
UC Davis
IDAV Publications

Title
Adaptive 4-8 Texture Hierarchies

Permalink
https://escholarship.org/uc/item/1w37483g

Authors
Hwa, Lok Ming
Duchaineau, Mark A.
Joy, Ken

Publication Date
2004

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1w37483g
https://escholarship.org
http://www.cdlib.org/

Adaptive 4-8 Texture Hierarchies

Lok M. Hwa∗ Mark A. Duchaineau† Kenneth I. Joy∗

(a) (b)

Figure 1: Two screen shots of an overflight of Fort Hunter Liggett, CA that illustrate the use of 4-8 texture hierarchies. Figure 1a shows the
seamless textured image produced by the system, while Figure 1b shows the outline of the texture tiles used in producing the image.

ABSTRACT

We address the texture level-of-detail problem for extremely large
surfaces such as terrain during realtime, view-dependent rendering.
A novel texture hierarchy is introduced based on 4-8 refinement of
raster tiles, in which the texture grids in effect rotate 45 degrees for
each level of refinement. This hierarchy provides twice as many
levels of detail as conventional quadtree-style refinement schemes
such as mipmaps, and thus provides per-pixel view-dependent fil-
tering that is twice as close to the ideal cutoff frequency for an
average pixel. Because of this more gradual change in low-pass
filtering, and due to the more precise emulation of the ideal cutoff
frequency, we find in practice that the transitions between texture
levels of detail are not perceptible. This allows rendering systems
to avoid the complexity and performance costs of per-pixel blend-
ing between texture levels of detail.

The 4-8 texturing scheme is integrated into a variant of the Real-
time Optimally Adapting Meshes (ROAM) algorithm for view-
dependent multiresolution mesh generation. Improvements to
ROAM included here are: the diamond data structure as a stream-
lined replacement for the triangle bintree elements, the use of low-
pass-filtered geometry patches in place of individual triangles, inte-
gration of 4-8 textures, and a simple out-of-core data access mech-
anism for texture and geometry tiles.

1 INTRODUCTION

Graphics hardware has become orders of magnitude faster and
cheaper in recent years, yet there remains a strong need to ren-

∗Center for Image Processing and Integrated Computing (CIPIC), De-
partment of Computer Science, University of California, Davis, CA,
{lmhwa,kijoy}@ucdavis.edu

†Center for Applied Scientific Computing (CASC) Lawrence Livermore
National Laboratory, Livermore, CA, duchaineau1@llnl.gov

der textured geometry from databases containing far more detail
than can be displayed in realtime. A classic motivating example
is terrain visualization, in which photo-imagery and elevation data
are available on planetary scales, resolving to ten meters or bet-
ter on average, with meter or sub-meter data available in some re-
gions (such as the one-meter database of Fort Hunter Liggett, CA,
shown in Figure 1). With new data collection instruments and data
handling capabilities, this wealth of information is likely to grow
rapidly. The NASA MOLA data, for example, covers Mars at a
resolution of 128 elevation bins per degree, totaling around one bil-
lion elevations [1]. Publicly available data from the USGS covers
the state of Washington at 10 meter horizontal and 10cm vertical
spacing, totaling 1.4 billion elevation values [17]. Dynamic adap-
tation of geometric meshes and texture tile hierarchies are required
to provide fast and accurate renderings of these large-scale terrain
databases.

Since hardware rendering rates have grown to exceed 100 million
triangles per second, this means that choosing triangle adaptations
for uniform screen size will result in roughly one-pixel triangles for
modest window sizes at 100 frames-per-second rendering rates. At
this point it is no longer desirable to make triangles non-uniform in
screen space due to variations in surface roughness, since this will
only lead to sub-pixel triangles and artifacts.1 This situation for
geometry is now in a similar regime to that of texture level-of-detail
adaptation, which seeks to make each texel project to roughly one
pixel in screen space. Overall then our goal is to low-pass filter the
geometry and textures so that triangles and texels project to about a
pixel.

While many geometric hierarchies have been devised for large-data
view-dependent adaptation, the above analysis suggests that uni-
form aspect-ratio triangles are more desirable for attaining better
control of geometric antialiasing. Also, better low-pass filtering
methods are known for regular grids. Texture hierarchies are more
constrained than geometry, since graphics hardware works most ef-

1Graphics hardware uses point sampling per pixel when rasterizing tri-
angles.

(a) (b) (c)

Figure 2: A 4-8 mesh illustrating different levels of mesh resolution.
Note that each vertex has a valence of either four or eight.

fectively with raster tiles of modest, power-of-two sizes. For effi-
ciency of texture loading and packing, we avoid consideration of
texture atlas schemes in which a power-of-two tile is filled with ir-
regular sub-regions that are used independently. This leads us to use
regular grids for efficiency and uniformity of treatment. In theory,
there are only two regular tilings of the plane that allow conformant
adaptive meshes to be formed without special fix-ups at level of
detail transitions: the 4-8 meshes and the 4-6-12 meshes [7]. We
chose the 4-8 meshes since these match the constraints of texture
hardware and have many known desirable properties [12, 6, 13],
see Figure 2.

While several data structures have been devised to support 4-8 re-
finement, we found that additional streamlining and unification was
possible. This paper introduces adiamonddata structure, in which
each diamond element simultaneously has unique associations with
a vertex (its center), an edge (its diagonal), and a quadrilateral face
of a 4-8 refinement mesh. A diamond represents the pairing of two
right isosceles triangles at the same level of detail in the 4-8 mesh
that share a base edge. Since basic operations on the 4-8 mesh must
treat these diamonds as a unit, it is logical and efficient to use the
diamond as the backbone data structure rather than bintree trian-
gles. Section 3 provides details on the diamond structure and use
for 4-8 incremental mesh adaptation.

Both geometry and textures are treated as small regular grids, called
tiles, defined for each diamond in the hierarchy. Tiles at a level of
resolution matching the input data are either copied or resampled.
Coarser tiles are computed using low-pass filtering in an out-of-
core traversal. Finer tiles can be obtained using 4-8 subdivision
[21, 23] with the optional addition of procedural detail. For efficient
input and output, files and disk blocks are laid out using a diamond
indexing scheme based on the Sierpinski space-filling curve. Tiles
are described in Section 4. Sierpinski indexing, and out-of-core
preprocessing are described in Section 6.

For geometric rendering,chunksof 256 or 1024 triangles are stored
as indexed vertex arrays in Sierpinski order for highly efficient ren-
dering on graphics hardware. Using uniform refinement, any power
of four increase in triangle count will result in conformant meshes
[16, 11]. We are able to achieve triangle throughput close to the
practical limits on recent PC video cards. Section 4 outlines how
chunks are laid out and updated.

The adaptive 4-8 textures, defined in detail in Section 5, fill each
diamond area with a regular-grid image raster, rendered using bi-
linear interpolation. Neighboring tiles share boundary samples on
their mutual edges, and the 4-8 mesh refinement naturally defines
a parent-child grid-structure relationship suitable for various filter-
ing operations. We allow each ROAM leaf triangle chunk to in-
dependently choose which texture level-of-detail to map to, based
on its estimated pixel area for the current view transform. A map-
ping from the triangle chunk’s parameterization to the texture di-
amond’s parameter space is computed as needed when this level-

of-detail selection changes. This change requires and update of
the vertex array texture coordinate data stored in special graphics
hardware memory (e.g. AGP memory), which is an expensive op-
eration that can require synchronization with previously launched
asynchronous rendering operations. Therefore these operations are
budgeted per frame based on similar dual-queue operations used by
the ROAM algorithm.

Overall this approach to forming tile hierarchies and accessing
them during frame-to-frame incremental updates results in a visu-
ally seamless, high quality display of arbitrarily large terrain and
imagery databases. Some implementation details and numerical re-
sults are presented in Section 8, but the ultimate proof is to see the
system in action on a huge data set. The visual appearance is in
our experience consistently very high. Indeed, we were pleasantly
surprised that no per-pixel blending of texture level-of-detail seems
to be needed; we believe this is due to the gradual factor-of-two
changes in information content between levels.

2 RELATED WORK

Many multiresolution geometry schemes exist for terrain render-
ing; a complete review of these systems is beyond the scope of this
paper. Two primary systems are utilized to store and simplify the
terrain geometry. Systems that use a regular grid approach are built
on a hierarchy of right triangles [14, 7], while triangulated irregu-
lar networks (TINs) [8, 18, 9] work to solve this problem by not
restricting triangulations to a regular grid. Both schemes have ad-
vantages and disadvantages. We utilize regular grids for efficiency
and uniformity of treatment and we review the related work in this
area.

Several researchers have based terrain rendering on regular grids.
Lindstrom et al. [12] present a method based upon an adaptive
4-8 mesh, using longest-edge bisection (LEB) as a fundamental op-
eration to refine the mesh. They use an elegant bottom-up vertex-
reduction method to reduce the size of the mesh for display pur-
poses. Duchaineauet al. [6] present a system for visualizing terrain
also based upon a LEB paradigm. Their system uses a dual-queue
management system that splits and merges cells in the hierarchy
according to the visual fidelity of the desired image. Lindstrom
and Pascucci [13] describe a framework for out-of-core rendering
and management of massive terrain surfaces. They present a view-
dependent refinement method along with a scheme for organizing
the terrain data to improve coherence and reduce the number of
paging events from external storage to main memory. Again, they
organize the mesh using a longest-edge bisection strategy, using
triangle stripping, view frustrum culling and smooth blending of
geometry. Pajarola [15] utilizes a restricted quadtree triangulation,
similar to an adaptive 4-8 mesh for terrain visualization.

Large texture processing has been attempted by several researchers.
One of the first methods of prefiltering texture levels of detail was
described by Williams’ [22]. His “mipmaps” were defined to be a
collection of images of increasingly reduced resolution, arranged
loosely as a pyramid. Starting with level zero, the largest and finest
level, each lower level represents the image using half the number
of texels in each dimension. For the two-dimensional case, this im-
plies that levelk contains one-quarter of the texels of levelk− 1.
Per-pixel rendering with a mipmap is accomplished by projecting
the pixels into mipmap space using texture coordinates and trans-
formations to define the projection. Each rendered pixel is derived
from one or more texel samples taken from one of more levels of
the mipmap hierarchy. The mipmap hierarchy is generated by pre-
filtering texture levels.

Tanneret al. [19] expanded upon the idea of mipmaps, introducing
clipmaps. This method also utilized levels of an in-core texture
pyramid with levels of resolution that differed by a factor of four,
but allowed for arbitrarily large textures. This algorithm utilized
the fact that the complete mipmap pyramid is rarely used during
the rendering of a single image and much of the pyramid could be
clipped away allowing much larger textures to be used.

Ulrich [20] presented a method of texture “chunking” to handle
large out-of-core meshes. This method utilizes a tree of static
preprocessed meshes. The tree and its component meshes, the
“chunks” are generated in a preprocessing step. Each chunk is a
static mesh that can be rendered with a single draw primitive. The
chunk at the root of the tree is a low-detail representation of the en-
tire object. The child chunks of the root node split the object into
several pieces, and each piece independently represents its portion
of the object with a higher level of detail than the parent. The tree
is organized as a quadtree of height field sub-squares. Upon render-
ing, the chunks are chosen to meet the desired visual fidelity.

Further research by D̈ollner et al. integrates clipmap-like behavior
with terrain rendering by using memory-mapped texture files [5].
Their method utilizes a multiresolution texture system that works
in conjunction with a multiresolution model for the terrain geom-
etry. They build tree of texture patches that is closely associated
with the hierarchical model of the terrain geometry. The render-
ing algorithm simultaneously traverses the multiresolution model
for terrain geometry and texture trees, selecting geometry patches
and texture patches according to a user-defined visual error thresh-
old. However, their method utilizes in-core quadtrees for texture
storage, resulting in a power-of-four texture hierarchy.

Cignoni et al. [2, 3, 4] have demonstrated the ability to display
both adaptive geometry and texture of large terrain data sets in real-
time. They utilize a quadtree texture hierarchy and a bintree of tri-
angle patches (TINs) for the geometry. The triangle patches are
constructed off-line with high-quality simplification and triangle
stripping algorithms. Hierarchical view frustrum culling and view-
dependent texture and geometry refinement are both performed
each frame. Textures are managed as rectangular tiles, resulting
in an quadtree representation of the textures. The rendering system
traverses the texture quadtree until acceptable error conditions are
met, and then selects corresponding patches in the geometry bintree
system. Once the texture has been chosen, the geometry is refined
until the geometry space error is within tolerance.

The difficulty with adaptively texturing a dynamic mesh is creating
the illusion of a static mesh with static textures, given limited com-
puting resources. Swapping between textures of various resolutions
for a neighboring triangles must be imperceptible and seams must
be invisible. The focus of our research is to address these issues in
the real-time rendering environment for out-of-core data sets. We
introduce additional texture levels of detail by using an adaptive 4-
8 mesh structure coupled with a diamond backbone data structure
and queues for processing both geometry and texture. Our method
can process massive textures in a multiresolution out-of-core fash-
ion for interactive rendering of textured terrain.

3 THE DIAMOND DATA STRUCTURE

A 4-8 refinement of the plane starts with a square grid, adds the
centroids of each square cell, and rotates the square grid 45 de-

grees and rescales by
√

1
2 to obtain another square grid at the next

finer level of resolution, as shown in Figure 3. The edges of the
previous level’s grid can be retained as distinguished diagonals. In
this setting, we define adiamondto be a square at a given level of

(a) (b) (c)

Figure 3: Diamonds at various levels of resolution in a 4-8 mesh. As
the resolution increases, the diamonds are rotated 45◦ and scaled by√

2
2 .

resolution, along with its center point and distinguished diagonal.
Each vertex, edge or cell of the 4-8 hierarchy maps to exactly one
diamond. Thus a diamond becomes the single element needed to
represent the elements of 4-8 adaptive meshes, and forms the back-
bone for applications involving geometry or texture tiles.

For incremental updates to an adaptive refinement, preprocessing
operations, and other general mesh operations, it is necessary to
support traversals of a diamond-based mesh. Each diamond has
two parent diamonds, several neighboring diamonds, and four chil-
dren. A diamond is represented by eight pointers: two pointers
to the diamond’s two parents, two pointers to ancestor diamonds,
and four pointers to child diamonds.2 By using a standard orienta-
tion in labeling these pointers, the various relationships needed for
the traversals become readily apparent, as shown in Figure 3. This
standard orientation involves listing the ancestors and children in
counter-clockwise order, and anchoring the diamond’s parameteri-
zation at the unique corner which formed byquad parent, a vertex
of valence four in the 4-8 mesh. We label the quadnodeq, the two
parent diamondsp1 and p2 and the fourth parenta. The children
are denotedc0,c1,c2,c3 in counterclockwise order.p1 is the right
parent,p2 is the left parent anda is an older ancestor in the re-
finement. The children are indexed so that childci is on the edge
between parent and ancestor. It is a straightforward pointer manip-
ulation problem to generate and link the children to the parents.

Each diamond is the child of two parents. Traversals to parents
and children are matters of following direct links. Edge-neighbors
of diamondd are siblings of either its left or right parent, either
clockwise or counterclockwise fromd. To move to a neighbor it
is therefore convenient to keep ind its child index with respect to
both its left and right parents.

Conformant (crack-free) triangulations are insured by the require-
ment that both parents of a diamond must be created before the
diamond can be created.

We utilize the dual split/merge queue paradigm of Duchaineauet
al. [6] to manage the diamond structure. When a diamond comes
into existence it introduces the shared base-edge of its two right
triangles. Ifd is a diamond on the split queue, the split operation
insures that the four children ofd are created.3 The split diamond
is then placed on the merge queue and the newly created children
on the split queue.

Split and merge priorities are computed using the projected maxi-
mum distortion for a given diamond, similar to the original ROAM

2After extensive performance profiling of several alternatives, includ-
ing a very memory-lean scheme using(i, j) index arithmetic, space-filling
curves, and self-optimized hash lookups, it turns out to be far faster to use a
purely pointer-based scheme to traverse to parents, neighbors and children.

3A diamond has two parents and either parent can create it in the split
operation. When splitting, it may not be necessary to create all four children
of a diamond, as some may have been created by a previous split.

d

q

c0

a

c3

c2 c1

p1p2

d

qc0

a

c3

c2

c1

p1

p2

(a) (b) (c)

Figure 4: The standard index scheme for a diamond (green) diamond is shown in (a). d is the diamond index and uniquely specifies each
diamond. The left and right parents are denoted p1 and p2, respectively. The quad parent is q and the ancestor parent is a. The indexing scheme
for one child diamond (yellow) is shown in (b), and the pointer correspondences between parent and child pointers can be easily seen. The
indexing scheme imposes a counterclockwise orientation of diamonds in the mesh. All four children (yellow) of the green diamond are shown in
(a).

Split

Merge

Figure 5: The split and merge operations. The split operation creates
the four children of a diamond, allowing the four triangles inside the
original diamond to be used in the geometry or texture. The merge
operation reverses the split.

method [6]. These priorities are then mapped to indices in bucket
queues for either splits or merges. The split queue is prioritized by
maximum error so that we choose to split areas of the mesh that
display the most visual error in the scene. Prioritizing the merge
queue by minimum error reduces detail in areas that display min-
imal screen distortion. In cases where the priority queues become
considerably large in size, priority computations can be deferred to
guarantee a time bound. A simple and effective approach is to limit
the number of priority updates per frame to a fixed size.

4 DATA T ILES AND TRIANGLE CHUNKS

Geometric adaptation for a given viewpoint must be performed as
fast as the rendering of geometry to be most useful. Older view-
dependent methods did CPU work per frame on every triangle to
be output. More recent work has focused on performing CPU work
on coarser-grained units, herein calledchunks, which for greatest
efficiency should be static for several frames, and should also be
carefully laid out in vertex arrays so as to make maximum use of
the vertex caches on the graphics card. In this work, we replace
each diamond triangle with a chunk of around 256 or 1024 trian-
gles, taken as though the diamond’s triangles were uniformly re-
fined. Any two additional levels of refinement will end up splitting
each chunk edge into twice as many segments, and thus will create
chunks that adapt seamlessly during selective refinement of the 4-8
mesh.

Since our goal is to provide nearly uniform pixel-sized triangles,

we do not need to evaluate detailed error metrics per triangle within
a chunk. Instead, for our purposes it is most helpful to create a
sphere bound with radiusr(d) and center (split) vertexv(d) that
just encloses all the triangles within the two chunks that make up
a diamondd. We then estimate the number of pixels per triangle
using a simple projection of this sphere into screen space. The for-
mula for a chunked diamond’s priority is:

p(d) =
(ffrust r(d))2

K
∥∥veye−v(d)

∥∥2
2

whereK is the number of triangles total in a diamond’s two chunks,
veye is the current camera position, andffrust is a factor related to
the current window size and angle of view that correctly scales an
epsilon-radius sphere into pixel radius at the center of the win-
dow. A priority valuep(d) = 1 represents an estimate that each
triangle projects to one pixel. Priorities larger than a preset value,
say p(d) >

√
2, a split operation is desirable, whereas forp(d) <√

1/2, a merge is preferable. If the total triangle budget is low for
a frame, then triangles greater than

√
2 pixel area will be used, and

the dual-queue split-merge processing will naturally organize even
projected areas.

For efficiency, chunks are created on the fly during split-merge op-
erations from a more compact raster of normal-displacement val-
ues, which we calltiles. In our implementations either tiles are
either 129 squared or 257 squared rasters. During preprocessing
the tiles are traversed recursively, where each diamond tile requests
that each of its four children create their low-pass tiles, and then
gathers these together and performs its own low-pass filtering. The
tile grids of the four children provide both vertex-center values cov-
ering the diamond’s raster, as well as cell-centered values, as shown
in Figure 7. The basic low-pass filtering kernel we use is to weight
the vertex value by 1/2, and the four neighboring cell values by
1/8, as shown in the Figure.

Low-pass filtering, rather than the simple subsampling used in
older view-dependent algorithms, is now both desirable and pos-
sible when using chunks. To maintain a crack-free mesh, only the
boundaries of chunks must agree. We low-pass filter the interior
of a diamond using the data from its children. The boundary and
corner vertices are subsampled. We observe that these boundaries

129 vertices

256 Triangles

17 vertices

17 vertices

a

b

c

Figure 6: Each of the two triangles of a diamond is associated with
256 triangles from a 129x129 grid of triangles. To select the correct
tile for a diamond d, we use the third quad parent of d, which is a
diamond whose tile contains the correct 129x129 grid.

1/8 1/8

1/8 1/8

1/2

1/7

1/7

1/7

0/7

4/7

Parent Texture

Child Texture

Filtering Weights

Figure 7: Low-pass filtering from fine (child) to course (parent) levels
of resolution.

become interiors at the next coarser level of resolution, and thus
have the opportunity for higher-quality filtering at that point. Ul-
timately only the vertices that persist all the way to the base mesh
never get low-pass filtered.

Vertex and index arrays for a chunk are laid out in Sierpinski order,
which in our tests provides excellent performance on current PC
graphics cards.

5 ADAPTIVE 4-8 TEXTURES

Most multi-resolution texture algorithms use a prefiltered quad-tree
of textures. Textures are resampled such that each lower level of
detail is one-fourth the area of the previous level creating a mipmap
pyramid. Selecting levels of resolution that differ by factors of four
produces visual discontinuities in a mesh composed of different
texture detail levels, when applied on a per-polygon or per-triangle-
chunk basis. Our method creates twice as many detail levels, allow-
ing a smoother transition between levels, while effectively using the
diamond hierarchy for level traversal.

The initial data set texture is diced into 128 x 128 tiles, which rep-
resent the texture at the finest level. A parent diamonds texture is
taken from a weighted average of its four child textures. The filter-
ing approach from level-to-level preserves the energy of the original
signal in the texture and filters out more high-frequency detail with
each pass. Geometry filtering is performed similarly with the edge
values of the parent diamonds being copied over from the child
level to maintain continuity when triangles neighbor each other at
one level apart.

Each triangle is evaluated to determine the “appropriate” texture
resolution that should be applied. The highest resolution texture
is six triangle levels below the geometry level. This relationship
is maintained by a diamond always displaying the geometry from
three quad parent diamonds up in the hierarchy. After a level of
detail is chosen, a lower resolution texture is found by traversing up
the diamond hierarchy from child to parent. Level of detail calcu-
lations are based on the texel-to-pixel ratio per triangle. Using the
bounding sphere radius previously calculated for frustum culling,
we compute an upper bound on the possible screen area covered
by the diamond data. The maximum screen space coverage occurs
when looking at a diamond “head-on.” If the desired texture is not
cached in texture memory, a request is made by adding the cor-
responding diamond to a texture-wait bucket queue with priorities
defined as the number of jumps up the hierarchy. Priority is given
to requests with fewer jumps since this is associated with a higher
level of detail and a closer distance to the eye point. The next avail-
able texture in the diamond child-parent hierarchy is then applied
to the triangle. Because updates to texture memory are expensive,
the wait queue allows a fixed number of textures to be uploaded per
frame, also avoiding irregular load times.

6 OUT-OF-CORE PROCESSING

For efficient input and output, files and disk blocks are laid out
using a diamond indexing scheme based on the Sierpinski space-
filling curve.

The Sierpinski curve arises from a simple indexing scheme for 4-8
meshes. Each triangle of the root diamond can be split into two
triangles. The 4-8 scheme effectively splits each of these triangles
into a triangle bintree. The nodes of triangle bintrees can be ordered
by assigning the value 1 to the root node, and the values 2k and
2k+1 to the children of nodek, see [10]. These values are called the

4

5

6 7
11

12

13 14

15

8

9

10

11

12

13 14

15

8

9

10

1

2

3

Figure 8: Sierpinski Indices: Note the index ordering implies the Sierpinski curve.

Sierpinski indices of a node, as the enumeration of the nodes of the
bintree traces out the Sierpinski curve, see Figure 6. The Sierpinski
indices can be used to establish coherent layouts of tiles on disk that
maximize the efficiency of costly directory-access, file-open and
block-read operations. By assigning diamonds a Sierpinski index,
we can utilize this method to store tiles and retrieve tiles quickly.

Working with data sets too large to fit in-core requires efficient man-
agement of smaller subsets of the data to maintain application inter-
activity. An indexing scheme is needed such that each subset index
is unique. Mapping the diamonds to Sierpinksi triangles guarantees
this property for each diamond and also guaranteed spatial local-
ity on disk. If the data is stored on disk in tiles according to their
Sierpinksi index, most diamonds in a tile are spatially closer. A
diamonds index is stored in 64-bits, where the upper bits represent
the Sierpinksi index followed by a 1 and string of zeros to the end.
See Appendix I for a full description of the mapping of Sierpinski
indices to file names.

When a tile is requested, it is returned immediately if it is in cache.
If it is in a compressed read/write block in memory, the tile is de-
compressed and placed in the tile cache. If the block is missing
from cache, it is read into the block cache from disk, and the tile is
extracted. If this process fails to find a tile, the tile is manufactured
using 4-8 subdivision and optional procedural displacements. Since
height and texture tiles are simple 2D rasters, any number of known
compression schemes can be applied.

For this system we use a Least Recently Used replacement strategy
for tile and block cache replacement decisions. Cache sizes should
be determined by balancing various application and system memory
needs, since of course there is incremental gain for any increase in
a particular cache so long as another cache is not decreased. For
our system, we found a total cache size of a hundred megabytes,
divided evenly between compressed-tile blocks and uncompressed
tiles, provides excellent performance.

7 RENDERING

The mesh triangulation is rendered after processing elements from
the geometry and texture queues, respectively, taking into account
approximation errors for both geometry and texture. For every
frame, a fixed number of splits and merges are accomplished and
a small number of textures are changed. Most of the geometry and
textures remain fixed and are rendered from their cached versions.

1
2

3

4 5

6

7

Figure 9: Sierpinski nodes associated with diamonds. The diagonal
of a diamond can be associated with one edge of each isosceles
right triangle in the bintree. With these associations, we can store
diamond hierarchies using Sierpinski indices.

8 RESULTS

Our performance results were measured from a 3Ghz Xeon proces-
sor with 1GB of RAM and a GeForce FX 5900 Ultra. We ran the
demo at a resolution of 640 x 480 utilizing the NVidia vertex ar-
ray range specification combined with chunked triangle patches to
exploit the graphics card capabilities. These results are based on
a flight path through 10-meter DEM data of Washington state with
geometry and texture dimensions of approximately 111K x 137K.
Textures were procedurally generated and colored from the original
geometry and stored in RGB-565 format. To avoid the overhead of
texture object memory allocation, we initialize a pool of texture
memory at start-up and use TexSubImage calls to swap in new tex-
tures.

The out-of-core processing step for this particular data set took ap-
proximately 53 minutes including the calculation of the shaded tex-
ture map from the geometry. Without the shading step, preprocess-
ing texture and geometry data into tiles took 33 minutes.

In the rendering application, approximately 53% of the time for
a given frame is spent rendering the high detail mesh. During this
time, triangle chunks that need to be updated either due to geometry

0 1000 2000 3000 4000 5000
Frame Number

0 K

100 K

200 K

300 K

400 K

500 K
T

ri
an

gl
e

C
ou

nt

Figure 10: A plot of triangles-per-second (in millions) measured for
each frame in the Washington state flyover.

0 1000 2000 3000 4000 5000
Frame Number

0

20

40

60

80

100

120

Fr
am

es
 P

er
 S

ec
on

d

Figure 11: A plot of the frames-per-second during a portion of the
Washington state flyover. Note the consistent frame rate even though
the terrain changes dramatically.

updates or texture coordinate updates are transferred to AGP mem-
ory to be pulled by the GPU. Around 36% is spent traversing the
hierarchy to evaluate when geometry chunks or uv texture coordi-
nate updates are necessary. The time taken by the split/merge loop
is a user defined parameter, but in this benchmark less than two per-
cent time was spent. Less than one percent each was actually spent
on fetching geometry and texture from disk, priority updates, UV
calculations, triangle chunk building, frustrum culling, and new tex-
ture loading. In our implementation, priority queues also allowed
a user defined number of fixed textures to be sent to graphics card
texture memory. Our results show that the main bottleneck lies in
the graphics card bandwith and the loop for determining appropri-
ate triangle chunk updates to geometry and texture. Although our
algorithm performance is not comparatively best in terms of speed,
it offers superior image quality over quad-tree based systems due to
our 4-8 scheme while still maintaining interactivity at high frame
rates.

V IDEO DESCRIPTION

The best way to evaluate this algorithm is to view the video. This
video shows a short flight path from the northwest of Washington
towards Mount Rainier. Benchmark statistics are overlayed at the
top of the screen. We fade into three other modes to illustrate the
work being done per frame. The wireframe mode depicts the tri-
angle chunks being drawn and the granularity of the triangles in

0 1000 2000 3000 4000 5000
Frame Number

0

10

20

30

40

50

M
ill

io
ns

 o
f T

ri
an

gl
es

 P
er

 S
ec

on
d

Figure 12: A plot of the number of textured triangles per second dis-
played for each frame in the Washington state flyover.

Figure 13: Wireframe mesh detail

Figure 14: This is the same view as Figure 13 but shaded to show
the texture level of detail independent of the geometry triangulation.

Figure 15: The Washington state flyover. Mount Rainier in the fore-
ground and Mount Adams behind.

Figure 16: A view facing Victoria, Washington.

Figure 17: The San Juan Islands.

Figure 18: USGS Washington state terrain data set rendered using
4-8 texture hierarchies. Various texture levels of resolution are dis-
played on the mesh in a seamless tiling.

the the scene. A quick view of the underlying triangulation in wire-
frame is shown which fades into a shaded version of the mesh based
on level of detail in the hierarchy, where the lighter shades have a
lower resolution. No per-pixel blending of texture level-of-detail
seems to be visible; we believe this is due to the gradual factor-of-
two changes in information content between levels.

9 CONCLUSIONS AND FUTURE WORK

We have presented a solution to the texture level-of-detail prob-
lem for real-time view-dependent rendering of extremely large ter-
rain meshes. We introduce a new texture hierarchy based upon a
4-8 mesh, which, when coupled with a similar adaptive geometry
scheme, provides a mechanism for real-time display of the terrain.
The 4-8 hierarchy provides twice as many levels of detail as con-
ventional quadtree-style refinement schemes such as mipmaps. Be-
cause of this more gradual change, we find in practice that the tran-
sitions between texture levels of detail are less perceptible. The 4-8
scheme is integrated into a variant of the ROAM algorithm, and to-
gether with a simple out-of-core data access mechanism based upon
Sierpinski curves allows out-of-core access for the display of very
large textured meshes.

10 ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Depart-
ment of Energy by University of California Lawrence Livermore
National Laboratory under contract No. W-7405-Eng-48. This
work was supported by the National Science Foundation under
contracts ACR 9982251 and ACR 0222909, through the National
Partnership for Advanced Computing Infrastructure (NPACI), the
Lawrence Livermore National Laboratory under contract B523818,
and by Lawrence Berkeley National Laboratory.

REFERENCES

[1] National Aeronautical and Space Administration. Mola data set,
http://pds-geosciences.wustl.edu/missions/mgs/megdr.html, 2004.

[2] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and
R. Scopigno. BDAM: Batched dynamic adaptive meshes for high per-
formance terrain visualization. In P. Brunet and D. Fellner, editors,
Proceedings of the 24th Annual Conference of the European Asso-
ciation for Computer Graphics (EG-03), volume 22, 3 ofComputer
Graphics forum, pages 505–514, Oxford, UK, September 1–6 2003.
IEEE Computer Society, Blackwell Publishing Ltd.

[3] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio Marton, Fed-
erico Ponchio, and Roberto Scopigno. Interactive out-of-core visual-
ization of very large landscapes on commodity graphics platforms.
In ICVS 2003, Lecture Notes in Computer Science, pages 21–29.
Springer-Verlag Inc., New York, NY, USA, November 2003.

[4] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio Marton, Fed-
erico Ponchio, and Roberto Scopigno. Planet–sized batched dynamic
adaptive meshes (P-BDAM). InProceedings IEEE Visualization,
pages 147–155, Conference held in Seattle, WA, USA, October 2003.
IEEE Computer Society, IEEE Computer Society Press.

[5] Jürgen D̈ollner, Konstantin Baumann, and Klaus Hinrichs. Textur-
ing techniques for terrain visualization. In T. Ertl, B. Hamann, and
A. Varshney, editors,Proceedings Visualization 2000, pages 227–234.
IEEE Computer Society Technical Committee on Computer Graphics,
2000.

[6] Mark A. Duchaineau, Murray Wolinshy, David E. Sigeti, Mark C.
Miller, Charles Aldrich, and Mark B. Mineev-Weinstein. ROAMing
terrain: Real-time optimally adapting meshes. In Roni Yagel and Hans
Hagen, editors,Proceedings of the 8th Annual IEEE Conference on
Visualization (VISU-97), pages 81–88, Los Alamitos, October 19–24
1997. IEEE Computer Society, IEEE Computer Society Press.

[7] William Evans, David Kirkpatrick, and Gregg Townsend. Right trian-
gular irregular networks. Technical Report TR97-09, The Department
of Computer Science, University of Arizona, May 30 1997. Wed, 08
Jan 97 00:00:00 GMT.

[8] R. J. Fowler and J. J. Little. Automatic extraction of irregular network
digital terrain models.Computer Graphics (SIGGRAPH ’79 Proceed-
ings), 13(3):199–207, August 1979.

[9] Hugues Hoppe. Smooth view-dependent level-of-detail control and its
application to terrain rendering. InProceedings of IEEE Visualization
’98. Institute of Electrical and Electronics Engineers, Inc., January
1998. Hoppe, H., ”Smooth View-Dependent Level-of-Detail Control
and its Application to Terrain Rendering,”Proceedings of Visualiza-
tion ’98 IEEE, Piscataway, NJ, 1998, pp. 35-42.

[10] D. E. Knuth.The Art of Computer Programming, Sorting and Search-
ing. Addison-Wesley, Reading, MA, USA, 2 edition, 1975.

[11] Joshua Levenberg. Fast view-dependent level-of-detail rendering us-
ing cached geometry. In Robert Moorhead, Markus Gross, and Ken-
neth I. Joy, editors,Proceedings of the 13th IEEE Visualization 2002
Conference (VIS-02), pages 259–266, Piscataway, NJ, October 27–
November 1 2002. IEEE Computer Society.

[12] Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hughes,
Nick Faust, and Gregory Turner. Real-Time, continuous level of detail
rendering of height fields. In Holly Rushmeier, editor,SIGGRAPH
96 Conference Proceedings, Annual Conference Series, pages 109–
118. ACM SIGGRAPH, Addison Wesley, August 1996. held in New
Orleans, Louisiana, 04-09 August 1996.

[13] Peter Lindstrom and Valerio Pascucci. Visualization of large terrains
made easy. In Thomas Ertl, Ken Joy, and Amitabh Varshney, editors,
Proceedings Visualization 2001, pages 363–370. IEEE Computer So-
ciety Technical Committee on Visualization and Graphics Executive
Committee, 2001.

[14] Anthony Mirante and Nicholas Weingarten. The radial sweep algo-
rithm for constructing triangulated irregular networks.IEEE Com-
puter Graphics and Applications, 2(3):11–13, 15–21, May 1982.

[15] Renato Pajarola. Large scale terrain visualization using the re-
stricted quadtree triangulation. InProceedings Visualization 98,
pages 19–26,515, Los Alamitos, California, 1998. IEEE, Com-
puter Society Press. extended version available as technical report
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/2xx/292.ps.

[16] Alex Pomeranz. ROAM using surface triangle clusters (RUSTiC).
M.S. thesis, Department of Computer Science, University of Califor-
nia, Davis, June 2000.

[17] United States Geological Service. State of washington data set,
http://rocky.ess.washington.edu/data/raster/tenmeter/onebytwo10/index.html,
2004.

[18] Cláudio T. Silva, Joseph S. B. Mitchell, and Arie E. Kaufman. Auto-
matic generation of triangular irregular networks using greedy cuts. In
Proceedings of IEEE Visualization, pages 201–208. IEEE Computer
Society, IEEE Computer Society Press, 1995.

[19] Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones.
The clipmap: A virtual mipmap. In Michael Cohen, editor,SIG-
GRAPH 98 Conference Proceedings, Annual Conference Series,
pages 151–158. ACM SIGGRAPH, Addison Wesley, July 1998. ISBN
0-89791-999-8.

[20] Thatcher Ulrich. Rendering massive terrains using chunked level of
detail control, siggraph course notes, 2002.

[21] Luiz Velho. Using semi-regular 4-8 meshes for subdivision surfaces.
Journal of Graphics Tools: JGT, 5(3):35–47, 2000.

[22] L. Williams. Pyramidal parametrics.Computer Graphics (SIG-
GRAPH ’83 Proceedings), 17(3):1–11, July 1983.

[23] Denis Zorin and Luiz Velho. 4–8 subdivision.Computer Aided Geo-
metric Design, 18(5):397–427, 2001.

APPENDIX I

To map a Sierpinski Index to input and output of files, blocks and
tiles, we consider a Sierpinski index to be left-shifted so that the
leading “1” bit is just removed in a 64-bit register, and place that
bit just to the right of the least significant bit of the index in order
to mark the end of the relevant bits:

• i← (i� 1)|1

• MSB = 1� 63

• while ((i&MSB) = 0) i← i� 1

• i← i� 1

The bits are now of the following form:

• b63b62b61...bN100...0

whereN is the least significant bit of the Sierpinski index after the
left-shift procedure.

This bit string can now be treating like a generalized directory path
name, at first literally describing directory branches, then a file
name, followed by the block index and tile number within the block.
We explain using the caseN = 37:

• b63b62b61b60 } directory branch 1

• b59b58b57b56 } directory branch 2

• b55b54b53b52 } directory branch 3

• b51b50b49b48 } file name

• b47b46b45b44b43b42b41b40 } block number within file

• b39b38b3710} tile number within block

The “1” mark bit is allowed to be in any of the five tile bit positions.
A special root file is made in the top-level directory to catch all the
blocks and tiles that have insufficient bits to define a full 16-bit
file index. This leads to directories with up to 16 subdirectories
and 16 files each, where each file contains up to 256 read/write
blocks, each of which contains up to 32 tiles from 5 different levels
of detail. Branching factors, block sizes and so on can be tuned for
performance, but we found the arrangement given here to be very
effective on the systems we tested.

