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ABSTRACT OF THE DISSERTATION

Discrete Methods for the Estimation of Nonlinear Economic Models
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Professor Allan Timmermann, Co-Chair

Economists increasingly use nonlinear methods to confront their theories with

data. The switch from linear to nonlinear methods is driven, in part, by increased

computing power, but also by a desire to understand economic phenomena that cannot

easily be captured by linear models. My research is informed by questions at the

intersection of macroeconomics and finance that cannot be addressed with standard

methods.

Existing methods for estimating nonlinear dynamic models are either too com-

putationally complex to be of practical use, or rely on local approximations which fail
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to adequately capture the nonlinear features of interest. My research develops a new

methodology for accurately estimating nonlinear dynamic models which is computation-

ally simple and easy to apply. In my dissertation, I apply this methodology to study a

model of interest rate dynamics near the zero lower bound, an asset pricing model of rare

disasters, and a model of learning about cash flows in the presence of structural change.
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Chapter 1

The Discretization Filter: A Simple
Way to Estimate Nonlinear State Space
Models

1.1 Introduction

Economists increasingly use nonlinear methods to confront their theories with

data. The switch from linear to nonlinear methods is driven, in part, by increased

computing power, but also by a desire to understand economic phenomena that cannot

easily be captured by linear models. Examples include models which incorporate the

zero lower bound on interest rates (ZLB), stochastic volatility, time-varying risk premia,

Poisson jumps, credit constraints, borrowing constraints, non-convex adjustment costs,

Markov-switching dynamics, and default.

Existing methods for estimating nonlinear dynamic models are either too com-

putationally complex to be of practical use, or rely on local approximations which

fail to adequately capture the nonlinear features of interest. In this paper, I develop

a new method, the discretization filter, for approximating the likelihood of nonlinear,

non-Gaussian state space models.

The major difficulty that arises when studying nonlinear state space models is that

the likelihood cannot be evaluated recursively as it can in linear models with the Kalman

1



2

filter. The discretization filter solves this problem by constructing a discrete-valued

Markov chain that approximates the dynamics of the state variables. The dynamics of

the system are summarized by a transition matrix as opposed to an infinite dimensional

transition kernel.

When there are finitely many states, the likelihood can once again be evaluated

recursively with an algorithm analogous to the Kalman filter. This computation involves a

sequence of matrix multiplications which is fast and simple to implement. The discretiza-

tion filter generates an approximation to the likelihood of any nonlinear, non-Gaussian

state space model that can be used to estimate the models parameters using classical or

Bayesian methods.

I apply results from the statistics literature on uniformly ergodic Markov chains

to establish that the implied maximum likelihood estimator is strongly consistent, asymp-

totically normal, and asymptotically efficient. I demonstrate through simulations that the

discretization filter is orders of magnitude faster than alternative nonlinear techniques

for the same level of approximation error and I provide practical guidelines for applied

researchers. It is my hope that the methods simplicity will make the quantitative study of

nonlinear models easier for and more accessible to applied researchers.

I apply my approach to estimate two models at the intersection of macroeconomics

and finance. The first is the Gabaix (2012) asset pricing model of variable rare disasters.

The second is the Wu and Xia (2016) shadow rate term structure model. Both models are

inherently nonlinear and neither can be consistently estimated with linear methods.

Gabaix (2012) develops a model of asset pricing which posits that the time-

varying probability and severity of rare disasters explain why risk premia are large,

volatile and time-varying. I provide the first quantitative estimates of the Gabaix model

using data on equities and government bonds to identify the parameters and construct

a measure of disaster risk for the U.S. economy. There have been several proposed
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explanations for phenomena such as the equity premium puzzle, the excess volatility

puzzle, and the riskfree rate puzzle. Most existing research on this topic calibrates a

model and evaluates its ability to match a few select moments of the data. In contrast,

the discretization filter allows researchers to formally estimate a series of models and

evaluate their relative abilities to explain the data using model comparison statistics, thus

facilitating model selection.

By using a likelihood-based method for estimation, I am able to construct esti-

mates of the hidden states relating to real and nominal risk, which allow me to study

additional implications of the model not captured by calibration or moment-matching

procedures. In particular, I use these estimates to construct time series for the probability

of a disaster, the conditional volatility of inflation, and the expected jump in inflation in

the event of a disaster for the U.S. economy. I show that the model fails to identify the

Great Recession as a disaster episode, assigning less than a 5% probability to a disaster

having occurred between December of 2007 and June of 2009. This is because the model

requires a positive jump in inflation in the event of disaster to match an upward sloping

nominal yield curve. The model is unable to match the fact that the U.S. experienced low

inflation and even deflation during the Great Recession in conjunction with an upward

sloping nominal yield curve. This suggests that it is important to consider heterogeneity

in the nature of disasters to capture the patterns of the U.S. data.

Wu and Xia (2016) develop a tractable approximation to a shadow rate term

structure model. Their model provides a description of yield curve dynamics when the

economy is near the zero lower bound on interest rates and provides a way of summarizing

the effects of unconventional monetary policy. I show that when the model is estimated

using the discretization filter, the estimates of the shadow rate are substantially lower

over the zero lower bound period than those provided in their paper. This has important

implications for policy makers who use this series as an input to their decision making
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process. It implies, for example, that their estimates understate the effectiveness of

unconventional monetary policy.

The paper is organized as follows. Section 1.2 reviews related literature. Sec-

tion 1.3 explains the discretization filter. Section 1.4 establishes the strong consistency,

asymptotic normality, and asymptotic efficiency of the approximate maximum likelihood

estimator implied by the discretization filter. Section 1.5 provides practical implemen-

tation advice for applied researchers. Section 1.6 provides Monte Carlo comparisons

with existing methods in the case of a linear measurement error model and a stochastic

volatility model. In section 1.7, I estimate the Gabaix (2012) model of variable rare

disasters and illustrate a couple of its shortcomings in explaining U.S. asset pricing data.

Section 1.8 re-examines the Wu and Xia (2016) shadow rate term structure model and

constructs an updated version of their shadow rate series. Section 1.9 concludes.

1.2 Related Literature

This paper is related to the literatures on the discretization of stochastic processes,

filtering algorithms for nonlinear state space models, and the statistical properties of

maximum likelihood estimators for state space models.

Tauchen (1986) proposed the first method for discretizing stochastic processes

with an application to first-order vector autoregressive (VAR) models. Tauchen and

Hussey (1991) develop an extension of this method using quadrature formulas, but both

of these methods fail to accurately approximate the dynamics of persistent processes (see

Kopecky and Suen (2010)). Rouwenhorst (1995) develops a method which accurately

approximates highly persistent processes. However, this method is limited to univariate

first order Gaussian autoregressive (AR) models. Gospodinov and Lkhagvasuren (2014)

develop a method that builds on the Rouwenhorst method to better approximate persistent

Gaussian VARs by matching low order conditional moments. Most recently, Farmer and
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Toda (2016) develop a method for approximating general nonlinear, non-Gaussian first

order Markov processes by matching conditional moments using maximum entropy.

A special case of the filtering algorithm proposed in this paper was first considered

in Bucy (1969) and Bucy and Senne (1971), now referred to as the “point-mass filter.”

However, these papers and subsequent refinements only consider one specific method of

discretizing the state process. Furthermore, none of these papers consider the asymptotic

properties of estimators resulting from these filtering approximations. A comprehensive

summary of filtering methods for state space models, including the point-mass filter, can

be found in Chen (2003).

The theoretical results and proof techniques in this paper are most directly related

to the work of Douc, Moulines, and Ryden (2004) and Douc, Moulines, Olsson, and

Van Handel (2011). Douc, Moulines, and Ryden (2004) establish the consistency and

asymptotic normality of the maximum likelihood estimator in autoregressive models with

a hidden Markov regime that has a compact support. Douc, Moulines, Olsson, and Van

Handel (2011) extend the consistency result to a setting with unbounded support. These

papers build on previous work which establish asymptotic properties of the maximum

likelihood estimator in several simpler state space models, Baum and Petrie (1966),

Leroux (1992), Bickel and Ritov (1996), Bickel, Ritov, and Ryden (1998), Bakry,

Milhaud, and Vandekerkhove (1997), and Jensen and Petersen (1999).

1.3 The Discretization Filter

In this section I introduce the notation used in the remainder of the paper and

provide a brief overview of nonlinear state space models. I then explain how the state

dynamics of any nonlinear state space model can be approximated by a discrete-state

Markov chain. I show how this new state space system can be used to construct an

approximation to the maximum likelihood estimator for the parameters and filtering
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distributions of the original model.

1.3.1 The Setting

In what follows I restrict attention to the analysis of Hidden Markov Models

(HMMs). A HMM is a special type of nonlinear state space model where the observables

in any given time period are a function only of the state variables in that time period.

However, the results can be generalized to the case when the observation equation

additionally depends on some finite number of lags of the observables. Much of the

exposition and notation follows Douc, Moulines, and Ryden (2004).

Let Xt denote the vector of hidden state variables of the state space system at

time t. I assume that {Xt}•
t=0 is a time-homogeneous, first-order1, stationary Markov

chain and lies in a separable, compact set X ,2 equipped with a metrizable topology and

associated Borel s -field B (X ). Let P
q

(x,A), where x 2 X and A 2 B (X ), be the

transition kernel of the Markov chain. I further assume that for all q 2 Q and x 2 X ,

each conditonal probability measure P
q

(x, ·) has a density q
q

(· |x) with respect to a

common finite dominating measure µ on X .3

I assume that the observable sequence {Yt}•
t=1 takes values in a set Y that is

separable and metrizable by a complete metric. I assume that for t � 1, Yt is conditionally

independent of {Ys}t�1
s=1 and {Xs}t�1

s=1 given Xt . Note that this excludes models where the

observation at time t depends on its own lagged values. This is purely for expositional

simplicity and all of the results can be generalized to the case where Yt depends on some

fixed, finite number of lags of itself, {Yt�1, . . . ,Yt�k}, although this does complicate the
1Assuming that Xt is a first-order Markov chain is not restrictive, because the state space can always

be redefined to include additional lags of Xt as new state variables. For example, if Xt follows an AR(2)
process, one can redefine the state vector to be (Xt ,Xt�1)

0 and recover the first-order Markov assumption.
2Compactness of X simplifies much of the notation and proofs, however many of the results can

be generalized to the noncompact case using techniques developped in Douc, Moulines, Olsson, and
Van Handel (2011)

3For two measures µ and n , µ is said to dominate n if for all A, µ (A) = 0 implies n (A) = 0.
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construction of the transition matrices. I also assume that the observations conditional on

any value of the state Xt = x, x 2 X , have a density g
q

(· |x) with respect to a s -finite

measure n on the Borel s -field B (Y ).

Define the joint process {Zt}•
t=0 ⌘ {(Xt ,Yt)}•

t=0 on Z ⌘ X ⇥Y which has

transition kernel P
q

given by

P
q

(z,A) =
Z

A
g

q

�

y0
�

�x0
�

q
q

�

x0 |x
�

dx0dy0

for any z ⌘ (x,y) 2 Z and A 2 B (Z ).

I am interested in conducting estimation and inference on the finite dimensional

parameter q 2 Q by maximum likelihood. Q is assumed to be a compact subset of Rp.

Denote the true parameter as q

⇤.

A HMM is characterized by the following two equations:

Xt |Xt�1 ⇠ q
q

(Xt |Xt�1 ) (1.1)

Yt |Xt ⇠ g
q

(Yt |Xt ) (1.2)

Equation (1.1) is the state equation, and it characterizes the distribution of the latent

state next period conditional on the current state. Equation (1.2) is the observation, or

measurement equation, and it characterizes the distribution of the observables conditional

on the current state.

Let xt and yt denote particular realizations of the random variables Xt and Yt .

Given a sample {yt}T
t=1, the goal is to obtain estimates of the parameter vector q and

the unobserved states {xt}T
t=1, which I will denote by q̂T and

�

x̂t|t
 T

t=1 respectively.4 In

4The notation x̂t|t denotes the estimate of xt conditional only on information through time t. Sometimes
smoothed estimates of the unobserved state x̂t|T , incorporating all of the data, are of interest.
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order to do this, one must obtain an expression for the likelihood of the data:

LT (q ,x0)⌘ p
q

�

YYY T
1 |X0 = x0

�

(1.3)

where YYY T
1 ⌘ (Y1, . . . ,YT ), and X0 refers to the initial condition of the state. For the

remainder of the paper, the notation p
q

without explicit introduction will refer to a

general density where the arguments and meaning will be clear from the context. Define

the corresponding log-likelihood as

`T (q ,x0)⌘ log p
q

�

YYY T
1 |X0 = x0

�

(1.4)

In the subsequent section, I show how to approximate equation (1.1) by a discrete-valued

Markov chain.

1.3.2 Approximating the State Dynamics

The idea of discretization to alleviate computational problems in economics is

not new. One of the first instances of this is Tauchen (1986). He proposes a simple

way of approximating any Gaussian VAR(1) with a first-order, discrete-valued Markov

chain. He then shows that this approximation does a good job of matching unconditional

and conditional moments for relatively coarse discretizations. Tauchen’s approximation,

along with several more recent approximations proposed in the literature,5 have been

widely used to solve asset pricing and DSGE models where the ability to approximate

the solutions to integral equations is of key importance.

In this paper I apply this idea of discretization to the estimation of nonlinear, non-

Gaussian state space models. More specifically, I construct a discrete-valued, first-order
5See e.g. Tauchen and Hussey (1991), Rouwenhorst (1995), Adda and Cooper (2003), Flodén (2008),

Tanaka and Toda (2013), Gospodinov and Lkhagvasuren (2014), and Farmer and Toda (2016).
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Markov process {Xt,M}•
t=1, whose dynamics mimic those of the original continuous-

valued process {Xt}•
t=1. This allows me to summarize the dynamics of the unobserved

state by a finite-dimensional transition matrix P
q ,M.6 Note that this is fundamentally

different from forecasting the next period’s state by taking a local approximation around

the current estimate as is done in the extended Kalman filter. My approximation method

is global yet does not rely on simulation techniques.

Define a discrete set of M points in X , XM ⌘ {xm,M}M
m=1, associated with sets

{Am,M}M
m=1 which partition X , and define a transition matrix P

q ,M such that the mm0-th

element:

P
q ,M
�

m,m0�= P
q

�

Xt,M = xm0,M
�

�Xt�1,M = xm,M
�

(1.5)

corresponds to the probability of transitioning from point xm,M to point xm0,M between

time t � 1 and t. The matrix P
q ,M is assumed to be the same for all t, and thus Xt,M

follows a first-order, time homogeneous, M-state Markov chain.

Note that each row of the matrix P
q ,M can be interpreted as a conditional proba-

bility distribution. Specifically, row m correponds to the distribution of Xt,M conditional

on being at point xm,M at time t �1. It is critical that these conditional distributions be

good approximations to the true conditional distributions Xt |Xt�1 = xm,M .

Define st,M to be the state of the approximate system at time t. In particular, I

will say that the system is in state st,M = m and let zt,M = em when Xt,M = xm,M, where

em is the m-th column of the (M⇥M) identity matrix. The system outlined above is

characterized by the equations:

zt,M = P0
q ,Mzt�1,M + ṽt,M (1.6)

Yt |Xt,M ⇠ g
q

(Yt |Xt,M ) (1.7)

6This is similar to the idea proposed in Tauchen and Hussey (1991). However, there the primary focus
was on computing conditional expectations: here it is approximating the dynamics of a state space model.
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where ṽt,M = zt,M �E
q

⇥

zt,M
�

�

zt�1,M
⇤

and P0
q ,M is the transpose of the matrix P

q ,M.

Equations (1.6) and (1.7) are the state and observation equations of the new approximate

model. The sequence {Yt} has the same distribution, conditional on the state Xt,M, as the

sequence {Yt} generated by the original model. However, in the approximate model, the

Xt,M have been restricted to live on a discrete grid.

1.3.3 Evaluating the Likelihood

In the previous section, I showed how to approximate any HMM by replacing

the state equation, equation (1.1), with a discrete-state Markov chain, equation (1.6). In

this section, I apply the results of Hamilton (1989) to construct an approximation to the

likelihood function of the HMM. Hamilton (1989) shows that when the state dynamics

of a HMM are characterized by a discrete-state Markov chain, simple prediction and

updating equations exist that are analogous to the Kalman filter in the linear case. I use

the notation developed in Hamilton (1994). I review these results here and show how

they can be used to develop an approximation to the maximum likelihood estimator for

q .

Let ẑt,M|t = E
q

[zt,M |YYYt
1 ] be the econometrician’s best inference about the dis-

cretized state zt,M conditional on time t information. Inuitively, ẑt,M|t is an (M⇥1) vector

of probabilities where each element represents the probability of being at a particular

point in the state space at time t conditional on observations up to time t. The forecast of

the approximate state today given the previous period’s information is given by:

ẑt,M|t�1 = E
q

⇥

zt,M
�

�YYYt�1
1
⇤

= P0
q ,Mẑt�1,M|t�1 (1.8)
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Also define

ht,M =

2

6

6

6

6

4

g
q

�

Yt
�

�Xt = x1,M
�

...

g
q

(Yt |Xt = xm,M )

3

7

7

7

7

5

(1.9)

The m-th element of ht,M is the likelihood of having observed Yt conditional on being in

state m at time t, i.e. st,M = m.

Note that the marginal likelihood of Yt given YYYt�1
1 is then simply given by:

p
q ,M
�

Yt
�

�YYYt�1
1
�

= 10
⇣

ht,M � ẑt,M|t�1

⌘

(1.10)

where � is element by element multiplication of conformable matrices and 1 is an

(M⇥1) vector of ones. The updated inference about the state at time t is

ẑt,M|t =
ht,M � ẑt,M|t�1

10
⇣

ht,M � ẑt,M|t�1

⌘ =
ht,M � ẑt,M|t�1

p
q ,M
�

Yt
�

�YYYt�1
1
� (1.11)

By iterating these equations from period 1 to the sample size T , one can obtain estimates

of the filtering distributions
n

ẑt,M|t

oT

t=1
and the parameters q̂T,M by maximizing the log

likelihood of the discretized system

`T,M (q) =
T

Â
t=1

log p
q ,M
�

Yt
�

�YYYt�1
1
�

(1.12)

Alternatively, given a prior distribution for the paramter vector q , Bayesian methods can

be used to sample from its posterior distribution.

Algorithm 1 summarizes the procedure for constructing the discrete approxima-

tion to the likelihood and the filtering distributions. This can then be embedded in either

a classical or Bayesian procedure for performing likelihood-based estimation.

Note that the parameter estimates q̂T,M and the log-likelihood function `T,M (q)
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Algorithm 1: Discretization Filter
1 Approximate the State Dynamics: Construct a discrete grid {xm,M}M

m=1
and its associated transition matrix P

q ,M using algorithm 2 in appendix 1.B
or any other method appropriate for the process Xt being considered.

2 Initialization: Set the initial distribution of the state ẑ0,m|0 = p

X
q ,M or any

arbitrary distribution. Set t 1.
3 Prediction: Construct the forecast of the time t state

ẑt,M|t�1 = P0
q ,Mẑt,M|t�1 .

4 Updating 1: Evaluate the contemporaneous likelihood of having observed
data yt conditional on each possible value of the state, ht,M, using equation
(1.9). Compute and save the marginal likelihood of observation yt given by
equation (1.10).

5 Updating 2: Compute the time t filtered estimate of the state ẑt,M|t using
(1.11). If t < T , set t t +1 and go to step 3. Otherwise go to step 6.

6 Likelihood: Compute the approximate likelihood of the data, `T,M (q), using
equation (1.12).

are indexed by the number of discrete points M in addition to the sample size T to indicate

that the estimates will depend on exactly how the space is discretized. I have omitted the

explicit dependence of the likelihood function on the distribution of the initial state x0,M.

As part of the results in section 1.4, I will show why this initial condition is irrelevant for

the asymptotic properties of q̂T,M.

Section 1.4 establishes the strong consistency, asymptotic normality, and asymp-

totic efficiency of the discretization filter approximation to the maximum likelihood

estimator. Those who are interested in applications of the discretization filter may wish

to skip ahead to section 1.5.

1.4 Asymptotic Properties of the Maximum Likelihood
Estimator

In this section I establish strong consistency, asymptotic normality, and asymptotic

efficiency of my proposed estimator. I consider joint asymptotics in both the sample size
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T and the number of discrete points M. I show that the accuracy of my approximation

is governed to first order by the proximity of the infinite history filtering distributions

of the approximate and true chains Xt,M
�

�YYYt
�• and Xt

�

�YYYt
�• . The distance between these

distributions is proportional to h⇤ (M), where h⇤ (M) is related to the approximation

error between the approximate and true one-step-ahead conditional distributions of Xt .

Strong consistency simply requires that T ! • and M ! •. Asymptotic normality and

asymptotic efficiency further require that T ⇥h⇤ (M)! 0 as M ! • and T ! •, i.e. that

M ! • “fast enough.”

A key new theoretical contribution of my paper is to establish a rate of conver-

gence of the ergodic distribution of the approximate discrete chain to the true ergodic

distribution. This result represents a new contribution to the literature on discrete approx-

imations of Markov chains with continuous valued states. All proofs can be found in

Appendix 1.A.

1.4.1 Preliminaries and Assumptions

Define the notations P
q

, E
q

, and p
q

to denote probabilities, expectations, and

densities evaluated under the assumption that the initial state X0 is drawn from its ergodic

distribution p

X
q

, or analogously X0,M from p

X
q ,M in the discrete case.

Before continuing, it is useful to define the extension of the transition kernel P
q ,M

to X . For x 2 X and A 2 B (X ), let

P
q ,M (x,A)⌘

M

Â
m=1

M

Â
m0=1

P
q ,M
�

m,m0� {x 2 Am,M}
�

xm0,M 2 A
 

Similarly, define the extension of the ergodic measure p

X
q ,M to X . For A 2 B (X ), let

p

X
q ,M (A)⌘

M

Â
m=1

p

X
q ,M (m) {xm,M 2 A}
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Lastly, I define the limit as M ! • of these objects in the natural way:

P
q ,• (x,A)⌘ lim

M!•

M

Â
m=1

M

Â
m0=1

P
q ,M
�

m,m0� {x 2 Am,M}
�

xm0,M 2 A
 

and

p

X
q ,• (A)⌘ lim

M!•

M

Â
m=1

p

X
q ,M (m) {xm,M 2 A}

I will impose assumptions such that these limiting objects are well defined. For the

remainder of the section, I will use both the versions of P
q ,M and p

X
q ,M, defined over X

and XM, interchangeably and the meaning will be clear from the context.

I now list and discuss my basic assumptions. Assumptions that overlap with Douc,

Moulines, and Ryden (2004) are labeled with an A, and assumptions that are new to this

paper are labeled with a B. Assumptions labeled A and B are paired by number, e.g. (A1)

and (B1). Each B assumption can be thought of as an analog to the A assumption for the

sequence of discrete approximations Xt,M.

(A1) (a) 0 < s� ⌘ inf
q2Q infx,x02X q

q

(x0 |x) and s+ ⌘ sup
q2Q supx,x02X q

q

(x0 |x)<

•.

(b) For all y0 2 Y , 0 < inf
q2Q

R

X g
q

(y0 |x)dx and sup
q2Q

R

X g
q

(y0 |x)dx < •.

(B1) Q�
+ ⌘ inf

q2Q infM2Z+ infm,m0,m00,m000
P

q ,M(m,m0)
P

q ,M(m00,m000) > 0

Assumption (A1)(a) implies that there is a positive probability that the state

variable can move from any part of the state space to any other part of the state space.

This means that the state space X of the Markov chain {Xt} is what’s known as 1-small,

or petite. This further implies that for all q 2 Q, {Xt} has a unique invariant measure p

X
q

and is uniformly ergodic (see Meyn and Tweedie (1993) for a proof).

Assumption (B1) guarantees that the discrete process {Xt,M} has a unique invari-

ant distribution p

X
q ,M and is uniformly ergodic for every value M < •. Additionally it is
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needed so that the bound on the mixing rate of Xt,M is independent of M and q . This will

be satisfied for any stochastic process satisfying (A1)(a) that is approximated using the

methods reviewed in section 1.3.2. Note that while all elements of the transition matrix

P
q ,M converge to 0 individually as M ! •, the limits of the ratios of these elements are

still well defined.

(A2) For all q 2 Q, the transition kernel P
q

is positive Harris recurrent and aperiodic

with invariant distribution p

q

.

(B2) For all q 2 Q, the transition kernel P
q ,• is positive Harris recurrent and aperiodic

with invariant distribution p

q ,•.

These assumptions guarantee that the original joint Markov process {Zt} and the

limiting approximating Markov chain {Zt,•} are themselves uniformly ergodic. Note

that assumption (B2) is needed in addition to assumption (B1) to account for the limiting

case of the chain.

Assumption (A2) implies that for any initial measure l ,

lim
t!•

�

�

�

lP(t)
q

�p

q

�

�

�

TV
= 0 (1.13)

where k ·kTV is the total variation norm, defined for any two probability measures µ1 and

µ2 as

kµ1 �µ2kTV = sup
A

|µ1 (A)�µ2 (A)|

and P(t)
q

is the t-th iterate of the transition kernel P
q

. In words, for any initial measure

of the joint process {Zt}, the probability of being in any measurable set A 2 B (Z )

approaches the ergodic probability of being in that set uniformly over all measurable sets

A as t ! •. This convergence is also independent of the initial measure l . An analogous
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property holds for the process {Zt,•} by assumption (B2). Developing a bound on this

rate of convergence will be critical for the coming developments.

Lastly, assume that

(A3) b+ ⌘ sup
q2Q supy1,x g

q

(y1 |x)< • and E
q

⇤ (|logb� (y1)|)< •, where

b� (y1)⌘ inf
q2Q

R

X g
q

(y1 |x)µ (dx).

(B3) E
q

⇤ (|logc� (y1)|)< •, where

c� (y1)⌘ inf
q2Q infM2Z+ inf1mM ÂM

m0=1 P
q ,M (m,m0)g

q

�

y1
�

�xm0,M
�

Assumptions (A3) and (B3) are additional boundedness conditions involving the

observation density g
q

which will be necessary to establish the existence of certain limits.

Additional assumptions will be introduced and explained as needed.

1.4.2 Consistency

The proof of consistency can be broken down into two main parts. The first is to

show that the approximation to the likelihood function implied by the discretization filter,

properly normalized, converges to a well defined asymptotic criterion function `M (q),

for fixed M, as the sample size T ! •. It is important that this convergence be uniform

with respect to the parameter q 2 Q, the initial condition x0 2 XM, and the number of

discrete points M 2 Z+. This step relies largely on the analysis in Douc, Moulines, and

Ryden (2004), with the additional requirement that the conditions be strengthened so

that the convergence is uniform with respect to the number of discrete points M used to

construct the approximation. This will be a consequence of the uniform ergodicity of the

filtering distributions {Xt,M |YYYt
1}

•
M=1, which follows from the uniform ergodicity of the

discrete Markov chains {Xt,M}•
M=1.

The second part, which is new to this paper, is to show that this approximate

limiting criterion function `M (q), which is defined for any M, converges to the true
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limiting criterion function `(q) as the number of points used in the approximation

M ! •. I will show that this holds for any discretization method whose one-step-ahead

conditional distributions Xt,M
�

�Xt�1,M = x converge in distribution to the one-step-ahead

conditional distributions of the original continuous process Xt |Xt�1 = x as M ! •.

Together, these two pieces will imply that T�1`T,M (q) converges uniformly to

`(q) as T,M ! •. Under some additional regularity conditions, this will imply that the

estimator q̂T,M converges to the true parameter q

⇤ almost surely as T,M ! •.

Following Douc, Moulines, and Ryden (2004), I first establish that the distribution

of Xt,M given a history of observations YYY s
r is itself a uniformly ergodic (inhomogeneous)

Markov chain with minorizing constant independent of the parameter q 2 Q and the

number of discrete points M 2 Z+. This is the analogous result to Lemma 1 in their

paper. Note that a Markov chain with transition kernel P
q

is said to satisfy a uniform

minorization condition if there exist a probability measure µQ, a positive integer n, and

e > 0 such that

P(n)
q

(x,A)� eµQ (A)

for all x 2 X and A 2 B (X ), where P(n)
q

is the n-step ahead transition kernel of the

Markov chain.

Define Q�
M ⌘ infm,m0 P

q ,M (m,m0), Q+
M ⌘ supm,m0 P

q ,M (m,m0), and Q�
+ ⌘ Q�

M
Q+

M
for

M 2 Z+. I now state the first lemma

. Assume (A1) and (B1). Let s,r 2 Z, with r  s, q 2 Q, and M 2 Z+. Under P
q

,

conditionally on YYY s
r, {Xt,M}t�r is an inhomogeneous Markov chain, and for all t > r there

exists a function µt,M (yyys
t ,A) such that:

(i) for any A 2 B (XM), yyys
t 7! µt,M (yyys

t ,A) is a Borel function;

(ii) for any yyys
t , µt,M (yyys

t , ·) is a probability measure on B (XM). In addition, for all yyys
t

it holds that µt,M (yyys
t , ·)⌧ µc,M (where µc,M is counting measure on XM) and for
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all YYY s
r,

inf
x2XM

P
q

�

Xt,M 2 A
�

�Xt�1,M = x,YYY s
r
�

� Q�
+µt,M (YYY s

t ,A)

The major difference between this Lemma and the one established in Douc,

Moulines, and Ryden (2004) is that for the following results, it will be crucial that the

minorizing constant be the same for all M, in order to establish uniform convergence

over M 2 Z+ of the approximate likelihood function. Note that although the minorizing

measure, µt,M (YYY s
t , ·), does depend on both the number of points, M, and the observations

the chain is conditioned on, YYY s
t , it doesn’t affect the mixing rate. The previous lemma

leads to the following corollary, using standard results for uniformly minorized Markov

chains (see e.g. Lindvall (1992) Sections III.9-11).

. Assume (A1) and (B1). Let r,s 2 Z with r  s, q 2 Q, and M 2 Z+. Then for all t � r,

all probability measures µ1 and µ2 on B (XM), and all YYY s
r,

�

�

�

�

Z

XM
P

q

(Xt,M 2 · |Xr,M = x,YYY s
r )µ1 (dx)�

Z

XM
P

q

(Xt,M 2 · |Xr,M = x,YYY s
r )µ2 (dx)

�

�

�

�

TV

r

t�r

where r ⌘ 1�Q�
+.

This corollary establishes that the Markov chain “uniformly forgets” its history

at an exponential rate. That is, no matter where the chain is started, it converges to its

ergodic distribution exponentially fast. The fact that the bound is deterministic will be

important for establishing strong consistency.

The next step consists of showing that the approximate likelihood function

`T,M (q ,x0,M) with an arbitrary initial condition x0,M stays within a deterministic bound

of `T,M (q) where x0,M is drawn from its ergodic distribution.
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. Assume (A1)-(A2) and (B1)-(B2). Then, for all x0,M 2 XM and M 2 Z+,

sup
q2Q

�

�`T,M (q ,x0,M)� `T,M (q)
�

� 1/(1�r)2 , P
q

⇤-a.s.

Next I show that T�1`T,M (q) can be approximated by the sample mean of a

P
q

⇤-stationary ergodic sequence of bounded random variables which has a well defined

limit. To this end I first define the quantities:

Dt,r,M,x (q)⌘ log p
q ,M
�

Yt
�

�YYYt�1
�r ,X�r,M = x

�

Dt,r,M (q)⌘ log p
q ,M
�

Yt
�

�YYYt�1
�r
�

=
Z

log p
q ,M
�

Yt
�

�YYYt�1
�r ,X�r,M = x

�

P
q

�

dx�r,M
�

�YYYt�1
�r
�

Consider the thought experiment of fixing the number of points M, but letting T ! •.

Define the limiting object as

`M (q)⌘ E
q

⇤ [D0,•,M (q)]

I will show that such a limiting object is well-defined and that the sample analogue

converges to this limit almost-surely. In particular, I will show that {Dt,r,M}r�0 and

{Dt,r,M,x}r�0 converge uniformly w.r.t. q 2 Q P
q

⇤-a.s. by showing they are uniform

Cauchy sequences.

. Assume (A1)-(A3) and (B1)-(B3). Then for all t � 1, r,r0 � 0, and M 2 Z+, P
q

⇤-a.s.,

sup
q2Q

sup
x,x02XM

�

�Dt,r,M,x (q)�Dt,r0,M,x0 (q)
�

� r

t+min(r,r0)�1/(1�r) , (1.14)

sup
q2Q

sup
x2XM

|Dt,r,M,x (q)�Dt,r,M (q)| r

t+r�1/(1�r) , (1.15)

sup
q2Q

sup
r�0

sup
x2XM

|Dt,r,M,x (q)| max(|logb+| , |logc� (Yt)|) (1.16)
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Equation (1.14) of Lemma 3 shows that {Dt,r,M,x}r�0 is a uniform Cauchy se-

quence w.r.t. q 2 Q and thus converges P
q

⇤-a.s. to a limit which does not depend on

the initial value x. I label this limit Dt,•,M and intuitively this can be thought of as

log p
q ,M
�

Yt
�

�YYYt�1
�•
�

, the marginal likelihood of an observation Yt given an infinite history

of data.

Equation (1.16) of Lemma 3 shows that {Dt,r,M,x (q)}r�0 is uniformly bounded

in L1 �P
q

⇤
�

and thus its limit Dt,•,M (q) is also in L1 �P
q

⇤
�

. Furthermore, note that

{Dt,•,M (q)} is a P
q

⇤-stationary ergodic process.

By setting r = 0 and letting r0 ! • in equation (1.14), it follows that

sup
q2Q

�

�Dt,0,M,x (q)�Dt,•,M (q)
�

� r

t�1/(1�r)

Furthermore, setting r = 0 in equation (1.15) implies that

sup
q2Q

�

�Dt,0,M,x (q)�Dt,0,M (q)
�

� r

t�1/(1�r)

By combining these two inequalities, applying the triangle inequality, and summing from

1 to T , I obtain Corollary 2.

. Assume (A1)-(A2) and (B1)-(B2). Then

T

Â
t=1

sup
M2Z+

sup
q2Q

�

�Dt,0,M (q)�Dt,•,M (q)
�

� 2/(1�r)2 , P
q

⇤-a.s.

Corollary 2 shows that T�1`T,M (q) can be approximated by the sample mean of

a stationary ergodic sequence, uniformly w.r.t. q . Since D0,•,M 2 L1 �P
q

⇤
�

, the ergodic

theorem implies that T�1`T,M (q)! `M (q) P
q

⇤-a.s. and in L1 �P
q

⇤
�

as T ! •. Note

that this convergence is uniform over M 2 Z+. This will be important when I start

considering joint asymptotics in T and M.
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Define `(q)⌘ E
q

⇤
⇥

log p
q

�

Y0
�

�YYY 0
�•
�⇤

. The next step towards establishing con-

sistency is to show that `M (q)! `(q) as M ! •. The difference in these two quantities

is related to the difference in the approximate and true filtering distributions for infinite

histories of observations, Xt,M
�

�YYYt
�• and Xt

�

�YYYt
�• .

I first prove that the ergodic distribution of the approximate discrete Markov chain

converges weakly to that of the original continuous Markov chain, i.e. that Xt,M
d�! Xt

as M ! •. Proposition 1 establishes this convergence and provides a bound on the

difference between the two distributions as a function of the number of points M.

Define A as the collection of all continuity sets of Xt . I make one further

assumption regarding the approximation quality of the sequence of transition kernels
�

P
q ,M
 

.

(BT) For all A 2 A , the sequence of approximations P
q ,M satisfy

sup
q2Q

sup
x2X

�

�P
q ,M (x,A)�P

q

(x,A)
�

�= O(h(M)) (1.17)

where h(M) satisfies limM!• h(M) = 0.

This assumption allows the practitioner to use all of the discretization methods outlined

in 1.3.2 to construct P
q ,M. I have chosen to illustrate the case where the Farmer and Toda

(2016) method with trapezoidal quadrature rule is used. In this case, assumption (BT) is

satisfied with h(M) = M�2/d , where d is the dimension of the state space X .7

. Assume (A1)-(A3), (B1)-(B3), and (BT). Then it follows that for any A 2 A ,

sup
q2Q

�

�

p

X
q ,M (A)�p

X
q

(A)
�

�= o(h⇤ (M))

where h⇤ (M) satisfies limM!• h⇤ (M) = 0. If the transition kernel is approximated as
7For a discussion of error convergence properties see Tanaka and Toda (2015).
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proposed in Farmer and Toda (2016) with a trapezoidal quadrature rule,

h⇤ (M) = M�(2�d )/d

for any d > 0.

Note that even faster rates can be achieved through clever choice of the quadrature

formula and the assumptions one is willing to make about the smoothness of the likelihood

function.8 By combining Proposition 1 with uniform ergodicity of Xt,M and Xt , it can be

shown that this approximation error directly translates to probabilities computed under

the filtering distributions Xt,M |YYYt
r and Xt |YYYt

r .

. Assume (A1)-(A3), (B1)-(B3), and (BT). Then

sup
q2Q

|`M (q)� `(q)|= o(h⇤ (M))

Combining Corollary 2, Lemma 2, and Lemma 4 leads to the following pointwise

convergence result

. Assume (A1)-(A3), (B1)-(B3), and (BT). Then for all sequences of initial points
�

x0,M
 

and q 2 Q,

lim
M,T!•

T�1`T,M (q ,x0,M) = `(q) , P
q

⇤-a.s. and in L1 �P
q

⇤
�

The final step before I can state the strong consistency result involves showing
8There has been substantial research in the field of Quasi Monte-Carlo integration methods, which seek

deterministic sequences to approximate high dimensional integrals which break the curse of dimensionality.
These are referred to as low discrepancy sequences and their accuracy for numerical integration has been
shown to depend only polynomially on the dimension d rather than exponentially. The use of these
sequences to approximate the dynamics of high dimensional state processes is a promising area of study
which I investigate in ongoing research. Further, there are no known convergence rates for the Tauchen or
point mass filter approximations to the transition kernel and I leave this for future work.
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that `M (q) is continuous w.r.t. q for all M 2 Z+. This will allow me to strengthen

Corollary 3 from pointwise convergence to uniform convergence in q . Note that by (1.16)

and the dominated convergence theorem,

`M (q) = E
q

⇤

h

lim
r!•

D0,r,M,x (q)
i

= lim
r!•

E
q

⇤ [D0,r,M,x (q)]

It suffices to show that D0,r,M,x (q) is continuous w.r.t q , since
�

D0,r,M,x (q)
 

r�0 is a

uniform Cauchy sequence P
q

⇤-a.s. which is uniformly bounded in L1 �P
q

⇤
�

.

The following additional assumptions are needed to establish continuity

(A4) For all x,x0 2 X and all y0 2 Y , q 7! q
q

(x,x0) and q 7! g
q

(y0 |x) are continuous.

(B4) For all M 2 Z+, x 2 XM, and A 2 B (XM), q 7! P
q ,M (x,A) is continuous.

. Assume (A1)-(A4), (B1)-(B4), and (BT), then

lim
d!0

E
q

⇤

"

sup
M2Z+

sup
|q 0�q |d

�

�Dt,•,M
�

q

0��Dt,•,M (q)
�

�

#

= 0.

A direct consequence of Lemma 5 is that the convergence established in Corollary

3 can be strengthened to uniform convergence in q 2 Q.

. Assume (A1)-(A4), (B1)-(B4), and (BT). Then

lim
M,T!•

sup
q2Q

sup
x0,M2XM

�

�T�1`T,M (q ,x0,M)� `(q)
�

�= 0, P
q

⇤-a.s.

The last assumption needed to establish consistency is an identification assump-

tion guaranteeing that q

⇤ is a unique maximizer of the likelihood function

(A5) q = q

⇤ if and only if

E
q

⇤



log
p

q

⇤ (YYYt
1)

p
q

(YYYt
1)

�

= 0 for all t � 1. (1.18)
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This is a high level assumption about the identification of the model. In general

this is a difficult condition to verify because it relies on the ergodic distribution of the

joint Markov chain {Zt}. For a more thorough discussion on when this assumption is

satisfied in the context of HMM, see Douc, Moulines, Olsson, and Van Handel (2011).

Under the additional assumption (A5), I am ready to state my first main result, strong

consistency of the maximum likelihood estimator

. Assume (A1)-(A5), (B1)-(B4), and (BT). Then, for any sequence of initial points

x0,M 2 XM, q̂T,M,x0,M ! q

⇤, P
q

⇤-a.s. as T ! • and M ! •.

This is a powerful result. It states that the maximum likelihood estimator is not

only consistent but strongly consistent. In addition, the estimator is strongly consistent

independently of the rate at which the number of points M grows.

1.4.3 Asymptotic Normality

Next I turn to the asymptotic distribution of the maximum likelihood estimator. In

order to establish asymptotic normality I will need additional assumptions regarding the

smoothness and boundedness of first and second derivatives of the likelihood function.

Let —
q

and —2
q

be the gradient and the Hessian operator with respect to the

parameter q respectively. Assume there exists a positive real d such that on G ⌘

{q 2 Q : |q �q

⇤|< d}, the following assumptions hold

(A6) For all x,x0 2 X and y 2 Y , the functions q 7! q
q

(x,x0) and q 7! g
q

(y0 |x0 ) are

twice continuously differentiable on G.

(A7) (a) sup
q2G supx,x0 k—

q

logq
q

(x,x0)k< • and

sup
q2G supx,x0

�

�—2
q

logq
q

(x,x0)
�

�< •

(b) E
q

⇤

h

sup
q2G supx k—

q

logg
q

(Y1 |x)k2
i

< • and

E
q

⇤
⇥

sup
q2G supx

�

�—2
q

logg
q

(Y1 |x)
�

�

⇤

< •
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(A8) (a) For n-almost all y0 2 Y there exists a function fy0 : X ! R+ 2 L1 (µ) such

that sup
q2G g

q

(y0 |x) fy0 (x).

(b) For µ-almost all X 2X , there exist functions f 1
x : Y !R+ and f 2

x : Y !R+

in L1 (n) such that k—
q

g
q

(y0 |x)k  f 1
x (y0) and

�

�—2
q

g
q

(y0 |x)
�

� f 2
x (y0) for

all q 2 G.

Instead of re-establishing asymptotic normality of my proposed estimator using

the techniques in Douc, Moulines, and Ryden (2004), I use Theorem 7 from their paper.

I reproduce the theorem here for completeness.

Theorem 7 from Douc, Moulines, and Ryden (2004). Assume that q̃T,x0 is an estima-

tor satisfying `T
�

q̃T,x0 ,x0
�

� sup
q2Q `T (q ,x0)�RT and assumptions (A1)-(A8) hold.

Then the following are true:

(i) If RT = op (T ) (with P = P
q

⇤), then q̃T,x0 is consistent.

(ii) If RT = Op (1), then T 1/2 �
q̃T,x0 �q

⇤� = Op (1), that is the sequence
�

q̃T,x0

 

is

T 1/2�consistent under P
q

⇤ .

(iii) If RT = op (1), then T 1/2 �
q̃T,x0 �q

⇤�! N
⇣

0, I (q ⇤)�1
⌘

, P
q

⇤�weakly as T ! •.

I derive an explicit expression for RT as a function of M and T and provide

conditions under which my proposed estimator satisfies condition (iii) of Theorem 2,

which corresponds to asymptotic normality. Note that the bounds I have derived to

establish consistency are not sufficient to establish asymptotic normality of my proposed

estimator. I can only establish that condition (ii) of Theorem 3 is satisfied using the

deterministic bounds applied thus far. To establish conditions under which (iii) is also

satisfied, I use an Azuma-Hoeffding inequality derived in Douc, Moulines, Olsson, and

Van Handel (2011). Using this new bound, I am able to state my second main result,

asymptotic normality.
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. Assume (A1)-(A8), (B1)-(B4), (BT), and that I (q ⇤) is positive definite. Then for any

sequence of initial points x0,M 2 XM,

p
T
�

q̂T,M,x0,M �q

⇤�! N
⇣

0, I (q ⇤)�1
⌘

P
q

⇤-weakly as T ! •, M ! •, and T ⇥h⇤ (M)! 0.

Note that this result is actually stronger than just asymptotic normality. Theorem 3

establishes that my proposed estimator and the infeasible maximum likelihood estimator

are asymptotically equivalent. That is, my estimator asymptotically achieves the Cramér-

Rao lower bound.

1.5 Recommendations for Applied Researchers

In this section I provide recommendations for how to select the grid points of

the approximate finite-state Markov chain and to construct the transition matrix for the

discretization filter.

1.5.1 Choosing the Number of Grid Points

The asymptotic theory I developed in section 1.4 shows that if the Farmer and

Toda (2016) method with a trapezoidal quadrature rule is used to construct the transition

matrix, the discretization error of the likelihood function is of the order T M�2/d . While

this is only a rate condition, I use it to recommend a rule of thumb choice for the number

of points M used to construct the discretization. Setting this ratio equal to a constant and

solving for M, one gets the rule of thumb

M = cT d/2 (1.19)
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where the constant c is a nuisance parameter. For example, if the dimension d of the state

space is 1, the rule says to choose a number of points proportional to the cube root of the

sample size. If d = 2, then the rule recommends choosing the number of points equal to

the sample size. I investigate the effect of choosing different values of c on the accuracy

of the approximation in section 1.6.

Figure 1.1 plots the rule-of-thumb choice for M for state spaces of dimensions

1-4, for sample sizes up to T = 100 and c = 1.

The asymptotic analysis implies that M should be chosen to be as large as possible.

However, for sufficiently large computational problems, it may not be possible to choose

a large number for M. An applied researcher faces a tradeoff between computation time

and the accuracy of the approximation, which I will elaborate on in section 1.6. This

rule of thumb can be thought of as a lower bound on the number of points to choose in

order to retain validity of confidence intervals constructed for parameters using a normal

approximation.

1.5.2 Selecting the Grid Points

When establishing my theoretical results, I assumed that the state space is compact.

This is a convenient theoretical device that makes the proofs cleaner and more intuitive;

but I conjecture that it is not necessary for my main results.9 In general, practitioners

specify state space models that take values in unbounded spaces. In this section, I address

how to choose the support of the discretized probability measure when the state space is

unbounded.

Consider the case where the number of discretization points, M, has been fixed
9The assumption of uniform ergodicity can be relaxed to geometric ergodicity, where the mixing rate of

the Markov chain depends on the initial distribution. Under suitable restrictions on the initial distribution,
consistency can still be established using the techniques in Douc, Moulines, Olsson, and Van Handel
(2011). Asymptotic normality of the maximum likelihood estimator under geometric ergodicity appears to
still be an open problem.
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Figure 1.1. Rule of Thumb Choice for M

and the goal is to choose the support of the discrete approximation, XM. In order for the

discretized system to be a good approximation to the original model, the boundary points

should be chosen to bracket the underlying state vector with high probability. This is

analogous to picking boundary points from the tails of the ergodic distribution.

When the state follows a Gaussian VAR(1), a closed form expression for the

ergodic distribution is available. Gospodinov and Lkhagvasuren (2014) provide a method

to discretize Gaussian VAR(1)s that is robust to high levels of persistence. They use

mixtures of Rouwenhorst (1995) approximations to match conditional moments as closely

as possible. I rely on this method in section 1.8 for my empirical application. However,

for more general time series models, no such expression exists.

Even when no expression for the unconditional distribution exists, it is often

possible to compute the unconditional mean and standard deviation of the process. In

this case, I recommend choosing a grid centered at the unconditional mean µx covering
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p
M�1 unconditional standard deviations sx of the process on either side. That is,

choose {xm,M}M
m=1 to be M evenly spaced points over the interval

⇥

µx �
p

M�1sx,µx +
p

M�1sx
⇤

. 10

If the computation of unconditional moments is infeasible, I propose simulating

a path of the state and discarding a fixed fraction from the beginning as burn in. If the

simulated sample and burn in periods are sufficiently large, the remaining points can

be treated as representative draws from the ergodic distribution. One can then estimate

unconditional moments of the simulated process and use the method outlined above

by replacing the population parameters µx and sx with their estimated counterparts.

Alternatively, one can use empirical quantiles as the discretization points.

Consider the case when r = 1, that is, the state vector is one-dimensional. Sup-

pose one simulates S points from the state equation with Sbi used as burn in. Denote

this simulated path as {xs}S
s=1. Then, to construct a grid that covers the state with

approximately 1�a probability, select:

xm,M = Q̂S
�

a

2 + m�1
M (1�a)

�

for m = 1, . . . ,M

where Q̂S : (0,1)! R is the empirical quantile function of the sample {xs}S
s=Sbi

, defined

as

Q̂S(p) =

(

infx 2 R : p  1
S�Sbi

S

Â
s=Sbi

{xs  x}
)

Selecting the points in this way has the desirable property that roughly the same number

of realizations of the state will fall between each pair of points.11 By choosing a

arbitrarily close to 1, it is possible to ensure that one has covered the ergodic set with any
10This is the way of constructing the grid employed in the Rouwenhorst (1995) approximation and

suggested in Farmer and Toda (2016).
11There is no unique way to define quantile functions in the multivariate case. However, one simple way

to achieve the same goal is to take the univariate empirical quantiles covering 1� a

d probability for each
dimension.
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desired degree of confidence.12 This method is also robust to skewness and fat tails in

the stationary distribution.

While the simulation procedure outlined above is capable of handling very general

models, it will introduce simulation error and increase the computational burden of the

estimation. It is desirable to use prior knowledge of the particular model to help inform

the choice of discretization whenever possible.13

1.5.3 Constructing the Transition Matrix

I recommend two ways of constructing the transition matrix for the discretization

filter that are applicable to the widest range of economic models. However, there is no

unique way to construct the transition matrix. 14

First, I outline a way to extend the original method proposed by Tauchen (1986)

to the nonlinear, non-Gaussian case. Create a partition of the state space {Am}M
m=1,

where each Am is associated with discretization point xm,M for all m = 1, . . . ,M (this is

equivalent to intervals in the one-dimensional case). Then define:

P
q ,M
�

m,m0�=
Z

Am0
q

q

(x |Xt�1 = xm,M )µ (dx) (1.20)

Intuitively, there are two layers of approximation in this expression. First, I am assuming

that if Xt�1 is in region Am it is close to the point xm,M in the sense that the conditional

distribution q
q

(Xt |Xt�1 ) can be well approximated by q
q

(Xt |Xt�1 = xm,M ). Second, I

am assuming that the probability of transitioning to region Am0 from point xm,M is similar

12Of course a smaller a will require a larger number of data points for the same level of confidence in
the approximation.

13Another possibility is to construct an e-distinguishable set as proposed by Maliar and Maliar (2015),
although this is subject to the same criticisms about introducing simulation.

14In addition to these two approaches, several others have been proposed in the literature: Tauchen
and Hussey (1991), Rouwenhorst (1995), Adda and Cooper (2003), Flodén (2008), and Gospodinov and
Lkhagvasuren (2014). However, all of these with the exception of Tauchen and Hussey (1991) only apply
to linear autoregressive processes.
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to the conditional density q
q

�

Xt = xm0,M |Xt�1 = xm,M
�

over the set Am0 .

A limitation of this approach is the ability to evaluate the integrals needed to con-

struct the transition matrix. In general, this method will only work well in practice when

the Am are hyperrectangles, and the transition density is easy to evaluate. Furthermore,

there are no known results on the rate of weak convergence of the ergodic distribution of

the approximate Markov chain to the that of the underlying continuous process. Since

this rate is critical to obtaining asymptotic normality, researchers should be cautious

about standard errors when using this approach with a small number of points.

Second, I construct the transition matrix as in Farmer and Toda (2016). They

provide a general way of constructing finite-state Markov chain approximations to

stochastic processes. Their method finds the discrete distribution which is “closest” to the

original distribution from some prior distribution in terms of Kullback-Leibler distance,

while matching a set of conditional moments of the underlying continuous distribution.

If the prior distribution is a valid quadrature formula for evaluating integrals with

respsect to the original conditional density, the discrete approximation is guaranteed to

converge weakly to the continuous distribution. Moreover, the rate of convergence is

given by the rate of convergence of the selected quadrature formula.15

My Monte Carlo results in section 1.6 demonstrate that when the primary aim

is estimation of the parameters, very coarse discretizations are adequate. This is in line

with my theoretical results which show that the estimates are consistent independently of

the rate at which M grows. The discretization filter has the potential to scale to higher

dimensional problems by exploiting sparse grid quadrature methods (e.g. Smolyak grids),
15A special case of the discretization filter, known as the point mass filter, has been discussed at length

in the computer science literature. The elements of the transition matrix are chosen to be proportional
to the one-step-ahead density evaluated at the discretization points, i.e. P

q ,M (m,m0) ⇠ p
�

xm0,M |xm,M
�

.
However, since the primary aim in the computer science literature is to filter the states, the grid is chosen
to be very fine. Tensor grid product approximations quickly become intractable in higher dimensions, and
for this reason the point-mass filter is infrequently used. A comprehensive survey article on the properties
and applications of filtering techniques is Chen (2003).
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quasi-Monte Carlo methods, or the more recently proposed e-distinguishable set method

in Maliar and Maliar (2015). I leave the investigation of this extension for future research.

1.6 Monte Carlo Evidence

In this section, I consider two simulation exercises, a linear measurement error

model and a stochastic volatility model, to compare the performance of the discretization

filter with exisiting alternatives.

1.6.1 Measuring GDP: A Linear State Space Example

I first consider a simple linear Gaussian state space model to illustrate the perfor-

mance of the discretization filter in a case where the exact evaluation of the likelihood is

possible using the Kalman Filter.

Aruoba, Diebold, Nalewaik, Schorfheide, and Song (2016) propose extracting

a common component of the two widely available measures of GDP using a simple

measurement error model in order to provide a more accurate estimate of “true” GDP.

Let DGDPE,t and DGDPI,t denote the expenditure and income-side estimates of GDP

growth respectively, and let DGDPt denote true GDP growth, which is assumed to be

unobserved. Consider the following state space model

2

6

4

DGDPE,t

DGDPI,t

3

7

5

=

2

6

4

1

1

3

7

5

DGDPt +

2

6

4

eE,t

eI,t

3

7

5

DGDPt = µ (1�r)+rDGDPt�1 + eG,t

where
�

eG,t ,eE,t ,eI,t
�0 ⇠ i.i.d.N (000,S), with
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In their paper, Aruoba, Diebold, Nalewaik, Schorfheide, and Song (2016) also

consider a more sophisticated specification of the model which allows for correlation

between the measurement and state equation errors. The discretization filter can allow

for this at the cost of introducing time-varying transition matrices but I omit the details

for expositional simplicity. I focus on the restricted model outlined above.

I take the parameters estimated in the paper and simulate 500 samples of length

T = 204, which is the amount of data used for estimation. For each sample, I evaluate

the likelihood of the data using the Kalman filter (KF), the discretization filter (DF), and

the bootstrap particle filter (PF). I examine the following two statistics for assessing the

quality of the likelihood approximation discussed in Herbst and Schorfheide (2015)

D̂1 = ln p̂
q

�

YYY T
1
�

� ln p
q

�

YYY T
1
�

(1.21)

D̂2 = exp
⇥

ln p̂
q

�

YYY T
1
�

� ln p
q

�

YYY T
1
�⇤

�1 (1.22)

where p̂
q

�

YYY T
1
�

denotes the approximate likelihood computed with either the DF or the PF,

and p
q

�

YYY T
1
�

denotes the true likelihood evaluated with the KF. Since the approximation

to the likelihood provided by the PF is random, I use a 100 draws of the PF for every

realization of the data. I consider several choices for the number of particles N used

in the PF and for the proportionality constant used in the rule-of-thumb choice for the

number of grid points M in the DF proposed in (1.19).

Table 1.1 presents the results of the simulation exercise for the accuracy of the

likelihood approximations as measured by D̂1 and D̂2. An important distinction between
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the PF and the DF is that the PF approximation to the likelihood is random. It depends

on the particular path that is simulated for the particles. However, the DF approximation

to the likelihood is deterministic and thus has no associated sampling uncertainty for a

given draw of the data.

For the PF, the bias and standard deviation of the approximations for a particular

realization of the data are computed as the average value and standard deviation of the

likelihood discrepancies across the 100 draws of the particles respectively. Since the DF

is deterministic, there is only one value of the bias per sample realization and the standard

deviation is zero. The RMSE is given by the familiar Bias2 +Var formula. The means of

these statistics are then computed as the means across randomly generated samples.

To be more precise, index a draw of the data by s and a draw of the particles by g.

Define D̂PF
i,s,g as the value of discrepancy measure D̂i computed by the PF for sample s and

particle draw g. Similarly, define D̂DF
i,s as the value of discrepancy measure D̂i computed

by the DF for sample s. Then the PF statistics are computed as

Mean Bias
�

D̂PF
i
�

=
1
S

S

Â
s=1

"

1
G

G

Â
g=1

D̂PF
i,s,g

#

(1.23)

Mean Var
�

D̂PF
i
�

=
1
S

S

Â
s=1

"

D̂PF
i,s,g �

1
G

G

Â
g=1

D̂PF
i,s,g

#2

(1.24)

Mean RMSE
�

D̂PF
i
�

=
1
S

S

Â
s=1

"

1
G

G

Â
g=1

�

D̂PF
i,s,g
�2
#1/2

(1.25)

For the DF, the mean bias and RMSE are given by

Mean Bias
�

D̂DF
i
�

=
1
S

S

Â
s=1

D̂DF
i,s (1.26)

Mean RMSE
�

D̂DF
i
�

=
1
S

S

Â
s=1

h

�

D̂DF
i,s
�2
i1/2

(1.27)
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Table 1.1. Likelihood Discrepancies, GDP Measurement Model

Bootstrap Particle Filter
Number of particles N 100 500 1,000 5,000 10,000 50,000

Mean Bias D̂1 -2.484 -0.505 -0.257 -0.054 -0.029 -0.006
Mean StdD D̂1 2.292 0.991 0.698 0.310 0.221 0.100

Mean RMSE D̂1 3.394 1.121 0.750 0.318 0.224 0.101
Mean Bias D̂2 -0.014 -0.003 -0.001 -0.001 -0.002 0.000
Mean StdD D̂2 3.889 1.164 0.771 0.318 0.225 0.100

Mean RMSE D̂2 3.933 1.171 0.775 0.320 0.226 0.101
Discretization Filter

Rule of thumb constant c 1/2 1 3 5 7 10
Mean Bias D̂1 -0.405 -0.040 0.001 0.002 0.001 0.001
Mean StdD D̂1 - - - - - -

Mean RMSE D̂1 1.287 0.383 0.114 0.070 0.053 0.042
Mean Bias D̂2 0.085 0.029 0.007 0.004 0.003 0.002
Mean StdD D̂2 - - - - - -

Mean RMSE D̂2 1.119 0.391 0.113 0.069 0.051 0.039

and Mean Var
�

D̂DF
i
�

= 0 for the reason explained above.

Table 1.2 reports the average absolute and relative evaluation times of the likeli-

hood function across all specifications. The absolute times are reported in seconds. For

the PF, these are computed as the average across samples and particle draws. For the DF

and the KF, these are simply reported as averages across the samples. The relative times

are computed as the time of one evaluation of the likelihood function relative to the time

it takes for the KF.

Considered together, tables 1.1 and 1.2 provide a better understanding of the

tradeoff between accuracy and computational complexity that both the DF and PF exhibit.

As an example, note that the evaluation of the likelihood using 100 particles for the PF

and a rule of thumb constant of 7 for the DF take roughly the same amount of time,

about 0.02 seconds. However, the DF is 2 orders of magnitude more accurate in terms of

RMSE. Similarly, consider the PF with 50,000 particles and the DF with a rule of thumb

constant of 3. These are roughly the same in terms of RMSE, but the DF evaluation
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Table 1.2. Computation Time of 1 Likelihood Evaluation (in seconds), GDP
Measurement Model

Kalman Filter
Mean Time 0.007

Bootstrap Particle Filter
Number of particles N 100 500 1,000 5,000 10,000 50,000

Mean Time 0.020 0.039 0.055 0.194 0.351 1.845
Mean Relative Time 3.13 6.13 8.66 30.30 54.84 288.63

Discretization Filter
Rule of thumb constant c 1/2 1 3 5 7 10

Mean Time 0.009 0.009 0.011 0.014 0.020 0.032
Mean Relative Time 1.38 1.37 1.69 2.16 3.10 4.99

of the likelihood is about 170 times faster. Examining the other elements of the tables

leads to a similar conclusion: the DF offers a much better tradeoff between accuracy and

computation time than the PF.

1.6.2 Stochastic Volatility

Next, I compare the performance of different estimation procedures on a stochastic

volatility model. The standard discrete time stochastic volatility model, as formulated in

Taylor (1982), is given by

Xt = µ (1�r)+rXt�1 + vt vt ⇠ i.i.d. N
�

0,s2� (1.28)

Yt = eXt/2wt wt ⇠ i.i.d. N (0,1) (1.29)

Note that the measurement equation can be equivalently rewritten as:

log
�

Y 2
t
�

= Xt + log
�

w2
t
�

(1.30)

which leads to an additively separable state equation.16 However, this simplification
16This is the specification of the observation equation I use in the EKF estimation. This can also be
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only applies to the most basic versions of the stochastic volatility model. I focus on

results from the parameterization µ =�8.940, r = 0.9890, and s = 0.1150, which are

empirical estimates of the parameters of the stochastic volatility model on daily returns

data from the DAX in Hautsch and Ou (2008). The results are not sensitive to this

parameterization.

I simulate data for T = 100, 500, and 1,000 periods, and compute the likelihood

of the model eight different ways: the DF using six different choices of the rule of

thumb constant c, the boostrap PF with adaptive resampling using 1,000 particles, and

the extended Kalman filter (EKF). Each specification is simulated 1,000 times and

estimation is performed via maximum likelihood where optimization is done using

MATLAB’s genetic algorithm in the global optimization toolbox. The random seed used

to construct the particle filter approximation is fixed for a given sample in order to make

the optimization better behaved.17

Figures 1.2, 1.3, and 1.4 display the sampling distributions of the maximum

likelihood estimators. The rows of each figure correspond to a particular model parameter

and the columns correspond to a particular method of approximating the likelihood. A

vertical line is displayed at the point of the true parameter value. All estimation using the

discretization filter uses the Rouwenhorst (1995) discretization scheme.18

Note that for small sample sizes, T = 100, there is a considerable downward bias

in the estimation of r and s . That is, the optimization algorithm is picking values of r

and s extremely close to 0. This bias is most severe in the EKF estimates, especially

thought of as a misspecified Kalman filter where the measurement error is incorrectly assumed to be
Gaussian.

17Note that traditional gradient based optimization methods are inapplicable to the PF because the
likelihood function is simulated, which makes it non-differentiable. See Flury and Shephard (2011) for a
more detailed discussion.

18Estimation was also performed using the Farmer and Toda (2016) method, the Tauchen (1986) method,
and the point-mass filter. The Rouwenhorst method performs the best although the relative gains of the
discretization filter are similar across all discretization methods.
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Figure 1.2. MLE Sampling Distributions for Sample Size T = 100, Stochastic Volatility
Model

for s . However, this is not particularly surprising because the EKF is estimating a

misspecified model, where it is treating the residual in the observation equation as a

normal random variable, even though it has a log
�

c

2
1
�

distribution.

This bias vanishes for both the DF and the PF in the larger sample simulations

and the DF appears to produce tighter estimates of all 3 parameters, especially r . This is

due, at least in part, to the fact that the accuracy of the Rouwenhorst approximation is

independent of the persistence of the AR(1) process.

I also compute the root mean squared error (RMSE) and the bias of the parameter

estimates, approximating the population expectation with an average across simulations.
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Figure 1.3. MLE Sampling Distributions for Sample Size T = 500, Stochastic Volatility
Model
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Figure 1.4. MLE Sampling Distributions for Sample Size T = 1,000, Stochastic
Volatility Model
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In particular, for the i-th component of the parameter vector, I compute:

RMSE
�

q̂i
�

=

r

E
h

�

q̂i �qi
�2
i

(1.31)

Bias
�

q̂i
�

= E [qi]�qi (1.32)

and report the results in table 1.3.

First consider the DF with c = 5 and its performance relative to the PF and the

EKF. The DF and the PF are similar in terms of RMSE and bias for T = 100, however the

DF generally outperforms the PF for the larger sample sizes. The EKF is unambiguously

the worst except for estimation of the mean parameter µ . It is also interesting to note that

the performance of the PF for estimating µ actually deteriorates for larger sample sizes,

which seems to be evidence of sample thinning, a well known problem with importance

sampling methods.

Next I examine the performance of the DF for different values of the rule of thumb

constant c. For T = 100 and to a lesser extent for T = 500, the RMSE and bias actually

seem to increase for larger values of c. There are a couple of possible explanations for

this phenomenon. The first is that the asymptotic analysis in section 1.4 considers the

case of a compact state space, whereas in this example as in most examples of economic

interest, the state variable resides in an unbounded space. Thus, as the discretization

is being constructed for larger values of c, the number of points is increasing, but so is

the domain over which the approximation is constructed. This could potentially cause

numerical issues for smaller sample sizes, because the discretization points cover large

areas of the state space which are never visited in the sample.

A second possibility is that these larger numbers are actually more consistent with

the RMSE and bias of the infeasible maximum likelihood estimator. In other words, the

misspecification caused by small values of M is actually acting as a type of regularization
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Table 1.3. Accuracy of Parameter Estimates, Stochastic Volatility Model

Root Mean Squared Error

Discretization Filter PF EKF
ROT constant c 1/2 1 3 5 7 10 - -

µ

µ

µ

T = 100 0.511 0.538 0.611 0.618 0.623 0.669 0.488 0.521
T = 500 0.450 0.475 0.511 0.516 0.486 0.508 0.574 0.445

T = 1,000 0.343 0.364 0.370 0.381 0.339 0.391 0.614 0.336

r

r

r

T = 100 0.598 0.584 0.603 0.617 0.630 0.637 0.572 0.727
T = 500 0.108 0.080 0.101 0.103 0.121 0.134 0.108 0.304

T = 1,000 0.014 0.014 0.015 0.015 0.014 0.015 0.042 0.126

s

s

s

T = 100 0.228 0.225 0.236 0.238 0.246 0.251 0.244 0.621
T = 500 0.061 0.057 0.061 0.064 0.072 0.072 0.111 0.293

T = 1,000 0.027 0.027 0.027 0.027 0.027 0.027 0.076 0.163

Bias

Discretization Filter PF EKF
ROT constant c 1/2 1 3 5 7 10 - -

µ

µ

µ

T = 100 -0.036 -0.039 -0.035 -0.029 -0.027 -0.031 -0.028 0.005
T = 500 -0.031 -0.027 -0.017 -0.015 -0.012 -0.018 0.003 -0.001

T = 1,000 -0.008 0.015 0.007 0.015 0.015 0.026 0.016 0.020

r

r

r

T = 100 -0.441 -0.427 -0.455 -0.475 -0.493 -0.504 -0.442 -0.617
T = 500 -0.030 -0.030 -0.036 -0.035 -0.038 -0.041 -0.048 -0.136

T = 1,000 -0.008 -0.009 -0.009 -0.009 -0.009 -0.009 -0.017 -0.034

s

s

s

T = 100 0.111 0.105 0.108 0.106 0.111 0.113 0.134 0.340
T = 500 0.020 0.019 0.022 0.021 0.022 0.023 0.062 0.186

T = 1,000 0.006 0.006 0.006 0.006 0.006 0.006 0.035 0.125

which is outperforming the maximum likelihood estimator for small sample sizes. Note

that this phenomenon is absent for larger sample sizes, and the estimates of the RMSE

and bias appear stable across all values of c.

Table 1.4 displays the average simulation times for all eight specifications. The

differences in computational time are stark. With c = 1, the EKF is 32 times faster than

the DF for small sample sizes and 78 times faster for large ones. However, this is at

the cost of parameter estimates which are significantly less accurate for larger sample

sizes. Furthermore, the EKF estimate of s appears to be significantly biased, even

asymptotically, due to the misspecification of the observation equation.
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Table 1.4. Computation Time of 1 Likelihood Evaluation (in seconds), Stochastic
Volatility Model

Discretization Filter PF EKF
ROT constant c 1/2 1 3 5 7 10 - -

T = 100 0.001 0.001 0.002 0.003 0.005 0.009 0.010 0.000
T = 500 0.002 0.003 0.008 0.017 0.034 0.083 0.120 0.000

T = 1,000 0.005 0.006 0.018 0.046 0.101 0.273 0.401 0.000

For estimates which are roughly the same accuracy for T = 100, the DF is an

order of magnitude faster than the PF. For T = 1,000, the DF is between twice and

three times as accurate as the particle filter while being 2 orders of magnitude faster.

These results suggest that the DF is somewhere in between the EKF and the PF in

terms of computational burden, while delivering accurate parameter estimates. To give

the reader a rough idea, all of the simulations for the DF and the EKF ran in a matter

of minutes to hours whereas the most computationally burdensome PF specification

(T = 1,000) took almost five days to run operating in parallel on four cores. These

reductions in computation time make the estimation of many dynamic macroeconomic

and financial models feasible. In the case of the Gabaix (2012) rare disasters model,

the estimation takes several hours running MATLAB on a standard desktop computer,

whereas estimation using a PF would likely take several weeks.

Another important dimension for comparison is the accuracy of the filtered states,
�

x̂t|t
 T

t=1. I provide results on the root mean square error (RMSE) and the mean absolute

error (MAE) of all the methods. For a given model specification and method, these are

defined as:

RMSE =

 

1
T

T

Â
t=1

�

x̂t|t � xt
�2
!1/2

(1.33)

MAE =
1
T

T

Â
t=1

�

�x̂t|t � xt
�

� (1.34)
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I define the average RMSE (ARMSE) and average MAE (AMAE) to be the

average of the RMSE and the MAE across simulations for a given method. Table 1.5

displays the ARMSE and AMAE of each method, where the filtering is done using the

corresponding maximum likelihood estimates of the parameters for a given sample.

Table 1.5. Accuracy of Filtered State Estimates, Stochastic Volatility Model

Average Root Mean Squared Error

Discretization Filter BPF EKF
ROT constant c 1/2 1 3 5 7 10 - -

T = 100 0.362 0.360 0.362 0.365 0.368 0.370 0.374 0.498
T = 500 0.378 0.379 0.385 0.388 0.390 0.391 0.383 0.465

T = 1,000 0.379 0.381 0.385 0.386 0.386 0.387 0.383 0.452

Average Absolute Mean Error

Discretization Filter BPF EKF
ROT constant c 1/2 1 3 5 7 10 - -

T = 100 0.297 0.294 0.295 0.297 0.299 0.300 0.307 0.390
T = 500 0.302 0.302 0.304 0.305 0.306 0.306 0.306 0.372

T = 1,000 0.302 0.303 0.304 0.304 0.304 0.304 0.305 0.361

The DF and PF perform roughly the same for all sample sizes. However, keep

in mind that this is for dramatically different estimation times for the parameters as

discussed above. The misspecification of the measurement error distribution using the

EKF translates into poor estimates of the unobserved state.

1.7 Variable Rare Disasters

In this section, I provide the first estimates of the Gabaix (2012) model of variable

rare disasters. I show how likelihood-based estimation can be used as a model diagnosis

tool. In particular, I find that (i) the estimated model fails to identify the Great Recession

as a disaster episode, and (ii) the model cannot capture the change in the dynamics of the

price-dividend ratio starting in the 1990s. To explain (i), the model requires a positive
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expected jump in inflation in the event of a disaster in order to generate an upward sloping

nominal yield curve. However, during the Great Recssion, we observed a strongly upward

sloping nominal yield curve in conjunction with close to zero inflation and even deflation.

For (ii), the model specifies a process which is close to an AR(1) which governs the

dynamics of the price-dividend ratio, while the price-dividend ratio starting the 1990s

appears to exhibit a structural break both in its mean and its dynamics.

1.7.1 Model Setup

The model is an endowment economy where a representative agent has lifetime

expected utility over consumption given by:

E0

"

•

Â
t=0

e�rt C1�g

t
1� g

#

g > 0 is the coefficient of relative risk aversion, and r > 0 is rate of time preference.

Each period she receives consumption endowment Ct . For expositional purposes, I only

present the version of the model with CRRA utility here, however for estimation purposes

I consider the full Epstein-Zin version of the model which allows risk aversion and the

IES to be independently estimated.

The endowment stream is hit by large but infrequent disasters. The dynamics of

consumption are given by:

Dct+1 = gC +wt+1bt+1 (1.35)

where gC is the normal-time growth rate of the economy, Bt+1egC is the growth rate if a

disaster occurs (bt+1 := logBt+1), and wt+1 is an indicator for whether a disaster occurs

at time t +1, which happens with probability pt .

Consider a stock i which is a claim to a stream of dividend payments (Dt)t�0.
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The growth rate of its dividends is assumed to follow

Ddt+1 = gD + e

D
t+1 +wt+1 ft+1 (1.36)

where gD is the growth rate of dividends in normal times, e

D
t+1 is a mean zero shock that

is independent of the disaster event, and Ft+1 ( ft+1 := logFt+1) is the recovery rate of the

dividend. That is, in the event of a disaster, there can be “partial default.” If Ft+1 = 0, the

asset is completely destroyed, and if Ft+1 = 1 there is no loss relative to normal times.

In contrast with some of the other more recent papers on variable rare disasters

such as Wachter (2013) and Gourio (2012), the probability of a disaster is fixed in the

baseline model. It is the severity of a disaster which is time-varying. The combination of

variations in the disaster probability and the severity are captured by a variable called

“resilience.” Define resilience Ht of the asset as

Ht ⌘ ptED
t

h

B�g

t+1Ft+1 �1
i

(1.37)

Assets with high resilience are safer than assets with low resilience because they pay out

more in disaster states, and thus will command lower risk premia.

As in Gabaix (2012), I split resilience into a constant part H⇤ and a variable part

Ĥt with mean zero. The dynamics of Ĥt are assumed to follow a linearity-generating

process (Gabaix 2009)

Ĥt+1 =
1+H⇤
1+Ht

e�fH Ĥt + e

H
t+1 (1.38)

Linearity generating processes behave like first-order autoregressive processes close to

their steady state but display nonlinear dynamics as they reach more extreme values.

Define d ⌘ r + ggC, h⇤ ⌘ log(1+H⇤), and di ⌘ d � gD � h⇤. It can be shown
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that the price-dividend ratio of the asset is given by

Pt

Dt
=

1
1� e�di

 

1+
e�di�h⇤Ĥt

1� e�di�fH

!

(1.39)

The unconditional equity premium for the asset is given by

re
t = d �Ht � ptEt [1�Ft+1]� r f (1.40)

where r f , the risk-free rate, is given by

r f = d � ptEt

h

B�g

t+1 �1
i

(1.41)

Turning to the nominal side of the economy, inflation It = I⇤+ Ît is assumed to

vary exogenously and its non-constant component Ît also follows a linearity-generating

process. In addition, inflation jumps by an amount Jt = J⇤+ Ĵt in the event of a disaster.

J⇤ is the baseline jump in inflation in the event of a disaster, and Ĵt is a mean-reverting

deviation in this jump size from its baseline. Their dynamics are jointly given by

Ît+1 =
1� I⇤
1� It

⇣

e�fI Ît +wt+1Jt

⌘

+ e

I
t+1 (1.42)

Ĵt+1 =
1� I⇤
1� It

e�fJ Ĵt + e

J
t+1 (1.43)

where e

I
t+1 and e

J
t+1 are mean zero shocks which are uncorrelated with disasters, but may

be correlated with each other. This allows me to define the variable pt , the variable part

of the bond premium, as

pt ⌘
ptEt

h

B�g

t+1F$,t+1

i

1+H$
Ĵt

pt is what controls deviations of the slope of the nominal yield curve from its typical
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value, while inflation controls the level relative to the real yield.

Define Y ⌘ e�d (1+H$)(1� I⇤), r̃I ⌘ e�fI+k

1�k

, and r̃J ⌘ e�fJ
1�k

. The price of a

nominal zero-coupon bond of maturity T at time t is given by

Z$t (T ) =(Y(1�k))T ⇥
⇢

1� 1
1�k

1� r̃

T
I

1� r̃I

✓

Ît
1� I⇤

�k

◆

� 1
(1�k)2

1�r̃

T
I

1�r̃I
� 1�r̃

T
J

1�r̃J

r̃I � r̃J

pt

1� I⇤

9

=

;

The corresponding yield is

yt (T ) =� lnZ$t (T )
T

. (1.44)

I now turn to the details of the estimation.

1.7.2 Estimation

I fix a subset of parameters related to the cash flow dynamics, the severity of

disasters, and inflation in Table 1.6.

Table 1.6. Calibrated Parameters, Rare Disasters Model

Parameters Values
Growth rate of consumption
and dividends g = gC = gD = 2.5%

Volatility of dividend growth
sD = 11%

Recovery rate of C after a
disaster B = 0.66

Stock’s recovery rate: typical
value Fi⇤ = B = 0.66

Inflation: typical value I⇤ = 3.8%

The means of consumption and dividend growth, the volatility of dividend growth,

the recovery rate of consumption after a disaster, and the typical value of the stock’s

recovery rate are fixed to the values used in Gabaix (2012). I set the typical value of

inflation to be 3.8%, which is the sample average of CPI inflation in my sample.
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For my baseline estimation results, I use monthly data on the price-dividend ratio

of the CRSP value-weighted portfolio, nominal yields on U.S. Treasury securities, and

CPI inflation from June 1961 to December 2015. This is the longest sample for which

all variables are available. The data on nominal yields are constructed as in Gürkaynak,

Sack, and Wright (2007) and I use maturities of 3 and 6 months, 1, 2, 5, 7, and 10 years.

Inflation is constructed as the 12-month change in log CPI.

The model has three state variables: resilience Ĥt , inflation Ît , and jumps in

inflation Ĵt . The mapping from resilience to the price-dividend ratio is given by (1.39)

and the mapping from inflation and jumps in inflation to nominal yields is given by (1.44).

I assume that the price-dividend ratio, nominal yields of all maturities, and inflation

itself are observed with error with measurement errors given by ePDobs ⇠ N (0,sPDobs),

eyobs ⇠ N (0,syobs), and eIobs ⇠ N (0,sIobs) respectively. The measurement errors are

assumed to be independent of each other and all other quantities in the model.

I estimate the vector of 13 parameters (10 structural and 3 measurement error

variances)

q ⌘ (r,g,y, p,fH ,sI,fI,J⇤,sJ,fJ,sPDobs ,syobs ,sIobs)
0

by maximum likelihood using the Farmer and Toda (2016) method with an 11 point grid

for each state variable. This results in a total of 113 = 1,331 discrete points. Table 1.7

shows the estimated parameters, with quasi maximum likelihood robust standard errors

in parentheses, along with the calibrated values used in Gabaix (2012).

First, consider the values of the preference parameters r,g,y . The estimated

value of the rate of time preference r , 3.07%, is significantly lower than its calibrated

value of 6.57%. In terms of annual discount factors, this translates into the difference

between 0.970 and 0.936. Next, the estimated coefficient of relative risk aversion g ,

2.8, is significantly lower than its calibrated value of 4. This is heartening because
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Table 1.7. Estimated Parameters, Rare Disasters Model

Parameters Estimated Values Gabaix Calibration
Time preference, r 3.07% (1.59%) 6.57%
Risk aversion, g 2.812 (0.487) 4
Intertemporal elasticity of
substitution, y

0.257 (0.101) 0.25

Probability of a disaster, p 4.81% (0.72%) 3.63%
Resilience:

volatility, sF 7.0% 10%
speed of mean reversion, fH 12.48% (14.41%) 13%

Inflation:
conditional volatility, sI 0.61% (3.08%) 1.5%
speed of mean reversion, fI 15.21% (5.14%) 18%

Jump in inflation:
typical value, J⇤ 2.56% (0.53%) 2.1%
conditional volatility, sJ 6.83% (6.71%) 15%
speed of mean reversion, fJ 82.13% (95.33%) 92%

Volatility of measurement errors:
price-dividend ratio, sPDobs 2.62 (5.76) -
nominal yields, syobs 0.43% (0.54%) -
inflation, sIobs 2.66% (7.14%) -

traditionally asset pricing models require what are often considered unreasonably high

values of risk aversion in order to match financial data. This number is more in line with

typical macroeconomic calibrations of DSGE models. Lastly, the IES y is estimated to

be 0.26, and importantly, is significantly less than 1. This is consistent with the empirical

micro evidence, but at odds with values that are typically chosen in asset pricing models.

Second, the probability of a disaster is estimated to be 4.81% annually, compared

to the calibrated value of 3.63% which comes from Barro and Ursúa (2008). Given that

there are a very few observations of consumption disasters in the data, it seems reasonable

to think that this probability may be higher than existing empirical estimates that rely on

macro data.

Lastly, the estimates of the parameters governing the dynamics of inflation and

jumps in inflation differ between the estimated and calibrated models. The estimated
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model favors more peristent and less volatile processes for both of these quantities.

Table 1.8. Parameter Values Implied by Estimation, Rare Disasters Model

Parameters Estimated Values Gabaix Calibration
Ramsey discount rate, d 12.8% 16.6%
Risk-adjusted probability of
disaster, pE

h

B�g

t+1

i 15.5% 19.2%

Stocks:
effective discount rate, di 1.7% 5%

Stock resilience:
typical value, H⇤ 8.6% 9.0%
volatility, sH 1.1% 1.9%

Stocks, equity premium:
conditional on no disasters 5.3% 6.5%
unconditional 3.6% 5.3%

Real short-term rate 2.1% 1.0%
Resilience of one nominal dollar,
H$

10.7% 16.0%

5-year nominal slope yt (5)� yt (1):
mean 0.55% 0.57%
volatility 0.81% 0.92%

Long-run � short-run yield:
typical value, k 3.5% 2.6%

Inflation:
I⇤⇤ 7.3% 6.3%
yI 8.2% 13%
yJ 78.6% 90%

Bond risk premium:
volatility, s

p

0.95% 2.9%

I next consider some additional quantities implied by the model evaluated using

both the estimated parameter values and the calibrated ones. The results are presented in

table 1.8. A key quantity of interest is the risk-adjusted probability of a disaster, given by

pE
h

B�g

t+1

i

. This is the quantity that allows the model to match high average risk premia.

The estimated model implies a value of 15.5%, less than 4 percentage points lower than

the calibrated value of 19.2%. Given that Bt+1 = B is fixed across both specifications, the

differences in this quantity are coming from differences in the probability of a disaster

and the coefficient of relative risk aversion. The higher probability of a disaster and
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lower value of risk aversion estimated by maximum likelihood allow the model to remain

broadly consistent with a wide variety of asset pricing facts.

In particular, the model still achieves an unconditional equity premium of 3.6%,

roughly half of what it is in the data, while the calibration produces 5.3%. The estimated

real short-term rate is a bit high at 2.1% relative to the calibration which targets 1%,

although this is consistent with the historical average of data back to 1891 is considered.

The estimated model matchces the average level and volatility of the 5-year slope of the

nominal yield curve produced by the calibration.

1.7.3 Implications of the Filtered State Estimates

I now focus on two implications of the model which come from the ability to

examine the filtered and smoothed states implied by the estimated parameters. First, from

the processes for inflation and jumps in inflation, I can back out the implied probability

of a disaster having occured in any given period. Note that in the event of a disaster, the

conditional mean of inflation at time t +1 given information up to time t is

1� I⇤
1� It

⇣

e�fI Ît + Jt

⌘

whereas in the event of no disaster, this conditional mean is

1� I⇤
1� It

e�fI Ît

By running the discretization filter at the estimated parameter vector, I can obtain filtered

and smoothed estimates of the time series
�

Ît
 T

t=1 and {Jt}T
t=1. Since the innovation to

inflation each period, e

I
t+1, has a normal distribution with standard deviation sI , I can

compute the likelihood of having observed the value of Ît+1 implied by these estimates

in the event of a disaster and in the event of no disaster. Figure 1.5 plots the probability
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of a disaster having occurred in each period of the sample by applying this procedure

using both the filtered and smoothed estimates of the states. The results using the filtered

states are in blue and the results using the smoothed states are in red.

Figure 1.5. Estimates of Disaster Probability, Rare Disasters Model

First, note that the filtered and smoothed estimates together identify three potential

disaster episodes over the sample. I will refer to a “potential disaster episode” as a period

where the estimated model assigns more than a 20% chance to a disaster having occured.

The filtered estimates identify the early 1970s and the late 1970s as potential disaster

episodes. The smoothed estimates identify the same period in the late 1970s and a then

a period in the early 2000s coinciding with the dot com bubble as potential disaster

episodes.

While the two series do not fully agree on which periods are potential disaster

episodes, they both come to the same conclusion regarding the Great Recession. At

no point during the Great Recession does either series assign more than a 5% chance
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of a disaster having occurred. While this may seem surprising at first, upon further

investigation it makes a lot of sense.

During the Great Recession, the U.S. experienced low inflation relative to the rest

of the sample, and even a period of deflation. However, at the same time, the nominal

yield curve was upward sloping. The Gabaix model achieves an upward sloping nominal

yield curve through an expected positive jump in inflation. Since the model is being fit to

both inflation data and data on nominal yields, it is trying to reconcile a period of expected

low inflation / deflation with a period of upward sloping nominal yield curves but ends

up splitting the difference. This suggests a shortcoming of the Gabaix framework, which

is that rare disasters are typically coupled with expected increases in inflation. However,

in the U.S. and many other developed countries, financial crises are typically coupled

with deflation and upward sloping nominal yield curves.

Next, I examine the model’s implications for the recovery rate of stocks, Ft .

Recall that Ft is the fraction of its value that a stock retains in the event of a disaster. The

recovery rate is an affine function of the state variable resilience Ĥt , for which I construct

filtered and smoothed estimates and plot in figure 1.6. As above, the results using the

filtered states are in blue and the results using the smoothed states are in red. The black

line is the long run average of the recovery rate, which is calibrated to be 66% as in

Gabaix (2012).

What immediately jumps out is that before the late 1990s, the recovery rate is

estimated to be about 20% on average, persistently low relative to its long run average of

66%. This shoots up to almost 100% during the dot com bubble and crashes back down

to its long run average in the mid 2000s. It again experiences a sharp decline during the

Great Recession and bounces back close to its long run average at the end of the sample.

This is counterintuitive because it suggests that the model considers the Great Moderation

to be particularly risky relative to the rest of the sample. On average, investors were
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Figure 1.6. Estimates of Recovery Rate, Rare Disasters Model

expecting to lose about 80% of the value of their assets in the event of a disaster whereas

the model implies that they should typically expect to lose 34%.

This result begins to make a lot more sense when one examines the connection

between the recovery rate and the price-dividend ratio. In the Gabaix model, the price-

dividend ratio of a stock is an affine function of its recovery rate. Unsurprisingly,

movements in the recovery rate are closely linked to movements in the price-divdend

ratio, with the only differences being attributed to measurement error.

The differences in the implied moments of the price-dividend ratio and stock

returns are presented in table 1.9. The first thing that stands out from looking at this table

is that the level of the price-dividend ratio implied by the estimated model parameters is

about three times larger than the value implied by the calibrated model. This has a lot to

do with the sample used in the estimation. The historical average of the price-dividend

ratio targeted by Gabaix, 23, is computed using data that ends in 1997. However, the data
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I use for estimation goes all the way up to 2015, which includes the dot-com bubble and

subsequent Great Recession.

Table 1.9. Stock Market Moments

Data
(Campbell

Sample
1891-1997)

Data
(Estimation

Sample
1961-2015)

Estimated
Model

Calibrated
Model

Mean P/D 23 39.2 57.6 18.2
Std. dev. lnP/D 0.33 0.40 0.21 0.30
Std. dev. of stock returns 0.18 0.15 0.11 0.15

The price-dividend ratio reaches a maximum value of 92 in the early 2000s and

has an average value of 39 over my sample, almost twice the value targeted by Gabaix.

The estimation chooses values of the structural parameters that allow the model to achieve

these high values of the price-dividend ratio. The estimated model also understates the

volatility of the price-dividend ratio. Unsurprisingly, given the lower volatility and higher

mean of the price-dividend ratio, this results in a lower volatility of stock returns than the

calibrated model, 11% vs. 15%, for the same values of the cash flow parameters.

Given the pronounced change in the both the level of the price-dividend ratio and

its dynamics (sharper decreases and increases) after 1997, the fit of the Gabaix model may

be greatly improved by allowing for switches in the parameters governing the long-run

average, persistence, and volatility of the recovery rate. This would help produce more

sensible economic estimates of the recovery rate.

The estimation of both the probability of a disaster having occurred and the re-

covery rate is an exercise which can only be conducted using likelihood-based estimation

procedures. This highlights an advantage of likelihood-based methods over calibration

and other moment-matching based methods: the ability to construct estimates of the

hidden state variables. By constructing estimates of the hidden state variables, one is able

to consider the model’s implications for dynamics in addition to moments. The calibrated
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version of the Gabaix model does an excellent job of matching several moments of asset

pricing data related to equities, bonds, and options. However, the estimation shows that

the model also exhibits a couple of important shortcomings regarding the coupling of rare

disasters with positive expected inflation and economically counterintuitive implications

for the recovery rate of equity.

1.7.4 Model Comparison

Finally, I formally test the null hypothesis that the estimated model provides

a better fit to the data than the calibrated model. To do this, I fix the parameters as

calibrated in Gabaix (2012) and estimate the measurement errors using the same data as

the full estimation outlined previously. Denote the resulting parameter vector as q0. I test

the null hypothesis that H0 : q = q0 against the alternative hypothesis H1 : q = q̂ using a

likelihood ratio test. The likelihood ratio statistic is given by

LR = 2
⇥

`T,M
�

q̂

�

� `T,M (q0)
⇤

= 7,471

This is compared to a c

2 (10) because the unrestricted model has 10 extra parameters

that are freely estimated. The 99% critical value for the test is 23.21 and thus the null hy-

pothesis is overwhelmingly rejected in favor of the alternative. Again, this is unsurprising

given the calibrated model’s inability to match the extreme values of the price-dividend

ratio observed in the 2000s. The only way the calibrated model can rationalize these

observations is by choosing unreasonably large values of the measurement error variance

for the price-dividend ratio.
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1.8 A Term Structure Model with a Zero Lower Bound

In this section, I re-estimate the term structure model proposed in Wu and Xia

2016, and provide an updated estimate of their shadow rate series with data through

January 2014. Using the discretization filter I am able to replicate most of their parameter

estimates. While my filtered series and the Wu and Xia estimates match closely over most

of the sample, they diverge after the onset of the zero lower bound in January 2009. My

estimates indicate that the shadow rate was roughly 2.2 percentage points lower in July

2012 than the Wu and Xia estimates would indicate. I conjecture that the estimates differ

because the DF provides a more accurate approximation than the EKF to nonlinearities

in the state space when the zero lower bound is in effect. Furthermore, the EKF estimator

is in general not consistent, while the DF estimator is.

I omit details of the derivation of their shadow rate model. What is key for my

purposes is that under the presence of a zero lower bound on short term interest rates, they

are able to derive an approximate nonlinear state space model characterizing movements

of the yield curve:

Xt = µ +rXt�1 +Svt vt ⇠ i.i.d. N (0, I3) (1.45)

Yn,n+1,t = r+s

Q
n g
✓

an +b0nXt � r
s

Q
n

◆

+wt wt ⇠ i.i.d. N (0,w) (1.46)

where Yn,n+1,t corresponds to the one-period forward rate at time t for a loan starting at

t +n and maturing at t +n+1, and Xt is a (3⇥1) vector of latent factors which explain

movements in the yield curve. For a derivation of the expressions for an,bn, and s

Q
n , I

refer the reader to Wu and Xia 2016.

Using their data on the 3 and 6 month, 1, 2, 5, 7, and 10 year forward rates, one

has 7 observation equations, one for each observed yield maturity. They further assume
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that each forward rate is observed with normally distributed measurement error with the

same variance w . q is a (22⇥1) vector of structural parameters.19

Table 1.10 reports maximum likelhood estimates of the parameters from the

model with QMLE robust standard errors20, using the DF with 9 discretization points

along each dimension (i.e. 93 = 729 total discretization points). I use the Gospodinov and

Lkhagvasuren (2014) method to discretize the VAR state dynamics, which generalizes

the method of Rouwenhorst (1995) to VAR(1) systems. I also include the estimates from

Wu and Xia (2016) for comparison.
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Figure 1.7. Estimated Shadow Rates, Shadow Rate Term Structure Model

Though the parameter estimates obtained using the DF are similar, they produce a

drastically different shadow rate series in the zero lower bound period (from about January
19It has been pointed out that the results may be sensitive to the arbitrary choice of r = 0.25, see Bauer

and Rudebusch (2016). As a robustness check I also estimate r as a free parameter and find that it has little
effect on subsequent analysis.

20See Hamilton (1994) for details.
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Table 1.10. Maximum Likelihood Parameter Estimates (QMLE Standard Errors in
Parantheses), Shadow Rate Term Structure Model

Discretization Filter Extended Kalman Filter
1200µ -0.2251 -0.2061 0.0256 -0.3035 -0.2381 0.0253

(0.0767) (1.3693) (0.0318) (0.1885) (0.1815) (0.0160)
r 0.9648 0.0056 0.4541 0.9638 -0.0026 0.3445

(0.0100) (0.0212) (1.5863) (0.0199) (0.0183) (0.4821)
-0.0234 0.9626 0.8170 -0.0226 0.9420 1.0152
(0.1809) (0.0762) (5.2167) (0.0202) (0.0212) (0.5111)
0.0046 0.0035 0.7750 0.0033 0.0028 0.8869

(0.0023) (0.0067) (0.1050) (0.0018) (0.0019) (0.0385)
eig(r) 0.9765+0.006i 0.9765-0.006i 0.7513 0.9832 0.9642 0.8452

r

Q 0.9983 0 0 0.9978 0 0
(0.0026) (0.0003)

0 0.9608 1 0 0.9502 1
(0.0121) (0.0012)

0 0 0.9608 0 0 0.9502
(0.0121) (0.0012)

1200d0 13.2418 13.3750
(2.3324) (1.0551)

1200S 0.2511 0.4160
(0.3467) (0.0390)
-0.0535 0.2541 -0.3999 0.2445
(0.3483) (0.1978) (0.0369) (0.0233)
-0.0002 0.0026 0.0338 -0.0110 0.0033 0.0390
(0.0026) (0.0058) (0.0095) (0.0069) (0.0034) (0.0030)

1200
p

w 0.1638 0.0893
(0.0403) (0.0027)

2009 onward).21 These differences are illustrated in figure 1.7. I include 95% standard

error bands for the shadow rate series estimated with the DF (where the randomness

is coming from uncertainty about the state, not the parameters). This emphasizes the

fact that the method used to estimate a nonlinear dynamic model can have important

economic implications.
21Note that once the parameter vector is estimated, I use the DF with 33 discretization points along each

dimension to produce more smoothly varying filtered series. However, the qualitative difference remains
even for coarser discretizations.
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1.9 Conclusion

Existing methods for estimating nonlinear dynamic models are either too com-

putationally complex to be of practical use, or rely on local approximations which fail

adequately to capture the nonlinear features of interest. In this paper, I develop a new

method, the discretization filter, for approximating the likelihood of nonlinear, non-

Gaussian state space models. This approximation is simple to compute and can be used

to accurately estimate a models parameters using classical or Bayesian methods.

I apply results from the statistics literature on uniformly ergodic Markov chains

to establish that the maximum likelihood estimator implied by the discretization filter is

strongly consistent, asymptotically normal, and asymptotically efficient. I demonstrate

through simulations that the discretization filter is orders of magnitude faster than al-

ternative nonlinear techniques for the same level of approximation error and I provide

practical guidelines for applied researchers.

I demonstrate that the filtering method used to estimate nonlinear models has

sizeable effects on the accuracy of the estimated parameters and the accuracy of the

filtered states. I show that these estimation differences translate into quantitatively

significant economic differences using the Wu and Xia (2016) shadow rate model as

an example. My findings have important implications for policy makers who use the

Wu and Xia shadow rate as an input to determining the effectiveness of unconventional

monetary policy. My estimation procedure leads one to conclude that the shadow rate

was 2.2 percentage points lower in July 2012 than the estimates from their paper would

indicate.

Additionally, I provide the first estimates of structural parameters in the Gabaix

(2012) model of variable rare disasters. I show that the estimated model fails to identify

the Great Recession as a disaster episode. This is due to the model’s need to have a
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positive expected jump in inflation in the event of a disaster in order to capture an upward

sloping nominal yield curve. Furthermore, I show that model fails to capture the sharp

change in dynamics exhibited by the price-dividend ratio starting in the 1990s.

Going forward, I hope that economists working with nonlinear dynamic models

will consider the discretization filter a valuable addition to their toolkit.
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Chapter 2

Discretizing Nonlinear, Non-Gaussian
Markov Processes with Exact Condi-
tional Moments

2.1 Introduction

Many nonlinear dynamic economic models such as dynamic stochastic general

equilibrium (DSGE) models, asset pricing models, or optimal portfolio problems imply

a set of integral equations that do not admit explicit solutions. Finite-state Markov

chain approximations of stochastic processes are a useful way of reducing computational

complexity when solving and estimating such models because integration is replaced by

summation.1 However, existing methods only work on a limited case by case basis, and

apply mostly to linear Gaussian autoregressive processes.

In this paper, we provide a new method for accurately discretizing general non-

linear, non-Gaussian Markov processes. The dynamics of any Markov process are

characterized by its transition kernel, which summarizes the conditional distribution of
1Examples include heterogeneous-agent incomplete markets models (Aiyagari 1994; Heaton and

Lucas 1996), optimal taxation (Aiyagari 1995; Dávila, Hong, Krusell, and Rı́os-Rull 2012), portfolio
problems (Haliassos and Michaelides 2003; Judd, Kubler, and Schmedders 2011), asset pricing (Zhang
2005; Guvenen 2009), DSGE models (Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez 2006; Caldara,
Fernández-Villaverde, Rubio-Ramı́rez, and Yao 2012), estimating dynamic games (Aguirregabiria and
Mira 2007), inflation dynamics and monetary policy (Vavra 2014), among many others.
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the subsequent state for all possible current states. We construct a discrete approxima-

tion to the underlying Markov process by approximating a finite set of its conditional

distributions.2 Given a set of discrete points in the state space, we construct a transition

matrix, where each row corresponds to a discrete probability measure which mimics

the dynamics of the continuous process in that particular state. This is accomplished

by starting from a coarse approximation of the underlying process and modifying the

transition probabilities so as to exactly match a set of conditional moments, such as

the mean and variance. Because there are typically more grid points than there are

conditional moments of interest, there are infinitely many candidates for the approximate

conditional distribution. To deal with this underdetermined system, we obtain the discrete

approximation by minimizing the relative entropy (Kullback-Leibler information) of

the conditional distribution from an initial approximation, subject to the given moment

constraints. Although this primal problem is a high dimensional constrained optimization

problem, its dual is a computationally tractable, low dimensional unconstrained optimiza-

tion problem. We provide recommendations for how to choose the initial approximation

and the moments to match.

The two ingredients of our method—matching conditional moments to approxi-

mate a Markov process and using the maximum entropy principle to match moments—

have already been proposed separately in the literature. Our main contribution is that we

combine these two ingredients and show that this idea can be used to discretize a wide

variety of nonlinear, non-Gaussian Markov processes, for which there is currently no

systematic way of discretizing. Furthermore, we provide sufficient conditions for the

existence of a discretization with exact moments and study economic applications to

which existing methods do not apply.
2For the remainder of the paper, “discrete” should be understood to refer to the state space of the

Markov process. Time is always discrete.
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The closest papers to ours are Tanaka and Toda 2013; Tanaka and Toda 2015

and Gospodinov and Lkhagvasuren 2014. Tanaka and Toda 2013 construct discrete ap-

proximations of continuous probability distributions (as opposed to stochastic processes)

by modifying an initial discretization so as to exactly match low order moments using

the maximum entropy principle. While they briefly discuss how to apply their method

to discretize vector autoregressive processes (VARs), because they need a closed-form

expression for the ergodic distribution—which is not available in most situations—their

method cannot be directly used for discretizing general Markov processes. Tanaka and

Toda 2015 prove that their approximation method weakly converges to the true distribu-

tion as the number of grid points tends to infinity. They also show that the integration

error diminishes by a factor proportional to the error when the integrand is approximated

using the functions defining the moments of interest as basis functions. Therefore, the

approximation quality of the Tanaka-Toda method depends on two factors, (i) the quality

of the initial discretization, and (ii) how well the moment defining functions approximate

the integrand.

Gospodinov and Lkhagvasuren 2014 (henceforth GL) propose a discretization

method of VARs that targets the first and second conditional moments. According to

their numerical results, the GL method seems to be the most accurate finite-state Markov

chain approximation for VARs currently available in the literature. As in GL, we target

the conditional moments in order to discretize VARs. However, our method improves

upon theirs in three important ways.

First, unlike the GL method, our approach is not limited to the approximation of

VARs. It applies to any Markov process for which we can compute conditional moments

and thus has a much wider range of applicability. For instance, we can discretize

stochastic processes with interesting nonlinear and non-Gaussian conditional dynamics.

Additionally, we do not require a parametric specification of the Markov process to
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use our approach. Given sufficient data, we can estimate the conditional moments and

transition kernel nonparametrically, and use these to construct our discrete approximation.

Second, GL adjust the transition probabilities to match moments directly, whereas

we solve the dual problem, which is a low dimensional unconstrained convex minimiza-

tion problem. The gradient and Hessian of the objective function can be computed

in closed form, which allows us to use a standard Newton-type algorithm to find the

minimum. Consequently, our method is computationally tractable even when the number

of grid points is large. This is an important property, particularly for the case of high

dimensional processes.

Finally, for general VARs (which may even feature stochastic volatility), under

certain regularity conditions we prove that our method matches all k-step ahead condi-

tional mean, variance, and covariance as well as the unconditional ones. This property

has been known only for the Rouwenhorst 1995 method for discretizing univariate AR(1)

processes. We further discuss the relation of our method to the existing literature in

Section 2.3.3.

In order to illustrate the general applicability of our method, we solve for the price-

dividend ratio in Lucas-tree asset pricing models, under different assumptions about the

stochastic processes driving consumption and dividend growth, including more standard

AR(1) and VAR(1) processes with Gaussian shocks, an AR(1) model with non-Gaussian

shocks, and the variable rare disasters model of Gabaix 2012, whose underlying stochastic

process is highly nonlinear and non-Gaussian. In each case, we show that our method

produces more accurate solutions than all existing discretization methods,3 often by
3Several papers such as Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez 2006 and Caldara,

Fernández-Villaverde, Rubio-Ramı́rez, and Yao 2012 compare the accuracy of various solution tech-
niques (log-linearization, value function iteration, perturbation, projection, etc.), given the discretization
method. To the best of our knowledge, Kopecky and Suen 2010 is the only paper that compares the solution
accuracy across various discretization methods, fixing the solution technique. However, they consider only
Gaussian AR(1) processes.
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several orders of magnitude, requiring only minor modifications between specifications

and trivial computing time. We also show that solving general asset pricing models

(e.g., with recursive utility and complicated dynamics) using discretization and projection

(Judd 1992) is actually equivalent to solving a discrete-state model (which is a matter

of inverting a matrix) and interpolating. Therefore our method provides a simple but

systematic way for solving asset pricing models.

We emphasize that our method has many potential applications beyond the asset

pricing models considered here. For example, our method can be used to facilitate the

estimation of nonlinear state space models. In parallel work, Farmer 2017 shows that by

discretizing the dynamics of the state variables, one can construct an approximate state

space model with closed-form expressions for the likelihood and filtering recursions, as

in Hamilton 1989. The parameters of the model can then be estimated using standard

likelihood or Bayesian techniques. This procedure offers an alternative to computation-

ally expensive, simulation-based methods like the particle filter, and simple but often

inaccurate linearization approaches like the extended Kalman filter. Our paper provides a

computationally tractable method for discretizing general nonlinear Markov processes

governing the state dynamics.

2.2 Maximum Entropy Method for Discretizing
Markov Processes

In this section we review the maximum entropy method for discretizing probabil-

ity distributions proposed by Tanaka and Toda 2013; Tanaka and Toda 2015 and apply it

to discretize general Markov processes.
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2.2.1 Discretizing Probability Distributions
Description of Method

Suppose that we are given a continuous probability density function f : RK ! R,

which we want to discretize. Let X be a random vector with density f , and g : RK ! R

be any bounded continuous function. The first step is to pick a quadrature formula

E[g(X)] =
Z

RK
g(x) f (x)dx ⇡

N

Â
n=1

wng(xn) f (xn), (2.1)

where N is the number of integration points, {xn }N
n=1, and wn > 0 is the weight on

the integration point xn.4 Let DN = {xn | n = 1, . . . ,N } be the set of grid points. For

example, if we let

DN = {(m1h, . . . ,mKh) | m1, . . . ,mK = 0,±1, . . . ,±M } ,

which consists of N = (2M + 1)K lattice points with grid size h, setting the weight

wn = hK in quadrature formula (2.1) gives the trapezoidal formula.

For now, we do not take a stance on the choice of the initial quadrature formula,

but take it as given. Given the quadrature formula (2.1), a coarse but valid discrete ap-

proximation of the density f would be to assign probability qn to the point xn proportional

to wn f (xn), so

qn =
wn f (xn)

ÂN
n=1 wn f (xn)

. (2.2)

However, this is not necessarily a good approximation because the moments of the

discrete distribution {qn } do not generally match those of f .

Tanaka and Toda 2013 propose exactly matching a finite set of moments by
4Since the grid points {xn } and weights {wn } may depend on the number of grid points N, a more

precise notation might be xn,N and wn,N . Since there is no risk of confusion, we keep the simpler notation
xn and wn.
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updating the probabilities {qn } in a particular way. Let T : RK ! RL be a function that

defines the moments that we wish to match and let T =
R

RK T (x) f (x)dx be the vector of

exact moments. For example, if we want to match the first and second moments in the

one dimensional case (K = 1), then T (x) = (x,x2)0. Tanaka and Toda 2013 update the

probabilities {qn } by solving the optimization problem

minimize
{ pn }

N

Â
n=1

pn log
pn

qn

subject to
N

Â
n=1

pnT (xn) = T ,
N

Â
n=1

pn = 1, pn � 0. (P)

The objective function in the primal problem (P) is the Kullback and Leibler 1951

information of { pn } relative to {qn }, which is also known as the relative entropy. This

method matches the given moments exactly while keeping the probabilities { pn } as

close to the initial approximation {qn } as possible in the sense of the Kullback-Leibler

information.5 Note that since (P) is a convex minimization problem, the solution (if one

exists) is unique.

The optimization problem (P) is a constrained minimization problem with a

large number (N) of unknowns ({ pn }) with L+1 equality constraints and N inequality

constraints, which is in general computationally intensive to solve. However, it is well-

known that entropy-like minimization problems are computationally tractable by using

duality theory (Borwein and Lewis 1991). Tanaka and Toda 2013 convert the primal
5The Kullback-Leibler information is not the only possible loss function. One may also use other

criteria such as the L2 norm or other generalized entropies. However, the Kullback-Leibler information
has the unmatched feature that (i) the domain of the dual function is the entire space, so the dual problem
becomes unconstrained, and (ii) the constraint pn � 0 never binds, so the dual problem becomes low
dimensional. See Borwein and Lewis 1991 for more details on duality in entropy-like minimization
problems and Owen 2001, Tsao 2004, Kitamura 2007, and Tsao and Wu 2013 for discussions on the
computational aspects of empirical likelihood methods, which is mathematically related.
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problem (P) to the dual problem

max
l2RL

"

l

0T � log

 

N

Â
n=1

qnel

0T (xn)

!#

, (D)

which is a low dimensional (L unknowns) unconstrained concave maximization problem

and hence computationally tractable. The following theorem shows how the solutions to

the two problems (P) and (D) are related. Below, the symbols “int” and “co” denote the

interior and the convex hull of sets.

. 1. The primal problem (P) has a solution if and only if T 2 coT (DN). If a solution

exists, it is unique.

2. The dual problem (D) has a solution if and only if T 2 intcoT (DN). If a solution

exists, it is unique.

3. If the dual problem (D) has a (unique) solution lN , then the (unique) solution to

the primal problem (P) is given by

pn =
qnel

0
NT (xn)

ÂN
n=1 qnel

0
NT (xn)

=
qnel

0
N(T (xn)�T )

ÂN
n=1 qnel

0
N(T (xn)�T )

. (2.3)

Practical Implementation

Theorem 4 provides a practical way to implement the Tanaka-Toda method. After

choosing the initial discretization Q = {qn } and the moment defining function T , one

can numerically solve the unconstrained optimization problem (D). To this end, we can

instead solve

min
l2RL

N

Â
n=1

qnel

0(T (xn)�T ) (D0)

because the objective function in (D0) is a monotonic transformation (�1 times the

exponential) of that in (D). Since (D0) is an unconstrained convex minimization problem
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with a (relatively) small number (L) of unknowns (l ), solving it is computationally

simple. Letting JN(l ) be the objective function in (D0), its gradient and Hessian can be

analytically computed as

—JN(l ) =
N

Â
n=1

qnel

0(T (xn)�T )(T (xn)�T ), (2.4a)

—2JN(l ) =
N

Â
n=1

qnel

0(T (xn)�T )(T (xn)�T )(T (xn)�T )0, (2.4b)

respectively. In practice, we can quickly solve (D0) numerically using optimization

routines by supplying the analytical gradient and Hessian.6

If a solution to (D0) exists, it is unique, and we can compute the updated dis-

cretization P = { pn } by (2.3). If a solution does not exist, it means that the regularity

condition T 2 intcoT (DN) does not hold and we cannot match moments. Then one

needs to select a smaller set of moments. Numerically checking whether moments are

matched is straightforward: by (2.3), (D0), and (2.4a), the error is

N

Â
n=1

pnT (xn)�T =
ÂN

n=1 qnel

0
N(T (xn)�T )(T (xn)�T )

ÂN
n=1 qnel

0
N(T (xn)�T )

=
—JN(lN)

JN(lN)
. (2.5)

Error Estimate and Convergence

Tanaka and Toda 2015 prove that whenever the quadrature approximation (2.1)

converges to the true value as the number of grid points N tends to infinity, the discrete

distribution { pn } in (2.3) also weakly converges to the true distribution f and improves

the integration error as follows. Let g be the integrand in (2.1) and consider approximating
6Since the dual problem (D) is a concave maximization problem, one may also solve it directly.

However, according to our experience, solving (D0) is numerically more stable. This is because the
objective function in (D) is close to linear when klk is large, so the Hessian is close to singular and not
well-behaved. On the other hand, since the objective function in (D0) is the sum of exponential functions, it
is well-behaved.
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g using T = (T1, . . . ,TL) as basis functions:

g(x)⇡ bgT (x) =
L

Â
l=1

blTl(x),

where {bl }L
l=1 are coefficients. Let rg,T = g�bgT

kg�bgT k•
be the normalized remainder term,

where k·k• denotes the supremum norm. Letting

E(Q)
g,N =

�

�

�

�

�

Z

RK
g(x) f (x)dx�

N

Â
n=1

qng(xn)

�

�

�

�

�

be the integration error under the initial discretization Q = {qn } and E(P)
g,N be the error

under P = { pn }, Tanaka and Toda 2015 prove the error estimate

E(P)
g,N  kg� bgTk•

✓

E(Q)
rg,T ,N +

2p
C

E(Q)
T,N

◆

, (2.6)

where C is a constant explicitly given in the paper. Equation (2.6) says that the integration

error improves by the factor kg� bgTk•, which is the approximation error of the integrand

g by the basis functions {Tl }L
l=1 that define the targeted moments. It is clear from (2.6)

that the approximation quality of the Tanaka-Toda method depends on two factors, (i) the

quality of the initial discretization (how small E(Q)
g,N is), and (ii) how well the moment

defining functions approximate the integrand (how small kg� bgTk• is).

2.2.2 Discretizing General Markov Processes

Next we show how to extend the Tanaka-Toda method to the case of time-

homogeneous Markov processes.
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Description of method

Consider the time-homogeneous first-order Markov process

P(xt  x0|xt�1 = x) = F(x0,x),

where xt is the vector of state variables and F(·,x) is a cumulative distribution function

(CDF) that determines the distribution of xt = x0 given xt�1 = x. The dynamics of any

Markov process are completely characterized by its Markov transition kernel. In the

case of a discrete state space, this transition kernel is simply a matrix of transition

probabilities, where each row corresponds to a conditional distribution. We can discretize

the continuous process x by applying the Tanaka-Toda method to each conditional

distribution separately.

More concretely, suppose that we have a set of grid points DN = {xn }N
n=1 and

an initial coarse approximation Q = (qnn0), which is an N ⇥N probability transition

matrix. Suppose we want to match some conditional moments of x, represented by the

moment defining function T (x). The exact conditional moments when the current state is

xt�1 = xn are

T n = E [T (xt) | xn] =
Z

T (x)dF(x,xn),

where the integral is over x, fixing xn. (If these moments do not have explicit expressions,

we can use highly accurate quadrature formulas to compute them.) By Theorem 4, we

can match these moments exactly by solving the optimization problem

minimize
{ pnn0 }

N
n0=1

N

Â
n0=1

pnn0 log
pnn0

qnn0

subject to
N

Â
n0=1

pnn0T (xn0) = T n,
N

Â
n0=1

pnn0 = 1, pnn0 � 0 (Pn)
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for each n = 1,2, . . . ,N, or equivalently the dual problem

min
l2RL

N

Â
n0=1

qnn0el

0(T (xn0)�T n). (D0
n)

(D0
n) has a unique solution if and only if the regularity condition

T n 2 intcoT (DN) (2.7)

holds. We summarize our procedure in Algorithm 2 below.

Algorithm 2: Discretization of Markov Processes
1 Select a discrete set of points DN = {xn }N

n=1 and an initial approximation
Q = (qnn0).

2 Select a moment defining function T (x) and corresponding exact conditional
moments {T n }

N
n=1. If necessary, approximate the exact conditional

moments with a highly accurate numerical integral.
3 For each n = 1, . . . ,N, solve minimization problem (D0

n) for ln. Check
whether moments are matched using formula (2.5), and if not, select a
smaller set of moments. Compute the conditional probabilities
corresponding to row n of P = (pnn0) using (2.3).

The resulting discretization of the process is given by the transition probability

matrix P = (pnn0). Since the dual problem (D0
n) is an unconstrained convex minimization

problem with a typically small number of variables, standard Newton type algorithms can

be applied. Furthermore, since the probabilities (2.3) are strictly positive by construction,

the transition probability matrix P = (pnn0) is a strictly positive matrix, so the resulting

Markov chain is stationary and ergodic.

The Regularity Condition

How stringent is the regularity condition (2.7)? Note that coT (DN) is the convex

hull of the image of the grid DN under the moment defining function T , so any element
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of coT (DN) has the form Ân anT (xn), where an � 0, Ân an = 1, and xn 2 DN . Also, by

definition T n = E [T (xt) | xt�1 = xn], which is a weighted average of T (x)’s. Therefore

in practice it is not hard to meet the regularity condition T n 2 intcoT (DN). The only

case difficulty arises is when xn is close to the boundary of (the convex hull of) DN

and the stochastic process is highly persistent. Then T n also tends to be close to the

boundary of coT (DN), and it may happen to be outside the set, violating (2.7). But

since the boundary of a convex set has measure zero, for the vast majority of the grid

points we are able to match moments exactly. A practical solution to the potential failure

of the regularity condition is thus to match moments whenever we can by solving the

minimization problem (D0
n), and if a solution fails to exist (which can be checked by

computing the error (2.5)), we can match only a subset of the moments T = (T1, . . . ,TL).

How to Choose the Grid

In order to implement our method in practice, we need to overcome two issues:

(i) the choice of the grid, and (ii) the choice of the targeted moments.

According to the convergence analysis in Tanaka and Toda 2015, the grid DN

should be chosen as the integration points of the quadrature formula (2.1), which is used

to obtain the initial coarse approximation in (2.2). For simplicity we often choose the

trapezoidal formula and therefore even-spaced grids. Alternatively, we can place points

using the Gaussian quadrature nodes as in Tauchen and Hussey 1991, or, for that matter,

any quadrature formula with positive weights such as Simpson’s rule, low-degree Newton-

Cotes type formulas, or the Clenshaw-Curtis quadrature (see Davis and Rabinowitz 1984

for quadrature formulas); or quantiles as in Adda and Cooper 2003.

Although tensor grids work well in low dimensional problems, in higher dimen-

sions they are not computationally tractable because the number of grid points increases
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exponentially with the dimension.7 In such cases, one needs to use sparse grids (Krueger

and Kubler 2004; Heiss and Winschel 2008) or select the grid points to delimit sets that

the process visits with high probability (Maliar and Maliar 2015).

In practice, we find that the even-spaced grid (trapezoidal formula) works very

well and is robust across a wide range of different specifications. However, if there

is some special structure to the conditional distribution, such as normality, a Gaussian

quadrature approximation can result in better solution accuracy for dynamic models.

How to Choose the Moments to Match

Our method approximates a continuous Markov process by a discrete transition

matrix. A good approximation is one for which the integral of any bounded continuous

function using the discrete measure is close to the integral using the original continuous

measure. The quality of this approximation depends on how accurately the integrand can

be approximated by the moment defining functions (see kg� bgTk• in (2.6)).

In the case of a single probability distribution, we can choose a grid over a set

with high probability and therefore match as many moments as we wish, up to 1 fewer

than the number of grid points. In the case of stochastic processes, the situation is more

restrictive. As an illustration, consider the AR(1) process

xt = rxt�1 + et , et ⇠ N(0,1),

with r close to 1.

Let DN = {x1, . . . ,xN } be the grid, with x1 < · · · < xN . When xt�1 = xN , the

conditional distribution of xt is N(rxN ,1). But when r is close to 1, this (true) distribution
7Note that with our method, having a large number of grid points is not an issue for solving the dual

problem (D0
n). The number of unknowns is equal to the number of targeted moments, which is fixed. The

issue with tensor grids is that the number of dual problems we need to solve grows exponentially with the
dimension.
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has nearly 1/2 of its probability mass on the interval (xN ,•), which lies outside the

grid. Since there is such a discrepancy between the location of the grid points and

the probability mass, we do not have the flexibility to match many moments, because

the regularity condition T n 2 intcoT (DN) may fail to hold near the boundary. In the

examples below, we consider matching up to 4 conditional moments whenever we can.

2.3 Discretizing VAR(1)s and Stochastic Volatility
Models

Applied researchers often specify vector autoregressive processes (VARs) to

describe the underlying shocks in their models. In this section we explain how our

method can be used to discretize general VARs and stochastic volatility models, and

prove some theoretical properties.

2.3.1 VAR(1)

Suppose we want to discretize a VAR(1) process

xt = (I �B)µ +Bxt�1 +ht , ht ⇠ N(0,Y), (2.8)

where all vectors are in RK , µ is the unconditional mean of xt , Y is the conditional

variance matrix, and B is a K ⇥K matrix with all eigenvalues smaller than 1 in absolute

value in order to guarantee stationarity. Using the Cholesky decomposition, without loss

of generality, we can rewrite (2.8) as

yt = Ayt�1 + et , (2.9)
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where yt =C�1(xt �µ), A =C�1BC, et =C�1
ht ⇠ N(0,D), C is lower triangular, D is

diagonal (typically D = I), and Y = CDC0.8 Once we have a discretization for yt , we

have one for xt = µ +Cyt .

Description of Method

First we introduce some additional notation. Let yt = (y1t , . . . ,yKt) and assume

that the discrete approximation of ykt takes Nk values denoted by Dk,Nk = {ykn }Nk
n=1.

In total, there are J = N1 ⇥ · · ·⇥NK states.9 Let j = 1, . . . ,J be an index of the state,

corresponding to a particular combination of points (y1n( j), . . . ,yKn( j)). Let pkn( j) be

the probability that ykt = ykn conditional on being in state j. Define the conditional

mean and variance of ykt given state j as µk( j) and sk( j)2, respectively. We outline

the procedure in Algorithm 3. (Although we describe it for the case of two conditional

moments, the case with higher order moments is similar.)

In order to determine { pkn( j)} using Algorithm 3, we need an initial coarse

approximation {qkn( j)}. The simplest way is to take the grid points {ykn }Nk
n=1 to be

evenly spaced and assign qkn( j) to be proportional to the conditional density of ykt given

state j, which corresponds to choosing the trapezoidal rule for the initial quadrature

formula. Alternatively, we can use the nodes and weights of the Gauss-Hermite quadra-
8Clearly there are infinitely many such decompositions. Experience tells that the quality of discretization

is best when each compoment of the yt process in (2.9) has the same unconditional variance. We can
do as follows to construct such a decomposition. First, take C̃ such that Y = C̃C̃0, so D = I. Define
ỹt = C̃�1(xt � µ), Ã = C̃�1BC̃, and ẽt = C̃�1

ht ⇠ N(0, I). Let S̃ be the unconditional variance of the ỹ
process. Let yt = U 0ỹt for some orthogonal matrix U , and define A = U 0ÃU , et = U 0

ẽt , and C = C̃U 0.
Then Var[et ] = U 0IU = I. The unconditional variance of the y process is then S = U 0S̃U . Since trS =
tr S̃, the diagonal elements of S become equal if Skk = (U 0S̃U)kk =

1
K tr S̃. We can make this equation

(approximately) true by solving the optimization problem

minimize
K

Â
k=1

✓

(U 0S̃U)kk �
1
K

tr S̃
◆2

subject to U 0U = I.

With this choice of U , the unconditional variances of the compoments of {yt } are close to each other, and
in fact equal if the objective function takes the value zero.

9In practice, we take N1 = N2 = · · ·= NK = N, so J = NK .
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Algorithm 3: Discretization of VAR(1) Processes
1 For each component of yt = (y1t , . . . ,yKt), select a discrete set of points

Dk,Nk = {ykn }Nk
n=1.

2 For j = 1, . . . ,J,
3 For k = 1, . . . ,K (note that we can treat each component k separately

because the variance-covariance matrix D is diagonal),
4 Define the moment defining function and exact moments by

Tk j(x) =


x
(x�µk( j))2

�

and T k j =



µk( j)
sk( j)2

�

.

5 Select an initial approximation {qkn( j)}Nk
n=1, where qkn( j) is the

probability of moving to point ykn conditional on being in state j.
6 Solve minimization problem (D0

n) for lk j and compute the
conditional probabilities { pkn( j)}Nk

n=1 using (2.3).
7 Compute the conditional probabilities { p j j0 }J

j0=1 by multiplying together
the conditional probabilities pkn( j) that make up transitions to elements
of state j0.

8 Collect the conditional probabilities { p j j0 }J
j0=1 into a matrix P = (p j j0).

ture as in Tauchen and Hussey 1991,10 or take the grid points {ykn }Nk
n=1 as quantiles

of the unconditional distribution and assign probabilities according to the cumulative

distribution function, as in Adda and Cooper 2003.11 Which grid/quadrature formula is

best is a practical problem and we explore this issue in subsequent sections.

This method can be generalized to VAR(p) processes, although the dimension of

the state space would grow exponentially in p unless we use a sparse grid.
10Following the original paper by Tauchen and Hussey 1991, we always use the conditional variance

matrix D to construct the Gauss-Hermite quadrature. This is the most logical way since dynamic economic
models involve conditional expectations (e.g., Euler equations), which are integrals that use the conditional
distributions.

11The specific procedure is as follows. Let the stationary distribution of ykt be N(0,s2
k ). Since there

are Nk discrete points for ykt , we divide the real line R into Nk intervals using the n-th Nk-quantile
(n = 1, . . . ,Nk � 1), which we denote by Ik1, . . . , IkN . The discrete points are then the median of each
interval, so ykn = F�1((2n� 1)/2Nk) (n = 1,2, . . . ,Nk), where F is the CDF of N(0,s2

k ). When the
t � 1 state is j, since the conditional distribution of ykt is N(µk( j),s2

k ( j)), we assign initial probability
qkn( j) = P(Ikn) to the point ykn under the conditional distribution N(µk( j),s2

k ( j)).
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Theoretical Properties of the Discretization

If a solution to the dual problem (D0
n) exists, by construction our method generates

a finite-state Markov chain approximation of the VAR with exact 1-step ahead conditional

moments. But how about k-step ahead conditional moments and unconditional moments?

The following theorem provides an answer.

. Consider the VAR(1) process in (2.9), with grid DN . Suppose that the regularity

condition T n 2 intcoT (DN) holds, and hence our method matches the conditional mean

and variance. Then the method also matches any k-step ahead conditional mean and

variance, as well as the unconditional mean and all autocovariances (hence spectrum).

This result holds even for a certain class of stochastic volatility models (Theorem

2.A.1). According to its proof, there is nothing specific to the choice of the grid, the

normality of the process, or the diagonalization. Therefore the result holds for any

non-Gaussian linear process.

So far, we have assumed that the regularity condition (2.7) holds, so that a discrete

approximation with exact conditional moments using our method exists. As we see in the

numerical examples below, such a discretization exists most of the time, but not always.

Therefore it is important to provide easily verifiable conditions that guarantee existence.

For general VARs, the following proposition shows that it is always possible to match

conditional means.

Proposition 1. Consider the VAR(1) process in (2.9) with coefficient matrix A = (akk0).

Let |A| = (|akk0 |) be the matrix obtained by taking the absolute value of each element

of A. If the spectral radius of |A| is less than 1 (i.e., all eigenvalues are less than 1 in

absolute value), then there exists a tensor grid such that we can match all conditional

means.
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How about the conditional mean and variance? Since addressing this issue for

general VAR processes is challenging, we restrict our analysis to the case of an AR(1)

process. The following proposition shows that a solution exists if the grid is symmetric,

sufficiently fine, and the grid points span more than one unconditional standard deviation

around 0.

Proposition 2. Consider the AR(1) process

xt = rxt�1 + et , et ⇠ (0,1),

where 0  r < 1. Suppose that (i) the grid {xn }N
n=1 is symmetric and spans more

than one unconditional standard deviation around 0, so maxn |xn| > 1/
p

1�r

2, and

(ii) either the maximum distance between two neighboring grid points is less than 2, or

for each positive grid point xn > 0 there exists a grid point xn0 such that

rxn �
1

(1�r)xn
< xn0  rxn. (2.10)

Then (D0
n) has a unique solution for all n.

When the grid {xn } is even-spaced, we can obtain a simple sufficient condition

for existence.

Corollary 3. Let the grid points {xn }N
n=1 be symmetric and even-spaced, s = 1p

1�r

2

be the unconditional standard deviation, and M = maxn xn. Suppose that either

1. r  1� 2
N�1 and s < M 

p
2s

p
N �1, or

2. r > 1� 2
N�1 and s < M  s

p
N �1.

Then (D0
n) has a unique solution for all n.
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Interestingly, Kopecky and Suen 2010 show that the Rouwenhorst 1995 method

matches the first and second conditional moments when the grid span is M = s

p
N �1,

the upper bound in Corollary 3 for the case r > 1� 2
N�1 . Choosing a grid span of

order
p

N can also be theoretically justified. In that case, the grid spacing is of order

N/
p

N = 1/
p

N. Since the grid gets finer while the grid span tends to infinity, the

trapezoidal formula converges to the true integral. Therefore the approximation error can

be made arbitrarily small by increasing N. For general VARs, we do not have theoretical

results for the existence of a discretization that matches second moments. However, we

recommend using a grid span M = s

p
N �1 in each dimension, where s is the square

root of the smallest eigenvalue of the unconditional variance of the VAR.

Theorem 5, Proposition 2, and Corollary 3 are significant. Note that among

all existing methods, the Rouwenhorst 1995 method for discretizing Gaussian AR(1)

processes is the only one known to match the first and second conditional moments

exactly.12

2.3.2 AR(1) with Stochastic Volatility

Consider an AR(1) process with stochastic volatility of the form

yt = lyt�1 +ut , ut ⇠ N(0,ext ), (2.11a)

xt = (1�r)µ +rxt�1 + et , et ⇠ N(0,s2), (2.11b)

where xt is the unobserved log variance process and yt is the observable, e.g., stock

returns. We assume that yt is mean zero without loss of generality.

Since the log variance process xt evolves independently of the level yt as an

AR(1) process, we can discretize it using Algorithm 3. For yt , note that the unconditional
12Kopecky and Suen 2010 prove that the 1-step ahead conditional moments are exact. By Theorem 5,

all k-step ahead conditional moments are also exact.
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variance is given by

s

2
y = E[y2

t ] =
E[ext ]

1�l

2 .

Since the unconditional distribution of xt is N
⇣

µ, s

2

1�r

2

⌘

, we have

E[ext ] = exp
✓

µ +
s

2

2(1�r

2)

◆

using the properties of lognormal random variables. We can then construct an even-

spaced grid for yt spanning some number of unconditional standard deviations around

0.

With some more algebra, we can show that

yt |xt�1,yt�1 ⇠ N
�

lyt�1,exp
�

(1�r)µ +rxt�1 +s

2/2
��

.

We discretize these conditional distributions for each (xt�1,yt�1) pair using our method

and combine them with the discretization obtained for xt |xt�1 above, to come up with a

joint transition matrix for the state (xt ,yt).

2.3.3 Relation to the Existing Literature

In this section we discuss the existing literature in detail.

The standard method for approximating an AR(1) process is that of Tauchen

1986, which divides the state space into evenly spaced intervals, with the grid chosen

as the midpoints of those intervals. Tauchen constructs each approximate conditional

distribution by matching the probabilities of transitioning from a particular point to each

interval. The Tauchen method is intuitive, simple, and reasonably accurate when the

number of grid points is large enough. It is easily generalized and widely used for the

approximation of VAR processes. Variants of the Tauchen method have been developed



83

in the literature by using Gauss-Hermite quadrature (Tauchen and Hussey 1991), placing

grid points using quantiles instead of even-spaced intervals (Adda and Cooper 2003), and

using multivariate normal integration techniques (Terry and Knotek 2011). Rouwenhorst

1995 proposes an alternative discretization method of a Gaussian AR(1) process that

matches the unconditional first and second moments exactly. His idea is to approximate

a normal distribution by binomial distributions.

VARs are highly persistent in typical macroeconomic applications. It has been

recognized that the Tauchen and Tauchen-Hussey methods often fail to give accurate

approximations to such processes (Zhang 2005; Flodén 2008),13 which has spurred a

renewed research interest in accurately discretizing autoregressive processes. Kopecky

and Suen 2010 prove that for a certain choice of the grid, the Rouwenhorst method

actually matches the autocorrelation and the conditional mean and variance. This means

that the Rouwenhorst method is suitable for discretizing highly persistent Gaussian

AR(1) processes, for which earlier methods failed. Applying it to typical macroeconomic

models such as stochastic growth and income fluctuation models, they show that the

relative error in the solution accuracy is less than 1% with the Rouwenhorst method,

compared with 10–20% with earlier methods.

Galindev and Lkhagvasuren 2010 generalize the Rouwenhorst method to the

multivariate case by transforming a VAR into a set of cross-correlated AR(1) processes.

However, their method works only when the AR(1) processes are equally persistent (a

knife-edge case), for otherwise the state space is not finite.

Gospodinov and Lkhagvasuren 2014 propose an alternative discretization method

of VARs by first discretizing independent AR(1) processes using the Rouwenhorst method

and then targeting the first and second conditional moments to mimic the conditional
13In the original paper, Tauchen 1986 himself admits that “[e]xperimentation showed that the quality of

the approximation remains good except when l [the persistence parameter] is very close to unity.”
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distributions of the actual VAR process. Solving a stochastic growth model with a highly

persistent bivariate VAR, they find that the relative error in the solution accuracy is about

1–3% with their method, compared with 10–30% with the Tauchen method.

Since our method matches conditional moments, it is similar in spirit to Rouwen-

horst 1995 (AR(1)) and Gospodinov and Lkhagvasuren 2014 (VAR(1)), though our

method is not limited to VARs. Here we contrast our method to these two in more details.

According to Proposition 3 in Kopecky and Suen 2010, the ergodic distribution of the

resulting Markov chain of the Rouwenhorst method is a standardized binomial distribu-

tion with parameter N �1 and s = 1/2, so by the central limit theorem it converges to

N(0,1) as N ! •. This argument suggests that the Rouwenhorst method is designed to

discretize a Gaussian AR(1). It immediately follows that neither our method (for AR(1))

nor the Rouwenhorst method is a special case of the other: our method is not limited to

Gaussian AR(1) processes (Proposition 2 and Corollary 3 do not assume normality), and

generally has a different grid.

With regard to VARs, both the Gospodinov and Lkhagvasuren 2014 (GL) method

and ours target the first and second conditional moments. The GL method uses the

Rouwenhorst method to obtain a preliminary discretization and then targets the moments.

As GL acknowledge in their paper, the GL method has fewer free variables than the

number of targeted moments, and hence it is generally impossible to match all moments.

While we do not have a proof that our method matches all first and second conditional

moments (Proposition 1 shows that it is possible to match conditional means), according

to our experience it seems that for most applications we can indeed match all first two

conditional moments when we use the even-spaced grid. Again neither of the two

methods is a special case of the other.

We do not claim that our method is always preferable, although we emphasize

that our method is not limited to the discretization of linear Gaussian processes. Whether
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our method is superior or not can only be answered by studying the accuracy in specific

problems. The Online Appendix compares the accuracy of discretization and shows

that our method outperforms existing ones by several orders of magnitude. However,

discretization is not an end in itself. A more important question is whether different

discretization methods lead to substantial differences in the solution accuracy of dynamic

economic models, and whether these differences matter economically. We provide

answers to these questions in the next sections.

2.4 Solution Accuracy of Asset Pricing Models

Whenever one proposes a new numerical method for solving dynamic models, it

must be evaluated by two criteria: (i) Does the new method improve the solution accuracy

of well-known, standard dynamic economic models? (ii) Can the new method be applied

to solve more complicated models for which existing methods are not readily available?

In order for a new method to be useful, it must meet at least one (preferably both) of

these two criteria.

This section addresses these questions by solving simple asset pricing models

with or without Gaussian shocks. We use the closed-form solutions obtained by Burnside

1998 for Gaussian shocks and Tsionas 2003 for non-Gaussian shocks as comparison

benchmarks.14

2.4.1 Model and Numerical Solution

Consider a representative agent with additive CRRA utility function

E0

•

Â
t=0

b

t C1�g

t
1� g

,

14Collard and Juillard 2001 and Schmitt-Grohé and Uribe 2004 also use this model in order to evaluate
the solution accuracy of the perturbation method.
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where Ct is consumption, b > 0 is the discount factor, and g > 0 is the coefficient of

relative risk aversion. The agent is endowed with aggregate consumption {Ct }•
t=0, and

can trade assets in zero net supply. Let Dt be the dividend to an asset and Pt be its price.

When log consumption and dividend growth

xt = (log(Ct/Ct�1), log(Dt/Dt�1))

follow a VAR(1) process with i.i.d. shocks, it is possible to obtain a closed-form solution

for the price-dividend ratio Vt = Pt/Dt , which depends only on xt . See the Online

Appendix for details.

We obtain numerical solutions as follows. By the Euler equation, we have

Pt = Et [b (Ct+1/Ct)
�g(Pt+1 +Dt+1)]. (2.12)

Dividing (2.12) by Dt , we obtain

Vt = bEt [exp(a 0xt+1)(Vt+1 +1)], (2.13)

where a = (�g,1)0. Suppose that the process for consumption and dividend growth is

discretized. Let s = 1, . . . ,S be the states, xs be the vector of log consumption/dividend

growth in state s, and P = (pss0) be the transition probability matrix. Then the discrete

analog of (2.13) is

vs = b

S

Â
s0=1

pss0ea

0xs0 (vs0 +1), (2.14)

where vs is the price-dividend ratio in state s. Let v = (v1, . . . ,vS)0 (S⇥ 1) and X =

(x01, . . . ,x
0
S)

0 (S⇥2) be the matrices of those values. Then (2.14) is equivalent to the linear
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equation

v = bPdiag(eXa)(v+1) () v = (I �bPdiag(eXa))�1
bPeXa . (2.15)

This formula gives the price-dividend ratio only at the grid points, and one might

be interested in computing the value at any point. In this case, we can use the projection

method (Judd 1992). The idea of the projection method with Chebyshev collocation is to

approximate the unknown policy function using Chebyshev polynomials as a basis.15

Suppose we approximate V (x) as

bV (x;b) =
S

Â
s=1

bsYs(x),

where {Ys }S
s=1 is a set of basis functions (Chebyshev polynomials) and b = {bs }S

s=1 is

the vector of coefficients to be determined. We can solve for b that sets the Euler equation

(2.13) to exactly zero at each of the S grid points implied by each discretization method,

which leads to an exactly identified system. The equation becomes

bV (xs;b) = b

S

Â
s0=1

pss0ea

0xs0
⇣

bV (xs0;b)+1
⌘

. (2.16)

However, if we set vs = bV (xs;b), then (2.16) becomes identical to (2.14)! Therefore

finding coefficients {bs } that solve (2.16) is equivalent to first solving the linear equation

(2.14) (whose solution is given by (2.15)) and then finding an interpolating polynomial.

We summarize the above discussion in the following proposition.

Proposition 4. Solving an asset pricing model with a continuous state space using
15Unlike standard Chebyshev collocation, we are constrained to solve for coefficients that set the Euler

equation residuals equal to 0 at the discretization points rather than the zeroes of the Chebyshev polynomial.
This in general means we are only guaranteed pointwise convergence of our approximation rather than
uniform convergence.
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discretization and projection is equivalent to solving a model with a discrete state space,

which can be done by inverting a matrix as in (2.15). The continuous solution can be

obtained by interpolating the discrete solution.

Proposition 4 is quite powerful. Note that there is nothing specific to the prefer-

ences of the agent or the underlying stochastic process needed to apply the proposition.

For example, suppose that the agent has a general recursive utility of the form

Ut = f (Ct ,Mt(Ut+1)), (2.17)

where Ut is the utility at time t, Ct is consumption, f is the aggregator, and Mt is the

certainty equivalent of the continuation utility Ut+1.16 Suppose that f ,M are homoge-

neous of degree 1 (which is true for almost all applications) and the underlying stochastic

process is discretized. Dividing (2.17) by Ct , we can solve for the S nonlinear equations

in S unknowns

us = f (1,Ms(exss0us0)), (2.18)

where xss0 is log consumption growth from state s to s0 and us = (Ut/Ct)(s) is the utility-

consumption ratio in state s. After solving for these values {us }, one can compute the

pricing kernel and price any assets by inverting a matrix as in (2.15). In practice, solving

(2.18) and inverting a matrix to compute asset prices take only a fraction of a second to

carry out.17

16A typical example is f (c,v) = ((1�b )c1�1/y +bv1�1/y)
1

1�1/y (CES aggregator with elasticity of
intertemporal substitution y) and Mt(X) = Et [X1�g ]

1
1�g (CRRA certainty equivalent with relative risk

aversion g) in which case we obtain the Epstein-Zin preference.
17The idea of using discretization to solve asset pricing models is not particularly new: see, for example,

Mehra and Prescott 1985, Cecchetti, Lam, and Mark 1993, and Bonomo, Garcia, Meddahi, and Tédongap
2011, among others. The point is that there have been no systematic ways to accurately discretize the
underlying stochastic process in the literature to make discretization a viable option.
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2.4.2 Calibration

We calibrate the model at annual frequency. We select the preference parameters

b = 0.95 and g = 2, which are relatively standard in the macro literature. We consider

three specifications for the law of motion of xt : Gaussian AR(1), Gaussian VAR(1), and

AR(1) with non-Gaussian shocks. We estimate the parameters of each of these models

using data on real personal consumption expenditures per capita of nondurables from

FRED, and 12-month moving sums of dividends paid on the S&P 500 obtained from

the spreadsheet in Welch and Goyal 2008.18 For the two univariate specifications, we

assume that Ct = Dt , i.e., x1,t = x2,t = xt , and use the data on dividends to estimate the

parameters.

The reason why we use dividend data instead of consumption data for the uni-

variate models is as follows. Given the mean µ and persistence r of the AR(1) process,

according to Tsionas 2003 the price-dividend ratio depends only on the moment gen-

erating function (MGF) M(s) of the shock distribution in the range 1�g

1�r

 s  1� g

(assuming g > 1 and r > 0). But if two shock distributions have identical mean and

variance, then the Taylor expansion of their MGF around s = 0 will coincide up to

the second order term. Therefore, in order to make a difference for asset pricing, we

either need to (i) move away from s = 0 by increasing g , (ii) make the domain of the

MGF larger by increasing r , or (iii) make the MGF more nonlinear by increasing the

variance or skewness. Since dividend growth is more persistent, volatile, and skewed than

consumption growth, using dividend growth will make the contrasts between methods

more stark.
18http://www.hec.unil.ch/agoyal/

http://www.hec.unil.ch/agoyal/
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2.4.3 Solution Accuracy

After computing the numerical and closed-form solutions as described in the

Online Appendix, we evaluate the accuracy by the log10 relative errors

log10

�

�

�

bV (x)/V (x)�1
�

�

�

,

where V (x) is the true price-dividend ratio at x and bV (x) is the approximate (numerical)

solution corresponding to each method obtained by the interpolating polynomial as in

Proposition 4. To compare the relative errors of each method, we first take the largest

common support across all discretization methods so that the approximation is well

defined, and then compute the relative errors on a fine grid (say 1,001 points in each

dimension) on this support. All methods beginning with “ME” refer to the maximum

entropy method developed in this paper with different choices of the underlying grid and

quadrature formula. For example, “ME-Even” refers to the maximum entropy method

using an even-spaced grid.

Gausian AR(1)

Modeling the dynamics of dividend growth by a Gaussian AR(1) is straightfor-

ward and we relegate the details to the Online Appendix.

Gaussian VAR(1)

We next consider specifying the joint dynamics of dividend growth and consump-

tion growth as a Gaussian VAR(1)

xt = (I �B)µ +Bxt�1 +ht , ht ⇠ N(0,Y)



91

where µ is a 2⇥1 vector of unconditional means, B is a 2⇥2 matrix with eigenvalues

less than 1 in absolute value, h is a 2⇥ 1 vector of shocks, and Y is a 2⇥ 2 variance

covariance matrix. The estimated parameters of the VAR(1) model are

µ =

2

6

4

0.0128

0.0561

3

7

5

, B =

2

6

4

0.3237 �0.0537

0.2862 0.3886

3

7

5

, Y =

2

6

4

0.000203 0.000293

0.000293 0.003558

3

7

5

.

The eigenvalues of B are 0.3561±0.1196i, with spectral radius r(B) = 0.3757, so the

VAR is moderately persistent.

We consider eight different discretization methods. For our method, we consider

the even-spaced grid with 2 or 4 moments (ME-Even (2,4)), the quantile grid (ME-Quant),

and the Gauss-Hermite quadrature grid (ME-Quad). For existing methods, we consider

those of Tauchen 1986(Tau), Tauchen and Hussey 1991 (TH), and Gospodinov and

Lkhagvasuren 2014 with (GL) and without (GL0) moment matching. Figure 2.1 shows

the graphs of log10 relative errors for the VAR(1) model. Table 2.1 shows the mean and

maximum log10 relative errors over the entire grid.

Table 2.1. Mean and Maximum log10 Relative Errors of Price-Dividend Ratio
Approximations, VAR(1) Model

ME methods Existing methods
N Even (2) Quant Quad Even (4) Tau TH GL0 GL

Mean log10 errors
5 -3.381 -2.963 -5.028 -3.570 -1.463 -2.964 -3.439 -2.191
7 -3.667 -3.066 -6.758 -5.134 -1.520 -4.920 -2.586 -2.618
9 -3.949 -3.146 -8.563 -6.739 -1.546 -6.900 -2.449 -3.106

Maximum log10 errors
5 -3.292 -2.865 -4.975 -3.485 -1.327 -2.890 -2.365 -1.982
7 -3.566 -2.954 -6.717 -4.891 -1.360 -4.838 -2.125 -2.140
9 -3.838 -3.022 -8.451 -5.730 -1.370 -6.581 -2.212 -2.471

Mean and maximum log10 relative errors for the asset pricing model with VAR(1) consump-
tion/dividend growth.
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Dividend Growth
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(a) N = 5, fixed consumption.
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(b) N = 5, fixed dividend.
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(c) N = 7, fixed consumption.
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Figure 2.1. log10 Relative Errors of Price-Dividend Ratio Approximations, VAR(1)
Model

Note: each row corresponds to a certain number of grid points (N = 5,7,9). The left panels show the
accuracy along the dividend growth dimension, fixing consumption growth at its unconditional mean. The
right panels fix dividend growth at its unconditional mean and vary consumption growth. The grids are
demeaned so that the unconditional mean corresponds to 0 in the figures.
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For all choices of N, the Gaussian quadrature based methods, ME-Quad and

TH, perform the best, with ME-Quad being always about two orders of magnitude

more accurate than TH. For even-spaced methods, the order of accuracy is always

ME-Even (4) > ME-Even (2) > GL0, GL > Tauchen, and ME-Even (4) is as accurate

as Tauchen-Hussey. ME-Quant is not particularly accurate but its performance is similar

to the GL methods. According to Table 2.1, the conclusions drawn from Figure 2.1 are

robust.

AR(1) with Non-Gaussian Shocks

Researchers often assume normality of the conditional shock distributions for

analytical and computational convenience. However, there is much evidence of non-

normality in financial data. One might prefer to specify a parametric distribution with

fatter tails, or refrain from parametric specifications altogether. For this reason, we

consider an AR(1) with i.i.d., but non-Gaussian shocks:

xt = (1�r)µ +rxt�1 + et , et ⇠ F.

We model the shock distribution F by a Gaussian mixture, because it is flexible yet

analytically tractable (all moments and moment generating function have closed-form

expressions). Table 2.2 shows the parameter estimates.

Figure 2.2 plots the PDFs of et fit to the dividend growth data under the assump-

tions of normal and Gaussian mixture shocks, as well as the nonparametric kernel density

estimate. The Gaussian mixture with three components appears to capture the skewness

and kurtosis lacking in the normal specification by placing more weight on large negative

realizations of the shock as well as ones close to zero.

We consider six different discretizations for the log dividend growth process. The

first two are the Rouwenhorst 1995 and the Tauchen and Hussey 1991 methods, which
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Table 2.2. Parameter Values, AR(1) Model with Gaussian Mixture Shocks

Parameter Symbol Value

Mean dividend growth µ 0.0559
Persistence of dividend growth r 0.4049
Volatility of dividend growth s 0.0589
Proportion of mixture components w j 0.0304, 0.8489, 0.1207
Mean of mixture components µ j -0.2282, -0.0027, 0.0766
S.D. of mixture components s j 0.0513, 0.0316, 0.0454

Note: this table shows the parameter estimates of the AR(1) process with Gaussian mixture
shocks xt = (1�r)µ +rxt�1 + et , where xt = log(Dt/Dt�1) is log dividend growth and
et ⇠ N(µ j,s2

j ) with probability w j, j = 1, . . . ,J. µ,r are estimated by OLS. s =
p

Var[et ]
is computed from the squared sum of residuals. The Gaussian mixture parameters are
estimated by maximum likelihood from the residuals, and the number of components J = 3
is chosen to minimize the Akaike Information Criterion (AIC).
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Figure 2.2. Densities fitted to AR(1) OLS residuals.
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can be thought of as a case where the researcher incorrectly believes the conditional

density to be Gaussian. The other four methods are the ME methods with even-spaced

(ME-Even) or Gauss-Hermite quadrature grid (ME-GH), each with 2 or 4 moments

matched. For ME-Even, we implement the discretization exactly as in Algorithm 3,

except that we use the Gaussian mixture density instead of the normal density. We choose

the grid spacing as the upper bound in Corollary 3. For ME-GH, we take the following

approach. Suppose the true (Gaussian mixture) density at a given grid point is f (x). Let

f(x) be the normal density with mean 0 and the same standard deviation as f (x). Then

the expectation of a function g(x) is

Z

g(x) f (x)dx =
Z

g(x)
f (x)
f(x)

f(x)dx ⇡
N

Â
n=1

wn
f (xn)

f(xn)
g(xn),

where {xn } and {wn } are nodes and weights for the Gauss-Hermite quadrature corre-

sponding to f(x). This argument suggests that we can use the Gauss-Hermite quadrature

grid with weights w0
n = wn

f (xn)
f(xn)

in order to discretize f (x). Figure 2.3 plots the log10

relative errors of the AR(1) model with Gaussian mixture shocks. Table 2.3 shows the

mean and maximum log10 relative errors.

As we can see from the figure and the table, the order of accuracy is always

ME-GH ⇡ ME-Even > Rouwenhorst ⇡ Tauchen-Hussey, and matching 4 moments in-

stead of 2 increases the solution accuracy by about 1 to 2 orders of magnitude. For low

risk aversion (g = 2), even the misspecified models (Rouwenhorst and Tauchen-Hussey)

have relative errors less than 10�2 or 1%, so the choice of the discretization method does

not matter so much. However, with higher risk aversion (g = 5), the misspecified models

are off by more than 10�1 (10%), while ME methods with 4 moments has errors less

than 10�2 (1%) with 9 points and 10�3 (0.1%) with 15 points. Hence the choice of the

discretization method makes an economically significant difference when risk aversion is



96

-0.1 -0.05 0 0.05 0.1 0.15 0.2

Dividend Growth

-5

-4.5

-4

-3.5

-3

lo
g

1
0
 R

e
la

tiv
e

 E
rr

o
rs

ME-Even (2)

ME-Even (4)

ME-GH (2)

ME-GH (4)

Rouwenhorst

Tauchen-Hussey

(a) N = 9, g = 2.

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Dividend Growth

-9

-8

-7

-6

-5

-4

-3

lo
g

1
0
 R

e
la

tiv
e

 E
rr

o
rs

ME-Even (2)

ME-Even (4)

ME-GH (2)

ME-GH (4)

Rouwenhorst

Tauchen-Hussey

(b) N = 15, g = 2.

-0.1 -0.05 0 0.05 0.1 0.15 0.2

Dividend Growth

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

lo
g

1
0
 R

e
la

tiv
e

 E
rr

o
rs

ME-Even (2)

ME-Even (4)

ME-GH (2)

ME-GH (4)

Rouwenhorst

Tauchen-Hussey

(c) N = 9, g = 5.
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Figure 2.3. log10 Relative Errors of Price-Dividend Ratio Approximations, AR(1)
Model with Gaussian Mixture Shocks

Note: the top panels show the accuracy for approximations to the benchmark model with risk aversion
g = 2 and different number of grid points N = 9,15. The bottom panels show the results for an alternative
specification in which the risk aversion is higher at g = 5.
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Table 2.3. Mean and Maximum log10 Relative Errors of
Price-Dividend Ratio Approximations, AR(1) Model with Gaussian

Mixture Shocks

ME methods Existing methods
N g Even (2) Even (4) GH (2) GH (4) R TH

Mean log10 errors
9 2 -3.381 -5.013 -3.602 -5.176 -2.602 -2.606

15 2 -4.264 -6.445 -5.189 -6.414 -2.604 -2.606
9 5 -1.466 -2.071 -1.602 -2.182 -0.909 -0.919

15 5 -2.137 -2.948 -2.774 -3.467 -0.913 -0.919

Maximum log10 errors
9 2 -3.239 -4.698 -3.406 -4.978 -2.587 -2.603

15 2 -3.935 -5.821 -4.748 -5.673 -2.591 -2.602
9 5 -1.307 -1.913 -1.413 -2.018 -0.874 -0.900

15 5 -1.854 -2.639 -2.464 -3.184 -0.875 -0.892

Note: Even (L): even-spaced grid with L moments; GH (L): Gauss-Hermite quadrature
grid with L moments; R: Rouwenhorst 1995 method; TH: Tauchen and Hussey 1991
method.

moderately high, which is often the case for many asset pricing models in the literature.

2.5 Solution Accuracy of a Rare Disasters Model

To illustrate the general applicability of our method, in this section we solve an

asset pricing model with variable rare disasters (Gabaix 2012). There are several good

reasons to consider this model. First, the dynamics of the underlying stochastic process

are nonlinear and non-Gaussian, which makes our method more useful. Second, Gabaix’s

model admits closed-form solutions, which makes the accuracy comparison particularly

simple. Finally, since rare disaster models have recently become quite popular in the

literature (Rietz 1988; Barro 2006; Gourio 2012; Wachter 2013), providing a simple yet

accurate solution algorithm seems to be useful, especially for the purpose of calibration

and estimation.
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2.5.1 Model

Gabaix 2012 considers a representative-agent asset pricing model in an endow-

ment economy. The representative agent has CRRA preferences

E0

•

Â
t=0

e�rt C1�g

t
1� g

,

where r > 0 is the discount rate and g > 0 is relative risk aversion. Disasters occur with

probability pt at time t +1. The consumption growth is given by

Ct+1

Ct
= egC ⇥

8

>

>

<

>

>

:

1, (no disaster)

Bt+1, (disaster)

where gC is the growth rate in normal times and Bt+1 2 (0,1] is the consumption recovery

rate after a disaster. Similarly, the dividend growth is

Dt+1

Dt
= egD ⇥

8

>

>

<

>

>

:

1, (no disaster)

Ft+1, (disaster)

where gD is the growth rate in normal times and Ft+1 2 (0,1] is the dividend recovery rate

after a disaster. Gabaix 2012 defines the following quantity, which he calls “resilience”:

Ht = ptED
t [B

�g

t+1Ft+1 �1], (2.19)

where ED
t denotes the expectation conditional on disaster. Instead of specifying the dy-

namics of the fundamentals pt ,Bt ,Ft individually, Gabaix directly specifies the dynamics
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of Ht = H⇤+ bHt as follows:

bHt+1 =
1+H⇤
1+Ht

e�fH
bHt + e

H
t+1, (2.20)

where H⇤ is a constant, fH > 0 is the speed of mean reversion at Ht = H⇤, and e

H
t+1 is an

innovation. Since 1+Ht appears in the denominator of the right-hand side, (2.20) is a

highly nonlinear process. It turns out that the price-dividend ratio at time t depends only

on bHt independent of the distribution of e

H
t+1, and Gabaix obtains a closed-form solution

(see Eq. (13) in his paper).

2.5.2 Solution Accuracy

To compare numerical solutions obtained by our method to the exact solution, we

need to discretize the process (2.20). Since the distribution of the innovation e

H
t+1 does

not matter, and since Gabaix shows that the process { bHt } must be bounded, we assume

that the distribution of bHt+1 given bHt is a beta distribution (properly rescaled) with mean

and variance implied by (2.20). Once we specify the conditional distribution this way, it

is straightforward to discretize the Markov process using our method. See the Online

Appendix for the details on discretization and the computation of the numerical solution.

Although there are no accepted standard ways for solving the rare disasters model, we

also compare the solution accuracy of our method to the perturbation method proposed

in Levintal 2014.19

For the parameter values, following Gabaix 2012 we set the discount rate r =

0.0657, relative risk aversion g = 4, consumption and dividend growth rate gC = gD =

0.025, disaster probability p = 0.0363, consumption recovery rate B = 0.66, and the

speed of mean reversion fH = 0.13. The implied value for the constant H⇤ in (2.20)
19https://sites.google.com/site/orenlevintal/5th-order-perturbation

https://sites.google.com/site/orenlevintal/5th-order-perturbation
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is 0.09. Figure 2.4 shows the ergodic distribution of the variable part of resilience bH

computed from the discrete approximation with N = 201 points. The distribution is

bimodal.

Variable part of resilience
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Figure 2.4. Ergodic distribution of the variable part of resilience bH.

For our method, we consider the even-spaced grid, Gauss-Legendre quadrature

grid, and the Clenshaw-Curtis quadrature grid, which are the most natural choices since

the integration is over a bounded interval. The number of points are N = 5,11,21,41,81.

For the perturbation method in Levintal 2014, we consider up to the fifth-order approx-

imation (the maximum allowed). In order to apply the perturbation method, we need

to supply the unconditional standard deviation of the innovation in resilience, e

H
t+1. We

compute this number using the ergodic distribution in Figure 2.4, which is 0.0174. We

also simulated the true process (2.20) for a long time and verified that we obtain the

same number up to four decimal places. Figure 2.5 shows the log10 relative errors of the

price-dividend ratio. Table 2.4 shows the mean and maximum log10 relative errors over

the entire grid.

Because the resilience process (2.20) is highly nonlinear, we need many grid

points in order to obtain an accurate solution. Overall using the Gauss-Legendre quadra-

ture grid (Figure 2.5b) is the most accurate, with relative errors about 10�3 with N = 11
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(b) Gauss-Legendre quadrature grid.
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(c) Clenshaw-Curtis quadrature grid.
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Disasters Model
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Table 2.4. Mean and Maximum log10 Relative Errors of Price-Dividend Ratio
Approximations, Rare Disasters Model

ME methods Perturbation
N Even Gauss-Legendre Clenshaw-Curtis Order

Mean log10 errors
5 -1.187 -1.982 -1.218 1 -0.422

11 -2.582 -3.451 -2.676 2 -0.856
21 -5.383 -5.560 -5.354 3 -1.007
41 -8.007 -9.679 -9.040 4 -1.268
81 -9.228 -11.23 -9.873 5 -1.590

Maximum log10 errors
5 -0.107 -1.353 -0.182 1 -0.356

11 -0.365 -2.422 -0.841 2 -0.501
21 -0.628 -2.291 -1.430 3 -0.715
41 -1.053 -3.567 -1.447 4 -0.765
81 -1.503 -5.245 -2.003 5 -0.992

points, 10�5 with N = 21 points, and 10�10 with N = 41 points. Hence for practical

purposes 11 points are enough. Clenshaw-Curtis quadrature (Figure 2.5c) is similar to

Gauss-Legendre, as documented in Trefethen 2008. The performance of the even-spaced

grid (Figure 2.5a) is worse near the boundary points. This is because the conditional

variance of the resilience process (2.20) approaches zero near the boundary, which makes

it hard to match the conditional variance. Since there are many grid points near the

boundary for Gauss-Legendre and Clenshaw-Curtis, a low variance is not a problem.

The perturbation method (Figure 2.5d) is not so accurate, with about 10% error with 3rd-

order approximation and 2.6% error with 5th-order. Even the 5-point Gauss-Legendre

discretization is more accurate than the 5th-order perturbation in terms of both mean and

maximum log10 errors.

Do these differences in solution accuracy economically matter? To address this

question, we simulate the resilience process (2.20) for T = 100,000 periods and compute

some financial moments from the true solution as well as the numerical solutions. Table
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2.5 shows the results. As expected from Figure 2.5 and Table 2.4, the 11-point Gauss-

Legendre discretization gives accurate results up to the third significant digit (0.1%).

The perturbation method does not fare well: with the 1st-order approximation, the stock

return is 4 percentage points higher than the true value; the 3rd order approximation is

off by 10–20%, and the 5th-order approximation is off by about 10% for the standard

deviation.

Based on the numerical results in the last two sections, we provide some recom-

mendations to allow the reader to make an informed decision on what kind of compu-

tational strategy to adopt. The perturbation method is fast but it is inherently a local

approximation. When the model is highly nonlinear and shocks are large, the solution ac-

curacy can be poor. Discretization is easy to implement and seems to be accurate enough

for most problems. For Gaussian VARs, our method (with even-spaced or quadrature

grid) seems best. Numerical results in the appendix suggest that for univariate Gaussian

AR(1) process, ME-Quad is most accurate for persistence less than 0.8, ME-Even is

most accurate for persistence between 0.8 and 0.99, and the Rouwenhorst method is best

for persistence 0.99 and beyond (because the Rouwenhorst method is error-free, i.e., it

does not involve any numerical optimization). However, for persistence beyond 0.99, it

may be better to use the projection method. Pohl, Schmedders, and Wilms 2014 suggest

that for solving the long run risk model (Bansal and Yaron 2004), which features very

persistent processes, using the projection method makes an economically meaningful

difference in the solution accuracy. For nonlinear or non-Gaussian processes, as in the

rare disasters model, our discretization method would be the first choice since there may

not be any readily available quadrature formulas to use along with the projection method.
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Table 2.5. Financial Moments, Rare Disasters Model

ME methods Perturbation
N Even Gauss-Legendre Clenshaw-Curtis Order

Mean P/D True = 16.7330
5 17.5101 16.9876 17.8134 1 9.9614

11 16.8498 16.7268 16.6894 2 13.6059
21 16.7523 16.7330 16.7329 3 14.2745
41 16.7351 16.7330 16.7330 4 15.6998
81 16.7331 16.7330 16.7330 5 16.3267

Standard deviation of log(P/D) True = 0.3366
5 0.2432 0.3467 0.2955 1 0.2640

11 0.3129 0.3371 0.3342 2 0.1859
21 0.3309 0.3366 0.3366 3 0.2718
41 0.3359 0.3366 0.3366 4 0.2717
81 0.3366 0.3366 0.3366 5 0.3020

Mean stock returns (%) True = 6.9574
5 6.2558 6.9003 6.3332 1 11.4419

11 6.7882 6.9627 6.9637 2 7.9205
21 6.9187 6.9575 6.9577 3 7.8651
41 6.9527 6.9574 6.9574 4 7.1212
81 6.9572 6.9574 6.9574 5 6.9676

Standard deviation of stock returns (%) True = 11.8058
5 10.2217 12.1749 11.3956 1 9.9833

11 11.5335 11.8175 11.7561 2 6.7575
21 11.7549 11.8062 11.8069 3 9.7367
41 11.8003 11.8058 11.8058 4 9.6381
81 11.8055 11.8058 11.8058 5 10.6445

Note: this table shows the financial moments from T = 100,000 simulations. “True”
indicates the values from the exact solution. The numbers are slightly different from Table
III of Gabaix 2012 because (i) we simulate at the annual frequency, while he simulates at
the monthly frequency, and (ii) in Gabaix’s calibration, the stock resilience volatility is
sH = 0.019 while we have sH = 0.0174 because we specify beta distributions for the
conditional dynamics.



105

2.6 Conclusion

In this paper, we provide a new method for discretizing a general class of stochas-

tic processes by matching low order conditional moments. Our method is computationally

tractable and allows researchers to approximate a wide variety of nonlinear non-Gaussian

Markov processes. We demonstrate that our method produces discrete approximations

which are often several orders of magnitude more accurate than existing methods for

both linear and nonlinear stochastic processes. This is the case whether we consider the

relative bias of unconditional moments implied by the discretization or the accuracy of

solutions to asset pricing models.

Our maximum entropy procedure has a wide range of potential applications

beyond asset pricing models. It is common in the quantitative macro literature to use an

AR(1) specification for technology or income. We believe that researchers use AR(1)

specifications because existing methods do not easily allow for more realistic assumptions.

Recent work on the dynamics of the income distribution has shown that while income

shocks have roughly constant variance, skewness and kurtosis display significant time-

variation (Guvenen, Ozkan, and Song 2014). Our method can be used to solve a life

cycle model with a realistic income process by matching the dynamics of these higher

order moments. Our method can also be used for estimating nonlinear, non-Gaussian

state space models (Farmer 2017). In this paper we considered only tensor grids since

our applications involved only one or two state variables. An interesting and important

future research topic is to explore the performance of our method in conjunction with

sparse grids for solving dynamic models with many state variables.
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Chapter 3

Pockets of Predictability

3.1 Introduction

A large body of empirical evidence suggests that stock returns are predictable.1

This evidence has mostly been established using parametric return prediction models–

most commonly a linear, constant-coefficient specification–followed by inference on

the coefficients capturing the effect of time-varying predictors. Such regressions pool

information across long historical periods and are thus designed to capture how certain

state variables capture return predictability “on average”, across potentially very different

economic states.

In this paper, we offer a fundamentally different view of both the nature and

source of return predictability. We present new evidence that return predictability is far

more concentrated or “local” in time and tends to fall in certain (contiguous) “pockets“.

For example, using the T-bill rate as a predictor variable, our approach identifies seven

pockets whose duration lasts between 62 and 411 days. In total, twelve percent of

the sample is spent inside pockets with return predictability. We contrast this with

the temporal patterns in return predictability implied by return predictability models
1For early studies, see, e.g., Campbell (1987), Fama and French (1988), Fama and French (1989), Keim

and Stambaugh (1986), and Pesaran and Timmermann (1995). Lettau and Ludvigson (2010) and Rapach
and Zhou (2013) review the extensive literature on return predictability.

107
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conventionally used in the vast academic literature on the subject.

Our analysis uses a new empirical approach to study how return predictability

evolves over time. Specifically, we adopt a nonparametric strategy that is capable of

identifying “local” patterns in return predictability. This approach offers advantages

and novel insights compared with existing methods.2 Unlike conventional methods that

impose parametric restrictions on how return predictability evolves over time, we do not

need to take a stand on the return generating process. Instead, our approach lets the data

determine the number of “pockets”, if any, with locally predictable stock returns.

Our evidence of pockets with local return predictability could, in principle, be due

to the repeated use of a test for identifying pockets. For example, if we repeatedly apply

our pockets test at a 5% significance level, we would expect on average to wrongly reject

the null of no (local) return predictability five percent of the time. To see if the evidence

on return predictability identified by our non-parametric approach is consistent with

random variations generated under a null of no return predictability (constant expected

returns), we simulate stock returns from popular models for return dynamics, including a

model that allows for time-varying volatility. We find that standard models fail to match

the patterns observed in returns, most notably the number of pockets, the proportion of the

sample spent inside pockets, and the mean and maximum integral R2 value inside pockets.

These shortcomings continue to hold if we allow for time-varying return predictability,

but assume a constant coefficient on the predictor variable as is common practice in the

return predictability literature. We conclude from this evidence that the commonly-used,

constant-coefficient, linear return predictability model fails to generate time-variation in

expected returns that is consistent with the empirical evidence we observe.
2Studies such as Henkel, Martin, and Nardari (2011), Dangl and Halling (2012), and Johannes,

Korteweg, and Polson (2014) propose models with time-varying coefficients. However, these studies
introduce strong parametric assumptions about changes in the return generating model–either regime
switching or a time-varying parameter model.
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We next ask what type of asset pricing model is consistent with the presence

of return predictability pockets? The dominant interpretation of return predictability

is that it reflects a time-varying risk premium. Thus, it is consistent with changes in

investors’ marginal utility of consumption across different economic states as modeled

by many asset pricing models.3 We provide a new theoretical result which shows that, in

fact, linear constant-coefficient return predictability models are consistent with a broad

class of asset pricing specifications in common use, including models that allow for

time-varying volatility and compound Poisson jumps. When simulating returns from

such models we find, however, that this type of specification does not match the pockets

of return predictability that we find.

Having shown that the empirical evidence is at odds with conventional constant-

coefficient return prediction models, we next advance an alternative explanation of return

predictability. Stock prices depend on expected cash flows that occur in the distant future

and so are surrounded by considerable uncertainty. The high sensitivity of aggregate stock

prices to even minor variations in beliefs about future cash flow growth rates means that

cash flow learning effects could be an important source of return movements.4 Consistent

with this intuition, we show that a new type of cash flow learning dynamics can generate

return predictability patterns that look like time-varying risk premia in a setting where,

by construction, we know that the risk premium is constant.

Building on the predictive systems model of Pástor and Stambaugh (2009), we

assume that the cash flow process can be decomposed into a highly persistent, unobserved

component that tracks expected cash flows and a temporary shock that is not predictable.5

3See, for example, Balvers, Cosimano, and McDonald (1989), Bansal and Yaron (2004), Campbell and
Cochrane (1999), and Cechetti, Lam and Nelson (1990).

4In a model with paradigm shifts, Hong, Stein, and Yu (2007) find that investors learning about the
underlying model that generates dividends can give rise to predictable variation in returns and help to
match volatility and skewness patterns in returns. In their analysis, agents switch between models that are
under-dimensioned specifications relative to the true dividend generating process.

5A key difference to Pástor and Stambaugh (2009) is that we model the unobserved component in
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While the expected cash flow process is unobserved, investors do, however, observe a

state variable that is correlated with variation in the persistent component in expected

cash flows and thus can be used to predict future cash flows.

Generalizing the predictive systems approach, we allow both the drift in the

expected cash flow process as well as its correlation with the observed state (predictor)

variable to undergo discrete changes that we capture through a regime switching process.

For commonly used predictor variables such as the T-bill rate and the term spread, it is

plausible to expect that the extent to which these variables are informative over future

cash flows will vary over time and depend on the underlying monetary policy regime.

Moreover, we consider a setting where the expected growth rate of cash flows is highly

persistent, using parameter values similar to those adopted by Bansal and Yaron (2004)

and Bansal, Kiku, and Yaron (2012) in the long-run risk literature.

We use our regime switching predictive systems model to compare two scenarios.

In the first “no-learning” scenario agents observe the regime process underlying the cash

flow process. In the second “learning” scenario investors do not observe the underlying

regime and so have to recursively update their estimates of the state probabilities using

information on returns and the predictor variable to track the state of the economy.

Next, we simulate asset prices under the no-learning and learning scenarios. By

construction, the ex-ante risk premium is constant in these simulations. We find that the

no-learning model cannot match the empirical evidence on return predictability pockets

generated by our prediction models fitted to historical data. In contrast, the model with

learning about cash flows is capable of generating pockets with similar duration and

return predictability characteristics as those we observe for the actual returns data.

expected cash flows and use an asset pricing model to study its implications for prices and returns. Instead,
Pastor and Stambaugh directly model the dynamics in expected returns and use economic arguments to
constrain the sign of the correlation between innovations in the predictive system. As these constraints do
not apply to the cash flow process, they are not imposed in our analysis.
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The simulations from the predictive systems model for cash flows suggest that

investors’ learning about the underlying cash flow process can induce patterns that look,

ex-post, like local return predictability even in a model in which ex-ante expected returns

are constant. It follows that the existence of local return predictability pockets should not

be viewed as a sign of market inefficiency. We confirm this point by comparing ex-post

identifications of pockets – which use the full sample, including data after the end of the

pocket – to ex-ante identified pockets, which only use data available in real time. This

comparison allows us to determine whether a pocket could be detected in real time, with

the potential for possible trading gains.6 Empirically, we find that this is not the case.

This suggests that exploiting local variation in return predictability in real time is not an

easy task.

Some key differences between our analysis and earlier studies are worth high-

lighting. Our analysis uses daily stock market returns. This differs from existing studies

of return predictability which generally use monthly, quarterly, or annual returns. Using

daily stock market returns enables us to study the local nature of return predictability

which can change rapidly over short periods of time. Sampling returns at monthly or

longer horizons would likely lead us to miss such patterns in return predictability. 7

Although the nature of return predictability identified by our approach is funda-

mentally new and we use a very different empirical strategy in our analysis, some of our

findings are consistent with earlier studies in the return predictability literature which

indicate that return predictability varies over time. For example, Paye and Timmermann

(2006), Rapach and Wohar (2006), and Chen and Hong (2012) find evidence of model

instability for stock market return prediction models. Similarly, Henkel, Martin, and

Nardari (2011) use regime switching models to capture changes in stock return pre-
6This is equivalent to comparing results based on two-sided versus one-sided estimation windows.
7Since dividends are not available at the daily horizon, our estimates of the regime switching predictive

systems model uses a daily proxy for the state of the economy.
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dictability, while Dangl and Halling (2012) and Johannes, Korteweg, and Polson (2014)

use time-varying parameter models to model predictability in stock returns.

There are also key differences between our findings of local return predictability

pockets and the evidence presented in these earlier studies. For example, Henkel, Martin,

and Nardari (2011), along with Rapach, Strauss, and Zhou (2010), argue that return

predictability is closely linked to the economic cycle. We find that although there exists a

link between economic recessions and the return predictability pockets, this link is weak

and the stage of the economic cycle only explains a very small part of the time-variation

in expected returns that we document.

Authors such as Schwert (2003), Green, Hand, and Soliman (2011) (2011), and

McLean and Pontiff (2016) have also found evidence that return predictability patterns

can be learned away over time. These papers show that the strength of the evidence

of return predictability, either from time-series regressions or from the cross-section,

weakens upon the publication of such evidence. A plausible mechanism is that investors’

attempts at exploiting predictive patterns leads to their diminishing as new money flows

in to undervalued assets or out of overvalued assets. The mechanism in our paper is quite

different from these papers. We assume that investors learn about the cash flow process

and the asset price is derived endogenously as a function of the expected discounted cash

flows. We also document how long it takes for this cash flow learning mechanism to

be completed to the point where no additional return predictability is detectable and the

amount of return predictability that is present in the interim.8

Our findings contribute to several areas of the finance literature. Gaining a
8We distinguish between learning about a fixed number of parameters–which eventually (asymptotically)

will reveal the true value of the parameters–and incomplete learning for which agents will never learn the
true value. The latter situation arises in settings with a latent state whose dimensions increase with the
time period. Learning about the underlying regime in a regime switching model is one example since the
dimension of the state vector increases in the sample size and so the current state cannot be consistently
estimated.



113

better understanding of both the patterns of return predictability and the source of such

predictability has important implications for several areas in finance. The belief that

returns are predictable has influenced key areas of finance such as asset allocation (e.g.,

Aı̈t-Sahalia and Brandt (2001), Barberis (2000), Campbell and Viceira (1999), and Kandel

and Stambaugh (1996)), performance evaluation of mutual funds (e.g., Ferson and Schadt

(1996), Avramov and Wermers (2006), and Banegas, Gillen, Timmermann, and Wermers

(2013)), and theoretical asset pricing models (e.g., Bansal and Yaron (2004)).

The rest of the paper proceeds as follows. Section 2 discusses conventional

approaches to modeling return predictability, derives a new result that establishes the

class of asset pricing models that lead to the conventional constant-coefficient return pre-

dictability model, and introduces our nonparametric methodology for identifying pockets

with return predictability. Section 3 introduces our daily data and presents empirical

evidence on return predictability pockets using a variety of predictor variables from the

literature on return predictability. This section also uses simulations to address whether

the pockets could be generated spuriously as a result of the repeated use of (correlated)

tests for local return predictability. Section 4 introduces our Markov switching predictive

systems model for cash flows and presents evidence on the extent to which incomplete

learning about cash flows can generate return predictability pockets that are similar to

those found in the data. Section 5 discusses possible alternative explanations and sources

of return predictability pockets, while Section 6 concludes. Two appendices contain

additional technical material.

3.2 Prediction Models and Estimation Methodology

In this section we first derive a result showing the type of asset pricing models

that are consistent with the benchmark linear regression specification that is commonly

used in empirical studies of return predictability. Next, we introduce the alternative
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non-parametric regression methodology that we use to measure time-variation in return

predictability.

3.2.1 Return Prediction Model with Constant Coefficients

We start by providing a set of very general conditions under which the constant

coefficient specification holds almost exactly within a fairly general endowment economy.

We parameterize cash flow risks in the economy, allowing for stochastic volatility and

compound Poisson jumps. To this end, let zt be an L⇥1 vector of state variables capturing

the aggregate state of the economy. We assume that this evolves according to a process

with the following properties:

. The aggregate state of the economy follows a stationary VAR process:

zt+1 = µ +Fzt + et+1 (3.1)

with y0 given, where the L⇥L matrix F has all of its eigenvalues inside the unit circle.

In addition,

1. The log of aggregate dividend growth, Ddt+1, equals S0dzt+1 for some L⇥1 vector

Sd

2. For any g 2 RL, the conditional Laplace transform of et+1 satisfies

logEt [exp(g 0et+1)|zt ] = f (g)+g(g)0zt , (3.2)

where f (g) : RL ! R and g(g) : RL ! RL

Part 1 of Assumption 1 states that aggregate dividend growth can be captured

by a linear combination of the elements of a finite-dimensional, stationary vector au-

toregressive process, zt . Part 2 of Assumption 1 requires that the logarithm of the
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moment-generating function of the innovation vector is affine in the state vector. This

restriction is satisfied for a wide class of distributions used in the theoretical asset pricing

literature, as the affine structure greatly facilitates analytical tractability.9

In addition to the restrictions on the cash flow process in Assumption 1, we

also put restrictions on preferences. The main restriction is that the pricing kernel is an

exponential affine function of the zt vector that summarizes the aggregate state of the

economy.

. The continuously compounded market return, rt+1, satisfies the Euler equation

1 = Et [exp(l0 �L0zt+1 + rt+1)] (3.3)

where l0 is a scalar and L is an L⇥1 vector

Assumption 2 requires that the pricing kernel has an affine solution, a property

that is satisfied by a large class of models. For example, it holds approximately in a

representative agent model where agents have Epstein-Zin (1989) preferences when

aggregate consumption growth is also an affine function of the state vector.10 Schmidt

(2014) shows that this property also holds in an incomplete markets setting with state-

dependent higher moments of uninsurable idiosyncratic shocks.

In order to solve for asset prices, we apply a standard Campbell and Shiller (1988)

log-linearization of market returns, rt+1, as a function of the log-dividend growth rate,

Ddt+1, and the log price-dividend ratios at time t +1 and t, pdt+1 and pdt :

rt+1 ⇡ k +Ddt+1 +r · pdt+1 � pdt . (3.4)
9For example, the property holds for affine jump-diffusion models, e.g., Eraker and Shaliastovich (2008)

and Drechsler and Yaron (2011). In these models, et+1 is the sum of Gaussian and jump components,
where the variance-covariance matrix for Gaussian shocks and the arrival intensities for the jump shocks
are affine functions of yt .

10See e.g. Bansal and Yaron (2004), Hansen, Heaton, and Li (2007,2008), Eraker and Shaliastovich
(2008) and Drechsler and Yaron (2011).
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Here k and r < 1 are linearization constants. Using this linearization and assumptions 1

and 2, we can show the following result:

. Suppose Assumptions 1-2 hold. Then the following hold

(i) The market price-dividend ratio is pdt = A0,m +A0
mzt ;

(ii) The risk-free return from t to t +1 is r ft+1 = A0, f +A0
f zt ;

(iii) The expected excess return is Et [rt+1]� r ft = b0 +b

0zt ,

where A0,m,A0, f ,b0 are scalars and Am,A f ,b 2 RL.

Proposition 1 shows that the price-dividend ratio, the risk-free rate, and the

expected excess return are (approximate) affine functions of the aggregate state vector.

The result motivates why a large empirical literature summarized in Goyal and

Welch (2008) and Rapach and Zhou (2013) studies predictability of U.S. stock returns by

means of linear regression models with constant coefficients:

rt+1 = x0tb + et+1, (3.5)

where rt+1 is the period-t +1 stock return, measured in excess of the risk free rate, xt is

a (d ⇥1) vector of covariates, and et is an unobservable disturbance with E [et |xt ] = 0.

Provided that xt v zt , Proposition 1 justifies using the linear return prediction model in

equation (3.5).

3.2.2 Nonparametric Identification of Pockets

The assumption in (3.5) of constant regression coefficients has been challenged

in numerous studies such as Paye and Timmermann (2006), Rapach and Wohar (2006),

Chen and Hong (2012), all of which find strong statistical evidence that this assumption

is empirically rejected for U.S. stock returns using standard predictor variables.



117

Following insights from these studies, we generalize (3.5) to allow for time-

varying return predictability of the form:

rt+1 = x0tbt + et+1, (3.6)

where the regression coefficients bt are now subscripted with t to indicate that they are

functions of time as a means of allowing for time-varying return predictability. We also

allow for general forms of conditional heteroskedasticity s

2
t ⌘ E

⇥

e

2
t |xt
⇤

= s

2 (xt). The

commonly used constant coefficient model (3.5) is obtained as a special case of (3.6)

when bt = b for all t.

To identify periods with return predictability, we follow the nonparametric es-

timation strategy developed in Robinson (1989) and Cai (2007). We want to use an

approach that is valid regardless of whether the linear return prediction model in (3.5)

is correctly specified. Using nonparametric methods for pocket identification offers the

major advantage that we do not need to take a stand on the dynamics of local return

predictability, e.g., whether such predictability is short-lived or long-lived and whether it

disappears slowly or rapidly. Instead, our nonparametric methods allow us to characterize

the anatomy of the pockets, e.g., the duration and frequency of pockets and the degree of

return predictability inside the pockets. Such characteristics can provide important clues

about the economic sources of return predictability.

The nonparametric approach views b : [0,1]! Rd as a smooth function of time

that can have at most finitely many discontinuities. The problem of estimating bt for

t = 1, . . . ,T can then be thought of as estimating the function b at finitely many points

bt = b

� t
T
�

.11

11Because time, t, is normalized by the number of observations T , a is a function whose domain is
[0,1] as opposed to [0,T ]. This is useful because we need more and more local information to estimate at
consistently as T ! •.
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Appendix B provides more details about how we implement the nonparametric

analysis. Specifically, we use a local constant model to compute the estimator of bt as

b̂t = argmin
b02Rd

T

Â
s=1

KhT (s� t)
⇥

rt+1 � x0sb0
⇤2
. (3.7)

The weights on the local observations get controlled through the kernel KhT (u) ⌘

K (u/hT )/(hT ) , where h is the bandwidth. The estimator in (3.7) can be viewed as a

series of weighted least squares regressions with Taylor expansions of a around each

point t/T. The weighting of observations in (3.7) can be contrasted with the familiar

rolling window estimator which uses a flat kernel that puts equal weights on observations

in a certain neighborhood. For this estimator KhT (s� t) = 1 if t 2 [t �bhTc, t + bhTc],

otherwise KhT (s� t) = 0. A weakness of this conventional approach is that it assigns the

same weight to local observations, making it less suited for picking up time variation in

a if the build-up and disappearance of such patterns is more gradual, as we would expect

a priori.

To identify periods with return predictability (“pockets”), we need a decision rule

for determining what constitutes significant return predictability. To this end we use a

bootstrap procedure to compute standard errors for the local slope coefficients, bt , and

evaluate their statistical significance. For the estimator of a particular ordinate b̂t , the

estimated asymptotic variance-covariance matrix is given by:

Ŝ
b ,t =

k2

hT

 

T

Â
s=1

KhT (s� t) ê2
s

! 

T

Â
s=1

KhT (s� t)xsx0s

!�1

, (3.8)

where k2 ⌘
R 1

0 K2 (u)du. The limiting distribution is normal and thus a valid 95%
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pointwise confidence interval for the ith element of b̂t , b̂i,t , is given by

h

b̂i,t � z(1�g)/2Ŝ1/2
b ,t (i, i) , b̂i,t + z(1�g)/2Ŝ1/2

b ,t (i, i)
i

, (3.9)

where z(1�g)/2 is the (1� g)/2 quantile of the standard normal distribution.

To quantify the degree of local return predictability, we compute a measure of the

local R2 at time t, R2
t :

R2
t = 1� ÂT

s=1 KhT (s� t) ê2
s

ÂT
s=1 KhT (s� t)y2

s
, (3.10)

where ês = rs � x0s�1b̂s�1 is the residual at time s obtained from the nonparametric

regression. To identify local variations in the regression coefficients of our model (3.6),

we use a two-sided Epanechnikov Kernel and an effective sample size of one year, i.e.,

six months of data before and six months after each observation. The Epanechnikov

Kernel function has an inverted parabola shape and takes the form

K(u) =
3
4
�

1�u2�1{|u| 1} . (3.11)

Thus, for each day in the sample, we estimate nonparametrically the return

prediction model in (3.6) after trimming the first and last six months of the data. At each

point we test if the local slope coefficient is significantly different from zero (using a two-

sided test), assigning a value of unity to the pocket indicator It = 1{
�

�

�

b̂t/se(b̂t)
�

�

�

> c},

where c is a cutoff value that determines the size of the test.

The overlap in adjacent windows (kernel weighting schemes) for nearby dates

t, t 0 yields a sequence of highly correlated test statistics. Moreover, repeating the test

multiple times can be expected to generate false rejections and identify evidence of

spurious return predictability. We address this concern in Section 3.3 by simulating from

different data generating processes for returns and addressing to what extent different
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models can match the characteristics of the pockets of predictability identified by our

methodology. Pocket characteristics are measured in a variety of ways. At the most basic

level, we want to know how many contiguous pockets our procedure detects. We refer

to this as Np. Second, it is of interest to ask how long the pockets last. To this end, let

I jt = 1 for time-series observations inside the jth pocket, while I jt = 0 outside pockets.

Letting t0 j and t1 j be the start and end date of the jth pocket, the duration of pocket j is

defined as

Dur j =
T

Â
t=1

I jt = t1 j � t0 j +1, j = 1, ...,Np. (3.12)

Presumably, it is easier for investors to detect and exploit long-lived pockets as the

power of any tests for the presence of pockets grows with the length of the pocket. We

characterize the distribution of pocket durations by reporting the mean, minimum, and

maximum durations and also report the fraction of observations inside a pocket, i.e.,

ÂNp
j=1 Dur j/T , where T is the total sample size.

Pocket durations do not shed light on the magnitude of the (local) predictability

within a pocket. This matters a great deal because investors are more likely to identify

local predictability if the R2 is high. To get at this, we compute a measure of the average

R2 within each pocket as

R2
j =

ÂT
t=1 I jtR2

t

Dur j
. (3.13)

We report the average R2 value across all pockets, R
2
= ÂNp

j=1 Dur jR2
j/ÂNp

j=1 Dur j, as well

as the maximum value of the average R2, computed across all pockets, Max j=1,...,Np

n

R2
j

o

.

The duration and R2 values measure the length and magnitude of spells with

predictability. However, they do not quantify the total amount of predictability which

accounts for both the duration and the magnitude of the local predictability. We capture
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this by means of the integral R2 measure defined as

IR2
j =

t1 j

Â
t=t0 j

R2
t

=
T

Â
t=1

I jtR2
t

. (3.14)

Visually, this measure captures the area marked under a time-series plot of the local R2
t

values, summed across each of the pocket indicators. We report the mean, minimum

and maximum values of IR j computed across the pockets j = 1, ...,Np. Pockets are

more detectable either when the degree of predictability within a pocket is very high,

possibly for a brief period of time, or when a pocket lasts long (even with low average

predictability), or both. By combining the duration of a pocket with the magnitude of the

predictability inside this pocket, the integral R2 measure provides both economic insights

into how much predictability is present as well as the possibility that investors can detect

this predictability.12

3.3 Empirical Results

This section introduces our daily data on stock returns and a set of predictor

variables, presents evidence from applying the non-parametric approach to identifying

local return predictability pockets, and finally, tests whether this evidence is consistent

with simple models of stock market returns.

3.3.1 Data

Most studies on return predictability use monthly, quarterly, or annual returns

data. However, since we are concerned with local return predictability which may be of a

relatively short-lived nature, we use daily data on both stock returns and the predictor
12Note the analogy to the integral R2 measure from the literature on breakpoint testing which finds that

tests for breaks cannot easily distinguish between frequent, but small breaks to parameters versus rare,
but large breaks that move the parameters by the same distance over a particular sample. See Elliott and
Müller (2006).
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variables. Data observed at the standard frequencies may miss episodes with return

predictability at times when the slope coefficients (bt) change relatively quickly.

In all return regressions, the dependent variable is the value-weighted CRSP US

stock market return minus the one-day return on a short T-bill rate. These data are taken

from Ken French’s website.

Following studies such as Goyal and Welch (2008), Dangl and Halling (2012),

Johannes, Korteweg, and Polson (2014), and Pettenuzzo, Timmermann, and Valkanov

(2014), our main empirical analysis considers univariate prediction models and so only

includes one time-varying predictor at a time, i.e., rt+1 = xtbt + et+1. The univariate

approach is particular well suited to our nonparametric analysis which benefits from

keeping the dimensionality of the set of predictors low.

Specifically, we consider five variables that have been used in numerous studies

on return predictability and are included in the list of predictors considered by Goyal and

Welch (2008). First, we use the lagged dividend yield, defined as dividends over the most

recent 12-month period divided by the current stock price. This predictor has been used

in studies such as Keim and Stambaugh (1986), Campbell (1987), Campbell and Shiller

(1988), Fama and French (1988), Fama and French (1989), and many others to predict

stock returns. Second, we consider the yield on a 3-month Treasury bill. Campbell (1987)

and Ang and Bekaert (2007) use this as a predictor of stock returns. Next, we use the

term spread, defined as the difference in yields on a 10-year Treasury bond and a three

month Treasury bill and the corporate default spread, defined as the yield differential

between BAA and AAA rated corporate bonds.13 Finally, we also consider a realized

variance measure, defined as the realized variance over the previous 60 days. Following

Merton’s work on the ICAPM, the conditional volatility has been used as a predictor of
13See Keim and Stambaugh (1986) and Welch and Goyal (2008) for studies using these predictors.
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stock returns.14

The data samples vary across these predictor variables and begin in 11/4/1926 for

the dividend yield (22,778 observations), 1/4/1954 for the 3-month T-bill rate (14,852

obs.), 1/2/1962 (12,838 obs.) for the term spread, 1/2/1986 (6,808 obs.) for the corporate

spread and 1/15/1927 (22,719 obs.) for the realized variance. The final sample date for

all series is 12/31/2012.

On economic grounds, we would expect return predictability to be very weak

at the daily horizon. Table 1 confirms that this is indeed the case. The table shows

full-sample coefficient estimates obtained from the linear regression model in (3.5) along

with t-statistics and R2 values. Only the regressions that use the T-bill rate (t-statistic

of -2.72) and the term spread (t-statistic of 2.4) generate statistically significant slope

coefficients. As expected, there the average predictability is extremely low at the daily

frequency with in-sample R2 values varying from -0.014% for the default spread to

a maximum of 0.056% (i.e., 0.00056) for the regression that uses the T-bill rate as a

predictor.

Campbell and Thompson (2008) suggest comparing the R2 to the squared Sharpe

ratio to get a measure of the economic value of return predictability. For our daily data, the

Sharpe ratio is 0.0255 and so the squared Sharpe ratio is S2 = 0.00065. Using equations

(13) and (14) in Campbell and Thompson (2008), the in-sample R2 value for the dividend

yield regression translates into a gain of 0.42% in the return of a mean-variance investor

with a coefficient of risk aversion of three or, equivalently, a 7% proportional increase in

the investor’s utility.15 Even ignoring the fact that these are in-sample estimates and omit
14The daily predictor variables are highly persistent at the daily frequency, posing challenges for

estimation and inference with daily data. We therefore detrended the predictors by subtracting a 6-month
moving average. This is a common procedure for variables such as the nominal interest rate even at longer
horizons such as monthly data, see, e.g., Ang and Bekaert (2007). However, we found that the results did
not change very much due to this type of detrending and so decided to go with the simpler approach of
using the raw data.

15These numbers are computed by comparing the expected return of an investor with access to the
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any transaction costs (and trading limits) associated with exploiting the prediction signals,

this shows that there would not have been great economic benefits to investors from

exploiting daily return predictability from the dividend yield. Notably bigger values are

seen for the regression based on the T-bill rate for which the R2 value of 0.056 translates

into an increase in the expected return of 4.7% per annum (assuming again a coefficient

of risk aversion of three) or, equivalently, an 86% proportional increase in the investor’s

expected return. We emphasize again that these are not feasible gains and instead should

be viewed as an upper bound on the economic value of the daily return predictability

signals from the constant coefficient regression model.

Figures 1-5 provide graphical illustrations of the pockets identified by our non-

parametric procedure. Each figure covers a different predictor variable. The top panel

in each figure plots time series of non-parametric kernel estimates of the local slope

coefficient (b̂t) from regressions of daily excess stock returns on the lagged predictors.

Dashed lines surrounding the solid line represent plus or minus two standard error bands.

The bottom panel in each figure plots the local R2 measure against time. Shaded areas

underneath the local R2 curve represent the integral R2 measure for periods identified as

pockets of predictability. Using a methodology described below, areas colored in red

represent pockets that have less than a 5% chance of being spurious, areas colored in

orange represent pockets that have between a 5% and a 10% chance of being spurious,

and areas colored in yellow represent pockets with more than a 10% chance of being

spurious. We comment more on this below.

First consider the predictability plots for the dividend yield predictor, shown in

Figure 1. The plots for this variable indicate 13 separate pockets with significant return

predictability. The two longest pockets occur during the second world war and around

the Korean War. Moreover, both the number and average duration of the pockets has

(in-sample) predictions relative to the return of the same investor who assumes a constant expected return.
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come down over time with only five pockets appearing after 1970 and no pocket showing

up in the last 25-years of our sample, i.e., after 1987. For all but two short-lived pockets,

the coefficient on the dividend yield is positive inside the pocket. Inside pockets, the R2

goes as high as 0.04 in the pocket in 1954. but mostly hovers substantially below this

level at around 0.01.

For the T-bill rate predictor (Figure 2), we identify seven pockets, only one of

which occurs after 1990. Unlike the plots for the dividend yield–and consistent with

existing studies such as Ang and Bekaert (2008)–the local coefficient estimates for the

T-bill rate are mostly negative, the only exception being the pocket in 1995. Notably, our

nonparametric T-bill rate model identifies the episode in 1973-74 with negative excess

returns. The local R2�values exceed 0.02 during three of these episodes, but are very

low during most of the remaining sample, including the period after 2000 which saw low

and downward trending interest rates.

The plots for the term spread in Figure 3 identify three pockets–all with positive

coefficients–in 1969, 1973-74, and in 1981-82. Interestingly, the last pocket coincides

with the changes to the Federal Reserve’s operating procedures during the monetarist

experiment in 1979-1982 which led to significantly higher and more volatile interest

rates. The local R2 is notably higher during these three episodes, ranging between 0.015

and 0.025.

The corporate spread regression in Figure 4 only identifies two pockets–a fairly

long-lived pocket in 1990 and a shorter one in 1995. In both cases, the local R2 is around

0.01.

The plots for the realized variance, shown in Figure 5, identify eight pockets.

Interestingly, whereas the estimated coefficients on this variable are negative during the

four pockets identified in the first half of the sample up to 1968, they switch sign and

become positive in the three longest pockets identified in the second half of the sample.
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This behavior is consistent with the difficulty the finance literature has experienced in

establishing a consistently positive risk-return trade-off.

3.3.2 Anatomy of Pockets

Having illustrated the presence of pockets with return predictability, we next

move on to study the properties of such pockets in more detail. To this end, the first

five columns in Table 2 show statistics on the number of pockets identified by our

methodology. This includes their minimum and maximum lengths, the average pocket

lengths, and the fraction of the total sample for which a pocket is identified. Results in

Panel A use a 5% significance level to identify pockets, while results in Panel B use a 1%

significance level.

The length of the pockets varies significantly, even for a particular forecasting

model. For example, using a 5% significance level to identify pockets (Panel A), the

model based on the dividend yield finds a pocket that lasts only 24 days (a little more than

one month) while the longest pocket lasts 876 days, or more than three years. Similarly,

if less extreme, variations in pocket length are observed for the other predictor variables.

The average duration of periods with return predictability varies from 126 days (five

months) for the corporate spread variable to 378 days (18 months) for the term spread.

As seen from the plots in figures 1-5, the number of pockets identified by our

approach also varies substantially across predictors–from 13 for the dividend yield model

to only 2 for the corporate spread. This reflects differences in both the sample length

(the sample is much longer for the dividend yield than for the corporate spread), but also

differences in the proportion of the sample spent inside pockets. If we use a 5% test size

and repeat the test multiple times, by random chance we should expect to find pockets

5% of the time. In fact, for both the dividend yield and T-bill rate predictors, 11 percent

of the sample is spent inside pockets–over twice the rate we would expect by chance.
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We also find a higher-than-expected pocket frequency for the term spread (9%) and the

realized variance (8.3%) predictors, but a lower-than-expected rate for the default spread

(3.8%).

Comparing the periods spent inside pockets (columns 1-5) to periods spent outside

pockets (columns 6-10), we find that the average duration of spells outside pockets is

far greater than that spent inside pockets. This is, of course, a reflection of the fact that

most of the time (at least 88% of the sample) is spent outside pockets, but the duration

measures for the “out-of-pocket” episodes serve the purpose of showing that there are

decade-long periods with no significant return predictability.

Panel B repeats the analysis in Panel A, now using a significance level of 1%. The

advantage of using this more stringent level of significance is that it is likely to trigger

fewer cases of “spurious” pockets due to the repeated use of the test statistic. Although

the number of pockets, as well as their average and maximum length decline, we see

continued strong evidence of pockets even for this more stringent threshold. For the

T-bill rate, the term spread and the realized variance predictors, pockets occupy 4.3%,

4.9%, and 4.2% of the sample, respectively. This is four times higher than the frequency

(1%) expected due to the repeated use of the pocket test statistic. For the dividend yield

variable, 2.8% of the sample is spent inside pockets, whereas the model based on the

default spread no longer identifies any pockets.

Panels C and D report sample statistics on the mean, standard deviation, skewness,

kurtosis and persistence of returns inside the predictability pockets identified by our

methodology (left columns) as well as outside the pockets (right columns). Focusing on

the results based on the 5% cutoff (Panel C), return distributions of stock returns inside

versus outside the pockets can differ by large amounts. For example, the daily mean

return inside the pockets identified by the dividend yield predictor is 4.7 basis points

(bps) per day which is nearly twice as high as outside the pockets (2.4 bps). Even larger
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differences are observed for the pockets identified by the T-bill rate and the term spread

predictors, for which we observe negative mean returns (-2.5 bps) in the pockets, but

positive means (3.0 and 2.7bps, respectively) outside the pockets.

Returns inside the pockets also tend to be less volatile (with the exception of

pockets identified by the term spread) with positive skews for four out of the five

predictors (the exception being the realized variance predictor). The positive skews inside

pockets contrast with the large negative skews observed outside pockets. Kurtosis is also

markedly smaller inside the pockets than outside for four of five variables. This suggests

that the pockets overall have lower risk than during normal periods.

We conclude from these results that return predictability varies significantly over

time. Our nonparametric regression approach detects local pockets of return predictability

and the return distribution appears to be quite different inside versus outside such pockets.

Of course, we have not yet conducted any formal inference on these findings–a topic we

turn to next.

3.3.3 Evaluating the Statistical Significance of the Results

Because we use a new approach for identifying local return predictability, it

is worth further exploring its statistical properties. For example, we are interested in

knowing to what extent our approach spuriously identifies pockets of return predictability.

Since our approach repeatedly computes local (overlapping) test statistics, we are bound

to find evidence of some pockets even in the absence of any genuine return predictability.

The question is whether we find more pockets than we would expect by random chance,

given a reasonable model for the daily return dynamics. Another issue is whether shorter

pockets are more likely to be spurious than the longer ones and whether the degree

of return predictability (as measured by the local R2) inside pockets is consistent with

standard models for return dynamics.
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To address these questions, we consider two different models for return dynamics.

Our simplest model assumes a random walk model with a drift for stock prices and so

takes the form

rt+1 = µ + et+1. (3.15)

To allow returns to follow a non-Gaussian distribution, we draw the zero-mean innova-

tions, et+1, by means of an i.i.d. bootstrap. This is clearly not a very good model for

daily stock returns, but it serves as a benchmark that allows us to gauge the importance

of adding more realistic features of return dynamics.

Specifically, we need to account for the pronounced time-varying volatility in

daily returns. To this end, we estimate a GARCH(1,1) model which has been used

extensively to characterize stock market volatility. In addition to allowing for volatility

dynamics in returns, we allow for (constant) return predictability from a time-varying

state variable, xt , whose volatility is also time-varying, so that the model we simulate

from takes the form

rt+1 = gxt + ert+1 ⌘ gxt +
p

hrturt+1, urt+1 ⇠ (0,1), (3.16)

hrt+1 = w +a1e

2
rt +b1hrt ,

xt = rxt�1 + ext ⌘ rxt�1 +
p

hxtuxt , uxt+1 ⇠ (0,1),

hxt+1 = wx +axe

2
xt +bxhxt ,

where urt+1 and uxt+1 are mutually independent. The specification in (3.16) is very

flexible: We allow for time-varying volatility both in the return shocks and in the

predictor variable and the shocks to returns and the predictor variable can be correlated.

This constant-coefficient specification is of particular interest for two reasons. First,

because it is the conventional return predictability model used in the empirical literature.
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Second, it is implied by many asset pricing specifications as shown in Proposition 1. The

GARCH(1,1) model allows for the possibility that local pockets of return predictability

could arise due to periods with large variations in the predictor variable.

To simulate from the model in (3.16), we first estimate the parameters g,w,a1,b1,

r,wx,ax and bx by fitting GARCH(1,1) models to daily values of excess returns and

the predictors. Using these estimates, we next construct values of xt as r̂xt�1 +
p

ĥxt ûxt ,

where ĥxt is the fitted variance of xt from a GARCH(1,1) model and ûxt is obtained by

bootstrapping (with replacement) from the normalized residuals of the x process. Finally,

we construct a series of conditional variances
�

ĥrt+1
 T�1

t=0 and obtain normalized residuals

{ûrt+1}T�1
t=0 , where ûrt+1 = rt+1 � ĝxt/

q

ĥrt+1. Next, we construct 1,000 bootstrap

samples by first drawing T +1 bootstrap residuals
�

ub
rt
 T

t=0 at random from {ûrt+1}T�1
t=0

with replacement. We then construct a bootstrap sample of returns
�

rb
t+1
 T�1

t=0 from

(3.16), with hb
0 = ŵ/(1� â1 � b̂1).

For both specifications (3.15) and (3.16) we use the available sample to fit the

model and estimate parameters such as the persistence of the predictor variable (xt).

Our simulations follow the empirical analysis and define pockets as periods where the

estimated coefficient on the lagged predictor variable is found to be significant at the 95%

level. For each bootstrap sample, we record the number of such pockets, along with the

minimum, maximum and average values for the pocket duration (measured in days), the

R2 and the integral R2, described in equations (3.12)-(3.14), along with the fraction of

time spent inside pockets, measured as a proportion of the full sample.

Table 3 shows results for the actual data (first column) and the bootstrapped

average, standard errors and p-values–the latter computed as the proportion of simulations

that generate a statistic as large as or bigger than that found in the actual data. Columns

two through four assume the simple return generating model in (3.15), while columns

five through seven present results for the extended GARCH model in (3.16).
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First consider the results for the model that uses the dividend yield as a predictor

variable (Panel A). On average there are 6.6 pockets in the simulations as compared

with 13 in the actual data and this difference is statistically significant: Only 1.1% of

the simulations generate at least 13 pockets. The simulated data also fail to match

the maximum pocket duration but can match both the minimum and average duration

statistics. A similar pattern arises for the statistics based on the R2 measure for which

the simulated data match the minimum and average R2 value within pockets but not its

maximum value. The simulated data also fail to match both the average and maximum

values of the integral R2 and the fraction of the sample inside pockets which is 11% in

the actual data and close to 5% in the simulations.

For many of the measures of local return predictability, similar patterns are

found for the other predictor variables: whereas simulations based on the benchmark

specifications in (3.15) and (3.16) can generate the same number of pockets as in the

original sample and also match the shortest pocket duration and the minimum IR2, they

have a much harder time matching the mean or maximum IR2 value or the maximum R2.

Results do vary for the remaining statistics, e.g., the maximum pocket length which is

matched for the pockets identified by the T-bill rate, default spread and realized variance

predictors but not for the term spread.

Interestingly, the simulated data can match all the test statistics for the pockets

identified by the corporate spread variable (Panel D). This suggests that the pockets

identified by this predictor are consistent with one of the simple return prediction models

in (3.15) and (3.16).

Looking across the different benchmark specifications, it does not make a big

difference to most of the results if the random walk with a constant expected return or

the GARCH model with a constant slope coefficient is used in the simulations.

These simulations suggest that the shortest predictability pockets can be due to
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“chance” as they are likely to occur in simulations with zero coefficients; whereas neither

models with constant expected returns or a constant slope coefficient and time-varying

volatility come close to matching the amount of predictability observed in the longer-lived

pockets.

Table 4 repeats the analysis, but now defines the pockets relative to a constant

coefficient benchmark. Hence the results in this table are testing if there is evidence of

significant time variation in the slope coefficient of the predictors, again measured relative

to a constant, non-zero baseline. The number of pockets should now be thought of as

contiguous periods with evidence of significant time variation in the slope coefficient.

Because the coefficients can move either up or down relative to the baseline specification,

there is no mechanical relation between the number of pockets–or the time spent inside

pockets–in Table 4 versus the number of pockets reported in Table 3. However, we do see

that the two numbers are broadly similar with most pockets identified for the dividend

yield (16 pockets) and fewest for the corporate spread (one pocket).

While the duration statistics can be matched by the simulations, the mean and

maximum values of the integral R2, the maximum R2, as well as the fraction of days

with a significant pocket indicator cannot, in most cases, be matched. This is evidence

of significant time variation in the regression coefficients of the univariate return predic-

tion models and evidence against the class of affine asset pricing models as shown in

Proposition 1.

3.3.4 Separating Spurious from Non-Spurious Pockets

We previously discussed the concern that our local, non-parametric approach

may detect spurious pockets due to the repeated use of tests based on overlapping data.

This naturally raises the question whether we can tell if some of the pockets identified by

our approach are more or less likely to be spurious. Our finding from Table 3 that the
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simulations can match some properties of the pocket distribution but not others, suggests

that we can discriminate between spurious and non-spurious pockets by looking at each

individual pocket’s integral R2 value–a measure found to be particularly hard to match in

the simulations–and computing the percentage of simulations with at least one pocket

matching this value. This measure gives an odds ratio with small values indicating how

difficult it is to match the total amount of predictability observed for each particular

pocket.

Following this idea, for each of the pockets identified in Table 2, Table 5 reports

the associated integral R2 measure and the probability that this value is matched by at

least one pocket in a simulation. First consider the 13 pockets identified by the return

prediction models that use the dividend yield as a predictor (first column). Some of the

pockets are highly unlikely to be due to chance–for example, the third and fifth pockets

generate integral R2 values around 13 and not a single of the simulations is able to match

these high values. Other pockets, notably the second, seventh, tenth, and twelfth, are

more likely to be spurious as their integral R2 values are matched in at least five percent

of the simulations.

All of the seven pockets identified by the T-bill rate generate integral R2 values

less than 5%–most substantially smaller even than 1%, and similar conclusions hold

for the three pockets identified by the term spread and the realized variance (with two

exceptions).

Using the analysis in Table 5, Figures 1-5 mark in red the integral R2 of pockets

with less than a 5% chance of being spurious, pockets colored in orange have between a

5% and a 10% chance of being spurious, while pockets colored in yellow have more than

a 10% chance of being spurious. As expected, pockets that are more short-lived and have

lower peaks in the R2 are more likely to be deemed spurious.

These results suggest that, with the exception of some of the pockets identified
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by the model that uses the dividend yield or the default spread as a predictor variable, the

vast majority of pockets of predictability identified by our local kernel approach are not

spurious and, so, represent periods where returns are genuinely predictable.

3.4 Learning About Cash Flows

This section explores whether the evidence of local pockets with return pre-

dictability is consistent with learning dynamics induced by an asset pricing model

where expected returns are constant but the cash flow process is partially predictable.

Specifically, we propose a new specification for cash flow dynamics that builds on, and

generalizes, the predictive systems approach pioneered by Pástor and Stambaugh (2009).

As in the predictive systems approach, we assume that cash flows consist of an unob-

served expected growth component that is highly persistent and a temporary “unexpected

growth” shock. This latent process is correlated with a set of observable state variables

which, through their correlation with expected growth, gain predictive power over future

cash flows. We argue that the correlation between expected cash flows and many of

the conventional predictor variables used in the return predictability literature–notably

nominal interest rates and interest rate spreads–is likely to vary over time and we model

such variation through a regime switching process. A likely source of such shifts in

correlations is changes in monetary policy and these can be discrete, as captured by the

regime switching process. Thus, how informative an observed predictor variable is with

regards to the underlying (unobserved) cash flow growth process is likely to vary over

time. Sometimes the economic state variable has strong predictive power over future

cash flows, and at other times it does not. Our approach captures such variation.
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3.4.1 A Predictive Systems Model with Regime Switching

We develop a model for the dividend process that captures a small predictable

component in daily cash flows. Specifically, let Ddt+1 = log(Dt+1/Dt) be the growth

rate in (log-) dividends and assume that this can be decomposed into an expected cash

flow component, µt , and a purely temporary shock, ut+1 :

Ddt+1 = µt +ut+1, (3.17)

The mean of the expected cash flow process, µt , is affected by a state variable, st ,

which captures discrete shifts to the process. Moreover, µt can be persistent as captured

by an autoregressive component. Finally, expected cash flows are affected by a transitory

shock, wt+1 :

µt+1 = µ

µ,st+1 +r

µ

µt +wt+1. (3.18)

While investors do not observe the expected cash flow process, they observe a predictor

variable, xt+1, that is affected by the same state variable, st+1, and follows a similar

dynamic process:

xt+1 = µx,st+1 +rxxt + vt+1. (3.19)

We assume that the innovations to the processes in (3.17) - (3.19) are normally distributed

with mean zero (ut+1wt+1,vt+1)0 ⇠ N(0,Sst+1), where Sst+1 is a state-dependent variance-

covariance matrix:

Sst =

2

6

6

6

6

4

s

2
u suv suw

suv s

2
v,st svw,st

suw svw,st s

2
w,st

3

7

7

7

7

5

. (3.20)

Note that we constrain this covariance matrix to have a very particular form as only the

variance of the expected cash flow (s2
w,st ) and predictor variable (s2

v,st ), in addition to
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their cross-moment (svw,st ), are state dependent. In contrast, the variance of the purely

temporary shocks to dividend growth (s2
u ), or their correlation with the other shocks in

the model (suv,suw), do not depend on the underlying state variable. We impose these

constraints to ensure that the identified states capture changes to how informative the

predictor variable, xt+1, is over the expected cash flow process, µt+1.

We focus on the case with two states so that st 2 {1,2} and assume that st follows

a first-order homogenous Markov chain with transitions

pii = prob(st+1 = i|st = i), i = 1,2. (3.21)

We further assume that st is independent of µt and collect the state transitions in a 2⇥2

transition probability matrix Ps.

Using results from Timmermann (2000), the unconditional mean and variance of

the µt process are given by16

E [µt ] = p

0
µ

µ

µ

µ,s,,, (3.22)

Var (µt) = p
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where

µ

µ

µ
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, p =

2
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P(st = 1)

P(st = 2)

3

7

5

.

are the steady-state mean, volatility and ergodic state probabilities, respectively.
16This result uses that the µt process can equivalently be re-written as

µt+1 = µ

µ,st+1 +r

µ

µ

µ,st +r

µ

�

µt �µ

µ,st

�

+wt+1.
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3.4.2 Filtering the State Variables and Evaluating the Likelihood

The predictive systems model in (3.17) - (3.19) is a nonlinear state space model

as it contains a combination of linear and regime-switching dynamics, and thus standard

Kalman filtering cannot be used to filter the states and evaluate the likelihood. To address

this issue, we approximate the likelihood function using a discretization of µt as proposed

in Farmer (2017). We briefly explain how this is done.

In the first step, we construct a discrete approximation to the stochastic process

governing the dynamics of the state variables, µt and st . Because the shocks to the

measurement and state equations are correlated, the distribution of the state in the next

period conditional on the state in the current period depends on the specific values of the

observables and so the transition matrix constructed to approximate the dynamics will

be time-varying. We handle this issue as follows. Using properties of correlated normal

random variables, we have

wt |ut ,vt ,st ⇠ N
�

µcond,t ,s
2
cond,t

�

,

where µcond,t and scond,t are given by

µcond,t =

�

suws

2
v,st �svw,st suv

�

ut +
�

svw,st s
2
u �suwsuv

�

vt

s

2
u s

2
v,st �s

2
uv

,

s

2
cond,t = s

2
w,st �

s

2
uws

2
v,st +svw,st s

2
u

s

2
u s

2
v,st �s

2
uv

.

Next, define a new random variable µt,M which takes M discrete values
�

µ

1, . . . ,µM�. For a given choice of M, define a grid from the set of M equally spaced

points between E [µt ]�
p

(M�1)Var(µt) and E [µt ] +
p

(M�1)Var(µt). Let each

point µ

m be associated with the interval
h

µ

m,µm
i

where µ

1 = �•, µ

M = •, and

µ

m = µ

m+1 = µ

m+µ

m+1

2 for m = 1, . . . ,M�1. Construct the transition probabilities for
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µt,M at time t as

P
⇣

µt+1,M = µ

m0 |µt,M = µ

m,ut+1,vt+1,st+1

⌘

=F
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(3.24)

where F is the standard normal CDF.

With two variance regimes, we get a total of 2⇥M states in the discrete chain.

The ordering convention for the states is

y =
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The state probabilities, x̂t|t , can therefore be represented by a (2⇥M)⇥1 vector whose

individual entries refer to the probability of being in each of the state pairs listed in

the y matrix above. Because the innovations to the state and observation equations are

correlated, the discrete Markov chain is non-homogeneous with transition matrix at time

t given by Pt .

The forecast of next period’s state is given by

x̂t+1|t = Pt x̂t|t , (3.26)
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while the state probabilities are updated recursively as follows

x̂t+1|t+1 =
x̂t+1|t �ht+1

10
⇣

x̂t+1|t �ht+1

⌘ , (3.27)

where 1 is a (2⇥M)⇥1 vector of ones and ht+1 denote the joint conditional densities

ht+1 =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

p
�

ut+1,vt+1
�

�

µt = µ

1,st+1 = 1
�

...

p
�

ut+1,vt+1
�

�

µt = µ

M,st+1 = 1
�

p
�

ut+1,vt+1
�

�

µt = µ

1,st+1 = 2
�

...

p
�

ut+1,vt+1
�

�

µt = µ

M,st+1 = 2
�

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

From the time series
n

x̂t|t

oT

t=1
we can construct filtered estimates of µt as

µ̂t|t = (yi1)
0
x̂t|t (3.28)

where i1 is the first column of the (2⇥2) identity matrix.

Lastly, the log likelihood of the approximate predictive system model can be

constructed as

`T,M (q) =
1
T

T

Â
t=1

log
h

10
⇣

x̂t+1|t �ht+1

⌘i

. (3.29)

We next discuss how the parameters of the model are calibrated using daily data

on dividend growth and the T-bill rate.
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3.4.3 Asset Prices and Returns

We next develop a simple present value model for pricing stocks under the

assumption that dividends follow the predictive systems model in (3.17) - (3.19). To this

end, we use a simple log-linearized present value model. Following Campbell and Shiller

(1988), the present value stock price can be written as

pt = dt +
c

1�r

+Et

"

•

Â
j=0

r

j[Ddt+1+ j � rt+1+ j]

#

, (3.30)

where pt and dt denote the log of the stock price and dividends, respectively, Ddt+ j

and rt+ j are the dividend growth rate and (log-) returns in period t + j, and c,r are

(linearization) constants. Under the assumption that expected returns are constant,

Et
⇥

rt+ j
⇤

= r for all j, (3.30) simplifies to

pt = dt +
c� r
1�r

+Et

"

•

Â
j=0

r

jDdt+1+ j

#

. (3.31)

Thus, calculating the stock price in (3.31) only requires us to compute the expected future

dividend growth, Ddt+1+ j for j � 0. Recall from (3.28) that the filtered state estimate

of µt is given by µ̂t|t = (yi1)
0
x̂t|t . To compute an expression for the expected value

of future dividend growth, we assume that the transition matrix remain as Pt , which

amounts to assuming that agents do not account for the effect of their future learning

when projecting cash flows. Under this assumption, we have

Et
⇥

Ddt+1+ j
⇤

= (yi1)
0
⇣

P j
t x̂t|t

⌘

. (3.32)
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Using (3.31) we can compute an expression for the log stock price

pt = dt +
c� r
1�r

+
•

Â
j=0

r

jEt
⇥

Ddt+1+ j
⇤

= dt +
c� r
1�r

+
•

Â
j=0

r

j (yi1)
0
⇣

P j
t x̂t|t

⌘

= dt +
c� r
1�r

+(yi1)
0
⇣

(I �rPt)
�1

x̂t|t

⌘

. (3.33)

From this we obtain an expression for returns:

rt+1 = c+r (pt+1 �dt+1)+dt+1 � pt

= c+r

c� r
1�r

+(yi1)
0
⇣

(I �rPt)
�1

x̂t+1|t+1

⌘

+Ddt+1 �
c� r
1�r

� (yi1)
0
⇣

(I �rPt)
�1

x̂t|t

⌘

= r+Ddt+1 +(yi1)
0 (I �rPt)

�1
h

x̂t+1|t+1 � x̂t|t

i

(3.34)

We use equations (3.33) and (3.34) along with the dividend process in (3.17) -

(3.19) to simulate dividends, stock prices and stock returns.

3.4.4 Calibration of Model Parameters

In practice, the daily dividend process is not observed, and so we have to use a

proxy for Ddt+1.17 To this end, we use the ADS index proposed by Aruoba, Diebold,

and Scotti (2009). This is a daily business cycle index that is constructed using daily

updates to “real” economic variables observed at different frequencies such as weekly

payroll figures, monthly industrial production, and quarterly GDP growth. The ADS
17Although one can technically construct a daily cash flow composite for US dividends, the resulting

series is extremely irregular with outliers on days with large dividend payouts and a strong seasonal
components that varies from quarter to quarter, depending on the exact timing of individual firms’ dividend
payments.
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index is updated daily by the Federal Reserve Bank of Philadelphia and closely tracks

the business cycle. The daily ADS time series is highly persistent but is constructed

to revert to a mean of zero. As observed by Rossi and Timmermann (2015), the ADS

index is a good candidate for picking up a slow-moving component in variables such

as consumption growth which, at least in endowment economies, are closely related to

dividend growth.18 We rescale the ADS index so that when it is simulated at a daily

frequency, the time-aggregated mean and standard deviation at a yearly frequency are

5.44% and 5.71% respectively.

As our predictor variable, we use the yield on a 3-month Treasury bill which we

saw earlier gives rise to several pockets with return predictability.

The values of the calibrated parameters are listed in Table 6. We choose the

diagonal elements of the state transition matrix (p11 = 0.996,p22 = 0.999) so that the

expected duration of the first and second regimes are 250 and 1,000 days, respectively.

The mean of the observable predictor variable (the T-bill rate) in the first regime, µx,1

is set so that its expectation in this state equals 0.040 with its expectation in the second

state (µx,2), at 0.053, is calibrated such that its unconditional mean across the two states

matches the overall sample mean of the 3-month Treasury bill rate.

We choose a value of the autoregressive parameter for the expected growth

process, r

µ

= 0.9999, that implies very high persistence in cash flows. Part of the reason

for choosing such a high value is that we use daily data, and we would expect growth

in daily cash flows to be highly persistent. Moreover, the level of persistence chosen

in our simulations is comparable to that assumed in the literature on “long-run risk”,

see, e.g., Bansal and Yaron (2004). For example, the coefficient on the expected growth

rate in Bansal and Yaron (2004) is 0.979 for monthly data which translates into roughly
18Rossi and Timmermann (2015) find that the correlation between the economic activity index, con-

structed using a similar methodology to that used for the ADS index, and growth in real personal,
nondurable consumption is 15.4% and 39.7% at the quarterly and annual horizons, respectively.
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0.999 at the daily frequency, assuming 21 days in a month. Similarly, Bansal, Kiku, and

Yaron (2012) analyze a model where the persistence of the expected growth rate and of

volatility is 0.9988 and 0.99995, respectively, at the daily frequency.

Therefore, we are effectively studying investors’ learning about a long-run risk

component in the cash flow process. The more persistent the underlying latent growth pro-

cess, the slower investors’ learning is expected to be, and so investors face a particularly

difficult learning problem in our setting.

Given this choice for r

µ

, the means of the expected growth process, µ, at µ

µ,1
1�r

µ

=

3.30⇥10�4 and µ

µ,2
1�r

µ

= 1.87⇥10�4, are again calibrated so that the unconditional mean

matches the sample mean of the rescaled ADS series. The same is true for the standard

deviation of the innovations to x. The standard deviation of the innovations to µ are

chosen to be equal across regimes. That is, we impose sw,1 = sw,2. We also impose that

suv = 0 across both regimes, and that svw,1 = 0.

3.4.5 Simulation Results

Using the calibrated parameters of the generalized predictive systems model,

we generate simulated data and run the local, non-parametric time-varying coefficient

regressions exactly as in the empirical specification to identify pockets and to see if the

characteristics of such pockets match the characteristics of the pockets identified in the

actual data. Since we are interested in matching the pocket evidence in the actual data

(Table 2), for each predictor variable we generate a sample whose length matches that of

the corresponding predictor variable listed in Table 1.

We show results for the two significance levels (5% and 1%) considered in our

study. For the case with no learning, investors are assumed to know the state of the

underlying Markov chain and µt is set equal to the value corresponding to the interval in

which the true continuous value lies. For the case with learning, agents do not observe
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the state, st , and instead have to form beliefs about the probability that they are in any

particular (µt ,st) regime. In both cases, we compare the simulated statistics to the results

from the model that uses the T-bill rate as a predictor variable.

Before studying the ability of the simulated model to generate predictability

pockets, first consider the overall area under the local R2 curves displayed in Figures 1-5

as well as the areas above and below the zero line, labeled “positive” and “negative”,

respectively. If a returns model does not match the overall or average R2, this suggests

that it does not generate much predictability. Using the actual data, the results reported

in Table 7 show that we find a local average R2 of 0.39%. This value cannot be matched

by the simulations with no learning which generate, on average, a local R2 of -0.34%,

whereas the models with learning easily match this measure (average local R2 of 0.57%).

The key reason for the no-learning model’s failure to match the amount of predictability

is that it generates large negative values of the local R2 (-2.31% on average)–something

that is not matched in the actual sample (-0.098%) which in turn closely lines up with the

measure under the learning model (-0.11%).

Turning to the emergence of return predictability pockets, first consider the results

based on the 5% significance level (Panel A in Table 8). The model with no learning

generates an average of only 3.8 pockets as opposed to the seven pockets observed in the

actual sample and only 4.6% of the sample is spent inside pockets compared to 11.7% in

the actual data. The no-learning model does not get close to matching the values observed

in the actual data of the mean or maximum integral R2 statistics or the maximum R2

measure.

Considering next the model with learning dynamics, we see that this is capable

of matching all sample statistics based either on the value of the integral R2 measure or

the length of the pockets. For example, the number of pockets is seven in the sample

as compared to an average value of 7.62 in the simulations, and the simulations with
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learning also match the the fraction of the sample spent inside pockets (13.6% versus

11.7%) quite closely. Only the mean and maximum values of the integral R2 are not

matched to the full extent in the simulations with learning effects–with p-values around

0.07. However, even here we find that the effect of learning dynamics is to move the

simulated values much closer towards the values observed in the actual data sample.

These findings carry over to the results that use the 1% significance level to

identify pockets (Panel B in Table 8). For example, whereas the model with no learning

only generates 1.7 pockets on average, the model with learning generates an average

of 3.6 pockets, a number that, while slightly below the four pockets observed in the

data, is within sampling error of that number. The fraction of the sample spent inside

pockets with predictability in the actual data (4.3%) is also matched more closely in the

simulations with learning (5.9%) than in the simulations without learning (1.9%).

We find similar results in the simulations with a constant coefficient benchmark.

Again the no-learning simulations have a hard time matching the integral R2 measures

in addition to the maximum R2. Moreover, this model cannot simultaneously match the

number of pockets and the average R2 with pockets (p-value of 0.017)–a task which the

learning model finds much easier to accomplish (p-value of 0.336).

We conclude the following from these simulations of our predictive systems

model with discrete changes in how informative the observed predictor is over the

(unobserved) conditional mean process for the growth rate in cash flows. First, in the

absence of learning, our model cannot match the local nature (pockets) of the temporal

patterns we observe in return predictability. Second, a model that introduces learning

about the underlying state process is capable of generating return predictability pockets

with similar features as those observed in the actual data. Significantly, both the number

of pockets and the average time spent in pockets is matched by this model. Third, since

our simulations assumed a constant risk premium, the results suggest that learning about
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cash flow dynamics could be an alternative explanation to the time-variation in return

predictability that we document in the first part of the paper.

3.4.6 Learning Effects and Pockets

Next, we investigate the ability of an investor’s misperception of expected growth

to explain the rise and fall of pockets. Define the belief discrepancy measure

µ̃t ⌘ µ̂t|t �µt (3.35)

which is the difference between an agent’s inference about expected growth (µ̂t|t) and

the true value of expected growth at time t, µt . We consider several different regression

specifications of the following form

yit = a + x0itb + g {edgeit}+ {edgeit}x0itd + ei,t (3.36)

Here the i subscript refers to the simulation number, from 1 to 1,000, and t refers to the

time period within a simulated sample, from 1 to 13,300 (the sample size for the 3-month

Treasury bill). The dummy variable edgeit takes the value 1 for the first and last 126

(half of the kernel regression bandwidth) periods of the sample, and zero otherwise. The

dependent variable yit is chosen to be either an indicator for whether a pocket is identified

at period t in sample i or the local R2 measure from the kernel regression. The vector

xit contains various functions of µ̃it . We consider three specifications for xit , namely (i)

xit = µ̃t , (ii) xit = [
µ̃t µ̃

2
t ], and (iii) xit = |µ̃t |.

To aggregate the results across simulations, we report the coefficient estimate as

the average coefficient estimate across simulations. The standard errors of the coefficient

estimates are computed as the standard deviation of the estimates across simulations

scaled by the square root of the number of simulations. These standard errors are then
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used to compute p-values. We consider both choices for yit and allowing for 5% and

1% significance thresholds for identifying pockets. Note that the choice of significance

threshold does not affect the local R2 results, only the pocket indicator variable results.

The results are reported in Table 9.

The results show that the belief discrepancy measure, while not strongly correlated

on its own with either the pocket indicator or the local R2 measure, is strongly correlated

with both the pocket indicator and the local R2 when combined with the squared belief

discrepancy. Similarly, the absolute value of the belief discrepancy measure is highly

correlated on its own than either the pocket indicator or the local R2. Moreover, the

explanatory power of these discrepancy measures over variation in future stock returns

can be quite high–ranging from about 6.5% for the regression of the pocket indicator on

the simple belief discrepancy measure, µ̃t , to about 15% for the regression of the local

R2 on µ̃t and µ̃

2
t .

Interestingly, in unreported results we find that the switching indicator is not

significantly correlated with either measure of return predictability–in part because

regime switches are quite rare in our sample.

Together, these findings suggest that variation in investors’ learning about the

highly persistent growth rate of the cash flow process can create pockets of return

predictability.

3.5 Economic Sources of Local Return Predictability

We argued earlier that the return predictability pockets detected by our analysis

can be used as a diagnostic that helps identify the sources of return predictability. In this

section we use this idea to explore whether the evidence of local return predictability is

associated with business cycle movements and movements in variables known to track

market sentiment. Moreover, we also study whether the pockets with return predictability
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could have been detected in real time. This is a question with implications for whether

investors could have exploited localized return predictability.

3.5.1 Pockets and Variation in the Business Cycle

Studies such as Henkel, Martin, and Nardari (2011) and Dangl and Halling (2012)

find a strong relationship between return predictability in the stock market and economic

recessions. To explore this relationship, we regress the pocket indicator generated by

our univariate linear regressions, I pocket
t , on a constant and the NBER recession indicator,

NBERt

Ipocket
t = µ +bNBERt + et .

A positive coefficient b suggests that return predictability pockets are more likely to

occur during economic recessions while a negative value of b suggests the opposite.

To see whether the extent of return predictability depends on the state of the

economy, we also regress the local R2 measure on the NBER indicator

R2
t = µ +bNBERt + et .

Here a positive coefficient indicates that return predictability tends to be higher during

recessions, while a negative coefficient would indicate the opposite

The results, reported in Panels A and B of Table 10, show that local predictability

of stock returns is indeed related to the business cycle. However, two observations

suggest that business cycle variation is not the main driver of local pockets of return

predictability. First, the R2-values of these regressions are very low, less than four percent

for all predictors with exception of the term spread for which the R2 is close to 17%.19

Second, although the local return predictability identified by the models that use the
19We find similar results when we project the pocket indicator on an early recession indicator (the three

months after the peak of the cycle) or a late recession indicator (three months before the trough).
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T-bill rate, the term spread, and volatility rises during recessions, the opposite holds for

the dividend yield for which return predictability tends to fall during recessions.

3.5.2 Pockets and Variation in Sentiment

Our second regression uses the sentiment indicators proposed by Baker and

Wurgler (2006), Baker and Wurgler (2007) as a means to see whether return predictability

is correlated with market sentiment. We first assign to each day within a given month

the value of the Baker-Wurgler sentiment indicator, BW , of the same month. Then,

analogously to the analysis of a business cycle component in return predictability, we

estimate daily regressions

R2
t = µ +bBWt + et ,

I pocket
t = µ +bBWt + et ,

Panels C and D in Table 10 show evidence that large values of the BW index are

associated with a greater degree of local return predictability, with the R2 of the relation

being particularly high (15-20%) for the forecasts generated by the T-bill rate and the

realized variance.

3.5.3 Out-of-Sample Return Predictability

So far our methods for identifying return predictability have used two-sided

kernels, i.e., windows consisting of data both before and after the point at which local

return predictability is being tested. In real time, investors only have access to data prior

to and including the point at which the forecast is being generated and so must use a

one-sided window to estimate their model.

If return predictability is not driven by a time-varying risk premium, then we

would not expect a one-sided prediction approach to be able to generate better return
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forecasts than a simple model with a constant equity premium. To see if this holds,

we estimate the same model as in the earlier Section but use a one-sided analog of the

Epanechnikov Kernel in (3.11):

K(z) =
3
2
�

1� z2�1{�1 < z < 0} , (3.37)

so that only past data are used to estimate the time varying relationship between y and x

as indicated by 1{�1 < z < 0}.20

We construct two forecasts of excess returns at time t + 1. The first is the

prevailing mean benchmark of Goyal and Welch (2008):

rt+1|t =
1
t

t

Â
s=1

rs. (3.38)

The second forecast is generated by the nonparametric model:

r̂local
t+1|t = rt+1|t + x0t b̂t , (3.39)

where x0t b̂t is rescaled by the unconditional standard deviation of r.

To see if local return predictability could have been exploited in real time, we test

the null of equal predictive accuracy (equal squared forecast errors) for the prevailing

mean model in (3.38) and the time varying mean model in (3.39). To this end, table 11

reports values for the test statistics proposed by Diebold and Mariano (1995) and Clark

and West (2007). The Diebold and Mariano (1995) statistic is based on the difference in
20Note that the multiplicative factor becomes 3

2 instead of 3
4 in (3.11) so that the kernel function in (3.37)

still integrates to one.
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mean squared forecasts errors

DMSEt+1 =
�

rt+1 � rt+1|t
�2 �

⇣

rt+1 � f local
t+1

⌘2
.

Clark and West (2007) propose a test statistic that accounts for the effect of estimation

error by recentering the Diebold-Marino test. The test does so by using the mean of the

adjusted MSE measure

DMSEad j
t+1 =

�

rt+1 � rt+1|t
�2 �

✓

⇣

yt+1 � r̂local
t+1|t

⌘2
�
⇣

rt+1|t � r̂local
t+1|t

⌘2
◆

(3.40)

Positive values of these test statistics suggest that the time-varying mean model performs

best, while negative values suggest that the prevailing mean model produces the most

accurate one-sided forecasts. Using the Diebold-Mariano test, we find for all variables

that the prevailing mean model (3.38) produces better out-of-sample forecasts than the

model with a local time-varying mean, (3.39), i.e., the MSE of the prevailing mean model

is lower than that of the model that allows for a time-varying mean, although none of the

test statistics are significant at conventional levels. Turning to the Clark-West results, we

continue to find no evidence that the time-varying mean model performs significantly

better than the prevailing mean specification.

These results suggest little evidence that local return predictability could have

been exploited in real time to produce more accurate return forecasts than a model that

assumes a constant equity premium. In fact, the one-sided estimates of the regression

coefficients in (3.6) are notably noisier than their two-sided equivalents. The stark

difference between the one-sided and two-sided results can thus be explained by the

latter’s use of more information, and thus improved power, to identify local return

predictability.21

21Lettau and Van Nieuwerburgh (2008) report a similar finding for a return predictability model with
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3.6 Conclusion

We use a novel nonparametric methodology to establish evidence that while

stock returns may not be predictable “all the time,” as identified by full-sample constant

coefficient regressions, there is strong evidence that returns are predictable “some of

the time” using some of the most popular predictor variables considered in the finance

literature on return predictability.

Predictability of stock market returns are particularly suited for studying learning

effects due to the dependency of stock prices on cash flows expected to occur in the

distant future and the considerable uncertainty surrounding such expectations. The high

sensitivity of aggregate stock prices to even minor variations in beliefs about future cash

flow growth rates means that cash flow learning effects are likely to be an important

source of return movements.22

Our nonparametric methodology for identifying local return pockets can be used

as a diagnostic for determining whether a particular asset pricing model matches the

data. Specifically, by simulating from asset pricing models and applying our pocket

methodology to the resulting data, we can compute whether a specific asset pricing

model generates approximately the right number of pockets. This approach is particularly

insightful for models with incomplete learning about some underlying (latent) state such

as that proposed by David and Veronesi (2013). Comparing results with and without the

incomplete learning mechanism in place, we can see how this mechanism affects the

ability to generate return predictability pockets.

breaks to the dividend yield.
22In a model with paradigm shifts, Hong, Stein, and Yu (2007) find that investors learning about the

underlying model that generates dividends can give rise to predictable variation in returns and help to
match volatility and skewness patterns in returns. In their model, agents switch between models that are
under-dimensioned specifications relative to the true dividend generating process.
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3.7 Figures and Tables

Table 3.1. Full Sample Regression Statistics

Variables Full sample beta ttt-statistic RRR2 in % Start date No. of obs.
dy 0.060 1.255 0.005 11/5/1926 22,778
tbl -0.008 -2.724 0.056 1/4/1954 14,852
tsp 0.018 2.415 0.047 1/2/1962 12,838

cpsp 0.007 0.095 -0.014 1/2/1986 6,808
svar 0.000 0.344 -0.001 1/15/1927 22,719

This table reports full-sample beta estimates, t-statistics, and R2 values for univarate regressions of
daily excess stock returns on the predictor variables listed in the rows. All series run through the end
of 2012.



154

Ta
bl

e
3.

2.
Po

ck
et

Su
m

m
ar

y
St

at
is

tic
s

In
-p

oc
ke

t
O

ut
-o

f-p
oc

ke
t

Va
ri

ab
le

s
N

um
po

ck
et

s
M

in
le

ng
th

M
ax

le
ng

th
Av

g.
le

ng
th

Fr
ac

sig
ni

f
N

um
po

ck
et

s
M

in
le

ng
th

M
ax

le
ng

th
Av

g.
le

ng
th

Fr
ac

sig
ni

f
Pa

ne
lA

:5
%

po
ck

et
st

at
ist

ic
s

dy
13

24
87

6
19

6
0.

11
3

13
11

8
6,

61
2

1,
53

7
0.

88
7

tb
l

7
62

41
1

24
3

0.
11

7
7

16
4

4,
33

0
18

42
0.

88
3

ts
p

3
30

1
48

7
37

8
0.

09
0

4
79

0
7,

48
1

2,
86

3
0.

91
0

cp
sp

2
19

4
57

12
6

0.
03

8
3

95
5

4,
37

6
2,

10
1

0.
96

2
sv

ar
8

52
33

7
23

2
0.

08
3

9
71

7
3,

41
4

2,
29

0
0.

91
7

Pa
ne

lB
:1

%
po

ck
et

st
at

ist
ic

s
dy

4
6

34
5

15
9

0.
02

8
5

25
13

,5
60

4,
37

8
0.

97
2

tb
l

4
63

22
4

15
7

0.
04

3
4

83
0

9,
71

8
34

93
0.

95
7

ts
p

3
98

29
9

20
5

0.
04

9
4

1,
06

1
7,

52
5

2,
99

2
0.

95
1

cp
sp

0
0

0
0

0.
00

0
1

6,
55

5
6,

55
5

6,
55

5
1.

00
0

sv
ar

5
86

25
1

19
0

0.
04

2
6

88
8

7,
72

7
3,

58
5

0.
95

6
Av

g.
RR R

2
M

ea
n

St
d.

de
v

Sk
ew

K
ur

to
sis

Av
g.

RR R
2

M
ea

n
St

d.
de

v
Sk

ew
K

ur
to

sis
Pa

ne
lC

:5
%

re
tu

rn
st

at
ist

ic
s

dy
0.

01
5

0.
04

7
0.

82
0

0.
17

5
27

.7
92

0.
00

4
0.

02
4

1.
11

3
-0

.1
13

18
.8

21
tb

l
0.

01
6

-0
.0

25
0.

85
9

0.
12

1
5.

93
1

0.
00

3
0.

03
0

0.
97

6
-0

.6
02

20
.5

25
ts

p
0.

01
7

-0
.0

25
1.

03
8

0.
29

4
4.

17
7

0.
00

3
0.

02
7

0.
99

3
-0

.6
02

20
.8

91
cp

sp
0.

01
0

0.
13

0
0.

78
3

0.
36

8
3.

87
3

0.
00

3
0.

02
4

1.
18

3
-0

.6
44

18
.2

52
sv

ar
0.

02
1

0.
05

9
0.

81
2

-0
.5

06
8.

04
8

0.
00

3
0.

02
4

1.
10

6
-0

.0
84

19
.5

41
Pa

ne
lD

:1
%

re
tu

rn
st

at
ist

ic
s

dy
0.

02
6

0.
13

1
0.

60
6

-1
.0

00
7.

24
7

0.
00

5
0.

02
4

1.
09

4
-0

.0
92

19
.3

72
tb

l
0.

02
1

-0
.0

29
0.

82
6

-0
.2

59
3.

92
2

0.
00

4
0.

02
6

0.
96

8
-0

.5
48

19
.8

49
ts

p
0.

02
0

-0
.0

07
1.

15
6

0.
44

6
3.

97
9

0.
00

4
0.

02
4

0.
98

8
-0

.5
88

20
.4

51
cp

sp
-

-
-

-
-

0.
00

3
0.

02
8

1.
17

0
-0

.6
41

18
.3

66
sv

ar
0.

02
6

0.
04

3
0.

68
4

-0
.5

02
5.

06
8

0.
00

3
0.

02
6

1.
09

9
-0

.0
96

19
.3

62
Th

is
ta

bl
e

re
po

rts
su

m
m

ar
y

st
at

is
tic

s
on

th
e

nu
m

be
ro

fp
oc

ke
ts

w
ith

si
gn

ifi
ca

nt
re

tu
rn

pr
ed

ic
ta

bi
lit

y
fr

om
th

e
pr

ed
ic

to
rv

ar
ia

bl
e

lis
te

d
in

th
e

le
ft

co
lu

m
n,

us
in

g
a

no
n-

pa
ra

m
et

ric
ke

rn
el

re
gr

es
si

on
ap

pr
oa

ch
w

ith
si

gn
ifi

ca
nc

e
le

ve
ls

of
5%

(P
an

el
A

)o
r1

%
(P

an
el

B
)t

o
id

en
tif

y
po

ck
et

s.
W

e
sh

ow
,f

or
ea

ch
pr

ed
ic

to
rv

ar
ia

bl
e,

th
e

nu
m

be
ro

fp
oc

ke
ts

id
en

tifi
ed

,t
he

m
in

im
um

,m
ax

im
um

an
d

av
er

ag
e

po
ck

et
le

ng
th

(a
ll

m
ea

su
re

d
in

da
ys

)a
s

w
el

la
s

th
e

fr
ac

tio
n

of
da

y
in

th
e

sa
m

pl
e

id
en

tifi
ed

to
ha

ve
si

gn
ifi

ca
nt

lo
ca

lr
et

ur
n

pr
ed

ic
ta

bi
lit

y.
Le

ft
co

lu
m

ns
sh

ow
su

m
m

ar
y

st
at

is
tic

s
fo

rp
er

io
ds

in
si

de
po

ck
et

sw
hi

le
,f

or
co

m
pa

ris
on

,r
ig

ht
co

lu
m

ns
sh

ow
su

m
m

ar
y

st
at

is
tic

sf
or

pe
rio

ds
ou

ts
id

e
po

ck
et

s.
Pa

ne
ls

C
an

d
D

re
po

rt
su

m
m

ar
y

st
at

is
tic

sf
or

da
ily

ex
ce

ss
re

tu
rn

si
ns

id
e

(le
ft

pa
ne

ls
)a

nd
ou

ts
id

e
(r

ig
ht

pa
ne

ls
)p

oc
ke

ts
,i

nc
lu

di
ng

th
e

av
er

ag
e

va
lu

e
of

th
e

lo
ca

lR
2 ,t

he
m

ea
n,

st
an

da
rd

de
vi

at
io

n,
sk

ew
ne

ss
an

d
ku

rto
si

s
of

da
ily

re
tu

rn
s.

Th
e

sa
m

pl
e

pe
rio

ds
va

ry
ac

ro
ss

th
e

pr
ed

ic
to

rv
ar

ia
bl

es
an

d
be

gi
n

in
11

/5
/1

92
6

fo
rt

he
di

vi
de

nd
yi

el
d

(2
2,

77
8

ob
se

rv
at

io
ns

),
1/

2/
19

54
fo

rt
he

3-
m

on
th

T-
bi

ll
ra

te
(1

4,
85

2
ob

s.
),

1/
2/

19
62

(1
2,

83
8

ob
s.

)
fo

rt
he

te
rm

sp
re

ad
,1

/2
/1

98
6

(6
,8

08
ob

s.
)

fo
rt

he
co

rp
or

at
e

sp
re

ad
an

d
1/

15
/1

92
7

(2
2,

71
9

ob
s.

)
fo

rt
he

re
al

iz
ed

va
ria

nc
e.



155

Table 3.3. Statistical Significance Tests for Pocket Diagnostics (Zero Coefficient Benchmark)

Random Walk GARCH
Stats Sample Avg. Std. err. p-val Avg. Std. err. p-val

dy
Num pockets 13 6.690 2.379 0.011 6.615 2.456 0.011
Min length 24 49.298 41.452 0.679 52.027 46.429 0.701
Max length 876 319.575 104.638 0.000 328.7780 106.6839 0.0010
Avg. length 196 164.725 46.864 0.229 169.277 48.790 0.264

Min integral R2 0.289 0.269 0.521 0.261 0.229 0.506 0.237
Mean integral R2 2.972 0.802 1.028 0.042 0.713 0.964 0.043
Max integral R2 13.600 1.392 1.634 0.001 1.254 1.557 0.000

Frac signif 0.113 0.048 0.021 0.006 0.049 0.021 0.002
Avg. R2 within pockets 0.015 0.014 0.002 0.229 0.014 0.003 0.340

Max R2 0.040 0.021 0.006 0.011 0.024 0.008 0.036
tbl

Num pockets 7 4.576 2.117 0.180 4.433 1.907 0.142
Min length 62 66.275 58.737 0.432 64.829 57.369 0.411
Max length 411 281.470 113.442 0.112 283.066 111.941 0.112
Avg. length 243.29 160.739 59.713 0.082 161.880 60.896 0.083

Min integral R2 0.415 0.299 0.512 0.223 0.290 0.543 0.198
Mean integral R2 3.795 0.747 0.878 0.011 0.754 0.921 0.017
Max integral R2 7.225 1.287 1.520 0.010 1.312 1.502 0.006

Frac signif 0.117 0.049 0.026 0.013 0.049 0.026 0.011
Avg. R2 within pockets 0.016 0.013 0.004 0.153 0.014 0.003 0.214

Max R2 0.063 0.020 0.007 0.000 0.021 0.007 0.000
tsp

Num pockets 3 3.759 1.784 0.752 3.754 1.820 0.755
Min length 301 79.087 70.040 0.012 79.326 69.949 0.015
Max length 487 273.983 118.532 0.037 276.760 119.453 0.044
Avg. length 377.67 166.918 71.208 0.015 168.976 71.243 0.008

Min integral R2 4.543 0.261 0.545 0.002 0.283 0.683 0.004
Mean integral R2 6.604 0.647 0.943 0.002 0.674 1.028 0.005
Max integral R2 8.394 1.113 1.676 0.006 1.118 1.510 0.006

Frac signif 0.090 0.049 0.027 0.085 0.050 0.029 0.097
Avg. R2 within pockets 0.017 0.013 0.003 0.084 0.014 0.004 0.161

Max R2 0.024 0.019 0.006 0.157 0.021 0.008 0.252
cpsp

Num pockets 2 2.180 1.404 0.658 2.053 1.327 0.631
Min length 57 94.749 85.912 0.598 99.286 90.738 0.611
Max length 194 205.702 124.609 0.536 199.837 128.579 0.497
Avg. length 125.50 146.959 89.229 0.595 145.655 92.881 0.574

Min integral R2 0.670 0.511 0.775 0.217 0.539 0.906 0.216
Mean integral R2 1.269 0.807 1.027 0.179 0.842 1.147 0.175
Max integral R2 1.868 1.120 1.466 0.169 1.149 1.515 0.165

Frac signif 0.038 0.052 0.039 0.568 0.048 0.038 0.516
Avg. R2 within pockets 0.010 0.013 0.004 0.763 0.014 0.004 0.751

Max R2 0.012 0.017 0.007 0.745 0.017 0.008 0.749
svar

Num pockets 8 6.759 2.496 0.369 6.676 2.415 0.357
Min length 52 48.196 40.947 0.361 47.473 45.421 0.331
Max length 337 323.377 106.942 0.402 337.783 106.292 0.492
Avg. length 231.75 165.572 46.779 0.082 170.781 50.012 0.099

Min integral R2 0.613 0.236 0.492 0.101 0.219 0.424 0.112
Mean integral R2 4.844 0.783 0.942 0.007 0.770 0.912 0.007
Max integral R2 9.091 1.453 1.569 0.005 1.420 1.552 0.003

Frac signif 0.083 0.049 0.022 0.075 0.050 0.021 0.070
Avg. R2 within pockets 0.020 0.014 0.002 0.012 0.015 0.003 0.075

Max R2 0.034 0.021 0.006 0.035 0.025 0.009 0.148
This table reports the outcome of Monte Carlo simulations of daily excess returns using either a random walk model with
constant mean and volatility (columns 2-4) or a model that allows for a time-varying expected return and time-varying
volatility (columns 5-7). Using these respective models, each simulation draws a sample with the same length as the
original sample for the respective predictor variables and computes the pocket measures listed in each row, including
the number of pockets, the minimum, maximum and average length (in days) of the pockets, the minimum, mean and
maximum integral R2, the fraction of the sample with a significant pocket indicator, the average and maximum values
of the R2 inside pockets. The average values, standard errors and p-values for the pocket measures are computed using
1,000 simulations and are based on a zero coefficient benchmark.
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Table 3.4. Statistical Significance Tests for Pocket Diagnostics (Constant Coefficient Benchmark)

Random Walk GARCH
Stats Sample Avg. Std. err. p-val Avg. Std. err. p-val

dy
Num pockets 16 6.553 2.513 0.000 6.525 2.377 0.001
Min length 4 51.110 45.346 0.954 51.421 43.967 0.965
Max length 414 313.919 109.073 0.138 325.440 113.093 0.172
Avg. length 124.56 162.211 49.435 0.778 168.459 51.107 0.818

Min integral R2 0.026 0.244 0.398 0.722 0.251 0.504 0.735
Mean integral R2 1.977 0.759 0.830 0.086 0.753 0.980 0.088
Max integral R2 11.434 1.356 1.438 0.000 1.352 1.611 0.003

Frac signif 0.089 0.046 0.021 0.026 0.048 0.022 0.047
Avg. R2 within pockets 0.016 0.014 0.003 0.133 0.014 0.003 0.202

Max R2 0.040 0.021 0.0067 0.017 0.023 0.007 0.023
tbl

Num pockets 6 4.311 2.115 0.280 4.395 2.047 0.271
Min length 39 64.905 55.002 0.598 68.659 60.534 0.644
Max length 352 263.357 114.100 0.193 275.110 118.703 0.212
Avg. length 240 152.970 58.250 0.057 159.153 61.224 0.089

Min integral R2 0.808 0.295 0.523 0.098 0.311 0.562 0.113
Mean integral R2 3.429 0.742 0.926 0.026 0.758 0.971 0.030
Max integral R2 5.952 1.300 1.572 0.027 1.273 1.517 0.024

Frac signif 0.099 0.045 0.026 0.033 0.047 0.027 0.038
Avg. R2 within pockets 0.014 0.013 0.003 0.348 0.013 0.003 0.364

Max R2 0.063 0.020 0.0068 0.000 0.0210 0.008 0.001
tsp

Num pockets 7 3.543 1.791 0.059 3.861 1.862 0.086
Min length 76 75.148 67.709 0.371 75.282 72.951 0.366
Max length 307 254.624 115.128 0.308 277.774 122.442 0.386
Avg. length 183.29 156.775 67.576 0.302 165.073 72.327 0.346

Min integral R2 0.612 0.263 0.499 0.148 0.248 0.532 0.134
Mean integral R2 2.324 0.598 0.797 0.046 0.630 0.863 0.053
Max integral R2 5.691 0.994 1.241 0.013 1.093 1.424 0.015

Frac signif 0.102 0.044 0.027 0.035 0.050 0.030 0.065
Avg. R2 within pockets 0.013 0.013 0.003 0.453 0.013 0.004 0.499

Max R2 0.024 0.018 0.006 0.137 0.020 0.007 0.235
cpsp

Num pockets 1 1.9470 1.331 0.871 2.003 1.365 0.882
Min length 170 93.710 91.559 0.162 91.665 86.793 0.150
Max length 170 186.210 128.122 0.547 193.966 135.338 0.545
Avg. length 170 137.326 94.621 0.332 139.239 92.373 0.334

Min integral R2 1.785 0.548 0.851 0.077 0.575 1.047 0.070
Mean integral R2 1.785 0.790 1.019 0.119 0.854 1.252 0.121
Max integral R2 1.785 1.055 1.363 0.179 1.149 1.608 0.194

Frac signif 0.026 0.044 0.036 0.631 0.047 0.039 0.639
Avg. R2 within pockets 0.011 0.013 0.004 0.623 0.013 0.005 0.600

Max R2 0.012 0.017 0.007 0.712 0.017 0.008 0.759
svar

Num pockets 10 6.532 2.456 0.123 6.511 2.398 0.108
Min length 28 49.182 48.203 0.613 46.621 41.746 0.597
Max length 354 316.317 106.171 0.3360 325.881 109.583 0.378
Avg. length 206.70 163.116 51.477 0.161 166.386 50.056 0.185

Min integral R2 0.238 0.225 0.428 0.282 0.248 0.648 0.287
Mean integral R2 4.084 0.729 0.828 0.007 0.792 1.021 0.017
Max integral R2 9.367 1.340 1.394 0.001 1.475 1.657 0.006

Frac signif 0.092 0.047 0.021 0.032 0.048 0.022 0.040
Avg. R2 within pockets 0.020 0.014 0.002 0.017 0.015 0.003 0.058

Max R2 0.034 0.022 0.007 0.053 0.025 0.009 0.126
This table reports the outcome of Monte Carlo simulations of daily excess returns using either a random walk model with
constant mean and volatility (columns 2-4) or a model that allows for a time-varying expected return and time-varying
volatility (columns 5-7). Using these respective models, each simulation draws a sample with the same length as the
original sample for the respective predictor variables and computes the pocket measures listed in each row, including
the number of pockets, the minimum, maximum and average length (in days) of the pockets, the minimum, mean and
maximum integral R2, the fraction of the sample with a significant pocket indicator, the average and maximum values
of the R2 inside pockets. The average values, standard errors and p-values for the pocket measures are computed using
1,000 simulations and are based on a constant coefficient benchmark, computed as the full-sample slope coefficient for
each predictor.
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Table 3.5. Integral R2 Measure and p-values for Individual
Pockets

Pocket # dy tbl tsp cpsp svar

1 0.897 2.465 4.543 1.868 1.686
(0.247) (0.073) (0.018) (0.106) (0.134)

2 0.522 4.925 8.394 0.670 7.402
(0.381) (0.013) (0.003) (0.322) (0.003)

3 13.600 7.225 6.874 - 9.091
(0.000) (0.002) (0.006) (0.000)

4 2.214 0.415 - - 3.528
(0.078) (0.452) (0.035)

5 12.555 6.280 - - 6.892
(0.000) (0.005) (0.004)

6 1.756 2.232 - - 6.597
(0.109) (0.088) (0.005)

7 0.435 3.023 - - 0.613
(0.427) (0.050) (0.375)

8 1.353 - - - 2.944
(0.152) (0.050)

9 2.020 - - - -
(0.085)

10 0.400 - - - -
(0.447)

11 0.672 - - - -
(0.318)

12 0.289 - - - -
(0.525)

13 1.924 - - - -
(0.093)

This table reports the integral R2 measure for each of the pockets identified
by our nonparametric kernel regression approach, assuming a 5% cutoff
value to define pockets with p-values in brackets. To compute p-values
We use the Monte Carlo simulations in Table 3 to compute the proportion
of simulations that can generate integral R2 meaures as high as the value
associated with a particular pocket.
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Table 3.6. Calibrated Parameters, Predictive Systems Model

Parameter Parameter value Parameter description
p11 0.996 Probability of staying in regime 1
p22 0.999 Probability of staying in regime 2

rx 0.99 Persistence of observed predictor
variable x

µx,1
1�rx

0.040 Unconditional mean of observed
predictor variable in regime 1

µx,1
1�rx

0.053 Unconditional mean of observed
predictor variable in regime 2

r

µ

0.9999 Persistence of expected cash flows
µ

µ,1
1�r

µ

3.30⇥10�4 Unconditional mean of expected cash
flows in regime 1

µ

µ,2
1�r

µ

1.87⇥10�4 Unconditional mean of expected cash
flows in regime 2

sv,1p
1�r

2
x

0.015
Unconditional standard deviation of

observed predictor variable in regime
1

sv,2p
1�r

2
x

0.032
Unconditional standard deviation of

observed predictor variable in regime
2

swp
1�r

2
µ

1.5⇥10�5 Unconditional standard deviation of
expected cash flows

su 1.5⇥10�4 Standard deviation of realized cash
flows

svw,2
sv,2sw,2

-0.8
Correlation between innovations to

observed predictor variable and
expected cash flows in regime 2

This table reports the values and descriptions for the calibrated parameter values in the
predictive systems model.
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Table 3.7. Average Integral R2, Predictive Systems Model

No learning Learning
Sample Avg. Std. err. p-val Avg. Std. err. p-val

Positive 0.506 0.243 0.131 0.051 0.642 0.265 0.629
Negative -0.098 -2.315 1.111 0.000 -0.113 0.086 0.581

Net 0.393 -0.336 0.277 0.003 0.566 0.234 0.775
This table reports the average integral R2 conditional on it being positive, negative, and over the
whole sample. For the “positive” measure, the average of the local R2 is taken over all periods
where it is positive and multiplied by 100. The analogous procedure is done for the “negative”
measure. For the “net” measure, the average of the local R2 is taken over the whole sample and
multiplied by 100. These statistics are computed for the actual data under “Sample,” and the
average, standard error, and one-sided p-values are computed for the predictive systems model
simulations under both the no learning and learning specifications.

Table 3.8. Simulations from Predictive Systems Learning Model (Zero Coefficient Benchmark)

No learning Learning
Stats Sample Avg. Std. err. p-val Avg. Std. err. p-val

5% significance results
Num pockets 7.000 3.863 2.495 0.151 7.622 3.148 0.614

Min pocket length 62.000 60.792 73.950 0.343 66.532 55.632 0.439
Avg. pocket length 243.290 143.107 84.589 0.093 221.703 74.298 0.345
Max pocket length 411.000 269.550 181.829 0.171 477.542 219.585 0.552

Min integral R2 0.415 -0.894 5.257 0.127 0.353 0.747 0.244
Mean integral R2 3.795 0.082 3.201 0.044 1.243 1.512 0.066
Max integral R2 7.225 1.046 4.119 0.044 2.507 3.050 0.068

Fraction significant 0.117 0.046 0.039 0.068 0.136 0.078 0.529
Max R2 0.063 0.024 0.016 0.036 0.036 0.018 0.092

Num pockets & Avg. pocket length - - - 0.013 - - 0.238
1% significance results

Num pockets 4.000 1.678 1.903 0.160 3.590 2.599 0.436
Min pocket length 63.000 61.298 83.350 0.349 96.863 91.881 0.571
Avg. pocket length 156.500 95.870 98.616 0.260 180.533 108.991 0.593
Max pocket length 224.000 145.299 166.509 0.272 304.616 206.597 0.635

Min integral R2 1.207 -0.219 3.287 0.070 0.521 1.016 0.124
Mean integral R2 3.233 0.150 3.516 0.056 1.042 1.487 0.074
Max integral R2 4.798 0.626 4.658 0.053 1.679 2.542 0.086

Fraction significant 0.043 0.019 0.027 0.148 0.059 0.055 0.500
Max R2 0.063 0.024 0.016 0.036 0.036 0.018 0.092

Num pockets & Avg. pocket length - - - 0.076 - - 0.336
This table presents simulation results from the predictive systems model with regime switching in the cash flow growth rate. Investors
observe a predictor variable that is correlated with the latent process driving the mean dividend growth rate, but whose correlation is
also affected by the regime switching. In the scenario with no learning (columns 2-4), investors are assumed to observe the latent
state variable while in the scenario with learning (columns 5-7), investors update their estimates of the mean dividend growth rate
based on their probability estimates of the underlying state. The reported sample average, standard errors and p-values for the
simulated data are based on 1,000 simulations of the same length as the sample for the T-bill rate and assume a mean dividend-price
ratio of 0.038 which is the historical sample average. Pockets in both the actual and simulated data sample are computed around a
zero coefficient benchmark.
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Table 3.9. Panel Regressions of Pocket Diagnostics on Belief Discrepancies, Predictive
Systems Model

Regressor Pocket Indicator Local R2

5% significance results
(1) (2) (3) (4) (5) (6)

µ̂t|t �µt
449* 1.38⇥104*** - 6 235*** -(0.07) (< 0.01) (0.40) (< 0.01)

�

µ̂t|t �µt
�2 - 4.82⇥108*** - - 1.36⇥107*** -

(< 0.01) (< 0.01)

|µ̂t|t �µt | - - -2,052*** - - -56***
(< 0.01) (< 0.01)

R2 6.52% 10.30% 6.30% 8.88% 14.63% 8.38%

1% significance results
(1) (2) (3) (4) (5) (6)

µ̂t|t �µt
-54 3,975** - 6 235*** -(0.76) (0.02) (0.40) (< 0.01)

�

µ̂t|t �µt
�2 - 2.72⇥108*** - - 1.36⇥107*** -

(< 0.01) (< 0.01)

|µ̂t|t �µt | - - -1,229*** - - -56***
(< 0.01) (< 0.01)

R2 7.81% 11.50% 7.50% 8.88% 14.63% 8.38%

This table reports coefficient estimates and p-values (in brackets) from regressions of the local R2 measure
for return predictability or the binary pocket indicator that is one inside pockets with return predictability
and is zero otherwise on an intercept, a dummy for being within the first or last 126 (half of the kernel
regression bandwidth) periods of the sample, functions of the difference between the true simulated expected
cash flows and the agent’s filtered beliefs about expected cash flows, and their interactions with the dummy.
All specifications contain the intercept, the dummy, and its interactions with any other regressors that are
included. The coefficient estimate is the average coefficient across simulations, and the p-values are computed
by dividing the average by the standard deviation of the estimates across samples and multiplying by the
square root of the number of simulations. The R2 is computed as the average R2 across simulations for each
regression specification.
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Table 3.10. Regressions of Pocket Diagnostics on Economic Indicators

Variables Slope RRR2 (in %) Slope RRR2 (in %)
NBER Recession indicator

Panel A: Local RRR2 Panel B: Pocket indicator
dy 0.0022 (0.00) 2.223 -0.0055 (0.30) 0.000
tbl 0.0030 (0.00) 3.830 0.1539 (0.00) 2.840
tsp 0.0061 (0.00) 16.390 0.3439 (0.00) 17.188

cpsp 0.0013 (0.00) 1.935 0.1182 (0.00) 3.648
svar 0.0015 (0.00) 0.835 0.0251 (0.00) 0.122

BW index
Panel C: Local RRR2 Panel D: Pocket indicator

dy 0.0010 (0.00) 6.980 -0.0035 (0.04) 0.022
tbl 0.0020 (0.00) 14.972 0.0467 (0.00) 2.165
tsp 0.0010 (0.00) 3.603 0.0454 (0.00) 2.297

cpsp 0.0005 (0.00) 0.648 -0.0821 (0.00) 4.445
svar 0.0026 (0.00) 19.623 0.1008 (0.00) 13.698

This table reports coefficient estimates and p-values (in brackets) along with the R2

value from regressions of the local R2 measure for return predictability (Panel A) or the
binary pocket indicator that is one inside pockets with return predictability and is zero
otherwise (Panel B) on an intercept and either the NBER recession indicator (Panels
A and B) or the Baker-Wurgler sentiment index (Panels C and D). All regressions use
daily data with the samples described in the caption to Table 1.

Table 3.11. Out-of-Sample Measures of Forecasting Performance

Variables Clark-West statistic Diebold-Mariano statistic
dy -0.335 -1.658
tbl 0.514 -0.748
tsp 1.230 -1.137

cpsp -1.519 -1.647
svar -1.026 -1.399

This table reports the Clark and West (2010) and Diebold-Mariano (1995) test
statistics for out-of-sample return predictability measured relative to a prevailing
mean model that assumes constant expected excess returns. These test statistics
approximately follow a normal distribution with postive values indicating more
accurate out-of-sample return forecasts than the prevailing mean benchmark and
negative values indicating the opposite.
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1.A Proofs for Chapter 1

Proof of Lemma 1. Note that by the Markov property, for r < t  s,
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By assumption (B1),
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In the case t > s, it suffices to set µt,M (YYY s
t ,A) =

µc,M(A)
µc,M(XM) , where µc,M is counting measure

on XM. ⇤

Proof of Lemma 2. . Conditioning on a particular starting value x0,M 2 XM is just a

particular starting probability measure where probability 1 is assigned to that value. By

Corollary 1, it follows that
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Thus, for t � 1, by Corollary 1 and assumption (A3),
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�

�

=

�

�

�

�

�

M

Â
m=1

M

Â
m0=1

P
q ,M
�

m,m0�g
q

�

Yt
�

�xm0,M
�

⇥
�

P
q

�

Xt�1,M = xm,M
�

�YYYt�1
0 ,x0,M = x0

�

�P
q

�

Xt�1,M = xm,M
�

�YYYt�1
0
��

�

�

 r

t�1 sup
1mM

M

Â
m0=1

P
q ,M
�

m,m0�g
q

�

Yt
�

�xm0,M
�

In addition, by assumption (B3),

p
q ,M
�

Yt
�

�YYYt�1
0 ,X0 = x0

�

=
M

Â
m=1

M

Â
m0=1

g
q

�

Yt
�

�xm0,M
�

P
q ,M
�

m,m0�P
q

�

Xt�1,M = xm,M
�

�YYYt�1
0 ,x0,M = x0

�

�
M

Â
m=1

 

inf
1mM

M

Â
m0=1

P
q ,M
�

m,m0�g
q

�

Yt
�

�xm0,M
�

!

⇥P
q

�

Xt�1,M = xm,M
�

�YYYt�1
0 ,x0,M = x0

�

= inf
1mM

M

Â
m0=1

P
q ,M
�

m,m0�g
q

�

Yt
�

�xm0,M
�

The same inequality also holds for p
q ,M
�

Yt
�

�YYYt�1
0
�

. It follows from the identity

|logx� logy| |x� y|/min(x,y)
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that

�

�log p
q ,M
�

Yt
�

�YYY s
t ,x0,M = x0

�

� log p
q ,M (Yt |YYY s

t )
�

�

 r

t�1 sup1mM ÂM
m0=1 P

q ,M (m,m0)g
q

�

Yt
�

�xm0,M
�

inf1mM ÂM
m0=1 P

q ,M (m,m0)g
q

�

Yt
�

�xm0,M
�

 r

t�1 1
Q�
+

 r

t�1

1�r

By summing up the expression from t = 1, . . . ,T , we get

|`T,M (q ,x0)� `T,M (q)|
T

Â
t=1

r

t�1

1�r

=
1�r

T+1

(1�r)2  1
(1�r)2

Since this bound holds independently of q and M, this concludes the proof. ⇤

Proof of Lemma 3. Consider the first expression and let r0 � r.

p
q ,M
�

Yt
�

�YYYt�1
�r ,X�r,M = x

�

� p
q ,M
�

Yt
�

�YYYt�1
�r0 ,X�r0,M = x0

�

=
M

Â
m=1

M

Â
m0=1

M

Â
m00=1

g
q

�

Yt
�

�xm00,M
�

P
q ,M
�

m0,m00�P
q

�

Xt�1,M = xm0,M
�

�YYYt�1
�r ,X�r,M = xm,M

�

{x = xm,M}

�
M

Â
m=1

M

Â
m0=1

M

Â
m00=1

g
q

�

Yt
�

�xm00,M
�

P
q ,M
�

m0,m00�P
q

�

Xt�1,M = xm0,M
�

�YYYt�1
�r ,X�r,M = xm,M

�

P
q

�

X�r,M = xm,M
�

�YYYt�1
�r0 ,X�r0,M = x0

�
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Thus, by Corollary 1

�

�p
q ,M
�

Yt
�

�YYYt�1
�r ,X�r,M = x

�

� p
q ,M
�

Yt
�

�YYYt�1
�r0 ,X�r0,M = x0

�

�

�

=

�

�

�

�

�

M

Â
m=1

 

M

Â
m0=1

M

Â
m00=1

g
q

�

Yt
�

�xm00,M
�

P
q ,M
�

m0,m00�

P
q

�

Xt�1,M = xm0,M
�

�YYYt�1
�r ,X�r,M = xm,M

��

( {x = xm,M}

�P
q

�

X�r,M = xm,M
�

�YYYt�1
�r0 ,X�r0,M = x0

��

�

�

 r

t+r�1 sup
1m0M

M

Â
m00=1

P
q ,M
�

m0,m00�g
q

�

Yt
�

�xm00,M
�

Similary, I can obtain a lower bound on each term in the difference above as in the proof

of Lemma 2,

p
q ,M
�

Yt
�

�YYYt�1
�r ,X�r,M = x

�

=
M

Â
m=1

M

Â
m0=1

g
q

�

Yt
�

�xm0,M
�

P
q ,M
�

m,m0�P
q

�

Xt�1,M = xm,M
�

�YYYt�1
�r ,X�r,M = x

�

� inf
1mM

M

Â
m0=1

P
q ,M
�

m,m0�g
q

�

Yt
�

�xm0,M
�

Using the same inequality for logs applied in the proof of Lemma 2 we obtain the desired

result. An analogous expression is obtained if r0  r. The second expression of the

theorem follows from setting r = r0 and integrating with respect to P
q

�

dx�r,M
�

�YYYt�1
�r
�

.

Note that by Assumption (A3),

c� (Yt) p
q ,M
�

Yt
�

�YYYt�1
�r ,X�r,M = x

�

 b+

Taking logs leads to the third inequality and concludes the proof.

⇤
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Proof of Proposition 1. I wish to show that for any A 2 A , where A is the collection

of continuity sets of Xt , that

sup
q2Q

�

�

p

X
q ,M (A)�p

X
q

(A)
�

�= o(h⇤ (M))

By the Portmenteau Lemma, this is equivalent to showing that Xt,M
d�! Xt as M ! •.

From assumption (BT), I know that for any A 2 A ,

sup
q2Q

sup
x2X

�

�P
q ,M (x,A)�P

q

(x,A)
�

�= O(h(M))

I will use this assumption and the fact that Xt and Xt,M are uniformly ergodic to establish

a bound on the difference in probability assigned to the set A by the approximate and true

ergodic distributions.

By applying the triangle inequality twice, I can bound the expression of interest by

the difference between the ergodic distribution of Xt and its T -step ahead transition kernel,

the difference between Xt,M and its T -step ahead transition kernel, and the difference

between the two T -step ahead transition kernels

sup
q2Q

�

�

p

X
q ,M (A)�p

X
q

(A)
�

�

= sup
q2Q

sup
x2X

�

�

p

X
q ,M (A)�p

X
q

(A)
�

�

= sup
q2Q

sup
x2X

�

�

�

p

X
q ,M (A)�P(T )

q ,M (x,A)+P(T )
q ,M (x,A)�P(T )

q

(x,A)+P(T )
q

(x,A)�p

X
q

(A)
�

�

�

 sup
q2Q

sup
x2X

�

�

�

p

X
q ,M (A)�P(T )

q ,M (x,A)
�

�

�

+ sup
q2Q

sup
x2X

�

�

�

P(T )
q ,M (x,A)�P(T )

q

(x,A)
�

�

�

+ sup
q2Q

sup
x2X

�

�

�

p

X
q

(A)�P(T )
q

(x,A)
�

�

�

Let r1 and r2 denote the uniform minorizing constants of the Markov chains Xt and Xt,M
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respectively, and define r+ ⌘ max(r1,r2). By the definition of uniform ergodicity, the

first and third terms in the above expression can be bounded by their uniform minorizing

constants to the power T

sup
q2Q

�

�

p

X
q ,M (A)�p

X
q

(A)
�

�

 r

T
1 + sup

q2Q
sup
x2X

�

�

�

P(T )
q ,M (x,A)�P(T )

q

(x,A)
�

�

�

+r

T
2

 2r

T
++ sup

q2Q
sup
x2X

�

�

�

P(T )
q ,M (x,A)�P(T )

q

(x,A)
�

�

�

It remains to bound the second term. Through applications of the triangle inequality and

the Cauchy-Schwarz inequality, it follows that

sup
q2Q

sup
x2X

�

�

�

P(T )
q ,M (x,A)�P(T )

q

(x,A)
�

�

�

= sup
q2Q

sup
x2X

�

�

�

P
q ,MP(T�1)

q ,M (x,A)�P
q ,MP(T�1)

q

(x,A)+P
q ,MP(T�1)

q

(x,A)�

P
q

P(T�1)
q

(x,A)
�

�

�

= sup
q2Q

sup
x2X

�

�

�

P
q ,M

⇣

P(T�1)
q ,M (x,A)�P(T�1)

q

(x,A)
⌘

�
�

P
q ,M �P

q

�

P(T�1)
q

(x,A)
�

�

�

 sup
q2Q

sup
x2X

�

�

�

P
q ,M

⇣

P(T�1)
q ,M (x,A)�P(T�1)

q

(x,A)
⌘

�

�

�

+ sup
q2Q

sup
x2X

�

�

�

�

P
q ,M �P

q

�

P(T�1)
q

(x,A)
�

�

�

 sup
q2Q

sup
x2X

�

�P
q ,M (x,A)

�

� sup
q2Q

sup
x2X

�

�

�

P(T�1)
q ,M (x,A)�P(T�1)

q

(x,A)
�

�

�

+ sup
q2Q

sup
x2X

�

�P
q ,M (x,A)�P

q

(x,A)
�

� sup
q2Q

sup
x2X

�

�

�

P(T�1)
q

(x,A)
�

�

�

 sup
q2Q

sup
x2X

�

�

�

P(T�1)
q ,M (x,A)�P(T�1)

q

(x,A)
�

�

�

+ sup
q2Q

sup
x2X

�

�P
q ,M (x,A)�P

q

(x,A)
�

�

Applying this inequality recursively one can show that

sup
q2Q

sup
x2X

�

�

�

P(T )
q ,M (x,A)�P(T )

q

(x,A)
�

�

�

 T sup
q2Q

sup
x2X

�

�P
q ,M (x,A)�P

q

(x,A)
�

�
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As long as the Lebesgue measure of the discrete sets supm l (Am,M) ! 0 as

M ! •, the set of discrete points {xm,M} will become dense in X . That is, for any

x 2 X and e > 0, 9M > 0 and 1  m  M s.t. kx� xm,Mk < e . Thus the error in the

expression above is bounded by the quality of approximation of the marginal distributions

P
q

(x, ·).

Combining this last inequality with the bounds derived above, the original expres-

sion of interest can be bounded by

sup
q2Q

�

�

p

X
q ,M (A)�p

X
q

(A)
�

�

 2r

T
++T ⇥O(h(M))

Letting T be a function of M, TM, this means that 9 0 < c < • and 9 N < • such

that for all M � N,

sup
q2Q

�

�

p

X
q ,M (A)�p

X
q

(A)
�

� 2r

TM
+ + cTMh(M)

Thus in order to control the above expression, it must be the case that TM is chosen such

that

2r

TM
+ + cTMh(M)! 0

as M ! •. Note that since 0 < r+ < 1, the term 2r

TM
+ decays exponentially fast as a

function of TM. Thus TM can be chosen to be any function of M such that 2r

TM
+ ! 0 and

TM ⇥h(M)! 0 as N ! •. This will determine h⇤ (M).

I now focus on the specific case of using the Farmer and Toda (2016) method

with a trapezoidal rule quadrature rule. The trapezoidal rule has integration error which

is O
⇣

M�2/d
⌘

. Thus
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sup
q2Q

�

�

p

X
q ,M (A)�p

X
q

(A)
�

� 2r

TM
+ +TM ⇥O

⇣

M�2/d
⌘

This is equivalent to saying that 9 0 < c < • and 9 N < • such that for all M � N,

sup
q2Q

�

�

p

X
q ,M (A)�p

X
q

(A)
�

� 2r

TM
+ + cTMM�2/d

Let e > 0 and consider the sequence TM = Me/d . Then

2r

TM
+ + cTMM�2/d

=2r

Me/d

+ + cMe/dM�2/d

=2r

Me/d

+ + cM(e�2)/d

It is clear that the second term dominates asymptotically because it declines polynomially

in M whereas the first term declines exponentially in M. This shows that

sup
q2Q

�

�

p

X
q ,M (A)�p

X
q

(A)
�

�= O
⇣

M(e�2)/d
⌘

This implies that for any d > e

sup
q2Q

�

�

p

X
q ,M (A)�p

X
q

(A)
�

�= o
⇣

M(d�2)/d
⌘

However since the choice of e was arbitrary, we have that the above holds for any d > 0.

This shows that for the case of the Farmer and Toda (2016) method with trapezoidal

quadrature rule, h⇤ (M) = M(d�2)/d for any d > 0.

⇤

Proof of Lemma 4. My goal is to show that the discrete approximation to the filter-
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ing distribution converges in distribution to the true filtering distribution as M !

•. Define XXX0
�r,M ⌘ (X0,M, . . . ,X�r,M) and XXX0

�r ⌘ (X0, . . . ,X�r). I will first show that

XXX0
�r,M

d�! XXX0
�r for r � 0 as M ! •. I will then show this implies that the joint distri-

bution
�

XXX0
�r,M,YYY 0

�r
� d�!

�

XXX0
�r,YYY

0
�r
�

as M ! •. This will imply my desired result, that

X0,M
�

�YYY 0
�r

d�! X0
�

�YYY 0
�r as M ! •.

Let fr : X r+1 ! R be a bounded, continuous function. I will establish conver-

gence in distribution by showing that the expectation of fr
�

XXX0
�r,M

�

converges to the

expectation of fr
�

XXX0
�r
�

as M ! • for any bounded, continuous fr. Define the difference

of these two expectations as

DE ⌘
�

�E
q

⇥

fr
�

XXX0
�r,M

�⇤

�E
q

⇥

fr
�

XXX0
�r
�⇤

�

� (.1)

Recall the definitions of the transition kernel and ergodic distribution of the

discrete approximation extended to X

P
q ,M (x,A)⌘

M

Â
m=1

M

Â
m0=1

P
q ,M
�

m,m0� {x 2 Am,M}
�

xm0,M 2 A
 

(.2)

p

X
q ,M (A)⌘

M

Â
m=1

p

X
q ,M (m) {xm,M 2 A} (.3)

This extended transition kernel P
q ,M and probability measure p

X
q ,M admit densities with

respect to the measure µ on X which I will label as q
q ,M (· |x) : X ! R for x 2 X ,

and p
q ,M : X ! R. This allows me to replace summation by integration and keep the

notation consistent across the discrete and continuous random variables.

I next factor the joint distribution of the sequence of r+1 X’s into the product

of the marginal distribution of the initial X and the distribution of the remaining X’s

conditional on the initial one. This is a straightforward application of Bayes’ Rule.
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DE =

�

�

�

�

Z

X r+1
fr (x0, . . . ,x�r) p

q ,M (x0, . . . ,x�r)dx0 · · ·dx�r

�
Z

X r+1
fr (x0, . . . ,x�r) p

q

(x0, . . . ,x�r.)dx0 · · ·dx�r

�

�

�

�

=

�

�

�

�

Z

X r+1
fr (x0, . . . ,x�r) p

q ,M (x0, . . . ,x�r+1 |x�r ) p
q ,M (x�r)dx0 · · ·dx�r

�
Z

X r+1
fr (x0, . . . ,x�r) p

q

(x0, . . . ,x�r+1 |x�r ) p
q

(x�r)dx0 · · ·dx�r

�

�

�

�

Since both X0,M and X0 are first order Markov processes, these distributions can be further

factored into the product of the initial distribution with the sequence of r one-step-ahead

conditional distributions.

DE =

�

�

�

�

Z

X r+1
fr (x0, . . . ,x�r)q

q ,M (x0 |x�1 ) · · ·q
q ,M (x�r+1 |x�r ) p

q ,M (x�r)dx0 · · ·dx�r

�
Z

X r+1
fr (x0, . . . ,x�r)q

q

(x0 |x�1 ) · · ·q
q

(x�r+1 |x�r ) p
q

(x�r)dx0 · · ·dx�r

Before proceeding, it will be useful to define the operators associated with the transition

kernels P
q

and P
q ,M and their r-step counterparts P(r)

q

and P(r)
q ,M. For a function f : X 2 !

R, define

(P
q

f )(x)⌘
Z

X
f
�

x0,x
�

q
q

�

x0 |x
�

dx0 (.4)

�

P
q ,M f

�

(x)⌘
Z

X
f
�

x0,x
�

q
q ,M
�

x0 |x
�

dx0 (.5)

For r > 1, 0  n < r and fr : X r+1 ! R, define fr�n : X r�n+1 ! R as

fr�n (x0, . . . ,x�r+n)⌘ fr (x0, . . . ,x�r+n;x�r+n�1, . . . ,x�r) (.6)
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where arguments after the semi-colon are held fixed. In other words, fr�n can be thought

of as the function fr where the last n arguments are held fixed. This then allows me to

define the i-step versions of P
q

and P
q ,M. Define the 1-step versions as

⇣

P(1)
q

f1

⌘

(x)⌘ (P
q

f1)(x) =
Z

X
fr (x0,x;x�2, . . . ,x�r)q

q

(x0 |x)dx0

⇣

P(1)
q ,M f1

⌘

(x)⌘
�

P
q ,M f1

�

(x) =
Z

X
fr (x0,x;x�2, . . . ,x�r)q

q ,M (x0 |x)dx0

For i = 2, . . . ,r, define

⇣

P(i)
q

fi

⌘

(x)⌘
⇣

P
q

⇣

P(i�1)
q

fi�1

⌘⌘

(x) =
Z

X

⇣

P(i�1)
q

fi�1

⌘

(x�i+1)q
q

(x�i+1 |x)dx�i+1

(.7)
⇣

P(i)
q ,M fi

⌘

(x)⌘
⇣

P
q ,M

⇣

P(i�1)
q ,M fi�1

⌘⌘

(x) =
Z

X

⇣

P(i�1)
q ,M fi�1

⌘

(x�i+1)

q
q ,M (x�i+1 |x)dx�i+1 (.8)

These are distinct are from what is referred to as the i-step ahead transition kernel and

its associated operator. An i-step ahead transition kernel characterizes the probability

of transitioning from a point in the space to any measurable set in that space i periods

ahead. However, this operator implicitly characterizes the probability of moving from

any point in the space to any sequence of i measurable sets. In other words, it computes

probabilities over paths of the Markov chain. Note that these i-step ahead operators can
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be equivalently written in terms of one-step-ahead conditional densities as

⇣

P(i)
q

fi

⌘

(x) =
Z

X i
fr (x0, . . . ,x�i+1,x;x�i�1, . . . ,x�r)q

q

(x0 |x�1 ) · · ·q
q

(x�i+1 |x)

dx0 · · ·dx�i+1
⇣

P(i)
q ,M fi

⌘

(x) =
Z

X i
fr (x0, . . . ,x�i+1,x;x�i�1, . . . ,x�r)q

q ,M (x0 |x�1 ) · · ·q
q ,M (x�i+1 |x)

dx0 · · ·dx�i+1

With this new notation in hand, DE can equivalenthly be rewritten in terms of the

r-step operators as

DE =

�

�

�

�

Z

X

⇣

P(r)
q ,M fr

⌘

(x)p
q ,M (x)dx�

Z

X

⇣

P(r)
q

fr

⌘

(x)p
q

(x)dx
�

�

�

�

(.9)

Next, I seek to establish that DE can be bounded by the sum of two terms, one

involving the difference in one step ahead transition kernels, the second involving the

difference in r�1-step operators. By assumption a bound is known for the difference

in integrals with respect to the one-step-ahead conditional distributions. Thus I can

iteratively apply this logic to obtain a bound for DE in terms of only the one-step-ahead

approximation error.

Replace integration with respect to p
q ,M by integration with respect to p

q

in the

first term of (.9), and add and subtract the result from equation (.9). Then apply the
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triangle inequality to bound DE by the sum of two new terms.

DE =

�

�

�

�

Z

X

⇣

P(r)
q ,M fr

⌘

(x)p
q ,M (x)dx�

Z

X

⇣

P(r)
q ,M fr

⌘

(x)p
q

(x)dx

+
Z

X

⇣

P(r)
q ,M fr

⌘

(x)p
q

(x)dx�
Z

X

⇣

P(r)
q

fr

⌘

(x)p
q

(x)dx
�

�

�

�

(.10)


�

�

�

�

Z

X

⇣

P(r)
q ,M fr

⌘

(x)p
q ,M (x)dx�

Z

X

⇣

P(r)
q ,M fr

⌘

(x)p
q

(x)dx
�

�

�

�

+

�

�

�

�

Z

X

⇣

P(r)
q ,M fr

⌘

(x)p
q

(x)dx�
Z

X

⇣

P(r)
q

fr

⌘

(x)p
q

(x)dx
�

�

�

�

(.11)

Consider the first term on the right hand side of inequality (.11). It is simply the difference

of integrals of
⇣

P(r)
q ,M fr

⌘

(x) with respect to p
q ,M and p

q

respectively. By Proposition 1,

this difference is o(h⇤ (M)).

�

�

�

�

Z

X

⇣

P(r)
q ,M fr

⌘

(x)p
q ,M (x)dx�

Z

X

⇣

P(r)
q ,M fr

⌘

(x)p
q

(x)dx
�

�

�

�

 sup
| f |1

�

�

�

�

Z

X
f (x) p

q ,M (x)dx�
Z

X
f (x)p

q

(x)dx
�

�

�

�

= 2
�

�

p

X
q ,M �p

X
q

�

�

TV

= o(h⇤ (M))

Next consider the second term on the right hand side of inequality (.11). By

definition, the r-step operator can be written as the composition of the one-step-ahead

operator with the r�1-step ahead operator.

�

�

�

�

Z

X

⇣

P(r)
q ,M fr

⌘

(x)p
q

(x)dx�
Z

X

⇣

P(r)
q

fr

⌘

(x)p
q

(x)dx
�

�

�

�

=

�

�

�

�

Z

X

⇣

P
q ,M

⇣

P(r�1)
q ,M fr�1

⌘⌘

(x)p
q

(x)dx�
Z

X

⇣

P
q

⇣

P(r�1)
q

fr�1

⌘⌘

(x)p
q

(x)dx
�

�

�

�

(.12)
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Take the first term of equation (.12), replace the first P
q ,M by P

q

, and add and subtract it

to equation (.12). Then apply the triangle inequality again.

�

�

�

�

Z

X

⇣

P
q ,M

⇣

P(r�1)
q ,M fr�1

⌘⌘

(x)p
q

(x)dx�
Z

X

⇣

P
q

⇣

P(r�1)
q

fr�1

⌘⌘

(x)p
q

(x)dx
�

�

�

�

=

�

�

�

�

Z

X

⇣

P
q ,M

⇣

P(r�1)
q ,M fr�1

⌘⌘

(x)p
q

(x)dx�
Z

X

⇣

P
q

⇣

P(r�1)
q ,M fr�1

⌘⌘

(x)p
q

(x)dx

+
Z

X

⇣

P
q

⇣

P(r�1)
q ,M fr�1

⌘⌘

(x)p
q

(x)dx�
Z

X

⇣

P
q

⇣

P(r�1)
q

fr�1

⌘⌘

(x)p
q

(x)dx
�

�

�

�

(.13)


�

�

�

�

Z

X

⇣

P
q ,M

⇣

P(r�1)
q ,M fr�1

⌘⌘

(x)p
q

(x)dx�
Z

X

⇣

P
q

⇣

P(r�1)
q ,M fr�1

⌘⌘

(x)p
q

(x)dx
�

�

�

�

+

�

�

�

�

Z

X

⇣

P
q

⇣

P(r�1)
q ,M fr�1

⌘⌘

(x)p
q

(x)dx�
Z

X

⇣

P
q

⇣

P(r�1)
q

fr�1

⌘⌘

(x)p
q

(x)dx
�

�

�

�

(.14)

The first term of inequality (.14) depends only on the approximation error of the one-

step-ahead distribution, and the second term depends on the approximation error of the

r�1-step ahead distribution. Define the function f : X 2 ! R

f (x�r+1,x�r)⌘
Z

X r�1
fr (x0, . . . ,x�r)q

q ,M (x0 |x�1 ) · · ·q
q ,M (x�r+2 |x�r+1 )

dx0 · · ·dx�r+2 (.15)

Consider the first term on the right hand side of inequality (.14) and substitute in

the definitions of the r-step operators in terms of one-step-ahead conditional distributions.

I will show that this term can be thought of as the difference in integrals of the function f
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with respect to the one-step-ahead conditional distribution and its discrete approximation.

�

�

�

�

Z

X

⇣

P
q ,M

⇣

P(r�1)
q ,M fr�1

⌘⌘

(x)p
q

(x)dx�
Z

X

⇣

P
q

⇣

P(r�1)
q ,M fr�1

⌘⌘

(x)p
q

(x)dx
�

�

�

�

=

�

�

�

�

Z

X r+1
fr (x0, . . . ,x�r)q

q ,M (x0 |x�1 ) · · ·q
q ,M (x�r+1 |x�r ) p

q

(x�r)dx0 · · ·dx�r

�
Z

X r+1
fr (x0, . . . ,x�r)q

q ,M (x0 |x�1 ) · · ·q
q ,M (x�r+2 |x�r+1 )q

q

(x�r+1 |x�r )

p
q

(x�r)dx0 · · ·dx�r|

=

�

�

�

�

Z

X 2
f (x�r+1,x�r)q

q ,M (x�r+1 |x�r ) p
q

(x�r)dx�r+1dx�r

�
Z

X 2
f (x�r+1,x�r)q

q

(x�r+1 |x�r ) p
q

(x�r)dx�r+1dx�r

�

�

�

�

The term on the right hand side of this last equality can be rewritten in terms of the

one-step-ahead operators P
q

and P
q ,M

�

�

�

�

Z

X 2
f (x�r+1,x�r)q

q ,M (x�r+1 |x�r ) p
q

(x�r)dx�r+1dx�r

�
Z

X 2
f (x�r+1,x�r)q

q

(x�r+1 |x�r ) p
q

(x�r)dx�r+1dx�r

�

�

�

�

=

�

�

�

�

Z

X

�

P
q ,Mf

�

(x)p
q

(x)dx�
Z

X
(P

q

f)(x)p
q

(x)dx
�

�

�

�

By proposition 1 the error between integrals with respect to q
q ,M and q

q

is o(h⇤ (M)).

�

�

�

�

Z

X

�

P
q ,Mf

�

(x)p
q

(x)dx�
Z

X
(P

q

f)(x)p
q

(x)dx
�

�

�

�

 sup
| f |1

�

�

�

�

Z

X

�

P
q ,M f

�

(x)p
q

(x)dx�
Z

X
(P

q

f )(x)p
q

(x)dx
�

�

�

�

= 2
�

�

p

q

P
q ,M �p

q

P
q

�

�

TV

= o(h⇤ (M))

This leaves one term to bound to establish convergence in distribution of XXX0
�r,M to XXX0

�r
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as M ! •. Consider the second term on the right hand side of inequality (.14). Similar

to the above argument, it will be useful to define a new function j : X r�1 ! R

j (x0, . . . ,x�r+2) =
Z

X 2
fr (x0, . . . ,x�r)q

q

(x�r+1 |x�r ) p
q

(x�r)dx�r+1dx�r

By using Fubini’s theorem, I will show that by switching the order of integration in the

second term on the right hand side of inequality (.14), this term can be expressed as

the (r�1)-step operators P(r�1)
q

and P(r�1)
q ,M applied to the same function j . I take the

supremum over the conditioning value for x�r+2 in order to break the dependence of the

terms not captured by j on x�r+1.

�

�

�

�

Z

X

⇣

P
q

⇣

P(r�1)
q ,M fr�1

⌘⌘

(x)p
q

(x)dx�
Z

X

⇣

P
q

⇣

P(r�1)
q

fr�1

⌘⌘

(x)p
q

(x)dx
�

�

�

�

=

�

�

�

�

Z

X r+1
fr (x0, . . . ,x�r)q

q ,M (x0 |x�1 ) · · ·q
q ,M (x�r+2 |x�r+1 )q

q

(x�r+1 |x�r )

p
q

(x�r)dx0 · · ·dx�r

�
Z

X r+1
fr (x0, . . . ,x�r)q

q

(x0 |x�1 ) · · ·q
q

(x�r+2 |x�r+1 )q
q

(x�r+1 |x�r )

p
q

(x�r)dx0 · · ·dx�r|

 sup
x2X

�

�

�

�

Z

X r+1
fr (x0, . . . ,x�r)q

q ,M (x0 |x�1 ) · · ·q
q ,M (x�r+2 |x)q

q

(x�r+1 |x�r )

p
q

(x�r)dx0 · · ·dx�r

�
Z

X r+1
fr (x0, . . . ,x�r)q

q

(x0 |x�1 ) · · ·q
q

(x�r+2 |x)q
q

(x�r+1 |x�r )

p
q

(x�r)dx0 · · ·dx�r|

= sup
x2X

�

�

�

�

Z

X r�1
j (x0, . . . ,x�r+2)q

q ,M (x0 |x�1 ) · · ·q
q ,M (x�r+2 |x)dx0 · · ·dx�r+2

�
Z

X r�1
j (x0, . . . ,x�r+2)q

q ,M (x0 |x�1 ) · · ·q
q

(x�r+2 |x)dx0 · · ·dx�r+2

�

�

�

�
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Note that the last term in the right hand side of the above equality can be thought of as

the (r�2)-step operator applied to the function j

sup
x2X

�

�

�

�

Z

X r�1
j (x0, . . . ,x�r+2)q

q ,M (x0 |x�1 ) · · ·q
q ,M (x�r+2 |x)dx0 · · ·dx�r+2

�
Z

X r�1
j (x0, . . . ,x�r+2)q

q ,M (x0 |x�1 ) · · ·q
q

(x�r+2 |x)dx0 · · ·dx�r+2

�

�

�

�

= sup
x2X

�

�

�

⇣

P(r�2)
q ,M j

⌘

(x)�
⇣

P(r�2)
q

j

⌘

(x)
�

�

�

By appyling the same logic to this component as the (r�1)-step ahead component, it

can be shown that the second term on the right hand side of inequality (.11) will be

o(r⇥h⇤ (M)). Combining that result with the bound on the first term on the right hand

side of inequality (.11) and returning to the original expression of interest, it can be seen

that

DE  o(h⇤ (M))+o(r⇥h⇤ (M)) = o(r⇥h⇤ (M))

For any fixed r, this difference converges to 0 because by assumption h⇤ (M) ! 0 as

M ! •.

Next I seek to show that
�

XXX0
�r,M,YYY 0

�r
� d�!

�

XXX0
�r,YYY

0
�r
�

as M ! •. The joint

density can be written and then factored as:

p
q

(X0, . . . ,X�r,Y0, . . . ,Y�r)

= p
q

(Y0, . . . ,Y�r |X0, . . . ,X�r ) p
q

(X0, . . . ,X�r)

= g
q

(Y0 |X0 ) · · ·g
q

(Y�r |X�r ) p
q

(X0, . . . ,X�r)

The same factorization can be done for the discrete approximations. Consider the

expectation of an arbitrary bounded, continuous function f : X r+1 ⇥Y r+1 ! R. In

order to establish convergence in distribution it is sufficient to establish the expectation
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of any bounded, continuous function of the sequence of approximations converges to the

expectation of the function of the limit. The difference in the expectations of the function

f is given by
�

�E
q

⇥

f
�

XXX0
�r,M,YYY 0

�r
�⇤

�E
q

⇥

f
�

XXX0
�r,YYY

0
�r
�⇤

�

�

Define the new function f ⇤ : X r+1 ! R as:

f ⇤
�

xxx0
�r
�

⌘
Z

Y r+1
f
�

xxx0
�r,yyy

0
�r
�

g
q

(y0 |x0 ) · · ·g
q

(y�r |x�r )dy0 · · ·dy�r

Since g
q

(· |x) is a continuous and bounded function, so is their (r+1)-fold product and

thus their product with f . Furthermore, since integration is a continuous operator over the

space Y r+1, it follows from XXX0
�r,M

d�! XXX0
�r that

�

XXX0
�r,M,YYY 0

�r
� d�!

�

XXX0
�r,YYY

0
�r
�

as M ! •.

This implies that the filtering distribution X0,M
�

�YYY 0
�r

d�! X0
�

�YYY 0
�r as M ! •. Making an

analogous argument to that in Proposition 1, r can be chosen as a function of M, rM, so as

to maintain the convergence in distribution as both r and M go to infinity. The sufficient

condition is that rM ⇥h⇤ (M)! 0 as M ! •.

Consider the initial object of interest

sup
q2Q

|`M (q)� `(q)|

= sup
q2Q

�

�E
q

⇤
⇥

log p
q ,M
�

Y0
�

�YYY 0
�•
�

� log p
q

�

Y0
�

�YYY 0
�•
�⇤

�

�

 sup
q2Q

E
q

⇤
⇥

�

�log p
q ,M
�

Y0
�

�YYY 0
�•
�

� log p
q

�

Y0
�

�YYY 0
�•
�

�

�

⇤

 sup
q2Q

E
q

⇤

"

�

�p
q ,M
�

Y0
�

�YYY 0
�•
�

� p
q

�

Y0
�

�YYY 0
�•
�

�

�

min
�

p
q ,M
�

Y0
�

�YYY 0
�•
�

, p
q

�

Y0
�

�YYY 0
�•
��

#

This quantity converges to 0 as M ! • due to the convergence in distribution of the

filtering distributions for infinite histories. When the Farmer and Toda (2016) method
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with a trapezoidal quadrature rule is used,

sup
q2Q

|`M (q)� `(q)|= o(h⇤ (M)) = o
⇣

M�(2�d )/d
⌘

for d > 0, by arguments analogous to those made in proposition 1.

⇤

Proof of Lemma 5. I first establish that for any fixed x 2 XM, r, and M, D0,r,M,x (q) is

continuous w.r.t. q . By definition

p
q ,M
�

Y0
�

�YYY�1
�r ,X�r,M = x

�

=
p

q ,M
�

YYY 0
�r+1 |Y�r,X�r,M = x

�

p
q ,M
�

YYY�1
�r+1 |Y�r,X�r,M = x

�

Note that for s 2 {�1,0}, and assuming x = xm�r,M without loss of generality,

p
q ,M
�

YYY s
�r+1 |Y�r,X�r,M = x

�

= Â
m�r,...,ms

"

P
q ,M (m�r,m�r+1)

�

xm�r = x
 

s

’
i=�r+2

P
q ,M (mi�1,mi)

s

’
i=�r+1

g
q

(Yi |Xi = xmi,M )

#

Thus p
q ,M
�

YYY s
�r+1 |Y�r,X�r,M = x

�

is continuous w.r.t. q by continuity of P
q ,M and g

q

.

Therefore the sequence
�

D0,r,M,x
 

is also continuous w.r.t. q because it is the composition

of continuous functions. Since
�

D0,r,M,x (q)
 

converges uniformly w.r.t. q 2 Q, P
q

⇤-a.s.,

D0,•,M (q) is also continuous w.r.t. q 2 Q, P
q

⇤-a.s. The proof follows by using Lemma 3

and the dominated convergence theorem. ⇤
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Proof of Proposition 2. Using the triangle inequality,

sup
q2Q

sup
x02X

�

�T�1`T,M (q ,x0)� `(q)
�

�

= sup
q2Q

sup
x02X

�

�T�1`T,M (q ,x0)� `M (q)+ `M (q)� `(q)
�

�

 sup
q2Q

sup
x02X

�

�T�1`T,M (q ,x0)� `M (q)
�

�+ sup
q2Q

|`M (q)� `(q)|

The second term limits to 0 by Lemma 4. For the second term, note that by

Lemma 2 it is sufficient to prove that

limsup
T!•

sup
q2Q

sup
M2Z+

�

�T�1`T,M (q)� `M (q)
�

�= 0, P
q

⇤-a.s.

Furthermore, since Q is compact, this further reduces to proving that for all q 2 Q,

lim
d!0

limsup
T!•

sup
|q 0�q |d

sup
M2Z+

�

�T�1`T,M
�

q

0�� `M (q)
�

�= 0, P
q

⇤-a.s.

This term can be further decomposed as

limsup
d!0

limsup
T!•

sup
|q 0�q |d

sup
M2Z+

�

�T�1`T,M
�

q

0�� `M (q)
�

�

= limsup
d!0

limsup
T!•

sup
|q 0�q |d

sup
M2Z+

�

�T�1`T,M
�

q

0��T�1`T,M (q)
�

�

 A+B+C
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where

A = limsup
d!0

limsup
T!•

sup
|q 0�q |d

sup
M2Z+

T�1
T

Â
t=1

�

�Dt,0,M
�

q

0��Dt,•,M
�

q

0��
� ,

B = limsup
d!0

limsup
T!•

sup
|q 0�q |d

sup
M2Z+

T�1
T

Â
t=1

�

�Dt,•,M
�

q

0��Dt,•,M (q)
�

� ,

C = limsup
T!•

sup
M2Z+

T�1
T

Â
t=1

�

�Dt,•,M (q)�Dt,0,M (q)
�

�

Terms A and C are zero by Corollary 2, and by Lemma 5 and the ergodic theorem,

B  limsup
d!0

limsup
T!•

T�1
T

Â
t=1

sup
|q 0�q |d

sup
M2Z+

�

�Dt,•,M
�

q

0��Dt,•,M (q)
�

�

= limsup
d!0

E
q

⇤

"

sup
|q 0�q |d

sup
M2Z+

�

�Dt,•,M
�

q

0��Dt,•,M (q)
�

�

#

= 0, P
q

⇤-a.s.

⇤

Proof of Theorem 3. . In order to establish asymptotic normality of my proposed

estimator, it is sufficient to show that `T
�

q̂T,x0 ,x0
�

�`T
�

q̂T,M,x0 ,x0
�

= oP (1) by Theorem

7 of Douc, Moulines, and Ryden (2004). Rewriting this term

`T
�

q̂T,x0 ,x0
�

� `T
�

q̂T,M,x0,M ,x0
�

= `T
�

q̂T,x0 ,x0
�

� `T
�

q̂T,M,x0,M ,x0
�

+ `T,M
�

q̂T,x0 ,x0,M
�

� `T,M
�

q̂T,x0 ,x0,M
�

 `T
�

q̂T,x0 ,x0
�

� `T,M
�

q̂T,x0 ,x0,M
�

+ `T,M
�

q̂T,M,x0,M ,x0,M
�

� `T
�

q̂T,M,x0,M ,x0
�

Note that it is thus sufficient to show that for any q 2 Q,

P
q

�

�

�`T,M (q ,x0,M)� `T (q ,x0)
�

�� e

�

! 0
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as T ! • and M ! • at appropriate rates. It is possible to decompose this probability as

follows:

P
q

�

�

�`T,M (q ,x0,M)� `T (q ,x0)
�

�� e

�

=P
q

�

�

�`T,M (q ,x0,M)� `T (q ,x0)+T `(q)�T `(q)+T `M (q)�T `M (q)
�

�� e

�

 P
q

⇣

|`T (q ,x0)�T `(q)|� e

3

⌘

+P
q

⇣

�

�`T,M (q ,x0,M)�T `M (q)
�

�� e

3

⌘

+P
q

⇣

T |`M (q)� `(q)|� e

3

⌘

Theorem 14 from Douc, Moulines, Olsson, and Van Handel (2011) states that

for any V
q

-uniformly ergodic state process with transition kernel P
q

, f : Y s+1 with

k fk• < •, there exists a constant K < • such that

Pn

q

 

�

�

�

�

�

T

Â
t=1

�

f
�

YYYt+s
t
�

�E
q

⇤ [ f (YYY s
0)]
 

�

�

�

�

�

� e

!

 Kn (V )exp


� 1
K

✓

min
✓

e

2

T
,e

◆◆�

for any initial probability measure n and e > 0. Both the original chain P
q

and each

discrete chain P
q ,M are uniformly ergodic and thus V

q

-uniformly ergodic for V
q

= 1.

Note that the first two terms are of the form considered in Theorem 14 from Douc,

Moulines, Olsson, and Van Handel (2011). I explicity show the bound for the first term

and the second term is analogous due to the uniform minorization of the sequence of

discrete Markov chains for all M 2 Z+ with the same minorizing constant

P
q

⇣

|`T (q ,x0)�T `(q)|� e

3

⌘

=P
q

 

�

�

�

�

�

T

Â
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�
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�

Yt
�

�YYYt�1
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�

� `(q)
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�

� e

3

!

 K exp

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K

✓
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✓

e

2

9T
,
e

3

◆◆�

= oP (1) with P = P
q

⇤
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For the third term, it follows from Lemma 4 that

|`M (q)� `(q)|= o(h⇤ (M))

and thus

T |`M (q)� `(q)|= o(T ⇥h⇤ (M))

Returning to the original expression of interest

P
q

⇤
�

�

�`T
�

q̂T,x0 ,x0
�

� `T
�

q̂T,M,x0 ,x0
�

�

�� e

�

 P
q

⇤
�

�

�`T
�

q̂T,x0 ,x0
�

� `T,M
�

q̂T,x0 ,x0
�

+ `T,M
�

q̂T,M,x0 ,x0
�

� `T
�

q̂T,M,x0 ,x0
�

�

�� e

�

 P
q

⇤

⇣

�

�`T,M
�

q̂T,x0 ,x0
�

� `T
�

q̂T,x0 ,x0
�

�

�� e

2

⌘

+P
q

⇤

⇣

�

�`T,M
�

q̂T,M,x0 ,x0
�

� `T
�

q̂T,M,x0 ,x0
�

�

�� e

2

⌘

! 0

for T ! •, M ! •, and T ⇥ h⇤ (M) ! 0. This ensures that my proposed estimator

satisfies condition (iii) of Theorem 7 from Douc, Moulines, and Ryden (2004). ⇤

1.B Discretizing Nonlinear, Non-Gaussian Markov
Processes with Exact Conditional Moments

This appendix briefly summarizes the method for discretizting stochastic pro-

cesses proposed in Farmer and Toda (2016).

Consider the time-homogeneous first-order Markov process

P(Xt  x0|Xt�1 = x) = F(x0 |x),

where Xt is the random vector of state variables and F(· |x) is a cumulative distribution

function (CDF) that determines the distribution of Xt = x0 given Xt�1 = x. The dynamics



192

of any Markov process are completely characterized by its Markov transition kernel. In

the case of a discrete state space, this transition kernel is simply a matrix of transition

probabilities, where each row corresponds to a conditional distribution. One can discretize

the continuous process Xt by applying the Tanaka and Toda (2013) method to each

conditional distribution separately.

More concretely, suppose that one has a set of grid points DM = {xm}M
m=1 and an

initial coarse approximation Q = (qmm0), which is an M⇥M probability transition matrix.

Additionally, suppose one wants to match some conditional moments of Xt , represented

by the moment defining function T (x). The exact conditional moments when the current

state is Xt�1 = xm are

T m = E [T (Xt) |Xt�1 = xm ] =
Z

T (x)dF(x |xm ),

where the integral is over x, fixing Xt�1 = xm. (If these moments do not have explicit

expressions, highly accurate quadrature formulas can be used to compute them.) By

Theorem 2.1 in Farmer and Toda (2016), these moments can be matched exactly by

solving the optimization problem

min
{pmm0}M

m0=1

M

Â
m0=1

pmm0 log
pmm0

qmm0

subject to
M

Â
m0=1

pmm0T (xm0) = T m,
M

Â
m0=1

pmm0 = 1, pmm0 � 0 (.16)

for each m = 1,2, . . . ,M, or equivalently the dual problem

min
l2RL

M

Â
m0=1

qmm0el

0(T (xm0)�T m). (.17)
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(.17) has a unique solution if and only if the regularity condition

T m 2 int co T (DM) (.18)

holds. Furthermore, if the dual problem has a unique solution lm, then the solution to the

primal problem (.16) is given by

pmm0 =
qmm0el

0
m(T(xm0)�T m)

ÂM
m0=1 qmm0el

0
m(T(xm0)�T m)

(.19)

Lastly, define the errors associated with the moment matching as:

em ⌘
M

Â
m0=1

pmm0T (xm0)�T m (.20)

The procedure for constructing the finite-state Markov chain approximation to Xt is

summarized in Algorithm 2 below.

Algorithm 4: Discretization of Markov Processes
1 Select a discrete set of points DM = {xm}M

m=1 and an initial approximation
Q = (qmm0).

2 Select a moment defining function T (x) and corresponding exact conditional
moments

�

T m
 M

m=1. If necessary, approximate the exact conditional
moments with highly accurate numerical integrals. Set m 1 and define an
error tolerance k > 0.

3 Solve minimization problem (.17) and store the resulting solution lm.
4 Compute em using (.20). If kemk• < k , move to step 5. If not, select a

smaller set of moments to match and return to step 3.
5 Compute the conditional probabilities corresponding to row m of P = (pmm0)

using (.19). Set m m+1. If m  M, move to step 3, otherwise move to
step 6.

6 Collect the computed conditional probability measures in the matrix
P = (pmm0).

The resulting finite-state Markov chain approximation to Xt takes values in the
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set DM and has associated transition matrix P. Since the dual problem (.17) is an

unconstrained convex minimization problem with a typically small number of variables,

standard Newton type algorithms can be applied. Furthermore, since the probabilities

(.19) are strictly positive by construction, the transition probability matrix P = (pmm0)

is a strictly positive matrix, so the resulting Markov chain is stationary and uniformly

ergodic by construction.

2.A Proofs for Chapter 2

Proof of Theorem 4. 1. The constraint set in (P) is nonempty if and only if T 2

coT (DN). Since coT (DN) is nonempty, compact, convex, and the objective func-

tion in (P) is strictly convex (a well-known property of the Kullback-Leibler

information), the claim is trivial.

2. The “if” part is Theorem 2 of Tanaka and Toda 2013. To show the “only if” part,

suppose that lN is a solution to (D). Since the objective function is differentiable,

by taking the derivative we get

T �
N

Â
n=1

qnel

0
NT (xn)

ÂN
n=1 qnel

0
NT (xn)

T (xn) = 0.

Letting pn as in (2.3), this equation shows T = ÂN
n=1 pnT (xn), ÂN

n=1 pn = 1, and

pn > 0 for all n. Therefore T 2 intcoT (DN).

3. This is Theorem 1 of Tanaka and Toda 2013. ⇤

Proof of Theorem 5. Special case of the following theorem by setting St = D (constant).

⇤
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Theorem 2.A.1 . Let {yt } be a VAR with stochastic volatility

yt = Ayt�1 + et , et ⇠ (0,St�1),

where all eigenvalues of A are less than 1 in absolute value and {St } is an exogenous,

stationary, ergodic finite-state Markov chain. Let zt = (yt ,St). Suppose that zd
t = (yd

t ,St)

is a stationary and ergodic Markov chain approximation of zt such that the conditional

mean and variance of yt are exact, so

E
h

yd
t

�

�

�

zd
t�1

i

= E
h

yt

�

�

�

zd
t�1

i

= Ayd
t�1,

Var
h

yd
t

�

�

�

zd
t�1

i

= Var
h

yt

�

�

�

zd
t�1

i

= St�1.

Then the unconditional mean, variance, and all autocovariance (hence the spectrum) of

{yt } and {yd
t } are identical, and so are all k-step ahead conditional mean and variance.

Proof of Theorem 2.A.1. By assumption, S := E[St ] exists and E[yt ] = 0.

Define the discretized error term e

d
t := yd

t �Ayd
t�1. First we prove that the first

two unconditional moments are exact. Since by assumption the conditional mean is exact,

we have

E
h

e

d
t

�

�

�

zd
t�1

i

= E
h

yd
t

�

�

�

zd
t�1

i

�Ayd
t�1 = Ayd

t�1 �Ayd
t�1 = 0,

and hence E[ed
t ] = 0. Since by assumption {yd

t } is stationary and the eigenvalues of

A are less than 1 in absolute value, taking the unconditional expectation of both sides

of yd
t = Ayd

t�1 + e

d
t , we get E[yd

t ] = 0. Therefore the unconditional mean is exact. To
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compute the variance, note that

yd
t (y

d
t )

0 = (Ayd
t�1 + e

d
t )(Ayd

t�1 + e

d
t )

0

= Ayd
t�1(y

d
t�1)

0A0+Ayd
t�1(e

d
t )

0+ e

d
t (y

d
t�1)

0A0+ e

d
t (e

d
t )

0.

Since E
⇥

e

d
t
�

� zd
t�1
⇤

= 0 and the conditional variance is exact, taking the conditional

expectation we obtain

E
h

yd
t (y

d
t )

0
�

�

�

zd
t�1

i

= Ayd
t�1(y

d
t�1)

0A0+St�1.

Taking the unconditional expectation, using the law of iterated expectations, and noting

that {yd
t } is stationary, we get

Var[yd
t ] = E

h

E
h

yd
t (y

d
t )

0
�

�

�

zd
t�1

ii

= AE[yd
t�1(y

d
t�1)

0]A0+E[St�1]

= AVar[yd
t�1]A

0+S = AVar[yd
t ]A

0+S.

But the variance matrix of the true process {yt } satisfies the same equation. Since the

eigenvalues of A are less than 1 in absolute value, the solution is unique. Therefore

Var[yd
t ] = Var[yt ].

Let G(k) = E[yt+ky0t ] be the true k-th order autocovariance matrix and Gd(k) =

E[yd
t+k(y

d
t )

0] be that of the discretized process. Multiplying (yd
t )

0 from the right to both

sides of yd
t+k+1 = Ayd

t+k +e

d
t+k+1 and taking expectations, we obtain Gd(k+1) = AGd(k).

By iteration, we get Gd(k) = AkGd(0). Similarly, G(k) = AkG(0). Since G(0) = Var[yt ] =

Var[yd
t ] = Gd(0), it follows that Gd(k) = G(k) for all k. Therefore all autocovariances of

{yt } are exact, and so is the spectrum.
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To evaluate the k-step ahead conditional moments, note that

yd
t+k = e

d
t+k + · · ·+Ak�1

e

d
t+1 +Akyd

t .

Since {yd
t } is a Markov process, we have

E
h

e

d
t+ j

�

�

�

zd
t

i

= E
h

E
h

e

d
t+ j

�

�

�

yd
t+ j�1

i

�

�

�

zd
t

i

= 0

for any j � 1. Therefore E
⇥

yd
t+k
�

� zd
t
⇤

= Akyd
t , so the k-step ahead conditional mean is

exact. The proof for the conditional variance is analogous. ⇤

Remark. If the conditional variance of et is unknown at t �1, say et ⇠ (0,St), then the

same result holds by replacing St�1 in the proof by E [St | St�1].

Proof of Proposition 1. Let r(M) denote the spectral radius of the matrix M. Since

r(|A|)< 1, there exists d > 0 such that a := r(d I + |A|)< 1. By the Perron-Frobenius

theorem, d I + |A| has a strictly positive eigenvector v = (v1, . . . ,vK)� 0. Take a tensor

grid DN with convex hull coDN = [�v1,v1]⇥ · · ·⇥ [�vK,vK]. Let yn be any grid point of

DN , and let T (x) = x be the moment defining function for the conditional mean (therefore

it is the identity map). Then T (DN) = DN , and

T n := E [T (yt) | yt�1 = yn] = E [yt | yt�1 = yn] = Ayn.

Taking absolute values element-by-element, since 0 < a < 1 we get

�

�T n
�

� |A| |yn| |A|v  (d I + |A|)v = av ⌧ v,

so T n 2 intcoT (DN). ⇤
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Proof of Proposition 2. Let D = {xn }N
n=1 be the set of grid points and M = maxn |xn|.

Suppose xt�1 = x, where x 2 D. By symmetry, without loss of generality we may assume

x � 0. Then the conditional first and second (uncentered) moments of xt are rx and

(rx)2 +1, respectively. The moment defining function is T (x) = (x,x2). By Theorem 4,

it suffices to show that (rx,(rx)2 +1) 2 intcoT (D).

Define the points P=(M,M2), Q=(�M,M2), X =(x,x2), and X 0=(rx,(rx)2+

1). If x = M, in order for X 0 2 intcoT (D) it is necessary that X 0 lies below the segment

PQ, so we need

(rM)2 +1 < M2 () M >
1

p

1�r

2
,

which is condition (i) in Proposition 2. Therefore X 0 lies below PQ. Now take any x 2 D

and set µ = rx. Take two grid points a1 < a2 2 D such that µ 2 [a1,a2]. Let A1 = (a1,a2
1)

and A2 = (a2,a2
2). If X 0 lies above the segment A1A2, then X 0 is in the interior of the

quadrilateral A1A2PQ, which is a subset of coT (D). Therefore it suffices to show that X 0

lies above A1A2. The equation of the straight line A1A2 is

y =
a2

2 �a2
1

a2 �a1
(x�a1)+a2

1 = (a1 +a2)(x�a1)+a2
1.

Therefore X 0 lies above A1A2 if and only if

µ

2 +1 > (a1 +a2)(µ �a1)+a2
1 () (µ �a1)(a2 �µ)< 1. (.21)

First, consider the case in which the maximum distance between neighboring points

is d < 2. Take a1,a2 as neighboring points. By the arithmetic mean-geometric mean

inequality, we have

(µ �a1)(a2 �µ)
✓

(µ �a1)+(a2 �µ)

2

◆2
=

✓

a2 �a1

2

◆2
 (d/2)2 < 1,
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so (.21) holds. Next, we show (2.10). Setting a2 = x and µ = rx in (.21) and solving the

inequality, a sufficient condition for existence is

rx = µ � a1 > rx� 1
(1�r)x

,

which is (2.10) by setting x = xn and a1 = xn0 . ⇤

Proof of Corollary 3. Since the grid {xn }N
n=1 spans from �M to M and is even-spaced,

the grid size is d = 2M
N�1 . Suppose that M > s = 1/

p

1�r

2, so condition (i) of Proposi-

tion 2 holds. Note that the grid has at least three points 0,±M, so N � 3.

r  1� 2
N�1 . By Proposition 2, it suffices to show d < 2 () M < N � 1. Since

M 
p

2s

p
N �1 by assumption, it suffices to show

p
2
p

N �1
p

1�r

2
< N �1 () r

2 < 1� 2
N �1

.

But this inequality is trivial because r

2 < r  1� 2
N�1 .

r > 1 � 2
N�1 . Let �M = x1 < · · · < xN = M be the grid points. By Proposition 2,

it suffices to show that (2.10) holds for all n such that xn > 0, which means that the

interval
⇣

rxn � 1
(1�r)xn

,rxn

⌘

contains a grid point. Since the length of this interval

is dn := 1
(1�r)xn

, if d < dn, then the interval contains a grid point. Furthermore, since

dn =
1

(1�r)xn
is decreasing in xn, it follows that if d < dn for some n, then d < dn0 for all

n0 < n such that xn0 > 0.

Consider the point n = N �1. Since d = 2M
N�1 , we have xN�1 = M�d = M N�3

N�1 .

Hence dN�1 =
1

M(1�r)
N�1
N�3 . Therefore

d < dN�1 () 2M
N �1

<
1

M(1�r)

N �1
N �3

() M <
N �1

p

2(1�r)(N �3)
.
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Since M  s

p
N �1 by assumption, to show d < dN�1, it suffices to show

p
N �1

p

1�r

2
<

N �1
p

2(1�r)(N �3)
() 1+r >

2(N �3)
N �1

() r > 1� 4
N �1

,

which trivially holds because r > 1� 2
N�1 .

Therefore it remains to show that the two inequalities in (2.10) also hold for

n = N, the boundary point. Take n0 = N �1. Since xN�1 = M N�3
N�1 , the right inequality

holds because

xN�1  rxN () M
N �3
N �1

 rM () r � 1� 2
N �1

,

which is trivial. The left inequality is equivalent to

rxN � 1
(1�r)xN

< xN�1 () rM� 1
(1�r)M

< M
N �3
N �1

() M2
✓

r � N �3
N �1

◆

<
1

1�r

.

Since M  s

p
N �1, it suffices to show

N �1
1�r

2

✓

r � N �3
N �1

◆

<
1

1�r

() (N �1)r � (N �3)< 1+r () r < 1,

which is trivial. ⇤

2.B Accuracy of Discretization

The accuracy of discretization has traditionally been evaluated by simulating the

resulting Markov chain (Tauchen 1986; Gospodinov and Lkhagvasuren 2014). However,

we think that such simulations have limited value, for the following reason. According to
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Theorem 5, for VARs the first two population moments—both k-step ahead conditional

and unconditional—are exact whenever the 1-step ahead conditional moments are exact.

Since the population moments will be identical for such discretizations, any difference in

the simulation performance must be due to sampling error.

A better approach is to directly compare the population moments of interest of

the true process with those of the discretized Markov chains. For example, suppose that

(xt ,yt)•
t=0 ⇢ RK ⇥R is generated by some covariance stationary process such that

yt = b

0xt + et ,

where E[xtet ] = 0. Then the population OLS coefficient is

b = E[xtx0t ]
�1E[xtyt ].

If (xd
t ,yd

t )
•
t=0 is a discretized Markov chain, then we can define its OLS coefficient by

b

d = E[xd
t (x

d
t )

0]�1E[xd
t yd

t ],

where the expectation is taken under the ergodic distribution of the Markov chain. Then

the bias of the discretization is b

d �b . Here we used the OLS coefficient as an example,

but it can be any quantity that is defined through the population moments.

2.B.1 VAR(1)

As a concrete example, following Gospodinov and Lkhagvasuren 2014, consider

the two-dimensional VAR(1) process

xt = Bxt�1 +ht ,
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where

xt =

2

6

4

zt

gt

3

7

5

, ht =

2

6

4

ez,t

eg,t

3

7

5

, B =

2

6

4

0.9809 0.0028

0.0410 0.9648

3

7

5

and the shocks ez,t ,eg,t are uncorrelated, i.i.d. over time, and have standard deviations

0.0087 and 0.0262, respectively. The implied unconditional variance-covariance matrix

is
2

6

4

s

2
z szg

szg s

2
g

3

7

5

=

2

6

4

0.00235 0.00241

0.00241 0.01274

3

7

5

and the eigenvalues of the coefficient matrix B are z1 = 0.9863 and z2 = 0.9594.

To evaluate the accuracy of discretization, we compute the Markov chain counter-

part q

d of the parameter q = s

2
z ,s

2
g ,szg,1�z1,1�z2 and calculate the log10 relative

bias log10
�

�

q

d/q �1
�

� for various number of nodes in each dimension, N = 5,9,15,21.

For our method, we consider the even-spaced, quantile, and Gauss-Hermite quadrature

grids, which we label as “ME-Even,” “ME-Quant,” and “ME-Quad,” respectively. As a

comparison, we consider the existing methods of Tauchen 1986, Tauchen and Hussey

1991 (TH), and Gospodinov and Lkhagvasuren 2014 (GL).1 The GL method has two

versions, one that is the VAR generalization of the Rouwenhorst method (referred to as

GL0) and another that fine-tunes this method by targeting the first and second conditional

moments (referred to as GL). Table 2.B.1 shows the results.

We can make a few observations from Table 2.B.1. First, as is well-known, the

accuracy of discretization for the Tauchen and Tauchen-Hussey methods are poor, with

relative bias of order about 100. Consistent with Gospodinov and Lkhagvasuren 2014,

the GL methods improve upon earlier methods by several orders of magnitude.
1For the Tauchen method, we need to specify the grid spacing. To give it the best chance, following

Kopecky and Suen 2010 we set the grid size proportional to the unconditional standard deviation of the
VAR, and choose the constant of proportionality in order to make the unconditional variance as close to the
true VAR as possible.
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Table 2.B.1. log10 Relative Bias, VAR(1) Model

Existing Methods ME Methods
N Param. Tauchen TH GL0 GL Even Quant Quad

5

s

2
z -0.106 -0.052 -1.061 -1.500 -3.062 -1.465 -0.138

s

2
g -0.106 -0.087 -0.918 -1.331 -2.369 -0.772 -0.138

szg -0.001 -0.006 -4.394 -1.015 -2.408 -0.811 -0.138
1�z1 1.641 1.178 -1.100 -1.235 -7.932 -8.178 -7.604
1�z2 1.158 0.657 -1.865 -1.949 -9.303 -8.554 -8.538

9

s

2
z -0.106 -0.098 -1.004 -2.342 -9.321 -8.126 -0.379

s

2
g -0.106 -0.166 -0.859 -2.156 -8.918 -9.372 -0.372

szg -0.001 -0.021 -1.024 -1.915 -9.337 -7.787 -0.373
1�z1 1.639 0.950 -1.904 -2.171 -8.690 -7.694 -8.410
1�z2 1.157 0.396 -2.487 -2.713 -9.271 -9.077 -8.292

15

s

2
z -0.106 -0.170 -1.093 -3.730 -8.712 -9.085 -1.454

s

2
g -0.106 -0.285 -0.944 -3.545 -8.783 -9.086 -0.760

szg -0.001 -0.059 -1.052 -3.357 -10.015 -9.082 -0.800
1�z1 1.639 0.696 -3.188 -3.664 -8.424 -8.774 -8.846
1�z2 1.156 0.093 -3.650 -4.106 -8.729 -9.627 -9.790

21

s

2
z -0.106 -0.244 -1.174 -4.369 -9.539 -9.171 -8.966

s

2
g -0.106 -0.403 -1.025 -4.140 -9.694 -8.538 -11.359

szg -0.001 -0.114 -1.129 -4.240 -10.124 -8.524 -8.672
1�z1 1.638 0.494 -4.517 -5.195 -9.373 -9.202 -8.589
1�z2 1.156 -0.157 -4.894 -5.563 -9.665 -9.226 -9.301

Note: N: number of discrete points in each dimension; TH: Tauchen and Hussey 1991 method;
GL, GL0: Gospodinov and Lkhagvasuren 2014 methods with or without moment targeting; ME:
maximum entropy methods. The ME methods target the first two conditional moments. For ME-
Even, the grid for the {yt } process (2.8) spans [�s

p
N �1,s

p
N �1] in each dimension, where

s

2 is the smallest eigenvalue of the unconditional variance of {yt }.

Second, the relative bias of ME-Even and ME-Quant is substantially smaller (of

order about 10�9, except when N = 5), which makes our method about 4 to 6 orders of

magnitude more accurate than the GL methods. The reason why the bias is not exactly

zero—although it should theoretically be zero if the regularity condition (2.7) holds—is

because our method involves the numerical minimization of the dual function in (D0
n),

in which we set the error tolerance to 10�10.2 Therefore this result suggests that for
2This point also explains why the accuracy does not monotonically improve as N gets larger for
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this particular example, ME-Even and ME-Quant match all first and second conditional

moments of the VAR.

Third, our method with Gauss-Hermite quadrature grid (ME-Quad) is poor for

N = 5,9,15, especially for the unconditional variance. This is because, by construction,

the quadrature method uses the Gauss-Hermite quadrature nodes of the conditional

variance. When the process is highly persistent (as in this case since the spectral radius

is z1 = 0.9863, which is close to 1), the unconditional variance is much larger than

the conditional variance. Since the grid is much smaller than typical values of the

true process, the regularity condition (2.7) may be violated and a solution to the dual

problem may not exist. Note that ME-Quad is still quite accurate for the parameters

q = 1�z1,1�z2. The reason is that since 1�z1,1�z2 depend only on the coefficient

matrix B and not on the variance, if the discretization method is able to match all first

conditional moments, then the coefficient matrix will be exact. But B in this example

satisfies the assumption of Proposition 1, so we can match 1�z1,1�z2 exactly.

While Table 2.B.1 shows the high accuracy of discretization by ME methods, is

it computationally efficient? Table 2.B.2 shows the computing time for discretizing the

VAR(1) process using various methods and number of grid points in each dimension.

The TH and GL0 methods, which require no optimization, are clearly very fast. All other

methods involve solving optimization problems. According to the table, the ME methods

are faster than the GL method, probably because we solve the unconstrained dual problem

using the Newton algorithm by supplying the analytical gradient and Hessian.

ME-Even and ME-Quant: since the relative bias is essentially the error tolerance (which is constant),
it need not be monotonic in N. In contrast, since the relative bias is not zero for existing methods and
ME-Quad, the accuracy of these methods monotonically improves with larger N.
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Table 2.B.2. Computation Time for Discretizing the VAR(1)
Process (in seconds)

Existing Methods ME Methods
N Tauchen TH GL0 GL Even Quant Quad

5 0.490 0.008 0.013 0.559 0.684 0.616 1.017
9 1.198 0.016 0.047 2.107 1.397 1.268 1.851

15 3.487 0.049 0.265 5.910 3.212 3.031 3.525
21 8.324 0.078 0.730 12.074 5.561 5.616 6.301

Note: the table shows the computing time in seconds for discretizing the VAR(1)
process in this section using a Windows 10 laptop computer with 2.2GHz Intel
Core i5 processor. The Tauchen method matches the unconditional variance. The
codes for the ME methods are available on our website discussed in Appendix E.
The GL methods use the codes supplied in the online appendix of Gospodinov
and Lkhagvasuren 2014.

2.B.2 AR(1) with Stochastic Volatility

Next, we consider the accuracy of the stochastic volatility discretization in Section

2.3.2. As a comparison, we construct an alternative approximation which uses the

Rouwenhorst method to discretize the xt process and the Tauchen method to discretize the

conditional distributions yt |xt�1,yt�1. This is the most logical choice since x is just and

AR(1) process (for which the Rouwenhorst method is accurate) and there is no obvious

way to discretize the y process except by the Tauchen method. We choose the spacing of

the y process to target the unconditional variance s

2
y . As in the simple autoregressive

case, when discretizing the log variance process (xt), we use
p

N �1 standard deviations

for the Rouwenhorst method and either the even-spaced grid, Gauss-Hermite quadrature

grid, or the quantile grid for our method. A similar type of discretization is considered

in Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao 2012, although they use

Tauchen’s method to discretize both the log variance and the level of the process.

Following Caldara, Fernández-Villaverde, Rubio-Ramı́rez, and Yao 2012, we

set the parameter values to l = 0.95, r = 0.9, s = 0.06, and choose µ = �9.9426 to

make the conditional standard deviation of the y process equal to 0.007. As a robustness
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check, we also vary l , the persistence of technology shocks, between 0 and 0.99.

We focus on characteristics of the time series of yt (the OLS coefficient l and the

unconditional variance s

2
y ), because the component approximations of xt are just the

standard autoregressive processes we studied before. For each discretization procedure,

we vary N (the number of log variance and technology points) between 9, 15, and 21.

Table 2.B.3 shows the results.

Table 2.B.3. log10 Relative Bias, Stochastic Volatility Model

N l TR ME-Even ME-Quant ME-Quad

Parameter 1�l s

2
y 1�l s

2
y 1�l s

2
y 1�l s

2
y

9

0 �• -9.781 �• -6.101 �• -5.034 �• -5.282
0.5 -1.819 -9.352 -9.556 -6.102 -9.997 -5.034 -8.755 -5.281
0.9 -0.982 -8.265 -9.458 -6.102 -9.790 -5.034 -8.857 -5.281
0.95 -0.718 -9.666 -9.117 -6.102 -9.153 -5.034 -9.409 -5.281
0.99 -1.381 -8.034 -8.390 -6.102 -8.091 -5.034 -8.455 -5.281

15

0 �• -11.15 �• -7.371 -14.33 -5.203 -14.70 -6.060
0.5 -2.189 -8.943 -9.079 -7.367 -9.647 -5.203 -9.630 -6.060
0.9 -1.337 -8.502 -9.376 -7.364 -9.845 -5.203 -9.269 -6.060
0.95 -1.061 -8.334 -9.902 -7.363 -9.245 -5.203 -9.158 -6.060
0.99 -0.540 -8.112 -8.652 -7.399 -7.777 -5.204 -8.059 -6.067

21

0 �• -9.336 -14.78 -8.625 -15.96 -5.317 -15.66 -6.898
0.5 -2.436 -9.821 -10.09 -8.668 -9.813 -5.317 -10.46 -6.900
0.9 -1.575 -8.693 -9.663 -8.700 -9.556 -5.317 -9.725 -6.900
0.95 -1.296 -9.755 -10.44 -8.645 -9.993 -5.317 -10.24 -6.899
0.99 -0.705 -8.193 -9.537 -8.750 -7.823 -5.319 -8.974 -6.909

Since the state space of the volatility process is continuous, Theorem 2.A.1 does

not apply, so the unconditional moments need not be exact. However, Table 2.B.3

shows that our method is highly accurate, with a relative bias on the order of 10�8 or

less for 1�l and 10�5 or less for s

2
y . This is likely because the finite-state Markov

chain approximation of the volatility process is so accurate that Theorem 2.A.1 “almost”

applies. As expected, the Tauchen-Rouwenhorst (TR) method does extremely well for
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the unconditional variance because it is designed to match by construction. However, it

does very poorly compared to the ME methods for the persistence, and this gap widens

as l gets closer to 1.

2.C Solving Asset Pricing Models

2.C.1 Analytical Solution with AR(1)/VAR(1) shocks

Burnside 1998 iterates (2.13) forward and obtains a closed-form solution as

follows. In order to be consistent with the notation in Section 2.3, let

xt = (I �B)µ +Bxt�1 +ht ,

where µ is the unconditional mean of {xt }, and ht ⇠ N(0,Y). Let

Ỹ = (I �B)�1Y(I �B0)�1,

Yn =
n

Â
k=1

BkỸ(B0)k,

Cn = B(I �Bn)(I �B)�1,

Wn = nỸ�CnỸ� ỸC0
n +Yn.

Then we have

V (x) =
•

Â
n=1

b

n exp
✓

na

0
µ +a

0Cn(x�µ)+
1
2

a

0Wna

◆

. (.22)

A similar formula can be derived even if the shock distribution is non-Gaussian.

For example, for the AR(1) case (so Ct = Dt), Tsionas 2003 shows that the price-dividend
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ratio is

V (x) =
•

Â
n=1

b

n exp(an +bn(x�µ)), (.23)

where

bn = (1� g)r
1�r

n

1�r

,

an = (1� g)µn+
n

Â
k=1

logM
✓

(1� g)
1�r

k

1�r

◆

,

and M(·) is the moment generating function of et .

In general, the infinite series (.22) or (.23) have to be approximated. Burnside

1999 notes that truncating the series (.22) may not be accurate when a is close to zero

since each term would have order b

n, so for b close to 1 the truncation error is substantial.

A better way is to use the exact terms up to some large number N, and for n > N we can

replace Cn,Yn by their limits C• = B(I �B)�1, Y• = Â•
k=1 BkỸ(B0)k, and Wn by

nỸ�C•Ỹ� ỸC0
• +Y•,

in which case the infinite sum can be calculated explicitly. The result is

V (x)⇡
N

Â
n=1

b

n exp
✓

na

0
µ +a

0Cn(x�µ)+
1
2

a

0Wna

◆

+
rN+1

1� r
exp
✓

a

0C•(x�µ)+
1
2

a

0(Y• �C•Ỹ� ỸC0
•)a

◆

, (.24)

where r = b exp
�

a

0
µ + 1

2a

0Ỹa

�

< 1. If r � 1, the price-dividend ratio is infinite. Propo-

sition 5 shows that the approximation error of (.24) is O((rr)N), where r is the absolute

value of the largest eigenvalue of B. On the other hand, if we simply truncate the series

(.22) at N, the error would be O(rN), which is much larger.
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Proposition 5. Consider the asset pricing formula (.23). Let VN(x) be the value of V (x),

where r

n is replaced by 0 for n > N. Let an,bn be as in (.23), mn = logM((1� g)(1�

r

n)/(1�r)), Sn = Ân
k=1 mn, b = limbn =

1�g

1�r

r , m = limmn = logM( 1�g

1�r

), and assume

r = b ((1� g)µ +m)< 1. Then

VN(x) =
N

Â
n=1

b

n exp(an +bn(x�µ))+
rN+1

1� r
exp(SN �mN +b(x�µ)).

Furthermore, the approximation error |V (x)�VN(x)| is of order (rr)N.

Proof. Let a0n be the value of an, where r

k is set to 0 for k > N. Since a0n = (1� g)µn+

SN +m(n�N), we get

VN(x)�
N

Â
n=1

b

n exp(an +bn(x�µ)) =
•

Â
n=N+1

b

n exp(a0n +b(x�µ))

=
•

Â
n=N+1

b

n exp((1� g)µn+SN +m(n�N)+b(x�µ))

=
•

Â
n=N+1

rn exp(SN �mN +b(x�µ)) =
rN+1

1� r
exp(SN �mN +b(x�µ)).

If we replace r

n by 0 for n > N, since logM(·) is differentiable and the domain of M for

the asset pricing formula is bounded (hence logM is Lipschitz continuous), |mn �m| and

|bn �b| are both of the order r

n. Since an contains the sum of mn’s, we have |an �a0n|⇡

Ân
k=N+1 r

k = O(rN). Since |r|< 1, letting cn = an +bn(x�µ) and c0n = a0n +b(x�µ),

we have |cn � c0n| < 1 eventually, so by the mean value theorem |exp(cn � c0n)�1| 
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e |cn � c0n|= O(rN). Therefore

|V (x)�VN(x)|
•

Â
n=N+1

b

n �
�exp(an +bn(x�µ))� exp(a0n +b(x�µ))

�

�

=
•

Â
n=N+1

b

n exp(a0n +b(x�µ))
�

�exp(cn � c0n)�1
�

�

⇡
•

Â
n=N+1

rn
r

N = O((rr)N). ⇤

2.C.2 Discretizing the Rare Disasters Model

In this appendix we provide the details of the discretization of the resilience

process (2.20). The discussion is partly based on footnote 9 in Gabaix 2012 and his

online appendix. First, in order for (2.20) to be stable, we need

1+H⇤
1+Ht

e�fH  1 () bHt � (1+H⇤)(e�fH �1). (.25)

Since in Gabaix 2012 pt = p and Bt+1 = B are constant, and by definition 0  Ft+1  1,

from (2.19) we obtain

�p  H⇤+ bHt  p(B�g �1). (.26)

We can take H⇤ = p(B1�g � 1) because Gabaix assumes that the average dividend re-

covery rate is the same as consumption. The inequalities (.25) and (.26) define bounds

for bHt , which we denote by [ bHmin, bHmax]. In order for the process to remain within this

bound, Gabaix assumes that the conditional variance of e

H
t+1 shrinks to 0 as we approach

the boundary. Namely, he assumes

s

2( bH) = 2K(1� bH/ bHmin)
2(1� bH/ bHmax)

2,
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where K = 0.2fH

�

�

�

bHmin bHmax

�

�

�

. See Eq. (59) in the online appendix of Gabaix 2012. We

use the exact same functional form.

We define the grid of discretization to be [ bHmin + e, bHmax � e], where e > 0 is a

small number which we set to be e = 10�3 ⇥ ( bHmax � bHmin). The reason for shrinking

the interval slightly is because otherwise the conditional variance becomes exactly zero

at the boundary points, which is impossible for a discrete Markov chain. Once we

have defined the end points of the grid this way, we put grid points and discretize the

beta distribution at each point by matching the conditional moments using our method.

We consider the even-spaced grid (trapezoidal formula), Clenshaw-Curtis quadrature

(Clenshaw and Curtis 1960; Trefethen 2008), and Gauss-Legendre quadrature, which are

the most natural choices since the integration is over a bounded interval.

2.C.3 Solving the Rare Disasters Model

In this appendix we explain how to numerically solve the variable rare disaster

model using discretization. We follow the notation in Gabaix 2012.

The stochastic discount factor between time t and t +1 is

Mt+1 = e�r(Ct+1/Ct)
�g = e�d ⇥

8

>

>

<

>

>

:

1, (no disaster)

B�g

t+1, (disaster)

where d = r + ggC. Letting Pt be the cum-dividend price of the stock and Vt = Pt/Dt be

the price-dividend ratio, it follows from the Euler equation that

Pt = Dt +Et [Mt+1Pt+1]

=) Vt = 1+Et



Mt+1
Dt+1

Dt
Vt+1

�

= 1+ e�d+gD
⇣

(1� pt)END
t [Vt+1]+ ptED

t [B
�g

t+1Ft+1Vt+1]
⌘

,
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where pt is the disaster probability and END
t ,ED

t denote the expectation conditional on

no disaster or disaster. By the structure of the model, Vt+1 depends only on the resilience

(2.19), which evolves independently from disasters. Therefore END
t [Vt+1] = ED

t [Vt+1] =

Et [Vt+1]. Using the definition of resilience, it follows that

Vt = 1+ e�d+gD(1+Ht)Et [Vt+1].

To solve for the price-dividend ration using discretization, suppose the state

space of resilience Ht is discretized, and let s = 1, . . . ,S be the states. Since the disaster

probability is constant, it follows that

vs = 1+ e�d+gD(1+hs)
S

Â
s0=1

pss0vs0 ,

where vs is the price-dividend ratio in state s, hs is the resilience in state s, and pss0 is the

transition probability from state s to s0. Letting v = (v1, . . . ,vS) and h = (h1, . . . ,hS) be

the vectors of those values, and P = (pss0) be the transition probability matrix, it follows

that

v = 1+ e�d+gD diag(1+h)Pv () v = (I � e�d+gD diag(1+h)P)�11.

The continuous solution is obtained by interpolating these values over the entire grid (see

Proposition 4).

2.D Asset Pricing with Gaussian AR(1) Shocks

In this appendix we solve the simple asset pricing model with Gaussian AR(1)

shocks

xt = (1�r)µ +rxt�1 + et , et ⇠ N(0,s2),
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where xt is log dividend growth. Using postwar data, the OLS estimates are µ = 0.0559,

r = 0.405, and s = 0.0589. Preference parameters are risk aversion g = 2 and discount

factor b = 0.95. In order to avoid cherry-picking, we consider all major existing methods,

Tauchen 1986,3 Tauchen and Hussey 1991, and Rouwenhorst 1995. For the ME methods,

we consider ME-Even, ME-Quant, ME-Quad (all with two moments) as well as ME-Even

with 4 moments.4 We consider two robustness checks, (i) changing the number of grid

points N, and (ii) changing the persistence of dividend growth r .5 The number of grid

points is always N = 9 unless otherwise stated.

Figure 2.D.1 shows the log10 relative errors of the price-dividend ratio with

various discretization methods and number of points N. We can make a few observations.

First, as we increase N, all methods become more accurate, as expected. This is especially

true for Tauchen-Hussey, whose performance is sensitive to N. Second, for methods

other than Tauchen-Hussey, the order of the performance is generally ME-Quad >

ME-Even (4) > ME-Even (2) > Rouwenhorst > ME-Quant > Tauchen. ME-Quad and

ME-Even (4 moments) give a solution accuracy of order 10�4 to 10�9. Third, the

performance of ME-Quad does not improve beyond N = 9. This is because since ME

methods involve a numerical optimization, in which we set the error tolerance to 10�10,

the theoretical lower bound for the log10 errors is about �10.

Figure 2.D.2 shows the log10 relative errors when we increase the persistence r ,

fixing the number of points at N = 9. Not surprisingly, the performance worsens for all
3For the Tauchen method, we need to specify the grid spacing. To give it the best chance, following

Kopecky and Suen 2010 we choose the grid spacing in order to match the unconditional variance exactly.
We also experimented with

p
N �1 standard deviations (as in ME-Even and Rouwenhorst) or 1.2logN (as

in Flodén 2008) but the performance was worse.
4As discussed below, ME-Quant is uniformly dominated by other ME methods, so there is no point

in considering ME-Quant with 4 moments. The results for ME-Quad with 4 moments are similar to 2
moments. We also considered matching 6 moments, but the performance is similar to 4 moments.

5Collard and Juillard 2001 perform robustness checks across other parameters such as the discount
factor, risk aversion, and volatility. They find that the solution accuracy is most susceptible to turning up
the persistence.



214

Dividend Growth

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

lo
g

1
0
 R

e
la

tiv
e

 E
rr

o
rs

-7

-6

-5

-4

-3

-2

ME-Even (2)

ME-Quant

ME-Quad

ME-Even (4)

Rouwenhorst

Tauchen

Tauchen-Hussey

(a) N = 5.

Dividend Growth

-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

lo
g

1
0
 R

e
la

tiv
e

 E
rr

o
rs

-12

-10

-8

-6

-4

-2

ME-Even (2)

ME-Quant

ME-Quad

ME-Even (4)

Rouwenhorst

Tauchen

Tauchen-Hussey

(b) N = 9.

Dividend Growth

-0.05 0 0.05 0.1 0.15

lo
g

1
0
 R

e
la

tiv
e

 E
rr

o
rs

-14

-12

-10

-8

-6

-4

-2

ME-Even (2)

ME-Quant

ME-Quad

ME-Even (4)

Rouwenhorst

Tauchen

Tauchen-Hussey

(c) N = 15.

Dividend Growth

-0.05 0 0.05 0.1 0.15

lo
g

1
0
 R

e
la

tiv
e

 E
rr

o
rs

-14

-12

-10

-8

-6

-4

-2

ME-Even (2)

ME-Quant

ME-Quad

ME-Even (4)

Rouwenhorst

Tauchen

Tauchen-Hussey

(d) N = 21.

Figure 2.D.1. log10 Relative Errors of Price-Dividend Ratio Approximations fo
Different Numbers of Points, Gaussian AR(1) Model

log10 relative errors of price-dividend ratio with various discretization methods and
number of points for the Gaussian AR(1) model. ME-Even (L) shows the result with L
moments.

methods as we make the dividend process more persistent. However, the performance of

the Tauchen-Hussey method deteriorates quickly, as is well-known. ME-Quad, which

uses the same Gauss-Hermite quadrature grid as Tauchen-Hussey, also gets poorer, but

it is still the best performer along with ME-Even (4 moments). The performance of the

Rouwenhorst method is robust, although it is uniformly dominated by ME-Even (2 or 4

moments) and ME-Quad.

It is well-known that existing methods except Rouwenhorst are poor when the
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(c) r = 0.7.
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Figure 2.D.2. log10 Relative Errors of Price-Dividend Ratio Approximations for
Different Levels of Persistence, Gaussian AR(1) Model

process is persistent (Flodén 2008; Kopecky and Suen 2010). However, since the price-

dividend ratio is infinite (i.e., the series (.22) diverges) beyond r = 0.8 with the baseline

specification g = 2 and b = 0.95, the performance of the ME methods when persistence

is high is still unanswered. In order to see what happens when the AR(1) process is very

persistent, we set (r,g) = (0.9,1.5),(0.95,1.3), for which the price-dividend ratio is

finite. Figure 2.D.3 shows the results. With r = 0.9, Tauchen-Hussey is one of the worst

performers. ME-Quad also deteriorates, and is slightly worse (better) than Rouwenhorst

with N = 9 (N = 15) grid points. The best performers are ME-Even, with comparable

performance with 2 or 4 moments.
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Figure 2.D.3. log10 Relative Errors of Price-Dividend Ratio Approximations for a
Highly Persistent Process, Gaussian AR(1) Model

log10 relative errors of price-dividend ratio with various discretization methods for the
highly persistent Gaussian AR(1) model with (r,g) = (0.9,1.5),(0.95,1.3).

To get a better idea of the solution accuracy, consider an investor purchasing $1

Million worth of the asset. If the investor uses each discretization method to compute

the fair price of the asset, what is the mistake in dollar amounts? Table 2.D.1 shows

the mispricing using the average log10 relative errors. With the baseline specification

(N = 9, r = 0.405), the mispricing for $1M investment is only 1 cent with ME-Even

(4 moments). With ME-Quad and Tauchen-Hussey, the pricing error is virtually zero.

Even with the Rouwenhorst method, the mispricing is only $18, so it does not make a
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material difference across methods except the Tauchen method, which is off by more

than $3,000. However, the choice of the discretization method matters as we increase the

persistence of the dividend process. With r = 0.8, the Tauchen method is off by 12%,

Tauchen-Hussey by 2.6%, Rouwenhorst by 0.6%, as opposed to 0.16% with ME-Even (4

moments). The result is even more stark with r = 0.9,0.95.

Table 2.D.1. Mispricing in dollars when investing $1 Million.

ME methods Existing methods

N r Even (2) Quant Quad Even (4) R Tauchen TH

Changing number of grid points (g = 2)
5

0.405

31.6 103 10.1 23.3 33.8 3,161 58.9
9 7.27 71.1 0 0.011 18.1 3,136 0.006

15 0.767 51.7 0 0.005 11.2 3,380 0
21 0.065 39.8 0 0.03 7.89 3,363 0

Changing persistence (g = 2)

9

0.5 16.1 172 0.009 0.051 43.6 7.2K 0.393
0.6 46.6 507 0.491 0.235 127 17K 18.3
0.7 185 2.1K 21.4 92.3 501 39K 652
0.8 2.0K 21K 2.0K 1.6K 6.1K 120K 26K

Highly persistent case (g = 1.5)
9 0.9 8.3K 53K 36K 7.4K 17K 218K 280K

15 0.89K 41K 9.3K 0.82K 9.9K 218K 77K

Highly persistent case (g = 1.3)
15 0.95 13K 70K 67K 9.8K 32K 1.3M 1.4M
21 2.7K 65K 50K 2.2K 25K 1.3M 1.1M

Note: Even (L): ME-Even method with L moments; R: Rouwenhorst 1995 method; TH: Tauchen
and Hussey 1991 method. K, M denote thousands and millions of dollars.

In summary, we find that for discretizing a Gaussian AR(1) process, (i) Tauchen-

Hussey is best if there are many points (N � 15) and the process is not so persistent

(r  0.4), (ii) ME-Quad is best if the process is moderately persistent (0.4  r  0.8),

with ME-Even (4 moments) comparable, (iii) ME-Even and Rouwenhorst perform well

over all choices of grid points N and persistence r (especially r > 0.8), with solution
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accuracy ME-Even (4) > ME-Even (2) > Rouwenhorst, and (iv) ME-Quant is poor.

Finally, one may be interested in how the discretization solution fares against

conventional methods such as projection, and how the performance of discretization

deteriorates as the persistence increases. To address this issue, we fix the preference

parameters at b = 0.2 and g = 1.3, number of points N = 9, and consider the autocor-

relation r = 0.8,0.9,0.95,0.99. (It is necessary to reduce the discount factor b to an

unrealistically small number so that the analytical solution exists even for high persis-

tence.) For this exercise, we only consider ME-Even (2), ME-Quad, Rouwenhorst, and

the projection method. For the projection method, we make the Euler equation errors

zero at the Chebyshev collocation points, and the conditional expectation is computed

using a highly accurate Gauss-Hermite quadrature (see Pohl, Schmedders, and Wilms

2014 for details). Figure 2.D.4 shows the results.

Unsurprisingly, the projection method is extremely accurate, since a highly accu-

rate Gauss-Hermite quadrature nodes are chosen for each Chebyshev collocation point.

The performance of discretization methods deteriorates as we increase the persistence.

The maximum entropy methods are more accurate for persistence less than 0.95, but

beyond that the Rouwenhorst method becomes more accurate. This is probably because

the Rouwenhorst method does not involve any numerical optimization.

3.A Proof of Proposition 1 (Chapter 3)

Proof. (Part i)

We guess and verify that the price-dividend ratio is pdt = A0,m +A0
mzt . By As-

sumption 1, Ddt = S0dzt . Using rt+1 ⇡ k+r(pt+1�dt+1)+Ddt+1+dt � pt and plugging
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Figure 2.D.4. log10 Relative Errors of Price-Dividend Ratio Approximations for a
Highly Persistent Process, Alternate Parameterization, Gaussian AR(1) Model

log10 relative errors of price-dividend ratio with discretization and projection methods
for the highly persistent Gaussian AR(1) model with b = 0.2, g = 1.3, and N = 9.
“Chebyshev-GH” refers to the projection method with Chebyshev collocation and
Gauss-Hermite quadrature.

the log-linearized return into the Euler equation, we have

1 = exp[l0 +k +(r �1)A0,m �A0
mzt ]⇥Et

⇥

exp
�

[�L0+S0d +rA0
m]zt+1

 ⇤

0 = l0 +k +(r �1)A0,m �A0
mzt +[�L0+S0d +rA0

m](µ +Fzt)

+ f (�L0+S0d +rA0
m)+g(�L0+S0d +rA0

m)
0zt ,
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where the second line takes logs and applies assumption 1.ii. Rearranging yields the

(L+1)-dimensional system of equations in A0,m and Am

f (�L+Sd +rAm)+l0 +k +(r �1)A0,m +(�L0+S0d +rA0
m)µ = 0 (.27)

g(�L+Sd +rAm)� (I �rF 0)Am +F 0(�L+Sd) = 0. (.28)

This system does not have an analytical solution in the general case; however, it is

relatively straightforward to solve the system numerically.

(Part ii)

The coefficients on the risk-free rate can be calculated by direct computation

r ft+1 = � logEt [exp(l0 �L0zt+1)] =� logEt [exp(l0 +L0(µ +Fzt + et+1))]

= �[l0 �L0
µ + f (�L)]� (L0F +g(�L)yt ⌘ A0, f +A0

f zt .

(Part iii)

To calculate the expected excess market return, we calculate its conditional

cumulant-generating function for an arbitrary scalar g

logEt [exp(grt+1)]⌘ g[k +(S0d +rA0
m)zt ]+ f (g[Sd +rAm])+g(g[Sd +rAm])

0zt (.29)

The expected log market return (Et [rt+1]) is the first derivative of (.29) with respect to g ,

evaluated at g = 0. Since (.29) is affine in zt , its derivative will also be affine in g , which

establishes the claim. ⇤
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3.B Details of Nonparametric Estimation

Robinson (1989) and Cai (2007) consider local constant and local linear approxi-

mations of b respectively, but this approach can easily be generalized to accommodate

polynomials of arbitrary order. In particular, we approximate the function bt as a pth-order

Taylor expansion about the point t
T (where p � 0). To this end, define the quantities:

Wst =

✓

1,
s� t

T
, . . . ,

✓

s� t
T

◆p◆0
, (.30)

Kst = K
✓

s� t
hT

◆

, (.31)

Qst = Wst ⌦ xs, (.32)

for s, t = 1, . . . ,T , where K is a kernel function and h ⌘ h(T ) is the bandwidth. More

formally, K : [�1,1]! R+ is a function that is symmetric about 0 and integrates to 1,

and h 2 [0,1] satisfies h ! 0 and hT ! • as T ! •.

The local polynomial estimator a =
�

b

0
0,b

0
1, . . . ,b

0
p
�0 is obtained by solving

min
a2Rpd

t+bhTc

Â
s=t�bhTc

Kst



rs+1 �b

0
0xs �b

0
1

✓

s� t
T

◆

xs � . . .�b

0
p

✓

s� t
T

◆p
xs

�2

=
t+bhTc

Â
s=t�bhTc

Kst
�

rs+1 �a

0Qst
�2
. (.33)

Solving this optimization problem for a gives the solution

ât =

 

t+bT hc

Â
s=t�bT hc

KstQstQ0
st

!�1 t+bT hc

Â
s=t�bT hc

KstQstrs+1, (.34)

where our object of interest, bt , is the first element of at . That is, the estimator of bt is
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given by

b̂t =
�

e01 ⌦ Id
�

ât , (.35)

where e1 is the first standard basis vector of Rp+1, Id is a (d ⇥d) identity matrix, and

d is the dimension of xt . This can also be thought of as the OLS estimator of a0 in the

transformed model

K1/2
st ys+1 = K1/2

st x0s
p

Â
q=0

aq + es+1. (.36)

The asymptotic properties of these estimators are studied in Robinson (1989) and Cai

(2007). Under various regularity conditions, it can be shown that the estimator ât in (.35)

is consistent and asymptotically normal.

The main empirical results adopt a local constant (Nadarya-Watson) estimation

procedure and so set p = 0. The motivation behind this choice is that the nonparametric

procedures require very large amounts of data to perform well in finite samples and every

additional degree of approximation requires that we estimate dT additional parameters.

However, we also repeated the analysis using local linear models (p = 1) and found very

similar results.
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Barro, Robert J, and José F Ursúa. 2008. “Macroeconomic Crises Since 1870”. Brookings
Papers on Economic Activity 2008 (1): 255–350.

Bauer, Michael D., and Glenn D. Rudebusch. 2016. “Monetary Policy Expectations at the
Zero Lower Bound”. Journal of Money, Credit, and Banking 48 (7): 1439–1465.

Baum, Leonard E, and Ted Petrie. 1966. “Statistical Inference for Probabilistic Functions
of Finite State Markov Chains”. Annals of Mathematical Statistics 37 (6): 1554–
1563.

Bickel, Peter J, and Ya’Acov Ritov. 1996. “Inference in Hidden Markov Models I: Local
Asymptotic Normality in the Stationary Case”. Bernoulli 2 (3): 199–228.

Bickel, Peter J, Yaacov Ritov, and Tobias Ryden. 1998. “Asymptotic Normality of the
Maximum-Likelihood Estimator for General Hidden Markov Models”. Annals of
Statistics 26 (4): 1614–1635.
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