(8)(3 cos & - l)} ,
| | (2.21)

where (H; is the angle‘bétween V and K as measured in the decay
center-of-mass frame. When the K particle is captured from S and P

states oniy, ¢(8) has the form

. -1 '
c(8) = ’%(U-)l WO + ) wl) (C'Jl WO + UJB wl) ’ (2.22)

where for the case in which the initial and final intrinsic parities are

the same we have

4
oy = ‘Rzo'[ ’
w, = %/Rné/2+ %(/5113/2/2 f“313/2£2) |
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, | 372 2
wy = 5By 1 +%("R31 l - !Rn [ )

(2.23a)

and for the caée in which the relative intrinsic parities are different we

- have

. i2
Wy = \ Rloé ) >
y 2 a2 2
I RS LN I e
“Ws. = % ’ Rzléi e gBe(BolB/z' P‘213/'2*<)

(2.23b)
The polarization of the final nucleon is independent of c¢(6) and is given
by '

) ‘: 2 Re(Ry R,V ( | R | S ) RZ‘

Lk od

2 =1
) (2.24)
If parity is conserved in the decay either Rl or Rz must vanish.'AThe

- polarization of the final nucleon must, therefore, also be zero unless

parity is violated in either the decay or production process,
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_Section III. Discussion

In this section the angular correlatlon between the directions
defined by the production and decay events is discussed. We consider
specifiéally the associated production in a pion—nueieon collisfon of a

}spin—zero X particle with a hyneron of spin 4 or spin %, and the
. subsequent decay of the hyperon into a. pion—nucleon system. If the ‘
| hyperon has spin é the production-decay process is described by Egs.. (2.1)
‘ through (2.9). If parity is. conserved in the production process and the
initial fermion isvunpolarized, then the deviation frbm iéotropy in the
angular distr%bution of the decay products is proportional to ,ﬁfib as is
shown by Egs. (2.8) and (2.4). The amplitude of phis term ﬁust be zero -
if parity is conserved in the decay, since parity cohservation would.
require either. Ry or Ry to vanish. The occﬁrrencé, experiméntally,
of this t;rm would constitute proof that parity is violated in the décay~
process.ll Parity nonconservation in the decay précessvcan also be
demonstrated by experiments measuring the polarization of the final
nucleon. From Eg. (2.9) one sees that when ’KJ is in the'production
plane the I&ngitudinal (prover) polarization is eéualhto 2 Re(RO-Rl*)/,
( l Rb /2 + / Rl[ 2). The occurrence of this polarization would imply
a parity violation. The magnitude of this effect does not depend upon
the unknown amount of polarizaiion of the hyperon as doe; the above-
mentioned magnitude of the asymmetry in the angular distribution. This
could be imﬁortanﬁ if the hyperon polarization were small, If, on ﬁhe
other hand, the hyperon polarization is large we see from Egs. (2.9) and
(2.8) that the values of RO' and Ry can be determined up to an

over-all phase by the knowledge of the nucleon angzular distribution and
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' _'polarization.' These coefficients Ry and Ry .- provide the compléte
phenomenélogical characterization of the decay process; their values give
-all thé information that can be deduced froﬁx .the exb;rmental stuciy of
th.e process. |

The measurement of the final polarization alsq permits a direct
_test of invariance under time revex;sal. The term in Eq. (2.9) vt’nat is
proportional to Im(RO Rl*) wiil be zero in so far» as the decay can be
- considered to be first order in the weak interaction, and invariant under
time reversal, ;;rovi'ded final-state interactions can be ignored. The
“inclusion of the final-state interactions changes this condit,ion somewhat .
Fol.;' the case . " —— N + 77~ the upper limit on the absolute magnitude
~of the component of polarization along Py x V for the case in which V
liés iq the plane of production, is ’ sin( SP - és) § . The -ép '
. and JSS are the J - & , isotopic spi'n% phase 'shifts of the pion- |
nucleon system. A similar limit may Se obtained for the cases in which
" both isotopic spin states are involved,
If the hyperon is épin %, the correlation between the directions
~ defined by the production process and those of the decay process are-
given by Egs. gz.n) through (2.20). At ,sroduction threshold, where only
the S waves of the final st‘ate contributé, the angular distribution for
the production is isotrovic and the angular distribution of ths decay
products in the decay center-of-mass frame is of the form (3 cos” @/"f' 1),
where @I is the angle, measured in the dsecay center-of-mass frame,
between the direction of the incident nucleon in the production process
and the outgoing nucleon{of the decay process. This may be compared to_

t.h-e' case discussed by Treiman12 in which it was the initial state of the
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production process that was an S staté. In that casé the angular

“distribution of the decayApioducts was of the form (3 cosz(ﬂ) + 1),
where QD labels the anglé between the hyperon velocity and the

“velocity of the final mucleon. For this limit in which only S waves

are produced there will be no asymmetry with respect to the normal po

the plane of production. At somewhat higher:energies, where ﬁhe
ih?erference between the final S ‘and P waves becomes impdrtant,_the
hyperon density matrix will contain noﬁvanishiﬁg contributions proportional
to T(N), T(K, K'), T(K', K'), and T(N,K',K'). The form of the decay
anguiaf distribution associzted with each of thesé terms may be obtained
from Eg. (2.19). From the T{ﬁ) term one obtains a contribution

proportional to cos QDN, where CBBN is the angle between the normal

to the production plane and the direction of the nucleon from the decay}

This termbis analogous to the one that appeafed'when the hyperon was
considered to be spin é, and it must venish if parity is conserved in the
deééy process. The contribution from the _T(§; El, 5}) term will also
be nonzero only if parity is violated in the decay. The angular |

distribution associated with this term is obtained from the 753 '
1 - T '

.
e e E

. L / - .
It is of the form cos (B [ 5 coaz_ & - IJ . This gives an asymmetry

with respect to the normal to the nroduction plane that is gréateét for

particles that decay in the plane defined by the vectors N and K!

and which reaches a maximum when Q&%ﬁ ~ 53,99, The maximum asymmetry

‘from the ‘T(g) term occurs, of course, at Qﬁm = 0.

In addition to these terms, which reveal parity violations;

there is another new term in the angular distribution. This one is a
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. consequence -of the T{g,&:) contribution to the hyperon-density @atrix.

According to Eq. (2.19), the angular distribution characteristic of this

term is [3 cos @ cos (Y - cos 6] . Each of thsse terms will also

‘;givé’its characteristic contribution to the polafization of the final
"nucleon. The form of these contributions is given by Eq. (2.20). At
higher energies, where all the tenms‘in.the general'form of the hyperén;

- density matrix given in Eq. (2.13) contriﬁute, three additional terms
may enter in the decay angular distribution. Two are present only'if
parity is violated, aﬁd have the forms cos ®N [5 cos @ cos (dj’ -~ coSs 9_] -_
and- cos @'N [5 cos? @ - 1] . The other has the form (3 cos? ® - 1).
| We conclude ihis seétion'with.a few remarks. First, the contributidns 
to the decay angular distribution thatuare present when papity is not
violated give no information about the decay ﬁeqhanism except, its:ﬁotal ,
strength. They are propértiénal to.'(?/ RO'[z +‘ / ng ?) for the
spin-34 case and to ( "Rl ’2‘+~ I R, I2). for the spin-% case. This
form does nbt allow the contributions-frém the two final anguiar-moﬁentﬁm
stateé to be distinguished. For the same reason, however, these terms
give information about the production process that is independent ofvthe
detaileq nature of the decay reaction, and their measurement provides
information useful in the Study'of‘the strong reactlons. Second, if,

"in the decay angular distribution ﬁhere shouid occur a term thatvis |
asymnetrical with respect to ény direction that lies in the plane of
prodpction, then parity must be viglated both in thé decay and in the
pfqduction. It is assumed here that the strange particles are single
particles--not parity doublets. Third, it is of interest to determine

whether the intrinsic parity of the K-hyperon system is the same as the
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intrinéic parity of the'pion—nﬁclebn system;- In_Qiéﬁ of the great
‘dissimiiarit§ in the_fonms o£ the G{l‘matrices in ghese ﬁwo cases

>:(éée Eqé. (2.5) and (2.11)), it might be thought that the cérreiations'

‘near threshold between the various angular distriﬁutions and'polarizations
' ,wotld depend upon théirelétivé intrinsic parities. However, no information.
' abéut‘the relative intrinsic périties of the two systems can be obtained
.frqm the analysis of the angular distfibutiohs,aﬁa volarizations discussed
* in this paper unless assumptipnsvare maﬁe regafding the relativé maénitudes
of the confributibns from.varioﬁa initial'angulér-moméntum staté;vin the
prdductionjprocess. This is a consequence of:tﬁe close similarity, wﬁich
i1s discussed below ‘Eg. (2.7), of the forﬁmlés that describe the two

alternative possibilities,
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Section IV. FRelativistic Corrections

| Although the'expressions'given above are nonrelativistic in form
' théy may, if properly iﬁterpfeted, be arplied to relativisﬁic problems.,
Tﬁe fundamental idea is to apply_ﬁhe fofmulés to the propsr polarizétionl3
of tﬁe fennions./ The ﬁroper polarization is the polarization as observed
in the rest frame of the particle, and it may be described by the
nonrelativistic operators. If ihe covariant reaction matrix is multiplied
by appropriate Lorentz transformations it acts directly upon the operators
describing the.iﬁitigl co#ariant prover polarization to give the final‘
.»cdvériant vroper polarization., Specifically, if the reactibn is treated
in the center-of-mass fréme, ﬁhe reaction operator - Q% p that directly

relates the initial and final prover polarizations.is given in terms of.

“the usual covariant reaction matrix Qz'r by the equation
| N -1,
R e k) = L0 Rk, kOLTR

 §here L(k) is a Lorentz transformationvthai transforms spinors from
their values in a frame in thch the center of mass (of the reaction)
is at rest to their values in a rest frame of the final particle whose
four-momentum is k; the transformation L(k') is defined in the same
way but relative to the initial particle. The part of the matrix Gap
that describes the transitions between initial and final states having
energles df a well-defined masznitude and sign is a reduced matrix of the
nonrelativistic form.- Moreover, if the Lorentz transformations L(k)

and L(k') are chosen to be pure timelike >

transformations, then the
veéctors and spin matrices that anpear in the reduced 6% matrix -

‘transform under spatial rotations in the usual nonrelativistic manner.
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The.nonrelativistic reaction matrix and density matrix of the
’3 earlier sections may therefore be identified with the reduced part of
: (ij- and the proper density matrix respectively. 16

| If the center-of-mass frame, of the reaction is not identical
with the. laboratory frame then there is an ambiguity in the definition
of the proper polarlzatlon. The correspondence described above between
v phe:relaiivistic and the nonrelativistic formulations is valid specificaily
in the center-of-mass frame, and the componemnts of proper polarization
'réfer to those rest framés of the initial and final particles that are
' felated to the center-of-mass frame by the transformations L(k!') or.
L(k)..:In the usual definition of proper -polarization the rest frame of
the.particle is taken to Be one generated by the}éction upoﬁ the laboratory
,fréme of a pure time;ika Lorentz transformation. In order to obtain the
usual'préper polarizations froﬁ'thése ﬁroper polarizations apneéring in |
Our-ﬁonrelativistic expressions, the vectors describing the proper
Tpolafizatioﬂs ih the latter formalism must be transformed by the seqguence
of ﬁransformations that takes them first to the center-of-mass framé,
.thén»to;the laboratory f}gﬁe, and then to the usual rest frame. Thié
.éequence'of transformatiops is SQUiQalent to‘a pure rotation. If the
center-of-mass frame is the one generaied from the laboratorﬁ'frame by
a pure timelike Lorentz transformation, then the sequence of the three .
pure timelike transfofmations broduce§ a rotation of the vectors descriﬁing
thé proper polarization by an amount specified in Eq. (48) of Reference 16.17

A detailed treatment of the Dirac-particle case is given in that paper.
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Appendix A: Notation

The formal manipulationé are most easily represented in the

" notation of Dira.or.:]‘8 and Condon and Short.ley.m‘ The symbol

S5t TLn! 815
is the Kronecker delta and . € 1s the Clebsch-Gordan coeffﬁi.cien‘c,.l+ The

. expansion theorems are then repre'sentéd by the equation

j?} ;/}“><§1[{> 5 {Ln

3

where gl and. ';"' represent either set of the four parameters given
' P

‘- above and a summation over indices that appear twice is implied. The

ket / S/;ALm > will, in this appendix,_zo represent the state with spin

" _ _ n
. function 1/, and space wave function (2kv é)YL (8¢)1L Jp(kr), where

YLm(6¢) is the usual sphericél harmonic® and jL(kr) is the usual

spherical Bessel function.h We consider the energy as well defined;
k and v are the corresponding momentum and velocity (both for the
reduced relative motion). With this normalization ‘the outgoing flux

density (number of particles per unit time ';lje-r unit solid angle) of

‘ - PYR:
particles in the spin state ,%/“ that move in the direction of is

1(5,'/;, 6’f¢.) = ' YLm(eys) < s/uL m f > '{»2, where <s/uL m [>

is the amplitude of the state ' S L m-) . It is convenient to

| define  ( g | Lm) = Y, (o). Then

1]

f<egfiny s MuLm ]>‘2
[Coper DI

(spod>Coped [ o
A <@.(s‘/_«,e¢)> . , (h.2)

1]
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‘Here we have used the:definitions

‘s/ueg!> z lS/ALm><Lm{9¢> (4.3)

and , '
P s 1pyCy s
The dot before <?<" ' signifies that the sum over the repeated index |
E' is not to be Deri‘or’med The operator 6)( ? ) will be referred
to as the nrojection operator for the state labeled by the indices ? ',

‘where E ' may now represent the sets of parameters } SLJM > ,

1 S‘/IA L m> , or ' 5§ ja8 ¢> For the discrete parameters,

<@( § )> - (A.5)

‘is the orobability that the gsystem will be found in the 9tate labeled

I( r;.')

(]}

. by 5('." '. With our normalization it is also ‘the outgoing flux in this
/

s;t'ate_.' The total outgoin_g flux density ‘(i,,.'e., summed over spin states)

in the direction 6f is

| <L Cs pr0m

«2—5-,/& [ Sﬁe‘¢>'<8#9¢‘J>
([los><onl ]y

(Peny . < o

The projectien operatdf's G) ( E ') defined above are therefore of

1(eg)

(4]}

11

"
fundamental significance; their expectation values f ( v )> are

interoretable as Drobabilities and flux densities in the manner just
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described.. The expectation value of en arbitrary spin-space operatoi' A,

if the measurement is made in the beam 'emei'ging in the direction 6f, is
NI IZGGHC DA | (4.7)

The physicall_w," meaeur_ed quantities are therefore directly related to
expectation 'vaiues of the form <@ (eg)A > .

| In the above we have vconsidered systems represented by pure states.
In the treetment of p’olarizaiion.phenomena it is necessary to consider
s‘tat’ietical’ mixtures of states. Statistical mixtures are conveniently

described by a deoeiﬁy matrix [& ,'2_‘which is defined_by. the equation
: - s -

wae 2 (y e b

KE e ey s e

' 'where"-'(& > is the exnectation va.lue of the az‘bitrary operator CL .

AN
&
g

L The dynamics of the reactions that. we consider may be renresented
by an operator »J defined by | vLi./f ,:: J ’ (7D1> . Here

‘ \}/i>  and | ‘7Df>  are eigensiatee of an unperturbed problem

| and represent the eyetem before and after the mteraction, respectively

The effecte of the reaction are contained in the difference of these

states,

(A.9)

If the density matrix that describes the initial state is @4, then the

density matrix for t.he reaction products 1321

._ l\,)/r> ___-. l\})f> - \f/i> - (.j- 1) ' \,Ui> 5 .(..i)@ \ L}/i> .

&

EA E‘L
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where the bar denotes Hermitian conjugate.
The density matrix that represents a plane wave normalized to unit

flux density and moving in the direction (6'@') is, with our normalization

"conventions, represented by
o, = @7 @(e 9 UG'E) (A1)

where ANB'E') is a*spin-Spgce‘(density) matrix with unit trace that
descr;beé ﬁhe spin-space characteristics--polarization in the general
.sense--of'thé éystem. If the initiél'System is a ﬁlane wave moving in
the direction é'¢' with spin characteristics described by A , then the
expectation value in the final state of the operator Q? (6g)A is,

A according to (A 8),. (A. 10), and (A ll),

{Cema > - A(zﬂ/k")z Sp G’(e¢)A.@ Cergny Ucosy R .
| | . (A.12)

Since with the assumption of rotational.invériance' J 1is a constant of
the motion, it’is-convenient to express the spur in the J representation.

Thus we write
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_.-z;o;
V'VSp.G’ ;e¢)A‘ R @(esﬂ) %(e'é' &
: <Sn Lgl 5 kn'{-:ab'-.(ggj)A 115 von S{stan [{}s L M'>
x (s’ L'_"J"»;'j\'@_ (6'¢") Uo'g) | s L JM> o
. | <s”? L"‘J,!‘lM'll } @ | s" 1" q" 'M“>' ‘

.: < S//'/ L///Jn M" ’@(ggj)ﬁls LJ M> H;L;S'L'

"

| <S' L't IHM }@ (9'¢')?¢((6'¢‘)‘ S‘.’“ LI'IIJ" u" > gg,,, L“‘l o 1

.$S'L
_ | (A.13)
Here we have used the fact tﬁat AG{ is diagonal in J and ¥ and |
independent of M 22‘t6 justify the abbra#iationzB.
' ' | o d .
: g - SR SRR VY | . - .
<SLJM [R ] s'1'y MO Ry Sys0 O
(A.14)

Since the matrices A and ?A(e¢) are équare matrices we have S" = S

4

and 8" =5'; S' and S are the initial and final spin quantum
numbers, which we assumé to be fixed. The matrices A and 2 (6¢) .

2 : 4 Q ‘
may be expanded in terms of the basis matrices ?R;. It is sufficient
to consider the A to be the various possible 32, Using Eq. (A.13)
we obtain, by performing the sums over the magnetic quantum numbers, for

the quantity
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'NSp@(esé)T ﬁf’(eﬂ)‘u(em@

“the express’ion on the right"—-hahd side of Eq. (1.6). If N dis set equal

: 2 .
to (2’/f/kin) , then Egqs. (A.12) and (1.6) give

. | . iq | | |
| o) T V) = 1(6ef) s, of) , 1
'<@(¢>~ L) = (o) o, ¢). | (4.15)
~ ‘from which one 'obtaina'from'Ec';s.‘ '(l.h) and 1.7)

<@ (e¢)-"> B 1<e¢)'. :

This Juatifies the interpretation of I1(eg) that was given in the text
‘.1.,._'(see also Eq. (4.6)). .

For processes in which the initial system is not. represented by
K:! plane wave, a different -pi ;s used. To represent processes .t,hat
) are im.tiated from an incoheren‘o mixture of orbit,al angular momentum

statea t.he anpronriate Pi is

f‘i . ZLm WL @(L n) ’.

f .where Q) (L m) = ‘L m > < Lm [ is the projection operator for
| _the. state ILF > and WL " | is the proba_bilit.y that the reaction initiates
'from the state . ) Ln >

The spins S. and S' may be considered fixed in many problems.

' : J
The reaction coefficients R are, in these cases, abbreviated

; SL3SIL!
R
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For the decayfprocessfthe férmalism is again changed only by a
' change of the incident density matrix. Sincé'ﬁhere is no orbital paftv
4of the:state of thq'incident particle, the density matrix Pj_'becomes
simply.ﬁbl. Then J = J"'g 5' and the indices"L”A and L' vdrép out.
' The reacﬁion'coefficients_mayAtherefore be abbreviated as R;. This
:aSbreviation suffices to distiﬁgﬁiah the reéction coefficients (i.e.,
" the »R's) of the deéay process from those of the production prgcess;

It is sometimes convenient to consider the reaction matrix explicitly.

That is, Eq. (A.13) may be expressed in theform

sp @ ('9¢) A R (e'g") U 8'8") Q-i

sprm <o (AR 1o (el [ Ul Rlspind

| ?r-(S/Aeré [ B fe'ay-Co's [ U e8) Rfspep>,
_ | ' - , ‘ - | - (4.16)
where the‘symbo1 ‘Tf means a trace oven the Spin'varigbies. (The -
:'sjmbol Sﬁ is a diégonél sﬁm'b?er both spiﬁ and orbitai variables.)
The»Operatoré A and aA_(S'ﬁi)..are mﬁtrices with respect tq the'spin
variables aloﬁe; and are sqglaréfwith’raspect to the orbital part of

space, Thus the above ungtioh reduces to

sp @ (ep)a @@('6'93,')%((9"9!') ®

= tr A K (eg; ,9'¢')?¢L(e"¢')®.(v9'¢'; of) ,
| | T R (A.17)
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‘where we have defined the spin-space reﬁction'operator
Regs 0'g') = Lep |R [o'g > . (A.18)

.This énin;ahace reéotion operator is.a matrix_betweén the initial and
final spin spaces. If 8'75 S' the matrix is nonsquare. It mayAbe
.expanded in terms of the ?g défiﬁed'in the text, wﬁich'are glso
Vnonsquare if S‘f s'. 'The_matrig elements of 6i(6¢; e'g") are,

- according to Eq. (A.18),
<6¢[Lm>< S/.ALm! s"L"Jx»><s"L"JM | R | sy J'M>

x<'SmL'J ' ]s/u L'm'>< Lo [e'gf'>

n std g SLE w
- R Y )
’ (A.19)

Using the propertles of the Racah and Clebsch-Gordan coefficients we can

 reduce this to the form given in Eq (1 21) of the text.
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’Apgéndix B' Initial- and Final-State Interactions, Time Revereal and

'Space-Time Inver31on.

The: matrix elementv RSL S'L' was defined in Appendix A as
A< S L J M- ] G{ I S' L' Jd M‘> , where the basis vector SLJ M;>
‘'was the vector rep:esenting the wave function -

4, L SL. s o
(2kv™2) 1 3 (,kr.)A(}).v m I (eg) %A . This definition is appropriate if

the unperturbed Hamiltonian Ho, is the free-particle Hamiltonian. If Ho
is a more general unperturbed Haﬁiltbhian, the basis vectors should be
defined as eigenstates of this new H,. Consider the ggneralization to

é case in which H, again commutes withlthe orbital angular momentum
operator but may be identified with the free-field ﬁamiltonian only at
iarge radial distances. A definition of [ SL J M >; that is suitable )
in this case is obtained by replacing in the above definition the

spherical Besael function jL(kr) by f (kr), a real 2k soluplon of the .
(new) unperturbed radial equation for the eigenvalue L. The normalization
of fL(kr) will be chosen so that at large r 4t approachss

(kr).:L sin(kr - (v L/Z) + SD The outgoing part of the asymptotic

wave function in the spin state ;{L is then given by

: - RV |
.(irvé) 1 exp ikr e L YLm(GQ) <\S /AL m 1‘>

tH

(irv%) expikre ‘_L<e¢.;}.x,lm><s/uLm. 1>

Kiﬁrﬁ)'l exp ikr (9?’ [Lm ><S/’“~'L " /veigL.‘ >

(irvé) exp 1kr <spe¢[ 1érl‘/> )
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where in thé last line 31‘ is considersd to be an operator (i.e., in
Dirac::'xjxot,atiqn SL l L' > z l LY m > SL' ). The operator
wﬁoée expectation value is the total outgoing flux density becomes,

’ -iéL . +15L
.. therefore, e =~ (¥ (6g) o , where the prime on

@'(Gﬁ) é f og >>x<a¢ ! signifies that the‘basis vectors represent
the states whose wa&e functions ‘have the radial dependence fL(kr);
Similarly the form of the incident-density matrix depénds upon whether
the basis vectorsvrepfeseﬁt stapes with wave functions having the radial .
.‘ devendence fL(kr) or ji(kr). In bﬁrticular the density matrix

"represénting'an incident prlane wave of unit flux,density moving in the

: - R , 2 &y - -i8p ,

. direction 8¢ fs 0, =(27/k') e T @'(e'g') e We'g') .-
" In this reprééenﬁation, where the basis.veotors are eigenstates of the
'Afgﬁhgraliged Hys the matrix element v<\S.L J M 1 di'{ S'4L' J M >{‘ is

.denoted byb R'J ; The effect‘éf the initial- and final-state

SL;S'L!

= | J. -
interactions is to rsplace R "in the formulas obtained with the
_ R , SL3iS'L! 4'¢ 5 1S 3
fréefparﬁicle Hamiltonian .Hé bf‘ e L R'Sijs'L' A

e . . Thus,
for the case in which the unpsrturbed Hamiltonian includes initial- and

final-state interactions, the unpriméd'quantities RSL-S'L' that appear
ST H
" in the various equations in the main body of the text should be interpreted
' -4 SL J 18 : : :
L'
as e - R e .

: 'SL;S'L' _
The requirement of invariance under time reversal imboses certain
conditions upon the R'SL;S'i' . .Thg fundamental consquence of this -
requirement is the equality of a matrix element of the »cf matrix and
the‘transposgd matrix element betweehvtime-iﬁverse states., The time

inverse of the state represented by } SMLM >{ is the state represented
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S-pﬁL~m B . S ~pr '
by (-1) ' (s -y L —m> ‘The factor (~1) _ is vart

-m
of the definition of time reversal for a spin state ‘5 The (-l)

2

éomea‘from thelcomplex Qonjugation‘of the space ‘part of the wave function.
'AFfom the pfoperties of-£he Clebsch-Gordan goeffiéienﬁs thé states
réxﬁaresbe_nted by- ’ SLJ Mv‘> = | I S/x.tm> 4 SA-/'(AL'm [sLJ M> ~ have
aé ﬁheir time inverses the states (-I)J‘.M | s L J - M/>‘. One then

tJ "R'J

SL SIL = SIL1;SL The same

readilj obtains the symmetry relation

‘relatlonsh;p is trug'fbr' RSL i
A second cohsequence of time-reversal invariance is obtained if
the reaction is considered to be first-order in the interaction termf In

virtue of its unitarity thef,.zf mat rix may be gxpressqd’as

]

<j2.: (L - _%_ /{ JJ)(l + _%_71 )fl, whére M is_a-Hermitian operator.

To first order in /{ we have @i = '1('Qf,~ 1) = c © . To this order

‘the G{_ operator is Hermitian, and its matrix elements ng S1pt are
' ' Jd
‘real, owing to the symmetry property. The. RSL T though symmetric,

are not real in general.

| For theAcpﬁsideration of the consequenceé of invariénce uﬁder the
'p:oducf of time reversal and space inversion, it is convenient to remove
the factor of iL in the'definition 6fAthe baéis vectors., Then the

'space-time inverse of the state represented by f S/ul,nn> is

S - fu+L m

e(-l) , 8, - ',. , -n{> where e 1is the intrinaic parity

of the state--the product of the 1ntrinsic'pariﬁies of the glementary

particles that are represented»in'the state. The reaction matrix elements-

NJ

.‘in this representation will bYe denoted bj RSL S

. If the interaction
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is.invariant'under ép&ce;fimé inversion‘these matrix elements satisfy the

: symmetry proper%y Rgi S'Lf.\z éiﬁ ﬁg{L'~SL e, yhere e' and e are

the intrinsic parities of the 1n1tial state and the final state resbectively.
If the reaction is considered'only to. flrst order in the interaction, the
Hermiticity of the G{ matrix together with the above symmetry property,
gives the reality condition

J . _
" o ot .
bl e R .

SL-S‘L' - ¢ SL S'L')
~ When eXpressed in terms of the amplltudes of the basis vectors
just introduced, the observable quantities must be represented bv new

- functions. Arguments’analogous pO'the ones USed in the case of &ime

reversal lead now to the identification

J
. . ]
Rpzsrr ¥ exp i S Z':‘ ) Rgz. jS1LY o 15y, - "7',/51"" )
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(Cont.) |
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