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Abstract 

Causal reasoning has been shown to underlie many aspects of 
everyday judgment and decision-making. We explore the role 
of causal structure in conditional reasoning, hypothesizing 
that people often interpret conditional statements as assertions 
about causal structure. We argue that responses on the Wason 
selection task reflect the selection of evidence expected to 
maximally reduce uncertainty over candidate causal 
structures. We present a model in which people’s selections 
depend on their interpretation of which causal relationship is 
asserted by a given conditional statement. 

Introduction 
Consider the following statement: “If a pot falls in the 

kitchen, then you will hear a clang”. Is this statement true? 
Not if something breaks its fall, like a pillow. Now consider 
the statement: “If a clang is heard then a pot has fallen in the 
kitchen.” Is this statement true? Not if something else can 
cause a clang, such as falling silverware. The first statement 
is not always true because there are conditions that can 
disable the mechanism by which falling pots cause clangs to 
be heard. The second statement is not always true because 
there are alternate causes of clangs other than falling pots. 
As this example illustrates, causal knowledge often 
underlies how people reason about conditional statements. 

Recent research has shown that causal reasoning 
permeates many aspects of cognition, including associative 
learning (Waldmann, 2000; Glymour & Cheng, 1998), 
category learning (Rehder, 2003; Ahn, 1999), and judgment 
under uncertainty (Krynski & Tenenbaum, 2003). In this 
paper we analyze the role of causal structure in conditional 
reasoning (Over & Jessop, 1998), and argue that people’s 
responses on the Wason selection task reflect sophisticated 
abilities to induce causal structure. 

An important open question in causal reasoning is how 
people’s background knowledge interacts with observations 
when inferring causal structure. Causal domain knowledge 
places important constraints on which cause-effect 
relationships exist and how the effects depend functionally 
on the causes (Pearl, 2000; Krynski & Tenenbaum, 2003; 
Ahn, Kalish, Medin, & Gelman, 1995). This effectively 
specifies a hypothesis space of candidate causal structures, 
which we model using causal Bayes nets (Pearl, 2000). 
Observational evidence can then be used to determine which 
causal structure is most likely. We propose that this 
interplay of causal domain knowledge and observational 
evidence underlies people’s judgments on the Wason 
selection task. 

The Wason selection task presents subjects with a 
conditional statement of the form “if p then q”, and asks 
subjects to choose evidence to determine whether the 
statement is true. Prior accounts of people’s responses on 
the selection task have emphasized logical reasoning 
(Wason, 1966; Ahn & Graham, 1999), probabilistic 
reasoning (Oaksford & Chater, 1994), or social reasoning 
(Cosmides, 1989), as well as others. In contrast, we argue 
that the selection task often engages causal reasoning: for 
conditional statements in which p and q are causally related, 
people choose cards that will be most useful to determine 
which of several candidate causal structures is correct for a 
given situation. 

We have developed a model that extends Oaksford & 
Chater’s (1994) probabilistic information gain framework to 
handle causal hypotheses. The information gain framework 
of O&C proposes that in the Wason selection task, people 
seek to reduce their uncertainty among hypotheses about the 
relationship between the antecedent (p) and the consequent 
(q) in a conditional statement of the form “if p then q”. The 
model of O&C (1994) proposes that these hypotheses are 
assertions about conditional dependencies (e.g., q depends 
on p, q is independent of p, etc.), whereas we propose that 
these hypotheses are assertions about causal structure (e.g., 
p causes q, p does not cause q, etc.). 

Our causal framework enables us to explain some 
previously puzzling results from the literature, as well as 
compelling intuitions that are not predicted by other 
approaches. We also address an important open question 
with both logical and probabilistic accounts: they leave 
unspecified how people interpret conditionals to determine 
which hypothesis is being asserted. We propose that the 
interpretation of conditionals often depends on causal 
domain knowledge, which imposes constraints on candidate 
causal structures, as well as pragmatic considerations. 

Why interpret conditionals causally? 
In contrast to O&C’s proposal that conditional statements 
assert a conditional dependency, we propose that people 
interpret conditional statements in which p and q are 
causally related as assertions about causal structure. The 
underlying reason for this is that conditional dependencies 
are often a symptom of some underlying causal relationship. 
“If p then q” states that there is some dependency between p 
and q, which in turn implies there is some mechanism by 
which p and q are related; i.e., p causally influences q, q 
causally influences p, or they have some common cause. 
The term “causally influences” does not necessarily mean 
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“directly causes”; causal influence can be generative, 
inhibitive, enabling, permissive, or otherwise. 

Examples of the prevalence of causal interpretations come 
from statements in which the logical interpretation and the 
causal interpretation are at odds; in these cases, the causal 
interpretation tends to take precedence. Some conditionals 
are logically false but seem true because they are causally 
true. For example, “If you spin around then you will get 
dizzy” seems true enough, although it’s possible to spin 
around without getting dizzy, therefore it’s logically false. 
Other conditionals are logically true but seem false because 
they are causally false. For example, “If you drink coffee 
during the day then you will fall asleep at night” sounds 
false because it seems to be saying that coffee causes you to 
fall asleep, but it is logically true (assuming you eventually 
fall asleep every night). These examples suggest that it is 
often, but not always, more natural to interpret conditionals 
as causal assertions, rather than logical implications. 

Causal Structure Induction 
We adopt the following Bayesian framework: given 
conditional statement “if p then q”, reasoners consider a 
total hypothesis space T of candidate causal structures 
relating p and q. The conditional statement is interpreted to 
be asserting that a specific causal relationship holds between 
p and q. T then partitions into a subspace of structures S 
consistent with the statement, and its complement, T-S, 
inconsistent with the statement. Testing the conditional 
amounts to testing whether the true structure, s*, is in S or 
T-S. The probability that the conditional is true is the 
probability that s* is in S: . ( * ) ( ) ( )

s S
P s S P S P s

∈
∈ = = Σ

Initial degrees of belief in these hypotheses are 
represented as prior probabilities, and those structures that 
do not satisfy the constraints of causal domain knowledge 
are not considered. For example, people know that falling 
pots can cause noise, but noise cannot cause pots to fall, 
hence no structures with noise causing falling pots will be 
included in T. In this case of the conditional “if a pot falls, 
then it makes a noise”, T could be the set of all causal 
structures consistent with domain knowledge in which 
falling pots exist, and S could be the subset of structures in 
T in which falling pots are a cause of noise. 

Data can help determine how likely the conditional 
statement is to be true. Using Bayesian belief updating, 

 ( ) ( | )( | ) ( | )
( )s S s S

P s P d sP S d P s d
P d∈ ∈

= =∑ ∑  

According to the information gain (IG) approach (O&C, 
1994), when determining whether a particular conditional 
statement is true, the most informative data are those that 
are expected to maximize information gain, Ig: 

1( | ) ( ) log ( | ) log
( ) ( | )g

H H

I S D P H P H d
P H P H d

= −∑ ∑ 1  

However, O&C (1996) propose that when P(S) is not 0.5, a 
better measure is the distance between the probability 
distributions of the new and old beliefs, as measured by 
Kullback-Leibler distance, (we will use this, and call it IKL): 

( | ) ( | )( | ) ( | ) log ( | ) log
( ) ( )KL

P S d P T S dI S d P S d P T S d
P S P T S

⎛ ⎞ ⎛ −
= + −⎜ ⎟ ⎜ −⎝ ⎠ ⎝

⎞
⎟
⎠
  

In the case of the Wason selection task, IKL(S|d) is the 
amount of information gained from turning over cards. The 
selection task can be used to test two claims: (1) people 
often interpret conditional statements in which p and q are 
causally related as assertions that a particular causal 
relationship holds, and (2) people select information with 
the goal of maximally reducing uncertainty in that assertion. 

Applying the IG approach to the selection task 
The Wason selection task and its variants present people 
with a conditional statement of the form “if p then q”, where 
p and q can be any propositions. Cards are then presented 
which represent trials; one side specifies whether p was true 
on the trial, while the other side specifies whether q was 
true. Subjects are presented with four cards, having each of 
the four possible sides (p, q, ¬p, ¬q) facing up. The specific 
task instructions vary depending on the experimenter’s 
intent, but they generally instruct participants to select only 
those cards necessary to turn over in order to determine 
whether or not the given conditional statement is true. 

Consider the information gained from turning over a 
single card with v on the visible side and finding u on 
unseen side: (v,u take on values in {p, q, ¬p, ¬q}, subject to 
the constraints of the selection task): 

( | , )( | ) ( | , ) ( | , ) log
( )KL KL

P S v uI S d I S v u P S v u
P S

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

( | , )( | , ) log
( )

P T S v uP T S v u
P T S

⎛ ⎞−
+ − ⎜ ⎟−⎝ ⎠

 

( | ) ( | , )( | , ) ( | , )
( | )s S s S

P s v P u v sP S v u P s v u
P u v∈ ∈

= =∑ ∑  

Since it is generally obvious that the cards in the Wason 
selection task were not randomly sampled, but rather one 
card of each possible side (p, q, ¬p, or ¬q) was presented, 
no information can be gained from learning that the visible 
side of the card is v, thus . ( | ) ( )P s v P s=

One more step is necessary for predicting card selection: 
summing over all possible values of the unseen side of the 
card to obtain the expected information gain from turning 
the card with v on the visible side, EIg(S,v): 

( , ) ( | , ) ( | )g KL
u

EI S v I S v u P u v=∑  

The IG approach proposes that subjects select cards in the 
Wason selection task as a function of expected information 
gain, with selection favoring cards with higher expected 
information gain. 

Applying the IG approach to causal hypotheses 
The Bayesian framework presented thus far is similar to 

O&C (1996), except that it treats conditional statements as 
asserting the validity of a set of hypotheses rather than a 
single hypothesis. We now turn to the major differences 
between our account and that of O&C: 
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(1) The hypotheses in our framework are assertions 
about causal structure rather than conditional 
dependency; hence, a causal framework predicts 
different values for information gain than do O&C. 

(2) We propose that mapping conditional statements onto 
hypotheses about causal structure is inherently 
ambiguous and depends on pragmatic considerations. 

Here we will discuss the implications of (1), leaving the 
implications of (2) for the next section. 

The information gained from turning over card v and 
finding u on the other side depends on the hypotheses under 
consideration; in particular,  depends on 

 for every h ∈ T, which in turn depends on the 
content of each hypothesis h. In the O&C (1994) approach, 
H is the hypothesis that q depends deterministically on p, 
while ¬H is the hypothesis that p and q are independent, 
and these are the only two hypotheses considered. Thus, 

( | , )KLD S v u
( | , )P v u h

( | , ) 1; ( | , ) ; ( | , ) ; ( | , ) 0P q p H P q p H b P p q H a b P p q H= ¬ = = ¬ =   
( | , ) ( | , ) ; ( | , ) ( | , )P q p H P q p H b P p q H P p q H a¬ = ¬ ¬ = ¬ = ¬ ¬ =  

where the parameters  and  are the 
same for H and ¬H. Other possible hypotheses are proposed 
by O&C but not developed, specifically those in which q 
depends probabilistically on p, such that 

( )a P p= ( | )b P q p= ¬

( | , ) 1P q p H < . 
In our approach, the hypothesis space T consists of causal 

structures. The conditional statement asserts that a particular 
causal relationship holds between p and q, thus the true 
causal structure is in the set S of structures for which this 
relationship holds (S ⊂ T). For a given causal structure, h, 

 can be derived using the formalism of causal 
Bayes nets (Pearl, 2000). For the subsequent presentation 
we will work with a simple causal structure that provides a 
reasonable approximation to many of the causal structures 
asserted by common conditional statements. In this 
structure, a cause (C) generates an effect (E), but there are 
conditions (D) that can disable the mechanism, and there are 
alternative causes (A) of the effect (see Figure 1). D 
represents all disabling conditions aggregated together, and 
A represents all alternative causes aggregated together. The 
arrow coming from D in Figure 1 indicates that the presence 
of D blocks the causal path from C to E. This structure is the 
causal model behind Cheng’s power-pc theory (Cheng, 
1997) (where P(¬D) is equal to the causal power of C to 
generate E); the model can also be expressed as a noisy-or 
Bayes net (Glymour & Cheng, 1998). For this simplified 
structure, the total hypothesis space T contains all structures 
with one or more of the links shown in Figure 1 (subject to 
the constraint that the link from D cannot exist without the 
link from C to E). 

( | , )P u v h

 
 
 
 
 
 

 
As an example of the model of Figure 1, consider a 

dropped pot (C) causing a clang (E). This can be disabled by 
various things (D), such as someone catching the pot or a 

pillow breaking the pot’s fall. There are also alternate 
causes (A) of clangs, such as falling silverware. 

Next we will use the semantics of the noisy-or Bayes net 
to derive , for the case where h is the hypothesis 
that the model of Figure 1 holds. This derivation works for 
all cases in which the cards in the selection task contain C 
on one side and E on the other, as is the case in our example 
“if a pot is dropped then a sound is heard” (here p is C (“a 
pot is dropped”) and q is E (“a sound is heard”), hence v, u 
take on values in {C, E, ¬C, ¬E}): 

( | , )P u v h

( )

( )

( | , ) ( | ) ( ) ( ) ( )
( | , ) ( )

( ) ( ) ( ) ( )( ) ( | , )( | , )
( | ) ( ) ( ) ( ) ( )

( ) ( | , ) ( ) ( ) ( )( | , )
( | ) ( ) ( ) ( ) ( )

P E C h P D A h P D P D P A
P E C h P A

P C P D P D P AP C P E C hP C E h
P E h P A P C P D P A

P C P E C h P C P D P AP C E h
P E h P A P C P C P D

= ¬ ∨ = ¬ +
¬ =

¬ +
= =

+ ¬ ¬
¬ ¬

¬ = =
¬ ¬ ¬ +

 

where the prior probabilities of C and A, P(C) and P(A), 
correspond to a and b in the O&C model, and the prior 
probability of D, P(D), is 1-P(E|C). (P(D) is taken to be 
zero in O&C’s model for the case where p is C and q is E.) 
We do not require that the parameter values be the same 
across hypotheses, eliminating some objections to O&C’s 
model. One could, for example, interpret a statement to be 
asserting that alternate causes are rare, hence S is all 
structures with P(A)<0.1. For simplicity, however, we will 
discuss only those interpretations in which a structural claim 
is being made (such as, a link exists from A to E); for these 
cases, the parameters will be the same across hypotheses. 

Interpreting conditionals as causal assertions 
Conditional statements are inherently ambiguous. Those for 
which p could be a cause of q we will call “forward” 
conditionals. They generally assert that p causes q, but the 
exact causal structure being asserted depends on pragmatics. 
For example, the statement “if a pot is dropped then it 
makes a clang” could have several different meanings, as 
demonstrated by the following hypothetical exchanges: 

(1)   A: “What sound will be made if I drop this pot?” 
B: “If a pot is dropped then it makes a clang.” 
Meaning: dropped pots cause clangs 
Causal Assertion: dropped pots can cause clangs 
Hypothesis Space: all structures in which dropped 

pot is the cause and a sound is the effect 
(2)   A: “I think a pot just fell.” 

B: “That’s impossible; I didn’t hear a clang. If a pot 
falls then it makes a clang.” 

Meaning: dropped pots always cause clangs 
Causal Assertion: no D exists to block the path from 

dropped pots to clangs 
Hypothesis Space: all structures in which dropped 

pot is a cause of clangs 
In contrast, conditionals for which q could causally 

influence p we call “reverse” conditionals. They generally 
assert that q is the only cause of p, but again the exact causal 
structure being asserted depends on pragmatics. For 
example, the statement “if you hear a clang then a pot was 
dropped” could have several different meanings, as 

Figure 1: Noisy-or causal model 

C 

E 

A 
D 
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demonstrated by the following hypothetical exchanges: qualitative predictions for S, T, and IKL for common types of 
conditionals, which will motivate future experiments. (1) A: “What are those sounds coming from the kitchen?” 

B: “Those are items being dropped. For instance, if 
you hear a clang then a pot was dropped.” 

Meaning: falling pots are the primary cause of 
clangs, but not necessarily the only possible cause. 

Causal Assertion: dropped pots can cause clangs 
Hypothesis Space: all structures in which dropped 

pot is the cause and a sound is the effect. 
(2)  A: “I heard a clang. What do you think happened?” 

B: “It must have been a dropped pot. If you hear a 
clang then a pot was dropped.” 

Meaning: the only cause of a clang is a dropped pot. 
Causal Assertion: no alternative cause A exists that 

can cause clangs. 
Hypothesis Space: all structures in which dropped 

pot is the cause and clang is the effect. 

Predicting card selection  
The key point of distinction between our model and that of 
O&C is in predicting information gain, because EIg is a 
simple function of information gain. IKL(S|v,u) depends on 
the particular set of causal structures in the hypothesis space 
T, as well as the set of asserted hypotheses S, and the 
parameters P(C), P(A), and P(D). S in turn depends on 
pragmatic considerations. In Figures 2 and 3 we give 

Some generalizations are worth noting: (1) EIg(p) is often 
h  
l
often high; (3) if the conditional assumes the C to E link 
ex , t have low 
priors and g(S,q) will be low. In general, with pragm c 
co iderations, e model predicts selection of p and q cards 
if the conditional asserts that C causes E, and selection of p, 
¬q if the conditional assumes that C causes E. 

 

Relation to previous analyses and phenomena 
In this section we discuss how our approach accounts for 
previous phenomena on the selection task. We group these 
phenomena within a discussion of previous approaches, 
while highlighting the distinctive aspects of our approach. 

igh. (2) for rare p and q, when structures with no C to E
ink have sufficient priors (e.g., a uniform prior), EIg(S,q) is 

ists hen structures with no C to E link will 
 EI ati

ns  th

Interpretation of reverse conditionals with cause known 
We know from domain knowledge that q could be a cause of p. 
Example:“if there is smoke then there is fire”, p=E=smoke,q=C=fire

C 

E 

A 
D C 

E 

A D 
C

E

A 
D

Interpretation: fire is the only cause of smoke 

Interpretation of reverse conditionals with single cause  
We know p has a single cause but we are not sure whether it is q 
Example: “if a person is in the XYZ club then that person is a 
good computer hacker”, p= E=in the club q=C=good hacker 

Interpretation: good hackers get into the XYZ club 

C 

E 

A D C 

E 

A 
D

Uniform Prior, EIg: p:0.391, ¬p:0.015, q:0.205, ¬q:0.033 
If P(3rd Model)=0.01, p:0.305, ¬p:0.000, q:0.001, ¬q:0.051 

Uniform Prior, EIg: p:0.758, ¬p:0.052, q:0.758, ¬q:0.052 

Figure 2: Predictions for reverse conditionals 
Dotted arrows indicate a mixture of two hypotheses, one in which the 

arrow is present, and one in which the arrow is absent 
All EIg values assume P(C)=P(A)=P(D)=0.1

S 

S 

T 

T 

Inte
W
Example:“if there is fire then there is smoke”,p=C=fire,q=E=smoke

rpre forward conditionals with cause known tation of 
e know from domain knowledge that p could be a cause of q. 

Interpretation 1: fire causes smoke 

C

E

A D
C

E

A 
D

C 

E 

A
D C

E

A
D

C

E

A
D

Interpreta on 2: fire always causes smoketi  

Interpretation of forward conditionals with single cause  
We know q has a single cause but we are not sure whether it is p 
Example: “if a person is in the XYZ club then that person is a 
good computer hacker”, p=C=good hacker, q=E=in the club 

Interpretation: good hackers get into the XYZ club  

C

E

A D C

E
Uniform Prior, EIg: p:0.758, ¬p:0.052, q:0.758, 

A 
D

¬q:0.052 

Uniform g Prior, EI : p:0.189, ¬p:0.001, q:0.040, ¬q:0.018 
If P(3rd model)=0.01, p:0.058, ¬p:0.000, q:0.001, ¬q:0.006 

Uniform Prior, EIg: , ¬p:0.00 :0.220, p:0.442 5, q ¬q:0.032 

S

S

S

T

T 

T 

Figure 3: Predictions for forward conditionals. 
Dotted arrows indicate a mixture of two hypotheses, one in which the 

arrow is present, and one in which the arrow is absent. 
All EIg values assume P(C)=P(A)=P(D)=0.1

747



Information-gain (Oaksford & Chater, 1994) 
In many of their publications, O&C analyze a simple 
c d 
¬
our m
co spo p=C, q=E, and D 
does no e subset of those 
structures i  which a link exists from C E. 

With the richer hypothesis space of causal models, the 
inform n gain framework predicts some previous results 
on the ection task that are not predicted by O&C (see 
next section). O&C predict that the p and q c hould be 
chos ¬q 
cards should be chosen when p or q is common. This is 
pr at  1, Ig(p,q) is 
high  g g ¬q) are zero. 
Our a hese assumptions are ly v d 
if structures in  with links from C to ave sufficient 
priors. If these structures have very low priors, the ¬q card 
should be more informative than the q card because 
IKL(S|p,q)  IKL(S|¬p,q) will be low, hence EIg(S be 
low.  is 
hea e 
that dr
placed on any structure with no link from dropped pots to 
c will 
n
f
v

or & Sloman (1996) provide evidence that appears to 
co ad e, yet 
people choose th p and ¬q cards. Some exa ples of their 
condition  are a duct gets a prestigious prize then it 
must h a distinctive quality”, and “if a product breaks 
then it must have been used under abnormal conditions”. 
O&C (1996) cla these results can be acco d for using 
their utility-theoretic 
thes les 
that pe his is 
th s 
reve e 
statement a  causes (A) 
while taking for granted the link from C to E, thus assigning 
l  

l 
certain 

le will 
in

tility). If, 
however, the participant is being asked simply to determine 

omparison in which H asserts complete dependency an
H asserts a complete independency between p and q. In 

odel, this is identical to the assertion that T 
rre nds to all structures in which 

t exist, while S corresponds to th
n  to 

atio
 sel

ards s
en when both p and q are rare and that the p and 

edic ed on the assumptions that Ig(p,¬q) is
rare p and q, and I (¬p,q) and I (¬p,  for

nalysis suggests that t on ali
 T E h

 and ,q) will 
 For example, suppose one asserts that “if a clang

rd then a pot was dropped”. It is reasonable to assum
opped pots cause clangs, hence a low prior should be 

langs. Thus, finding a dropped pot that clanged (p,q) 
ot be very informative, despite p and q being rare, but 
inding a dropped fork that produced a clang (p,¬q) will be 
ery informative, hence p and ¬q should be chosen. 
Alm
ntr ict O&C (1994), in which p and q are rar

e 
“if 

m
als
 

pro
ave

im unte
analysis of deontic tasks. However, 

e statements would only be deontic if they were ru
ople have to follow, but it is not apparent that t

e case. According to our analysis, the conditional i
rsed (q causes p), leading subjects to interpret th

s asserting the absence of alternate

ow probability to structures without this link. For example,
since there are other possible causes of a product breaking, 
subjects choose the ¬q card (no abnormal usage) to see if p 
occurred (the product broke for some other reason), but 
there is no need to see if abnormal usage causes breakage. 

A further point of differentiation is that our causa
framework predicts the ¬p card should be chosen in 
cases (when IKL(¬p,q) and P(q|¬p) are both high). 

Social Contracts and Precautions (Cosmides, 1989) 
People have been found to provide high levels of logically 
correct responses to Wason selection tasks about social 
contracts (Cosmides, 1989; Fiddick, Cosmides, & Tooby, 
2000). A debate has emerged over whether this is evidence 
for a specialized social reasoning engine. Social contracts do 
indeed seem to be special, but do people reason about them 

differently than other tasks? In our framework, what makes 
them special is that they all have a consistent causal 
structure, in which people follow rules to ensure that C 
produces E reliably. For example, in the social contract “if 
you pay $10 then you get a watch”, the rules compel the 
seller to give the buyer a watch (E) once $10 is paid (C). 
When the link from C to E is assumed to exist, as is the case 
in most social contract tasks, one should assign a prior of 
zero to any hypothesis in T with this link missing. Since all 
the hypotheses with non-zero prior then contain links from 
C to E, our causal analysis predicts that only IKL(p,¬q) is 
high, and hence only the p and ¬q cards should be selected.  

Precaution tasks (Fiddick et. al, 2000) have essentially the 
same structure as social contracts: they assume that the 
precaution is in force (i.e., the link from C to E exists), and 
ask subjects to determine whether the rule is being followed 
by everyone. Our analysis suggests that if instead the rule 
itself is questioned (i.e., is the rule in force?), peop

terpret S as asserting that there is a link from C to E; since 
this link questioned, one should assign a non-zero prior to 
the structures in T in which this link is missing, making the 
q card useful (if p and q are rare) because IKL(p,q) is high. 

The results of Fiddick et. al (2000) show that this is 
exactly what people do. Fiddick et. al (2000) published 
precaution experiments that show people choose q more 
than ¬q in “standard” versions of precaution studies such as 
“if you go hunting then you wear [orange] jackets to avoid 
being shot”. In the “standard” version, subjects are 
instructed to see if it is true that the jackets are for hunting, 
whereas in the “precaution” version they are instructed to 
see if any people are endangering themselves. This result 
confirms that when testing whether a social contract or 
precaution is in force, people will test the assertion that a 
link exists from C to E, and hence will choose the p and q 
cards (provided p and q are rare). 

O&C (1994) propose a utility-theoretic account for how 
people make choices in social reasoning tasks. This is 
appropriate for tasks in which the participant is told that 
catching rule violators is important (i.e., has high u

whether or not the rule is being violated, the assignment of 
utility to this information is not warranted. We avoid the 
difficulty of assigning utilities to information by using 
expected information gain as the sole basis on which to 
select cards. A causal analysis predicts the selection of p and 
¬q responses for any task in which structures without C to E 
links are given low priors, which should be the case in all 
social reasoning tasks that assume the rule is in force and 
ask subjects to detect violators. 

Perspective Shifting 
Perspective shifts (interpreting “if p then q” as “if q then p”) 
have been explained as the result of adopting different 
perspectives on a rule – the enforcer vs. actor. We propose 
that perspective shifts occur when three conditions are met: 
(1) C is a known cause of E, (2) it is not obvious whether D 
exists, and (3) it is not obvious whether A exists. This sets 
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up the hypotheses in Figure 4. For example, “if you pay $10 
then you get a watch” can be shifted to “if you got a watch 

necessary for q if A does not exist, and p is sufficient for q if 
D doe

th

E exists, hence as before, p 
rmative cards (or q and ¬p when a 

angs). Because 
s causal asymmetry, some amount of causal reasoning 

m precede determination of necessity and sufficiency 
relationships. Furthermore, determining necessity or 
sufficiency can be done using just causal knowledge, as p is 

oncl io
Causal reasoning underlies many of our intuitive judgments 
in everyday life, and the results we present here demonstrate 
that causal structure plays an important role in a domain of 
reasoning previously thought to be governed by logic and 
probability. effects on
th

n be 

the 

e and diagnostic learning. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 
26, 53-76. 

en you paid $10” because our domain knowledge tells us 
that no disabling conditions exist (the buyer must get the 
watch once $10 are paid), and no alternate causes exist (the 
buyer cannot get the watch without paying). 
 

 
On this view, perspective shifting occurs not just on 

deontic tasks, but in any situation in which the above three 
conditions are met. For example, “if water boils then it is 
over 100°C” could easily be interpreted to imply that “if 
water is over 100°C then it will boil”. Perspective shifting 
can therefore occur, even in non-deontic situations, when 
the asserted structure does not contain D or A links. 

Necessity and Sufficiency (Ahn & Graham, 1999) 
Ahn & Graham (1999) show that most people choose the 
normative response if it is clear that the statement asserts 
either that p is a sufficient condition for q or that q is a 
necessary condition for p, or both. Asserting that p is a 
sufficient condition for q corresponds to asserting that D 
does not exist. For example, asserting that flipping the 
switch is sufficient for the lights turning on corresponds to 
asserting that nothing (D) can disable the switch. In 
contrast, asserting that q is a necessary condition for p 
corresponds to asserting that A does not exist in the causal 
model. For example, asserting that flipping the switch is 
necessary for lights turning on corresponds to asserting that 
nothing else (A) could turn on the lights. Both of these cases 
assume that the link from C to 
and ¬q are the most info
conditional with “must” is reversed to say “may”), which 
follows Ahn & Graham’s predictions. Ahn & Graham 
(1999) also discuss cases in which p is asserted to be both 
necessary and sufficient for q, in which cases subjects 
choose all 4 cards. This corresponds to asserting that neither 
A nor D exist, and IKL(S|¬p,q), IKL(S|p,¬q) are both high. 

An open question in Ahn & Graham’s (1999) theory is 
how people know whether p is necessary or sufficient for q 
in cases when it is not explicitly stated. A cause can be 
necessary or sufficient for an effect, but it does not make 
sense to say that an effect is necessary or sufficient for a 
cause (e.g., a clang could not be necessary or sufficient for a 
ot to drop, because dropped pots precede clp

o

s not exist. 

C us n 

 Our approach predicts a number of  
e selection task that do not follow naturally from previous 

approaches. If used appropriately, the selection task is an 
excellent tool for testing people’s abilities to gather 
evidence and become more informed about their world. 
Since knowing the causal structure of the world is of great 
value for making predictions in every life, it is perhaps not 
surprising that the cards people naturally select tend to be 
those that maximize the amount of knowledge that ca

f thi
ust 

obtained about causal structure from a single observation. 
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