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Due to the advancements of modern technologies, large-scale and high-dimensional

data have been widely collected in almost every scientific disciplines. This introduces a several

challenges including that the data are often accompanied by outliers due to possible measurement

error, or many variables follow heavy-tailed distributions. To address these challenges, my thesis

proposes methodologies in the setting of the mean estimation and matrix recovery when the data

have asymmetric and heavy-tailed distributions. Additionally, I explore the characterization of

tail behavior in random outcomes, focusing on expected shortfall, which is widely recognized as

a measure of risk. I propose nonparametric approaches for estimating expected shortfall, aiming
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to enhance its accuracy and applicability.

In Chapter 1, we propose a robust estimator to recover approximately low-rank matrices

in the presence of heavy-tailed and asymmetric noises. Focusing on three archetypal applications

including matrix compressed sensing, matrix completion and multitask learning, we provide

sub-Gaussian-type deviation bounds when the noise variables only have bounded variances.

Computationally, we propose a matrix version of the local adaptive majorize-minimization

algorithm, which is much faster than the alternating direction method of multiplier used in

previous work and is scalable to large datasets.

Chapter 2 studies the problem of robust and differentially private mean estimation and

inference. We first provide a comprehensive analysis of the Huber mean estimator with increasing

dimensions, including non-asymptotic deviation bound, Bahadur representation, and (uniform)

Gaussian approximations. Then, we privatize the Huber mean estimator via noisy gradient

descent, and construct private confidence intervals for the proposed estimator by incorporating a

private and robust covariance estimator.

In Chapter 3, we consider the problem of nonparametric estimation of conditional

expected shortfall functions. To mitigate the curse of dimensionality, we propose a two-step

nonparametric ES estimator based on fully connected neural nets with the ReLU activation

function. This approach (i) involves unobservable surrogate response variables that must be

estimated from data in a preliminary step, and (ii) uses a properly chosen Huber loss to achieve

exponential deviation bounds under heavy-tailed response distributions. Using a plugged-in

nonparametric conditional quantile estimate, also trained on deep neural nets, we establish

non-asymptotic high probability bounds for the final robust ES estimator, which are optimal as

if the true quantile function were known without resorting to any type of sample splitting. We

demonstrate the effectiveness of deep robust ES regression with both numerical experiments

and an empirical study on the impact of El Niño on heavy precipitations, for which effective tail

learning is imperative.

In Chapter 4, I introduce a two-step nonparametric ES estimator that involves a plugged-
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in quantile function estimate without sample-splitting. We provide non-asymptotic estimation

and Gaussian approximation error bounds, depending explicitly on the effective dimension,

sample size, regularization parameters, and quantile estimation error. To construct pointwise

confidence bands, we propose a fast multiplier bootstrap procedure and establish its validity.

We demonstrate the finite-sample performance of the proposed methods through numerical

experiments and an empirical study aimed at examining the heterogeneous effects of features on

average and large medical expenses.
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Chapter 1

Low-rank Matrix Recovery under Heavy-
tailed Errors

1.1 Introduction

There has been a recent surge of interest in matrix recovery which aims to recover an

unknown matrix from noisy observations. Matrix recovery has wide applications in practice,

including collaborative filtering (Goldberg et al., 1992), multitask regression (Argyriou, Evgeniou

and Pontil, 2008), quantum state tomography (Gross et al., 2010) and face recognition (Luan et

al., 2014), to name a few. Statistically, it aims to estimate ΘΘΘ
∗ ∈ Rd1×d2 based on n independently

and identically distributed (i.i.d.) observations {(yi,XXX i)}n
i=1 following the generative model

yi = tr(XXXT
i ΘΘΘ
∗)+ εi =: ⟨XXX i,ΘΘΘ

∗⟩+ εi,

where XXX i ∈ Rd1×d2 is a random measurement matrix, and εi is an error variable satisfying

E(εi|XXX i) = 0 and E(ε2
i |XXX i)≤ σ2

0 for some σ0 > 0. We consider matrix recovery in high dimen-

sions, that is, d1×d2 can be much larger than the sample size n, making the problem ill-posed.

It has been a common practice to assume that ΘΘΘ
∗ is (approximately) low-rank, and the resulting

problem is referred to as low-rank matrix recovery.

The problem of low-rank matrix recovery can be naturally formulated as a nonconvex

empirical risk minimization problem subject to a rank constraint. To find local optima of such a
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rank-constrained program, commonly used methods are Riemannian gradient descent (Wei et al.,

2016) and Burer-Monteiro type gradient descent (Burer and Monteiro, 2003; Chen, Liu and Li,

2020; Ma et al., 2020; Tong, Ma and Chi, 2021). The former views the set of rank-r matrices as a

smooth manifold, while the latter relies on the matrix factorization ΘΘΘ =UUUVVV T, where UUU ∈ Rd1×r,

VVV ∈ Rd2×r, and r = rank(ΘΘΘ∗) is assumed to be known. To relax the restrictive assumption that

the true rank r is known a priori, Li, Ma and Zhang (2018) and Zhang, Fattahi and Zhang (2021)

studied the gradient method for solving the reparameterized program in an over-parameterized

regime where ΘΘΘ =UUUVVV T with UUU ∈ Rd1×r′ and VVV ∈ Rd2×r′ , and r′ ≥ r is an upper bound of the

true rank.

Another line of research resorts to convex relaxation in order to obtain computationally

feasible solutions. Similar to Lasso (Tibshirani, 1996) in the context of sparse linear regression,

convex low-rank matrix recovery methods are based on either constrained nuclear norm min-

imization or nuclear norm penalized least squares formulation. The nuclear norm of a matrix

is defined as the sum of its singular values, and thus serves as a convex surrogate for its rank.

We refer to Candès and Plan (2009), Candès and Recht (2009), Recht, Fazel and Parrilo (2010),

Candès and Plan (2011), Rohde and Tsybakov (2011), Negahban and Wainwright (2011, 2012)

and Klopp (2014) for an unavoidably incomplete list of notable works on exact and noisy low-

rank matrix recovery through convex relaxation. In the context of multitask learning, Lounici

et al. (2011) introduced an approach that utilizes the group Lasso penalty when only a small

number of rows in the matrix ΘΘΘ
∗ are nonzero.

All the aforementioned methods, convex or nonconvex, are studied either in the noiseless

setting or under a sub-Gaussian/sub-exponential assumption on the random error. However,

both convex and nonconvex least squares estimators exhibit sub-optimal deviation bounds in

the presence of heavy-tailed errors that only have a small number of finite moments. To make

the estimator less sensitive to heavy-tailedness, a natural idea is to replace the ℓ2-loss with a

robust loss function, such as the ℓ1-loss or the Huber loss (Huber, 1973). For example, Elsener

and van de Geer (2018) proposed and studied nuclear norm penalized estimators using both
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the ℓ1-loss and the Huber loss; Tan, Sun and Witten (2023) considered robust sparse reduced

rank regression by minimizing the empirical Huber loss plus a combination of the nuclear norm

and entry-wise ℓ1-norm penalties. For methods that rely on nonconvex optimization with robust

losses, Shen et al. (2022) proposed a Riemannian sub-gradient method and proved the statistical

properties of the iterates; Wang and Fan (2022) studied the statistical properties of vanilla

gradient descent iterates for solving reparameterized (regularized) Huber loss minimization. In

an over-parameterized regime, Ma and Fattahi (2023) showed that sub-gradient descent with the

ℓ1-loss function converges to the ground truth at a near-linear rate in the presence of arbitrarily

large outliers.

In this paper, we propose a robust approach to recover an approximately low-rank matrix

in a trace regression model with heavy-tailed and asymmetric error, which complements the

extant literature on low-rank matrix recovery via convex relaxation. Borrowing ideas from

robust (sparse) linear regressions (Fan, Li and Wang, 2017; Sun, Zhou and Fan, 2020), we adopt

the Huber loss function with a diverging robustification parameter to achieve sub-Gaussian-

type concentration bounds. We focus on three archetypal examples in matrix recovery: matrix

compressed sensing, matrix completion and multitask regression. For each problem, we study

the nonasymptotic deviation bounds of the nuclear norm penalized Huber estimator under

both the Frobenius and nuclear norms, which match the minimax optimal rates. Our main

contributions are as follows. First and foremost, we provide a comprehensive analysis of the

nuclear norm penalized Huber regression estimator to gain robustness without compromising

statistical efficiency. Our results either improve or complement those in Elsener and van de Geer

(2018), Fan, Wang and Zhu (2021) and Tan, Sun and Witten (2023). For example, Elsener and

van de Geer (2018) considered robust matrix completion under symmetric error distribution

and also required a constant lower bound for the error density function. Tan, Sun and Witten

(2023) examined the Huber-type estimator for sparse multitask regression but their analysis

cannot be directly extended to the non-sparse setting. Secondly, we provide a unified algorithmic

framework, which is a matrix variant of the local adaptive majorize-minimization (LAMM)
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algorithm (Fan et al., 2018), to solve the three problems (matrix sensing, matrix completion and

multitask regression) all at once. By constructing an isotropic quadratic function that locally

majorizes the empirical Huber loss, the solution to each proximal optimization problem has

a closed form, which considerably facilitates the implementation. Compared to many other

algorithms used in the literature, our algorithm is first-order and thus more scalable to large data

sets.

1.1.1 Related work and paper organization

Our model setting is closely related to that in Fan, Wang and Zhu (2021), but the proposed

robust estimators provably achieve sharper convergence rates than those obtained in Fan, Wang

and Zhu (2021). More specifically, Fan, Wang and Zhu (2021) proposed a two-step procedure,

which in step one applies shrinkage operators to the empirical average (1/n)∑
n
i=1 yiXXX i. The

truncation level on yi’s, which appears in the final convergence rate, depends on the variance of yi

and thus is not proportional to the noise scale. In contrast, by employing the adaptive Huber loss

as in Sun, Zhou and Fan (2020) and the localized analysis developed by Fan et al. (2018), we

show that the convergence rates of our estimators are proportional to the noise scale for matrix

sensing and multitask regression; see Theorem 1.3.2, Theorem 1.3.4 and the subsequent remarks

for details. Moreover, Fan, Wang and Zhu (2021) required εi to have bounded (2k)-th moment

for some k > 1, while our estimators enjoy optimal rates as long as εi’s have bounded variances.

On the computational aspect, compared to the contractive Peaceman-Rachford splitting method

and the alternating direction method of multiplier (ADMM) employed by Fan, Wang and Zhu

(2021) to solve the nuclear norm penalized programs in step two, the proposed matrix variant

of the LAMM algorithm is first-order and has a lower computational cost per iteration. See

Section 1.2.2 for a more detailed comparison of computational complexity.

Although the proposed estimators satisfy exponential deviation bounds when the noise

distribution is asymmetric and has finite variance, this advantage is accompanied by a trade-off:

they sacrifice a considerable level of robustness when facing adversarial contamination of the data.
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This is due to the use of a robustification parameter that increases with the sample size. In the

case of adversarial contamination, recent studies have introduced robust estimators that showcase

resistance to a small proportion of arbitrary outliers. For example, in sparse linear regression with

Gaussian errors and adversarially corrupted labels, Dalalyan and Thompson (2019) demonstrated

that the ℓ1-penalized Huber’s M-estimator attains the optimal rate of convergence, up to a

logarithmic factor. Moreover, several recent studies (Chen et al., 2013; Li, 2013; Klopp, Lounici

and Tsybakov, 2017; Thompson, 2020) have specifically tackled the challenge of arbitrary

outliers in the context of matrix sensing and matrix completion. For multitask regression, a

robust multitask (reduced-rank) regression approach was introduced by She and Chen (2017)

for simultaneous modeling and outlier detection. To address data contamination caused by

arbitrary outliers, they formulated the problem as a regularized multivariate regression with a

sparse mean-shift parametrization and developed a thresholding-based iterative procedure for

optimization. It is worth noting that our methods and theory diverge from the conventional

notion of robust statistics. While the aforementioned works assume sub-Gaussian or Gaussian

noises, our work places emphasis on the distinct assumption of heavy-tailed errors rather than

corruption by (arbitrary) outliers. The proposed methods and analysis therefore provide a useful

complement to the current body of research on robust matrix completion and reduced-rank

regression.

The rest of the paper proceeds as follows. In Section 1.2, we first review the trace

regression model with three prototypical applications. Next, we introduce the nuclear norm

penalized robust matrix estimator via the use of adaptive Huber loss, followed by a unified

algorithm that applies to all three settings. We provide non-asymptotic high probability bounds

for the proposed estimators case-by-case in Section 1.3. Section 1.4 presents our numerical

experiments, conducted to demonstrate the advantage of our methods over their non-robust

counterparts and to corroborate the theoretical findings that the convergence rates are proportional

to the noise scale under the matrix sensing and multitask regression settings. All the proofs are

relegated to the Appendix in the Supplementary Material Yu, Sun and Zhou (2023).
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NOTATION. For a matrix AAA = (A jk)1≤ j≤d1,1≤k≤d2 ∈ Rd1×d2 , its singular values are denoted as

σ1(AAA) ≥ σ2(AAA) ≥ ·· · ≥ σmin(d1,d2)(AAA). Define its operator norm ∥AAA∥2 = σ1(AAA), its Frobenius

norm ∥AAA∥F = ∑
min(d1,d2)
j=1 σ2

j (AAA), its nuclear norm ∥AAA∥∗ = ∑
min(d1,d2)
j=1 σ j(AAA) and its max norm

∥AAA∥∞ = max1≤ j≤d1 max1≤k≤d2 |A jk|. For two matrices AAA,BBB ∈ Rd1×d2 , let ⟨AAA,BBB⟩ be the matrix

inner product defined as ⟨AAA,BBB⟩ = tr(AAATBBB). We use vec(AAA) ∈ Rd1d2 to denote the long vector

obtained by stacking the columns of AAA.

1.2 Robust matrix recovery via adaptive Huber loss

1.2.1 Model and methods

Suppose we have collected n i.i.d. data points {(yi,XXX i)}n
i=1 generated according to the

following heteroscedastic trace regression model

yi = ⟨XXX i,ΘΘΘ
∗⟩+ εi, (1.1)

where XXX i ∈ Rd1×d2’s are random measurement matrices, and εi’s are additive random noise vari-

ables satisfying E(εi|XXX i) = 0 and E(ε2
i |XXX i)≤ σ2

0 . Based on the noisy observations {(yi,XXX i)}n
i=1,

we are interested in recovering the unknown matrix ΘΘΘ
∗ ∈ Rd1×d2 that is either exactly or approx-

imately low-rank. More specifically, assume for some 0≤ q≤ 1 and ρ > 0 that

ΘΘΘ
∗ ∈Bq(ρ) :=

{
ΘΘΘ ∈ Rd1×d2 :

min(d1,d2)

∑
j=1

σ j(ΘΘΘ)q ≤ ρ

}
. (1.2)

In particular, B0(ρ) = {ΘΘΘ ∈ Rd1×d2 : rank(ΘΘΘ) ≤ ρ} denotes the set of matrices with rank at

most ρ , and Bq(ρ) with 0 < q≤ 1 is set of approximately low-rank matrices. Throughout the

rest of the paper, we assume without loss of generality that d1 ≥ d2.

The difficulty of recovering ΘΘΘ
∗ varies depending on the random structures of the mea-

surement matrices XXX i. Below we list three prototypical applications of model (1.1), which will

be the main focus of this work.
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(i) Matrix sensing: Matrix sensing often assumes that the entries of XXX i ∈ Rd1×d2 are indepen-

dently generated from the N (0,1) distribution. More generally, vec(XXX i)’s are assumed to

be zero-mean sub-Gaussian/sub-exponential random vectors.

(ii) Matrix completion: In matrix completion, XXX i are randomly drawn from the set

X = {eee j(d1)eeeT
k(d2),1≤ j ≤ d1,1≤ k ≤ d2},

where eee1(d), . . . ,eeed(d) are the canonical basis vectors in Rd .

(iii) Multitask regression: The multitask (reduced-rank) regression assumes

yyyi = (ΘΘΘ∗)Txxxi + εεε i, i = 1, . . . ,n, (1.3)

where yyyi = (yi1, . . . ,yid2)
T ∈ Rd2 are observed response vectors, xxxi ∈ Rd1 are covariate

vectors, ΘΘΘ
∗ ∈ Rd1×d2 is the target regression coefficient matrix, and εεε i = (εi1, . . . ,εid2)

T ∈

Rd2 are independent zero-mean random noise vectors. For i = 1, . . . ,n and k = 1, . . . ,d2,

define

y(i−1)d2+k = yik, XXX (i−1)d2+k = xxxieeeT
k(d2) and ε(i−1)d2+k = εik. (1.4)

Then the sample {(y j,XXX j)}N
j=1 with N = nd2 satisfies model (1.1).

For matrix sensing and matrix completion with noisy measurements, a popular approach

is the the following convex relaxation approach (Candès and Plan, 2009)

Θ̂ΘΘλ ∈ argmin
ΘΘΘ∈C

{
1
2n

n

∑
i=1

(yi−⟨XXX i,ΘΘΘ⟩)2 +λ∥ΘΘΘ∥∗
}
, (1.5)

where C is a convex feasible set of Rd1×d2 and λ > 0 is a regularization parameter. When

C = Rd1×d2 , Θ̂ΘΘλ is the matrix analog of the Lasso estimator for linear regression (Tibshirani,
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1996). The statistical properties of Θ̂ΘΘλ in (1.5), mainly nonasymptotic deviation bounds under

various matrix norms, have been studied in the literature when the additive noises εi are either

Gaussian or sub-Gaussian. The performance of such a least-square-type estimator may break

down quickly when the noise distribution is heavier-tailed. This is because outliers occur more

frequently and the square loss is very sensitive to outliers. The impact of heavy-tailed errors

on low-rank matrix recovery can be alleviated by replacing the ℓ2-loss with a more robust loss

function, typified by the ℓ1-loss and the Huber loss (Elsener and van de Geer, 2018). When the

error distribution is not only heavy-tailed but also asymmetric around zero, the use of ℓ1-loss

or Huber loss with a fixed tuning parameter induces a bias that remains non-negligible as the

number of measurements grows. For a better trade-off between robustness and bias, in the

following we propose to use adaptive Huber loss (Fan, Li and Wang, 2017; Sun, Zhou and

Fan, 2020) for robust low-rank matrix recovery, with a focus on the above three prototypical

applications.

For matrix sensing and completion problems, i.e. applications (i) and (ii), we define the

empirical loss function to be

L̂τ(ΘΘΘ) =
1
n

n

∑
i=1

ℓτ(yi−⟨XXX i,ΘΘΘ⟩), ΘΘΘ ∈ Rd1×d2, (1.6)

where ℓτ(u) = min{u2/2,τ|u|− τ2/2} denotes the adaptive Huber loss parameterized by τ =

τn > 0, referred to as the robustification parameter in Sun, Zhou and Fan (2020). For any

pre-specified convex subset C of Rd1×d2 , we consider the following nuclear norm penalized

robust regression estimator

Θ̂ΘΘτ,λ ∈ argmin
ΘΘΘ∈C

{
L̂τ(ΘΘΘ)+λ∥ΘΘΘ∥∗

}
, (1.7)

where τ = τn > 0 and λ = λn > 0 are the robustification and regularization parameters respec-

tively.
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For the multitask regression problem – Application (iii), recall that the vector-valued

observations {(yyyi,xxxi)}n
i=1 can be written as {(y j,XXX j)}N

j=1 (N = nd2) via (1.4) so model (1.1) can

be used. The classical reduced-rank regression method is based on solving the rank-constrained

problem (Izenman, 1975)

min
rank(ΘΘΘ)≤r

{ n

∑
i=1
∥yyyi−ΘΘΘ

Txxxi∥2
2 =

N

∑
j=1

(y j−⟨XXX j,ΘΘΘ⟩)2
}
,

for which an analytic solution is available. To robustify this classical procedure, similarly to

the formulation (1.7) one may naively apply the Huber loss to each residual y j−⟨XXX j,ΘΘΘ⟩. This,

however, is no longer plausible because XXX j’s are now dependent random matrices. Moreover,

since we do not impose independence on the entries of εεε i = (εi1, . . . ,εid2)
T, ε j’s defined in (1.4)

may also be highly correlated. We propose to replace the ℓ2-loss on ∥yyyi−ΘΘΘ
Txxxi∥2 with the

Huber loss, leading to minrank(ΘΘΘ)≤r ∑
n
i=1 ℓτ(∥yyyi−ΘΘΘ

Txxxi∥2), which is a highly nonconvex problem.

Similarly to (1.7), we resort to convex relaxation and consider the following nuclear norm

penalized estimator

Θ̂ΘΘτ,λ ∈ argmin
ΘΘΘ∈Rd1×d2

{
1
n

n

∑
i=1

ℓτ

(
∥yyyi−ΘΘΘ

Txxxi∥2
)
+λ∥ΘΘΘ∥∗

}
. (1.8)

In Section 1.3, we characterize the nonasymptotic statistical accuracy for the robust

low-rank estimator Θ̂ΘΘτ,λ defined in (1.7) and (1.8) when the noise variables only have bounded

variances. The key is to seek a suitable choice of τ and λ jointly to trade off among robustness,

bias and approximation errors.

1.2.2 Algorithms

To solve the nuclear norm penalized optimization programs (1.7) and (1.8), in this section

we present a unified algorithm by extending the local adaptive majorize-minimization (LAMM)

principle proposed in Fan et al. (2018) to matrix settings. Recall that the proposed nuclear norm
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penalized Huber regression estimators have a general form

Θ̂ΘΘτ,λ ∈ argmin
ΘΘΘ∈C

{L̂τ(ΘΘΘ)+λ∥ΘΘΘ∥∗},

where L̂τ(ΘΘΘ) is the empirical loss in (1.6) or (1.8), and C is taken to be Rd1×d2 or {ΘΘΘ ∈ Rd1×d2 :

∥ΘΘΘ∥∞ ≤ α0} for some α0 > 0. The main idea of the LAMM principle is to construct an isotropic

quadratic function that locally majorizes the objective function at each iteration. In the matrix

setting, given the previous iterate ΘΘΘ
(k−1) at the k-th iteration, define the quadratic function

F(ΘΘΘ;ΘΘΘ
(k−1),φk) = L̂τ(ΘΘΘ

(k−1))+ ⟨∇L̂τ(ΘΘΘ
(k−1)),ΘΘΘ−ΘΘΘ

(k−1)⟩+ φk

2
∥ΘΘΘ−ΘΘΘ

(k−1)∥2
F,

satisfying F(ΘΘΘ(k−1);ΘΘΘ
(k−1),φk) = L̂τ(ΘΘΘ

(k−1)), where φk > 0 is a quadratic parameter. Next,

define the k-th iterate as

ΘΘΘ
(k) ∈ argmin

ΘΘΘ∈C
{F(ΘΘΘ;ΘΘΘ

(k−1),φk)+λ∥ΘΘΘ∥∗}. (1.9)

The parameter φk needs to be sufficiently large so that L̂τ(ΘΘΘ
(k)) ≤ F(ΘΘΘ(k);ΘΘΘ

(k−1),φk), which

further implies

L̂(ΘΘΘ(k))+λ∥ΘΘΘ(k)∥∗ ≤ F(ΘΘΘ(k);ΘΘΘ
(k−1),φk)+λ∥ΘΘΘ(k)∥∗

≤ F(ΘΘΘ(k−1);ΘΘΘ
(k−1),φk)+λ∥ΘΘΘ(k−1)∥∗

= L̂τ(ΘΘΘ
(k−1))+λ∥ΘΘΘ(k−1)∥∗,

where the second inequality is due to the optimality of ΘΘΘ
(k). This ensures the descent of the

objective function at each iteration. To choose a sufficiently large φk, we start from a small

value, say φ0 = 0.01, and inflate it by a factor γ > 1, say γ = 2, until the local majorization

requirement L̂τ(ΘΘΘ
(k))≤ F(ΘΘΘ(k);ΘΘΘ

(k−1),φk) is met. Since F(ΘΘΘ;ΘΘΘ
(k−1),φk)≥ L̂τ(ΘΘΘ) when φk is

no less than the largest eigenvalue of ∇2L̂τ(ΘΘΘ
(k−1)), the iteration will stop after sufficiently many
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steps. Repeat the above steps until convergence (e.g., ∥ΘΘΘ(k)−ΘΘΘ
(k−1)∥F ≤ ε for a sufficiently

small ε > 0) or until the maximum number of iterations is reached.

The main benefit of minimizing a penalized isotropic quadratic objective function is

that the minimizer often has a closed form. For any matrix ΘΘΘ ∈ Rd1×d2 with rank r, consider

the singular value decomposition (SVD) ΘΘΘ =UUUΣΣΣVVV T, where UUU and VVV are, respectively, d1× r

and d2× r matrices with orthonormal columns, and ΣΣΣ = diag({σi}1≤i≤r) is an r× r diagonal

matrix with σ1 ≥ σ2 ≥ ·· · ≥ σr > 0. For λ > 0, define the soft-thresholding operator S(ΘΘΘ,λ ) =

UUU · diag({max(σi−λ ,0)}1≤i≤r) ·VVV T. By Theorem 2.1 in Cai, Candès and Shen (2010), ΘΘΘ
(k)

given in (1.9) with C = Rd1×d2 admits the closed-form expression

ΘΘΘ
(k) = Tλ ,φk

(ΘΘΘ(k−1)) := S(ΘΘΘ(k−1)−φ
−1
k ∇L̂τ(ΘΘΘ

(k−1)),φ−1
k λ ).

For a general convex subset C ⊆ Rd1×d2 , we can update ΘΘΘ
(k) as

ΘΘΘ
(k) = ΠC (Tλ ,φk

(ΘΘΘ(k−1))),

where ΠC denotes Euclidean projection onto the subspace C . When C = {ΘΘΘ∈Rd1×d2 : ∥ΘΘΘ∥∞ ≤

α0}, for example, ΠC (ΘΘΘ) = (max{min(ΘΘΘ jk,α0),−α0})1≤ j≤d1,1≤k≤d2 . We summarize the key

steps in Algorithm 1.

As a unified algorithm, Algorithm 1 applies to all three problems considered in this

paper, matrix sensing, matrix completion and multitask regression. In terms of complexity,

at each iteration ∇L̂τ(ΘΘΘ
(k−1)) and Tλ ,φk

(ΘΘΘ(k−1)) can be computed in O(nd1d2) and O(d1d2
2)

operations (assuming d1 ≥ d2), respectively (Trefethen and Bau III, 1997). On the other hand,

Fan, Wang and Zhu (2021) employed the contractive Peaceman-Rachford splitting method for

matrix sensing and multitask regression, and an ADMM-based algorithm for matrix completion.

In addition to the operations described above, each ADMM iterate also involves computing the

inverse of 2XTX/n+ Id1d2 , where X is an n× d1d2 matrix whose i-th row is vec(XXX i), and Ik
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Algorithm 1. LAMM algorithm for regularized adaptive Huber trace regression

Algorithm: {ΘΘΘ(k)}∞
k=1← LAMM(λ ,ΘΘΘ(0),φ0,γ,ε)

Input: λ ,ΘΘΘ(0),φ0,γ,ε

1: for k = 1,2, . . . until ∥ΘΘΘ(k)−ΘΘΘ
(k−1)∥2 ≤ ε do

2: repeat
3: ΘΘΘ

(k)← S(ΘΘΘ(k−1)−φ
−1
k ∇L̂τ(ΘΘΘ

(k−1)),φ−1
k λ )

4: ΘΘΘ
(k)←ΠC (ΘΘΘ

(k))

5: if F(ΘΘΘ(k);ΘΘΘ
(k−1),φk)< L̂τ(ΘΘΘ

(k)) then
6: φk← γ ·φk
7: end if
8: until F(ΘΘΘ(k);φk,ΘΘΘ

(k−1))≥ L̂τ(ΘΘΘ
(k))

9: return ΘΘΘ
(k)

10: end for
Output: Θ̂ΘΘ = ΘΘΘ

(T )

denotes the k× k identity matrix. By applying the Sherman–Morrison–Woodbury formula, this

step can be implemented in O(min{n,d1d2}3) operations. Still, the computational complexity

and storage cost (per iteration) of ADMM are much higher than the LAMM algorithm in the

context of matrix completion, especially for large-scale datasets.

1.3 Theoretical guarantees

In this section, we establish the finite-sample statistical properties of the robust estimator

Θ̂ΘΘτ,λ for matrix sensing, matrix completion and multitask regression. Throughout, the noise

variables εi in (1.1) and εεε i in (1.3) are assumed to have bounded variance only, and we do not

require independence between εi and XXX i or εεε i and xxxi.

1.3.1 Matrix sensing

In the case of matrix compressed sensing, we set C = Rd1×d2 in (1.7), and impose the

following assumptions.

(A1) ΘΘΘ
∗ ∈Bq(ρ) for some 0≤ q≤ 1 and ρ > 0.

(A2) The random matrix XXX i ∈ Rd1×d2 satisfies (i) EXXX i = 0, and (ii) vec(XXX i) ∈ Rd1d2 is sub-
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exponential, that is, there exists a constant ν0 ≥ 1 such that for any AAA ∈ Rd1×d2 and

u≥ 0,

P
(
|vec(AAA)Tvec(XXX i)| ≥ ν0∥AAA∥F ·u

)
≤ 2e−u.

Moreover, there exists a constant cl > 0 such that λmin
(
Evec(XXX i)vec(XXX i)

T
)
≥ cl .

(A3) The noise variables εi are such that E(εi|XXX i) = 0 and E(ε2
i |XXX i)≤ σ2

0 (almost surely) for

some constant σ0 > 0.

Remark 1.3.1. The parameter ν0 is often referred to as the sub-exponential parameter. For

various well-behaved distributions on Rd1×d2 , the associated sub-exponential parameters are

independent of the dimensions d1 and d2. As prototypical examples, the distributions listed

below satisfy Condition (A2) with dimension-free parameters ν0 and cl .

(i) (Multivariate normal) vec(XXX i) follow s N (0,Σ) with a positive-definite Σ ∈R(d1d2)×(d1d2).

(ii) (Uniform distribution on the Euclidean sphere) XXX i follows the uniform distribution on

the sphere centered at the origin with radius (d1d2)
1/2, namely, {XXX ∈ Rd1×d2 : ∥XXX∥F =

(d1d2)
1/2}.

(iii) (Uniform distribution on the ℓ1-ball) XXX i follows the uniform distribution on the ℓ1-norm

ball centered at the origin with radius r≍ d1d2, that is, {XXX ∈Rd1×d2 : ∑
d1
j=1 ∑

d2
k=1 |X jk| ≤ r}.

Here, we note that the multivariate distributions in (i) and (ii) are not only sub-exponential but

also sub-Gaussian.

To derive the convergence rate of Θ̂ΘΘτ,λ under either the Frobenius norm or the nuclear

norm, we first define a probability event that concerns the local restricted strong convexity (RSC)

of the empirical loss L̂τ(·). For s, l > 0, define the Frobenius norm ball and trace norm cone

B(s) = {∆∆∆ ∈ Rd1×d2 : ∥∆∆∆∥F ≤ s} and C(l) = {∆∆∆ ∈ Rd1×d2 : ∥∆∆∆∥∗ ≤ l∥∆∆∆∥F}, (1.10)
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respectively.

Definition 1.3.1 (Local restricted strong convexity). Given radius parameters s, l > 0 and a

curvature parameter κ > 0, define the event

E (s, l,κ) =

{
inf

ΘΘΘ∈ΘΘΘ
∗+B(s)∩C(l)

⟨∇L̂τ(ΘΘΘ)−∇L̂τ(ΘΘΘ
∗),ΘΘΘ−ΘΘΘ

∗⟩
∥ΘΘΘ−ΘΘΘ

∗∥2
F

≥ κ

}
, (1.11)

which concerns the local restricted strong convexity of the empirical loss function.

We first provide a deterministic result on the convergence rate of Θ̂ΘΘτ,λ : for any choice of

λ such that ∥∇L̂τ(ΘΘΘ
∗)∥2 ≤ λ/2, and conditioned on event E (s, l,κ) with suitably chosen (s, l),

we are guaranteed that

∥Θ̂ΘΘτ,λ −ΘΘΘ
∗∥F ≲

√
ρ (λ/κ)1−q/2 and ∥Θ̂ΘΘτ,λ −ΘΘΘ

∗∥∗ ≲ ρ(λ/κ)1−q.

Theorem 1.3.1. Assume Condition (A1) holds. Let (λ ,s, l,κ) satisfy λ ≥ 2∥∇L̂τ(ΘΘΘ
∗)∥2,

s≥ 9.15
√

ρ (λ/κ)1−q/2 and l ≥ 6.1
√

ρ (κ/λ )q/2. (1.12)

Conditioned on the event E (s, l,κ), the error matrix ∆̂∆∆ := Θ̂ΘΘτ,λ −ΘΘΘ
∗ satisfies

∥∆̂∆∆∥F ≤ 9.15
√

ρ

(
λ

κ

)1−q/2

and ∥∆̂∆∆∥∗ ≤ 56ρ

(
λ

κ

)1−q

.

In the following two propositions, we first derive an upper bound of ∥∇L̂τ(ΘΘΘ
∗)∥2, and

then establish the local RSC property of the empirical Huber loss function L̂τ(·). Together, these

results show that with properly chosen λ ,τ that depend on (n,d,s, l) along with the distributional

parameters in Conditions (A2) and (A3), the event {λ ≥ 2∥∇L̂τ(ΘΘΘ
∗)∥2}∩E (s, l,cl/4) occurs

with high probability.

Proposition 1.3.1. Assume Conditions (A2) and (A3) hold. For any σ ≥ σ0 and z > 0, the
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empirical Huber loss L̂τ(·) with τ = σ
√

n/(3d + z) satisfies

∥∇L̂τ(ΘΘΘ
∗)∥2 ≤ 10ν0 ·σ

√
3d + z

n
(1.13)

with probability at least 1− e−z, where d = d1 +d2.

Proposition 1.3.2. Assume Conditions (A2) and (A3) hold. For any s, l > 0 and z > 0, let τ and

n satisfy

τ ≥ 4ν0

√
(2σ2

0 +96ν2
0 s2)/cl and n≥C1(τ/s)2(l2d + z), (1.14)

where d = d1 +d2 and C1 > 0 is a constant depending only on ν0 and cl . Then, the local RSC

event E (s, l,κ) with κ = cl/4 occurs with probability at least 1− e−z.

Combining these high probability bounds with Theorem 1.3.1 leads to the convergence

rate of Θ̂ΘΘτ,λ , as stated in the following theorem.

Theorem 1.3.2. Assume Conditions (A1)–(A3) hold. For any z > 0, the robust (approximately)

low-rank matrix estimator Θ̂ΘΘτ,λ defined in (1.7) with C = Rd1×d2 , τ ≍ σ0
√

n/(d + z) and

λ ≍ σ0
√

(d + z)/n satisfies

∥Θ̂ΘΘτ,λ −ΘΘΘ
∗∥F ≲ σ

1−q/2
0

√
ρ

(
d + z

n

)1/2−q/4

and ∥Θ̂ΘΘτ,λ −ΘΘΘ
∗∥∗ ≲ σ

1−q
0 ρ

(
d + z

n

)(1−q)/2

with probability at least 1− 2e−z as long as n ≳ max
{
(ρ/σ

q
0 )

2/(2−q),1
}
(d + z), where d =

d1 +d2.

Remark 1.3.2. In the exact low-rank case, i.e. q = 0 and ρ = r = rank(ΘΘΘ∗), the results in

Theorem 1.3.2 imply that with high probability (over both the random sensing matrices XXX i and

noise variables εi), the robust estimator Θ̂ΘΘτ,λ satisfies with high probability that

∥Θ̂ΘΘτ,λ −ΘΘΘ
∗∥F ≲ σ0

√
rd
n

as long as n ≳ rd.
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Within a constant independent of (n,r,d1,d2) and noise scale σ0, this upper bound matches

the information-theoretic lower bound established by Candès and Plan (2011) when εi are

i.i.d. N (0,σ2
0 ). The robustness manifests in two aspects. First, the noise distribution is only

required to have bounded variance as opposed to sub-Gaussian tails. Secondly, we assume

the random vector vec(XXX i) is sub-exponential, whereas vec(XXX i) is often assumed to have i.i.d.

Gaussian/sub-Gaussian entries in the literature.

Remark 1.3.3. For matrix compressed sensing, based on a shrinkage principle Fan, Wang

and Zhu (2021) also proposed a robust low-rank estimator, which achieves near-optimal rate

under heavy-tailed noise distributions. Its recovery guarantees (see Theorem 3 therein), however,

depend on more stringent assumptions as needed in Theorem 1.3.2. In addition to Conditions (A2)

and (A3), Fan, Wang and Zhu (2021) assumed further that (i) vec(XXX i) is sub-Gaussian, and (ii)

E|yi|2k ≤Mk for some k > 1. Under these conditions and in the exact low-rank case (for brevity),

their truncate/shrinkage estimator, denoted by Θ̃ΘΘ, satisfies with high probability the bound

∥Θ̃ΘΘ−ΘΘΘ
∗∥F ≤M1/(2k)

k

√
rd
n

as long as n ≳ rd.

The above convergence rate is sub-optimal in terms of its dependence on the noise scale σ0. As

the noise scale decreases, M1/(2k)
k remains to be bounded away from zero because

M1/k
k > Ey2

i = E⟨XXX i,ΘΘΘ
∗⟩2 +E(ε2

i ).

Remark 1.3.4. The sample size requirement in Theorem 1.3.2 becomes more stringent as σ0

goes to 0 when q ̸= 0. This is an artifact of the technical argument used in the proof of the

theorem. A similar sample size requirement, characterized by its inverse proportionality to the

moment of the response, can be found in Theorem 3 of Fan, Wang and Zhu (2021). To modify
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the sample size requirement, we can choose

τ ≍max(σ0,1)
√

n/(d + z) and λ ≍max(σ0,1)
√
(d + z)/n

for a given z> 0. This results in a revised sample size requirement of n≳max(ρ2/(2−q),1)(d+z),

accompanied by an error bound

∥Θ̂ΘΘτ,λ −ΘΘΘ
∗∥F ≲ max(σ1−q/2

0 ,1)
√

ρ

(
d + z

n

)1/2−q/4

with probability at least 1−2e−z. This error bound is similar to the deviation bound in Corollary

5 of Negahban and Wainwright (2011), but it should be noted that they are not proportional to

the noise level. Additionally, Theorem 1.3.4 in Section 1.3.3 also relies on a similar technical

argument, necessitating a larger sample size as σ0 approaches zero.

1.3.2 Matrix completion

This subsection investigates matrix completion under the following assumptions.

(B1) ΘΘΘ
∗ ∈Bq(ρ) and ∥ΘΘΘ∗∥∞ ≤ α0 for some α0 > 0. We thus set C = {ΘΘΘ ∈ Rd1×d2 : ∥ΘΘΘ∥∞ ≤

α0} in (1.7) so that ΘΘΘ
∗ ∈ C .

(B2) XXX i ∈ Rd1×d2 is uniformly sampled from {eee j(d1)eeeT
k(d2)}1≤ j≤d1,1≤k≤d2 , where {eee j(d)}d

j=1

are the canonical basis vectors in Rd . Specifically, P{XXX i = eee j(d1)eeeT
k(d2)}= (d1d2)

−1.

(B3) E(εi|XXX i) = 0 and E(ε2
i |XXX i)≤ σ2

0 (almost surely) for some constant σ0 > 0.

Remark 1.3.5. In addition to the assumption that ΘΘΘ
∗ is of (approximately) low-rank, we require

in Condition (B1) that ∥ΘΘΘ∗∥∞ ≤ α0 for some α0 > 0. Past works on noisy matrix completion also

imposed the same or similar conditions. For instance, Klopp (2014) and Minsker (2018) assumed

that ∥ΘΘΘ∗∥∞ is bounded; Negahban and Wainwright (2012) and Fan, Wang and Zhu (2021)

required the spikiness ratio ∥ΘΘΘ∗∥∞/∥ΘΘΘ∗∥F to be bounded; Candès and Plan (2009) and Candès
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and Recht (2009) relied on matrix incoherence conditions. Without such extra conditions, the

number of measurements should satisfy n≍ d1d2 in order to recover ΘΘΘ
∗ in the worst case; see

Candès and Recht (2009) and Negahban and Wainwright (2012) for details.

Similarly to the matrix sensing case, the key steps to establish the convergence rate of

Θ̂ΘΘτ,λ are (i) an upper bound of ∥∇L̂τ(ΘΘΘ
∗)∥2 as shown in Proposition 1.3.3 below, and (ii) a lower

bound for

⟨∇L̂τ(ΘΘΘ)−∇L̂τ(ΘΘΘ
∗),ΘΘΘ−ΘΘΘ

∗⟩

uniformly over ΘΘΘ in a neighborhood of ΘΘΘ
∗. The sparsity of XXX i in this case (see Condition (B2))

introduces more subtleties into the analysis of the latter, as we will see from Proposition 1.3.4.

Proposition 1.3.3. Assume Conditions (B2) and (B3) hold. For any σ ≥ σ0 and z > 0, the loss

function L̂τ(·) with τ = σ
√

n/{d2(z+ logd)} satisfies with probability at least 1− e−z that

∥∇L̂τ(ΘΘΘ
∗)∥2 ≤ (3σ0 +2σ/3)

√
z+ logd

d2n
, (1.15)

where d = d1 +d2.

Proposition 1.3.4. Assume Conditions (B2) and (B3) hold. For any s, l > 0 and z > 0, let τ and

n satisfy

τ
2 ≥ 16max[ns2/{l2d2

1d2(z+ logd)},σ2
0 ] and n≥ d2 logd,

where d = d1 +d2. Define the constrain set

A(s, l) =
{

∆∆∆ ∈ B(s)∩C(l) :
∥∆∆∆∥2

∞

∥∆∆∆∥2
F/(d1d2)

≤ 1
8

√
n

z+ logd

}
, (1.16)

where B(s) and C(l) are given in (1.10). Then, for all ΘΘΘ ∈ Rd1×d2 with ∆∆∆ := ΘΘΘ−ΘΘΘ
∗ ∈ A(s, l),
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we have with probability at least 1− e−z that

⟨∇L̂τ(ΘΘΘ)−∇L̂τ(ΘΘΘ
∗),ΘΘΘ−ΘΘΘ

∗⟩ ≥ 1
4d1d2

∥∆∆∆∥2
F−C0l2 d1(z+ logd)

n
∥∆∆∆∥2

∞,

where C0 > 1 is an absolute constant.

With the above preparations, we now state the statistical guarantees for matrix completion

under heavy-tailed noise.

Theorem 1.3.3. Assume Conditions (B1)–(B3) hold. For any z > 0, set

τ ≍ σ

√
n

d2(z+ logd)
and λ ≍ σ

√
z+ logd

d2n
,

where σ = max{σ0,α0} and d = d1 + d2. Then, the robust (approximately) low-rank matrix

estimator Θ̂ΘΘτ,λ defined in (1.7) with C = {ΘΘΘ ∈ Rd1×d2 : ∥ΘΘΘ∥∞ ≤ α0} satisfies

1
d1d2
∥Θ̂ΘΘτ,λ −ΘΘΘ

∗∥2
F ≲ max

[
σ

2−q
ρ

{
d1(z+ logd)

n

}1−q/2

, α
2
0

√
z+ logd

n

]
(1.17)

and

1√
d1d2
∥Θ̂ΘΘτ,λ −ΘΘΘ

∗∥∗

≲ max

[
σ

1−q
ρ

{
d1(z+ logd)

n

} 1−q
2

, α

2(1−q)
2−q

0
ρ

1
2−q

(d1d2)
q

2(2−q)

(
z+ logd

n

) 1−q
2(2−q)

]

with probability at least 1−2e−z whenever n ≳ d2(z+ logd).

Remark 1.3.6. In the context of matrix completion, one is interested in recovering a large

low-rank data matrix from a highly incomplete subset of its entries. A natural assumption

is n ≤ d1d2, which in turn implies
√

log(d)/n ≤ d1 log(d)/n, where d = d1 + d2 and d1 ≥ d2.

Therefore, taking z = logn, the maximum in (1.17) is often given by its first term. In the exact
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low-rank case, the general results in Theorem 1.3.3 imply that the proposed robust estimator

Θ̂ΘΘτ,λ with τ ≍ σ0
√

n/(d2 logd) and λ ≍ σ0
√

log(d)/(d2n) satisfies the bound

1
d1d2
∥Θ̂ΘΘτ,λ −ΘΘΘ

∗∥2
F ≲ max{α2

0 ,σ
2
0}

rd1 logd
n

(1.18)

with high probability as long as n ≳ d2 logd. Under our notations, Theorem 6 in Koltchinskii,

Lounici and Tsybakov (2011) shows that when εi ∼N (0,σ2
0 ) is independent of XXX i, there exist

absolute constants β ∈ (0,1) and c > 0 such that

inf
Θ̂ΘΘ

sup
rank(ΘΘΘ∗)≤r,∥ΘΘΘ∗∥∞≤α0

P
{

1
d1d2
∥Θ̂ΘΘ−ΘΘΘ

∗∥2
F > cmin(σ2

0 ,α
2
0 )

rd1

n

}
≥ β ,

where inf
Θ̂ΘΘ

is the infimum over all estimators Θ̂ΘΘ ∈ Rd1×d2 . Therefore, the rate derived in

Theorem 1.3.3 is minimax optimal up to a logarithmic factor and a trailing term.

Remark 1.3.7 (Comparison to existing work on robust (noisy) matrix completion). In the context

of matrix completion with heavy-tailed noise, several robust estimators have been proposed and

studied. Minsker (2018) proposed a two-step method that computes a truncation-type matrix

estimator, denoted by Θ̃ΘΘ, in step one and then solves the nuclear norm penalized optimization

∥ΘΘΘ− Θ̃ΘΘ∥2
F/(d1d2)+λ∥ΘΘΘ∥∗. In the exact low-rank case, this two-step estimator satisfies a high

probability bound, which is similar to (1.17) with q = 0, when εi is independent of XXX i and has

bounded variance. The independence assumption can be removed by slightly modifying the

proof in Minsker (2018). For matrix sensing and multitask regression, it is unclear whether such a

two-step procedure will also lead to robust estimates that satisfy sharp error bounds proportional

only to the noise scale. Concurrently, Fan, Wang and Zhu (2021) considered a similar two-

step estimator, but their theoretical result requires a slightly stronger moment condition, i.e.

E{E(ε2
i |XXX i)

k} ≤Mk for some k > 1. Our proposal is more relevant to Elsener and van de Geer

(2018), who also used the Huber loss for matrix completion in the presence of heavy-tailed errors.

Their results, however, depend on stronger assumptions on the error distribution. In addition to
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Conditions (B1) and (B2), they further assumed that (i) the distribution of εi is symmetric around

0, and (ii) there exists a constant C1 > 0 such that the cumulative distribution function F(·) of εi

satisfies

F(x+ τ)−F(x− τ)≥ 1/C2
1 for all |x| ≤ 2α0 and τ ≤ 2α0.

Under theses conditions and in the exact low-rank case, Elsener and van de Geer (2018) proved

that the nuclear norm penalized Huber regression estimator, denoted by Θ̆ΘΘ, satisfies

1
d1d2
∥Θ̆ΘΘ−ΘΘΘ

∗∥2
F = OP

{
max(α2

0 ,τ
2)C4

1
rd1 log(d1 +d2)

n

}

under the sample size requirement n ≳ d2 log(d2) log(d1 +d2).

1.3.3 Multitask regression

In this section, we establish the statistical properties of the robust low-rank multitask

(reduced-rank) regression estimator Θ̂ΘΘτ,λ (1.8). With slight abuse of notation, we write

L̂τ(ΘΘΘ) =
1
n

n

∑
i=1

ℓτ

(
∥yyyi−ΘΘΘ

Txxxi∥2
)
, ΘΘΘ ∈ Rd1×d2 , (1.19)

where τ > 0 is the robustification parameter.

(C1) ΘΘΘ
∗ ∈Bq(ρ) for some 0≤ q≤ 1 and ρ > 0.

(C2) xxxi ∈ Rd1 are i.i.d. zero-mean sub-Gaussian vectors, that is, there exists a (dimension-free)

constant ν0 ≥ 1 such that

EeuuuTxxxi ≤ eν2
0∥uuu∥2

2/2, valid for any uuu ∈ Rd1.

Moreover, there exists a constant cl > 0 such that λmin
(
ExxxixxxT

i
)
≥ cl .

(C3) The noise vectors εεε i ∈Rd2 are such that E(εεε i|XXX i) = 0 and λmax
(
E(εεε iεεε

T
i |xxxi)

)
≤ σ2

0 (almost

surely).
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Proposition 1.3.5. Assume Conditions (C2) and (C3) hold. For any σ ≥ σ0 and z > 0, choose

τ = σ
√

n/(z+ logd) with d = d1 +d2. Then, it holds with probability at least 1− e−z that

∥∇L̂τ(ΘΘΘ
∗)∥2 ≤Cν0σ

√
d(z+ logd)

n
,

where C > 0 is a universal constant.

Proposition 1.3.6. Assume Conditions (C2) and (C3) hold, and let s,τ > 0 and z > 0 satisfy

τ ≥max
{

4σ0
√

d2, 2ν0s
√

2d1 +3z+3logn
}
. (1.20)

Then, with probability at least 1−2e−z,

⟨∇L̂τ(ΘΘΘ)−∇L̂τ(ΘΘΘ
∗),ΘΘΘ−ΘΘΘ

∗⟩ ≥ cl

2
∥ΘΘΘ−ΘΘΘ

∗∥2
F for all ΘΘΘ ∈ΘΘΘ

∗+B(s),

provided that n ≳ ν4
0 c−2

l (d1 + z).

Theorem 1.3.4. Assume Conditions (C1)-(C3) hold. For any z > 0, the robust (approx-

imately) low-rank matrix estimator Θ̂ΘΘτ,λ defined in (1.8) with τ ≍ σ0
√

n/(z+ logd) and

λ ≍ σ0
√

d(z+ logd)/n (d = d1 +d2) satisfies the bounds

∥Θ̂ΘΘτ,λ −ΘΘΘ
∗∥F ≲ σ

1−q/2
0

√
ρ

{
d(z+ logd)

n

} 1
2−

q
4

and

∥Θ̂ΘΘτ,λ −ΘΘΘ
∗∥∗ ≲ σ

1−q
0 ρ

{
d(z+ logd)

n

} 1−q
2

with probability at least 1−3e−z as long as

n ≳ max{(ρ/σ
q
0 )

2/(4−q),1} · (d + z+ logn)(z+ logd).
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Remark 1.3.8. Again, in the exact low-rank case where ρ = r = rank(ΘΘΘ∗) and q = 0, The-

orem 1.3.4 shows that for an arbitrary accuracy ε > 0, we have ∥Θ̂ΘΘτ,λ −ΘΘΘ
∗∥F ≤ ε with an

overwhelming probability provided that the number of measurements satisfies

n ≳ σ
2
0

rd logd
ε2 . (1.21)

This result improves Theorem 5 in Fan, Wang and Zhu (2021) in several aspects. Under the

multitask regression model (1.3), they assumed that

λmax
(
E(yyyiyyy

T
i )
)
≤ R < ∞, max

1≤i≤n,1≤k≤d2
E
{
E(ε2

ik|xxxi)
k}≤Mk < ∞ for some k > 1,

and for each i, εi1, . . . ,εid2 are pairwise (conditionally) independent given xxxi. In contrast, Condi-

tion (C3) only assumes bounded variances and allows arbitrary dependency between εik’s. For

an arbitrary accuracy ε > 0, the truncated/shrinkage matrix estimator Θ̃ΘΘ proposed by Fan, Wang

and Zhu (2021) satisfies ∥Θ̃ΘΘ−ΘΘΘ
∗∥F ≤ ε with high probability provided

n ≳ (R+M1/k
k )

rd logd
ε2 . (1.22)

Here the term R+M1/k
k can be much larger than σ2

0 in (1.21). More importantly, as the noise

scale σ0 decays, R stays away from zero because

R≥ λmax
(
Eyyyiyyy

T
i
)
= λmax

(
(ΘΘΘ∗)T

ΣΣΣΘΘΘ
∗+Eεεε iεεε

T
i
)
≥ λmax

(
(ΘΘΘ∗)T

ΣΣΣΘΘΘ
∗).

1.4 Numerical studies

1.4.1 Finite-sample performance

In this section, we perform simulation studies to assess the finite-sample performance of

the nuclear norm penalized adaptive Huber trace regression method (Nuclear-AH) in all three
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Table 1.1. Mean relative Frobenius error ∥Θ̂ΘΘ−ΘΘΘ
∗∥F/∥ΘΘΘ∗∥F (with standard deviations in

parentheses), averaged over 500 replications, under the matrix sensing, matrix completion and
multitask regression settings.

Matrix Sensing Normal t Pareto
Nuclear-LS 0.227 (0.010) 0.173 (0.052) 0.169 (0.093)
Nuclear-AH 0.227 (0.010) 0.132 (0.008) 0.107 (0.007)

Matrix Completion Normal t Pareto
Nuclear-LS 0.424 (0.021) 0.280 (0.047) 0.315 (0.041)
Nuclear-AH 0.445 (0.022) 0.223 (0.023) 0.252 (0.022)

Multitask Regression Normal t Pareto
Nuclear-LS 0.228 (0.005) 0.213 (0.112) 0.237 (0.181)
Nuclear-AH 0.228 (0.005) 0.148 (0.003) 0.120 (0.003)

problems. As a benchmark, we implement the nuclear norm penalized least squares (Nuclear-LS)

estimator also via the LAMM algorithm.

In addition to the regularization parameter λ , the use of an adaptive Huber loss also

involves a robustification parameter τ that changes with data scales. We set τ = cτ · an,d and

λ = cλ ·bn,d , where cτ and cλ are positive constants that are independent of (n,d) but depend

on the noise scale, and an,d and bn,d are determined by the theoretical results in Section 1.3, as

follows:

(a) For matrix sensing, we choose an,d =
√

n/d and bn,d =
√

d/n.

(b) For matrix completion, we choose an,d =
√

n/(d logd) and bn,d =
√

log(d)/(dn).

(c) For multitask learning, we choose an,d =
√

n/ logd and bn,d =
√

d log(d)/n.

Then we follow the following steps to tune cτ and cλ .

(i) First, choose the constant cλ in the Nuclear-LS method via five-fold CV with the absolute

median loss as the criterion. In particular, we use the “one-standard-error” rule, which

yields the most parsimonious model within one standard error of the minimum CV error.

(ii) Next, let {ri}n
i=1 be the Nuclear-LS residuals with cλ selected via CV as in Step (i). As
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a rule-of-thumb, we set cτ as the median absolute deviation of {ri}, i.e. median{|ri−

median(ri)|}/0.6745.

(iii) With cτ determined after Step (ii), we choose the constant cλ in the Nuclear-AH method

again via five-fold CV under the one-standard-error rule.

Under the matrix sensing and matrix completion setups, the data {(yi,XXX i)}n
i=1 are gen-

erated from yi = ⟨XXX i,ΘΘΘ
∗⟩+ εi, where εi follows one of the following three distributions: (i)

N (0,0.52)—centered normal distribution with standard deviation 0.5 (lighted-tailed and sym-

metric), (ii) t2.1/8—scaled t-distribution with 2.1 degrees of freedom (heavy-tailed and sym-

metric), and (iii) Par(2,1)/8—scaled Pareto distribution with scale parameter 1 and shape pa-

rameter 2 (heavy-tailed and asymmetric). For matrix sensing, we set (d1,d2,n) = (50,50,1500),

ΘΘΘ
∗ ∈ Rd1×d2 is such that rank(ΘΘΘ∗) = 5 and all nonzero singular values of ΘΘΘ

∗ are 1, and the

design matrix XXX i consists of i.i.d. standard normal entries. For matrix completion, we set

(d1,d2,n) = (50,50,2000), ΘΘΘ
∗ ∈Rd1×d2 is such that ∥ΘΘΘ∗∥F =

√
d1d2 and rank(ΘΘΘ∗) = 5, and XXX i

is uniformly sampled from {eee j(d1)eeeT
k(d2)}1≤ j≤d1,1≤k≤d2 . To implement LAMM, we use the ini-

tial estimates ΘΘΘ
(0) = 0 and ΘΘΘ

(0) = (d1d2/n)∑
n
i=1 yiXXX i, respectively, under the two setups. In the

case of multitask regression, the data vectors {(yyyi,xxxi)}n
i=1 are generated from yyyi = (ΘΘΘ∗)Txxxi + εεε i,

where ΘΘΘ
∗ ∈ Rd1×d2 is the same as in the matrix sensing setting, xxxi ∈ Rd1 are i.i.d. standard

normal and εεε i = (εi1, . . . ,εid2)
T consists of i.i.d. entries following one of the above three errors

distributions. In this case we set d1 = d2 = 80 and n = 2000.

Simulation results on the relative Frobenius error ∥Θ̂ΘΘ−ΘΘΘ
∗∥F/∥ΘΘΘ∗∥F, averaged over

500 repetitions, are presented in Table 1.1. To better demonstrate the robustness property of

Nuclear-AH, Figure 1.1 shows the boxplots of (relative) Frobenius errors for the cross-validated

Nuclear-LS and Nuclear-AH estimators under three error distributions. We see that Nuclear-LS

and Nuclear-AH have almost identical performance when errors have symmetric and light tails,

while the latter achieves considerably better performance under all three settings in the presence

of heavy-tailed and/or asymmetric errors.
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1.4.2 Convergence rate versus noise scale

In this section, we numerically examine the dependence of ∥Θ̂ΘΘ−ΘΘΘ
∗∥F on the noise scale

under the matrix sensing and multitask regression settings. Our theoretical results, Theorem 1.3.2

and Theorem 1.3.4, indicate that in the exact low-rank case, ∥Θ̂ΘΘ−ΘΘΘ
∗∥F should be proportional

to the noise scale σ , where σ2 = E(ε2
i ) or σ2 = λmax(E(εεε iεεε

T
i )). To verify this, given a sequence

of σ values ranging from 10−3 to 1, we generate εi from either σ ·N (0,1) or σ · t2.1/16. The

specifications of ΘΘΘ
∗ and XXX i or xxxi are the same as in Section 1.4.1.

Under the matrix sensing setting, we set (d1,d2,n) = (50,50,2000) and choose τ =

2σ
√

n/d and λ = σ
√

d/n with d = d1 + d2. For multitask regression, we set (d1,d2,n) =

(100,100,3000) and choose τ = σ
√

n/ logd and λ = 0.5σ
√

d log(d)/n. Figure 1.2 shows the

plots of the Frobenius error versus noise scale, based on 200 replications, under these two settings

and two error distributions. Consistent with the predictions of Theorems 1.3.2 and 1.3.4, we

observe a nearly perfect linear growth in all four plots.
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(a) Matrix sensing setting with (d1,d2,n) = (50,50,1500)

(b) Matrix completion setting with (d1,d2,n) = (50,50,2000)

(c) Multitask regression setting with (d1,d2,n) = (80,80,2000)

Figure 1.1. Boxplots of relative Frobenius errors ∥Θ̂ΘΘ−ΘΘΘ
∗∥F/∥ΘΘΘ∗∥F (based on 500 repetitions)

for the Nuclear-AH and Nuclear-LS estimators under the matrix sensing, matrix completion and
multitask regression settings.
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(a) Matrix sensing setting with (d1,d2,n) = (50,50,2000)

(b) Multitask regression setting with (d1,d2,n) = (50,50,2000)

Figure 1.2. Plots of Frobenius error ∥Θ̂ΘΘ−ΘΘΘ
∗∥F versus noise scale based on 200 simulations

under the matrix sensing and multitask regression settings.
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Chapter 2

Gaussian differentially private robust
mean estimation and inference

2.1 Introduction

We consider the problem of estimating the mean of a random vector xxx ∈ Rd based on

independent and identically distributed (i.i.d.) samples {xxxi}n
i=1. When the data are generated

from heavy-tailed distributions and/or contaminated with outliers, this problem, known as robust

mean estimation, has received a lot of attention recently in both statistical and machine learn-

ing communities; see, for example, Catoni (2012); Bubeck, Cesa-Bianchi and Lugosi (2013);

Minsker (2015); Devroye et al. (2016); Chen, Gao and Ren (2018); Lugosi and Mendelson

(2019a); Hopkins (2022); Hopkins, Li and Zhang (2020); Lugosi and Mendelson (2021); De-

persin and Lecué (2022a,b); Mathieu (2022) for an unavoidably incomplete overview. For a

more thorough review of robust mean estimation and beyond, we refer to the survey articles

Diakonikolas and Kane (2019) and Lugosi and Mendelson (2019b).

It is well-known that the sample/empirical mean estimator has desired tail behaviors

when the distribution of xxx is light-tailed, but its performance deteriorates quickly and becomes

sub-optimal for heavy-tailed distributions. For example, for a Gaussian distribution with mean µµµ

and covariance matrix Σ, the following deviation bound of the sample mean is optimal (Catoni,

2012): for any z≥ 0, ∥x̄xxn−µµµ∥2 ≤
√

tr(Σ)/n+
√

2∥Σ∥2 · z/n with probability at least 1− e−z,

where x̄xxn = (1/n)∑
n
i=1 xxxi. The worst-case analysis in (Catoni, 2012) shows that the deviations
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of the sample estimate significantly increase when the sample distribution is far from being

Gaussian. Over the past decade, significant effort has been dedicated to developing robust mean

estimators, both univariate and multivariate, that offer optimal Gaussian-type deviation bounds,

as demonstrated above, commonly referred to as sub-Gaussian deviation bounds. Although

certain estimators, such as the median-of-means tournaments (Lugosi and Mendelson, 2019a)

and the trimmed mean estimator (Lugosi and Mendelson, 2021), are capable of achieving the

sharp concentration bound under the bounded second moment condition, most of them are not

computationally feasible. Some recent works such as Hopkins (2022) and Depersin and Lecué

(2022a) have proposed polynomial-time mean estimation algorithms that achieve sub-Gaussian

rates. However, implementing these algorithms in practice remains a significant challenge. In

contrast, Huber’s M-estimator and its variants considered by Mathieu (2022) are computationally

more efficient as they are directly defined as minima of convex optimization problems. It is worth

noting that the M-estimation approach comes with a minor caveat. Specifically, Proposition 2

of Mathieu (2022) demonstrates that Huber’s M-estimator can attain the sub-Gaussian deviation

bound within a limited range of z when the distribution of xxx has finite q-th moment with q > 2.

However, when xxx only exhibits finite variance, the estimator attains the sub-optimal deviation

bound; see also Remark 2.2.1.

While most of the aforementioned results solely focus on statistical properties without

taking into account the potentially sensitive information contained in the data, there has been

an increasing demand for data privacy guarantees in statistical methods during the last decade.

Differential privacy (DP), arguably the first widely accepted rigorous definition of data privacy,

was introduced in Dwork et al. (2006b) and has since gained widespread acceptance and success.

Informally, a mechanism is said to be differentially private if its distribution over outputs is

insensitive to the change of only one datum. Gaussian differential privacy (GDP) Dong, Roth

and Su (2022) is an attractive variant of DP, especially for statisticians, due to its neat hypothesis

testing interpretation. The study of mean estimation with differential privacy is mostly limited in

the computer science literature. For example, Bun and Steinke (2019); Kamath et al. (2019);
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Karwa and Vadhan (2018) considered optimal private mean estimation in terms of sample

complexity under different differential privacy frameworks. Another work in statistics literature

Cai, Wang and Zhang (2021) proved minimax optimal mean estimation under squared error loss

under DP. However, these results all depend on the assumption that the underlying distribution is

sub-Gaussian.

Recently, the problem of private robust mean estimation under heavy-tailed distributions

has gained increasing interest in the literature. For instance, based on pairwise comparisons, Ka-

math, Singhal and Ullman (2020) introduced an algorithm for private mean estimation under

concentrate, pure, and (ε,δ )-DP when a distribution has a bounded q-th moment for q ≥ 2.

Additionally, Liu et al. (2021) proposed a private iterative filtering-based algorithm designed

to estimate the mean vector of heavy-tailed distributions under (ε,δ )-DP, even when the data

is corrupted by arbitrary outliers. Hopkins, Kamath and Majid (2022) utilized the sum-of-

squares method to design private algorithms that are robust to heavy-tailed distribution and

arbitrary outliers under pure DP. However, most of the proposed methods, although achieved by

polynomial-time algorithms, are still not as computationally tractable as those based on convex

optimization.

Despite the growing interest in developing robust non-private and private mean estimators

with sub-Gaussian deviation bounds, existing results have mainly focused on providing con-

centration bounds. Robust inference with heavy-tailed data, however, has often been neglected.

Due to the high complexity of existing robust mean algorithms, it is challenging to track the

limiting distributions of the resulting estimators. Constructing differentially private confidence

sets presents an even greater challenge since it involves accounting for the additional noise

needed to guarantee privacy.

The main goal of this paper is to develop an easy-to-implement GDP robust mean

estimator and construct privacy-preserving confidence intervals for heavy-tailed data. To achieve

robustness, we adopt a Huber (robust) loss function with a diverging robustification parameter

τ (Catoni, 2012; Mathieu, 2022). On the other hand, data privacy is typically guaranteed by
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randomly perturbing the output of non-private algorithms (Dwork et al., 2006b; McSherry and

Talwar, 2007). In particular, to privately release a non-private Huber-type robust estimator,

inspired by Song et al. (2013); Bassily, Smith and Thakurta (2014), we take a noisy optimization

approach by adding Gaussian noises in each iteration of the gradient descent method. This

noisy gradient decent procedure guarantees that the desired privacy level can still be met along a

sequence of outputs by carefully choosing the scale of the added noise. To make valid inferences,

one needs to leverage the distributional properties of the resulting private robust mean estimator.

Existing concentration/deviation bounds such as those in Mathieu (2022) do not allow us to

achieve this goal, even for the non-private Huber-type mean estimator. To this end, we first

provide a refined non-asymptotic analysis and establish Bahadur representation of the non-private

Huber-type mean estimator, which paves the road for the more challenging inference problem of

its private counterpart. In constructing the private confidence intervals, we show that the scale

of the privacy-inducing noise critically depends on the robustification parameter τ , which also

balances the bias and robustness of the non-private Huber-type estimator. The cost of privacy is

further revealed by our different choices of τ and the resulting deviation bounds together with

Gaussian approximation bounds for private and non-private robust mean estimators.

Our contributions are mainly three-fold: (a) A comprehensive analysis of a Huber-type

robust mean estimator. While a concentration study already appeared in the literature for robust

M-estimators of locations, our first contribution is to go beyond deviation analysis and establish

Bahadur representation and (uniform) Gaussian approximation, which are key ingredients to

construct both non-private and private robust confidence intervals. Notably, our analysis of

the Berry-Esseen bound reveals that the choice of robustification parameter τ that leads to the

smallest concentration bound results in a sub-optimal Berry-Esseen bound; see Remark 2.2.2 for

details. It is also worth mentioning that even for the concentration bounds with bounded second

moment assumption, our result still slightly improves that in Proposition 2 of Mathieu (2022)

due to using a different analysis. (b) Noisy gradient descent of Huber mean estimator. Our

second contribution is to privatize the Huber-type robust estimator via a noisy gradient descent
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algorithm. We provide a complete finite-sample convergence analysis, demonstrating that private

iterates converge linearly to a ball centered at the non-private Huber estimator with a radius

comparable to the noise added in each step. Different from most existing methods, one novelty is

that the privacy-inducing noise level critically depends on the robustification parameter τ , which

in turn controls the bias and robustness. In contrast to the non-private counterpart, the trade-off

between bias, robustness and privacy leads to a choice of τ explicitly depending on the privacy

level. Consequently, we show the cost of privacy in a deviation bound for our private robust mean

estimator and demonstrate its optimality in terms of the dependence on privacy and moment

conditions for some scenarios. In particular, the cost of privacy of our proposed estimator with

an appropriate choice of τ achieves the minimax optimal bound under the finite second moment,

and the estimator has the same cost as in Kamath, Singhal and Ullman (2020), which is the

smallest one in the literature under higher-moment assumptions. (c) Private robust confidence

intervals. The last but not least contribution is to construct both non-private and private robust

confidence intervals for linear projections of the mean under a bounded fourth moment condition.

We allow increasing dimension d due to the new Gaussian approximation results. The novel

construction of private robust confidence intervals is based on a noisy Studentized statistic. In

particular, to guarantee the privacy of the confidence interval, besides the private Huber-type

mean estimator, we further employ a robust and private estimator of the covariance.

Other related literature. In the statistics literature, a series of works are devoted to

developing differentially private approaches for statistical estimation with a focus on optimal

rates of convergence, including Wasserman and Zhou (2010); Barber and Duchi (2014); Duchi,

Jordan and Wainwright (2022); Cai, Wang and Zhang (2020, 2021); Rohde and Steinberger

(2020); Wang, Kifer and Lee (2019); Avella-Medina (2021); Avella-Medina, Bradshaw and

Loh (2023). For example, under the local differential privacy, a slightly stronger notion of DP,

Wasserman and Zhou (2010) revealed that existing private mechanisms lead to slower rates than

the minimax rates, and (Duchi, Jordan and Wainwright, 2022; Rohde and Steinberger, 2020)

further derived new minimax rates and corresponding private algorithms for several models.
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(Cai, Wang and Zhang, 2020, 2021) considered minimax optimality of mean estimation and

generalized linear regression with given differential privacy (DP) constraint under both the

low-dimensional and sparse high-dimensional settings. The studies in hypothesis testing and

confidence intervals with differential privacy are still limited in the statistical community. The

most relevant work to the current paper is Avella-Medina, Bradshaw and Loh (2023), which

considered optimization-based approaches for Gaussian differentially private M-estimators. In

particular, parametric inference problems are tackled by constructing private variance estimators.

While their general noisy gradient descent method can be applied for our robust mean estimation,

the inference analysis and results do not allow increasing dimensional settings. In contrast, our

newly established Gaussian approximation results together with a careful global convergence

analysis of the noisy optimization reveal the critical role of the robustification parameter, which

makes the inference under growing dimensions possible.

The rest of the paper is structured as follows. We first revisit the non-private robust

mean estimation problem under heavy-tailed distributions in Section 2.2. New concentration

bounds and normal approximation results are established for the proposed Huber estimator to

conduct robust inference, including constructing confidence intervals and sets in this section.

Section 2.3 introduces the basic background of Gaussian differential privacy and presents

our private Huber mean estimator via a noisy gradient descent algorithm with finite-sample

convergence analysis. New approaches for constructing private robust confidence intervals are

further presented in Section 2.3. Section 2.4 presents the numerical studies that evaluate the

performance of the proposed robust mean estimators, both non-private and private. Additionally,

a data-driven approach is proposed to choose the robustification parameter. Some proofs of

theorems in Section 2.2 are given in Appendix 2.5. The extension of our construction of private

robust estimators to other notions of differential privacy, a detailed description of the numerical

algorithm for computing private robust estimators, and remaining proofs for theoretical results

are relegated to the Supplementary Material Yu, Ren and Zhou (2023).
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NOTATION. The following notations will be used throughout this paper. For every integer d ≥ 1,

we use Rd to denote the d-dimensional Euclidean space. For any vector uuu = (u1, . . . ,ud) ∈ Rd ,

we use ∥uuu∥p(1 ≤ p ≤ ∞) to denote its ℓp-norm in Rp: ∥uuu∥p = (∑d
j=1 |u j|p)1/p and ∥uuu∥∞ =

max1≤ j≤d |u j|. The unit (d− 1)-sphere Sd−1 is defined as Sd−1 = {uuu ∈ Rd : ∥uuu∥2 = 1}. We

write a ≲ b if there exists an absolute constant C > 0 such that a ≤ Cb, and a ≳ b if b ≲ a.

Moreover, we write a≍ b if a ≲ b and a ≳ b.

2.2 Robust mean estimation and inference via Huber loss

In this section, we consider robust (multivariate) mean estimation using Huber loss

minimization. A more general version of this approach was proposed by Mathieu (2022), in

which concentration bounds are established. The idea of using a robust loss function with a

diverging robustification parameter (as a function of sample size) dates back to Catoni (2012),

and has also been employed in regression settings (Fan, Li and Wang, 2017; Zhou et al., 2018).

In Section 2.2.1, we first provide a concentration bound for the Huber mean estimator, denoted by

µ̂µµτ parameterized by τ > 0, based on a different technical argument compared to that employed

in Mathieu (2022). Next, we provide a non-asymptotic Bahadur representation result, indicating

that
√

n(µ̂µµτ −µµµ) can be approximated by a linear statistic with higher-order remainders. Based

on this result, in Section 2.2.2 we establish several normal approximation results (through Berry-

Esseen-type bounds) for the proposed robust estimator, which pave the way for constructing

robust confidence intervals under heavy-tailed distributions.

Throughout, let xxx1, . . . ,xxxn be independent observations from a random vector xxx∈Rd with

mean µµµ = (µ1, . . . ,µd)
T and covariance matrix Σ = (σkl)1≤k,l≤d , both assumed to be unknown.

2.2.1 A concentration study of Huber mean estimator

Given τ > 0, define the loss function ρτ(u) = τ2ρ(u/τ) for some continuously differ-

entiable convex function ρ : R→ [0,∞). Assume that ψ(u) = ρ ′(u) is Lipschitz continuous,

concave, and differentiable almost everywhere on R+. Mathieu (2022) provided a concentration
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study of the following M-estimator:

µ̂µµ = µ̂µµτ ∈ argmin
θθθ∈Rd

{
L̂τ(θθθ) :=

1
n

n

∑
i=1

ρτ

(
∥xxxi−θθθ∥2

)}
. (2.1)

Let ψτ(u) = ρ ′τ(u) = τψ(u/τ) be the score function. By the convexity of ρτ(·) and hence of

L̂τ(·), the M-estimator µ̂µµ can be equivalently defined as the solution to the equation

1
n

n

∑
i=1

ψτ(∥xxxi−θθθ∥2)

∥xxxi−θθθ∥2
(xxxi−θθθ) = 0.

In particular, Mathieu (2022) considered three robust mean estimators that are determined by

their corresponding score functions, which are

(i) (Huber’s score) ψ(u) = u1(|u| ≤ 1)+ sign(u)1(|u|> 1);

(ii) (Catoni’s score) ψ(u) = log(1+u+u2/2)1(u≥ 0)− log(1−u+u2/2)1(u < 0);

(iii) (Polynomial score) For p≥ 1, ψ(u) = u
1+u1−1/p1(u≥ 0)− u

1+(−u)1−1/p1(u < 0).

As demonstrated in Mathieu (2022), these three robust estimators exhibit similar theoreti-

cal and numerical performance. Therefore, we restrict attention to Huber’s estimator (Huber,

1964). The Huber loss is defined as

ρ(u) = min(u2/2, |u|−1/2),

with its score function listed in (i) above. A variety of smoothed Huber loss functions have

been discussed in the robust statistics literature (Hampel, Hennig and Ronchetti, 2011). See, for

example, Examples 1 and 2 in Avella-Medina, Bradshaw and Loh (2023).

Theorem 2.2.1 below provides a concentration bound for the (multivariate) Huber mean

estimator µ̂µµτ with a sufficiently large τ , explicitly dependent on the robustification bias. Through-
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out the rest, we write

λ̄ = ∥Σ∥2 := max
uuu∈Sd−1

∥Σuuu∥2, λ = min
uuu∈Sd−1

uuuT
Σuuu and r(Σ) = tr(Σ)/∥Σ∥2

as the largest eigenvalue, smallest eigenvalue, and effective rank of the covariance matrix Σ,

respectively.

Theorem 2.2.1. Assume that the random vector xxx ∈ Rd has mean vector µµµ and covariance

matrix Σ. For any z > 0, the Huber mean estimator µ̂µµτ given in (2.1) with τ ≳
√

tr(Σ) satisfies

the bound

∥µ̂µµτ −µµµ∥2 ≲ λ̄
1/2

√
r(Σ)+ z

n
+

τz
n
+bτ (2.2)

with probability at least 1−2e−z as long as n ≳ r(Σ)+ z, where

bτ :=
∥∥∥∥E{ψτ(∥xxx−µµµ∥2)

∥xxx−µµµ∥2
(xxx−µµµ)

}∥∥∥∥
2
≤

√
λ̄ tr(Σ)

τ
. (2.3)

We refer to bτ as the robustification bias. When τ = ∞, it is easy to see that b∞ = 0; in

general, bτ > 0 for any fixed τ > 0 unless the distribution of xxx is symmetric around µµµ .

To determine the optimal robustification parameter τ that minimizes the upper bound (2.2)

under higher moment assumptions, we next derive a bound for bτ . Before doing so, we first

introduce some additional notations. Assuming that mq := E∥xxx−µµµ∥q
2 is finite for some q≥ 2,

we define

νq = sup
uuu∈Sd−1

E|⟨xxx−µµµ,uuu⟩|q

(E⟨xxx−µµµ,uuu⟩2)q/2 and κq = max
1≤k≤d

E|xk−µk|q

{E(xk−µk)2}q/2 . (2.4)

In particular, ν4 and κ4 denote, respectively, the supremum of the kurtosises of all linear

combinations of xxx and the maximum of the kurtosises of all coordinates of xxx. These quantities
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characterize the degree of skewness of the random vector xxx. It is easy to see that ν4 ≥ κ4 > 1

if xxx is non-degenerate, and ν4 = κ4 = 3 when xxx∼N (µµµ,Σ). Also, note that when mq < ∞ for

q≥ 2, we have m1/q
q ≥ tr(Σ)1/2 by Jensen’s inequality, and Hölder’s inequality yields

mq = E
{
∥xxx−µµµ∥q−2

2

d

∑
k=1

(xk−µk)
2
}

≤
d

∑
k=1

(E∥xxx−µµµ∥q
2)

1−2/q(E|xk−µk|q)2/q ≤ m1−2/q
q ·κ2/q

q tr(Σ), (2.5)

so that tr(Σ)1/2 ≤ m1/q
q ≤ κ

1/q
q tr(Σ)1/2. With the notation, we now present the bound of the bias

bτ .

Lemma 2.2.1. Assume that there exists some q≥ 2 such that mq = E∥xxx−µµµ∥q
2 is finite. Then,

the bias term bτ satisfies

bτ ≤min
{

ν
1/q
q

λ̄ 1/2m1−1/q
q

τq−1 ,
mq

τq−1

}
.

Remark 2.2.1. By combining Lemma 2.2.1 and Theorem 2.2.1, we can choose τ that minimizes

bτ + τz/n. For instance, when the variance exists (q = 2), the optimal choice for τ is τ ≍

λ̄ 1/4tr(Σ)1/4(n/z)1/2, which leads to the bound

∥µ̂µµτ −µµµ∥2 ≲

√
tr(Σ)

n
+ λ̄

1/2r(Σ)1/4
√

z
n

(2.6)

with probability at least 1− 2e−z as long as n ≳ max{r(Σ), r(Σ)1/2z}. For heavy-tailed data

without adversarial corruption, the above bound slightly improves that in Proposition 2 of Mathieu

(2022) with q = 2 and εn = 0. In detail, Proposition 2 of Mathieu (2022) establishes that the

Huber estimator µ̂µµτ with τ ≍ tr(Σ)1/2(n/z)1/2 satisfies

∥µ̂µµτ −µµµ∥2 ≲

√
tr(Σ)

n
+ λ̄

1/2
√

z
n
+ λ̄

1/2r(Σ)1/2
√

z
n
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with probability at least 1−4e−z− e−n/32 as long as n ≳ z in our notations. Consequently, our

derived bound improves upon the multiplicative factor of r(Σ)1/2 in the bound of Mathieu (2022),

refining it to r(Σ)1/4.

Yet, the deviation bound (2.6) is still sub-optimal in terms of its dependence on λ̄ , tr(Σ)

and z. Specifically, it includes an extra multiplicative factor of r(Σ)1/4, compared to the optimal

Gaussian concentration bound. However, the main advantage of Huber loss minimization is

threefold: (i) the estimator is defined as the solution to a convex optimization problem, for which

the objective function is also locally strongly convex; (ii) the asymptotic distribution is easily

tractable, which significantly facilitates statistical inference; (iii) via noisy gradient descent,

we can construct differentially private robust mean estimator and the correspondent confident

intervals/sets as discussed in Section 2.3.

Moreover, the Huber estimator µ̂µµ attains the optimal concentration bound as long as z is

small under higher-moment assumptions. Specifically, when mq < ∞ for q > 2, we can choose

τ ≍ m1/q
q (n/z)1/q to obtain a tighter concentration bound given by

∥µ̂µµτ −µµµ∥2 ≲

√
tr(Σ)

n
+m1/q

q

(
z
n

)1−1/q

(2.7)

with probability at least 1−2e−z. Applying the inequality m1/q
q ≤ κ

1/q
q tr(Σ)1/2, we can see that

µ̂µµτ satisfies the optimal Gaussian concentration bound provided that z = O(n(q−2)/(2q−2)+n ·

r(Σ)−q/(q−2)). In this regime, the Huber estimator µ̂µµτ attains the optimal deviation bound.

Theorem 2.2.1 is restricted to establishing concentration/deviation bounds and thus

falls short in addressing the distributional characteristics of µ̂µµτ . However, the latter is the

cornerstone for statistical inference. To fill this gap, we further establish a non-asymptotic

Bahadur representation result for µ̂µµτ , which is the key to deriving Gaussian approximation

results with explicit error bounds.

Theorem 2.2.2. Assume that there exists some q≥ 2 such that mq =E∥xxx−µµµ∥q
2 <∞. Given t > 0,
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let the sample size satisfy n ≳ r(Σ)+ z. Then, the Huber mean estimator µ̂µµτ with τ ≳
√

tr(Σ)

satisfies

∥∥∥∥µ̂µµτ −µµµ− 1
n

n

∑
i=1

ψτ(∥xxxi−µµµ∥2)

∥xxxi−µµµ∥2
(xxxi−µµµ)

∥∥∥∥
2
≲

{
λ̄

1/2

√
r(Σ)+ z

n
+

τz
n
+bτ

}(
mq

τq +

√
z
n

)
(2.8)

with probability at least 1−3e−z, where ψτ(u) = τψ(u/τ) and bτ is defined in (2.3).

Theorem 2.2.2 shows that with high probability,
√

n(µ̂µµτ −µµµ) is first-order equivalent to

the linear term

1√
n

n

∑
i=1

ψτ(∥xxxi−µµµ∥2)

∥xxxi−µµµ∥2
(xxxi−µµµ),

which determines the asymptotic distribution of µ̂µµτ . Based on the Bahadur representation (2.8),

in Section 2.2.2, we establish several Gaussian approximation results for µ̂τ under the bounded

third or fourth moment condition. In particular, the boundedness of the fourth moment is crucial

for robust covariance estimation (Minsker, 2018; Mendelson and Zhivotovskiy, 2020).

2.2.2 Gaussian approximations

In this section, we present two Gaussian approximation results for the Huber mean

estimator µ̂µµτ under the bounded third or fourth moment condition. The dimension d is allowed

to grow with the sample size n and enters the Gaussian approximation error bounds through the

moment parameter mq = E∥xxx−µµµ∥q
2 for q≥ 3.

Theorem 2.2.3 below provides a Berry-Esseen bound for all (deterministic) linear combi-

nations of µ̂µµτ , from which the asymptotic normality immediately follows.

Theorem 2.2.3. Assume that mq = E∥xxx− µµµ∥q
2 < ∞ for some q ≥ 3, and let the sample size

satisfy n ≳ r(Σ)+ logn. Then, the Huber mean estimator µ̂µµτ with τ ≍ m1/q
q (n/ logn)γ for some
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γ ∈ [1/(q−1),1/2] satisfies

sup
uuu∈Rd ,x∈R

∣∣P(√n⟨uuu/∥uuu∥Σ, µ̂µµτ −µµµ⟩ ≤ x
)
−Φ(x)

∣∣≲ m1/q
q

λ
1/2

logn√
n

+ν
2/q
q

(
logn

n

)(q−2)/(q−1)

+
ν3√

n
,

(2.9)

where ∥uuu∥2
Σ

:= uuuTΣuuu and Φ(x) is the cumulative distribution function of N (0,1).

Remark 2.2.2. In Theorem 2.2.3, we require xxx to have at least the finite third moment so that

the upper bound in (2.9) depends on n through n−1/2. Instead, if m2+ι = E∥xxx−µµµ∥2+ι

2 < ∞ for

some 0 < ι < 1, the dependence on n can at best be n−ι/2; see Heyde (1967) for details. To

achieve the optimal n−1/2-rate, Theorem 2.2.3 shows that the choice of τ becomes more flexible

as higher-order moments are bounded. It is worth noting that the choice τ ≍ m1/q
q (n/ logn)γ

with γ ∈ [1/(q−1),1/2] for Gaussian approximation does not lead to the smallest concentration

bound, as shown in (2.7) with a choice τ ≍ m1/q
q (n/ logn)1/q. Yet, for this choice of τ , we will

obtain an n−1/2+1/q-rate for the Berry-Esseen bound.

When the q-th moment (q≥ 3) is finite, the two parameters νq and κq defined in (2.4)

are essentially dimension-free. Using the inequality m1/q
q ≤ κ

1/q
q tr(Σ)1/2 from (2.5), we can

substitute this bound into (2.9) to obtain a further bound for the first term on the right-hand side:

κ
1/q
q (λ̄/λ )1/2(logn)

√
r(Σ)

n
.

From an asymptotic view, with two dimension-free parameters νq and κq defined in (2.4) and a

bounded condition number of Σ, this shows that any linear combination of the coordinates of
√

n(µ̂µµτ −µµµ) converges in distribution to the correspondent linear combination of N (0,Σ) as

n→ ∞ under the growth condition r(Σ) log2(n) = o(n) as n→ ∞. Since r(Σ) ≤ d, a sufficient

condition on the dimension is d log2(n) = o(n).

To construct confidence intervals/sets based on the above result, we also need to robustly

estimate the variance ∥uuu∥2
Σ
= uuuTΣuuu, or the covariance matrix Σ. To this end, we consider a
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U-type robust covariance estimator proposed and studied by Fan et al. (2019) and Ke et al.

(2019). Given a robustification parameter ξ > 0, the U-type covariance estimator Σ̂ξ is defined

as

Σ̂ξ =
1(n
2

) ∑
1≤i< j≤n

ψξ

(
1
2
∥xxxi− xxx j∥2

2

)
(xxxi− xxx j)(xxxi− xxx j)

T

∥xxxi− xxx j∥2
2

, (2.10)

where ψξ (t) = ξ ψ(t/ξ ). By choosing δ = e−z in Theorem 3.2 of Ke et al. (2019) with a suitably

chosen ξ , the following proposition provides an exponential-type deviation bound for Σ̂ξ under

a bounded fourth moment condition.

Proposition 2.2.1 (Theorem 3.2 in Ke et al. (2019)). Assume xxx ∈ Rd has bounded fourth

moment, and write

v2
0 :=

1
4

∥∥E{(xxx1− xxx2)(xxx1− xxx2)
T}2∥∥

2. (2.11)

Let n0 = ⌊n/2⌋ be the largest integer not exceeding n/2. For any z > 0, the U-type covariance

estimator Σ̂ξ defined in (2.10) with ξ = v0
√

n0/{log(2d)+ z} satisfies

∥∥Σ̂ξ −Σ
∥∥

2 ≤ 2v0

√
log(2d)+ z

n0

with probability at least 1− e−z.

Remark 2.2.3. To compute Σ̂ξ , the major barrier is due to the U-statistics structure of (2.10),

in which the sum consists of O(n2) terms. Clémençon, Bellet and Colin (2016) proposed a

resampling technique named incomplete U-statistics, which reduces the computation complexity

to O(n). Alternatively, we can use the following truncated plug-in covariance estimator

Σ̃ξ =
1
n

n

∑
i=1

ψξ (∥xxxi− µ̂µµ∥2
2)

∥xxxi− µ̂µµ∥2
2

(xxxi− µ̂µµ)(xxxi− µ̂µµ)T, (2.12)
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where ξ > 0 is a robustification parameter and µ̂µµ is a prespecified robust mean estimator. Given

ξ and µ̂µµ , the computational complexity of Σ̃ξ is O(nd2). Assume xxx has a bounded fourth moment

and let

σ
2
0 = ∥E{(xxx−µµµ)(xxx−µµµ)T}2∥2.

For any z > 0, following the proof of Lemma 2.1 in Wei and Minsker (2017), it can be similarly

shown that conditioned on the event {∥µ̂µµ−µµµ∥2 ≤C1
√

tr(Σ)z/n} for some C1 > 0, the truncated

plug-in estimator Σ̃ξ with ξ = σ0
√

n/(z+ logd) satisfies

∥Σ̃ξ −Σ∥2 ≲ σ0

√
z+ logd

n
(2.13)

with probability at least 1− 4e−z as long as n ≥ C2(σ0/λ̄ )2(z + logd), where C2 > 0 is a

constant depending only on C1. Since σ2
0 ≤ ν4λ̄ tr(Σ) (see Lemma 4.1 in Minsker and Wei

(2020)), a sufficient sample size requirement for (2.13) is n ≳ ν4 r(Σ)(z+ logd). On the other

hand, it follows from Theorem 2.2.1 and Lemma 2.2.1 that the Huber mean estimator µ̂µµτ with

τ ≍ (m4 n/z)1/4 satisfies

∥µ̂µµτ −µµµ∥2 ≲

√
tr(Σ)+ λ̄ z

n
+m1/4

4

(
z
n

)3/4

≲

√
tr(Σ)+ λ̄ z

n
+κ

1/4
4 tr(Σ)1/2

(
z
n

)3/4

≲

√
tr(Σ)z

n

with probability at least 1−2e−z when the sample size satisfies n ≳ ν4 r(Σ)(z+ logd) and z > 1.

In other words, the Huber mean estimator satisfies the required bound (with high probability) for

the plug-in estimate in (2.12).

The following result complements Theorem 2.2.3 by providing a Berry-Esseen-type

bound for the studentized robust statistic
√

n⟨uuu, µ̂µµτ −µµµ⟩/(uuuTΣ̂ξ uuu)1/2 uniformly over uuu ∈ Rd .
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Theorem 2.2.4. Assume m4 = E∥xxx−µµµ∥4
2 < ∞ and let the sample size satisfy n ≳ r(Σ)+ logn.

For any γ ∈ [1/3,1/2], the Huber estimator µ̂µµτ with τ ≍ m1/4
4 (n/ logn)γ satisfies

sup
uuu∈Rd ,x∈R

∣∣P{√n⟨uuu, µ̂µµτ −µµµ⟩/(uuuT
Σ̂ξ uuu)1/2 ≤ x

}
−Φ(x)

∣∣≲ ν
1/2
4

λ̄

λ

√
r(Σ) log(nd) logn

n
, (2.14)

where Σ̂ξ is the U-type covariance estimator defined in (2.10) with ξ ≍ v0
√

n/ log(nd). In

particular, v2
0 ≤ 2ν4λ̄ tr(Σ).

From Theorem 2.2.4 we see that a sufficient condition for the asymptotic normality of

the Studentized statistic
√

n⟨uuu, µ̂µµτ −µµµ⟩/(uuuTΣ̂ξ uuu)1/2 is d log2(n) = o(n), the same as discussed

following Theorem 2.2.3. Consequently, for any (deterministic) vector uuu ∈ Rd of interest and

α ∈ (0,1), we can construct robust (approximate) 100(1−α)% confidence interval for ⟨uuu,µµµ⟩ as

[
⟨uuu, µ̂µµτ⟩− zα/2

(uuuTΣ̂ξ uuu)1/2
√

n
,⟨uuu, µ̂µµτ⟩+ zα/2

(uuuTΣ̂ξ uuu)1/2
√

n

]
, (2.15)

where zα/2 = Φ−1(1−α/2) denotes the (1−α/2)-th quantile of N (0,1).

We end this subsection with a uniform Gaussian approximation result, which provides

theoretical guarantees for multiple testing procedures based on Studentized robust statistics.

Theorem 2.2.5. Assume m4 = E∥xxx−µµµ∥4
2 < ∞ and let the sample size satisfy n ≳ r(Σ)+ logn.

Let GGG = (G1, . . . ,Gd)
T be a d-dimensional zero-mean Gaussian random vector with covariance

matrix cov(GGG) = corr(Σ) := (σkl/
√

σkkσll)1≤k,l≤d . For any γ ∈ [1/3,1/2], the Huber estimator

µ̂µµτ with τ ≍ m1/4
4 (n/ logn)γ satisfies

sup
x≥0

∣∣∣∣P{ max
1≤k≤d

∣∣∣∣√n(µ̂k−µk)√
σ̂kk

∣∣∣∣≤ x
}
−P(∥GGG∥∞ ≤ x)

∣∣∣∣≲ ν
1/2
4

λ̄

λ
log2(d) log(n)

√
d
n
, (2.16)

where σ̂kk is the k-th diagonal element of Σ̂ξ defined in (2.10) and ξ ≍ v0
√

n/ log(nd).
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Based on Theorem 2.2.5, we construct the confidence set

×d
k=1

[
µ̂k−ωα

√
σ̂kk

n
, µ̂k +ωα

√
σ̂kk

n

]
(2.17)

for µµµ ∈Rd , which has level 1−α asymptotically under the growth condition d log4(d) log2(n) =

o(n), where ωα is the (1−α)-quantile of ∥GGG∥∞. This confidence set is less conservative than

the conventional multiple testing methods, such as the Bonferroni method and the Šidák method,

which ignore the dependence structure among the d coordinates.

Another challenge is to compute ωα due to the unknown covariance matrix cov(GGG) =

corr(Σ), or equivalently Σ. To this end, we apply a plug-in method by replacing Σ with its robust

estimate Σ̂ξ , and then compute the quantile of ∥ĜGG∥∞ with ĜGG∼N (0,corr(Σ̂ξ )) via Monte Carlo

simulations. Its validity (consistency) is guaranteed by Proposition 2.2.2 below as long as the

right-hand side of the inequality is o(1).

Proposition 2.2.2. Assume m4 = E∥xxx−µµµ∥4
2 < ∞, and let

GGG = (G1, . . . ,Gd)
T ∼N (0,corr(Σ)) and ĜGG = (Ĝ1, . . . , Ĝd)

T ∼N (0,corr(Σ̂)),

where Σ̂ = Σ̂ξ is the U-type covariance estimator defined in (2.10) with ξ ≍ v0
√

n/ log(nd).

Then, with probability at least 1−2n−1, we have

sup
t≥0

∣∣∣∣∣P
(

max
1≤k≤d

|Ĝk| ≤ t
∣∣∣∣x1, . . . ,xn

)
−P
(

max
1≤k≤d

|Gk| ≤ t
)∣∣∣∣∣

≲ ν
1/2
4 (λ̄/λ )2 log(d) log(n)

√
r(Σ) log(nd)

n
. (2.18)

Remark 2.2.4. In this section, the inference results of the Huber estimator µ̂µµτ are limited to

constructing a confidence interval for the one-dimensional projection of ⟨uuu,µµµ⟩, where uuu is a

fixed direction in Rd , or for obtaining confidence intervals simultaneously for each coordinate of

µµµ . It is interesting to explore the possibility of extending these results to establish a multivariate

45



confidence region for the mean vector µµµ .

Following the idea from Spokoiny and Zhilova (2015); Chen and Zhou (2020), we

propose a likelihood-based confidence set using the multiplier bootstrap method. To elaborate,

let u1, . . . ,un be independent and identically distributed random variables that are independent of

the observed data Dn := {xxx1, . . . ,xxxn} and satisfy E(ui) = 0,var(ui) = 1 and Eexp(u2
i /A2)< ∞

for some constant A > 0. Introducing the random weights wi = 1+ui, we define the bootstrap

loss and bootstrap Huber estimator as

L̂ b
τ (θθθ) :=

1
n

n

∑
i=1

wiρτ(∥xxxi−θθθ∥2) for θθθ ∈ Rd,

and µ̂µµ
b
τ ∈ argmin∥θθθ−µ̂µµτ∥2≤R L̂ b

τ (θθθ), respectively, where R > 0 is a prespecified radius parameter.

Let P∗ denote the conditional probability over the random multipliers given Dn. Then, we denote

zb
α = zb

α(Dn) to be the upper α-quantile (0 < α < 1) of L̂ b
τ (µ̂µµτ)− L̂ b

τ (µ̂µµ
b
τ), that is,

zb
α = inf

{
z≥ 0 : P∗{L̂ b

τ (µ̂µµτ)− L̂ b
τ (µ̂µµ

b
τ)> z} ≤ α

}
.

Based on this, a confidence region for µµµ at the given confidence level 1−α is given by

{θθθ ∈ Rd : L̂τ(θθθ)− L̂τ(µ̂µµτ)≤ zb
α}.

Practically, the conditional quantiles of L̂ b
τ (µ̂µµτ)− L̂ b

τ (µ̂µµ
b
τ) can be computed with arbitrary

precision by using Monte Carlo simulations.

Since a significant amount of additional work, including the derivation of the concen-

tration property of the Wilks’ expansion for the excess risk L̂τ(µµµ)− L̂τ(µ̂µµτ) and theoretical

analysis of the bootstrap estimators, is still needed, we leave a rigorous theoretical investigation

and validation of this approach to future work.
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2.3 Differentially private robust mean estimation and
inference

In this section, we propose a Gaussian differentially private robust mean estimator via

the use of Huber loss and noisy gradient descent. The key observation is that the derivative of the

Huber loss ρτ(·), denoted by ψτ(·), is bounded in magnitude by τ . Therefore, we can utilize the

Gaussian mechanism (surveyed later in Section 2.3.1) to gain privacy. Note that µ̂µµτ is defined as

the minimum of a convex loss function, solvable by gradient descent and its many variants, we

thus apply a noisy gradient descent method (Bassily, Smith and Thakurta, 2014) to construct a

private version of µ̂µµτ that is also statistically robust. We provide a deviation study of this private

robust mean estimator and establish a Bahadur representation result based on which the validity

of Gaussian approximation is also provided. This enables us to construct private confidence

intervals for any linear combination of the mean vector.

2.3.1 Background on Gaussian differential privacy

The notion of differential privacy (DP) was first proposed to formalize the ad-hoc data

privacy idea that a DP mechanism (randomized algorithm) M should make the distributions of

M(XXX) and M(XXX ′) similar for any pair of datasets XXX and XXX ′ that differ by only one entry or datum.

Intuitively, an attacker is not able to detect whether any datum xxx belongs to the dataset XXX when a

DP algorithm is applied to XXX .

Definition 2.3.1 (Dwork et al. (2006a,b)). A dataset XXX = (xxx1,xxx2, . . . ,xxxn) ∈X n consist of n data

from some space X . We say two datasets XXX and XXX ′ are neighbors if they differ by one entry.

A randomized algorithm M : X n→ Y is said to be (ε,δ )-differentially private ((ε,δ )-DP) for

ε,δ > 0 if for any neighboring datasets XXX and XXX ′, and any measurable set E ⊆ Y ,

P{M(XXX) ∈ E} ≤ eεP{M(XXX ′) ∈ E}+δ ,
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where the probabilities are computed only over the randomness of the mechanism M.

From a statistical viewpoint, it is more natural to understand differential privacy in a

hypothesis testing problem that takes the form

H0 : the underlying dataset is XXX vs H1 : the underlying dataset is XXX ′. (2.19)

As revealed by Wasserman and Zhou (2010), for any 0 < α < 1, the power of α-level test

based on the output of an (ε,δ )-DP mechanism is upper bounded by eεα +δ . Therefore, it is

impossible to construct a powerful test based on the output of an (ε,δ )-DP mechanism for small

ε and δ .

Built upon the hypothesis testing interpretation, Dong, Roth and Su (2022) further

proposed and advocated a notion of Gaussian differential privacy (GDP). GDP has an attractive

interpretation to statisticians: the testing problem (2.19), e.g., identifying whether an individual

is in a dataset, is at least as difficult as distinguishing between N (0,1) and N (ε,1) based on a

single draw for some ε > 0. In other words, the privacy requirement in the notion of GDP can be

precisely characterized by a single parameter ε . The formal definition is as follows.

Definition 2.3.2 (Dong, Roth and Su (2022)). Let M be a randomized algorithm. We say M is

ε-Gaussian differentially private (GDP) if any α-level test φ for (2.19) has a power function

β (α)≤ 1−Φ(Φ−1(1−α)− ε)

for all α ∈ [0,1], where Φ(·) is the standard normal distribution function.

The definition might not be as transparent as the intuition described in the univariate

Gaussian distribution testing problem. Here, the function Φ(Φ−1(1−α)− ε) describes the

supreme of the type II errors of all α-level tests for distinguishing N (0,1) and N (ε,1) based

on a single draw, which is achieved by the likelihood ratio test. For formal proof, we refer to

Appendix A in Dong, Roth and Su (2022) for more details.
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Despite the remarkable success of (ε,δ )-DP, GDP has a number of appealing properties

compared to (ε,δ )-DP, as highlighted in Dong, Roth and Su (2022). Notably, among these

distinct attributes, GDP has been proven to provide a tight privacy guarantee under composition, a

feature that is absent in the (ε,δ )-DP mechanism (Murtagh and Vadhan, 2016). Furthermore, the

GDP mechanism preserves a transparent hypothesis testing interpretation, while other relaxations

of the (ε,δ )-DP mechanism, including concentrated differential privacy (CDP) (Dwork and

Rothblum, 2016; Bun and Steinke, 2016) and Rényi differential privacy (Mironov, 2017), no

longer have hypothesis testing interpretations.

We summarize several properties of GDP in the remainder of this subsection which are

central in developing our private robust mean estimator. A variety of basic algorithms such as the

gradient descent method used in Section 2.3.2 can be made private by simply adding a properly

scaled Gaussian noise in the output. To this end, for any (non-private) statistics hhh(XXX) ∈ Rd of

the dataset XXX , define the sensitivity of hhh as

sens(hhh) = sup
XXX ,XXX ′
∥hhh(XXX)−hhh(XXX ′)∥2, (2.20)

where the supremum is taken over all pairs of datasets XXX and XXX ′ that differ by one entry or

datum. The following lemma provides the key device to construct Gaussian differentially private

estimators. It is worth mentioning that only the univariate case (d = 1) was stated in Theorem 1

of Dong, Roth and Su (2022) but the extension to general d ≥ 1 is straightforward.

Lemma 2.3.1. (Theorem 1 in Dong, Roth and Su (2022)) Define the Gaussian mechanism that

operates on a statistic hhh ∈ Rd as

M(XXX) = hhh(XXX)+
sens(hhh)

ε
ggg,

where ggg∼N (0,Id). Then, the Gaussian mechanism M is ε-GDP.

Many algorithms, including our gradient descent approach in this paper, involve a
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sequence of differentially private steps where the computation of each step relies on both the same

dataset and outputs from previous steps. The joint mechanism is called “k-fold composition”.

Intuitively, the privacy would be gradually decayed along a sequence of outputs as the same

dataset is used several times. One critical question is how privacy degrades given that each

step alone is private. While the computation of precise privacy guarantees for compositions of

(ε,δ )-DP mechanisms can be computationally challenging Murtagh and Vadhan (2016), the

overall privacy guarantee for a composition of GDP mechanisms can be accurately reduced to

the privacy guarantee of a single GDP mechanism. Indeed, this is one of the major reasons that

GDP is advocated.

Lemma 2.3.2. (Corollary 2 in Dong, Roth and Su (2022)) Let M1 : X n → Y1 be the first

mechanism and Mt : X n×Y1×·· ·×Yt−1→Yt be the t-th mechanism for t = 2, . . . ,k. We define

the k-fold composed mechanism M : X n→Y1×·· ·×Yk as M(XXX) = (y1,y2, . . . ,yk) where y1 =

M1(XXX) and yt = Mt(XXX ,y1, . . . ,yt−1) for t = 2, . . . ,k. If M1 is ε1-GDP and Mt(·,y1, . . . ,yt−1) is εt-

GDP for any y1 ∈Y1, . . . ,yt−1 ∈Yt−1, then the k-fold composed mechanism M is
√

ε2
1 + . . .+ ε2

k -

GDP.

Of note, the k-fold composition is different from the traditional composition of functions

which is termed “post-processing” in the literature of privacy. In fact, privacy will not deteriorate

if a GDP mechanism/algorithm is simply post-processed independently of the original dataset,

as summarized in the lemma below.

Lemma 2.3.3. (Proposition 4 in Dong, Roth and Su (2022)) Let M : X n → Y be ε-GDP.

Denote a post-processing (randomized) algorithm Proc : Y →Z that maps the input M(XXX) to

some space Z . Then the post-processing Proc◦M : X n→Z is also ε-GDP.

2.3.2 Private robust mean estimation: Finite sample theory

In this section, under the Gaussian differential privacy mechanism, we propose a differ-

entially private Huber mean estimator via noisy gradient descent and provide a finite-sample
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convergence analysis. Recall the non-private Huber estimator µ̂µµτ defined in (2.1), which can be

computed by gradient descent

µµµ
(t+1) = µµµ

(t)+
η0

n

n

∑
i=1

ψτ(∥xxxi−µµµ(t)∥2)

∥xxxi−µµµ(t)∥2
(xxxi−µµµ

(t)), t = 0,1, . . . ,

where η0 > 0 is the step size (learning rate) and µµµ(0) is the initial value. To achieve a certain

level of privacy, we consider the following noisy version of gradient descent (Bassily, Smith and

Thakurta, 2014). For a predetermined number of iterations T , it computes

µµµ
(t+1) = µµµ

(t)+
η0

n

n

∑
i=1

ψτ(∥xxxi−µµµ(t)∥2)

∥xxxi−µµµ(t)∥2
(xxxi−µµµ

(t))+2T 1/2
τ

η0

εn
gggt (2.21)

for t = 0,1, . . . ,T − 1, where η0 > 0 is the step size, {gggt}T−1
t=0 is a sequence of independent

standard d-variate normal random vectors, and ε > 0 is the privacy parameter. The final private

estimator is denoted by µµµ(T ). Here the scale of the Gaussian noise is carefully chosen based on

the properties of GDP, i.e., Lemmas 2.3.1-2.3.2.

Proposition 2.3.1. Given an initial estimate µµµ(0) ∈ Rd and dataset XXXn = {xxx1, . . . ,xxxn}, consider

the noisy gradient descent iterates {µµµ(t)}T
t=0 defined in (2.21). Then the final output µµµ(T ) is

ε-GDP.

Proof. Consider two datasets XXXn and XXX ′n that differ by one datum, say xxx1 ∈ XXXn versus xxx′1 ∈ XXX ′n.

Let the (vanilla) gradient update be

hhh(XXXn,µµµ
(t)) = µµµ

(t)+
η0

n

n

∑
i=1

ψτ(∥xxxi−µµµ(t)∥2)

∥xxxi−µµµ(t)∥2
(xxxi−µµµ

(t)),
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and define hhh(XXX ′n,µµµ
(t)) similarly. At the first iteration, note that

∥hhh(XXXn,µµµ
(0))−hhh(XXX ′n,µµµ

(0))∥2

=
η0

n

∥∥∥∥ψτ(∥xxx1−µµµ(0)∥2)

∥xxx1−µµµ(0)∥2
(xxx1−µµµ

(0))−
ψτ(∥xxx′1−µµµ(0)∥2)

∥xxx′1−µµµ(0)∥2
(xxx′1−µµµ

(0))

∥∥∥∥
2
≤ 2τη0

n
.

Therefore, the sensitivity of hhh is upper bounded by 2τη0/n. By Lemma 2.3.1, adding a Gaussian

noise 2T 1/2τη0(εn)−1ggg0 to the gradient update makes this step (T−1/2ε)-GDP. Consequently,

µµµ(1) is (T−1/2ε)-GDP since the initial estimate µµµ(0) is deterministic. The second iterate µµµ(2) =

µµµ(2)(XXXn) takes µµµ(1) as input in addition to the dataset. It thus follows from Lemma 2.3.2 that

the two-fold composed (joint) mechanism (µµµ(1),µµµ(2)) is
√

ε2/T + ε2/T -GDP. Using the same

argument repeatedly, we conclude that the T -fold composed mechanism (µµµ(1), . . . ,µµµ(T )) is

ε-GDP, and so is µµµ(T ).

To establish the statistical properties of the ε-GDP robust estimate µµµ(T ), we first derive

a concentration bound conditioning on some “good” event with a set of parameters. Next, we

show that this event occurs with high probability when the parameters are properly chosen. To

begin with, given parameters r0 > 0 and χ ∈ (0,1), define the event

E1 = E1(r0,χ) =
{

µ̂µµ ∈Θ(r0/2)
}
∩
{

∇
2L̂τ(θθθ)⪰ (1−χ)Id, ∀θθθ ∈Θ(r0)

}
, (2.22)

where

Θ(r) := {θθθ ∈ Rd : ∥θθθ −µµµ∥2 ≤ r} for every r > 0, (2.23)

and µ̂µµ = µ̂µµτ is the non-private robust estimator defined in (2.1). We are now ready to present an

oracle-type concentration bound of the private estimator µµµ(T ) around µ̂µµ conditioning on E1.

Theorem 2.3.1. Consider the private estimate µµµ(T ) obtained from noisy gradient descent (2.21)

with step size η0 ∈ (0,1] and the initial estimate µµµ(0) ∈Θ(r0) for some r0 > 0. Let χ ∈ (0,1),z >
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0 and T ≥ 1. Define the optimization error ropt and the privacy error rp as

r2
opt(T ) = (1−ρ)T r2

0 and r2
p(T ) = η0T{η0 +(1−χ)−1}

(
d
ρ
+ z
)(

τ

εn

)2

,

where ρ = (1−χ)2η2
0 . Assume that the sample size satisfies

n ≳ T 1/2
τ

√
d +
√

logT + z
(1−χ)εr0

. (2.24)

Then, conditioning on the event E1 = E1(r0,χ), µµµ(T ) satisfies

∥µµµ(T )− µ̂µµ∥2
2 ≲ r2

opt(T )+ r2
p(T )

with probability (over {gggt}T−1
t=0 ) at least 1−2e−z.

Theorem 2.3.1 provides a concentration bound with two terms: optimization error ropt(T )

and privacy error rp(T ). As the number of iterations T increases and the step size η0 approaches

to 1, the optimization error decreases, whereas the privacy error increases. In addition to these

two errors, we also need to account for the statistical error of µ̂µµ in (2.2) to obtain a deviation

bound for µµµ(T ) around the true mean µµµ . Hence, we need to select an appropriate number of

iterations T to balance ropt(T ) and rp(T ), while also choosing τ to balance bias, robustness and

privacy error.

Before selecting appropriate parameters in Theorem 2.3.1 to consider the trade-off

between different sources of error and make the event E1 occur with high probability, we

provide a few remarks regarding the assumption on the initial iterate µµµ(0). In Theorem 2.3.1,

the minimum sample size required and the event E1 depend on r0, the ℓ2 distance between the

initial value µµµ(0) and the true mean µµµ . The following proposition shows that if ∥µµµ(0)−µµµ∥2 > r0,

implying R0 := ∥µµµ(0)− µ̂µµ∥2 > r0/2 conditioning on the event E1(r0,χ), then it takes as many as

T0 =O((R0/r0)
2) noisy gradient descent iterations to ensure that the above initial value condition
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is met, that is, ∥µµµ(T0)−µµµ∥2 ≤ r0.

Proposition 2.3.2. Assume the step size η0 ∈ (0,1] and let R0 = ∥µµµ(0)− µ̂µµ∥2. For any z > 0

and ∆ > 0, let T0 ≥ R2
0/(η0∆) and the sample size satisfy

n ≳
T 1/2BT0

ε
max

{
τ(R0 +T0τ)

∆
,T0

τη0

R0
,T0

(
τη0

R0

)2
}
,

where BT0 = BT0(z) =
√

d +
√

2(logT0 + z) and T is the predetermined number of iterations in

the definition of noisy gradient descent (2.21). Then, µµµ(T0) satisfies L̂τ(µµµ
(T0))− L̂τ(µ̂µµ) ≤ ∆

with probability (over {gggt}
T0−1
t=0 ) at least 1− e−z. In particular, conditioning on E1(r0,χ) and

taking ∆ = (1−χ)r2
0/8, we have

∥µµµ(T0)−µµµ∥2 ≤ r0 (2.25)

with probability (over {gggt}
T0−1
t=0 ) at least 1− e−z.

Next, the following proposition shows that, with suitably chosen (r0,χ), the event

E1(r0,χ) occurs with high probability.

Proposition 2.3.3. Assume the same conditions as in Theorem 2.2.1. Moreover, for a given

z > 0, let (r0,χ,τ) and n satisfy

r0 =
τ

2
and χ = χ(n,z) :=

4tr(Σ)
τ2 +

√
z

2n
.

Then, the event E1(r0,χ) with 0 < χ < 1 occurs with probability 1−3e−z as long as τ ≳
√

tr(Σ)

and n ≳ r(Σ)+ z.

Combining Proposition 2.3.3 with Theorem 2.3.1 yields the following result.

Corollary 2.3.1. Let ε > 0 be a predetermined privacy parameter. For any z > 1, let the sample
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size satisfy

n ≳ max
{

r(Σ)+ z,T 1/2
√

d +
√

logT + z
ε

}
(2.26)

with τ ≳
√

tr(Σ). Starting at µµµ(0) ∈Θ(τ/2), the ε-GDP robust estimator µµµ(T ) defined through

noisy gradient descent (2.21) with η0 = 1 and T ≍ log(n/z) satisfies the bounds

∥µµµ(T )− µ̂µµ∥2 ≲ τ
z
n
+(d + z)1/2(logn)1/2 τ

εn
(2.27)

and

∥µµµ(T )−µµµ∥2 ≲ λ̄
1/2

√
r(Σ)+ z

n
+ τ

z
n
+bτ +(d + z)1/2(logn)1/2 τ

εn
(2.28)

with probability at least 1−5e−z, where bτ is the bias term defined in (2.3).

Remark 2.3.1. Taking r0 = τ/2 in Proposition 2.3.2, we observe that even when the initial

iterate µµµ(0) fails to meet the assumption of Corollary 2.3.1, that is, when ∥µµµ(0)− µµµ∥2 > τ/2

which implies

τ

4
< R0 := ∥µµµ(0)− µ̂µµ∥2 ≤ ∥µµµ(0)−µµµ∥2 +

τ

2

conditioning on the event E1(r0,χ), we only need T0 ≍ R2
0/τ2 iterations to satisfy the initial

condition. Then, provided that T0 < T , we can consider µµµ(T0) as an initial estimate instead of

µµµ(0) in Theorem 2.3.1, resulting in

∥µµµ(T )− µ̂µµ∥2 ≲ ropt(T −T0)+ rp(T −T0)

with high probability, where ropt(·) and rp(·) are defined in Theorem 2.3.1. Note that we require

T ≍ logn in Corollary 2.3.1, and we choose τ to diverge as n→ ∞ to control the bias bτ ,
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implying T0 ≍ R2
0/τ2 = O(1). Consequently, we have T −T0 ≍ T , and the deviation bound of

Corollary 2.3.1 remains valid even when the initial condition is not satisfied. Furthermore, we

also note that since T0 ≍ R2
0/τ2, the sample size requirement of Proposition 2.3.2 reduces to

n ≳
T 1/2BT0

ε
max

(
R0

τ
,T0

)
≍ T 1/2BT0

ε
T0.

Given that we have T0 = O(1), the sample size requirement of Corollary 2.3.1 implies that

the above inequality holds as long as n is sufficiently large. Therefore, Corollary 2.3.1 and

Proposition 2.3.2 together ensure that the accuracy of the initial estimator does not significantly

impact the algorithm’s convergence.

Remark 2.3.2. From Corollary 2.3.1 we see that the parameter τ not only controls the bias-

robustness tradeoff, but also determines the global sensitivity. The latter is the key to the

privacy-preserving Gaussian mechanism (Dong, Roth and Su, 2022), as summarized in Lemma

2.3.1. Assume that xxx has bounded q-th moment mq = E∥xxx−µµµ∥q
2 (q≥ 2), satisfying tr(Σ)1/2 ≤

m1/q
q ≤ κ

1/q
q tr(Σ)1/2 according to (2.5). Taking z = logn and

τ ≍ ν
1/q
q λ̄

1/(2q)m(q−1)/q2

q

{
εn√

(d + logn) logn

}1/q

,

employing Lemma 2.2.1 yields

∥µµµ(T )−µµµ∥2

≲ λ̄
1/2

√
r(Σ)+ logn

n
+ν

1/q
q λ̄

1/(2q)tr(Σ)(q−1)/(2q)
{
(logn)1/2(d + logn)1/2

εn

}1−1/q

with probability exceeding 1−5n−1. Comparing this result with the bound (2.7) for non-private

robust estimator µ̂µµ , with a dimension-free parameter νq and bounded λ̄ , we have a larger second
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term

ν
1/q
q λ̄

1/(2q)tr(Σ)(q−1)/(2q)
{
(logn)1/2(d + logn)1/2

εn

}1−1/q

≲

(
d logn

εn

)1−1/q

,

which quantifies the “cost of privacy” of our ε-GDP robust mean estimator µµµ(T ) compared to its

non-private counterpart µ̂µµ .

Recently, Cai, Wang and Zhang (2021) showed that the minimax ℓ2 risk of sub-Gaussian

mean estimation with (ε,δ )-differential privacy is at least O(
√

d
n + d log1/2(1/δ )

εn ), explicitly

demonstrating its dependence on ε and δ . By Corollary 1 in Dong, Roth and Su (2022), an

algorithm is ε-GDP if and only if (ε,δ (ε))-DP, where δ (ε) = Φ(−1+ ε/2)− eεΦ(−1− ε/2).

Consequently, the cost of privacy of sub-Gaussian mean estimation with ε-GDP is thus at least

O( d
εn), up to logarithmic factors. In fact, supq≥1 κ

1/q
q is upper bounded by a constant if xxx is

sub-Gaussian with a finite Orlicz ψ2-norm Vershynin (2018). In this case, it can be shown

from Corollary 2.3.1 that with τ ≍
√

d + logn, the resulting ε-GDP Huber estimator attains the

minimax-optimal ℓ2 convergence rate, up to logarithmic factors.

For mean estimation under bounded q-th moment, the ℓ2 error of the proposed robust

ε-GDP estimator with the optimal τ is of order O(
√

d/n+( d
εn)

1−1/q) with high probability, ig-

noring the log(n)-factor. The slower term ( d
εn)

1−1/q characterizes the impact of heavy-tailedness

and privacy. For q = 2, we find that this matches the lower bound on the ℓ2-risk (Kamath,

Mouzakis and Singhal, 2022). The latter proposed an algorithm for achieving (ε,δ )-DP with

polynomial-time complexity, albeit with a more intricate implementation. The lower bound for

q > 2 remains unknown. Furthermore, for q > 2, the privacy cost of the ℓ2-risk of our estimator

aligns with that of the (ε,δ )-differentially private estimator proposed in Kamath, Singhal and

Ullman (2020). Finally, it is worth noting that the tail probability bound for the private robust

estimator we obtained decays exponentially with z, while the proof of Theorem 39 in Kamath,

Singhal and Ullman (2020) employs Markov’s inequality, resulting in a bound with a polynomial

decay.
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Combining the deviation bound (2.27) with Theorem 2.2.2, we obtain a non-asymptotic

Bahadur representation for the ε-GDP Huber estimator µµµ(T ) as stated below.

Corollary 2.3.2. For any z > 0, assume that all the conditions in Corollary 2.3.1 hold. Then, the

ε-GDP Huber estimator µµµ(T ) satisfies

∥∥∥∥∥µµµ
(T )−µµµ− 1

n

n

∑
i=1

ψτ(∥xxxi−µµµ∥2)

∥xxxi−µµµ∥2
(xxxi−µµµ)

∥∥∥∥∥
2

≲

{
λ̄

1/2

√
r(Σ)+ z

n
+

τz
n
+bτ

}(
mq

τq +

√
z
n

)
+(d + z)1/2(logn)1/2 τ

εn
(2.29)

with probability at least 1−8e−z.

Corollary 2.3.2 shows that with high probability,
√

n(µµµ(T )−µµµ) is first-order equivalent

to the linear term

1√
n

n

∑
i=1

ψτ(∥xxxi−µµµ∥2)

∥xxxi−µµµ∥2
(xxxi−µµµ),

which determines the asymptotic distribution of µµµ(T ) when τ is chosen in a suitable way. Based

on the Bahadur representation (2.29), in Section 2.3.3 we obtain a Gaussian approximation result

for µµµ(T ) under a bounded third or fourth moment condition.

2.3.3 Construction of private confidence intervals

In this section, we present a Gaussian approximation result for the ε-GDP Huber estimator

µµµ(T ) under the bounded q-th moment condition with q≥ 3, based on which differentially private

confidence intervals can be constructed. Without loss of generality, we assume ε ≤ 1.

Theorem 2.3.2. Assume mq =E∥xxx−µµµ∥q
2 < ∞ for some q≥ 3. Let the sample size satisfy (2.26)

and n≳
√
(d + logn) logn/ε with z= logn and τ ≍m1/q

q {εn/
√

(d + logn) logn}1/q. For µµµ(0) ∈
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Θ(τ/2), the ε-GDP Huber estimator µµµ(T ) with η0 = 1 and T ≍ log(n/ logn) satisfies

sup
uuu∈Rd ,x∈R

∣∣P(√n⟨uuu/∥uuu∥Σ,µµµ
(T )−µµµ⟩ ≤ x)−Φ(x)

∣∣
≲

m1/q
q

λ
1/2

{√
(d + logn) logn

ε

}1−1/q(1
n

)1/2−1/q

+ν
2/q
q

{√
(d + logn) logn

εn

}1−2/q

,

(2.30)

where νq is defined in (2.4).

Remark 2.3.3. Since m1/q
q ≤ κ

1/q
q tr(Σ)1/2, the first term on the right-hand side of (2.30) is

further bounded, up to constants, by

r(Σ)1/2
{√

(d + logn) logn
ε

}1−1/q(1
n

)1/2−1/q

,

which is the leading term under mild conditions. This term quantifies the impact of the proposed

privacy-preserving random noise mechanism and the heavy-tailedness of xxx. When xxx follows

a sub-Gaussian distribution with a finite Orlicz ψ2-norm, the above rate can be improved to

ε−1
√

r(Σ)(d + logn) log(n)/n (as if q = ∞). Comparing this result with Theorem 2.2.3 for

non-private robust estimator µ̂µµ , the different choice of τ ≍ m1/q
q {εn/

√
(d + logn) logn}1/q is

due to the tradeoff among bias, robustness and global sensitivity. Consequently, we have a

slower rate for the Berry-Esseen bound. Similar to the discussion following Theorem 2.2.3,

from an asymptotic view with a fixed value of ε , any linear combination of the coordinates

of
√

n(µµµ(T )− µµµ) converges in distribution to a normal distribution under a sufficient growth

condition d(2q−1)/(q−2)(logn)(q−1)/(q−2) = o(n).

To construct confidence intervals/sets in the differential privacy setting, the plug-in

method described in Section 2.2.2 cannot be directly applied. In the following, we introduce a

differentially private counterpart of the robust covariance estimator Σ̂ξ given in (2.10).
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Proposition 2.3.4. Let E ∈ Rd×d be a symmetric random matrix whose upper-triangular and

diagonal entries are i.i.d. N (0,1). For any robustification parameter ξ > 0, the perturbed robust

estimate Σ̂ξ +
4ξ

εn E is ε-GDP.

Proof. Let D = d(d+1)
2 , and denote by hhh(XXXn) the D-dimensional vector that consists of the upper-

triangular and diagonal entries of the covariance estimator Σ̂ξ = Σ̂ξ (XXXn) ∈ Rd×d . Consider two

datasets XXXn and XXX ′n that differ by one datum, say xxx1 ∈ XXXn versus xxx′1 ∈ XXX ′n. We have

∥hhh(XXXn)−hhh(XXX ′n)∥2 ≤ ∥Σ̂ξ (XXXn)− Σ̂ξ (XXX
′
n)∥F

≤

∥∥∥∥∥ 2
n(n−1) ∑

2≤i≤n

{
ψξ

(
∥xxx1− xxxi∥2

2
2

)
(xxx1− xxxi)(xxx1− xxxi)

T

∥xxx1− xxxi∥2
2

−ψξ

(
∥xxx′1− xxxi∥2

2
2

)
(xxx′1− xxxi)(xxx′1− xxxi)

T

∥xxx′1− xxxi∥2
2

}∥∥∥∥∥
F

≤ 4ξ

n
.

By Lemma 2.3.1, hhh(XXXn)+
4ξ

εn ggg with ggg∼N (0,ID) is ε-GDP. Then it follows from Lemma 2.3.3

that Σ̂ξ +
4ξ

εn E is also ε-GDP.

Remark 2.3.4. Based on Remark 2.2.3, we further consider a differentially private counterpart

of the truncated covariance estimator Σ̃ξ given in (2.12), which has a much smaller computational

complexity than Σ̂ξ . Let E ∈ Rd×d be the same random matrix as above. Following a similar

argument as in Propositions 2.3.1 and 2.3.4, we see that given a robustification parameter

ξ > 0 and an ε-GDP mean estimator µ̂µµ , the perturbed plug-in covariance estimator Σ̃ξ +
2ξ

εn E is
√

2ε-GDP.

Note that the perturbed matrix Σ̂ξ +
4ξ

εn E may not be positive semi-definite, and therefore

is not always a valid covariance estimator. To avoid this issue, we project Σ̂ξ +
4ξ

εn E onto a cone
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of positive definite matrices {H : H⪰ ζ I} and obtain

Σ̂ξ ,ε = argmin
H⪰ζ I

∥∥∥∥H−
(

Σ̂ξ +
4ξ

εn
E
)∥∥∥∥

2
, (2.31)

where ζ > 0 is sufficiently small. By Lemma 2.3.3, Σ̂ξ ,ε is also ε-GDP because it is the outcome

of a deterministic post-processing step. The following proposition provides a non-asymptotic

concentration bound of the private covariance estimator Σ̂ξ ,ε .

Proposition 2.3.5. Assume xxx has the finite fourth moment so that v2
0 given in (2.11) is well-

defined. Let n0 = ⌊n/2⌋ be the largest integer not exceeding n/2. Then, the private covariance

estimator Σ̂ξ ,ε defined in (2.31) with ξ = v0
√

n0/ log(2nd) satisfies

∥Σ̂ξ ,ε −Σ∥2 ≲ v0

√
log(nd)

n
+

v0

ε

√
d
n

with probability at least 1−2n−1.

Similarly to Theorem 2.2.4, we establish below a Berry-Esseen-type bound for the

studentized private statistic
√

n⟨uuu,µµµ(T )−µµµ⟩/(uuuTΣ̂ξ ,εuuu)1/2 for any uuu ∈ Rd .

Corollary 2.3.3. Under the same conditions as in Theorem 2.3.2 with q≥ 4, we have

sup
uuu∈Rd ,x∈R

∣∣P{√n⟨uuu,µµµ(T )−µµµ⟩/(uuuT
Σ̂ξ ,εuuu)1/2 ≤ x}−Φ(x)

∣∣
≲

m1/q
q

λ
1/2

{√
d + logn) logn

ε

}1−1/q(1
n

)1/2−1/q

+ν
1/2
4

λ̄

λ

√
r(Σ) logn

(√
logn

n
+

1
ε

√
d
n

)
,

(2.32)

where ξ = v0
√

n/ log(2nd) and Σ̂ξ ,ε is the differentially private covariance estimator defined

in (2.31).

Recall from Theorem 2.2.4 that v2
0 ≤ 2ν4λ̄ tr(Σ). Based on Theorem 2.3.2 and Proposi-

tion 2.3.5, the proof of (2.32) is almost identical to that of Theorem 2.2.4, and thus is omitted.
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Ignoring the moment parameters and the condition number λ̄/λ of Σ, the leading term on the

right-hand side of (2.32) is

r(Σ)1/2
{√

(d + logn) logn
ε

}1−1/q(1
n

)1/2−1/q

,

which essentially matches the upper bound in (2.30). In other words, the covariance estimation

error is dominated by the Gaussian approximation error under privacy.

Based on the Gaussian approximation result in Corollary 2.3.3, for any α ∈ (0,1) and

deterministic vector uuu∈Rd , we construct the following (
√

2ε)-GDP (approximate) 100(1−α)%

confidence interval of ⟨uuu,µµµ⟩:

[
⟨uuu,µµµ(T )⟩− zα/2

(uuuTΣ̂ξ ,εuuu)1/2
√

n
,⟨uuu,µµµ(T )⟩+ zα/2

(uuuTΣ̂ξ ,εuuu)1/2
√

n

]
, (2.33)

where zα/2 denotes the (1−α/2)-th quantile of N (0,1).

2.4 Numerical studies

In this section, we perform simulation studies to evaluate the numerical performance

of the Huber mean estimator and its differentially private counterpart. Regarding the choice of

robustification parameter τ , cross-validation provides a viable option but can be computationally

expensive and blind to problem structure. Recall from Theorem 2.2.3 that when the fourth

moment is finite, the Huber estimator with τ ≍m1/4
4 (n/ logn)γ for any γ ∈ [1/3,1/2] satisfies the

Berry-Esseen bound (2.9) that is of order m1/4
4 (λn)−1/2 logn+ν

1/2
4 {log(n)/n}3/4. Motivated

by this, we propose a heuristic data-driven approach to choose τ as described below.

Let µµµ(0) = (1/n)∑
n
i=1 xxxi be an initial estimate. At iteration t = 1,2, . . ., we take

τ
(t) = 0.2× ŝ(t)×

(
n

logn

)γ

with ŝ(t) = Med
(
{∥xxxi−µµµ

(t−1)∥2}n
i=1
)
,
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Figure 2.1. Plots of estimation error (under ℓ2-norm) versus sample size based on 500 repetitions
when d = 100.

and compute the gradient descent iterate

µµµ
(t) = µµµ

(t−1)+
η0

n

n

∑
i=1

ψ
τ(t)(∥xxxi−µµµ(t−1)∥2)

∥xxxi−µµµ(t−1)∥2
(xxxi−µµµ

(t−1)),

where η0 > 0 is the step size and γ ∈ [1/3,1/2]. Here, we compute the median of {∥xxxi−

µµµ(t−1)∥2}n
i=1, which is equivalent to taking the fourth root of the median of {∥xxxi−µµµ(t−1)∥4

2}n
i=1,

for a robust estimation of m1/4
4 = (E∥xxxi−µµµ∥4

2)
1/4. Repeat the above two steps until convergence,

or until the maximum number of iterations is reached. Since the loss function is locally strongly

convex with high probability, we can either use a fixed step size, say η0 = 1, or apply the

Barzilai-Borwein method (Barzilai and Borwein, 1988) to compute the step size automatically

without requiring any parameters. We choose γ = 1/2 in the following simulation studies. The

algorithm for computing the GDP Huber estimator and its confidence interval is provided in the

Supplementary Material Yu, Ren and Zhou (2023).

2.4.1 Robust mean estimation and inference

For estimation purposes, we compare the Huber mean estimator, computed by the above

algorithm with automatically tuned τ , with the sample mean estimator and the geometric median

estimator (gmed) (Minsker, 2015) under the following three distributions, the multivariate

normal (lighted-tailed and symmetric), multivariate t (heavy-tailed and symmetric) and Pareto

(heavy-tailed and asymmetric).
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Figure 2.2. Boxplots of estimation error (under ℓ2-norm) based on 500 repetitions when
(n,d) = (2000,100).

(i) xxx∼N (µµµ,Σ), where µµµ = (µ1, . . . ,µd)
T with µ j’s independently drawn from Rademacher

distribution, and Σ = (0.8|k−l|)1≤k,l≤d .

(ii) xxx follows a multivariate t distribution with 2.1 degrees of freedom. The mean vector

µµµ is generated the same way as in (i), and the covariance matrix is set to be Σ = 21 ∗

(0.8|k−l|)1≤k,l≤d .

(iii) xxx = (x1, . . . ,xd)
T has independent coordinates, and each x j follows a Pareto distribution

with shape parameter α = 2.5 and scale parameter 1.

We refer to Mathieu (2022) for more comparisons on the estimation errors. For statistical

inference, we only compare the proposed robust confidence construction with that of the sample

mean. How to construct confidence intervals/sets for other well-known robust mean estimators,

such as the geometric median and the geometric median of means, remains an open question.

We fix d = 100 and let the sample size n increase from 1000 to 2000. Figure 2.1 depicts

the ℓ2-error versus sample size for the three methods, averaged over 500 repetitions. The

Huber estimator is almost identical to the sample mean with normally distributed data, and

considerably outperforms the latter for t and Pareto distributed data. The robustness of Huber can

be further demonstrated by the boxplot comparison (when (n,d) = (2000,100)) in Figure 2.2.

These numerical results provide evidence that the Huber approach gains robustness against

heavy-tailedness without compromising efficiency.
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Next, we compare the proposed robust confidence intervals (CIs) based on the Huber

estimator with the standard CIs constructed from the sample mean and the sample covariance

matrix. We fix (n,d) = (3000,100), and randomly generate a unit vector uuu. The robust 95%

CI for ⟨uuu,µµµ⟩ takes the form of (2.15) but with Σ̂ξ replaced by Σ̃ξ in (2.12) to reduce compu-

tational cost. After obtaining the Huber mean estimator µ̂µµ , we use ξ = ŝ
√

n/ log(nd) with

ŝ = Med({∥xxxi− µ̂µµ∥2}n
i=1) to construct the robust covariance estimate. The empirical coverage

probabilities and average interval width (with its standard deviation in the parenthesis), averaged

over 500 Monte Carlo simulations, are reported in Table ??. Both methods achieve the nominal

coverage under the three distributions, but the robust CIs are consistently narrower and much

less variable in the case of heavy-tailed distributions.

In addition, we also conduct a comparative analysis of the performance of the proposed

robust multiple CIs against the Bonferroni method and the Šidák method. For α ∈ {0.1,0.05},

we construct robust multiple 100(1−α)% CIs for µµµ , which take the form of (2.17). For the

Bonferroni and Šidák methods, we replace ω1−α by z1−α/(2d) and z1−{1−(1−α)1/d}/2, respectively.

The empirical coverage probabilities under the multivariate normal and multivariate t-distribution,

averaged over 1000 Monte Carlo simulations, are presented in Table 2.2. The multiple CIs

based on the uniform Gaussian approximation consistently achieve the nominal coverage. In

contrast, the other two methods demonstrate a conservative behavior, indicated by their coverage

probabilities surpassing the nominal coverage. Hence, this empirical result supports the assertion

that our proposed multiple CIs are less conservative than the Bonferroni and Šidák methods.

2.4.2 Privacy-preserving robust mean estimation and inference

In this subsection, we first examine the numerical performance of the proposed private

robust algorithm for mean estimation when xxx = (x1, . . . ,xd)
T consists of i.i.d. t2.1-distributed

coordinates. The marginal means µ j =E(x j)’s are generated independently from the Rademacher

distribution so that |µ j| = 1 for all j = 1, . . . ,d. We fix the initial estimate µµµ(0) = 0 ∈ Rd and

step size η0 = 1, and set the number of iterations as T = ⌊logn⌋. We implement the private
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Table 2.1. Empirical coverage probabilities and average interval widths (with standard deviation
in parenthesis) of two normal-based 95% CIs for ⟨uuu,µµµ⟩ using the sample mean and the Huber
estimator, respectively. The results are based on 500 Monte Carlo simulations when (n,d) =
(3000,100).

Normal t Pareto
Coverage width (sd) Coverage width (sd) Coverage width (sd)

Sample
mean

0.954 0.067
(0.001)

0.944 0.166
(0.076)

0.948 0.101
(0.020)

Huber 0.954 0.067
(0.001)

0.938 0.101
(0.003)

0.954 0.090
(0.002)

Table 2.2. Empirical coverage probabilities of three multiple 100(1−α)% CIs for µµµ using the
Huber estimator with α ∈ {0.1,0.05}. The results are based on 1000 Monte Carlo simulations
when (n,d) = (3000,100).

Normal t
α = 0.1 α = 0.05 α = 0.1 α = 0.05

Proposed CIs 0.905 0.951 0.885 0.945
Bonferroni method 0.933 0.959 0.923 0.957
Šidák method 0.931 0.959 0.918 0.957

Normal t2.5
α = 0.1 α = 0.05 α = 0.1 α = 0.05

Coverage 0.898 0.960 0.896 0.934

Huber estimator under the following two scenarios.

(i) Fix d = 64, let n increase from 10000 to 50000, and set ε ∈ {0.3,0.5,0.9,∞}, the privacy

parameter. Here “ε = ∞” corresponds to the non-private Huber estimator.

(ii) Fix ε = 0.5, set d ∈ {32,64,128}, and let n increase from 10000 to 50000.

The logarithmic ℓ2-errors (log(∥µ̂µµ(T )−µµµ∥2)) versus sample size, averaged over 100 repetitions,

are depicted in Figure 2.3. As n increases, the correspondent logarithmic ℓ2-errors with various

privacy parameters differ by a constant. This is consistent with the theoretical rate of convergence

stated in Theorem 2.3.1.

Next, we proceed to assess the performance of the proposed robust GDP CIs based on

the private robust estimator. We fix the parameters (n,d) = (50000,32),ε = 0.5, and randomly
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Figure 2.3. Plots of logarithmic ℓ2-error versus sample size, averaged over 100 repetitions, for
the private Huber mean estimator under the t2.1 sampling distribution.

generate a unit vector uuu ∈ Sd−1. For µµµ = (µ1, . . . ,µd)
T with µ j’s independently drawn from

the Rademacher distribution, we generate i.i.d. coordinates x j’s from (i) N (0,1) and (ii) the t

distribution with 2.5 degrees of freedom. We construct the (
√

2ε)-GDP robust 95% CI for ⟨uuu,µµµ⟩

following the formulation outlined in (2.33). However, we replace Σ̂ξ ,ε with the perturbed plug-

in covariance estimator outlined in Remark 2.3.4 to reduce computational cost. The empirical

coverage probabilities, averaged over 500 Monte Carlo simulations, are presented in Table ??.

The result demonstrates that private confidence intervals achieve nominal coverage as long as the

sample size is sufficiently large to compensate for the efficiency loss due to privacy protection.

To highlight the robustness property of the proposed method, we further compare the

ε-GDP Huber estimator with the (ε,δ )-DP truncated mean estimator with δ = Φ(−1+ ε/2)−

eεΦ(−1− ε/2) (see Algorithm 3.1 in Cai, Wang and Zhang (2021)) under normal and Pareto

distributions. For simplicity, we generate independent coordinates x j’s from N (0,1) and the

Pareto distribution with shape parameter α = 2.1 and scale parameter 1. We fix d = 50, ε = 0.5

(so that δ ≈ 0.05), and let the sample size n increase from 10000 to 50000. As before, we set

T = ⌊logn⌋ and η0 = 1 in the noisy gradient descent algorithm. Note that Algorithm 3.1 in Cai,

Wang and Zhang (2021) involves a truncation tuning parameter R. For normal distributions, we

use the theoretically optimal choice R = 4
√

logn as suggested in Cai, Wang and Zhang (2021);

67



Figure 2.4. Plots of logarithmic ℓ2-error versus sample size, averaged over 100 repetitions, for
the ε-GDP Huber estimator and (ε,δ )-DP truncated mean estimator (Cai, Wang and Zhang,
2021) when d = 50.

Figure 2.5. Boxplots of logarithmic ℓ2 error based on 100 repetitions for the ε-GDP Huber
estimator and (ε,δ )-DP truncated mean estimator (Cai, Wang and Zhang, 2021) when (n,d) =
(50000,50).
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for the heavy-tailed Pareto distribution, there is no theoretical guidance for choosing R. We thus

take R ∈ {5
√

logn,10
√

logn} in this case.

Figures 2.4 and 2.5 show that the two methods perform similarly in the normal case.

Interestingly, the private Huber estimator does exhibit a visible improvement. In the heavy-

tailed case (Pareto distribution), the private Huber method considerably outperforms the noisy

truncated sample mean, at least under the prespecified truncation levels. Together, the numerical

results in Sections 2.4.1 and 2.4.2 provide strong evidence that the Huber mean estimator, either

non-private or private, achieves a high degree of robustness against heavy-tailedness while

maintaining high efficiency under light-tailed (e.g., sub-Gaussian) distributions.

2.5 Proofs of main results

2.5.1 Proof of Theorem 2.2.1

For simplicity, we write µ̂µµ = µ̂µµτ . For some r > 0 to be determined, define µ̃µµ = (1−

u)µµµ + uµ̂µµ , where u = sup{t ∈ [0,1] : t(µ̂µµ − µµµ) ∈ Θ(r)}. By this definition, u = 1 if θ̂θθ ∈ Θ(r),

and u ∈ (0,1) otherwise. For the latter, µ̃µµ ∈ ∂Θ(r).

Since µ̂µµ minimizes the convex objection function L̂τ(·), the first-order condition holds,

that is, ∇L̂τ(µ̂µµ) = 0. Further, applying Lemma C.1 in the supplementary material of Sun, Zhou

and Fan (2020) implies

⟨∇L̂τ(µ̃µµ)−∇L̂τ(µµµ), µ̃µµ−µµµ⟩ ≤ u⟨∇L̂τ(µ̂µµ)−∇L̂τ(µµµ), µ̂µµ−µµµ⟩ ≤ ∥∇L̂τ(µµµ)∥2∥µ̃µµ−µµµ∥2.

For the left-hand side, since µ̃µµ ∈Θ(r), it follows from the mean value theorem that

⟨∇L̂τ(µ̃µµ)−∇L̂τ(µµµ), µ̃µµ−µµµ⟩ ≥ inf
θθθ∈Θ(r)

λmin
(
∇

2L̂τ(θθθ)
)
· ∥µ̃µµ−µµµ∥2

2,

where λmin(∇
2L̂τ(θθθ)) is the smallest eigenvalue of ∇2L̂τ(θθθ). For any z > 0 and r < τ , Lemma
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D.1 in Yu, Ren and Zhou (2023) implies that, with probability at least 1− e−z,

1−P
(
∥xxx−µµµ∥2 > γ

)
−
√

z
2n
≤ uuuT

∇
2L̂τ(θθθ)uuu≤ 1 (2.34)

holds uniformly over θθθ ∈ Θ(r) and uuu ∈ Sd−1, where γ = τ − r and Θ(r) is defined in (2.23).

Furthermore, by Lemma D.2 in Yu, Ren and Zhou (2023), we have

∥∇L̂τ(µµµ)∥2 ≤ 2

√
tr(Σ)

n
+

√
2∥Σ∥2z

n
+

4τz
3n

+bτ (2.35)

with probability at least 1−e−z. Therefore, denoting Gz to be the event that (2.34) and (2.35) hold,

Gz occurs with probability at least 1−2e−z. By Markov’s inequality, P(∥xxx−µµµ∥2 > γ)≤ γ−2 tr(Σ).

Then, conditioned on Gz, the above upper and lower bounds yield

(
1− γ

−2 tr(Σ)−
√

z
2n

)
· ∥µ̃µµ−µµµ∥2

2 ≤ ∥µ̃µµ−µµµ∥2

{
2

√
tr(Σ)

n
+

√
2∥Σ∥2z

n
+bτ +

4τz
3n

}
.

This, combined with the local constraint µ̃µµ ∈Θ(r), implies

∥µ̃µµ−µµµ∥2 ≤ 2

√
tr(Σ)

n
+

√
2∥Σ∥2z

n
+bτ +

4τz
3n

+ r ·

{
tr(Σ)

γ2 +

√
z

2n

}
.

To conclude the proof, note from Lemma D.2 in Yu, Ren and Zhou (2023) that bτ ≤

τ−1
√
∥Σ∥2 tr(Σ). Taking r = γ = τ/2, and let (n,τ) satisfy n ≳ r(Σ)+ z and γ ≳

√
tr(Σ), the

right-hand side of the above inequality is strictly less than r, indicating that µ̃µµ falls in the interior

of Θ(r). Via proof by contradiction, we reach the conclusion µ̂µµ = µ̃µµ ∈Θ(r) (otherwise µ̃µµ must

be on the boundary of Θ(r)), and hence the same bound applies to µ̂µµ .
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2.5.2 Proof of Theorem 2.2.2

For hhh ∈ Rd , define the function ∆(hhh) = ∇L̂τ(µµµ +hhh)−∇L̂τ(µµµ)−hhh. By the mean value

theorem for vector-valued functions,

∆(hhh) =
∫ 1

0
∇

2L̂τ(µµµ + thhh)dt ·hhh−hhh =
∫ 1

0

{
∇

2L̂τ(µµµ + thhh)− Id
}

dt ·hhh.

Hence, for any r > 0, we have sup∥hhh∥2≤r ∥∆(hhh)∥2≤ supθθθ∈Θ(r) ∥∇2L̂τ(θθθ)−Id∥2 ·r. This together

with Lemma D.1 in Yu, Ren and Zhou (2023) implies that, with probability at least 1− e−z,

sup
∥hhh∥2≤r

∥∥∇L̂τ(µµµ +hhh)−∇L̂τ(µµµ)−hhh
∥∥

2 ≤ r
(

γ
−qE∥xxx−µµµ∥q

2 +

√
z

2n

)
, (2.36)

where γ = τ− r.

For simplicity, we write µ̂µµ = µ̂µµτ . Setting ĥhh = µ̂µµ − µµµ , Theorem 2.2.1 ensures that

∥ĥhh∥2≤ r0 with r0≍
√
{tr(Σ)+∥Σ∥2z}/n+τz/n+bτ with probability at least 1−2e−z, provided

n ≳ r(Σ)+ z and τ ≳
√

tr(Σ). Note that the gradient of the empirical loss L̂τ(·) is given by

∇L̂τ(θθθ) =−
1
n

n

∑
i=1

ψτ(∥xxxi−θθθ∥2)

∥xxxi−θθθ∥2
(xxxi−θθθ) (2.37)

for θθθ ∈ Rd . Taking r = r0, the claimed bound (2.8) follows from (2.36), (2.37) and the fact that

∇L̂τ(µ̂µµ) = 0.
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Chapter 3

Deep Neural Network Expected Shortfall
Regression with Heavy-tailed Data

3.1 Introduction

Expected shortfall (ES), also known as conditional value-at-risk or superquantile, is

defined as the expected value of a random variable, given that its realization falls below some

quantile of the underlying distribution. Initially introduced as a risk measure by Artzner et

al. (1997), ES has gained widespread recognition and applicability across various disciplines,

including finance (Acerbi and Tasche, 2002; Rockafellar and Uryasev, 2002), operations re-

search (Rockafellar and Uryasev, 2000; Rockafellar et al., 2008), engineering (Rockafellar and

Royset, 2010), and clinical studies (He et al., 2010), among others. Notably, in the recent

Fundamental Review of the Trading Book (Basel Committee, 2019), the Basel Committee on

Banking Supervision confirmed the replacement of the value at risk (quantile) with ES as the

standard risk measure for market risk. Furthermore, in the context of insurance regulation, ES

has been adopted as a risk measure in the Swiss Solvency Test.

Formally, let Y be a real-valued random variable, denoting for example the return of an

asset or investment portfolio. Let FY be its cumulative distribution function (CDF). Denote the

quantile of Y at level α ∈ (0,1) by qα(Y ) := inf{y ∈ R : FY (y)≥ α}. Provided that E|Y |< ∞,
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the ES of Y at level α is defined as

eα(Y ) := E{Y |Y ≤ qα(Y )}=
1
α
E[Y1{Y ≤ qα(Y )}].

Intuitively, the α-level ES refers to the average of the lowest (100 ·α)% portion of Y , rescaled

by 1/α . If FY is continuous at qα(Y ), the α-level ES can be equivalently expressed as eα(Y ) =

1
α

∫
α

0 qu(Y )du. We refer to Sections 2.2.4 of McNeil et al. (2015) for a brief introduction to the

expected shortfall and its basic properties.

In the presence of covariates X ∈ Rd , the objective of this study is to estimate the

conditional ES of Y given X , using a sample {(Xi,Yi)}n
i=1 of size n. One challenge of this problem

lies in the fact that ES is not elicitable (Gneiting, 2011), meaning that there is no loss function

such that ES is the unique minimizer of the expected loss. To tackle this challenge, Fissler

and Ziegel (2016) demonstrated that ES is jointly elicitable with the quantile by constructing a

class of joint loss functions that are strictly consistent. Expanding on this important property,

Dimitriadis and Bayer (2019) introduced a joint linear regression framework for modeling

conditional quantile and ES, while Patton et al. (2019) considered a semi-parametric model in

the autoregressive context. From an alternative perspective that regards the (conditional) quantile

as a nuisance parameter, Barendse (2020) and Peng and Wang (2023) each proposed two-step

estimators and established their asymptotic properties under the fixed-d regime. Although their

definitions differ, both methods rely on an orthogonality property, as we will revisit in Section 3.3.

In practice, the relationship between the response variable Y and covariates X often

displays a high degree of nonlinearity, requiring the use of nonparametric regression techniques.

To estimate nonlinear conditional ES functions, Scaillet (2005) employed the Nadaraya-Watson

estimator to estimate the conditional CDF of Y given X in the initial stage, followed by the

estimation of conditional ES functions. Furthermore, Cai and Wang (2008) and Kato (2012)

employed weighted Nadaraya-Watson estimators to estimate conditional CDFs and ES functions.

As the dimensionality of the covariate space increases, the amount of data required to obtain
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accurate estimations using the Nadaraya-Watson estimator grows exponentially. This is because

the estimator involves weighting each data point based on its distance from the point being

estimated. In higher dimensions, the “neighborhood” of a given point becomes sparser, making

it challenging to find enough nearby points for accurate weighting. Consequently, the estimator

suffers from reduced accuracy and efficiency when applied to moderate-dimensional data.

In the last decade, deep learning has achieved remarkable success and emerged as an

indispensable tool for analyzing nonlinear relationships between various types of outcomes

and explanatory variables. With the availability of vast amounts of digitized data and the

development of efficient computational algorithms, deep neural networks (DNNs) have become

widely used and consistently outperformed traditional methods in various machine learning

tasks, as exemplified by natural language processing (Otter, Medina and Kalita, 2021) and

image classification (Krizhevsky, Sutskever and Hinton, 2017). More recently, DNNs have also

demonstrated their exceptional performance in forecasting climate data. By elucidating intricate

nonlinear relationships with a variety of explanatory variables, DNN-based methods have shown

remarkable accuracy in predicting El Niño–Southern Oscillation, precipitation and temperature

(Huang, Vega-Westhoff and Sriver, 2019; Jose, Vincent and Dwarakish, 2022; Wang et al., 2023).

From a statistical viewpoint, the success of DNNs can be attributed, in part, to their

ability to effectively approximate various complex functions. In particular, recent studies (Bauer

and Kohler, 2019; Schmidt-Hieber, 2020; Kohler and Langer, 2021) have shown that DNN-based

regression estimators can adapt to the intrinsic low-dimensional structure of the conditional

mean function, enabling them to circumvent the curse of dimensionality. Specifically, when

the conditional mean function can be represented as a hierarchical composition of several

smooth functions, with either a high degree of smoothness or low input dimension, DNN-based

estimators demonstrate an ability to adapt to the intrinsic low-dimensional structure of the

regression function. Moreover, DNNs have also found successful applications in estimating the

nonlinear component of semi-parametric models to mitigate the curse of dimensionality. This

enables the construction of statistically efficient inferences on the linear component of the model
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(Farrell et al., 2021; Zhong et al., 2022; Zhong and Wang, 2023).

In the aforementioned literature on deep neural network regression, the response or

noise variable is required to be either bounded or sub-Gaussian, which can be a fairly stringent

assumption in practice. In light of this issue, our aim is to develop a robust nonparametric

estimator of the conditional ES function that exhibits resilience in the presence of heavy-tailed

error distributions. It is worth noting that most of the extant studies on ES estimation primarily

focused on deriving the asymptotic properties of their estimators. Consequently, the asymptotic

results they provided can only yield polynomial-type (high probability) deviation bounds. One

notable exception is He et al. (2023), where the authors proposed a robust ES estimator that

exhibits insensitivity to heavy-tailed noise under joint linear conditional quantile and ES models.

They showed that the robust estimator outperforms the least-squares-type estimator from a non-

asymptotic perspective. Under such linear models, we note that both two-stage estimators exhibit

a convergence rate of O(
√

d/n) under expectation, where n is the number of observations.

In the context of nonparametric regression with heavy-tailed errors, there has been a

growing interest in recent times. Notably, several recent works (Han and Wellner, 2018, 2019;

Kuchibhotla and Patra, 2022) have addressed the impact of heavy-tailed errors on the convergence

rate of LSEs that are constrained to the nonparametric function class to which the true conditional

mean function belongs. Due to the lack of robustness of LSEs, alternative robust methods have

been developed to address this issue, particularly when neural networks are employed. For

example, Shen et al. (2021); Padilla et al. (2022) focused on nonparametric robust regression

using the check loss, establishing the convergence rate of DNN quantile regression estimators.

Fan et al. (2022) considered nonparametric adaptive Huber regression and demonstrated that the

corresponding robust estimator achieves a faster convergence rate compared to the LSE when

the noise is heavy-tailed.

In this paper, we introduce a robust two-stage method for estimating the ES regression

function using DNNs. Building upon the approach of Barendse (2020), the proposed method

involves estimating the quantile regression (QR) function through any machine learning method
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in the first stage, followed by nonparametric adaptive Huber regression (Fan et al., 2022) with

generated response variables in the second stage; see Section 3.3.2 for a rigorous construction of

the method. By employing neural networks, the estimator can adapt to the unknown hierarchical

composition structure of the true conditional ES function. Furthermore, the proposed method

demonstrates more robust behavior compared to a two-stage LSE in the presence of heavy-tailed

errors. The main contributions of this work are summarized as follows.

First, we establish a non-asymptotic deviation bound on the L2-error of the proposed

robust estimator. In detail, given a first-stage QR estimator, we establish an oracle-type upper

bound for approximate empirical risk minimizers trained on a neural network of arbitrary depth

and width, using a Huber loss with a reasonably large robustification parameter τ . The resulting

L2-error bound is comprised of six distinct terms. Notably, by using orthogonal score functions,

which are locally insensitive to first-stage QR estimators, the deviation bound is first-order

negligible with respect to the L4-error of the QR estimator. For comparisons, oracle-type

deviation bounds are also presented for a two-stage LSE for the conditional ES.

Secondly, we derive a novel approximation error bound for a composition of Hölder

smooth functions using ReLU-activated DNNs. This work builds upon the results of Jiao

et al. (2023) and Fan et al. (2022). Jiao et al. (2023) derived an approximation error bound

for a Hölder smooth function with the smoothness index β ≥ 1, and its prefactor depends on

the input dimension polynomially. Fan et al. (2022) derived an approximation error bound

for a composition of Hölder smooth functions, which depends on the intrinsic dimension of

the composite function. However, the prefactor of their approximation error bound depends

exponentially on the input dimensions of the components of the composite function. We

establish an approximation error bound for composite functions that depends on the intrinsic

dimension, mitigating the curse of dimensionality to some extent. Furthermore, the prefactor of

the approximation bound significantly improves, exhibiting polynomial dependence on the input

dimensions of the component functions instead of exponential. Applying this approximation

result, we are able to establish an exponential-type deviation bound for a nonparametric QR
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estimator using DNNs, where the prefactor of this bound depends on the input dimension

polynomially.

To derive a specific error bound for the two-stage ES estimator based on the oracle

result, we need to select appropriate values for the depth and width of neural networks, the

robustification parameter τ , and choose a suitable QR estimator. By employing DNNs to estimate

the QR function and balancing the terms comprising the L2 bound, we establish convergence

rates for both the robust two-stage estimator and two-stage LSE in cases where the true quantile

and ES regression functions are compositions of smooth functions. These results demonstrate

that both estimators effectively overcome the curse of dimensionality, as their convergence

rates depend solely on the intrinsic dimension while adapting to the underlying compositional

structure. In the presence of heavy-tailed errors, the robust estimator outperforms the LSE by

achieving a faster convergence rate. Moreover, from a non-asymptotic viewpoint, the robust

two-stage estimator exhibits exponential-type deviation bounds, whereas the LSE only exhibits

polynomial-type L2-error bounds in high probability. Finally, by applying our new approximation

results, the prefactors of error bounds for both estimators exhibit a polynomial dependence on

the dimensions.

NOTATION. We use c1,c2, . . . to denote the global constants employed in the statements and

proofs of theorems, propositions, corollaries, and lemmas. We use C1,C2, . . . to denote the local

intermediate constants within the proof. Thus, each c1,c2, . . . has a distinct referred numbers,

while C1,C2, . . . may vary from one line to another. We write a ≲ b if there exists an absolute

constant C > 0 such that a ≤Cb, and a ≳ b if b ≲ a. Moreover, we write a ≍ b if a ≲ b and

a ≳ b. We denote N0 = {0,1,2, . . .} and N+ = {1,2, . . .} to be the sets of nonnegative integers

and positive integers, respectively. For any real-valued function h defined on a domain X , we

denote the supremum norm of h over X as ∥h∥∞. For the sample size n, we always assume

n≥ 3 so that logn≥ 1.
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3.2 Model Setup and Preliminaries

3.2.1 Model

Let {(Yi,Xi)}n
i=1 be a collection of independent observations from the random variable

(Y,X) ∈ R×X , where X ⊆ Rd is a compact subset. Here, Y denotes a real-valued response

variable and X represents a d-dimensional vector of covariates that follows some distribution

PX . Without loss of generality, we assume X = [0,1]d , the unit cube in Rd , throughout the

following. At some probability level α ∈ (0,1) of interest, we denote the conditional α-level

quantile and expected shortfall of Y given the covariates X as qα(Y |X) and eα(Y |X), respectively.

Here, the conditional ES is formally defined as eα(Y |X) = E{Y |Y ≤ qα(Y |X),X}. We consider

the following nonparametric joint quantile and ES regression model:

qα(Yi|Xi) = f0(Xi) and eα(Yi|Xi) = g0(Xi), (3.1)

where f0,g0 : [0,1]d → R are two unknown functions satisfying P{Y ≤ f0(X)|X = xxx}= α and

g0(xxx) = α−1E[Y1{Y ≤ f0(X)}|X = xxx] for xxx ∈ [0,1]d .

Our primary object is to propose a fully nonparametric estimator ĝ of the function

g0, and derive its rate of convergence under L2-norm ∥ · ∥2, defined as ∥h∥2 := ∥h∥PX ,2 =√
EX∼PX |h(X)|2 for any h : [0,1]d → R. Imposing smootheness assumption on the regression

function is essential to derive meaningful insights regarding the rate of convergence. Thus, we

begin by introducing the following definition of Hölder smooth classes.

Definition 3.2.1 (Hölder class of functions H β (X ,M0)). Let β = r + s for a nonnegative

integer r = ⌊β⌋ and 0 < s ≤ 1, where ⌊a⌋ denotes the largest integer that is strictly smaller

than a ∈ R. Given a subset X ⊆ Rd and a constant M0 > 0, a function f : X → R is

called (β ,M0)-smooth on X if for every ααα = (α1, . . . ,αd)
T ∈ Nd

0 with ∑
d
j=1 α j ≤ r, the par-

tial derivative ∂ ααα f = (∂ f )/(∂xα1
1 · · ·∂xαd

d ) exists and satisfies max∥ααα∥1≤r ∥∂ ααα f∥∞ ≤ M0 and

max∥ααα∥1=r supxxx1 ̸=xxx2
|∂ ααα f (xxx1)− ∂ ααα f (xxx2)|/∥xxx1− xxx2∥s

2 ≤M0, where ∥ααα∥1 = ∑
d
j=1 α j. We then
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use H β (X ,M0) to denote collection of all (β ,M0)-smooth functions on X .

Throughout the paper, we assume M0 ≥ 1 without loss of generality. Moreover, note

that the definition of Hölder class implies that if a function f belongs to H β (X ,M0), then f is

bounded in magnitude by M0. This can be derived by considering ααα = 000 in the definition.

Nonparametric estimation of a function within Hölder classes exhibits significantly

slower convergence rates as the dimension d becomes large. For example, it has been well

established that the minimax rate of convergence for estimating a mean regression function

within H β (X ,M0) is of order n−β/(2β+d) (Stone, 1982). This phenomenon is commonly

recognized as the curse of dimensionality. In order to circumvent the curse of dimensionality, we

focus on functions that have a compositional structure, also known as the hierarchical interaction

model (Bauer and Kohler, 2019; Kohler and Langer, 2021).

Definition 3.2.2 (Hierarchical interaction model). Let l,d ∈ N+, M0 ≥ 1 and P be a subset of

[1,∞)×N+ with sup(β ,t)∈P(β ∨ t)< ∞. The hierarchical interaction model H (d, l,M0,P) is

defined recursively as follows.

(i) We say that a function h : Rd → R satisfies the model H (d,1,M0,P) if there ex-

ist some (β , t) ∈P , h0 ∈H β (Rt ,M0) and { j1, . . . , jt} ⊆ {1, . . . ,d} such that h(xxx) =

h0(x j1, . . . ,x jt ) for all xxx = (x1, . . . ,xd)
T ∈ Rd .

(ii) For l > 1, we say that a function h : Rd → R satisfies the hierarchical interaction model

H (d, l,M0,P) if there exist some (β , t) ∈P with h0 ∈H β (Rt ,M0) and u1, . . . ,ut ∈

H (d, l−1,M0,P) such that h(xxx) = h0(u1(xxx), . . . ,ut(xxx)) for all xxx ∈ Rd .

As discussed in Kohler and Langer (2021), this general model encompasses various

well-known nonparametric and semiparametric models, including additive models (Stone, 1985),

single index models (Härdle et al., 1993) and the projection pursuit (Friedman and Stuetzle,

1981). Extensive research (Bauer and Kohler, 2019; Kohler and Langer, 2021; Schmidt-Hieber,

2020) has established that the minimax optimal convergence rate for the hierarchical composition
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model is determined by the most challenging (least smooth) component within the composition.

This challenging component is characterized by the quantity

γ
∗ =

β ∗

t∗
, where (β ∗, t∗) = argmin

(β ,t)∈P

β

t
. (3.2)

We refer to the ratio β/t as the dimension-adjusted degree of smoothness.

3.2.2 ReLU neural networks

Our proposed nonparametric estimators for joint quantile and ES regression are con-

structed using truncated fully-connected deep neural networks with the rectified linear unit

(ReLU) activation function, denoted as σ(·) = max(·,0). These networks are succinctly referred

to as truncated deep ReLU neural networks. To provide a brief introduction, we begin by

examining the structure of a fully-connected DNN. We introduce two positive integer parameters:

a depth parameter L and a width parameter N. Define a class of deep ReLU neural networks,

represented as FDNN(d,L,N), which consists of functions f : Rd → R that can be expressed as

f (xxx) = LL+1 ◦σ ◦LL ◦σ ◦ · · ·L2 ◦σ ◦L1(xxx). Each Ll denotes an affine transformation, that

is, Ll(xxx) =Wlxxx+bl , where Wl ∈ Rdl×dl−1 denotes the weight matrix, bl ∈ Rdl denotes the bias

vector, and (d0,d1, · · · ,dL,dL+1) = (d,N, · · · ,N,1) is the width vector of layers. When xxx is a

vector, the ReLU function σ(xxx) is defined by applying σ(·) to each element of xxx.

Next, for any M > 0, we define a truncated ReLU neural network as

FDNN(d,L,N,M) = TMFDNN(d,L,N) = {TMh : h ∈FDNN(d,L,N)},

where the truncated function TMh is given by (TMh)(xxx) = sgn(h(xxx))(|h(xxx)|∧M).

The following result provides an error bound for approximating functions within a

hierarchical interaction model using truncated deep ReLU neural networks. For a given index set

P ⊆ [1,∞)×N+, recall the definition of γ∗ in (3.2).
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Proposition 3.2.1 (Neural network approximation error for H (d, l,M0,P)). Given a hierarchi-

cal interaction model H (d, l,M0,P), there exist universal constants c1–c3 such that, for any

L0,N0 ≥ 3 and a measure µ on [0,1]d that is absolutely continuous with respect to the Lebesgue

measure, it holds

sup
f0∈H (d,l,M0,P)

inf
f ∗∈FDNN(d,L,N,M0)

{∫
[0,1]d
| f ∗(xxx)− f0(xxx)|2µ(dxxx)

}1/2

≤ c3(L0N0)
−2γ∗,

where L = c1⌈L0 logL0⌉ and N = c2⌈N0 logN0⌉, and ⌈a⌉ denotes the smallest integer no less

than a ∈ R. Here, the constants c1–c3 depend on tmax = max(β ,t)∈P t polynomially.

It is worth noting that the above approximation result holds for general neural networks

without imposing any structural assumptions. Proposition 3.2.1 demonstrates the validity of

the approximation results across a wide range of neural networks, irrespective of sparsity or

boundedness of the network weights, or a specific architectural characteristic, such as being thin

and deep or wide and shallow. In comparison to the result in Fan et al. (2022), our approximation

error bound features a polynomial dependence on tmax through the prefactor c3. Specifically,

our prefactor c3 depends on tmax through the expression t⌊βmax⌋+βmax/2
max (1+M0t1/2

max)
l−1, where

βmax = max(β ,t)∈P β . In contrast, the prefactor of the approximation bound in Proposition

3.4 of Fan et al. (2022) depends on tmax through (⌊βmax⌋+ 1)tmax(1 + M0t1/2
max)

l−1. Hence,

our approximation error bound is more favorable when tmax is larger than βmax, while still

being comparable to the result of Fan et al. (2022) if βmax and tmax are of similar magnitudes.

Nevertheless, it should be noted that Proposition 3.2.1 establishes an L2 approximation error

bound, while Fan et al. (2022) derived a uniform (L∞) bound. By applying a similar line of

arguments in the proof of Propositon 3.2.1 combined with Corollary 3.1 of Jiao et al. (2023),

we can derive an L∞-approximation error bound that also features a polynomial dependence

on tmax. However, this comes at the cost of necessitating an increase of the network width N.

In detail, our prefactor c2 of the network width in Proposition 3.2.1 depends on tmax through

the expression (⌊βmax⌋+1)2t⌊βmax⌋+l
max , whereas the prefactor of the network width required for
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L∞ bound will depend on tmax exponentially through (⌊βmax⌋+1)2t⌊βmax⌋+l
max 3tmax . Therefore, if

we employ these neural networks with enlarged network width to define an estimator, the error

bound will exhibit exponential dependence on tmax; see Theorem 3.4.1 and Theorem 3.4.4. The

exact values of c1–c3 are specified in the proof of Proposition 3.2.1.

3.3 Nonparametric Expected Shortfall Regression

In this section, we begin with a brief review of the joint loss minimization framework

introduced in Fissler and Ziegel (2016) and its limitations. Then we introduce a generic two-

step nonparametric ES regression estimator that uses an orthogonal score function to reduce

sensitivity to the estimation error of a quantile regression estimate in the first stage. Subsequently,

we propose a robust approach for estimating the conditional ES function in the presence of

heavy-tailed errors. A non-asymptotic (finite-sample) theory for the proposed estimators will be

established in Section 3.4.

Following Fissler and Ziegel (2016), let us consider a class of strictly consistent joint

loss functions for the pair of quantile and ES (with slight modifications)

Lα(q,e;Y ) = {α−1(Y ≤ q)}{G1(Y )−G1(q)} (3.3)

−{αq+α(Y −q)1(Y ≤ q)−αe︸ ︷︷ ︸
=:Sα (q,e;Y )

}G2(e)/α−G2(e), e≤ q,

where G1 is an increasing and integrable function, G2 is a three-times continuously differentiable

function such that both G2 = G ′2 and G′2 are strictly positive. With the data {(Yi,Xi)}n
i=1, we

obtain the nonparametric estimator for the function pair ( f0,g0) as

( f̃n, g̃n) ∈ argmin
f∈Fn,g∈Gn

1
n

n

∑
i=1

Lα( f (Xi),g(Xi);Yi), (3.4)

where Fn,Gn are pre-determined classes of functions [0,1]d→R. Because the objective function

in (3.4) is non-differentiable and non-convex, the above estimator is not practically feasible,
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particularly when dealing with highly complex function classes.

3.3.1 A two-step approach for nonparametric ES regression

In the context of the joint conditional quantile and ES model (3.1), our primary objective

is to estimate the conditional ES function g0, treating the conditional quantile function f0 as a

nuisance function parameter. While the objective function (q,e)→ Lα(q,e;Y ) may lack desirable

properties, it has been observed by Barendse (2020) and Peng and Wang (2023) that

∂ 2E{Lα( f (X),g(X);Y |X)}}
∂q∂e

∣∣∣∣
f= f0

=−G′2(g(X))
∂E{Sα( f (X),g(X);Y )/α|X}

∂q

∣∣∣∣
f= f0

= G′2(g(X))
FY |X( f (X))−α

α

∣∣∣∣
f= f0

= 0

as long as the conditional distribution function of Y given X , denoted by FY |X , is continuous.

Equivalently, we have

∂qE{Sα(q,e;Y )|X}
∣∣
q= f0(X)

= α−FY |X( f0(X)) = 0, (3.5)

where

Sα(q,e;Y ) = αq+(Y −q)1(Y ≤ q)−αe for q,e ∈ R. (3.6)

This indicates that the partial derivative of the score function (q,e)→ E{Sα(q,e;Y )|X}, eval-

uated at the true conditional quantile function, is zero. Moreover, based on the definition

of (conditional) Expected Shortfall (ES), this score function satisfies the moment condition

E{Sα( f0(X),g0(X);Y )|X}= 0. Thanks to this orthogonality property, both of the two-step ES

regression estimators proposed in Barendse (2020) and Peng and Wang (2023) exhibit local

robustness to prior quantile estimation under joint linear models.

Motivated by the orthogonal property of Sα , we propose a nonparametric two-step ES
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regression estimator using deep neural networks with the ReLU activation function. Note that

quantile regression estimation is a self-contained problem. Therefore, it is natural to first obtain

a nonparametric QR estimator f̂n of f0, for which various methods can be applied. Next, for

each conditional quantile function candidate f , we define the surrogate response variables

Zi( f ) := {Yi− f (Xi)}1{Yi ≤ f (Xi)}+α f (Xi). (3.7)

By plugging-in f = f̂n, we propose a two-step nonparametric ES regression estimator ĝn, defined

as

ĝn ∈ argmin
g∈Gn

R̂( f̂n,g), (3.8)

where R̂( f ,g) :=
1

2n

n

∑
i=1

S2
α( f (Xi),g(Xi);Yi) =

1
2n

n

∑
i=1
{Zi( f )−αg(Xi)}2,

and Gn is a pre-determined class of real-valued functions on [0,1]d . In Section 3.4, we choose Gn

to be a class of truncated deep ReLU neural networks and refer to ĝn as the deep least squares

ES regression (DES) estimator. We then proceed to analyze the convergence rate of ĝn that

explicitly depends on the sample size, network parameters, noise scale, as well as the prior

QR estimation error. This choice of the function class enables the estimator to adapt to the

hierarchical compositional structure of g0.

The formulation (3.8) provides a general two-stage approach for estimating ES regression

functions using a plugged-in QR estimator. Nonparametric quantile regression methods have

seen significant development and expansion, including local polynomial regression methods

(Chaudhuri, 1991), tree-based methods (Meinshausen, 2006), kernel ridge regression (regression

in reproducing kernel Hilbert spaces) (Li et al., 2007), QR-series method (Belloni et al., 2019),

and neural network regression (Padilla et al., 2022; Shen et al., 2021). To align with the theme of

this work, we focus on quantile regression using deep neural networks (DQR) with the ReLU

activation function. Specifically, we define the DQR estimator within the class Fn of truncated
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ReLU neural networks as

f̂n ∈ argmin
f∈Fn

{
Q̂α( f ) :=

1
n

n

∑
i=1

ρα(Yi− f (Xi))

}
, (3.9)

where ρα(u) = {α − 1(u < 0)}u is the check function (Koenker and Bassett, 1978). The

convergence rate of f̂n (in high probability) will be established in Section 3.4.2 when the true

conditional quantile function f0 also belongs to a hierarchical interaction model. Our results

complement those obtained in Padilla et al. (2022), where the authors focused on sparsely

connected networks with all the weight parameters and biases bounded by 1. Furthermore,

our convergence rate is faster than that in Shen et al. (2021); see Remark 3.4.2 for a detailed

comparison.

3.3.2 Robust nonparametric ES regression under heavy-tailed errors

The two-step estimator ĝn, defined in (3.8), can be regarded as a nonparametric least

squares estimator (LSE) with response variables Zi( f̂n) generated nonparametrically. The

underlying model can be expressed as E{Zi( f0)|Xi = x} = αg0(x), or equivalently, Zi( f0) =

αg0(Xi)+ωi, where ωi = εi,−−E(εi,−|Xi), with εi,− denoting the negative part of the quantile

regression error εi := Yi− f0(Xi) defined as εi,− = min(εi,0).

Due to the sensitivity of the quadratic loss function to outliers (Huber, 1973; Catoni,

2012), the aforementioned LSE is particularly sensitive to the tails of the distribution of ηi,

which correspond to the left tails of εi. From a non-asymptotic perspective, the L2-error of the

LSE exhibits an exponential-type deviation (high probability) bound under light-tailed noise

distributions, while it only demonstrates a polynomial-type deviation bound under heavy-tailed

distributions. Furthermore, in contrast to the parametric setting where LSEs achieve the same

convergence rates in terms of mean squared error (MSE) under both (exponentially) light-tailed

errors and errors with bounded p-th (p≥ 2) moments, recent studies have shown that heavy-tailed

errors can degrade the convergence rate of nonparametric LSEs, resulting in a slower convergence
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rate (Han and Wellner, 2019; Kuchibhotla and Patra, 2022; Fan et al., 2022). Therefore, the LSE

ĝn may exhibit a slower convergence rate when the noise follows a heavy-tailed distribution.

To address this issue, we propose an alternative approach by replacing the quadratic loss

with a robust loss function that exhibits both global Lipschitz continuity and local quadratic

behavior near 0, ensuring insensitivity to heavy-tailed noises. Specifically, we employ the Huber

loss (Huber, 1964), defined as

ℓτ(u) :=

 u2/2 if |u| ≤ τ

τ|u|− τ2/2 if |u|> τ

. (3.10)

Here, τ > 0 is a robutification parameter that separates its quadratic and linear components. Then,

given an initial estimator f̂n of f0, a nonparametric robust ES regression estimator is defined as

follows:

ĝn,τ ∈ argmin
g∈Gn

R̂τ( f̂n,g)

where R̂τ( f ,g) :=
1
n

n

∑
i=1

ℓτ(Sα( f (Xi),g(Xi);Yi)) =
1
n

n

∑
i=1

ℓτ(Zi( f )−αg(Xi)), (3.11)

with Sα and Zi defined in (3.6) and (3.7), respectively. When the class Gn consists of truncated

deep ReLU neural networks, we refer to ĝn,τ as the deep robust (Huber) ES regression (DRES)

estimator.

The choice of the robustification parameter τ plays a crucial role in achieving a balance

between robustness and bias (Zhou et al., 2018). To understand the impact of employing the

Huber loss, we define the global minimizer of the population Huber loss as

g0,τ ∈ argmin
∥g∥∞≤M0

Rτ( f0,g) := Eℓτ(Sα( f0(Xi),g(Xi);Yi)), (3.12)

where the minimization is performed over all measurable functions g satisfying ∥g∥∞ ≤M0 for
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some constant M0 > 0. Denoting the quantile regression residual as ε = Y − f0(X), we can

express

ℓτ(Sα( f0(X),g0(X);Y )) = ℓτ(α f0(X)+{Y − f0(X)}1{Y ≤ f0(X)}−αg0(X))

= ℓτ(ε−−E(ε−|X)),

where ε− = min(ε,0). From this definition, ε−−E(ε−|X) is generally asymmetric (with respect

to zero), leading to a deviation between g0,τ and g0. To quantify this deviation, we present the

following proposition, which provides an upper bound for the robustification bias, defined as

∥g0,τ −g0∥2.

Proposition 3.3.1. Assume that ε− = min(ε,0) satisfies E{|ε−−E(ε−|X)|p|X} ≤ νp almost

surely for some constant νp > 0 and p≥ 2. For any τ ≥ c4 = 2max{4M0,(2νp)
1/p}, the global

minimizer g0,τ defined in (3.11) satisfies α∥g0,τ −g0∥2 ≤ 2p+1νpτ1−p.

Proposition 3.3.1 reveals that the upper bound on bias depends on the robustification

parameter τ and the moment index p. Thus, to mitigate the bias induced by using the Huber loss,

it is necessary to employ a sufficiently large τ . However, a large value of τ will increase the

statistical error, as demonstrated in Theorem 3.4.1. Therefore, it is crucial to carefully calibrate

the value of τ in order to strike a balance between robustness and bias.

3.4 Statistical Theory

In this section, we analyze the statistical properties of the proposed nonparametric

quantile and expected shortfall regression estimators using ReLU neural networks, with a focus

on the latter. In the two-step approach, estimating ES involves the use of (surrogate) response

variables that are not directly observable but need to be estimated from data in a preliminary step.

The first challenge is characterizing their impact on the statistical properties of the ES estimator

in the second stage. The second challenge arises when analyzing the robustified estimator for ES,
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even when the “noise” variable is heavy-tailed and skewed, despite having a zero conditional

mean. In this case, even with the oracle surrogate response variables incorporated into the

procedure, the existing results and techniques from Farrell et al. (2021), Padilla et al. (2022), and

Shen et al. (2021) do not apply.

In Section 3.4.1, we begin our analysis by deriving a generic upper bound on the es-

timation error for the robust ES estimator defined in (3.11). Our focus is on the case where

the noise distribution has a finite p-th moment (p≥ 2). We consider both the DRES and DES

estimators with various configurations of deep ReLU neural networks, as well as any quantile

regression estimator f̂n. We also derive non-asymptotic error bounds for the DRES estimators

under light-tailed noise distributions. This demonstrates that using a proper robust estimator

leads to minimal to no efficiency loss from a non-asymptotic perspective, in comparison to least

squares estimators.

In Section 3.4.2, we revisit deep QR estimators given in (3.9) and examine their non-

asymptotic statistical guarantees. Notably, we improve the existing results in the literature by

employing different proof techniques and leveraging the new approximation result, Proposi-

tion 3.2.1; see Remark 3.4.2 for a comprehensive comparison with two existing related works.

Finally, in Section 3.4.3, we combine the results from Sections 3.4.1 and 3.4.2 to establish the

convergence rate of deep ES estimators when a DQR estimator is used to construct the surrogate

responses. We specifically focus on the setting where both quantile and ES regression functions

lie in hierarchical interaction models.

3.4.1 A generic upper bound of deep ES estimator

Before presenting our theoretical results, we impose the following conditions on the

quantile regression residual ε = Y − f0(X) and its negative part ε− = min(ε,0). In this notation,

we can equivalently express model (3.1) as Y = f0(X)+ ε , where the noise variable ε and the
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conditional ES function g0 satisfy

P(ε ≤ 0|X) = α and g0(X) = f0(X)+
1
α
E{ε1(ε ≤ 0)|X}.

Condition 1 (Noise distribution). The conditional density function of ε given X , denoted by

pε|X , exists and satisfies pε|X(u)≤ p̄ for some constant p̄ > 0 almost surely (over X) for all u∈R.

Moreover, the negative part of the residual has uniformly bounded (conditional) p-th central

moments for some p ≥ 2, that is, there exists νp > 0 such that E{|ε−−E(ε−|X)|p|X} ≤ νp

almost surely over X .

Condition 1 requires the existence of a bounded conditional density of the response

variable given covariates and that the negative part of the quantile residual ε has a bounded

(conditional) p-th central moment.

Next, we recall the definition of the Pseudo dimension of a real-valued function class.

Definition 3.4.1 (Pseudo dimension (Anthony and Bartlett, 1999)). Let F be a set of real-valued

functions on a domain X . The pseudo dimension of F , denoted by Pdim(F ), is defined to be

the largest integer N for which there exist {x1,x2, . . . ,xN} ∈X N and {r1,r2, . . . ,rN} ∈ RN such

that for any b = (b1, . . . ,bN)
T ∈ {0,1}N , there is a function f ∈F with 1{ f (xi)≥ ri}= bi for

1≤ i≤ N.

To quantify the estimation accuracy, for any q≥ 1, we use ∥ · ∥q to denote the function

Lq-norm, that is, ∥h∥q := ∥h∥PX ,q = {EX∼PX |h(X)|q}1/q for any function h : [0,1]d → R.

Our first result is an oracle-type inequality that provides an upper bound on the L2-error

of the DRES estimator for any truncated deep ReLU network architecture, any robustification

parameter τ ≥ c4, and any QR estimator.

Theorem 3.4.1 (Oracle-type inequality for the DRES estimator). Assume Condition 1 holds

with p≥ 2, and max(∥ f0∥∞,∥g0∥∞)≤M0 for some M0 ≥ 1. Let τ ≥ c4, L,N ∈ {3,4, . . .} and
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Gn = FDNN(d,L,N,M0). Given a class Fn of real-valued functions from [0,1]d to [−M0,M0]

with finite pseudo dimension, define

 ηb =
νp

(τ/2)p−1 , ηa = infg∈Gn ∥g−g0∥2,

ηs = (ν
1/p
p +

√
τ)Vn,τ,νp, δs =

√
Pdim(Fn) log(n)/n,

(3.13)

and Vn,τ,νp = LN
√

log(LN) log(n2τ/ν
1/p
p )/n. For any real-valued function f , let Tn,τ(η ; f ) be

the set of approximate empirical Huber risk minimizers with optimization error η ≥ 0, that is,

Tn,τ(η ; f ) =
{

g ∈ Gn : R̂τ( f ,g)≤ inf
h∈Gn

R̂τ( f ,h)+η
2
}
, (3.14)

where R̂τ is defined in (3.11). Then, there exists a universal constant c5 > 0 independent of

(N,L,n,νp, p,d, f0,g0) such that, for any ηopt ≥ 0 and u≥ 1, the following bound

sup
g∈Tn,τ (ηopt; f̂n)

∥g−g0∥2 ≤
c5

α

{
ηs +ηb +ηa +δs +δ

2
4 +ηopt +(ν

1/p
p +

√
τ)

√
u
n

}
(3.15)

holds with probability at least 1−Ce−u conditioning on the event { f̂n ∈ F0(δ4)} for some

δ4 > 0, where F0(δ ) := { f ∈Fn : ∥ f − f0∥4 ≤ δ}.

Theorem 3.4.1 establishes a non-asymptotic error bound for approximate DRES estima-

tors using a plugged-in QR estimator f̂n. This upper bound consists of six distinct terms: two

stochastic error terms ηs and δs that correspond to the (conditional) quantile and ES estimation

respectively, the bias ηb induced by the Huber loss, the neural network approximation error

ηa for the underlying ES regression function g0, the optimization error ηopt, and the squared

L4-error δ 2
4 for the QR estimator f̂n.

Proposition 3.2.1 shows that increasing LN reduces the approximation error ηa when g0

belongs to a hierarchical interaction model. However, this increase results in a larger stochastic

error ηs. Together, these two terms highlight the trade-off between the complexity of the network
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function class and its approximation power. Moreover, the term δs + δ 2
4 +ηb +ηs explicitly

reveals the impact of nonparametric QR estimation in stage one and the use of the Huber loss.

The former is quantified by δs and δ 2
4 . Thanks to the orthogonality condition (3.5), the squared

L4-error of the nonparametric QR estimator contributes to the L2-error bound for the two-step

ES estimator. Consequently, even if the QR estimator converges at a sub-optimal rate (under the

L4-norm), the ES estimator can still achieve the optimal convergence rate under the L2-norm,

as if the true quantile function f0 were known. On the other hand, ηb +ηs clarifies the role of

the robustification parameter τ . A larger τ reduces bias, resulting in a smaller ηb. However, this

reduction comes at the expense of compromising robustness, leading to a larger ηs. Therefore, it

is crucial to properly tune the robustification parameter τ to balance bias and robustness.

As a benchmark method, we also derive non-asymptotic deviation bounds for DES

estimators with any truncated deep ReLU network architecture and an initial nonparametric QR

estimator.

Theorem 3.4.2 (Oracle-type inequality for the DES estimator). Assume Condition 1 holds

with p≥ 2, and max(∥ f0∥∞,∥g0∥∞)≤M0 for some M0 ≥ 1. Let Gn = FDNN(d,L,N,M0) with

integers L,N ≥ 3, and Fn be a class of functions from [0,1]d to [−M0,M0] with a finite pseudo

dimension. Define

ηa = inf
g∈Gn
∥g−g0∥2, ηs = ν

1/p
p Vn +ν

1/(2p)
p V 1−1/p

n and δs =
√

Pdim(Fn) log(n)/n, (3.16)

where Vn = LN
√

log(LN) log(n)/n. If n is sufficiently large so that Vn ≤ 1, there exists some

universal constant c6 > 0 such that, for any ηopt ≥ 0 and u≥ 1, the following bound

sup
g∈Tn,∞(ηopt; f̂n)

∥g−g0∥2 ≤ c6α
−1√u

(
ηs +ηa +δs +δ

2
4 +ηopt

)
(3.17)

holds with probability at least 1−C(e−nV 2
n + u−p) conditioning on the event { f̂n ∈F0(δ4)},

where Tn,∞ is defined in (3.14) by taking τ = ∞.
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In contrast to the result of Theorem 3.4.1, Theorem 3.4.2 demonstrates that the deviation

bound of the DES estimator does not include the bias term. This is because the population

Huber loss minimizer g0,τ , defined in (3.12), coincides with g0 when τ = ∞, resulting in ηb = 0.

However, since DES uses the L2-loss, the corresponding estimator exhibits only a polynomial-

type deviation bound, as shown in Theorem 3.4.2. This is in contrast to the exponential-type

deviation bound achieved by the DRES estimator.

To complement our analysis, we investigate the non-asymptotic error bound of the DRES

estimator under the presence of light-tailed noise distributions. Specifically, we assume that the

negative part of the quantile residual ε follows a sub-Gaussian distribution as follows.

Condition 2 (Light-tailed noise). The conditional density function of ε given X , denoted by

pε|X , exists and satisfies supu∈R pε|X(u) ≤ p̄ for some constant p̄ > 0 almost surely (over X).

Moreover, there exists a constant σ0 > 0 such that the negative part of the QR residual satisfies

E[exp({ε−−E(ε−|X)}2/σ2
0 )|X ]≤ 2 almost surely over X .

Theorem 3.4.3 (Oracle-type inequality for the DRES estimator with sub-Gaussian errors).

Assume Condition 2 holds for some σ0 > 0, and max(∥ f0∥∞,∥g0∥∞)≤M0 for some M0 ≥ 1. Let

L,N ∈ {3,4, . . .},Gn = FDNN(d,L,N,M0) and τ ≥ c7 := 2max{4M0,(log4)1/2σ0}. Given a

class Fn of real-valued functions from [0,1]d to [−M0,M0] with finite pseudo dimension, define

 ηb = 2(2M0 +σ0)e−τ2/(2σ2
0 ), ηa = infg∈Gn ∥g−g0∥2,

ηs = σ0LN
√

log(LN) log(n)/n, δs =
√

Pdim(Fn) log(n)/n.
(3.18)

Then, there exists some universal constant c8 > 0 such that for any δ4 > 0, ηopt ≥ 0 and u≥ 1,

the following bound

sup
g∈Tn,τ (ηopt; f̂n)

∥g−g0∥2 ≤
c8

α

(
ηs +ηb +ηa +δs +δ

2
4 +ηopt +σ0

√
u
n

)
(3.19)

holds with probability at least 1−Ce−u conditioning on the event { f̂n ∈F0(δ4)}, where Tn,τ is
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defined in (3.14).

In contrast to the setting where ε− only possesses a bounded (conditional) p-th central

moment, Theorem 3.4.3 reveals that the bias term ηb decays exponentially in τ when ε−

is (conditional) sub-Gaussian. In particular, we have ηb ≤ σ0n−1/2 as long as τ ≥ σ0
√

logn.

Consequently, the impact of the robustification bias becomes negligible compared to the statistical

error ηs in (3.18), which is unaffected by τ .

Remark 3.4.1 (Sample splitting and cross-fitting). We can eliminate the statistical error term δs,

induced by the estimation of the conditional QR function, from the error bounds of the proposed

estimator by incorporating a sample-splitting algorithm.

Specifically, we first split the entire dataset into two parts: {(X1,Y1), . . . ,(Xn1,Yn1)} and

{(Xn1+1,Yn1+1), . . . ,(Xn,Yn)}, where n1 = ⌈n/2⌉. The first subsample is used to train a QR

estimator f̂n, while the remaining subsample, together with f̂n, is employed to compute the ES

regression estimator ĝsplit. Following similar arguments as in the proofs of Theorems 3.4.1–3.4.3,

it can be established that under the same conditions as outlined in Theorems 3.4.1–3.4.3, ĝsplit

satisfies concentration bounds that are similar to (3.15), (3.17) and (3.19), without the appearance

of δs. As a result, the impact of QR estimation is only reflected by δ 2
4 .

Nevertheless, using only half of the data to compute ĝsplit may result in a loss of statistical

efficiency. To mitigate this issue, the widely recognized approach is cross-fitting as discussed

in Chernozhukov et al. (2018). Nonetheless, it remains uncertain whether the cross-fitting

method improves the statistical efficiency over the basic sample-splitting method in our case. As

pointed out by Foster and Syrgkanis (2023), establishing this improvement typically requires the

demonstration of asymptotic normality or linear approximation of the nonparametric estimator

in the literature. However, it remains an open question whether a DNN estimator exhibits an

asymptotic linear approximation, which in turn leads to asymptotic normality. As a result, from

a theoretical perspective, it remains unclear whether the use of cross-fitting can enhance the

statistical efficiency over the basic sample-splitting in our setting.
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3.4.2 Deep quantile regression estimator

In this section, we provide concentration bounds for the DQR estimator defined in (3.9),

which is the nonparametric QR estimator obtained through empirical risk minimization over

truncated ReLU neural networks using the check loss. As is common in QR literature, we begin

by imposing certain regularity conditions on the conditional density function of ε given X .

Condition 3 (Conditional density). The conditional density function of ε = Y − f0(X) given X ,

denoted by pε|X exists and is continuous on its support. It satisfies

p≤ pε|X(0)≤ sup
u∈R

pε|X(u)≤ p̄

almost surely (over X) for some p̄≥ p > 0. Moreover, there exists a constant l0 > 0 such that

|pε|X(u1)− pε|X(u2)| ≤ l0|u1−u2| for all u1,u2 ∈ R almost surely (over X).

Condition 3 is a standard assumption for the analysis of quantile regression estimators,

especially from a non-asymptotic perspective. See, for example, Belloni and Chernozhukov

(2011), Belloni et al. (2019), Pan and Zhou (2021) and Padilla et al. (2022).

We are now prepared to present an oracle-type error bound for the DQR estimator with

an arbitrary ReLU neural network configuration. Recall that the empirical quantile loss Q̂α is

defined as Q̂α( f ) = n−1
∑

n
i=1 ρα(Yi− f (Xi)) for any real-valued function f .

Theorem 3.4.4 (Oracle-type inequality for the DQR estimator). Assume Condition 3 holds and

∥ f0∥∞ ≤M0 for some M0 ≥ 1. Let L,N ∈ {3,4, . . .} and Fn = FDNN(d,L,N,M0). Define

δa = inf
f∈Fn
∥ f − f0∥2 and δs = LN

√
log(LN) logn

n
.

Let Sn(δ ) be the set of approximate empirical (quantile) risk minimizers with the optimization
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error δ > 0, that is

Sn(δ ) =

{
f ∈Fn : Q̂α( f )≤ inf

f̃∈Fn

Q̂α( f̃ )+δ
2
}
. (3.20)

Then, there exists some universal constant c9 > 0 independent of (N,L,n,d,α) and f0 such that

for any δopt ≥ 0 and u≥ 1,

P

{
sup

f∈Sn(δopt)

∥ f − f0∥2 ≥ c9

(
δs +δa +δopt +

√
u
n

)}
≲ e−u. (3.21)

The non-asymptotic deviation bound, as presented in (3.21), comprises three main com-

ponents: the stochastic error δs, the approximation error δa concerning f0, and the optimization

error δopt. Here, the statistical error term δs increases as the network hyper-parameters L and

N grow, while the approximation error term δa decreases; see Proposition 3.2.1. Furthermore,

it is important to note that exponential-type concentration inequalities naturally apply to non-

parametric QR estimators even without requiring moment conditions on εi. However, specific

regularity conditions on its (conditional) density function are still necessary. This underscores

the robustness of quantile regression, particularly in handling the tails of the response variable.

By selecting suitable values for L and N to balance the stochastic and approximation er-

rors, we demonstrate in the following result that the DQR estimator achieves optimal convergence

rates when f0 has a hierarchical interaction structure.

Theorem 3.4.5 (Convergence rate for the DQR estimator). Assume Condition 3 holds and

that PX is absolutely continuous with respect to the Lebesgue measure on [0,1]d . Let γ∗ be as

in (3.2), and L0,N0 ≥ 3 be such that L0N0 ≍ (n/ log6 n)1/(4γ∗+2). Consider the function class

Fn = FDNN(d,L,N,M), where the depth and width are given by

L = c1⌈L0 logL0⌉ and N = c2⌈N0 logN0⌉, (3.22)
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respectively. Here, c1 and c2 are positive constants from Proposition 3.2.1. Then, for any u≥ 1

and δopt ≤ δn = (n/ log6 n)−γ∗/(2γ∗+1), it holds uniformly over f0 ∈H (d, l,M0,P) and for all

sufficiently large n that

P

[
sup

f∈Sn(δopt)

∥ f − f0∥2 ≥ c10

{(
log6 n

n

)γ∗/(2γ∗+1)

+

√
u
n

}]
≲ e−u,

where c10 > 0 is a universal constant depending polynomially on tmax = max(t,β )∈P t.

An immediate consequence of Theorem 3.4.5 is that

∥ f̂n− f0∥2 = OP

(
n−γ∗/(2γ∗+1)(logn)6γ∗/(2γ∗+1)

)
.

By combining this upper bound with the following proposition, the DQR estimator, with an

appropriately chosen network structure, achieves the minimax optimal convergence rate for the

hierarchical interaction model, up to logarithmic terms. Recall the definition of t∗ in (3.2).

Proposition 3.4.1 (Minimax lower bound for the hierarchical interaction model). Assume d ≥ t∗

and that Condition 3 holds. Then, it holds

liminf
n→∞

inf
f̃n

sup
f0∈H (d,l,P,M0)

X∼PX

n2γ∗/(2γ∗+1)E∥ f̃n− f0∥2
2 > 0,

where the infimum is taken over all estimators constructed from the sample {(Xi,Yi)}n
i=1.

Remark 3.4.2 (Comparison to existing work on DNN estimators for quantile regression). In

recent years, there has been a growing interest in applying DNNs for nonparametric quantile

regression due to its great success for solving classification and regression problems in general.

When the true conditional quantile function has a compositional structure, Shen et al. (2021)

derived upper bounds on a hybrid of L1- and L2-errors of the QR estimator using ReLU neural

networks. Their analysis is restricted to the case where the smoothness of each component
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function does not exceed 1. Moreover, assuming that the response variable, or equivalently, the

regression error, has bounded p-th absolute moment, Shen et al. (2021) showed that

E∆
2( f̂ , f0)≲ n−(2−2/p)γ∗/(2γ∗+1) log2(n),

where ∆2( f , f0) = EX∼PX min{| f (X)− f0(X)|, | f (X)− f0(X)|2}, and γ∗ plays a similar role as

that defined in (3.2), which is the dimension-adjusted degree of smoothness. First, we note that

the above bound does not imply an L2-error bound but rather ∆2( f , f0)≤∥ f − f0∥2
2. Furthermore,

the convergence rate is inflated by a factor of n(2/p)γ∗/(2γ∗+1) under heavy-tailed errors compared

to that under exponentially light-tailed errors, making it sub-optimal. This contradicts, however,

the robustness nature of quantile regression in response to outliers in the response space.

Another recent work Padilla et al. (2022) also explored nonparametric QR estimators

using deep ReLU neural networks and established optimal convergence rates for cases where

the quantile function is compositional with Hölder smooth components or belongs to a Besov

space. Our results differ from Padilla et al. (2022) in several aspects. First, Padilla et al. (2022)

constrained their function class to sparse neural networks with bounded weights and biases,

while the function class examined in this section does not have such restrictions. As a result,

our approach is more practical, as implementing the restrictions mentioned in Padilla et al.

(2022) necessitates various techniques like projection and dropout, as described in Goodfellow

et al. (2016). Secondly, when the true quantile function is a composition of Hölder smooth

functions, Theorem 2 in Padilla et al. (2022) requires the width of neural networks to increase as

a power of n, and the depth L to be L≍ logn to attain the optimal convergence rate. In contrast,

Theorem 3.4.5 only necessitates an assumption regarding the product of the depth and width

of neural networks, thereby offering flexibility in network design. This means that the optimal

rate can be achieved with wide and shallow neural networks, thin and deep neural networks,

or wide and deep neural networks as long as the product satisfies the assumption. Last but not

least, the prefactor in the error bounds derived from Padilla et al. (2022) grows exponentially
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with dimension, whereas the prefactor in Theorem 3.4.5 grows polynomially. Consequently, the

dimension-dependent prefactor in Padilla et al. (2022) can dominate the error bound when the

dimension is moderately large.

3.4.3 Convergence analysis of joint deep quantile and ES regression

Building on the results from Sections 3.4.1 and 3.4.2, in this section, we establish the

convergence rates of two-step DRES and DES estimators using an initial DQR estimate. Based on

the findings from the previous subsections, the key is to tune the hyper-parameters appropriately

to achieve an optimal balance among the various error terms.

We first consider the DRES estimator defined in (3.11) in the presence of heavy-tailed

noises. By combining Theorem 3.4.1, Theorem 3.4.4 and the neural network approximation

result, Proposition 3.2.1, we establish the convergence rate of the DRES estimator as follows.

Theorem 3.4.6 (Convergence rate for the DRES estimator using a plugged-in DQR estimate).

Assume Conditions 1 and 3 hold with p ≥ 2. Additionally, assume that PX is absolutely

continuous with respect to the Lebesgue measure on [0,1]d . Let γ∗ be as in (3.2), and L0,N0 ≥ 3

be such that

L0N0 ≍
(

n
log6 n

)ζp/(4γ∗+2ζp)

with ζp = 1− 1
2p−1

.

Consider the function classes Fn = Gn =FDNN(d,L,N,M0) with depth L and width N satisfying

(3.22). Set

η
AH
n ≍max

(
ν

1/p
p ,1

)
·
(

log6 n
n

)γ∗ζp/(2γ∗+ζp)

and τ ≍ ν
1/p
p

(
n

log6 n

)2γ∗(1−ζp)/(2γ∗+ζp)

.

Then, for any u≥ 1,δopt≤ ηAH
n and ηopt≤ ηAH

n , it holds uniformly over f0,g0 ∈H (d, l,M0,P)
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and for all sufficiently large n that

P

{
sup

f∈Sn(δopt),g∈Tn,τ (ηopt; f )
∥g−g0∥2 ≥

c11

α

[
η

AH
n +max

{
ν

1/(2p)
p ,1

}√ u
nζp

]}
≲ e−u,

where Sn and Tn,τ are defined in (3.20) and (3.14), respectively. Here, c11 > 0 is independent

of (n,u, p,νp) and depends polynomially on tmax = max(t,β )∈P t.

Next, we investigate the DES estimator defined in (3.8) in the presence of heavy-tailed

noises. By combining Theorem 3.4.4, Proposition 3.2.1 and Theorem 3.4.2, we derive the

convergence rate for the DES estimators as follows.

Theorem 3.4.7 (Convergence rate for the DES estimator using a plugged-in DQR estimate).

Under the same conditions as in Theorem 3.4.6, let L0,N0 ≥ 3 be such that

L0N0 ≍
(

n
log6 n

)ξp/(4γ∗+2ξp)

with ξp = 1− 1
p
.

Consider the function classes Fn = Gn = FDNN(d,L,N,M0) with depth L and width N satisfy-

ing (3.22). Set ηLS
n ≍max(ν1/p

p ,1) · {log6(n)/n}γ∗ξp/(2γ∗+ξp). Then, for any u≥ 1, δopt ≤ ηLS
n

and ηopt ≤ ηLS
n , it holds uniformly for all f0,g0 ∈H (d, l,M0,P) and for all sufficiently large n

that

P

{
sup

f∈Sn(δopt),g∈Tn,τ (ηopt; f )
∥g−g0∥2 ≥ c12α

−1√uη
LS
n

}
≲

1
up .

Here, c12 > 0 is independent of (n,u, p,νp) and depends polynomially on tmax.

Given νp ≍ 1, it is easy to see that ηLS
n is larger than ηAH

n because ξp < ζp. Therefore,

the DES estimator converges at a slower rate than the DRES estimator. More importantly, the

deviation bounds in Theorem 3.4.6 and Theorem 3.4.7 confirm that, from a non-asymptotic

perspective, the DRES estimator is significantly more robust against heavy tails.
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Remark 3.4.3. When ε− has a (conditional) bounded p-th (p ≥ 2) moment and f0,g0 ∈

H (d, l,M0,P), Theorem 3.4.6 and Theorem 3.4.7 establish that after selecting an appropriate

robustification parameter and network structures, the two-step robust estimator ĝn,τ satisfies

α∥ĝn,τ −g0∥2 = OP

(
n−γ∗ζp/(2γ∗+ζp)(logn)6γ∗ζp/(2γ∗+ζp)

)
, (3.23)

and the two-step LSE ĝn achieves the following convergence rate

α∥ĝn−g0∥2 = OP

(
n−γ∗ξp/(2γ∗+ξp)(logn)6γ∗ξp/(2γ∗+ξp)

)
, (3.24)

respectively. We remark that when the function class H (d, l,M0,P) satisfies d ≥ t∗, these

upper bounds are sharp up to a logarithmic factor of n. In detail, for given depth L and width N

of neural networks, define

T AH
n,τ (ηopt) :=

{
g ∈Fn(d,L,N,1) : R̂τ( f0,g)≤ inf

g∈Fn(d,L,N,1)
R̂τ( f0,g)+n−100 or

R̂τ( f0,g)≤ R̂τ( f0,g0,τ)∨
{

inf
g∈Fn(d,L,N,1)

R̂τ( f0,g)+C1η
2
opt

}}
,

where g0,τ is defined in (3.12). Furthermore, for a fixed function f0 : [0,1]d → R, and a function

class H ⊆ {g : Rd → [−1,1]}, define the family of data generating processes U (d, p,H ) as

follows: (i) Each coordinate of X ∈ [0,1]d follows the uniform distribution, (ii) Y = f0(X)+ ε

with P(ε ≤ 0|X) = α , (iii) eα(Y |X) = g0(X) ∈H , and (iv) E{|ε−−E(ε−|X)|p|X} ≤ 1. We

denote ηn,∗ ≍ n−γ∗ζp/(2γ∗+ζp)(logn)−γ∗(3ζp+4)/(2γ∗+ζp) for a given H (d, l,1,P). Then, by

combining Lemma 4.1 Fan et al. (2022) and Theorem 4.1 in Fan et al. (2022), we have

liminf
n→∞

inf
N,L≥C2,τ≥C3

sup
(X ,Y )∈U (d,p,H )

P
{
∃ĝ ∈T AH

n,τ (ηn,∗) such that α∥ĝ−g0∥2 ≥ ηn,∗
}
= 1,

where H = H (d, l,P,1) with d ≥ t∗. Therefore, the L2 error bound (3.23) for ĝn,τ is sharp
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up to logarithmic terms. In a similar manner, it can be shown that the bound (3.24) of ĝn is also

sharp up to logarithmic terms by Theorem 4.2 in Fan et al. (2022).

Finally, we consider the case where the noise is sub-Gaussian. The following theorem

shows that with a sufficiently large robustification parameter, the DRES estimator achieves the

same convergence rate as the DES estimator.

Theorem 3.4.8 (Convergence rate for the DRES estimator using a plugged-in DQR estimate

under sub-Gaussian noise). Assume Conditions 2 and 3 hold. Moreover, assume that PX is

absolutely continuous with respect to the Lebesgue measure on [0,1]d . Let γ∗ be as in (3.2), and

L0,N0 ≥ 3 be such that L0N0 ≍ {n/ log6(n)}1/(4γ∗+2). Consider the function classes Fn = Gn =

FDNN(d,L,N,M0), where the depth L and width N satisfy (3.22). Set τ ∈ [max(c7,σ0
√

logn),∞]

and ηsubG
n ≍{log6(n)/n}γ∗/(2γ∗+1). Then, for any u≥ 1 and δopt,ηopt≤ηsubG

n , it holds uniformly

over f0,g0 ∈H (d, l,M0,P) that

P

{
sup

f∈Sn(δopt),g∈Tn,τ (ηopt; f )
∥g−g0∥2 ≥

c13

α
max(σ0,1)

(
η

subG
n +

√
u
n

)}
≲ e−u,

where c13 > 0 is independent of (n,u,σ0) and depends polynomially on tmax.

Remark 3.4.4. In order to apply the oracle inequalities established in Section 3.4.1, it is

necessary to establish an upper bound on the L4-error of the employed DQR estimators. However,

Theorem 3.4.4 only provides L2-error bounds for DQR estimators. The current proof technique

cannot directly control the L4-error of a regression estimator using neural networks. Instead, we

will use the following crude bound for a function f with ∥ f∥∞ ≤M0: ∥ f∥4
4 = EX∼PX{ f 4(X)} ≤

M2
0 ·EX∼PX{ f 2(X)}= M2

0 · ∥ f∥2
2. As a result, the L2 convergence rate of ES estimators cannot

be faster than that of the DQR estimator, even when an orthogonal score function is used. Due to

the absence of results on tight L4-error control for neural network estimators, it remains an open

question whether our two-step ES estimators can achieve a faster convergence rate compared

to DQR estimators when the conditional ES function is smoother than the conditional quantile
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function. In general, it is natural to assume that the two functions share the same structure.

On the other hand, note that ∥ f∥4 ≤ ∥ f∥∞ for any real-valued function f . Therefore,

the L2 convergence rate of the two-step ES estimator may depend on ∥ f̂n− f0∥2
∞ instead, which

is often sharper than M0∥ f̂n− f0∥2. However, it is inherently more challenging to establish

the L∞-norm convergence rate for nonparametric QR estimators. This is achievable mostly for

linear-type nonparametric estimators that display asymptotic linear approximations, such as

the QR-series estimator (Belloni et al., 2019) and the (bias-corrected) kernel ridge regression

estimator (Singh and Vijaykumar, 2023). The L∞-norm convergence rate of a kernel ridge

quantile regression estimator has not been investigated but is of independent interest. Recently,

Imaizumi (2023) proposed a DNN estimator with a novel adversarial training scheme. The author

not only derived a convergence rate for the L∞-risk of the least squares estimator but also extended

the analysis to accommodate more general loss functions, including the check loss. However,

the convergence rate for the latter is sub-optimal, which leaves an open question regarding the

attainment of optimal L∞-norm convergence rates for DQR estimators. The construction of this

estimator involves a preprocessing step where the output Y is transformed to yield a preprocessed

output Ŷ . Due to this preprocessing step, the L∞ convergence rate of the proposed estimator

cannot surpass that of Ŷ ; see Theorem 3 therein. Given the absence of estimators adaptable to

hierarchical interaction models with an L∞ convergence rate, the proposed estimator in Imaizumi

(2023) is unsuitable for our context, where the true conditional quantile function belongs to a

hierarchical interaction model.

3.5 Numerical Study

3.5.1 Monte Carlo experiments

In this section, we perform numerical studies to assess the performance of the proposed

two-step deep ES regression estimator and its robust counterpart. We implement both methods

in Python using the PyTorch module. We first obtain a DQR estimator f̂n by solving (3.9),

and then compute the deep ES regression estimator ĝn,τ̂ by solving (3.11). The estimator ĝn,τ̂
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involves a robustification parameter τ̂ = τ̂(n), which we select using a data-driven approach as

follows.

Recall from Section 3.3.2 that ε is the quantile regression residual and that ε− = ε ∧0.

Assume that the (conditional) variance of ε− is bounded by ν2 > 0 almost surely. In light of

Theorem 3.4.6, ideally, τ̂ should be selected to be of order ν
1/2
2 (n/ logn)2γ∗/(6γ∗+2). However,

such a choice is practically infeasible because the intrinsic smoothness parameter γ∗ defined

in (3.2) is unknown. As a trade-off, we replace the exponent 2γ∗/(6γ∗+2) by 1/3, which serves

as a good approximation provided that γ∗ is sufficiently large. On the other hand, we use the

sample variance estimator of the fitted negative QR residuals {ε̂i,− := min{Yi− f̂n(Xi),0}}n
i=1,

denoted by ν̂2, as a proxy for the unknown noise scale ν2. Consequently, we propose a rule-of-

thumb robustification parameter τ̂ = ν̂
1/2
2 (n/ logn)1/3 that will be used throughout the numerical

studies.

For DQR and two-step deep ES regression estimators, we employ fully connected ReLU

neural networks with a depth of L = 4 and a width of N = 256. The network weights are

optimized using the Adam optimizer (Kingma and Ba, 2014) for 200 epochs. We set the learning

rate to 5× 10−5 and use a batch size of 128. We do not employ any other regularization

techniques except for early stopping, as described in Goodfellow et al. (2016). Specifically,

we randomly split n i.i.d. samples into training set with ntrain samples and validation set with

nvalid = n−ntrain samples. We then train the neural network models on the training set with 200

epochs and select the model that minimizes the empirical L2 error on the validation set. In our

simulation, we set nvalid = ⌈n/8⌉.

We compare the proposed deep robust ES regression estimator (DRES) to several com-

petitors: (i) the deep least squares ES estimator (DES) defined in (3.8); (ii) the oracle deep

robust ES estimator (oracle DRES); (iii) the oracle deep least squares ES estimator (oracle

DES); and (iv) the linear robust ES estimator (LRES) (He et al., 2023). In particular, LRES is an

adaptive Huber linear regression estimator with surrogate response variables constructed using a

plugged-in linear QR estimator. The oracle methods, oracle DRES and oracle DES, refer to
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Table 3.1. The empirical mean integrated squared error M̂ISE (and standard error), when
d = 8,n = 1024/(5α),α = {0.05,0.1,0.2} and εi ∼N (0,1) or εi ∼ t2.5/4, averaged over 100
replications.

εi ∼N (0,1) εi ∼ t2.5/4
Methods α = 0.05 α = 0.1 α = 0.2 α = 0.05 α = 0.1 α = 0.2

DRES
0.441 0.474 0.514 0.473 0.376 0.331

(0.006) (0.008) (0.007) (0.007) (0.005) (0.005)

DES
0.463 0.493 0.527 0.581 0.450 0.377

(0.007) (0.008) (0.007) (0.013) (0.010) (0.009)

oracle DRES
0.379 0.418 0.477 0.451 0.368 0.309

(0.004) (0.006) (0.008) (0.009) (0.008) (0.005)

oracle DES
0.432 0.453 0.494 0.597 0.443 0.369

(0.006) (0.006) (0.007) (0.016) (0.011) (0.010)

LRES
1.109 1.036 0.952 0.972 0.948 0.933

(0.003) (0.003) (0.003) (0.004) (0.003) (0.003)

the two-step robust ES estimate (3.11) and the two-step LSE (3.8), respectively. Both methods

use the true conditional quantile function f0 to obtain the surrogate response variables. All

DNN-based estimators are implemented under the same configurations as that of DRES described

above. To assess the performance across different estimators ĝ, we define the empirical mean

integrated squared error (MISE) as

M̂ISE =
1
T

T

∑
t=1

{
ĝ(X∗t )−g0(X∗t )

}2
,

computed using an independently generated testing set with T = 105 samples. The empirical

MISE serves as an approximation to the squared L2-error ∥ĝ−g0∥2
2 = EX∗∼PX{|(ĝ−g0)(X∗)|2}.

We generate the data {(Xi,Yi)}n
i=1 from the heteroscedastic model

Yi = h1(Xi)+h2(Xi) · εi,

where Xi = (Xi1, . . . ,Xi8)
T with Xi j uniformly drawn from [0,1], and the two functions h1,h2 :
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(a) εi ∼N (0,1) with n = 8192 (b) εi ∼ t2.5/4 with n = 8192

Figure 3.1. Boxplots of M̂ISE (based on 500 repetitions) for the four estimators (DRES, DES,
oracle DRES and oracle DES) at quantile level α = 0.025.

R8→ R are defined as

h1(xxx) = cos(2πx1)+
1

1+ e−x2−x3
+

1
(1+ x4 + x5)3 +

1
x6 + ex7x8

,

h2(xxx) = sin
(

π(x1 + x2)

2

)
+ log(1+ x2

3x2
4x2

5)+
x8

1+ e−x6−x7
.

We consider two different types of random noise εi: (i) N (0,1), the standard normal distribution

(light-tailed); and (ii) t2.5/4, the scaled t-distribution with 2.5 degrees of freedom (heavy-tailed).

Since the function h2 is nonnegative, the conditional α-level quantile and expected shortfall

functions are f0(xxx) = h1(xxx)+qα(ε) ·h2(xxx) and g0(xxx) = h1(xxx)+ eα(ε) ·h2(xxx), where qα(ε) and

eα(ε) are the α-level quantile and expected shortfall of ε , respectively.

Simulation results for n = ⌈1024/(5α)⌉ and the quantile level α ∈ {0.05,0.1,0.2},

averaged over 100 repetitions, are reported in Table 3.1, for both random noise N (0,1) and

t2.5/4. We first observe the inferior performance of the linear estimator LRES compared to all

nonparametric estimators. This performance difference is consistently observed across both

light- and heavy-tailed models, regardless of the quantile level. Evidently, this discrepancy can

be attributed to the misspecification of the linear model. When the noise is light-tailed, the

performance of both DRES and DES remains consistent across different quantile levels. They

exhibit analogous or slightly worse performance compared to the two oracle methods, which

are not available in practice. However, in the presence of heavy-tailed errors, the proposed
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(a) εi ∼N (0,1) with α = 0.1. (b) εi ∼N (0,1) with α = 0.05.

(c) εi ∼ t2.5/4 with α = 0.1. (d) εi ∼ t2.5/4 with α = 0.05.

Figure 3.2. Plots of empirical mean integrated squared error (M̂ISE) versus sample size ranging
from ⌈1024/(5α)⌉ to ⌈1024/α⌉ based on 100 repetitions, when εi follows N (0,1) or t2.5/4
and α ∈ {0.1,0.05}.

robust estimator consistently outperforms DES. As a result, DRES demonstrates more reliable

performance in the presence of heavy-tailed errors without compromising statistical efficiency

under light-tailed noises.

To better demonstrate the robustness of DES, Figure 3.1 displays boxplots of M̂ISE for

the DNN-based estimators (DRES, DES, oracle DRES, and oracle DES) at a quantile level of

α = 0.025, with noise following normal and t distributions. The boxplots clearly illustrate that

when the noise distribution exhibits heavy tails, the least squares estimator DES experiences poor

performance and high variability compared to the robust estimator DRES.

Thus far, we have compared various DNN-based estimators, with a specific focus on

the DRES estimator, known for its robustness against heavy-tailed errors and efficiency in the

presence of light-tailed errors. Note that after plugging in a QR estimate, in principle, any

nonparametric LSE can be used to estimate the conditional ES function. In the subsequent
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experiments, we implement an alternative two-step nonparametric ES estimator by combining

DQR with kernel ridge regression (KRR) employing the radial basis function kernel, using the

Python library scikit-learn. For simplicity, we refer to it as KRR. Under the same model as

above, we increase the sample size from 1024/(5α) to 1024/α with α ∈ {0.05,0.1}. Figure 3.2

plots the empirical MISE versus sample size for the four ES regression estimators: LRES, DES,

DRES and KRR. Due to model misspecification, the linear estimator fails to converge as the sample

size increases, which is as expected. On the other hand, it is worth noting that both the least

squares and robust DNN estimators consistently outperform the KRR estimator, regardless of the

error distribution.

3.5.2 Upper Tail Average of Precipitation at Continental United States

The El Niño–Southern Oscillation (ENSO) is an irregular climate phenomenon charac-

terized by periodic variations in winds and sea surface temperatures across the tropical eastern

Pacific Ocean. The Climate Prediction Center in the United States (US) defines El Niño con-

ditions (or La Niño conditions) when the sea surface temperature in the Niño-3.4 region of the

equatorial Pacific Ocean deviates more than 0.5◦C above (or below) the normal temperature for

the same period. Substantial anomalies in seasonal precipitation have been associated with its

warm (El Niño) and cool (La Niña) phases (Kahya and Dracup, 1993; Ropelewski and Halpert,

1986, 1996). Specifically, recent research indicates that ENSO may be associated with regional

increased rainfall variability (Yun et al., 2021). Consequently, it is important to understand the

relationship between ENSO and the upper tail average of precipitation.

We analyze the influence of El Niño on the upper tail average of precipitation across the

continental US. To this end, we apply our proposed methodology to the US precipitation reanaly-

sis data set (Slivinski et al., 2019). This data set comprises of daily precipitation measurements

in millimeters, which are derived from reanalysis by integrating a wide range of observational

data and numerical modeling. The data set covers 819 grid points within the continental US at a

1◦×1◦ spatial resolution from year 1950 to year 2015. Subsequently, we pre-process the data by
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Figure 3.3. Subfigures (a)–(d) illustrate the predicted precipitation during periods of El Niño
event in year 2010. Subfigures (e)–(h) display the predicted precipitation when El Niño is not in
progress in year 2010.

summing the daily precipitation to obtain a monthly total precipitation. This pre-processed data

is then grouped into four seasonal categories: winter (December to February), spring (March to

May), summer (June to August), and fall (September to November). In the case of the winter

season, the pre-processed dataset comprises 161,343 data points, while each of the other seasonal

categories contains 162,162 data points.

For each seasonal dataset, we fit the proposed robust expected shortfall regression at

α = 0.9 (upper tail), where the robustification parameter is tuned by the procedure described in

Section 3.5.1. The covariate of interest is the Niño-3.4 index, and we adjust for other variables

including the year, and latitude and longitude for each location in the continental US. To calculate

the Niño-3.4 index, we compute monthly averages of sea surface temperatures in Niño-3.4 region,

subtract the annual mean temperature, and subsequently normalize the data to have mean zero

and standard deviation one. We note that estimating conditional upper tail averages at α = 0.9

is equivalent to fitting the proposed DRES method at level 1−α after flipping the sign of the

response. We estimate the conditional quantile function at level α via a DQR estimator, which

solves (3.9). For the implementation in Python, we employ fully connected ReLU neural

networks with a depth of L = 6 and a width of N = 256 using PyTorch. We set the learning rate

to 10−3 and use a batch size of 256 for 500 epochs. Similar to the approach in Section 3.5.1, we

utilize the early stopping with the number of validation data nvalid = ⌈n/8⌉.
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Figure 3.4. The discrepancies between predicted ES precipitation during periods of El Niño
event and those in the absence of El Niño conditions for each season.

Figure 3.3 presents the predicted (upper tail) conditional ES of precipitation values

for each location in year 2010 at level α = 0.9. Subfigures (a)–(d) in the figure present the

predicted precipitation during El Niño events, with the Niño-3.4 index set to 2.0. The remaining

subfigures show predictions for non-El Niño periods, with the Niño-3.4 index set to 0. We see

from Figure 3.3 that the West Coast is predicted to experience significantly higher levels of

precipitation compared to other regions in most seasons.

To understand the impact of El Niño on the (upper tail) ES of precipitation, we calculate

the discrepancies between predicted ES precipitation during periods of El Niño event and those

in the absence of El Niño conditions for each season, illustrated in Figure 3.4. Our results

reveal that the impact of El Niño exhibits spatial and seasonal variation. In particular, during

the winter and spring seasons, we observe that in the presence of El Niño, the north region is

predicted to experience drier weather compared to the normal condition, while conversely, the

south region becomes wetter. We remark that this pattern during the winter and spring aligns

with a well-known teleconnection known as the north-south seesaw in precipitation in climate

literature (Becker, Berbery and Higgins, 2009; Cayan, Redmond and Riddle, 1999; Dettinger

et al., 1998; Mo and Higgins, 1998). We enhance the current findings by offering a detailed

description of how El Niño affects the upper percentile of precipitation averages.

To further illustrate the predictive capability of our estimators for heavy rainfall, we

examine a case study involving the devastating floods in Texas and Oklahoma in May 2015.

This particular month marked a historical record as the wettest May and the all-time wettest

month in the United States, based on 121 years of recorded data (Terti et al., 2019), which leads
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to deadly flash floods. Specifically, in Dallas, Texas, May 2015 witnessed a total precipitation

of 1175 mm, a substantial departure from the average spring precipitation of 379 mm from

the year 1950 to the year 2010. It’s important to note that the Niño-3.4 index for May 2015

measured 1.60. Our DRES estimator predicts 1070 mm during El Niño events, and 449 mm

for non-El Niño periods. This result suggests that the extreme rainfall in Dallas in May 2015

could be largely associated with the El Niño events. Concurrently, we also implemented deep

least squares (mean) regression using the same neural network configuration. The deep mean

regression estimator predicts 760 mm during El Niño events, and 362 mm for non-El Niño events.

This result demonstrates the importance of using the (conditional) upper-tail average to predict

extreme rainfall events, in contrast to the use of least squares regression methods that only focus

on centrality. Consequently, estimating the (conditional) upper-tail average is a more effective

method for predicting extreme rainfall events, enabling local water management to take early

precautions to mitigate flooding effectively.
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Chapter 4

Estimation and Inference for Nonpara-
metric Expected Shortfall Regression over
RKHS

4.1 Introduction

Since the seminal work of Koenker and Bassett (1978), quantile regression (QR) has

become a valuable statistical tool that provides deeper insights into distributional properties

beyond traditional mean-based regression models. This approach is particularly crucial when

the tails, either left or right, of the response distribution carry significant implications, such

as low birth weight, high precipitation or temperature, and low earnings or test scores. By

examining multiple quantiles, analysts gain a more comprehensive understanding of the factors

influencing different segments of the data. This enhances the robustness of statistical inferences

and facilitates a more comprehensive interpretation of complex relationships in various fields,

including finance, economics, and social sciences. We refer to Koenker (2005) and Koenker et al.

(2017) for a comprehensive overview of quantile regression methods, theory, computation, and

various applications.

In the application of quantile regression across diverse domains, practitioners commonly

execute a series of models at predefined quantile levels, such as 5%, 10%, 25%, 50%, 75%,

90%, and 95%, wherein they report the estimated coefficients along with the associated p-values
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or 95% confidence intervals. Despite the wealth of information provided by these summary

statistics, surpassing the insights offered by least squares estimates, their interpretation often

remains somewhat ambiguous. Illustratively, consider a study conducted by Coronese et al.

(2019) investigating the impact of natural disasters on economic damages, where the response

variable denotes yearly economic damages in US dollars (USD billion). In this context, if the

projected 95% single-event damage for the year 2010 is estimated at $10 billion, it signifies a 5%

probability of surpassing the $10 billion damage threshold. However, no specific quantitative

details are available regarding the extent of damages beyond this threshold. Consequently, an

additional question arises: How can we model and forecast the average damages incurred by

the most severely affected 5% of cases? Another potential concern arises when the statistical

significance of a predictor varies across different quantiles. For instance, a predictor that

demonstrates 5% statistical significance in a conditional 90% quantile model may lose this

significance at conditional 87.5% and 92.5% quantile models. This variability can result in

inconclusive findings, highlighting the sensitivity of the results to the chosen quantile levels.

To address the limitations associated with quantiles, we consider a set of functionals

that extend beyond mean and quantile measures, providing coverage for flexible prespecified

regions within a distribution. Let Y ∈ R represent a generic dependent variable of interest,

which could represent earnings, test scores, precipitation, temperature, and economic damage,

among others. We denote its cumulative distribution function (CDF) and quantile function as

FY (y) = P(Y ≤ y), for y ∈ R, and qY (τ) = inf{y ∈ R : FY (y) ≥ τ}, for τ ∈ (0,1). It is worth

recalling that E(Y ) =
∫

∞

−∞
ydFY (y) =

∫ 1
0 qY (u)du. At level τ ∈ (0,1), we define the left-tail

average of Y as

eY (τ) =
1
τ

∫
τ

0
qY (u)du. (4.1)

Under this notation, the right-tail average of Y (at level 1− τ) is 1
τ

∫ 1
1−τ

qY (u)du, which, through

a change of variable, is equivalent to −e−Y (τ), the negative left-tail average of Y at level τ . In
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particular, eY (1) = E(Y ). The functional eY (τ) is also recognized as the expected shortfall (ES)

or conditional value-at-risk, a widely employed risk measure in operations research (Rockafellar

and Uryasev, 2000) and quantitative risk management (McNeil et al., 2015), with applications in

banking, insurance and actuarial science. We refer to eY (τ) in (4.1) as the τ-th ES in this work,

which is a natural coupling to the τ-th quantile qY (τ) because if FY is continuous at qY (τ), eY (τ)

can be equivalently written as eY (τ) = E{Y |Y ≤ qY (τ)}.

In the presence of explanatory variables X ∈ Rd , a variety of methods–ranging from

parametric and semiparametric to nonparametric–have been developed for estimating and in-

ferring the conditional ES of Y given X . Notable contributions include those by Dimitriadis

and Bayer (2019), Patton et al. (2019), Taylor (2019), Barendse (2020), Guillen, Bermúdez and

Pitarque (2021), Peng and Wang (2023) and He et al. (2023), which offer (semi-)parametric

approaches under either joint parametric quantile and ES models or specific families of response

distributions. In the context of nonparametric ES regression, we refer to Scaillet (2005), Cai

and Wang (2008), Kato (2012), Linton and Xiao (2013), Martins-Filho, Yao and Torero (2018),

Olma (2021) and Fissler, Merz and Wüthrich (2023), among others. It is worth noting that

a majority of prevailing nonparametric conditional ES estimators rely on Nadaraya-Watson

and local linear methods, along with various adaptations. Consequently, these methods are

particularly well-suited for low-dimensional settings, such as 1≤ d ≤ 3. To effectively address

covariates of moderate dimensionality, Fissler, Merz and Wüthrich (2023) proposed joint quantile

and ES regression estimators using a joint loss function and deep neural networks (DNNs). On

the downside, DNNs often require large amounts of training data to generalize well and are

prone to overfitting. The process of finding the optimal combination of hyperparameters for

DNNs may require extensive experimentation. From a different perspective, Chetverikov, Liu

and Tsyvinski (2022) considered a semiparametric model in which the conditional ES function

is linear. Meanwhile, the nuisance conditional CDF of Y given X is estimated nonparametrically

by a version of the random forest (RF) method. To establish the asymptotic normality of the

two-step linear ES estimator, the preliminary conditional CDF estimator must satisfy a high-level

113



uniform consistency requirement. However, the justification for this requirement, particularly

regarding the RF estimator, remains unclear. For technical reasons, their approach also relies on

sample splitting, meaning the conditional CDF and ES regression coefficients are estimated on

different subsamples.

This paper aims to propose efficient estimation and inference methods for nonparametric

expected shortfall regression, helping bridge the gap between model flexibility and complex-

ity. To address the practical concerns associated with local polynomial and DNN regressions

mentioned earlier, we focus on nonparametric regression over reproducing kernel Hilbert spaces

(RKHSs) (Schölkopf and Smola, 2002). Specifically, we assume that both the conditional quan-

tile function and the conditional ES function of the response variable Y given the input covariates

X ∈ Rd belong to RKHSs. RKHS regression provides flexibility and nonlinear modeling, as

different choices of kernel functions capture various types of nonlinear relationships in the data.

The “kernel trick” implicitly maps the input data into a higher-dimensional space without ex-

plicitly computing the transformed features. Moreover, proper tuning of the ridge regularization

parameter helps prevent overfitting and improves generalization ability.

Motivated by the use of an orthogonal score for parametric ES regression (Barendse,

2020), we propose a fully nonparametric two-step method for fitting nonlinear conditional ES

functions. In the first step, we estimate the conditional quantile function through kernel ridge

regression (KRR) with the check loss and derive finite-sample, high probability bounds for the

resulting estimator in both L2 and RKHS norms; see Theorem 4.3.1. These intermediate results

complement existing asymptotic convergence results for quantile KRR (Li et al., 2007; Lian,

2022) and are of independent interest. In the second step, we apply least squares KRR to estimate

the conditional ES function, using the quantile KRR estimates as surrogate response variables.

Both steps involve only convex optimization, and there is no need for sample splitting to facilitate

the corresponding theoretical analysis.

Subject to a high-level restriction on the accuracy of the quantile KRR estimator, we

establish finite-sample convergence rates for the two-step ES KRR estimator in Theorem 4.3.2.
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More specifically, we provide these rates in terms of exponential-type deviation bounds. For

conducting inference, we further establish a non-asymptotic functional Bahadur representation

(Theorem 4.3.3), which allows for an explicit characterization of Gaussian approximation error

bounds as functions of the effective dimension, sample size, regularization parameters, and QR

estimation error; see Theorem 4.3.4. As a byproduct, we also present parallel results for the

oracle two-step ES KRR estimator obtained by inserting the true conditional quantile function.

These results not only demonstrate that the impact of nonparametric QR estimation is first-order

negligible but also improve upon the best available results in KRR inference theory (Shang and

Cheng, 2013). Due to space constraints, we provide instantiations of the general bounds on

estimation error and Gaussian approximation error for various RKHSs in the supplementary

material.

Due to the complex nature of the asymptotic variance, the Gaussian approximation results

mentioned above are instructive but not directly applicable in practice. To address this limitation,

we employ a multiplier/weighted bootstrap procedure to construct pointwise confidence intervals

and provide rigorous theoretical guarantees for its validity; see Theorems 4.3.5 and 4.3.6. Guided

by bootstrap approximation theory, we propose a reduced-form bootstrap statistic. This eliminates

the need for solving weighted KRR repeatedly, thus considerably reducing the computational

cost.

We apply our method to medical expense data created by Lantz (2013), which uses

demographic statistics from the U.S. Census Bureau. The goal is to examine a key observation

in insurance claim size modeling that covariates may have different effects on the claim size

distribution. For instance, the age of the beneficiary enrolled in an insurance plan may be a

crucial variable in explaining systematic effects on large medical expenses charged to the plan

but may be irrelevant in describing such effects in average charges. Through this relatively small

dataset, we demonstrate the potential of nonparametric ES regression techniques for flexible

insurance claim size modeling, as opposed to relying on the popular gamma model. Our objective

is not to replace quantile regression but to provide an additional regression tool and insights to
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be incorporated into a broader system of risk analysis and tail learning.

The rest of this paper is organized as follows. We begin with a brief introduction to the

joint quantile and ES regression framework in Section 4.2. After providing some preliminaries

on RKHSs in Section 4.2.1, we propose the two-step ES estimator employing an orthogonal

score function in Section 4.2.2. The multiplier bootstrap procedure for statistical inference is

introduced in Section 4.2.3. In Section 4.3, we begin our analysis by deriving exponential-type

deviation bounds for the proposed estimators under general RKHSs. In Section 4.3.2, we derive

functional Bahadur representations and Berry-Esseen bounds for the proposed estimator, and

establish the theoretical validity of the bootstrap procedure. Section 4.4 examines the finite-

sample performance and usefulness of the proposed estimator through numerical experiments and

a real data demonstration. We conclude the paper with a discussion in Section 4.5. Instantiations

of the general bounds for various RKHSs in Section 4.3 and the proofs of all theoretical results

are deferred to the supplementary materials.

NOTATION. We use c1,c2, . . . to denote the global constants employed in the statements and

proofs of theorems, propositions, corollaries, and lemmas. On the other hand, C1,C2, . . . denote

local intermediate constants within the proofs and may vary from one line to another. For two

sequences of real numbers {ai}i≥1,{bi}i≥1, we write ai ≲ bi if there exists a constant C > 0

independent of i such that ai ≤Cbi for all i≥ 1, and ai ≳ bi if bi ≲ ai. Moreover, we write ai ≍ bi

if ai ≲ bi and ai ≳ bi. For the sample size, we assume n ≥ 3 throughout the paper, ensuring

logn≥ 1.

4.2 Model Setup and Methodologies

Let {(Yi,Xi)}n
i=1 be n independent random samples from (Y,X)∈R×X , where X ⊆Rd

is a compact subset. Here, Y is a real-valued response variable and X ∈ Rd is a d-dimensional

vector of random covariates. For simplicity, we assume that X = [0,1]d is the unit cube in

Rd . Let FY (·|X) be the conditional CDF of Y given X . Given a τ ∈ (0,1), the conditional τ-th
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quantile and expected shortfall of Y given X are written, respectively, as

qY (τ|X) = inf{y ∈ R : FY (y|X)≥ τ} and eY (τ|X) = E{Y |Y ≤ qY (τ|X),X}.

We consider the following nonparametric models for the conditional quantile and ES:

qYi(τ|Xi) = f0(Xi) and eYi(τ|Xi) = g0(Xi), (4.2)

where f0,g0 : [0,1]d → R are two unknown functions satisfying P{Y ≤ f0(X)|X} = τ almost

surely and g0(x) = E{Y |Y ≤ f0(X),X = x} for x ∈ [0,1]d . Under this assumption, it is well-

known that f0 minimizes the population check loss objective Qτ( f )−Qτ(0) over all functions

f : X →R, where Qτ( f ) := E{ρτ(Y − f (X))} and ρτ is the check function defined as ρτ(u) =

u{τ − 1(u ≤ 0)} (Koenker and Bassett, 1978). In addition, provided that E(Y 2) < ∞, the

true conditional ES function g0 minimizes the expected truncated squared error loss E[(Y −

g(X))2
1{Y ≤ f0(X)}] over all functions g : X → R.

Our main objective is to develop inference methods for the nonparametric ES regression

function g0. Specifically, we aim to construct (asymptotically) 100 · (1− α)% (e.g., α =

0.05) pointwise confidence intervals Cα(x) = [ĝl(x), ĝu(x)] for g0(x), satisfying that P{g0(x) ∈

Cα(x)} → 1−α as n→ ∞ for each x ∈X . Here, the probability is taken with respect to the

training sample {(Xi,Yi)}n
i=1 used to construct the confidence intervals.

4.2.1 Preliminaries on RKHS

Assume that the marginal distribution PX of X ∈X is non-degenerate. Let L2(PX)

be the Hilbert space of functions f : X → R square-integrable with respect to PX , that is,

L2(PX) = { f : X → R |
∫
X f 2(x)dPX(x) < ∞}. Denote by ∥ · ∥2 = ∥ · ∥L2(PX ) the L2-norm in

the space L2(PX) induced by the inner product ⟨ f ,g⟩2 = ⟨ f ,g⟩L2(PX ) =
∫
X f (x)g(x)dPX(x).

Let K : X ×X → R be a continuous, symmetric, and positive semidefinite kernel
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function, known as a Mercer kernel. Define the function Kx : X → R as Kx(x′) = K(x,x′)

for any x,x′ ∈X . A reproducing kernel Hilbert space (RKHS) H = HK associated with

the Mercer kernel K is defined as the completion of the linear span of {Kx : x ∈X } with the

inner product ⟨·, ·⟩H , satisfying ⟨Kx,Kx′⟩H = K(x,x′) (Aronszajn, 1950). Denote by ∥ · ∥H the

RKHS norm induced by ⟨·, ·⟩H . For any r > 0, let BH (r) be the ball of radius r with respect

to the RKHS norm, i.e., BH (r) = { f ∈H : ∥ f∥H ≤ r}. For every f ∈H and x ∈X , the

well-known reproducing property states that f (x) = ⟨Kx, f ⟩H . Moreover, define the integral

operator TK : L2(PX)→ L2(PX)

TK( f )(x) =
∫
X

K(x,x′) f (x′)dPX(x′), ∀ f ∈ L2(PX), x ∈X . (4.3)

Throughout the manuscript, we impose the following boundedness condition on K.

Condition 4.2.1. The kernel function is uniformly bounded, that is, supx∈X
√

K(x,x)≤ 1.

By compactness of X and boundedness of the kernel, the Mercer’s theorem ensures the

existence of a sequence of eigenfunctions {φ j} j≥1 that form an orthonormal basis of L2(PX),

and an associated set of non-negative eigenvalues {µ j} j≥1 such that

K(x,x′) =
∞

∑
j=1

µ jφ j(x)φ j(x′) and TK(φ j) = µ jφ j(x), j = 1,2, . . . , (4.4)

where the convergence of the infinite series holds absolutely and uniformly on X ×X . Without

loss of generality, we assume that {µ j} j≥1 is non-increasing. With this Mercer expansion, the

squared RKHS norm takes the form ∥ f∥2
H = ∑

∞
j=1 f 2

j /µ j, where f j =
∫
X f (x)φ j(x)dPX(x) =

⟨ f ,φ j⟩2. Consequently, the RKHS H can be written as H = { f = ∑
∞
j=1 f jφ j |∑∞

j=1 f 2
j /µ j <

∞}. By the spectral decomposition of K(·, ·), we have TK( f )(x) = ∑
∞
j=1 µ j⟨φ j, f ⟩2 φ j(x) for

any x ∈X and f ∈ L2(PX). For any r ≥ 0, we define the r-th power of TK as T r
K( f )(x) =

∑
∞
j=1 µr

j⟨φ j, f ⟩2 φ j(x).

For the purposes of estimation and inference, we define F as { f = f ′+b : f ′ ∈H ,b ∈
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R}. Since the commonly used Gaussian RKHS does not include non-zero constant functions

(Minh, 2010), the use of F allows for a more flexible setting. Throughout the following

discussion, we will use the notation f ′ for any function that belongs to an RKHS without an

additional intercept term. Following the approach of Zhang, Liu and Wu (2016), we assume that

each f in F can be uniquely decomposed as f ′+b, with f ′ ∈H and b ∈ R.

4.2.2 Expected shortfall regression in RKHS

We propose a two-step procedure for estimating the conditional ES function g0 : X →R

in (4.2) in the context of RKHS by treating the conditional quantile function f0 as a nuisance

parameter (Barendse, 2020; He et al., 2023). Let Sτ(q,e;Y ) = τq+ τ(Y −q)1(Y ≤ q)− τe with

q,e ∈ R be a score function that satisfies the moment condition E{Sτ( f0(X),g0(X);Y )|X}= 0

almost surely. Assuming that the conditional distribution of Y given X , denoted as FY |X , is

continuous, we have the following orthogonality property:

∂

∂q
E{Sτ(q,e;Y )|X}

∣∣∣∣
q= f0(X)

= τ−FY |X( f0(X)) = 0. (4.5)

At the first step, we estimate f0 nonparametrically via a kernel ridge regression:

f̂ = f̂n(λq) ∈ argmin
f∈F

{
1
n

n

∑
i=1

ρτ(Yi− f (Xi))+λq∥ f ′∥2
H

}
, (4.6)

where λq > 0 is a regularization parameter. We refer to f̂ as the quantile KRR (Q-KRR)

estimator (Takeuchi et al., 2006; Li et al., 2007). By the representer theorem (Kimeldorf and

Wahba, 1971), it suffices to consider output functions that belong to the span of the fundamental

functions defined by the kernel K and the training sample, i.e., {K(Xi, ·)}n
i=1, possibly including

an intercept term. Using the parameterization f (·) = f ′(·)+b=∑
n
i=1 αiK(Xi, ·)+b, optimization
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problem (4.6) can be reformulated as

minimize
ααα∈Rn,b∈R

{
1
n

n

∑
i=1

ρτ

(
Yi−b−

n

∑
j=1

α jK(Xi,X j)

)
+λq ·αααTKααα

}
, (4.7)

where K = (K(Xi,X j))1≤i, j≤n ∈ Rn×n is the kernel matrix and ααα = (α1, . . . ,αn)
T.

At the second step, we construct surrogate response variables Ẑi = Zi( f̂ ) using the

nonparametric quantile estimate obtained at the first step, where

Zi( f ) = τ f (Xi)+{Yi− f (Xi)}1{Yi ≤ f (Xi)} (4.8)

for any function f : X → R. We then propose a two-step ES kernel ridge regression (ES-KRR)

estimator ĝ = ĝn(λe) of g0 defined as

ĝ ∈ argmin
g∈F

L̂n( f̂ ,g) with L̂n( f ,g) =
1
n

n

∑
i=1
{Zi( f )/τ−g(Xi)}2 +λe∥g′∥2

H , (4.9)

where λe > 0 is a second regularization parameter. Similarly, (4.9) can be rewritten as

minimize
ααα∈Rn,b∈R

{
1
n

n

∑
i=1

(
Ẑi/τ−b−

n

∑
j=1

α jK(Xi,X j)

)2

+λe ·αααTKααα

}
. (4.10)

Thus, we have ĝ(·) = b̂+∑
n
j=1 α̂ jK(X j, ·) where (α̂αα, b̂) is the solution to (4.10).

4.2.3 Pointwise inference with multiplier bootstrap

In this section, we propose a framework for conducting pointwise inference on the

conditional ES function g0 in (4.2). Specifically, we propose a multiplier bootstrap procedure to

construct asymptotically valid confidence intervals for g0 at any predetermined x0 ∈X .

Let W1, . . . ,Wn ∼W be independently generated random weights that satisfy E(W ) = 1
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and Var(W ) = 1. We define the bootstrap ES-KRR estimator ĝ♭ = ĝ♭n(λe) as

ĝ♭ ∈ argmin
g∈F

L̂ ♭
n ( f̂ ,g) with L̂ ♭

n ( f ,g) =
1
n

n

∑
i=1

Wi{Zi( f )/τ−g(Xi)}2 +λe∥g′∥2
H . (4.11)

Denote by P∗ and E∗ the conditional probability and expectation given Dn, respectively, and

note that E∗{L̂ ♭
n ( f̂ ,g)} = L̂n( f̂ ,g). Therefore, L̂ ♭

n is a conditionally unbiased “estimate” of

L̂n in the bootstrap world, so that ĝ♭ can be viewed as the bootstrap estimator of ĝ.

To preserve the convexity of the loss function L̂ ♭
n , non-negative weights are typically

preferred. Two commonly used choices are Wi ∼ Exp(1), an exponential distribution with rate 1,

and Wi ∼ 1+ ei, where ei ∼ Unif({−1,1}) follows the Rademacher distribution. Using a similar

re-parametrization as in (4.10), we can compute ĝ♭ by solving a quadratic program. Then, for

a prescribed nominal level α ∈ (0,1), we can construct confidence intervals for g0(x0) via the

percentile, pivotal, or normal-based methods.

The computational complexity of the algorithm in Saunders, Gammerman and Vovk

(1998) for solving KRR problems scales as O(n3). Consequently, the complexity of computing ĝ♭

increases to O(Bn3), where B is the number of bootstrap samples. To mitigate the computational

cost, various algorithms such as the divide-and-conquer (Zhang, Duchi and Wainwright, 2013),

Nyström method (Williams and Seeger, 2000), and randomized sketches (Yang, Pilanci and

Wainwright, 2017), can be used to approximate the solution.

In Section 4.3.2, we will establish a functional Bahadur representation of the ES-KRR

estimator ĝ around the population (penalized) risk minimizer gλe , defined as

gλe = argmin
g∈F

[
E{Zi( f0)/τ−g(Xi)}2 +λe∥g′∥2

H

]
. (4.12)

Specifically, Theorem 4.3.3 provides an upper bound on the difference between τ(ĝ−gλe) and

n−1
∑

n
i=1{Zi( f0)−τg0(Xi)}(TK +λeI)−1KXi under the supremum norm, where TK is the integral

operator defined in (4.3), I is the identity operator, and KXi(·) = K(Xi, ·). Motivated by this
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Algorithm 2. Pointwise confidence interval construction using weighted bootstrap
Input: Training data {(Yi,Xi)}n

i=1, number of bootstrap samples B, regularization parameters λq
and λe, and nominal level α ∈ (0,1).

1: Compute the Q-KRR and ES-KRR estimators defined in (4.6) and (4.9), respectively.
2: Calculate the n-vector vx0 = (vx0,1, . . . ,vx0,n)

T defined in (4.13).
3: for b = 1,2, . . . ,B do
4: Generate independent random weights W (b)

1 , . . . ,W (b)
n ∼W .

5: Compute bootstrap statistics B♭
b(x0) = (1/n)∑

n
i=1(W

(b)
i −1){Zi( f̂ )/τ− ĝ(Xi)}vx0,i.

6: end for
7: Compute the upper (α/2)-th and (1− α/2)-th sample quantiles of bootstrap statistics
{B♭

b(x0)}B
b=1, denoted by û♭

α/2 and û♭1−α/2, respectively.

Output: α-level confidence interval [ĝ(x0)− û♭
α/2, ĝ(x0)− û♭1−α/2].

representation, for any x0 ∈X , we can bypass the need to solve the quadratic program in

(4.11) for each bootstrap iteration by approximating the distribution of ĝ(x0)−g0(x0) with the

following quantity when the bias gλe(x0)−g0(x0) is negligible:

B♭(x0) :=
1
n

n

∑
i=1

(Wi−1){Zi( f̂ )/τ− ĝ(Xi)}(T̂ +λeI)−1KXi(x0).

Here, T̂ = (1/n)∑
n
i=1 KXi⊗KXi is the empirical integral operator satisfying E(T̂ ) = TK , where

the tensor product KXi⊗KXi : H →H is defined as (KXi⊗KXi)(h) := ⟨KXi,h⟩H KXi = h(Xi)KXi .

To implement the proposed procedure, motivated by Singh and Vijaykumar (2023), we

provide an equivalent representation of B♭(x0) in Proposition 4.2.1. Let

vx0 = (vx0,1, . . . ,vx0,n)
T = (K/n+λeIn)

−1kx0 ∈ Rn, (4.13)

where kx0 = (K(X1,x0), . . . ,K(Xn,x0))
T ∈ Rn, and In is the identity matrix of size n.

Proposition 4.2.1 (Equivalent representation of B♭(x0)). Let vx0 = (vx0,1, . . . ,vx0,n)
T be the

n-vector defined in (4.13). The above bootstrap statistic B♭(x0) can be written as

B♭(x0) =
1
n

n

∑
i=1

(Wi−1){Zi( f̂ )/τ− ĝ(Xi)}vx0,i. (4.14)
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For any α ∈ (0,1), we construct a 100∗ (1−α)% confidence interval of g0(x0) as

I ♭
α(x0) :=

[
ĝ(x0)−u♭

α/2, ĝ(x0)−u♭1−α/2
]
, (4.15)

where u♭α := u♭α(x0,Dn) = inf{u ∈ R : P∗(B♭(x0) > u) ≤ α} denotes the upper α-quantile of

B♭(x0) under P∗. In practice, once the vector vx0 is obtained, we can compute the quantity u♭α

with arbitrary precision using Monte Carlo simulations; see Algorithm 2.

4.3 Statistical Theory: General Results

For notational convenience, we omit the intercept term throughout the statistical analysis.

We define the effective dimension of the operator TK as

Dλ := Tr((TK +λ I)−1TK) =
∞

∑
j=1

µ j

µ j +λ

for any λ > 0 (Zhang, 2002; Caponnetto and De Vito, 2007). The effective dimension plays

a central role in determining both the convergence rate of kernel ridge regression estimators

and the dependence of regularization on the sample size. Note that TK is a trace-class operator,

i.e., the sum of all the eigenvalues of TK is finite. To see this, Condition 4.2.1 ensures that

K(Xi,Xi) = ∑
∞
j=1 µ jφ

2
j (Xi) ≤ 1. Since φ j’s are orthonormal, taking the expectation over Xi

yields Tr(TK) = ∑
∞
j=1 µ j ≤ 1. Therefore, Dλ is well-defined for any λ > 0, satisfying Dλ ≤

λ−1
∑

∞
j=1 µ j ≤ λ−1. Moreover, Dλ is increasing as λ decreases. Note that Dλ ≥ 1/2 for any

λ ≤ µ1. Therefore, without loss of generality, we assume Dλ ≳ 1 throughout the paper. We refer

the reader to Section B of the supplementary material for explicit upper bounds on Dλ for three

commonly used kernels.
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4.3.1 Convergence analysis

This section presents non-asymptotic deviation bounds for the proposed estimators.

We begin by providing the convergence rate of the Q-KRR estimator in (4.6). This serves

as an intermediate result for the analysis of the ES-KRR estimator, for which we provide a

self-contained proof. Under model (4.2), let εi = Yi− f0(Xi) be the QR residuals that satisfy

P(εi ≤ 0|Xi) = τ almost surely. Consistent with common practice in the QR literature, we impose

some regularity conditions on the conditional distribution of εi given Xi in Condition 4.3.1. High

probability error bounds under the ∥ · ∥2 and ∥ · ∥H norms for the Q-KRR estimator (4.6) are

presented in Theorem 4.3.1.

Condition 4.3.1 (Conditional density). The conditional density function of εi given Xi, denoted

by pεi|Xi exists and is continuous on its support. Moreover, there exists absolute constants

p, l0 > 0 such that min|u|≤l0 pεi|Xi(u)≥ p almost surely (over Xi).

Theorem 4.3.1 (Convergence rates for quantile KRR). Assume Conditions 4.2.1 and 4.3.1 hold,

and f0 = T rq
K f ∗ for some 0 ≤ rq ≤ 1/2 and f ∗ ∈H . For any t > 0, let λq > 0 be such that

λq ≥ (Dλq + t)/n and λ
rq
q ∥ f ∗∥H ≤ 1. Then, there exist constants c1,c2 > 0, independent of

(n,λq, t, f0) and H , such that with probability at least 1− e−t , the Q-KRR estimator f̂ = f̂n(λq)

satisfies ∥ f̂ − f0∥2 ≤ c1{λ
rq+1/2
q ∥ f ∗∥H +

√
(Dλq + t)/n} and ∥ f̂ − f0∥H ≤ c2{λ

rq
q ∥ f ∗∥H +

λ
−1/2
q

√
(Dλq + t)/n}.

The non-asymptotic L2-error bound in Theorem 4.3.1 consists of two components: the

regularization bias λ
rq+1/2
q ∥ f ∗∥H and the error term

√
(Dλq + t)/n. The bias term arises due

to the use of ridge penalty and grows proportionally with λq when rq is fixed. In contrast, the

variance term shrinks as λq increases. To determine the optimal convergence rate, we need to

choose a suitable value of λq to balance the trade-off between bias and variance. The assumption

that f0 = T rq
K f ∗ for some 0≤ rq ≤ 1/2 and f ∗ ∈H is referred to as the source condition (see,

e.g., Chapter 3 in Engl, Hanke and Neubauer (1996)), also viewed as a smoothness assumption.
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As rq increases, the true quantile function becomes “smoother”, and the bias error term decreases

when λq < 1. Finally, the Q-KRR estimator satisfies an exponential-type concentration inequality

without requiring any moment conditions on εi. This highlights the robustness of QR against

heavy-tailed response distributions.

Next, we shift our focus to the two-step ES-KRR estimator constructed from nonparamet-

rically generated surrogate response variables. To this end, we impose additional assumptions on

the QR residuals and eigenfunctions of the RKHS.

Condition 4.3.2 (Sub-Gaussian random noise). The conditional density function of ε given X is

uniformly bounded from above, that is, supu∈R pε|X(u)≤ p̄ for some constant p̄ > 0. Moreover,

there exists σ0 > 0 such that the negative part of the QR residual, ε− := min(ε,0), satisfies

logEX [et{ε−−EX (ε−)}] ≤ σ2
0 t2/2 for all t ∈ R almost surely (over X), where EX(·) = E(·|X)

denotes the conditional expectation given X .

Condition 4.3.3 (Uniformly bounded eigenfunctions). The eigenfunctions {φ j} j≥1 are uni-

formly bounded, that is, sup j≥1 ∥φ j∥∞ ≤Cφ < ∞ for some universal constant Cφ ≥ 1.

The sub-Gaussian assumption is common in the literature on nonparametric statistics.

Under this assumption, nonparametric least squares estimators have nice properties, such as

rate-optimality. Referring back to (4.8), where Zi( f0) = τ f0(Xi)+ εi,− with εi,− = min(εi,0),

we observe that it satisfies E{Zi( f0)|Xi} = τg0(Xi) or, equivalently, Zi( f0) = τg0(Xi)+ εi,−−

EXi(εi,−). Therefore, we impose the above moment condition on ε−. The uniform boundedness

stated in Condition 4.3.3 dates back to Mendelson and Neeman (2010) and plays a crucial role in

our analysis of the two-step ES estimator. It facilitates the establishment of a non-trivial error

bound in the supremum norm for the Q-KRR estimator.

Our next result establishes non-asymptotic errors bound under the ∥ ·∥2 and ∥ ·∥H norms

for the ES-KRR estimator (4.9), conditioning on the event that the nuisance estimator f̂ ∈H

falls within a local neighborhood of f0.
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Theorem 4.3.2 (Convergence rates for expected shortfall KRR). Assume that Conditions 4.2.1,

4.3.2 and 4.3.3 hold, and that g0 = T re
K g∗ for some 0≤ re ≤ 1/2 and g∗ ∈H . For any t > 0, let

λe satisfy λe ≳ (t + logDλe)/n and n≥C2
φ
Dλe logn, and define the event E (δ2,λq) := { f̂ ∈H :

∥ f̂ − f0∥2
2 +λq∥ f̂ − f0∥2

H ≤ δ 2
2 } for δ2,λq > 0. Moreover, define

γb = τλ
re+1/2
e ∥g∗∥H , γs = σ0

√
Dλe + t

n
, δs =Cφ δ2D

1/2
λq

√
Dλe + t

n
.

Then, there exist constants c3,c4 > 0, independent of (n,λq,λe, t, f0,g0) and H , such that with

probability at least 1−6e−t conditioned on the event E (δ2,λq), the ES-KRR estimator ĝ= ĝn(λe)

satisfies

τ∥ĝ−g0∥2 ≤ c3
(
γb + γs +δs + p̄∥ f̂ − f0∥2

4
)

and τ∥ĝ−g0∥H ≤ c4
γb + γs +δs + p̄∥ f̂ − f0∥2

4√
λe

.

Theorem 4.3.2 establishes a non-asymptotic error bound for ES-KRR estimators using a

plugged-in QR estimator f̂ . The upper bound comprises four terms. Similar to the error bounds

for Q-KRR estimators, γb captures the bias arising from the use of the ridge penalty, while γs

corresponds to the variance of the estimator. When re is fixed, an increase in λe results in a larger

bias and a smaller variance, highlighting the trade-off between bias and variance. Furthermore,

when λe < 1, the bias term decreases as re increases.

The estimation error associated with the plugged-in estimate f̂ is characterized by two

components: δs and p̄∥ f̂ − f0∥2
4. The term δs arises when bounding the suprema of certain

product empirical processes. Notably, due to the orthogonal property (4.5) of the score function,

the squared L4-error of the nonparametric QR estimator contributes to the L2-error bound for

the ES-KRR estimator. Therefore, even if the QR estimator converges at a slower rate under

the L4-norm, the ES estimator can still achieve the optimal convergence rate, as if the true

conditional quantile function f0 is known. While Theorem 4.3.1 quantifies the accuracy of QR

estimation using L2 and RKHS norms, an upper bound on the L4-norm can be derived from the
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inequality ∥h∥4
4 ≤ ∥h∥2

∞EPX{h2(X)}= ∥h∥2
∞∥h∥2

2. As a result, it is reasonable to anticipate that

the L4-error ∥ f̂ − f0∥2
4 could be significantly smaller than ∥ f̂ − f0∥2, depending on upper bounds

for ∥ f̂ − f0∥∞.

4.3.2 Theoretical guarantees for pointwise inference

The two-step ES-KRR estimator, denoted as ĝ, minimizes the penalized empirical risk

g 7→ L̂n( f̂ ,g) with nonparametrically generated response variables. As a crucial step towards

deriving the asymptotic distribution of ĝ via Gaussian approximation, the following theorem

provides a non-asymptotic Bahadur representation of ĝ. To assess the influence of QR estimation

on the inference for the ES function, we also establish a similar Bahadur representation for the

“oracle” estimator, denoted by ĝora = argming∈H L̂n( f0,g). This oracle estimator is obtained

by plugging in the true conditional quantile function f0 in the empirical risk. Recall that the

population (penalized) risk minimizer gλe = argming∈H E{L̂n( f0,g)} defined in (4.12). Since

E{Zi( f0)− τg0(Xi)}= 0, from Proposition 1 in Caponnetto and De Vito (2007) we see that gλe

is uniquely determined by gλe = (TK +λeI)−1TKg0.

In addition to the QR residuals εi = Yi− f0(Xi), define the zero-mean random variables

ωi = εi,−−EXi(εi,−) with εi,− = min{εi,0}, which can be viewed as ES residuals in the sense

that Zi( f0) = τg0(Xi)+ωi.

Theorem 4.3.3 (Functional Bahadur representations). Assume that Conditions 4.2.1–4.3.3 hold,

and ( f0,g0) = (T rq
K f ∗,T re

K g∗) for some 0 ≤ rq,re ≤ 1/2 and f ∗,g∗ ∈H . For any t > 0, let

n ≥ 64C2
φ
Dλe(t + logn), λq ≥ (Dλq + t)/n, λ

rq
q ∥ f ∗∥H ≤ 1 and λe ≳ (t + logDλe)/n. Define

δn := δn(λq,n, t) and γn := γn(λe,n, t) as

δn = λ
rq+1/2
q ∥ f ∗∥H +

√
Dλq + t

n
and γn = τλ

re+1/2
e ∥g∗∥H +σ0

√
Dλe + t

n
.
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Then, with probability at least 1−8e−t , the two-step ES-KRR estimator satisfies

∥∥∥∥τ(ĝ−gλe)−
1
n

n

∑
i=1

ωi(TK +λeI)−1KXi

∥∥∥∥
∞

≤ c5D
1/2
λe
{∆1(λe)+∆2(λq,λe)}, (4.16)

where ∆1(λe) = D
1/2
λe

γn
√

(t + logn)/n, ∆2(λq,λe) = D
1/2
λq

δn{δn +
√

(Dλe + t)/n}, and c5 =

c5(Cφ )> 0. Moreover, with probability at least 1−6e−t , the two-step oracle ES-KRR estimator

satisfies

∥∥∥∥τ(ĝora−gλe)−
1
n

n

∑
i=1

ωi(TK +λeI)−1KXi

∥∥∥∥
∞

≤ c6D
1/2
λe

∆1(λe), (4.17)

where c6 = c6(Cφ )> 0.

Under Conditions 4.2.1, 4.3.2 and 4.3.3, for any x0 ∈X , it follows from the reproducing

property of K, the orthonomality and boundedness of φ j that

E
[
ω

2
i {(TK +λeI)−1KXi(x0)}2]≲ σ

2
0 E{(TK +λeI)−1KXi(x0)}2

= σ
2
0 E

{
∞

∑
j=1

µ j

µ j +λe
φ j(Xi)φ j(x0)

}2

= σ
2
0

∞

∑
j=1

(
µ j

µ j +λe

)2

φ
2
j (x0)

≤C2
φ σ

2
0

∞

∑
j=1

µ j

µ j +λe
=C2

φ σ
2
0Dλe . (4.18)

This indicates (1/n)∑
n
i=1 ωi(TK +λeI)−1KXi(x0) = OP(

√
Dλe/n). From (4.16) and (4.17) we

see that ĝ and ĝora are first-order equivalent, both well approximated by (1/n)∑
n
i=1 ωi(TK +

λeI)−1KXi(x0), provided that ∆1(λe)+∆2(λq,λe) = o(n−1/2). It is noteworthy that the functional

Bahadur representation provided in Theorem 4.3.3 improves the existing results, making it of

independent interest; see Section A in the supplementary material for details.

Building upon the functional Bahadur representations in Theorem 4.3.3, we establish

Berry-Esseen bounds for ĝ(x0) and ĝora(x0) with x0 ∈X fixed. In particular, the following

theorem demonstrates that as long as ∆1(λe)+∆2(λq,λe) = o(n−1/2), the two-step estimator
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ĝ(x0) is asymptotically equivalent to the oracle estimator ĝora(x0). The Berry-Esseen bound

quantifies the accuracy of Gaussian approximations, and therefore directly implies the asymptotic

normality under certain conditions.

Theorem 4.3.4 (Berry-Esseen bounds for ES-KRR estimators). Assume that the same set of

conditions as in Theorem 4.3.3 holds. For any x0 ∈X , let

ρ
2
λe
(x0) :=

E{ωi(TK +λeI)−1KXi(x0)}2

Dλe

> 0. (4.19)

Then, the two-step ES-KRR estimator ĝ(x0) and the oracle estimator ĝora satisfy

sup
u∈R

∣∣∣∣∣P
{√

n
Dλe

τ

ρλe(x0)
(ĝ−gλe)(x0)≤ u

}
−G(u)

∣∣∣∣∣≤ c7
√

n
{

∆1(λe)+∆2(λq,λe)
}
+8e−t

and supu∈R |P{
√

n/Dλeτ(ĝora−gλe)(x0)/ρλe(x0) ≤ u}−G(u)| ≲ c8
√

n∆1(λe)+6e−t , respec-

tively, where c7 = c7(Cφ ,ρλe(x0),σ0) > 0, c8 = c8(Cφ ,ρλe(x0),σ0) > 0 and G(·) denotes the

standard normal CDF.

Corollary 4.3.1 (Pointwise asymptotic normality). Assume that the same conditions as in

Theorem 4.3.3 hold with t = logn, and that ρ2
λe
(x0)→ ρ2(x0) for some ρ2(x0) > 0 as n→

∞. Moreover, let (λq,λe,n) be such that ∆1(λe) +∆2(λq,λe) = o(n−1/2). Then, as n→ ∞,

τ
√

n/Dλe(ĝ−gλe)(x0)
d−→N (0,ρ2(x0)), where d−→ indicates “convergence in distribution”. The

same result holds for ĝora when (λe,n) satisfy ∆1(λe) = o(n−1/2).

From (4.18), we see that ρ2
λe
(x0) ≤ C2

φ
σ2

0 . Since λe is essentially a function of n, we

make the high-level assumption that the variance sequence ρλe(x0) has a positive limit as n→ ∞.

Similar conditions are often assumed in the literature (Shang and Cheng, 2013; Zhao, Liu

and Shang, 2021) to obtain asymptotic distributions of KRR estimators. To ensure that the

bias term gλe(x0)−g0(x0) is negligible asymptotically, we prefer using smaller λe values that

correspond to undersmoothing. This is a common procedure in nonparametric inference (Hall,
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1992). Specifically, we choose a regularization parameter that yields a rate-suboptimal estimator

but with an asymptotically centered normal distribution.

Remark 4.3.1 (Confidence interval construction based on the asymptotic normality). Based on

the asymptotic results in Corollary 4.3.1, we may consider the (approximate) 100∗ (1−α)%

confidence interval ĝ(x0)± τ−1zα/2 ·ρλe(x0)
√
Dλe/n, where zα/2 is the upper (α/2)-percentile

of the standard normal distribution. The variance term ρ2
λe
(x0), or equivalently, E[ω2

i {(TK +

λeI)−1KXi(x0)}2], still needs to be estimated in practice. Assuming Var(εi,−|Xi) = σ2 for some

constant σ2 > 0, similar to (4.18) it can be calculated that ρ2
λe
(x0) =

σ2

Dλe
∑

∞
j=1

µ2
j

(µ j+λe)2 φ 2
j (x0).

In some cases, such as when the RKHS is the periodic Sobolev space, an explicit formulation of

limλe→0D
−1
λe

∑
∞
j=1 µ2

j φ 2
j (x0)/(µ j +λe)

2 can be calculated (see, e.g., Lemma 6.1 in Shang and

Cheng (2013)). It then suffices to estimate σ2. However, the above homoscedasticity condition

is fairly restrictive and neglects the heterogeneity in X at different quantile levels of the response

distribution. Without this condition, consistently estimating ρ2
λe
(x0) becomes a challenging task.

To examine the validity of bootstrap-based confidence interval constructions described

in Section 4.2.3, we consider the bootstrap statistic B♭(x0) given in (4.14), with the random

weights Wi satisfying the following condition.

Condition 4.3.4 (Sub-Gaussian bootstrap weights). The random weights {Wi}n
i=1 are indepen-

dent copies of some random variable W satisfying E(W ) = 1 and Var(W ) = 1. Moreover, there

exists a constant σW > 0 such that logE{et(W−1)} ≤ σ2
W t2/2 for all t ∈ R.

Condition 4.3.4 is satisfied by commonly used Rademacher weights and Gaussian weights.

Recall that P∗(·) = P(·|Dn) denotes the conditional probability given Dn = {(Yi,Xi)}n
i=1. The

next result shows that the conditional distribution of B♭(x0) approximates the distribution of

ĝ(x0)−g0(x0) well under suitable conditions.

Theorem 4.3.5 (Bootstrap approximation error). Assume that Conditions 4.2.1–4.3.4 hold,

( f0,g0) = (T rq
K f ∗,T re

K g∗) for some 0 ≤ rq,re ≤ 1/2 and f ∗,g∗ ∈H . For any t > 0, let n ≥
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64C2
φ
Dλe(t + logn) logn, λq ≥ (Dλq + t)/n, λ

rq
q ∥ f ∗∥H ≤ 1 and λe ≳ (t + logDλe)/n. Then,

with probability (over the independent sample Dn) at least 1−16e−t ,

sup
u∈R

∣∣P{(ĝ−g0)(x0)≤ u}−P∗{B♭(x0)≤ u}
∣∣

≤ c9
√

n
{

∆1(λe)+∆2(λq,λe)+ τλ
re+1/2
e ∥g∗∥H

}
+13e−t , (4.20)

where c9 = c9(Cφ ,σ0,σW ,ρλe(x0))> 0 and ρλe(x0) is as in (4.19).

For any α ∈ (0,1), recall the definition of u♭α in (4.14). As a direct consequence of

Theorem 4.3.5, the following result provides a theoretical guarantee for the confidence interval

I ♭
α(x0) constructed using the multiplier bootstrap, as defined in (4.15).

Theorem 4.3.6 (Validity of bootstrap approximation). Under the same set of conditions as in

Theorem 4.3.5, there exists a constant c10 = c10(Cφ ,σ0,σW ,ρλe(x0)) such that, for any α ∈ (0,1),

|P{g0(x0) ∈ I ♭
α(x0)}− (1−α)| ≤ Err♭(n, t), where Err♭(n, t) = c10

√
n{∆1(λe)+∆2(λq,λe)+

τλ
re+1/2
e ∥g∗∥H }+62e−t .

Since the convergence rates and conditions ensuring asymptotic normality vary consider-

ably among different kernel types, we defer instantiations of the general bounds on estimation

error and Gaussian approximation error for RKHSs to Section B in the supplementary material.

4.4 Numerical and Empirical Studies

The two-step nature of the proposed method offers advantages not only in terms of

desirable statistical properties, achieved through the use of an orthogonal score, but also in

facilitating practical implementations. The computation of the Q-KRR estimator involves

reformulating (4.7) into a quadratic program (Takeuchi et al., 2006):

minimize
ααα∈Rn

1
2

ααα
TKααα−ααα

Ty, subject to Cq(τ−1)≤ αi ≤Cqτ,1≤ i≤ n,
n

∑
i=1

αi = 0, (4.21)
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where y = (Y1, . . . ,Yn)
T and Cq = 1/(2λqn). Let α̂αα = (α̂1, . . . , α̂n)

T be the optimal solution

from (4.21) and let b̂ be the τ-th sample quantile of y−Kα̂αα ∈ Rn. The Q-KRR estima-

tor f̂ is then computed as f̂ (x) = b̂ + ∑
n
i=1 α̂iK(Xi,x). The quadratic program (4.21) can

be efficiently solved using off-the-shelf solvers. For relatively small to moderate sample

sizes, typically ranging from 500 to 2000, our Python implementation employs Clarabel

(https://oxfordcontrol.github.io/ClarabelDocs), an interior point numerical solver for convex

optimization problems that using a novel homogeneous embedding. In the second step, the

estimation of g0 is performed through the least squares KRR, using the generated surrogate

response variables.

The primary computational effort of our proposed two-step procedure arises from the ker-

nel ridge regression with the check/quantile loss. To enhance the efficiency of handling large-scale

datasets, we propose a different approach combining convolution smoothing and quasi-Newton

methods, as recently advocated in He et al. (2023). Given a smoothing parameter/bandwidth

h > 0 and a nonnegative, symmetric kernel function H(·) that integrates to 1, the convolution-

smoothed check loss is defined as ρτ,h(u) = ρτ ◦Hh = (1/h)
∫

∞

−∞
ρ(v)H((v− u)/h)dv, where

Hh(u) = H(u/h)/h. To solve the smoothed version of problem (4.7), in which the check loss

ρτ is replaced by ρτ,h, we use the L-BFGS-B method, a limited-memory version of the BFGS

algorithm, in the minimize function from the scipy.optimize module. Figure 4.1 presents

a runtime comparison for computing the Q-KRR estimator using Clarabel and its smoothed

variant employing L-BFGS-B. In our implementation, the default smoothing parameter h is set to

max{10−4, σ̂n−1/3}, where σ̂ denotes the sample standard deviation of the fitted KRR residuals

{Yi− m̂krr(Xi)}n
i=1.

4.4.1 Synthetic data experiments

We conduct numerical studies to assess the out-of-sample performance of the two-step

expected shortfall KRR estimator and the finite-sample performance evaluation of the proposed

bootstrap inference procedure. We generate the data {(Yi,Xi)}n
i=1 from the location-scale model
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(a) Runtime comparison under Model (4.22) (b) Error comparison under Model (4.22)

(c) Runtime comparison under Model (4.23) (d) Error comparison under Model (4.23)

Figure 4.1. Numerical comparison between Q-KRR and smoothed Q-KRR when τ = 0.1 and
λq = 1/(2n). The former relies on a QP reformulation solved by the Clarabel solver, while the
latter uses the BFGS algorithm. Data are generated from Models (4.22) and (4.23) with n ranging
from 1000 to 3000. Left panels: average running time (in seconds) versus sample size. Right
panels: mean squared error (in-sample) versus sample size.

Yi = m(Xi)+ s(Xi)ηi, where Xi ∈Rd follows the uniform distribution on the unit cube [0,1]d and

ηi ∼N (0,1). Here, m : [0,1]d → R is the conditional mean function and s : [0,1]d → (0,∞)

corresponds to the heterogenous noise scale. For a given quantile level τ ∈ (0,1), the associated

conditional quantile and ES functions of Yi given Xi = x are f0(x) = m(x)+ s(x)qN (0,1)(τ) and

g0(x) = m(x)+ s(x)eN (0,1)(τ), respectively. Throughout our numerical studies, we consider two
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(a) MSPE vs sample size under Model (4.22) (b) MSPE vs sample size under Model (4.23)

Figure 4.2. The mean squared prediction error with n ranging from 500 to 3000, averaged over
200 replications, for two 10%-level ES-KRR estimators using RBF and polynomial kernels, and
the linear ES estimator under Models (4.22) and (4.23).

different nonparametric models with dimensions d = 5 and d = 8, respectively:

d = 5


m(x) =−(x1 + x2 + x3)

3− tanh(x1 + x3 + x5),

s(x) = 1+(x4−0.5)2,

(4.22)

d = 8


m(x) = cos(2πx1)+

1
1+e−x2−x3 +

1
(1+x4+x5)3 +

1
x6+ex7x8 ,

s(x) = sin(π(x1 + x2)/2)+ log(1+ x2
3x2

4x2
5)+

x8
1+e−x6−x7 .

(4.23)

We compute the two-step ES-KRR estimator using the radial basis function (RBF)

kernel K(x,x′) = exp(−∥x−x′∥2
2) (KRR-rbf) and the polynomial kernel K(x,x′) = (⟨x,x′⟩+1)3

(KRR-poly), x,x′ ∈ Rd . Both kernels are employed with regularization parameters λe = 2λq =

1/n. For demonstrative purposes only, we also implement the two-step linear ES regression

estimator (LM) proposed in He et al. (2023). The out-of-sample performance is assessed using the

mean squared prediction error (MSPE) on a test set {(Y test
i ,X test

i )}ntest
i=1 with a size of ntest = 10000,

that is, n−1
test ∑

ntest
i=1{g0(X test

i )− ĝ(X test
i )}2. In Figure 4.2, we report the MSPE of different methods

under Models (4.22) and (4.23) at the quantile level τ = 0.1, averaged over 200 replications, for

n ∈ {500,750,1000, . . . ,3000}. The MSPEs of KRR estimators under different kernels decrease
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(a) n = 250 (b) n = 500

(c) n = 1000 (d) n = 1500

Figure 4.3. 95% pointwise bootstrap confidence bands for the true 10%-level ES regression
function g0 at x0 ∈ {0.05, . . . ,0.95} with n ∈ {250,500,1000,1500}. Normal weights Wi ∼
N (1,1) are used and the number of bootstrap samples is fixed at B = 1000.

as the sample size increases, while that of the LM method remains at a constant level due to

model misspecification. Compared to local polynomial-type ES estimators, which are mostly

applicable for uni- and bi-variate cases, the two-step kernel ridge regression method showcases

notable efficiency and accuracy in moderate-dimensional settings.

Next, we examine the effectiveness of the proposed multiplier bootstrap for construct-

ing pointwise confidence bands. We consider a univariate heteroscedastic model Y = 2X ·

sin(3.5πX)+{0.5+ |sin(πX)|}η , where X ∼ Unif(0,1) and η ∼N (0,1). Fixing τ = 0.1, we

generate training samples of size n ∈ {250,500,1000,1500} and construct pointwise 95% confi-

dence intervals for g0(x0), x0 ∈ {0.05,0.1, . . . ,0.9,0.95} using Algorithm 2 with Wi ∼N (1,1),

B = 1000 and α = 0.05. Both Q-KRR and ES-KRR estimators use the polynomial kernel
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K(x,x′) = (1+ xx′)9 and the ridge penalties are set to λe = 2λq = 10−4/n. The upper and lower

confidence bands, averaged over 200 replications, are shown in Figure 4.3. Compared to the

computation of Q-KRR and ES-KRR estimators, the additional cost of bootstrapping is negligible.

Nevertheless, this rapid bootstrap method ensures good coverage, and the confidence interval

narrows with an increasing sample size n.

4.4.2 An Application to Medical Expense Data

We demonstrate the applicability of nonparametric ES regression on a simulated dataset

containing medical expenses for patients in the United States. This data was created by Lantz

(2013) using demographic statistics from the U.S. Census Bureau and thus approximately reflects

real-world conditions. In total, the dataset contains 1,338 beneficiaries enrolled in some insurance

plan, with features indicating characteristics of the patient, as well as the total medical expenses

charged to the plan for the calendar year. Let Yi be the insurance charges (in $1000) that range

from 1.12 to 63.77. Figure 4.4 shows the kernel density estimate of the insurance charges as well

as two vertical lines indicating the sample mean and sample 90% quantile. The empirical density

appears to be bimodal, with one mode occurring in the upper tail. This makes the prediction of

the upper tail average particularly relevant. The available features include age, gender (male

or female), BMI (body mass index), children (the number of children/dependents covered by

the plan), smoker (yes or no, depending on whether the insured regularly smokes tobacco), and

region (place of residence, divided into northeast, southeast, southwest, and northwest).

For our analysis, we partition the data into a training set of size 1003 (75% of the total)

and a validation set of size 335. We first fit standard KRR and 90%-quantile KRR on the training

set, with regularization parameters selected to minimize the mean squared error and the check

loss on the validation set, respectively. By plugging in fitted 90% quantiles f̂ (Xi), we apply the

two-step approach to fit an upper 10%-level ES-KRR. Both methods employ a polynomial kernel

with a degree of 5.

To compare KRR for predicting average charges and ES-KRR for predicting the average
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Figure 4.4. Kernel density estimate of the insurance charges (in $).

of high chargers (those exceeding the 90% quantile), we use the variable permutation importance

(VPI) to measure the importance of individual feature components (Breiman, 2001). The VPI is

calculated by first randomly permuting one feature component at a time across the entire training

sample and then measuring the relative increase in loss obtained using the features with the

permuted component. For KRR, the mean squared error loss is used, and for ES-KRR, the mean

squared error loss is defined using the surrogate response variables given in (4.8), with f replaced

by f̂ . Figure 4.5 displays the VPIs for the mean (left) and the upper 10% ES (right). The bars

display relative increases in losses, ordered by their magnitudes. The feature smoker is most

significant in both cases and is the overwhelmingly dominating factor for predicting average

charges. The ordering of the remaining features changes drastically. With KRR regression,

bmi and age arise after smoker, whose VPIs are much higher than the rest. With upper 10%

ES-KRR, region and age become the second tier, showing the importance of age and spatial

effect on higher insurance charges. Comparably, bmi and children are less important but

are not completely negligible. These results exactly reflect the potentially different effects of

the patients’ characteristics in average and large charges, bringing new insights into insurance

pricing.
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Figure 4.5. Variable permutation importance for mean regression with KRR (left), and 10%
upper ES regression using the proposed two-step method (right).

4.5 Conclusion and Discussions

In this paper, we propose a two-step nonparametric method for estimating expected short-

fall regression and introduce efficient bootstrap procedures to construct pointwise confidence

intervals. We establish a finite-sample theoretical framework for this two-step method, including

high probability bounds, functional Bahadur representation, pointwise Gaussian approxima-

tions, and bootstrap validity. Numerical and empirical studies further confirm the efficacy and

usefulness of nonparametric ES regression in RKHS.

While our main focus is on pointwise inference, there is a natural interest in developing a

uniform confidence band for the conditional ES function with theoretical guarantees. That is, for

any α ∈ (0,1), construct a confidence band {Cn(x) = [ĝL(x), ĝU(x)] : x ∈X } from {(Yi,Xi)}n
i=1,

satisfying that P{g0(x)∈Cn(x) for all x∈X }→ 1−α as n→∞. Drawing on ideas from Singh

and Vijaykumar (2023), we consider the maximum bootstrap statistic M♭ := supx∈X |B♭(x)|

with B♭(x) given in (4.14). We then construct an approximate 100∗(1−α)% uniform confidence

band of g0 as {Cn(x) = [ĝ(x)− t♭α , ĝ(x)+ t♭α ] : x ∈X }, where t♭α denotes the upper α-quantile

of M♭ under P∗. While the non-asymptotic theory developed in this work and a collection of

technical results provide a foundation for validating this method, a comprehensive theoretical

examination, including the derivation of Gaussian approximation inequalities for empirical
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processes, requires significant additional effort. This task is deferred to future research.
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Appendix A

Supplementary Material for Chapter 1

A.1 Proofs of matrix sensing

A.1.1 Proof of Theorem 1.3.1

For simplicity, we write Θ̂ΘΘ = Θ̂ΘΘτ,λ and E = E (s, l,κ) with the parameters (s, l,κ) satis-

fying (1.12). We prove the theorem by contradiction. Assume that ∥∆̂∆∆∥F >C
√

ρ (λ/κ)1−q/2 for

some C > 0 to be determined. Then there exists some η ∈ (0,1) such that Θ̃ΘΘη = ΘΘΘ
∗+η(Θ̂ΘΘ−ΘΘΘ

∗)

satisfies ∥Θ̃ΘΘη −ΘΘΘ
∗∥F =C

√
ρ (λ/κ)1−q/2. Applying Lemma F.2 in Fan et al. (2018) to the loss

function L̂τ(·), we have

⟨∇L̂τ(Θ̃ΘΘη)−∇L̂τ(ΘΘΘ
∗),Θ̃ΘΘη −ΘΘΘ

∗)≤ η⟨∇L̂τ(Θ̂ΘΘ)−∇L̂τ(ΘΘΘ
∗),Θ̂ΘΘ−ΘΘΘ

∗⟩. (A.1)

To bound the right-hand side of (A.1), the first-order necessary condition for the convex

optimization problem (1.7) implies that

⟨∇L̂τ(Θ̂ΘΘ)+λ ẐZZ,Θ̂ΘΘ−ΘΘΘ
∗⟩ ≤ 0,

where ẐZZ ∈ ∂∥Θ̂ΘΘ∥∗ satisfies ⟨ẐZZ,ΘΘΘ∗− Θ̂ΘΘ⟩ ≤ ∥ΘΘΘ∗∥∗−∥Θ̂ΘΘ∥∗. Whenever λ ≥ 2∥∇L̂τ(ΘΘΘ
∗)∥2, it
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follows that

⟨∇L̂τ(Θ̂ΘΘ)−∇L̂τ(ΘΘΘ
∗),Θ̂ΘΘ−ΘΘΘ

∗⟩ ≤ λ (∥ΘΘΘ∗∥∗−∥Θ̂ΘΘ∥∗)+
λ

2
∥Θ̂ΘΘ−ΘΘΘ

∗∥∗

≤ 3λ

2
∥Θ̂ΘΘ−ΘΘΘ

∗∥∗, (A.2)

where the last step uses the triangular inequality. To bound ∥∆̂∆∆∥∗ = ∥Θ̂ΘΘ−ΘΘΘ
∗∥∗, we follow

the proof of Corollary 2 in Negahban and Wainwright (2011). Let ΘΘΘ
∗ =UUUΣΣΣVVV T be an SVD of

ΘΘΘ
∗, where UUU ∈ Rd1×d2,VVV ∈ Rd2×d2 and the diagonals of ΣΣΣ ∈ Rd2×d2 are in descending order.

For some integer r ≤ d2 to be specified, define UUU r ∈ Rd1×r and VVV r ∈ Rd2×r, whose columns

correspond to the first r columns of UUU and VVV , respectively. Moreover, define

M= {ΘΘΘ ∈ Rd1×d2 : row(ΘΘΘ)⊂ col(VVV r),col(ΘΘΘ)⊂ col(UUU r)},

M⊥ = {ΘΘΘ ∈ Rd1×d2 : row(ΘΘΘ)⊥ col(VVV r),col(ΘΘΘ)⊥ col(UUU r)},

where col(·) and row(·) denote the column space and row space, respectively. For any ∆∆∆∈Rd1×d2

and a closed subspace W of Rd1×d2 , let ∆∆∆W be the projection of ∆∆∆ onto W . Applying Lemma 1

in Negahban et al. (2012) to ∆̂∆∆ = Θ̂ΘΘ−ΘΘΘ
∗, we obtain

∥∆̂∆∆
M⊥
∥∗ ≤ 3∥∆̂∆∆M∥∗+4 ∑

j≥r+1
σ j(ΘΘΘ

∗).

Since rank(∆̂∆∆M)≤ 2r, the above inequality implies

∥∆̂∆∆∥∗ ≤ ∥∆̂∆∆M∥∗+∥∆̂∆∆M⊥
∥∗ ≤ 4∥∆̂∆∆M∥∗+4 ∑

j≥r+1
σ j(ΘΘΘ

∗)≤ 4
√

2r∥∆̂∆∆∥F +4 ∑
j≥r+1

σ j(ΘΘΘ
∗). (A.3)

Set a threshold t = λ/κ , we choose

r = |{ j ∈ {1,2, . . . ,d2} : σ j(ΘΘΘ
∗)≥ t}|.
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Since 0≤ q≤ 1, we have

∑
j≥r+1

σ j(ΘΘΘ
∗) = t ∑

j≥r+1

σ j(ΘΘΘ
∗)

t
≤ t ∑

j≥r+1

(
σ j(ΘΘΘ

∗)

t

)q

= t1−q
∑

j≥r+1
σ j(ΘΘΘ

∗)q ≤ t1−q
ρ.

By the definition of r, we also have ρ ≥ ∑ j≤r σ j(ΘΘΘ
∗)q ≥ rtq, and hence r ≤ ρt−q. Combining

these two bounds with (A.3) and the assumption on ∥∆̂∆∆∥F (i.e. ∥∆̂∆∆∥F >C
√

ρ (λ/κ)1−q/2) yields

∥∆̂∆∆∥∗ ≤ 4
√

2ρt−q∥∆̂∆∆∥F +4t1−q
ρ (A.4)

≤ (4
√

2+4/C)
√

ρ

(
κ

λ

)q/2

∥∆̂∆∆∥F. (A.5)

Consequently, Θ̃ΘΘη ∈ ΘΘΘ
∗+B(s)∩C(l) provided l ≥ (4

√
2+4/C)

√
ρ (κ/λ )q/2. Conditioning

on E , it follows from (A.1), (A.2) and (A.5) that

κ∥Θ̃ΘΘη −ΘΘΘ
∗∥2

F ≤
3λ

2
· (4
√

2+4/C)
√

ρ

(
κ

λ

)q/2

·η∥∆̂∆∆∥F.

Since η∥∆̂∆∆∥F = ∥Θ̃ΘΘη −ΘΘΘ
∗∥F = C

√
ρ (λ/κ)1−q/2 by construction, canceling out ∥Θ̃ΘΘη −ΘΘΘ

∗∥F

from both sides yields

C
√

ρ (λ/κ)1−q/2 = ∥Θ̃ΘΘη −ΘΘΘ
∗∥F ≤ (6

√
2+6/C)

√
ρ (λ/κ)1−q/2.

Based on the above analysis, we choose C = 9.15 so that 6
√

2+ 6/C ≈ 9.14 < C, which is a

contradiction. We thus conclude that ∥∆̂∆∆∥F ≤ 9.15
√

ρ (λ/κ)1−q/2 conditioned on E .

Combining this Frobenius norm error rate with (A.4) proves the claimed error bound

under nuclear norm. The proof is complete .
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A.1.2 Proof of Proposition 1.3.1

To begin with, define the zero-mean random matrix ΓΓΓ = ∇L̂τ(ΘΘΘ
∗)−E∇L̂τ(ΘΘΘ

∗) so that

∥∇L̂τ(ΘΘΘ
∗)∥2 ≤ ∥ΓΓΓ∥2 +∥E∇L̂τ(ΘΘΘ

∗)∥2. (A.6)

First, we bound ∥ΓΓΓ∥2 via a standard covering argument: there exist a (1/4)-net N1 of Sd1−1 and

a (1/4)-net N2 of Sd2−1 with |N1| ≤ 9d1 and |N2| ≤ 9d2 such that

∥ΓΓΓ∥2 ≤ 2 max
uuu∈N1

max
vvv∈N2

uuuT
ΓΓΓvvv = 2 max

uuu∈N1
max
vvv∈N2

1
n

n

∑
i=1
{ξiuuuTXXX ivvv−E(ξiuuuTXXX ivvv)}, (A.7)

where ξi = ψτ(εi). Since uuuTXXX ivvv = vec(uuuvvvT)Tvec(XXX i) is sub-exponential and ∥uuuvvvT∥F = 1, for

k = 2,3, . . . we have

E|uuuTXXX ivvv|k = ν
k
0 · k

∫
∞

0
uk−1P(|uuuTXXX ivvv| ≥ ν0u)du≤ 2ν

k
0 · k

∫
∞

0
uk−1e−udu = 2k!νk

0 . (A.8)

It follows that

E(ξiuuuTXXX ivvv)2 ≤ σ
2
0 ·4ν

2
0 , and E(|ξiuuuTXXX ivvv|k)≤ 2τ

k−2
σ

2
0 · k!νk

0 =
k!
2
(4σ

2
0 ν

2
0 )(τν0)

k−2.

Applying Bernstein’s inequality, we see that for every x > 0,

P
(

uuuT
ΓΓΓvvv≥ 2

√
2ν0σ0

√
x
n
+ν0τ

x
n

)
≤ e−x.

Taking the union bound over all vectors uuu ∈N1 and vvv ∈N2, and setting x = 3d+ z≥ log(9d1)+

log(9d2)+ z with d := d1 +d2, it follows from (A.7) that

P
(
∥ΓΓΓ∥2 ≥ 4

√
2ν0σ0

√
3d + z

n
+2ν0τ

3d + z
n

)
≤ e−z. (A.9)
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For the second term ∥E∇L̂τ(ΘΘΘ
∗)∥2 in (A.6), note that

∥E∇L̂τ(ΘΘΘ
∗)∥2 = sup

uuu∈Sd1−1,vvv∈Sd2−1

1
n

n

∑
i=1

E(ξiuuuTXXX ivvv).

Recall that E(εi|XXX i) = 0 and |ξi− εi|= |ℓ′τ(εi)− εi| ≤ ε2
i /τ . Therefore, for each uuu ∈ Sd1−1 and

vvv ∈ Sd2−1, applying (A.8) with k = 2 gives

E(ξiuuuTXXX ivvv)≤
1
τ
E(ε2

i |uuuTXXX ivvv|)≤ 2ν0
σ2

0
τ
.

Combining this with (A.6) and (A.9), we conclude that with probability at least 1− e−z,

∥∇L̂τ(ΘΘΘ
∗)∥2 ≤ 4

√
2ν0σ0

√
3d + z

n
+2ν0τ

3d + z
n

+2ν0
σ2

0
τ
.

Therefore, for any σ ≥ σ0, taking τ = σ
√

n/(3d + z) yields

∥∇L̂τ(ΘΘΘ
∗)∥2 ≤ 10ν0 ·σ

√
3d + z

n

with probability at least 1− e−z. This proves the claimed bound.

A.1.3 Proof of Proposition 1.3.2

Given s, l > 0, define the local neighborhood of ΘΘΘ
∗

ΛΛΛ = ΛΛΛ(s, l) = {ΘΘΘ ∈ Rd1×d2 : ΘΘΘ ∈ΘΘΘ
∗+B(s)∩C(l)},
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where B(s) and C(l) are defined in (1.11). Since the Huber loss is convex and differentiable, we

have

D(ΘΘΘ) := ⟨∇L̂τ(ΘΘΘ)−∇L̂τ(ΘΘΘ
∗),ΘΘΘ−ΘΘΘ

∗⟩

=
1
n

n

∑
i=1
{ψτ(yi−⟨XXX i,ΘΘΘ

∗⟩)−ψτ(yi−⟨XXX i,ΘΘΘ⟩)}⟨XXX i,ΘΘΘ−ΘΘΘ
∗⟩

≥ 1
n

n

∑
i=1
{ψτ(yi−⟨XXX i,ΘΘΘ

∗⟩)−ψτ(yi−⟨XXX i,ΘΘΘ⟩)}⟨XXX i,ΘΘΘ−ΘΘΘ
∗⟩1Ei,

where 1Ei is the indicator function of the event

Ei =
{
|εi| ≤ τ/2

}
∩
{
|⟨XXX i,ΘΘΘ−ΘΘΘ

∗⟩| ≤ (τ/2s)∥ΘΘΘ−ΘΘΘ
∗∥F
}
.

Noting that |yi−⟨XXX i,ΘΘΘ⟩| ≤ τ for all ΘΘΘ ∈ ΛΛΛ on Ei, and ℓ′′τ (u) = 1 for |u| ≤ τ , we further obtain

D(ΘΘΘ)≥ 1
n

n

∑
i=1
⟨XXX i,ΘΘΘ−ΘΘΘ

∗⟩21Ei. (A.10)

To lower bound the right-hand side of (A.10), we first introduce the following Lipschitz continu-

ous functions. For any given R > 0, define the function

ϕR(x) =


x2 if |x| ≤ R/2,

{x−Rsign(x)}2 if R
2 ≤ |x| ≤ R,

0 if |x|> R.

It is easy to see that ϕR is R-Lipschitz continuous and satisfies

ϕcR(cx) = c2
ϕR(x) for any c > 0, and x2

1(|x| ≤ R/2)≤ ϕR(x)≤ x2
1(|x| ≤ R). (A.11)
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Therefore,

D(ΘΘΘ)

∥ΘΘΘ−ΘΘΘ
∗∥2

F
≥ 1

n

n

∑
i=1

ϕτ/(2s)(⟨XXX i,ΘΘΘ−ΘΘΘ
∗⟩/∥ΘΘΘ−ΘΘΘ

∗∥F)χi, (A.12)

where χi = 1(|εi| ≤ τ/2). Write ∆∆∆ = ΘΘΘ−ΘΘΘ
∗ and ω∆∆∆(XXX i,εi) = ϕτ/(2s)(⟨XXX i,∆∆∆⟩/∥∆∆∆∥F)χi. In the

following, we bound the expectation Eω∆∆∆(XXX i,εi) and the random fluctuation term

Ω = sup
∆∆∆∈C(l)

∣∣∣∣1n n

∑
i=1
{ω∆∆∆(XXX i,εi)−Eω∆∆∆(XXX i,εi)}

∣∣∣∣,
respectively.

Fix ∆∆∆ = ΘΘΘ−ΘΘΘ
∗ for any ΘΘΘ ∈ ΛΛΛ and write ∆̄∆∆ = ∆∆∆/∥∆∆∆∥F. By (A.11) and Markov’s

inequality,

Eω∆∆∆(XXX i,εi)

≥ E⟨XXX i, ∆̄∆∆⟩2−E{⟨XXX i, ∆̄∆∆⟩21(|⟨XXX i, ∆̄∆∆⟩| ≥ τ/(4s))}−E{⟨XXX i, ∆̄∆∆⟩21(|εi| ≥ τ/2)}

≥ cl−
{(

4s
τ

)2

E⟨XXX i, ∆̄∆∆⟩4 +
(

2
τ

)2

E(⟨XXX i, ∆̄∆∆⟩2ε
2
i )

}
.

Since ∥∆̄∆∆∥F = 1, letting τ ≥ 4ν0

√
(2σ2

0 +96ν2
0 s2)/cl and applying the moment bound in (A.8)

yields

Eω∆∆∆(XXX i,εi)≥ cl−
16 ·48ν4

0 s2 +16ν2
0 σ2

0
τ2 ≥ 1

2
cl for all ∆∆∆ ∈ B(s). (A.13)

Next, we evaluate the random fluctuation term Ω which is the supremum of an empirical

process indexed by ∆∆∆ ∈ C(l). By the definition of ω∆∆∆, we have

0≤ ω∆∆∆(XXX i,εi)≤
(

τ

4s

)2

, and Eω∆∆∆(XXX i,εi)
2 ≤ E⟨XXX i, ∆̄∆∆⟩4 ≤ 48ν

4
0 .

By Bousquet’s inequality (see, e.g. Theorem 12.5 in Boucheron, Lugosi and Massart (2013)),
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for any z > 0 it holds with probability at least 1− e−z that

Ω≤ EΩ+(EΩ)1/2 τ

2s

√
z
n
+4ν

2
0

√
6z
n
+

τ2

16s2
z

3n

≤ 2EΩ+4ν
2
0

√
6z
n
+

τ2

16s2
4z
3n

, (A.14)

where the last inequality follows from the elementary inequality that ab ≤ a2 + b2/4 for all

a,b ∈ R.

To bound the expectation EΩ, applying Rademacher symmetrization we get

EΩ≤ 2E
{

sup
∆∆∆∈C(l)

1
n

n

∑
i=1

ei ·ω∆∆∆(XXX i,εi)

}
,

where e1, . . . ,en are independent Rademacher random variables. Since χi = 1(|εi| ≤ τ/2) ∈

{0,1}, we can write ω∆∆∆(XXX i,εi) = ϕτ/(2s)(χi⟨XXX i, ∆̄∆∆⟩). By the Lipschitz continuity of ϕR, for each

sample (XXX i,εi) and for any ∆∆∆,∆∆∆′ ∈ Rd1×d2 ,

|ω∆∆∆(XXX i,εi)−ω
∆∆∆
′(XXX i,εi)| ≤

τ

2s
|χi⟨XXX i,∆∆∆/∥∆∆∆∥F⟩−χi⟨XXX i,∆∆∆

′/∥∆∆∆′∥F⟩|.

Moreover, ω∆∆∆(XXX i,εi) = 0 whenever χi⟨XXX i,∆∆∆/∥∆∆∆∥F⟩= 0. Define the subset T⊆ Rn as

T= {ttt = (t1, . . . , tn)T : ti = χi⟨XXX i,∆∆∆/∥∆∆∆∥F⟩, i = 1, . . . ,n, and ∆∆∆ ∈ C(l)},

and the contraction φ :R→R as φ(t) = (2s/τ) ·ϕτ/(2s)(t). The Lipschitz continuity of ϕ ensures

that φ(·) is 1-Lipschitz. Applying Talagrand’s contraction principle (see, e.g., Theorem 4.12 and
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(4.20) in Ledoux and Talagrand (1991)), we have

EΩ≤ 2E
{

sup
∆∆∆∈C(l)

1
n

n

∑
i=1

ei ·ω∆∆∆(XXX i,εi)

}
=

τ

s
E
{

sup
ttt∈T

1
n

n

∑
i=1

eiφ(ti)
}

≤ τ

s
E
(

sup
ttt∈T

1
n

n

∑
i=1

eiti

)
=

τ

s
E
(

sup
∆∆∆∈C(l)

1
n

n

∑
i=1

ei⟨χiXXX i,∆∆∆/∥∆∆∆∥F⟩
)

≤ τl
sn
E
∥∥∥∥ n

∑
i=1

eiχiXXX i︸ ︷︷ ︸
=:MMM

∥∥∥∥
2
, (A.15)

where the last inequality follows from the cone constraint that ∥∆∆∆∥∗ ≤ l∥∆∆∆∥F. It thus remains to

bound the spectral norm of the random matrix MMM.

By the variational characterization of the operator norm, we can write

∥MMM∥2 = sup
uuu∈Sd1−1

sup
vvv∈Sd2−1

uuuTMMMvvv = sup
uuu∈Sd1−1

sup
vvv∈Sd2−1

n

∑
i=1

eiχiuuuTXXX ivvv.

By a standard covering argument, there exist a (1/4)-net N1 of Sd1−1 and a (1/4)-net N2 of

Sd2−1 with |N1| ≤ 9d1 and |N2| ≤ 9d2 such that

∥MMM∥2 ≤ 2 max
uuu∈N1

max
uuu∈N2

uuuTMMMvvv = 2 max
uuu∈N1

max
uuu∈N2

n

∑
i=1

eiχiuuuTXXX ivvv.

Therefore,

1
2ν0

E∥MMM∥2 ≤ E max
uuu∈N1,uuu∈N2

n

∑
i=1

eiχiuuuTXXX ivvv/ν0︸ ︷︷ ︸
=:Muuu,vvv

. (A.16)
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For any (uuu,vvv) ∈N1×N2, the moment bound (A.8) implies

E(eiχiuuuTXXX ivvv/ν0)
2 ≤ 4 and E|eiχiuuuTXXX ivvv/ν0|k ≤ 2 · k! =

k!
2
·4 ·1k−2,

for k = 3,4, . . . . Following the proof of Theorems 2.10 and 2.5 in Boucheron, Lugosi and Massart

(2013), it can be shown that for all λ ∈ (0,1/c),

logEeλMuuu,vvv ≤ ψ(λ ) :=
νλ 2

2(1− cλ )

and hence

E max
uuu∈N1,uuu∈N2

Muuu,vvv ≤ inf
λ∈(0,1/c)

log9d1+d2 +ψ(λ )

λ
=
√

2ν log9d + c log9d,

where ν = 4n, c = 1 and d = d1 +d2. Substituting this bound into (A.16) and then (A.15) yields

E∥MMM∥2 ≤ 8.4ν0
√

dn+4.4ν0d, and EΩ≤ ν0τl
s

(
8.4

√
d
n
+4.4

d
n

)
.

Together with the concentration inequality (A.14), this implies that with probability at least

1− e−z, Ω ≤ cl/4 as long as n ≥C(ν0/cl)
2(τ/s)2(l2d + z) for some universal constant C > 0.

Combining this with (A.12) and (A.13) proves Proposition 1.3.2.

A.1.4 Proof of Theorem 1.3.2

By Proposition 1.3.1, let λ ≍ σ0
√
(d + z)/n and τ ≍ σ0

√
n/(d + z) with d = d1 + d2

so that λ ≥ 2∥∇L̂τ(ΘΘΘ
∗)∥2 with probability at least 1− e−z. Next, choose s ≍ τ and l ≍

(ρ/σ
q
0 )

1/2 (n/d)q/4. Then both (1.12) and (1.14) are satisfied under the sample size scaling

n ≳ max{(ρ/σ
q
0 )

2/(2−q),1}(d + z). Applying Proposition 1.3.2, we conclude that the local RSC

event E (s, l,cl/4) occurs with probability at least 1− e−z. The claimed bounds then follow

immediately from Theorem 1.3.1.
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A.2 Proofs of matrix completion

A.2.1 Proof of Proposition 1.3.3

Recall that ∇L̂τ(ΘΘΘ
∗) = (1/n)∑

n
i=1 ξiXXX i, where ξi = ψτ(εi). Similarly to the proof of

Proposition 1.3.1, we will bound ∇L̂τ(ΘΘΘ
∗)−E∇L̂τ(ΘΘΘ

∗) and E∇L̂τ(ΘΘΘ
∗), respectively.

First, we bound ∥∇L̂τ(ΘΘΘ
∗)−E∇L̂τ(ΘΘΘ

∗)∥2 using the matrix Bernstein inequality. For any

fixed uuu = (u1, . . . ,ud1) ∈ Sd1−1, we have

uuuT(Eξ
2
i XXX iXXXT

i )uuu =
1

d1d2

d1

∑
j=1

d2

∑
k=1

E{ξ 2
i |XXX i = eee j(d1)eeeT

k(d2)}u2
j ≤

σ2
0

d1

d1

∑
j=1

u2
j =

σ2
0

d1
.

Taking the supremum over uuu ∈ Sd1−1 yields ∥E(ξ 2
i XXX iXXXT

i )∥2 ≤ σ2
0/d1. Similarly, it can be shown

that ∥E(ξ 2
i XXXT

i XXX i)∥2 ≤ σ2
0/d2. Write AAAi = ξiXXX i−E(ξiXXX i) ∈ Rd1×d2 . Recall that d1 ≥ d2. We

have

max
(
∥EAAAiAAAT

i ∥2,∥EAAAT
i AAAi∥2

)
≤max

(
∥Eξ

2
i XXX iXXXT

i ∥2,∥Eξ
2
i XXXT

i XXX i∥2
)
≤

σ2
0

d2
.

On the other hand, ∥AAAi∥2 ≤ 2τ due to the fact that |ℓ′τ(u)| ≤ τ for all u ∈ R. Applying the matrix

Bernstein inequality (see, e.g. Theorem 6.1.1 in Tropp (2015)) with modifications, we obtain

that for any x > 0,

∥∇L̂τ(ΘΘΘ
∗)−E∇L̂τ(ΘΘΘ

∗)∥2 ≤ σ0

√
2x
d2n

+
2τx
3n

with probability at least 1− (d1 +d2)e−x. Taking x = logd + z with d = d1 +d2, we obtain that

with probability at least 1− e−z,

∥∇L̂τ(ΘΘΘ
∗)−E∇L̂τ(ΘΘΘ

∗)∥2 ≤ σ0

√
2(logd + z)

d2n
+

2τ

3
logd + z

n
. (A.17)

For the second term ∥EξiXXX i∥2, note that for any uuu = (u1, . . . ,ud1) ∈ Sd1−1 and vvv =
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(v1, . . . ,vd2) ∈ Sd2−1,

uuuTE(ξiXXX i)vvv =
1

d1d2

d1

∑
j=1

d2

∑
k=1

E{ξi|XXX i = eee j(d1)eeeT
k(d2)}u jvk

≤ 1
d1d2

d1

∑
j=1

d2

∑
k=1

1
τ
E{ε2

i |XXX i = eee j(d1)eeeT
k(d2)}|u jvk|

≤
σ2

0
τd1d2

d1

∑
j=1

d2

∑
k=1
|u jvk| ≤

σ2
0

τ
√

d1d2
.

Taking the supremum over uuu ∈ Sd1−1 and vvv ∈ Sd2−1, it follows that

∥E∇L̂τ(ΘΘΘ
∗)∥2 ≤

σ2
0

τ
√

d1d2
≤

σ2
0

τd2
.

For any σ ≥ σ0, setting τ = σ
√

n/{d2(z+ logd)} in (A.17) and the above inequality leads to

the conclusion.

A.2.2 Proof of Proposition 1.3.4

We follow the same notations as in the proof of Proposition 1.3.2. For ∆∆∆ ∈Rd1×d2 , define

π∆∆∆(XXX i,εi) = ϕ τ

2s∥∆∆∆∥F
(⟨XXX i,∆∆∆⟩)χi with χi = 1(|εi| ≤ τ/2).

In view of (A.12), we will show that with high probability,

1
n

n

∑
i=1

π∆∆∆(XXX i,εi)≥
1

4d1d2
∥∆∆∆∥2

F−513l2 d1(z+ logd)
n

∥∆∆∆∥2
∞ (A.18)

holds uniformly for all ∆∆∆ ∈ A(s, l) whenever τ and n are sufficiently large. The claimed bound

then follows immediately.

151



Write ∆∆∆ = (∆ jk)1≤ j≤d1,1≤k≤d2 . By (A.11) and Markov’s inequality, we have

Eπ∆∆∆(XXX i,εi)

≥ E⟨XXX i,∆∆∆⟩2−E
{
⟨XXX i,∆∆∆⟩21

(
|⟨XXX i,∆∆∆⟩| ≥

τ

4s
∥∆∆∆∥F

)}
−E{⟨XXX i,∆∆∆⟩21(|εi| ≥ τ/2)}

≥ 1
d1d2
∥∆∆∆∥2

F−
{(

4s
τ∥∆∆∆∥F

)2

E⟨XXX i,∆∆∆⟩4 +
(

2
τ

)2

E(⟨XXX i,∆∆∆⟩2ε
2
i )

}
.

Note that

E⟨XXX i,∆∆∆⟩4 =
1

d1d2

d1

∑
j=1

d2

∑
k=1

∆
4
jk ≤

1
d1d2
∥∆∆∆∥2

F∥∆∆∆∥2
∞,

and E(⟨XXX i,∆∆∆⟩2ε2
i )≤ σ2

0∥∆∆∆∥2
F/(d1d2). Provided τ2 ≥ 16max[ns2/{l2d2

1d2(z+ logd)},σ2
0 ] with

d = d1 +d2, we have

Eπ∆∆∆(XXX i,εi)≥
3
4

1
d1d2
∥∆∆∆∥2

F− l2 d1(z+ logd)
n

∥∆∆∆∥2
∞.

Consequently, to prove (A.18), it suffices to show that for all ∆∆∆ ∈ A(s, l), it follows with

high probability that

∣∣∣∣1n n

∑
i=1

π∆∆∆(XXX i,εi)−Eπ∆∆∆(XXX i,εi)

∣∣∣∣≤ 1
2d1d2

∥∆∆∆∥2
F +512

l2d1(z+ logd)
n

∥∆∆∆∥2
∞. (A.19)

To prove (A.19), we extend the arguments from the proof of Lemma 12 in Klopp (2014)

to deal with the more complex function class {π∆∆∆ : Rd1×d2 ×R→ [0,∞)}∆∆∆∈A(s,l). First, set

η = 8
√

(z+ logd)/n and define the constrain set

D(l) =
{

∆∆∆ ∈ Rd1×d2 : ∥∆∆∆∥∞ = 1,
∥∆∆∆∥2

F
d1d2

≥ η and ∥∆∆∆∥∗ ≤ l∥∆∆∆∥F

}
.

By (A.11), it holds that c2π∆∆∆(XXX i,εi) = πc∆∆∆(XXX i,εi) for any c > 0. This implies that if ∆∆∆ satis-
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fies (A.19), then c∆∆∆ would also satisfy (A.19) for any c > 0. Therefore, we only need to control

the probability of the event

E (l) :=

{
∃∆∆∆ ∈ D(l) such that

∣∣∣∣1n n

∑
i=1

π∆∆∆(XXX i,εi)−Eπ∆∆∆(XXX i,εi)

∣∣∣∣> 1
2d1d2

∥∆∆∆∥2
F +512

l2d1(z+ logd)
n

}
.

We estimate the probability of event E (l) by a standard peeling argument. For some

γ > 1 to be determined, define the subsets

Dm(l) =
{

∆∆∆ ∈D(l) : γ
m−1

η ≤ 1
d1d2
∥∆∆∆∥2

F ≤ γ
m

η

}
, m = 1,2, . . . . (A.20)

On the event E (l), there exists some m≥ 1 such that ∆∆∆ ∈ Dm(l) and hence

∣∣∣∣1n n

∑
i=1

π∆∆∆(XXX i,εi)−Eπ∆∆∆(XXX i,εi)

∣∣∣∣> 1
2d1d2

∥∆∆∆∥2
F +512

l2d1(z+ logd)
n

≥ 1
2

γ
m−1

η +512
l2d1(z+ logd)

n

=
1
2γ

γ
m

η +512
l2d1(z+ logd)

n
. (A.21)

Moreover, define the events

Em(l) =
{
∃∆∆∆ ∈ Dm(l) such that∣∣∣∣1n n

∑
i=1

π∆∆∆(XXX i,εi)−Eπ∆∆∆(XXX i,εi)

∣∣∣∣> 1
2γ

γ
m

η +512
l2d1(z+ logd)

n

}
, m≥ 1.

Then, (A.21) implies that E (l)⊆∪∞
m=1Em(l) and hence P{E (l)} ≤∑m≥1P{Em(l)}. The follow-

ing lemma provides an upper bound of P{Em(l)} for each m≥ 1. Let

Zm = sup
∆∆∆∈Dm(l)

∣∣∣∣1n n

∑
i=1

π∆∆∆(XXX i,εi)−Eπ∆∆∆(XXX i,εi)

∣∣∣∣.
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Lemma A.2.1. Under Conditions (B2) and (B3), it holds

P
{

Zm >
1
2γ

γ
m

η +(16γ)2l2 d1(z+ logd)
n

}
≤ e−n(γmη)2/(64γ2),

where d = d1 +d2.

To conclude the proof, we choose γ =
√

2. Then it follows from the union bound and

Lemma A.2.1 repeatedly that

P{E (l)} ≤
∞

∑
m=1

P{Em(l)} ≤
∞

∑
m=1

e−n2mη2/128 ≤
∞

∑
m=1

e−mnη2/64 =
∞

∑
m=1

e−m(z+logd)

=
e−z

d− e−z ≤ e−z,

where the third step uses the basic inequality that 2m ≥ 2m for any m≥ 1, and the last inequality

follows from the assumption d ≥ 2. This completes the proof.

A.2.3 Proof of Theorem 1.3.3

The proof employs techniques from the proof of Theorem 3 in Klopp (2014) and Corol-

lary 2 in Negahban and Wainwright (2012) as well as the localized analysis (via proof by

contradiction) as in the proof of Theorem 1.3.1. Throughout the proof, we write Θ̂ΘΘ = Θ̂ΘΘτ,λ ,

∆̂∆∆ = Θ̂ΘΘ−ΘΘΘ
∗ and d = d1 +d2.

For a threshold t > 0 to be specified, choose r as

r = |{ j ∈ {1,2, . . . ,d2 : σ j(ΘΘΘ
∗)≥ t}|.

Using the same arguments as in the proof of Theorem 1.3.1, we have

∥∆̂∆∆∥∗ ≤ 4
√

2ρt−q∥∆̂∆∆∥F +4t1−q
ρ. (A.22)

We now consider two cases. Suppose first that ∥∆̂∆∆∥2
∞ > (8d1d2)

−1
√

n/(z+ logd)∥∆̂∆∆∥2
F.
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By the definition of Θ̂ΘΘ and condition (B1), we have ∥∆̂∆∆∥∞ ≤ 2α0. It thus follows that

1
d1d2
∥∆̂∆∆∥2

F ≤ 32α
2
0

√
z+ logd

n
.

Substituting this into (A.22) and taking t = {α2
0 d1d2ρ−1

√
(z+ logd)/n}1/(2−q), which mini-

mizes the right-hand side of (A.22), leads to an upper bound for ∥Θ̂ΘΘ−ΘΘΘ
∗∥∗ in this case.

Next suppose that ∥∆̂∆∆∥2
∞≤ (8d1d2)

−1
√

n/(z+ logd) ·∥∆̂∆∆∥2
F. In view of Proposition 1.3.3,

we choose

τ ≍ σ
√

n/{d2(z+ logd)}, and λ ≍ σ
√
(z+ logd)/(d2n)

so that λ ≥ 2∥∇L̂τ(ΘΘΘ
∗)∥2 with probability at least 1− e−z, where σ = max{σ0,α0}. Using

similar arguments as in Theorem 1.3.1, this implies that with the same probability,

⟨∇L̂τ(Θ̂ΘΘ)−∇L̂τ(ΘΘΘ
∗),Θ̂ΘΘ−ΘΘΘ

∗⟩ ≤ 3λ

2
∥∆̂∆∆∥∗. (A.23)

Moreover, choose s = C
√

d1d2ρ(
√

d1d2λ )1−q/2 for a sufficiently large constant C > 0 and

assume that ∥∆̂∆∆∥F > s. Then, there exists η ∈ (0,1) such that Θ̃ΘΘη := ΘΘΘ
∗+η(Θ̂ΘΘ−ΘΘΘ

∗) satis-

fies ∥Θ̃ΘΘη −ΘΘΘ
∗∥F = s. Taking t =

√
d1d2λ ≍ σ

√
d1(z+ logd)/n, we have (d1d2)

−1/2∥∆̂∆∆∥F >

C
√

ρ t1−q/2. Substituting this into (A.22) gives

∥∆̂∆∆∥∗ ≤ 4
√

2ρt−q∥∆̂∆∆∥F +4
√

ρt−q ·
√

ρ t1−q/2 < (4
√

2+4/C)
√

ρ t−q/2∥∆̂∆∆∥F,

and hence ∥∆̂∆∆∥∗ ≤ l∥∆̂∆∆∥F with l = (4
√

2+ 4/C)
√

ρ t−q/2. This means that ∆̃∆∆η := Θ̃ΘΘη −ΘΘΘ
∗ ∈

A(s, l). Applying Lemma F.2 in Fan et al. (2018) to the loss function L̂τ(·) and by (A.23),

⟨∇L̂τ(Θ̃ΘΘη)−∇L̂τ(ΘΘΘ
∗),Θ̃ΘΘη −ΘΘΘ

∗)≤ η⟨∇L̂τ(Θ̂ΘΘ)−∇L̂τ(ΘΘΘ
∗),Θ̂ΘΘ−ΘΘΘ

∗⟩ (A.24)

≤ 3
2

λη∥∆̂∆∆∥∗ ≤
3
2

λ l∥∆̃∆∆η∥F. (A.25)
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To lower bound the left-hand side of (A.24), note from the above choice of (λ ,s, l, t) that

ns2

l2d2
1d2(z+ logd)

=

(
C

4
√

2+4/C

)2 nd1d2ρt2−q

ρt−qd2
1d2(z+ logd)

=

(
C

4
√

2+4/C

)2 nt2

d1(z+ logd)
≍ σ

2,

which implies τ2 ≳ max[ns2/{l2d2
1d2(z+ logd)},σ2

0 ] as long as n ≳ d2(z+ logd). Then, it

follows from Proposition 1.3.4 that with probability at least 1−2d−1,

⟨∇L̂τ(Θ̃ΘΘη)−∇L̂τ(ΘΘΘ
∗),Θ̃ΘΘη −ΘΘΘ

∗)≥ 1
4d1d2

∥∆̃∆∆η∥2
F−C1ρ t−q d1(z+ logd)

n
∥∆̃∆∆η∥2

∞ (A.26)

for some constant C1 > 0 independent of (n,d1,d2). Since ∆̃∆∆η = η∆̂∆∆, we also have ∥∆̃∆∆η∥∞ ≤

∥∆̂∆∆∥∞ ≤ 2α0. Combining this with (A.25) and (A.26), we conclude that with probability at least

1−2e−z,

1
4d1d2

∥∆̃∆∆η∥2
F ≤C1ρ t−q d1(z+ logd)

n
∥∆̃∆∆η∥2

∞ +3λ l
√

d1d2 ·
∥∆̃∆∆η∥F

2
√

d1d2
.

Set y =
∥∆̃∆∆η∥F
2
√

d1d2
, and note that y2 ≤ a+ by for some a,b > 0. It then follows that y ≤ b+

√
a,

which in turn implies

∥∆̃∆∆η∥F√
d1d2

≤ 6l
√

d1d2λ︸ ︷︷ ︸
=t

+4
√

C1
√

ρ t−q/2
α0

√
d1(z+ logd)

n

≤ 24(
√

2+1/C)
√

ρ t1−q/2 +4
√

C1
√

ρ t−q/2
α0

√
d1(z+ logd)

n

≲ σ
1−q/2√

ρ

{
d1(z+ logd)

n

}1/2−q/4

.

A sufficiently large constant C in the definition of s ensures that ∥∆̃∆∆η∥F < s. This, however,
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contradicts the fact that ∥∆̃∆∆η∥F = s by construction. Therefore, we must have

1√
d1d2
∥∆̂∆∆∥F ≤

1√
d1d2

s≍ σ
1−q/2√

ρ

{
d1(z+ logd)

n

}1/2−q/4

with high probability, as claimed.

Combining this Frobenius norm error bound with (A.22) proves the error bound under

nuclear norm, which completes the proof.

A.2.4 Proof of Lemma A.2.1

To bound Zm = sup∆∆∆∈Dm(l) |(1/n)∑
n
i=1 π∆∆∆(XXX i,εi)−Eπ∆∆∆(XXX i,εi)|, note that |⟨XXX i,∆∆∆⟩| ≤ 1

for any ∆∆∆ ∈ Dm(l), and hence 0≤ π∆∆∆(XXX i,εi)≤ ⟨XXX i,∆∆∆⟩2 ≤ 1 by (A.11). Applying Theorem 3.26

in Wainwright (2019), a functional Hoeffding inequality, yields

P
(
Zm ≥ EZm + x

)
≤ e−nx2/4 for any x≥ 0. (A.27)

To bound the expectation EZm, by Rademacher symmetrization we have

EZm ≤ 2E
{

sup
∆∆∆∈Dm(l)

1
n

n

∑
i=1

eiπ∆∆∆(XXX i,εi)

}
= 2E

{
sup

∆∆∆∈Dm(l)

1
n

n

∑
i=1

eiϕ τ

2s∥∆∆∆∥F
(⟨XXX i,∆∆∆⟩)χi

}
,

where e1, . . . ,en are independent Rademacher random variables. By (A.11),

ϕ τ

2s∥∆∆∆∥F
(⟨XXX i,∆∆∆⟩) = ∥∆∆∆∥2

F ·ϕ τ

2s
(⟨XXX i,∆∆∆/∥∆∆∆∥F⟩).

By the definition of Dm(l) in (A.20), the expectation EZm is further bounded as

EZm ≤ 2E
{

sup
∆∆∆∈Dm(l)

∥∆∆∆∥2
F

n

n

∑
i=1

eiϕ τ

2s
(⟨XXX i,∆∆∆/∥∆∆∆∥F⟩χi

}
≤ 2 ·d1d2γ

m
η ·E

{
sup

∆∆∆∈Dm(l)

∣∣∣∣1n n

∑
i=1

eiϕ τ

2s
(⟨XXX i,∆∆∆/∥∆∆∆∥F⟩)χi

∣∣∣∣}.
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Since χi = 1(|εi| ≤ τ/2) ∈ {0,1}, we can write ϕτ/(2s)(⟨XXX i,∆∆∆⟩)χi = ϕτ/(2s)(χi⟨XXX i,∆∆∆⟩) for any

∆∆∆. Also, note that |⟨χiXXX i,∆∆∆/∥∆∆∆∥F⟩| ≤ (d1d2γm−1η)−1/2 for any ∆∆∆ ∈Dm(l). By the definition of

ϕR(·), for each sample (XXX i,εi) and for any ∆∆∆,∆∆∆′ ∈ Dm(l),

∣∣∣∣ϕ τ

2s
(χi⟨XXX i,∆∆∆/∥∆∆∆∥F⟩)−ϕ τ

2s
(χi⟨XXX i,∆∆∆

′/∥∆∆∆′∥F)

∣∣∣∣
≤ 2√

d1d2γm−1η
|⟨χiXXX i,∆∆∆/∥∆∆∆∥F⟩−⟨χiXXX i,∆∆∆

′/∥∆∆∆′∥F⟩|.

Moreover, ϕτ/(2s)(χi⟨XXX i,∆∆∆/∥∆∆∆∥F) = 0 whenever χi⟨XXX i,∆∆∆/∥∆∆∆∥F⟩= 0. Define the subset T ∈Rn

as

T= {ttt = (t1, . . . , tn)T : ti = χi⟨XXX i,∆∆∆/∥∆∆∆∥F⟩, i = 1, . . . ,n, ∆∆∆ ∈ Dm(l)},

and the contraction φ : R→ R as φ(t) = ϕτ/(2s)(t). Applying Talagrand’s contraction principle

yields

EZm ≤ 2 ·d1d2γ
m

η ·E
{

sup
∆∆∆∈Dm(l)

∣∣∣∣1n n

∑
i=1

eiϕ τ

2s
(⟨χiXXX i,∆∆∆/∥∆∆∆∥F⟩)

∣∣∣∣}
≤ 8 ·

√
d1d2γm+1η ·E

{
sup

∆∆∆∈Dm(l)

∣∣∣∣1n n

∑
i=1
⟨eiχiXXX i,∆∆∆/∥∆∆∆∥F⟩

∣∣∣∣}
≤ 8l ·

√
d1d2γm+1η ·E

∥∥∥∥1
n

n

∑
i=1

eiχiXXX i

∥∥∥∥
2
, (A.28)

where the last step follows from the definition of Dm(l) and the inequality ⟨AAA,BBB⟩ ≤ ∥AAA∥∗∥BBB∥2.

To bound the expected value of the operator norm, we apply the matrix Bernstein

inequality. Note that eiχiXXX i is a zero-mean random matrix with ∥eiχiXXX i∥2 ≤ 1. Also, for any

uuu = (u1, . . . ,ud1) ∈ Sd1−1, we have

uuuT(EXXX iXXXT
i )uuu =

1
d1d2

d1

∑
j=1

d2

∑
k=1

u2
j =

1
d1

.
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Taking the supremum over uuu ∈ Sd1−1 yields ∥EXXX iXXXT
i ∥2 = 1/d1. Similarly, it can be shown that

∥EXXXT
i XXX i∥2 = 1/d2. Recall that d1 ≥ d2. Applying the matrix Bernstein inequality (see, e.g.

Theorem 6.1.1 in Tropp (2015)), we have

E
∥∥∥∥1

n

n

∑
i=1

eiχiXXX i

∥∥∥∥
2
≤
√

2logd
nd2

+
1
3

logd
n
≤ 2

√
logd
nd2

,

where the last inequality holds as long as n≥ d2 logd. Combining this with (A.28), we obtain

EZm ≤ 16l
√

γm+1ηd1 log(d)/n. By the elementary inequality that ab≤ a2/(4γ)+ γb2 for any

a,b ∈ R, it follows that

EZm +
1
4γ

γ
m

η ≤ 1
2γ

γ
m

η +(16γ)2l2 d1 logd
n

≤ 1
2γ

γ
m

η +(16γ)2l2 d1(z+ logd)
n

.

This, joint with the concentration inequality (A.27) (taking x = (4γ)−1γmη), implies

P
{

Zm ≥
1
2γ

γ
m

η +(16γ)2l2 d1(z+ logd)
n

}
≤ P

(
Zm ≥ EZm +

1
4γ

γ
m

η

)
≤ e−n(γmη)2/(64γ2),

as claimed.

A.3 Proofs of multitask regression

A.3.1 Proof of Proposition 1.3.5

By the definition of L̂τ(·) in (1.19) and the chain rule, we have

∇L̂τ(ΘΘΘ
∗) =−1

n

n

∑
i=1

ψτ(∥εεε i∥2)

∥εεε i∥2
xxxiεεε

T
i =−

1
n

n

∑
i=1

min{∥εεε i∥2,τ}
∥εεε i∥2

xxxiεεε
T
i ∈ Rd1×d2,

where ψτ(u) = ℓ′τ(u) = sign(u)min(|u|,τ). Similarly to the proof of Proposition 1.3.1, we will

bound the spectral norms of ∇L̂τ(ΘΘΘ
∗)−E∇L̂τ(ΘΘΘ

∗) and E∇L̂τ(ΘΘΘ
∗), respectively.
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First, we bound ∥∇L̂τ(ΘΘΘ
∗)−E∇L̂τ(ΘΘΘ

∗)∥2 using the matrix Bernstein inequality. Define

symmetric random matrices AAAi ∈ Rd×d (d = d1 +d2) as

AAAi =

 0d1×d1 BBBi

BBBT
i 0d2×d2

 with BBBi =
ψτ(∥εεε i∥2)

∥εεε i∥2
xxxiεεε

T
i ∈ Rd1×d2.

It remains to bound the spectral norm of SSS := ∑
n
i=1(AAAi − EAAAi). We remark that ∥SSS∥2 =

max{λmax(SSS), |λmin(SSS)|}. Thus, we have P(∥SSS∥2 ≥ u)≤ P{λmax(SSS)≥ u}+P{λmax(−SSS)≥ u}

for any u≥ 0. Since the maximum eigenvalue can be represented as the supremum of an empiri-

cal process, via Rademacher symmetrization the problem boils down to bounding ∥∑
n
i=1 eiAAAi∥2,

where e1, . . . ,en are independent Rademacher random variables that are independent of the

observations. See, for example, Example 6.14 in Wainwright (2019).

Next we show that the zero-mean symmetric random matrices eiAAAi satisfy Bernstein’s

condition for matrices. Note that E(eiAAAi)
p = 0 for any odd integer p > 2. For any even integer

p > 2, i.e. p = 2m (m≥ 2), we have

(eiAAAi)
p =

[
(BBBiBBBT

i )
m 0

0 (BBBT
i BBBi)

m

]
,

implying that ∥E(eiAAAi)
p∥2 ≤max{∥E(BBBiBBBT

i )
m∥2,∥E(BBBT

i BBBi)
m∥2}.

Starting with E(BBBiBBBT
i )

m ∈ Rd1×d1 , it holds for any uuu ∈ Sd1−1 that

uuuTE
{

ψ2m
τ (∥εεε i∥2)

∥εεε i∥2m
2

(xxxiεεε
T
i εεε ixxxT

i )
m
}

uuu = E
{

ψ
2m
τ (∥εεε i∥2)(xxxT

i uuu)2(xxxT
i xxxi)

m−1}. (A.29)

Recall that |ψτ(·)| ≤ τ and by Condition (C3), E{ψ2
τ (∥εεε i∥2)|xxxi} ≤ E(∥εεε i∥2

2|xxxi) ≤ σ2
0 d2. Con-

cerning the moments of xxxi, under the sub-Gaussian assumption (C2), for each k≥ 1 and uuu∈ Sd1−1,
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we have

E|⟨uuu,xxxi⟩/ν0|2k = 2k
∫

∞

0
u2k−1P

(
|⟨uuu,xxxi⟩| ≥ ν0t

)
du

≤ 4k
∫

∞

0
u2k−1e−u2/2du = 4k

∫
∞

0
(2u)k−1e−udu = 2k+1kΓ(k−1) = 2k+1k!.

Applying the Cauchy-Schwarz inequality and the above moment bound, the expected value in

(A.29) is further bounded by

τ
2m−2 ·σ2

0 d2 ·E
{
(xxxT

i uuu)2(xxxT
i xxxi)

m−1}
≤ τ

2m−2 ·σ2
0 d2 ·

{
E(xxxT

i uuu)4}1/2{E(xxxT
i xxxi)

2m−2}1/2

≤ τ
2m−2 ·4ν

2
0 σ

2
0 d2 ·

{
E(xxxT

i xxxi)
2m−2}1/2

. (A.30)

To bound E(xxxT
i xxxi)

q for any q≥ 2, using the higher-order moment bound again yields

E(xxxT
i xxxi)

q = E
( d1

∑
j=1

x2
i j

)q

≤ dq−1
1 E

( d1

∑
j=1

x2q
i j

)
≤ dq

1 ·2
q+1q! ·ν2q

0 . (A.31)

Substituting this (with q = 2m−2) into (A.30), we obtain

E
{

ψ
2m
τ (∥εεε i∥2)(xxxT

i uuu)2(xxxT
i xxxi)

m−1}≤ τ
2m−2 ·4

√
2ν

2
0 σ

2
0 d2 ·dm−1

1 2m−1
√

(2m−2)! ·ν2m−2
0

≤ (τν0
√

d1)
2m−2 ·4

√
2ν

2
0 σ

2
0 d2 ·2m−1(2m−2)m−1

= (2eτν0
√

d1)
2m−2 ·4

√
2ν

2
0 σ

2
0 d2 ·

(
m−1

e

)m−1

≤ (eτν0
√

2d1)
2m−2 ·4

√
2ν

2
0 σ

2
0 d2 ·2m−1(m−1)!,

where the second and third inequalities follow from the fact that (k/e)k ≤ k!≤ kk for any positive
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integer k. Taking the supremum over uuu ∈ Sd1−1 gives, for any m≥ 2, that

∥E(BBBiBBBT
i )

m∥2 ≤ 2m−1(m−1)! ·4
√

2ν
2
0 σ

2
0 d2 · (eτν0

√
2d1)

2m−2

≤ 1
2
(2m)! ·4ν

2
0 σ

2
0 d2 · (eτν0

√
2d1)

2m−2.

Moreover, it is easy to see that ∥E(BBBiBBBT
i )∥2 ≤ 4ν2

0 σ2
0 d2.

Turning to E(BBBT
i BBBi)

m ∈ Rd2×d2 , note that for any vvv ∈ Sd2−1,

vvvTE
{

ψ2m
τ (∥εεε i∥2)

∥εεε i∥2m
2

(εεε ixxxT
i xxxiεεε

T
i )

m
}

vvv = E
{

ψ2m
τ (∥εεε i∥2)

∥εεε i∥2
2

(εεεT
i vvv)2∥xxxi∥2m

2

}
≤ τ

2m−2E
{

ψ2
τ (∥εεε i∥2)

∥εεε i∥2
2

(εεεT
i vvv)2∥xxxi∥2m

2

}
≤ τ

2m−2E
{
(εεεT

i vvv)2∥xxxi∥2m
2
}

≤ τ
2m−2

σ
2
0 ·E∥xxxi∥2m

2 .

Taking q = m≥ 2 in (A.31) yields E∥xxxi∥2m
2 ≤ ν2m

0 dm
1 2m+1m!≤ 2ν2m

0 dm
1 (2m)!. Substituting this

into the above bound, and taking the supremum over vvv ∈ Sd2−1, we conclude that

∥E(BBBT
i BBBi)

m∥2 ≤
1
2
(2m)! ·4ν

2
0 σ

2
0 d1 · (τν0

√
d1)

2m−2, m≥ 2.

In particular, ∥E(BBBT
i BBBi)∥2 ≤ σ2

0 d1.

Combining the above bounds on ∥E(BBBiBBBT
i )

m∥2 and ∥E(BBBT
i BBBi)

m∥2, we obtain

∥E(eiAAAi)
p∥2 ≤

1
2

p! ·4ν
2
0 σ

2
0 d1 · (eτν0

√
2d1)

p−2, valid for any even integer p > 2. (A.32)

Applying the matrix Bernstein inequality (see, e.g. Theorem 6.2 in Tropp (2012)), we obtain that
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for any x > 0,

∥∥∥∥1
n

n

∑
i=1

eiAAAi

∥∥∥∥
2
≲ ν0

√
max(d1,d2)

(
σ0

√
x
n
+

τx
n

)

with probability at least 1− 2de−x. Taking x = log(2d)+ z ≤ 2logd + z for given z > 0, it

follows that

∥∇L̂τ(ΘΘΘ
∗)−E∇L̂τ(ΘΘΘ

∗)∥2 ≲ ν0
√

max(d1,d2)

{
σ0

√
z+ logd

n
+

τ(z+ logd)
n

}
(A.33)

with probability at least 1− e−z.

For the deterministic term ∥E∇L̂τ(ΘΘΘ
∗)∥2, since E(εεε i|xxxi) = 0 and ψτ(u) = min(u,τ) for

u≥ 0, we have for any uuu ∈ Sd1−1 and vvv ∈ Sd2−1 that

uuuT{E∇L̂τ(ΘΘΘ
∗)}vvv = E

{
ψτ(∥εεε i∥2)

∥εεε i∥2
xxxT

i uuu · εεεT
i vvv
}

= E
{

min(∥εεε i∥2,τ)−∥εεε i∥2

∥εεε i∥2
xxxT

i uuu · εεεT
i vvv
}

= E
{

τ−∥εεε i∥2

∥εεε i∥2
xxxT

i uuu · εεεT
i vvv ·1(∥εεε i∥2 > τ)

}
.

Noting that 1(∥εεε i∥2 > τ)≤ τ−2∥εεε i∥2
2, this further implies

|uuuT{E∇L̂τ(ΘΘΘ
∗)}vvv| ≤ 1

τ
E{|xxxT

i uuu| · ∥εεε i∥2|εεεT
i vvv|}.

By Condition (C3) and the Cauchy-Schwarz inequality,

E
{
∥εεε i∥2|εεεT

i vvv|
∣∣xxxi
}
≤
(
E∥εεε i∥2

2
)1/2{E(εεεT

i vvv)2}1/2 ≤ σ
2
0

√
d2,

and E|xxxT
i uuu| ≤

√
E(xxxT

i uuu)2 ≤ 2ν0 due to (A.8). Putting together the pieces, and taking the supre-
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mum over uuu ∈ Sd1−1 and vvv ∈ Sd2−1, we conclude that

∥E∇L̂τ(ΘΘΘ
∗)∥2 ≤ 2ν0σ

2
0

√
d2/τ. (A.34)

Finally, taking τ = σ
√

n/(z+ logd) for any σ ≥ σ0 in (A.33) and (A.34) proves the claim.

A.3.2 Proof of Proposition 1.3.6

To begin with, note that for each i, the function fi(·) : Rd1×d2 → R defined as fi(ΘΘΘ) =

ℓτ(∥yyyi−ΘΘΘ
Txxxi∥2) is a convex function since it is a composition of two convex functions. By

convexity, ⟨∇ fi(ΘΘΘ)−∇ fi(ΘΘΘ
∗),ΘΘΘ−ΘΘΘ

∗⟩ ≥ 0 for any i, and hence

D(ΘΘΘ) := ⟨∇L̂τ(ΘΘΘ)−∇L̂τ(ΘΘΘ
∗),ΘΘΘ−ΘΘΘ

∗⟩

=
1
n

n

∑
i=1

〈
ψτ(∥εεε i∥2)

∥εεε i∥2
xxxiεεε

T
i −

ψτ(∥yyyi−ΘΘΘ
Txxxi∥2)

∥yyyi−ΘΘΘ
Txxxi∥2

xxxi(yyyi−ΘΘΘ
Txxxi)

T,ΘΘΘ−ΘΘΘ
∗
〉

≥ 1
n

n

∑
i=1

〈
ψτ(∥εεε i∥2)

∥εεε i∥2
xxxiεεε

T
i −

ψτ(∥yyyi−ΘΘΘ
Txxxi∥2)

∥yyyi−ΘΘΘ
Txxxi∥2

xxxi(yyyi−ΘΘΘ
Txxxi)

T,ΘΘΘ−ΘΘΘ
∗
〉
1Ei,

where ψτ(·) = ℓ′τ(·), and 1Ei is the indicator function of the event

Ei =
{
∥εεε i∥2 ≤ τ/2

}
∩
{
∥(ΘΘΘ−ΘΘΘ

∗)Txxxi∥2 ≤ (2s)−1
τ∥ΘΘΘ−ΘΘΘ

∗∥F
}
.

On event Ei, observe that ψτ(∥εεε i∥2) = ∥εεε i∥2 and ψτ(∥yyyi −ΘΘΘ
Txxxi∥2) = ∥yyyi −ΘΘΘ

Txxxi∥2 for all

ΘΘΘ ∈ΘΘΘ
∗+B(s). Consequently,

D(ΘΘΘ)≥ 1
n

n

∑
i=1
⟨xxxixxxT

i (ΘΘΘ−ΘΘΘ
∗),ΘΘΘ−ΘΘΘ

∗⟩1Ei for any ΘΘΘ ∈ΘΘΘ
∗+B(s).

Write ∆∆∆ = (δδδ 1, . . . ,δδδ d2) = ΘΘΘ−ΘΘΘ
∗ with δδδ k denoting the k-th column of ∆∆∆. Under this no-

tation, note that ∥(ΘΘΘ−ΘΘΘ
∗)Txxxi∥2

2 = ∑
d2
k=1(xxx

T
i δδδ k)

2 ≤ ∥xxxi∥2
2 ∑

d2
k=1 ∥δδδ k∥2

2 = ∥xxxi∥2
2∥∆∆∆∥2

F. Provided
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τ ≥ 2smax1≤i≤n ∥xxxi∥2, it holds

∥∆∆∆Txxxi∥2 ≤
τ

2s
∥∆∆∆∥F for any ∆∆∆ ∈ B(s), (A.35)

which in turn implies

D(ΘΘΘ)≥ 1
n

n

∑
i=1
∥∆∆∆Txxxi∥2

21
(
∥εεε i∥2 ≤ τ/2

)
≥ ∥∆∆∆∥2

F · inf
uuu∈Sd1−1

1
n

n

∑
i=1

(xxxT
i uuu)2

1
(
∥εεε i∥2 ≤ τ/2

)
= ∥∆∆∆∥2

F ·λmin

(
1
n

n

∑
i=1

χixxxixxxT
i

)
,

where χi = 1(∥εεε i∥2 ≤ τ/2) ∈ {0,1}. In what follows, we provide lower and upper bounds on

λmin(n−1
∑

n
i=1 χixxxixxxT

i ) and max1≤i≤n ∥xxxi∥2 with high probability, respectively.

Write ΣΣΣτ = E(χixxxixxxT
i ). By Condition (C3) and Markov’s inequality,

1≥ P
(
∥εεε i∥2 ≤ τ/2|xxxi

)
≥ 1−

(
2
τ

)2

tr
(
E(εεε iεεε

T
i |xxxi)

)
≥ 1−

4σ2
0 d2

τ2 ≥ 3
4

as long as τ ≥ 4σ0
√

d2, thus implying λmin(ΣΣΣτ) ≥ 3cl/4. The sub-Gaussianity of xxxi (see

Condition (C2)) ensures that ∥⟨uuu,χixxxi⟩∥ψ2 ≲ ν0∥uuu∥2 for any uuu ∈ Rd1 , where ∥ · ∥ψ2 denotes the

ψ2 Orlicz norm or the sub-Gaussian norm. Following the proof of Theorem 1 by Zhivotovskiy

(2024), it can be similarly shown that for any z > 0,

∥∥∥∥1
n

n

∑
i=1

χixxxixxxT
i −ΣΣΣτ

∥∥∥∥
2
≲ ν

2
0

√
d1 + z

n

with probability at least 1− e−z whenever n ≳ d1 + z. Thus, it follows from the above analysis

that with probability at least 1− e−z,

λmin

(
1
n

n

∑
i=1

χixxxixxxT
i

)
≥ cl

2
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as long as τ ≥ 4σ0
√

d2 and n ≳ ν4
0 c−2

l (d1 + z).

For max1≤i≤n ∥xxxi∥2, applying first Theorem 2.1 in Hsu, Kakade and Zhang (2012) to

each ∥xxxi∥2, and then taking the union bound over i = 1, . . . ,n, we see that for any x > 0,

P
{

max
1≤i≤n

∥xxxi∥2
2 > ν

2
0 (d1 +2

√
d1x+2x)

}
≤ ne−x.

With x = z+ logn, this further implies that max1≤i≤n ∥xxxi∥2 ≤ ν0
√

2d1 +3z+3logn with prob-

ability at least 1−ne−z−logn = 1− e−z. We thus let τ ≥ 2ν0s
√

2d1 +3z+3logn so that (A.35)

holds with the same probability.

Putting together the pieces, we have shown that with probability at least 1−2e−z,

⟨∇L̂τ(ΘΘΘ)−∇L̂τ(ΘΘΘ
∗),ΘΘΘ−ΘΘΘ

∗⟩ ≥ cl

2
∥ΘΘΘ−ΘΘΘ

∗∥2
F for all ΘΘΘ ∈ΘΘΘ

∗+B(s),

provided τ ≥ max{4σ0
√

d2,2ν0s
√

2d1 +3z+3logn} and n ≳ ν4
0 c−2

l (d1 + z). This completes

the proof.

A.3.3 Proof of Theorem 1.3.4

Similarly to the proof of Theorem 1.3.1, we employ the localized analysis via proof

by contradiction. Recall that d = d1 + d2. In view of Proposition 1.3.5, we choose τ ≍

σ0
√

n/(z+ logd) and λ ≍ σ0
√

d(z+ logd)/n so that λ ≥ 2∥∇L̂τ(ΘΘΘ
∗)∥2 with probability at

least 1− e−z. Choose

s≍ τ

ν0(d + z+ logn)1/2 ≍ σ0

√
n

(d + z+ logn)(z+ logd)

so that (1.20) is satisfied. Moreover, Proposition 1.3.6 implies that with probability at least

1−2e−z

⟨∇L̂τ(ΘΘΘ)−∇L̂τ(ΘΘΘ
∗),ΘΘΘ−ΘΘΘ

∗⟩ ≥ cl

2
∥ΘΘΘ−ΘΘΘ

∗∥2
F for all ΘΘΘ ∈ΘΘΘ

∗+B(s).
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under the sample complexity n ≳ d(z+ logd). Conditioning on the above good events, we see

from the proof of Theorem 1.3.1 that the robust matrix estimator Θ̂ΘΘτ,λ satisfies the error bounds

∥Θ̂ΘΘτ,λ −ΘΘΘ
∗∥F ≲ σ

1−q/2
0

√
ρ

{
d(z+ logd)

n

} 1
2−

q
4

and

∥Θ̂ΘΘτ,λ −ΘΘΘ
∗∥∗ ≲ σ

1−q
0 ρ

{
d(z+ logd)

n

} 1−q
2

as long as

σ0

√
n

(d + z+ logn)(z+ logd)
≍ s ≳

√
ρ λ

1−q/2 ≍ σ
1−q/2
0

√
ρ

{
d(z+ logd)

n

}1/2−q/4

.

This requirement holds under the sample complexity

n ≳ (ρ/σ
q
0 )

2/(4−q)(d + z+ logn)(z+ logd),

thus completing the proof.
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Appendix B

Supplementary Material for Chapter 2

B.1 Extension to other differential private mechanisms

In this section, we briefly introduce the extension of our construction for ε-GDP robust

mean estimators to incorporate other DP mechanisms.

Given a pair of positive privacy parameters ε and δ , we first construct an (ε,δ )-DP

estimator. The following two lemmas serve as pivotal tools to construct (ε,δ )-DP estimators,

which constitute counterparts to Lemma 2.3.1 and Lemma 2.3.2, respectively, in the context of

(ε,δ )-DP mechanism. Recall the definition of the sensitivity of a statistic hhh ∈ Rd in (2.20).

Lemma B.1.1. (Gaussian mechanism Dwork and Roth (2014)) Define the Gaussian mechanism

that operates on a statistic hhh ∈ Rd as

M(XXX) = hhh(XXX)+
sens(hhh)

√
2log(2/δ )

ε
ggg,

where ggg∼N (0,Id). Then, the Gaussian mechanism M is (ε,δ )-DP.

Lemma B.1.2. (Composition of DP Dwork et al. (2006b)) Let M1 : X n → Y1 be the first

mechanism and Mt : X n×Y1×·· ·×Yt−1→Yt be the t-th mechanism for t = 2, . . . ,k. We define

the k-fold composed mechanism M : X n→Y1×·· ·×Yk as M(XXX) = (y1,y2, . . . ,yk) where y1 =

M1(XXX) and yt = Mt(XXX ,y1, . . . ,yt−1) for t = 2, . . . ,k. If M1 is (ε1,δ1)-DP and Mt(·,y1, . . . ,yt−1)

is (εt ,δt)-DP for any y1 ∈ Y1, . . . ,yt−1 ∈ Yt−1, then the k-fold composed mechanism M is
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(∑k
t=1 εt ,∑

k
t=1 δt)-DP.

Next, we introduce a robust (ε,δ )-DP estimator. Given initial estimator µµµ
(0)
DP and prede-

termined number of iterations T , define

µµµ
(t+1)
DP = µµµ

(t)
DP +

η0

n

n

∑
i=1

ψτ(∥xxxi−µµµ
(t)
DP∥2)

∥xxxi−µµµ
(t)
DP∥2

(xxxi−µµµ
(t)
DP)+2τT

η0
√

2log(2/δ )

ε
gggt (B.1)

for t = 0,1, . . . ,T − 1, where η0 > 0 is the step size, {gggt}T−1
t=0 is a sequence of independent

standard d-variate normal random vectors. The final private estimator is denoted by µµµ
(T )
DP . Given

r0 > 0 and χ ∈ (0,1), recall the event E1(r0,χ) defined in (2.22). In the following, we present

an oracle-type concentration bound for the (ε,δ )-DP estimator µµµ
(T )
DP around the Huber estimator

µ̂µµ conditioning on the event E1. Building upon Lemma B.1.1 and B.1.2, the proof is almost

identical to the proof of Theorem 2.3.1, so we omit the proof for brevity.

Proposition B.1.1. For the given step size η0 ∈ (0,1] and the number of iterations T ≥ 1, the

private estimator µµµ
(T )
DP obtained from (B.1) is (ε,δ )-DP. Furthermore, assume that the initial

estimate satisfies ∥µµµ(0)
DP−µµµ∥2 ≤ r0 for some r0 > 0. Let χ ∈ (0,1),z > 0, and define

r2
opt = (1−ρ)T r2

0 and r2
p = η0T 2{η0 +(1−χ)−1}

(
d
ρ
+ z
)(

τ
√

log(2/δ )

εn

)2

,

where ρ = (1−χ)2η2
0 . Assume that the sample size satisfies

n ≳ T τ
(
√

d +
√

z+ logT )
√

log(2/δ )

(1−χ)εr0
.

Then, conditioning on the event E1 = E1(r0,χ), µµµ
(T )
DP satisfies

∥µµµ(T )
DP − µ̂µµ∥2 ≲ ropt + rp

with probability (over {gggt}T−1
t=0 ) at least 1−2e−z.
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We remark that the only difference between the deviation bound of the (ε,δ )-DP estima-

tor and ε-GDP is the dependence on T . The deviation bound of ε-GDP scales with
√

T , whereas

that of (ε,δ )-GDP scales with T . However, when we choose T ≍ logn as in Corollary 2.3.1, the

non-asymptotic bounds for both estimators become almost the same up to logarithmic terms.

Nonetheless, it is important to note that, unlike the ε-GDP estimator, the privacy of (ε,δ )-DP

estimator is not tightly characterized.

We next introduce another variant of differential privacy known as zero-concentrated

differential privacy (zCDP). To begin with, we recall the definition of Rényi divergence.

Definition B.1.1. For α > 1, the Rényi divergence of order α or α-Rényi divergence of a

distribution P from a distribution Q is defined to be

Dα(P∥Q) =
1

α−1
log

(
EX∼Q

[{
P(X)

Q(X)

}α])
.

Now, we are ready to introduce the definition of zCDP.

Definition B.1.2. (Bun and Steinke (2016)) A randomized algorithm M : X n→ Y is said to

be ε-zero-concentrated differential private (ε-zCDP) for ε > 0 if for any neighboring datasets

XXX ,XXX ′ ∈X n, and any α > 1, the α-Rényi divergence between M(XXX) and M(XXX ′) satisfies

Dα(M(XXX)∥M(XXX ′))≤ εα.

The following two lemmas provide essential tools for the construction of zCDP estima-

tors.

Lemma B.1.3. (Gaussian mechanism (Bun and Steinke, 2016)) Define the Gaussian mechanism

that operates on a statistic hhh ∈ Rd as

M(XXX) = hhh(XXX)+
sens(h)√

2ε
ggg,
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where ggg∼N (0, IIId). Then, the mechanism M is ε-zCDP.

Lemma B.1.4. (Composition of zCDP Bun and Steinke (2016)) Let M1 : X n→ Y1 be the first

mechanism and Mt : X n×Y1×·· ·×Yt−1→ Yt be the t-th mechanism for t = 2, . . . ,k. Define

the k-fold composed mechanism M : X n → Y1× ·· · ×Yk as M(XXX) = (y1,y2, . . . ,yk) where

y1 = M1(XXX) and yt = Mt(XXX ,y1, . . . ,yt−1) for t = 2, . . . ,k. If M1 is ε1-zCDP and Mt(·,y1, . . . ,yt−1)

is εt-DP for any y1 ∈ Y1, . . . ,yt−1 ∈ Yt−1, then the k-fold composed mechanism M is (∑k
t=1 εt)-

zCDP.

We are now prepared to outline the procedure for constructing a robust ε-zCDP. Given

an initial estimator µµµ
(0)
zCDP and predetermined number of iterations T , define

µµµ
(t+1)
zCDP = µµµ

(t)
zCDP +

η0

n

n

∑
i=1

ψτ(∥xxxi−µµµ
(t)
zCDP∥2)

∥xxxi−µµµ
(t)
zCDP∥2

(xxxi−µµµ
(t)
zCDP)+2τT

η0√
2ε

gggt (B.2)

for t = 0,1, . . . ,T − 1, where η0 > 0 is the step size, {gggt}T−1
t=0 is a sequence of independent

standard d-variate normal random vectors and τ is the robustification parameter. The final

private estimator is denoted by µµµ
(T )
zCDP. The following proposition gives a deviation bound for

the ε-zCDP estimator µµµ
(T )
zCDP around µ̂µµ conditioning on E1. Combined with Lemma B.1.3 and

Lemma B.1.4, the proof of this proposition closely follows the same argument as the proof of

Theorem 2.3.1, so is omitted for brevity.

Proposition B.1.2. For the given step size η0 ∈ (0,1] and the number of iterations T ≥ 1, the

estimator µµµ
(T )
zCDP obtained from (B.2) is ε-zCDP. Furthermore, assume that the initial estimate

satisfies ∥µµµ(0)
zCDP−µµµ∥2 ≤ r0 for some r0 > 0. Let χ ∈ (0,1),z > 0, and define

r2
opt = (1−ρ)T r2

0 and r2
p = η0T 2{η0 +(1−χ)−1}

(
d
ρ
+ z
)(

τ√
εn

)2

,
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where ρ = (1−χ)2η2
0 . Assume that the sample size satisfies

n ≳ T τ

√
d +
√

z+ logT
(1−χ)

√
εr0

.

Then, conditioning on the event E1 = E1(r0,χ), µµµ
(T )
zCDP satisfies

∥µµµ(T )
zCDP− µ̂µµ∥2 ≲ ropt + rp

with probability (over {gggt}T−1
t=0 ) at least 1−2e−z.

It should be noted that the resulting ε-zCDP estimator, in contrast to the (ε,δ )-DP

constructed by (B.1), has a tight privacy characterization. However, the concept of zCDP no

longer encompasses hypothesis testing interpretations.

B.2 Details of implementation

For the implementation of ε-GDP robust mean estimators and CIs, we first need to choose

an appropriate robustification parameter τ . Motivated by the bound (2.28) in Corollary 2.3.1, we

take

τ ≍ m1/2
2

{
εn√

(d + logn) logn

}1/2

, (B.3)

where m2 is defined as m2 = E∥xxx−µµµ∥2
2. Motivated by Liu et al. (2023), we use the histogram

learner algorithm (Karwa and Vadhan, 2018), summarized in Algorithm 3, to estimate m2. In

detail, for a prespecified number of partitions M, we first partition the set {∥xxx2i−1−xxx2i∥2/2}⌊n/2⌋
i=1

into M batches, compute the median for each partition, and use the private histogram learner

algorithm with geometrically increasing bin sizes to get a private estimator. We describe the

algorithm in Algorithm 4. Here, we use the median for a robust estimation of m2 =E∥xxx1−xxx2∥2
2/2.
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Algorithm 3. Private histogram learner (HL) algorithm

Input: privacy parameters (ε,δ ), dataset {wm}M
m=1 ∈ ΩM for some domain Ω, collection of

disjoint bins {Bk}K
k=1 defined on Ω with K ∈ N∪{∞}

1: for k = 1,2, . . . ,K do
2: p̂k = ∑

M
m=1 I(wm ∈ Bk)/M

3: if p̂k = 0 then
4: p̃k = 0
5: else
6: Generate a Laplace random variable Zk with mean 0 and scale 2/(εM);
7: p̃k = p̂k +Zk;
8: if p̂k +Zk < 2log(2/δ )/(εM)+(1/M) then
9: p̃k = 0;

10: end if
11: end if
12: end for
Output: {p̃k}K

k=1 = HL({wm}M
m=1,(ε,δ ))

By combining Lemma 2.3 in Karwa and Vadhan (2017) and Corollary 1 in Dong, Roth

and Su (2022), the specific choice of δ implies that Algorithm 4 gives an ε-GDP estimator of m2

for a given ε > 0. Based on this, we propose a heuristic data-driven approach to construct an

ε-GDP robust estimator of µµµ .

We initialize the initial estimate µµµ(0) = 0 ∈ Rd , the step size η0 = 1, and set the number

of iterations T = ⌊logn⌋. We first run Algorithm 4 with M = ⌊
√

n/2⌋ and the privacy parameter

ε/
√

T +1 to get an (ε/
√

T +1)-GDP estimator denoted as m̂2 for m2. Subsequently, at iteration

t = 1,2, . . . ,T −1, we compute

µµµ
(t+1) = µµµ

(t)+
η0

n

n

∑
i=1

ψτ̂(∥xxxi−µµµ(t)∥2)

∥xxxi−µµµ(t)∥2
(xxxi−µµµ

(t))+2(T +1)1/2
τ̂

η0

εn
gggt .

Here, {gggt}T−1
t=0 is a sequence of independent standard d-variate normal random vectors, and τ̂ is

defined as in (B.3) with m2 replaced by m̂2. Following a similar line of arguments in the proof of

Proposition 2.3.1, it can be demonstrated that the final private estimator µµµ(T ) is ε-GDP.

To construct a GDP CI for µµµ , we follow the construction outlined in (2.33). However,

for computational efficiency, we replace Σ̂ξ ,ε with the following perturbed plug-in covariance
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Algorithm 4. Private and robust estimator for m2

Input: dataset {xxxi}n
i=1, privacy parameter ε , the number of partitions M

1: Partition {∥xxx2i−1− xxx2i∥2/2}⌊n/2⌋
i=1 into M partitions of equal size;

2: For 1≤ m≤M, compute wm to be the median value of m-th partition;
3: Partition [0,∞) into geometrically increasing intervals

[0,∞) =
∞

∑
k=−∞

[2k,2k+1)∪ [0,0];

4: Run (ε,δ )-DP private histogram leaner HL({wm}M
m=1,(ε,δ )) with δ = Φ(−1+ ε/2)−

eεΦ(−1− ε/2);
5: Let k′ ∈ argmax−∞≤k≤∞ p̃k;

Output: 2k′

estimator:

Σ̃ξ ,ε := argmin
HHH⪰ζ III

∥∥∥∥∥HHH−
{

1
n

n

∑
i=1

ψξ (∥xxxi−µµµ(T )∥2
2)

∥xxxi−µµµ(T )∥2
2

(xxxi−µµµ
(T ))(xxxi−µµµ

(T ))T +
2ξ

εn
EEE
}∥∥∥∥∥

2

,

where {HHH : HHH ⪰ ζ III} is a cone of positive definite matrices, whose minimal eigenvalues are

not smaller than a prespecified positive number ζ . Here, EEE ∈ Rd×d is a symmetric random

matrix where upper-triangular and diagonal entries are i.i.d. N (0,1). The parameter ξ > 0

represents the robustification parameter, and we use ξ̂ = 10m̂2
√

n/ log(nd) with m̂2 computed

during the estimation of µµµ(T ). We remark that the mechanism (m̂2,µµµ
(T )) is ε-GDP. Combining

this with Lemma 2.3.2, we have that (µµµ(T ), Σ̃
ξ̂ ,ε

) is a (
√

2ε)-GDP mechanism. Therefore, the

100(1−α)% (approximate) confidence interval

[
⟨uuu,µµµ(T )⟩− zα/2

(uuuTΣ̃
ξ̂ ,ε

uuu)1/2

√
n

,⟨uuu,µµµ(T )⟩+ zα/2

(uuuTΣ̃
ξ̂ ,ε

uuu)1/2

√
n

]

is (
√

2ε)-GDP.
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B.3 Proofs in Section 2.2

B.3.1 Supporting lemmas

We first provide several technical lemmas regarding the gradient and Hessian of the

empirical loss L̂τ(·), given by

∇L̂τ(θθθ) =−
1
n

n

∑
i=1

ψτ(∥xxxi−θθθ∥2)

∥xxxi−θθθ∥2
(xxxi−θθθ)

and ∇
2L̂τ(θθθ) =

1
n

n

∑
i=1

{
Id−

(xxxi−θθθ)(xxxi−θθθ)T

∥xxxi−θθθ∥2
2

}
ψ(∥xxxi−θθθ∥2/τ)

∥xxxi−θθθ∥2/τ

+
1
n

n

∑
i=1

(xxxi−θθθ)(xxxi−θθθ)T

∥xxxi−θθθ∥2
2

ψ
′(∥xxxi−θθθ∥2/τ).

The concavity of ψ(·) implies ψ(u)≥ uψ ′(u) for any u≥ 0, from which it follows that for any

uuu ∈ Sd−1,

1
n

n

∑
i=1

ψ
′(∥xxxi−θθθ∥2/τ)≤ uuuT

∇
2L̂τ(θθθ)uuu≤

1
n

n

∑
i=1

τψ(∥xxxi−θθθ∥2/τ)

∥xxxi−θθθ∥2
. (B.4)

We denote the population loss Lτ(θθθ) = EL̂τ(θθθ). For any r > 0, define the local ball

around the true mean vector µµµ = E(xxx) as Θ(r) = {θθθ ∈ Rd : ∥θθθ − µµµ∥2 ≤ r}. The following

lemma demonstrates the local strong convexity of the empirical loss function L̂τ(·).

Lemma B.3.1. Let r > 0 and τ = γ + r with γ > 0 and z > 0. Then, with probability at least

1− e−z,

1−P
(
∥xxx−µµµ∥2 > γ

)
−
√

z
2n
≤ uuuT

∇
2L̂τ(θθθ)uuu≤ 1

holds uniformly over θθθ ∈Θ(r) and uuu ∈ Sd−1.

Proof of Lemma B.3.1. For the Huber loss, ψ(u) = sign(u)min(|u|,1) is 1-Lipschitz continuous

and differentiable except at ±1. By (B.4), the sample Hessian ∇2L̂τ(·) satisfies for any θθθ ∈ Rd
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and uuu ∈ Sd−1 that
1
n

n

∑
i=1

1
(
∥xxxi−θθθ∥2 ≤ τ

)
≤ uuuT

∇
2L̂τ(θθθ)uuu≤ 1.

For all θθθ in the local region Θ(r), {∥xxxi−µµµ∥2 ≤ γ} ⊆ {∥xxxi−θθθ∥2 ≤ τ} and hence

1
n

n

∑
i=1

1
(
∥xxxi−θθθ∥2 ≤ τ

)
≥ 1

n

n

∑
i=1

1
(
∥xxxi−µµµ∥2 ≤ γ

)
= 1−P

(
∥xxxi−µµµ∥2 > γ

)
− 1

n

n

∑
i=1

{
1
(
∥xxxi−µµµ∥2 > γ

)
−P
(
∥xxxi−µµµ∥2 > γ

)}
.

For the last term, applying Hoeffding’s inequality yields that, with probability at least 1− e−z,

1
n

n

∑
i=1

{
1
(
∥xxxi−µµµ∥2 > γ

)
−P
(
∥xxxi−µµµ∥2 > γ

)}
≤
√

z
2n

.

Putting together the pieces proves the claimed bound.

We next establish an upper bound of the sample gradient ∇L̂τ(µµµ).

Lemma B.3.2. For any τ > 0, the sample gradient ∇L̂τ(µµµ) satisfies the bound

∥∇L̂τ(µµµ)∥2 ≤ 2

√
tr(Σ)

n
+

√
2∥Σ∥2z

n
+

4τz
3n

+bτ

with probability at least 1− e−z for any z≥ 0, where bτ ≤ τ−1
√

λ̄ tr(Σ) is defined in (2.3).

Proof of Lemma B.3.2. To begin with, note that

∥∇L̂τ(µµµ)∥2 = sup
uuu∈Sd−1

1
n

n

∑
i=1

τψ
(
∥xxxi−µµµ∥2/τ

)
⟨uuu,xxxi−µµµ⟩/∥xxxi−µµµ∥2︸ ︷︷ ︸

=: fuuu(xxxi)

,

where the function fuuu(·) : Rd → R is such that | fuuu(·)| ≤ τ and E f 2
uuu (xxxi)≤ E⟨uuu,xxxi−µµµ⟩2 ≤ ∥Σ∥2.
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Moreover, using the fact that E⟨uuu,xxxi−µµµ⟩= 0 we obtain

E{ fuuu(xxxi)}= E⟨uuu,xxxi−µµµ⟩min(∥xxxi−µµµ∥2,τ)−∥xxxi−µµµ∥2

∥xxxi−µµµ∥2

= E⟨uuu,xxxi−µµµ⟩τ−∥x
xxi−µµµ∥2

∥xxxi−µµµ∥2
1
(
∥xxxi−µµµ∥2 > τ

)
,

which in turn implies

|E fuuu(xxxi)| ≤ τ
−1E

(
|⟨xxxi−µµµ,uuu⟩| · ∥xxxi−µµµ∥2

)
≤ τ

−1
√

E∥xxxi−µµµ∥2
2 ·E⟨xxxi−µµµ,uuu⟩2

=

√
tr(Σ)∥Σ∥2

τ
. (B.5)

For the supremum ∆ := supuuu∈Sd−1(1/n)∑
n
i=1(1−E) fuuu(xxxi), it follows from Talagrand’s

inequality (see, e.g., Theorem 7.3 in Bousquet (2003)) that, with probability at least 1− e−z,

∆≤ 2E∆+

√
2∥Σ∥2z

n
+

4τz
3n

.

For E∆, by the Cauchy-Schwarz inequality we have

E

{
sup

uuu∈Sd−1

1
n

n

∑
i=1

(1−E) fuuu(xxxi)

}

= E∥∇L̂τ(µµµ)−E∇L̂τ(µµµ)∥2 ≤
√
E∥∇L̂τ(µµµ)−∇Lτ(µµµ)∥2

2

≤

{
1
n2

n

∑
i=1

Eψ
2
τ

(
∥xxxi−µµµ∥2

)}1/2

=

{
1
n2

n

∑
i=1

Emin
(
∥xxxi−µµµ∥2

2,τ
2)}1/2

≤
√

tr(Σ)
n

.

Note that ∥∇L̂τ(µµµ)∥2 ≤ ∆+bτ , where

bτ = sup
uuu∈Sd−1

E fuuu(xxxi) =

∥∥∥∥E{(xxx−µµµ)ψτ(∥xxx−µµµ∥2)

∥xxx−µµµ∥2

}∥∥∥∥
2
≤ τ

−1
√
∥Σ∥2 tr(Σ)

due to (B.5). Combining this with the concentration bound and the bound of E∆ proves the
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claimed result.

B.3.2 Proof of Lemma 2.2.1

By the definition of bτ , we have

bτ = sup
uuu∈Sd−1

E
{

ψτ(∥xxx−µµµ∥2)

∥xxx−µµµ∥2
⟨uuu,xxx−µµµ⟩

}
.

For any uuu ∈ Sd−1 fixed, following the same argument as in the proof of Lemma B.3.2 we obtain

E
{

ψτ(∥xxx−µµµ∥2)

∥xxx−µµµ∥2
⟨xxx−µµµ,uuu⟩

}
= E⟨uuu,xxx−µµµ⟩τ−∥x

xx−µµµ∥2

∥xxx−µµµ∥2
1(∥xxx−µµµ∥2 > τ).

Since mq = E∥xxx−µµµ∥q
2 < ∞, this further implies

∣∣∣∣E{ψτ(∥xxx−µµµ∥2)

∥xxx−µµµ∥2
⟨xxx−µµµ,uuu⟩

}∣∣∣∣≤ E|⟨uuu,xxx−µµµ⟩|1(∥xxx−µµµ∥2 > τ)

≤ 1
τq−1E|⟨uuu,xxx−µµµ⟩| · ∥xxx−µµµ∥q−1

2

≤ ν
1/q
q

(uuuTΣuuu)1/2m(q−1)/q
q

τq−1 ,

where the last inequality follows from Hölder’s inequality. Since uuuTΣuuu≤ λ̄ uniformly over all

uuu ∈ Sd−1, this proves the first inequality of Lemma 2.2.1. The second inequality of the claim

easily follows from the fact that |⟨uuu,xxx−µµµ⟩| ≤ ∥xxx−µµµ∥2, which completes the proof.

B.3.3 Proof of Theorem 2.2.3

Throughout the proof, let (n,τ) satisfy n ≳ r(Σ)+ logn and τ ≳ m1/q
q (n/ logn)1/(2q).

Since m1/q
q ≥ tr(Σ)1/2, we have τ ≳ tr(Σ)1/2 and mq/τq ≲

√
(logn)/n. Therefore, applying
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(2.2) and (2.8) with z = logn yields that with probability at least 1−3n−1,

∥µ̂µµτ −µµµ∥2 ≲

√
tr(Σ)+ λ̄ logn

n
+bτ + τ

logn
n

and

∣∣∣∣⟨uuu, µ̂µµτ −µµµ⟩− 1
n

n

∑
i=1

ψτ(∥xxxi−µµµ∥2)

∥xxxi−µµµ∥2
⟨uuu,xxxi−µµµ⟩

∣∣∣∣
≲ ∥uuu∥2

{√
tr(Σ) logn+ λ̄ 1/2 logn

n
+

(
bτ + τ

logn
n

)√
logn

n

}

uniformly over all uuu ∈ Rd . For each uuu ∈ Rd , define independent random variables

Si,uuu =
ψτ(∥xxxi−µµµ∥2)

∥xxxi−µµµ∥2
⟨uuu,xxxi−µµµ⟩, i = 1, . . . ,n.

The definition of Si,uuu is similar to that of fuuu(xxxi) in the proof of Lemma B.3.2, except that we

allow any uuu ∈ Rd here while uuu ∈ Sd−1 in fuuu(xxxi). From the proof of Lemma 2.2.1, we bound the

mean of Si,uuu as

|ESi,uuu| ≤ ν
1/q
q m1−1/q

q
∥uuu∥Σ

τq−1 ≤
mq

τq−1∥uuu∥2. (B.6)

With the above notation, we have

∣∣∣∣√n⟨uuu, µ̂µµτ −µµµ⟩− 1√
n

n

∑
i=1

(Si,uuu−ESi,uuu)

∣∣∣∣≤ ∥uuu∥2 ·Rn,τ

with Rn,τ ≍
√

tr(Σ) logn+ λ̄ 1/2 logn√
n

+
τ(logn)3/2

n
+

mq
√

n
τq−1 (B.7)

with probability at least 1−3n−1 as long as n ≳ r(Σ)+ logn.

To establish the Gaussian approximation for the centered partial sum ∑
n
i=1(Si,uuu−ESi,uuu),
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we need to control the second and third moments of Si,uuu. For the second moment, note that

E(S2
i,uuu) = ∥uuu∥2

Σ−E
{
∥xxxi−µµµ∥2

2− τ2

∥xxxi−µµµ∥2
2

uuuT(xxxi−µµµ)(xxxi−µµµ)Tuuu ·1(∥xxxi−µµµ∥2 ≥ τ)

}
︸ ︷︷ ︸

=: I

.

Analogous to (B.6), we have

0≤ I≤ 1
τq−2E{∥xxxi−µµµ∥q−2

2 ·uuuT(xxxi−µµµ)(xxxi−µµµ)Tuuu} ≤ ν
2/q
q m1−2/q

q
∥uuu∥2

Σ

τq−2 ,

from which it follows that

1−ν
2/q
q

m1−2/q
q

τq−2 ≤
E(S2

i,uuu)

∥uuu∥2
Σ

≤ 1 and (ESi,uuu)
2 ≤ ν

2/q
q m2−2/q

q
∥uuu∥2

Σ

τ2q−2 .

Provided τ ≳ ν

2
q(q−2)
q m1/q

q , this implies

δτ :=
∣∣∣∣var(Si,uuu)

∥uuu∥2
Σ

−1
∣∣∣∣≤ ν

2/q
q m1−2/q

q τ
2−q(1+mqτ

−q)≤ 1
2
. (B.8)

With the above preparations, we are ready to establish the Gaussian approximation for
√

n⟨uuu, µ̂µµτ − µµµ⟩. Define two centered Gaussian random variables Z1 ∼ N (0,var(S1,uuu)) and

Z2 ∼N (0,∥uuu∥2
Σ
). By Lemma A.7 in Spokoiny and Zhilova (2015),

sup
x∈R
|P(Z1 ≤ x)−P(Z2 ≤ x)| ≤ δτ

2
.
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It then follows from the Berry-Esseen inequality (see, e.g., Shevtsova (2014)) that

sup
x∈R

∣∣∣∣∣P
{

1√
n

n

∑
i=1

(Si,uuu−ESi,uuu)≤ x

}
−P(Z2 ≤ x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{

1√
n

n

∑
i=1

(Si,uuu−ESi,uuu)≤ x

}
−P(Z1 ≤ x)

∣∣∣∣∣+ sup
x∈R
|P(Z1 ≤ x)−P(Z2 ≤ x)|

≤
E|S1,uuu−ES1,uuu|3

2var(S1,uuu)3/2√n
+

δτ

2
. (B.9)

This, together with the Bahadur representation (B.7), implies that for any x ∈ R,

P(
√

n⟨uuu, µ̂µµτ −µµµ⟩ ≤ x)≤ P
{

1√
n

n

∑
i=1

(Si,uuu−ESi,uuu)≤ x+Rn,τ∥uuu∥2

}
+

3
n

≤ P(Z2 ≤ x+Rn,τ∥uuu∥2)+
δτ

2
+

E|S1,uuu−ES1,uuu|3

2var(S1,uuu)3/2√n
+

3
n

≤ P(Z2 ≤ x)+
Rn,τ∥uuu∥2√

2π∥uuu∥Σ

+
δτ

2
+

E|S1,uuu−ES1,uuu|3

2var(S1,uuu)3/2√n
+

3
n
.

For the third moment, we note that E|S1,uuu−ES1,uuu|3 ≤ 4E|S1,uuu|3 + 4|ES1,uuu|3 ≤ 8E|S1,uuu|3 and

E|S1,uuu|3 ≤ E|⟨xxx−µµµ,uuu⟩|3 ≤ ν3∥uuu∥3
Σ
. Therefore, we have that

E|S1,uuu−ES1,uuu|3

2var(S1,uuu)3/2√n
≲ ν3n−1/2. (B.10)

To bound the above key quantities Rn,τ∥uuu∥2/∥uuu∥Σ and δτ , we combine the definition of Rn,τ

in (B.7) with (B.8) after taking τ ≍ m1/q
q (n/ logn)γ with γ ∈ [1/(q−1),1/2] to get

Rn,τ∥uuu∥2

∥uuu∥Σ

≲

√
tr(Σ) logn+ λ̄ 1/2 logn√

λn
+

m1/q
q

λ
1/2

logn√
n

and δτ ≲ ν
2/q
q

(
logn

n

)(q−2)/(q−1)

.

(B.11)
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Putting together the pieces and note that m1/q
q ≥ tr(Σ)1/2, we obtain

P(
√

n⟨uuu, µ̂µµτ −µµµ⟩ ≤ x)−P(Z2 ≤ x)≲
m1/q

q

λ
1/2

logn√
n

+ν
2/q
q

(
logn

n

)(q−2)/(q−1)

+
ν3√

n

for all x ∈ R and uuu ∈ Rd as long as n ≳ r(Σ)+ logn. A reversed inequality can be obtained via

the same argument. Combining the two sides of the inequalities proves the claim.

B.3.4 Proof of Theorem 2.2.4

Let τ ≍ m1/4
4 (n/ logn)γ with γ ∈ [1/3,1/2] and ξ ≍ v0

√
n/ log(nd). Without loss of

generality, we assume

n ≳ ν4

(
λ̄

λ

)2

r(Σ) log(nd); (B.12)

otherwise, the right-hand side of (2.14) is greater than 1 so that (2.14) holds trivially. As in the

proof of Theorem 2.2.3, define

Si,uuu =
ψτ(∥xxxi−µµµ∥2)

∥xxxi−µµµ∥2
⟨uuu,xxxi−µµµ⟩

for each uuu ∈ Rd . By (B.7) and (B.11) with q = 4,

∣∣∣∣√n⟨uuu, µ̂µµτ −µµµ⟩−n−1/2
∑

n
i=1(Si,uuu−ESi,uuu)

∥uuu∥Σ

∣∣∣∣≲
√

tr(Σ) logn+ λ̄ 1/2 logn√
λn

+
m1/4

4

λ
1/2

logn√
n

≲
m1/4

4

λ
1/2

logn√
n

(B.13)
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with probability at least 1− 3n−1 uniformly over all uuu ∈ Rd . On the other hand, using the

bound (B.8) and the Berry-Esseen inequality (B.9), we get

sup
x∈R

∣∣∣∣∣P
{

n−1/2
∑

n
i=1(Si,uuu−ESi,uuu)

∥uuu∥Σ

≤ x

}
−Φ(x)

∣∣∣∣∣≤ δτ

2
+

E|S1,uuu−ES1,uuu|3

2var(S1,uuu)3/2√n

≲ ν
1/2
4

(
logn

n

)(q−2)/(q−1)

+
ν3√

n
, (B.14)

for all uuu ∈ Rd . By Hölder’s inequality, E|⟨xxx−µµµ,uuu⟩|3 ≤ (E⟨xxx−µµµ,uuu⟩2)1/2(E⟨xxx−µµµ,uuu⟩4)1/2 for

any uuu ∈ Sd−1, from which it follows that ν3 ≤ ν
1/2
4 . Therefore, (B.14) is further bounded as

sup
x∈R

∣∣∣∣∣P
{

n−1/2
∑

n
i=1(Si,uuu−ESi,uuu)

∥uuu∥Σ

≤ x

}
−Φ(x)

∣∣∣∣∣≲ ν
1/2
4

√
logn

n
. (B.15)

For simplicity, we write Σ̂ = Σ̂ξ and ∥uuu∥2
Σ̂
= uuuTΣ̂ξ uuu. Note that v2

0 can be written as

1
2
∥E{(xxx−µµµ)(xxx−µµµ)T}2 + tr(Σ)Σ+2Σ

2∥2,

so v2
0 ≤ (ν4+1)λ̄ tr(Σ)/2+ λ̄ 2 ≤ 2ν4λ̄ tr(Σ) according to Lemma 4.1 in Minsker and Wei (2020).

It then follows from Proposition 2.2.1 that with probability at least 1−n−1,

∣∣∥uuu∥2
Σ̂
−∥uuu∥2

Σ

∣∣≲ ν
1/2
4 ∥uuu∥

2
2

√
λ̄ tr(Σ) log(nd)

n

for all uuu ∈ Rd . This further implies

∣∣∣∣∥uuu∥2
Σ̂

∥uuu∥2
Σ

−1
∣∣∣∣≲ ν

1/2
4
∥uuu∥2

2
∥uuu∥2

Σ

λ̄
1/2

√
tr(Σ) log(nd)

n
≤ ν

1/2
4

λ̄

λ

√
r(Σ) log(nd)

n
.

Using the elementary inequality |x−1− 1| ≤ 2|x2− 1| for any x ≥ 1/2, we obtain that with
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probability at least 1−n−1,

∣∣∣∣∥uuu∥Σ

∥uuu∥
Σ̂

−1
∣∣∣∣≲ ν

1/2
4

λ̄

λ

√
r(Σ) log(nd)

n
, (B.16)

and hence 1/2≤ ∥uuu∥
Σ̂
/∥uuu∥Σ ≤ 3/2 under the same size condition (B.12). Combining this with

(B.13) yields

∣∣∣∣√n⟨uuu, µ̂µµτ −µµµ⟩
∥uuu∥

Σ̂

−
n−1/2

∑
n
i=1(Si,uuu−ESi,uuu)

∥uuu∥Σ

∣∣∣∣
≤
∣∣∣∣√n⟨uuu, µ̂µµτ −µµµ⟩

∥uuu∥
Σ̂

−
n−1/2

∑
n
i=1(Si,uuu−ESi,uuu)

∥uuu∥
Σ̂

∣∣∣∣+ ∣∣∣∣n−1/2
∑

n
i=1(Si,uuu−ESi,uuu)

∥uuu∥Σ

(
∥uuu∥Σ

∥uuu∥
Σ̂

−1
)∣∣∣∣

≲
m1/4

4

λ
1/2

logn√
n

+ν
1/2
4

λ̄

λ

√
r(Σ) log(nd)

n
·
∣∣∣∣n−1/2

∑
n
i=1(Si,uuu−ESi,uuu)

∥uuu∥Σ

∣∣∣∣.
By the Gaussian tail inequality, P{|Z| ≥

√
2log(2n)} ≤ n−1, where Z ∼N (0,1). This together

with (B.15) implies

P

{∣∣∣∣n−1/2
∑

n
i=1(Si,uuu−ESi,uuu)

∥uuu∥Σ

∣∣∣∣≥√2log(2n)

}
≲ ν

1/2
4

(
logn

n

)1/2

.

Combining the pieces yields that with probability at least 1−C1ν
1/2
4 (n/ logn)−1/2−4n−1,

∣∣∣∣√n⟨uuu, µ̂µµτ −µµµ⟩
∥uuu∥

Σ̂

−
n−1/2

∑
n
i=1(Si,uuu−ESi,uuu)

∥uuu∥Σ

∣∣∣∣
≲

m1/4
4

λ
1/2

logn√
n

+ν
1/2
4

λ̄

λ

√
r(Σ) log(nd)

n

√
logn ≲ ν

1/2
4

λ̄

λ

√
r(Σ) log(n) log(nd)

n

uniformly over all uuu, where the last inequality follows from the fact that m4≤ κ4tr(Σ)2 (see (2.5)).
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Finally, we conclude that for any uuu ∈ Rd and x ∈ R,

P(
√

n⟨uuu/∥uuu∥
Σ̂
, µ̂µµτ −µµµ⟩ ≤ x)

≤ P

{
n−1/2

∑
n
i=1(Si,uuu−ESi,uuu)

∥uuu∥Σ

≤ x+C2ν
1/2
4

λ̄

λ

√
r(Σ) log(n) log(nd)

n

}
+C1ν

1/2
4

√
logn

n
+

4
n

≤Φ(x)+C3ν
1/2
4

λ̄

λ

√
r(Σ) log(n) log(nd)

n
.

A similar argument leads to a series of reverse inequalities, thus proving the claimed bound.

B.3.5 Proof of Theorem 2.2.5

Let τ ≍ m1/4
4 (n/ logn)γ with γ ∈ [1/3,1/2] and ξ ≍ v0

√
n/ log(nd). Define the random

vectors

SSSi =
ψτ(∥xxxi−µµµ∥2)

∥xxxi−µµµ∥2
(xxxi−µµµ) = (Si1, . . . ,Sid)

T, i = 1, . . . ,n,

and write µ̂µµ = µ̂µµτ = (µ̂1, . . . , µ̂d)
T. Recall from Lemma 2.2.1 that ∥ESSSi∥2 = bτ ≤ m4τ−3. Com-

bining this with (2.8) (z = logn) and the fact that tr(Σ)≤ m1/2
4 yields

∥∥∥∥√n(µ̂µµ−µµµ)− 1√
n

n

∑
i=1

(SSSi−ESSSi)

∥∥∥∥
2
≲

√
tr(Σ) logn+ λ̄ 1/2 logn√

n
+m1/4

4
logn√

n
≲ m1/4

4
logn√

n

with probability at least 1−3n−1. Consequently, we have

max
1≤k≤d

∣∣∣∣√n(µ̂k−µk)−
1√
n

n

∑
i=1

(Sik−ESik)

∣∣∣∣≤ ∥∥∥∥√n(µ̂µµ−µµµ)− 1√
n

n

∑
i=1

(SSSi−ESSSi)

∥∥∥∥
2
≲ m1/4

4
logn√

n
,

which in turn implies

max
1≤k≤d

∣∣∣∣√n(µ̂k−µk)−n−1/2
∑

n
i=1(Sik−ESik)√

σkk

∣∣∣∣≲ m1/4
4

λ
1/2

logn√
n
. (B.17)
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Next we establish the Gaussian approximation for

max
1≤k≤d

∣∣∣∣ 1√
n

n

∑
i=1

Sik−ESik√
σkk

∣∣∣∣.
Let GGG = (G1, . . . ,Gd)

T be a zero-mean Gaussian vector whose covariance matrix, cov(GGG), is the

correlation matrix of Σ, and define the Gaussian approximation error

ρn = sup
x∈R

∣∣∣∣P{ max
1≤k≤d

∣∣∣∣n−1/2
∑

n
i=1(Sik−ESik)√

σkk

∣∣∣∣≤ x
}
−P(∥GGG∥∞ ≤ x)

∣∣∣∣.
Denote by A = (Akl) the covariance matrix of (Si1/

√
σ11, . . . ,Sid/

√
σdd)

T, and let σ2
∗ be the

smallest eigenvalue of B = (Bkl) := cov(GGG). Note that, for any 1≤ k, l ≤ d,

Akl = (ESikSil−ESikESil)/
√

σkkσll and Bkl = E(xik−µk)(xil−µl)/
√

σkkσll.

Moreover, define

∆0 =
log(d)

σ2
∗
∥A−B∥∞, ∆1 =

log2(d)
n2σ4

∗
max

1≤k≤d

n

∑
i=1

E(Sik−ESik)
4

σ2
kk

,

M =

[
E
{

max
1≤k≤d

max
1≤i≤n

(Sik−ESik)
4

σ2
kk

}]1/4

and M = max
1≤i≤n

[
E
{

max
1≤k≤d

(Sik−ESik)
4

σ2
kk

}]1/4

.

It thus follows from Theorem 2.2 in Chernozhukov, Chetverikov and Koike (2023) that

ρn ≲ log(n)
{

∆0 +
√

∆1 logd +
(M logd)2

nσ2
∗

}
+(M/σ∗)

2 log(d)

√
log(n) log(nd)

n
. (B.18)

Note that σ2
∗ ≥ λ/max1≤k≤d σkk ≥ λ/λ̄ , E(S1k−ES1k)

4 ≤ 8E(S4
1k)+8(ES1k)

4 ≤ 16E(S4
1k) and

E(S4
1k)≤ E(x1k−µk)

4 ≤ κ4σ2
kk. Therefore,

∆1 ≤ 16κ4(λ̄/λ )2 log2(d)
n

.
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To bound M , we have

M 4 = E
{

max
1≤k≤d

max
1≤i≤n

(Sik−ESik)
4

σ2
kk

}
≤

d

∑
k=1

n

∑
i=1

E(Sik−ESik)
4

σ2
kk

≤ 16κ4nd.

Similarly, it can be shown that M4 ≤ 16κ4d. It remains to bound ∆0, or equivalently,

∥A−B∥∞ = max
1≤k,l≤d

|E(x1k−µk)(x1l−µl)− (ES1kS1l−ES1kES1l)|/
√

σkkσll.

Recall that τ ≍ m1/4
4 (n/ logn)γ with γ ∈ [1/4,1/2]. By Hölder’s inequality,

|E(x1k−µk)(x1l−µl)−ES1kS1l|

=

∣∣∣∣E{∥xxx1−µµµ∥2
2− τ2

∥xxx1−µµµ∥2
2

(x1k−µk)(x1l−µl)1(∥xxx1−µµµ∥2 ≥ τ)

}∣∣∣∣
≤ 1

τ2E∥xxx1−µµµ∥2
2|(x1k−µk)(x1l−µl)|

≤ 1
τ2

(
E∥xxx1−µµµ∥4

2
)1/2{E(x1k−µk)

4}1/4{E(x1l−µl)
4}1/4

≲ κ
1/2
4
√

σkkσll

(
logn

n

)2γ

.

On the other hand, it follows from (B.6) with slight modification that

|ES1k|≲ κ
1/4
4
√

σkk

(
logn

n

)3γ

.

Combining the above two inequalities, we obtain

∥A−B∥∞ ≲ κ
1/2
4

(
logn

n

)2γ

+κ
1/2
4

(
logn

n

)6γ

≲ κ
1/2
4

(
logn

n

)2γ

,

which further implies

∆0 ≲ κ
1/2
4

λ̄

λ
log(d)

(
logn

n

)2γ

≤ κ
1/2
4

λ̄

λ
log(d)

√
logn

n
.
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Putting together the pieces, we conclude that

ρn ≲ log(n)

{
κ

1/2
4

λ̄

λ
log(d)

√
logn

n
+κ

1/2
4

λ̄

λ

log3/2(d)√
n

+κ
1/2
4

λ̄

λ
log2(d)

√
d
n

}

+κ
1/2
4

λ̄

λ
log(d)

√
log(n) log(nd)

√
d
n

≲ κ
1/2
4

λ̄

λ
log(d) log(n)

{√
logn

n
+ log(d)

√
d
n

}
≲ κ

1/2
4

λ̄

λ
log2(d) log(n)

√
d
n
. (B.19)

Thus far, the obtained bounds (B.17) and (B.19) only involve the true variances. To

account for the impact of variance estimation error, let σ̂kk be the k-th diagonal element of

Σ̂ = Σ̂ξ , and recall from (B.16) that

max
1≤k≤d

∣∣∣∣√σkk√
σ̂kk
−1
∣∣∣∣≲ ν

1/2
4

λ̄

λ

√
r(Σ) log(nd)

n

with probability at least 1− n−1. Without loss of generality, we assume sample size condi-

tion (B.12) holds; otherwise, the right-hand side of (2.16) is greater than 1 so that the claim

of Theorem 2.2.5 holds trivially. Consequently, 1/2 ≤
√

σkk/σ̂kk ≤ 3/2 for all 1 ≤ k ≤ d.

Combining this with (B.17) yields

max
1≤k≤d

∣∣∣∣√n(µ̂k−µk)√
σ̂kk

− n−1/2
∑

n
i=1(Sik−ESik)√

σkk

∣∣∣∣
≤ max

1≤k≤d

∣∣∣∣√n(µ̂k−µk)−n−1/2
∑

n
i=1(Sik−ESik)√

σ̂kk

∣∣∣∣
+ max

1≤k≤d

∣∣∣∣n−1/2
∑

n
i=1(Sik−ESik)√

σkk

(√
σkk√
σ̂kk
−1
)∣∣∣∣

≲ κ
1/4
4

tr(Σ)1/2

λ
1/2

logn√
n

+ν
1/2
4

λ̄

λ

√
r(Σ) log(nd)

n
max

1≤k≤d

∣∣∣∣n−1/2
∑

n
i=1(Sik−ESik)√

σkk

∣∣∣∣ (B.20)

with probability at least 1−4n−1, where we used the property m4 ≤ κ4tr(Σ)2 in the last step. By
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the Gaussian tail inequality and a union bound argument,

P
{

max
1≤k≤d

|Gk| ≥
√

2log(2nd)
}
≤ 1

n
.

This together with the definition of ρn implies

P
{

max
1≤k≤d

∣∣∣∣n−1/2
∑

n
i=1(Sik−ESik)√

σkk

∣∣∣∣≥√2log(2nd)
}

≤ P
{

max
1≤k≤d

|Gk| ≥
√

2log(2nd)
}
+ρn ≤

1
n
+ρn.

Combining this with (B.20) yields

max
1≤k≤d

∣∣∣∣√n(µ̂k−µk)√
σ̂kk

− n−1/2
∑

n
i=1(Sik−ESik)√

σkk

∣∣∣∣≲ ν
1/2
4

λ̄

λ
log(nd)

√
r(Σ)

n

with probability at least 1−ρn−5n−1.

With the above preparations, we are ready to prove the final claim. Let Ψ(·) be the

distribution function of ∥GGG∥∞. For any x≥ 0,

P
{

max
1≤k≤d

∣∣∣∣√n(µ̂k−µk)√
σ̂kk

∣∣∣∣≤ x
}

≤ P

{
max

1≤k≤d

∣∣∣∣n−1/2
∑

n
i=1(Sik−ESik)√

σkk

∣∣∣∣≤ x+C4ν
1/2
4

λ̄

λ
log(nd)

√
r(Σ)

n

}
+ρn +

5
n

≤ P

{
∥GGG∥∞ ≤ x+C4ν

1/2
4

λ̄

λ
log(nd)

√
r(Σ)

n

}
+2ρn +

5
n

= Ψ(x)+Ψ

(
x+C4ν

1/2
4

λ̄

λ
log(nd)

√
r(Σ)

n

)
−Ψ(x)+2ρn +

5
n
.

By Nazarov’s inequality (Nazarov, 2003),

sup
x≥0

∣∣∣∣∣Ψ
(

x+C4ν
1/2
4

λ̄

λ
log(nd)

√
r(Σ)

n

)
−Ψ(x)

∣∣∣∣∣≲ ν
1/2
4

λ̄

λ
log(nd)

√
r(Σ) log(ed)

n
.
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Substituting this into the earlier bound, we obtain that

P
{

max
1≤k≤d

∣∣∣∣√n(µ̂k−µk)√
σ̂kk

∣∣∣∣≤ x
}
−Ψ(x)

≲ ν
1/2
4

λ̄

λ
log(nd)

√
r(Σ) log(ed)

n
+κ

1/2
4

λ̄

λ
log2(d) log(n)

√
d
n

≲ ν
1/2
4

λ̄

λ
log2(d) log(n)

√
d
n

for all x≥ 0. A lower bound can be similarly obtained. Since all the bounds are independent of

x, taking the supremum over x≥ 0 proves the claim.

B.3.6 Proof of Proposition 2.2.2

Recall that R = corr(Σ) and R̂ = corr(Σ̂). We first claim that

max
1≤k,l≤d

|R̂kl−Rkl| ≤ ∥Σ−1/2
Σ̂Σ
−1/2− Id∥2(2+∥Σ−1/2

Σ̂Σ
−1/2∥2). (B.21)

To show this, note that

max
1≤k,l≤d

|R̂kl−Rkl|= max
1≤k,l≤d

∣∣∣∣∣ Σ̂kl√
Σ̂kkΣ̂ll

− Σkl√
ΣkkΣll

∣∣∣∣∣
≤ max

1≤k,l≤d

∣∣∣∣∣ Σ̂kl√
Σ̂kkΣ̂ll

− Σ̂kl√
ΣkkΣll

∣∣∣∣∣+ max
1≤k,l≤d

∣∣∣∣∣ Σ̂kl√
ΣkkΣll

− Σkl√
ΣkkΣll

∣∣∣∣∣. (B.22)

Denoting eee1,eee2, . . . ,eeed to be the canonical basis of Rd , we have

max
1≤k,l≤d

∣∣∣∣∣ Σ̂kl√
ΣkkΣll

− Σkl√
ΣkkΣll

∣∣∣∣∣= max
1≤k,d≤d

∣∣∣∣ eeeT
kΣ̂eeel√

eeeT
kΣeeekeeeT

l Σeeel
−

eeeT
kΣeeel√

eeeT
kΣeeekeeeT

l Σeeel

∣∣∣∣
= max

1≤k,l≤d

∣∣∣∣aaaT
kΣ−1/2Σ̂Σ−1/2aaal

∥aaak∥2∥aaal∥2
−

aaaT
kaaal

∥aaak∥2∥aaal∥2

∣∣∣∣
≤ ∥Σ−1/2

Σ̂Σ
−1/2− Id∥2, (B.23)
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where aaak = Σ1/2eeek for 1≤ k ≤ d.

Turning to the first term in the right-hand side of (B.22), it follows that

max
1≤k,l≤d

∣∣∣∣∣ Σ̂kl√
Σ̂kkΣ̂ll

− Σ̂kl√
ΣkkΣll

∣∣∣∣∣≤ max
1≤k,l≤d

∣∣∣∣∣ Σ̂kl√
Σ̂kkΣ̂ll

∣∣∣∣∣ ·
∣∣∣∣∣1−

√
Σ̂kkΣ̂ll

ΣkkΣll

∣∣∣∣∣
≤ max

1≤k,l≤d

∣∣∣∣∣1−
√

Σ̂kkΣ̂ll

ΣkkΣll

∣∣∣∣∣
≤ max

1≤k,l≤d

∣∣∣∣∣1− Σ̂kkΣ̂ll

ΣkkΣll

∣∣∣∣∣
= max

1≤k,l≤d

∣∣∣∣∣1− Σ̂kk

Σkk
−
(

Σ̂ll

Σll
−1
)

Σ̂kk

Σkk

∣∣∣∣∣,
where the second inequality follows from the Cauchy-Schwarz inequality and the last inequality

can be derived from the elementary inequality |1−
√

x| ≤ |1− x| for any x≥ 0. Together, by the

definition of the operator norm of a matrix, the earlier bound can be further bounded as

max
1≤k,l≤d

∣∣∣∣∣ Σ̂kl√
Σ̂kkΣ̂ll

− Σ̂kl√
ΣkkΣll

∣∣∣∣∣
≤ max

1≤k≤d

∣∣∣∣∣1− aaaT
kΣ−1/2Σ̂Σ−1/2aaak

∥aaak∥2
2

∣∣∣∣∣+ max
1≤l≤d

∣∣∣∣∣1− aaaT
l Σ−1/2Σ̂Σ−1/2aaal

∥aaal∥2
2

∣∣∣∣∣ · max
1≤k≤d

∣∣∣∣∣aaaT
kΣ−1/2Σ̂Σ−1/2aaak

∥aaak∥2
2

∣∣∣∣∣
≤ ∥Σ−1/2

Σ̂Σ
−1/2− Id∥2 +∥Σ−1/2

Σ̂Σ
−1/2− Id∥2∥Σ−1/2

Σ̂Σ
−1/2∥2.

Combining this with (B.22) and (B.23) proves the claimed bound (B.21).

Now, we are ready to prove Proposition 2.2.2. Without loss of generality, we assume

that the sample size n satisfies (B.12); otherwise, the right-hand side of (2.18) is greater than

1 so that (2.18) holds trivially. By Theorem 2.2.4, we have ν2
0 ≤ 2ν4λ̄ tr(Σ). Combining

this with Proposition 2.2.1, the robust covariance estimator Σ̂ = Σ̂ξ defined in (2.10) with
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ξ ≍ ν0
√

n/ log(nd) satisfies

∥Σ̂−Σ∥2 ≲ ν
1/2
4 λ̄

√
r(Σ) log(nd)

n

with probability at least 1−2n−1. Thus, with the same probability, it follows that

∥Σ−1/2
Σ̂Σ
−1/2− Id∥2 ≲ ν

1/2
4 (λ̄/λ )

√
r(Σ) log(nd)

n
.

This further implies that ∥Σ−1/2Σ̂Σ−1/2∥2 ≲ 1 under the sample size condition (B.12). Combining

these two bounds with (B.21), we have

max
1≤k,l≤d

|R̂kl−Rkl|≲ ν
1/2
4 (λ̄/λ )

√
r(Σ) log(nd)

n
.

Together, this bound and Theorem 1.1 of Fang and Koike (2021) prove the claim.

B.4 Proofs in Section 2.3

B.4.1 Supporting lemmas

To establish the statistical properties of the noisy gradient descent iterates µµµ(t), the

landscape of the loss function plays an important role. The following lemma shows that

the empirical loss function L̂τ(·) : Rd → R+ is locally strongly convex and satisfies a local

smoothness condition. Recall that µ̂µµ = µ̂µµτ = argminθθθ∈Rd L̂τ(θθθ) is the non-private Huber

estimator, satisfying ∇L̂τ(µ̂µµ) = 0.

Lemma B.4.1. Conditioned on the event E1 = E1(r0,χ) defined in (2.22), we have

L̂τ(θθθ 2)− L̂τ(θθθ 1)−⟨∇L̂τ(θθθ 1),θθθ 2−θθθ 1⟩ ≥
1−χ

2
∥θθθ 2−θθθ 1∥2

2 for all θθθ 1,θθθ 2 ∈Θ(r0),

(B.24)
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L̂τ(θθθ)− L̂τ(µ̂µµ)≥
1−χ

4
r0 · ∥θθθ − µ̂µµ∥2 for all θθθ ∈Θ(r0)

c (B.25)

and

L̂τ(θθθ 2)− L̂τ(θθθ 1)−⟨∇L̂τ(θθθ 1),θθθ 2−θθθ 1⟩ ≤
1
2
∥θθθ 2−θθθ 1∥2

2 for all θθθ 1,θθθ 2 ∈ Rd. (B.26)

Proof of Lemma B.4.1. For any θθθ 1,θθθ 2 ∈ Θ(r0), by Taylor’s theorem in several variables we

have

L̂τ(θθθ 2)− L̂τ(θθθ 1)−⟨∇L̂τ(θθθ 1),θθθ 2−θθθ 1⟩

=
1
2
(θθθ 2−θθθ 1)

T
∇

2L̂τ

(
θθθ 1 +u(θθθ 2−θθθ 1)

)
(θθθ 2−θθθ 1) for some u ∈ (0,1),

from which it follows that

L̂τ(θθθ 2)− L̂τ(θθθ 1)−⟨∇L̂τ(θθθ 1),θθθ 2−θθθ 1⟩ ≥
1
2

min
hhh∈Bd(r0)

λmin
(
∇

2L̂τ(µµµ +hhh)
)
· ∥θθθ 2−θθθ 1∥2

2.

(B.27)

Conditioned on E1, this proves (B.24).

Given µ̂µµ ∈Θ(r0/2), set δδδ = θθθ − µ̂µµ . It follows from the first-order Taylor’s theorem that

R̂τ(δδδ ) := L̂τ(θθθ)− L̂τ(µ̂µµ)−⟨∇L̂τ(µ̂µµ)︸ ︷︷ ︸
=0

,θθθ − µ̂µµ⟩=
∫ 1

0
⟨∇L̂τ(µ̂µµ +uδδδ )−∇L̂τ(µ̂µµ),δδδ ⟩du.

For any v ∈ (0,1), by the convexity lemma—Lemma C.1 in Sun, Zhou and Fan (2020),

⟨∇L̂τ(µ̂µµ +uδδδ )−∇L̂τ(µ̂µµ),uδδδ ⟩ ≥ 1
v
⟨∇L̂τ(µ̂µµ +uvδδδ )−∇L̂τ(µ̂µµ),uvδδδ ⟩, u > 0,

which in turn implies R̂τ(δδδ )≥ v−1R̂τ(vδδδ ). Hence, for any θθθ ∈Θ(r0)
c so that ∥δδδ∥2 = ∥θθθ− µ̂µµ∥2 >
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r0/2, taking v = r0/(2∥θθθ − µ̂µµ∥2) ∈ (0,1) and δδδ 0 = v · (θθθ − µ̂µµ) ∈ ∂Bd(r0/2) we obtain that

L̂τ(θθθ)− L̂τ(µ̂µµ)≥ 2r−1
0 ∥θθθ − µ̂µµ∥2 · R̂τ(δδδ 0) = 2r−1

0 ∥θθθ − µ̂µµ∥2
{
L̂τ(µ̂µµ +δδδ 0)− L̂τ(µ̂µµ)

}
.

Moreover, applying the bound (B.27) at θθθ 1 = µ̂µµ and θθθ 2 = µ̂µµ +δδδ 0 ∈Θ(r0) gives

L̂τ(µ̂µµ +δδδ 0)− L̂τ(µ̂µµ)≥
1
2

min
hhh∈Bd(r0)

λmin
(
∇

2L̂τ(µµµ +hhh)
)
· ∥δδδ 0∥2

2.

Together, the last two displays imply

L̂τ(θθθ)− L̂τ(µ̂µµ)≥
1
2

min
hhh∈Bd(r0)

λmin
(
∇

2L̂τ(µµµ +hhh)
)
· r0

2
· ∥θθθ − µ̂µµ∥2,

verifying the second bound (B.25).

Finally, (B.26) is a direct consequence of (B.4) and Taylor’s theorem.

The following lemma provides upper bounds for the i.i.d. standard normal random

vectors {gggt}T−1
t=0 in the noisy gradient descent algorithm. In particular, inequality (B.29) is a

slightly improved version of the tail bound in Lemma 11 of Cai, Wang and Zhang (2021).

Lemma B.4.2. Let g0,g1, . . . ,gT−1 ∈ Rd (T ≥ 1) be independent standard multivariate normal

random vectors. Then, for any z≥ 0,

P
{

max
0≤t≤T−1

∥gggt∥2 ≥ d1/2 +
√

2(logT + z)
}
≤ e−z. (B.28)

Moreover, for any ρ ∈ (0,1), we have with probability at least 1− e−z that

T−1

∑
t=0

ρ
t∥gggt∥2

2 ≤
d

1−ρ
+2

√
dz

1−ρ2 +2z≤ 2d
1−ρ

+

(
1

1+ρ
+2
)

z. (B.29)

Proof of Lemma B.4.2. For each t = 0,1, . . . ,T −1, we apply the concentration inequality for
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Lipschitz functions of standard normal random variables and obtain that

P
(
∥gggt∥2 ≥ d1/2 +

√
2z
)
≤ e−z, valid for any z≥ 0.

Combining this with the union bound (over t = 0,1, . . . ,T −1) yields (B.28).

Note that ∥gggt∥2
2 follows the chi-square distribution χ2

d , which is a special case of

the gamma distribution Γ(d/2,1/2). The centered variable, ∥gggt∥2
2− d, is known to be sub-

gamma with parameters v = 2d and c = 2 (Boucheron, Lugosi and Massart, 2013). Let

Z = ∑
T−1
t=0 ρ t(∥gggt∥2

2−d). For each t and 0 < λ < 1/c,

logEeλρt(∥gggt∥2
2−d) ≤ vλ 2ρ2t

2(1− cλρ t)
≤ vλ 2ρ2t

2(1− cλ )
.

By independence,

logEeλZ =
T−1

∑
t=0

logEeλρt(∥gggt∥2
2−d) ≤

vλ 2
∑

T−1
t=0 ρ2t

2(1− cλ )
≤ v

1−ρ2
λ 2

2(1− cλ )
.

Therefore, the centered variable Z is sub-gamma with parameters (v/(1−ρ2),c) = (2d/(1−

ρ2),2). Applying Chernoff’s bound to Z (see, e.g., Section 2.4 of Boucheron, Lugosi and

Massart (2013)) yields

P
{

Z > 2(dz)1/2(1−ρ
2)−1/2 +2z

}
≤ e−z for any z > 0.

This, combined with the elementary inequality ∑
T−1
t=0 ρ t ≤ 1/(1−ρ), proves (B.29).

Lemma B.4.3 below provides a useful property that will be needed in the proof of

Proposition 2.3.2.

Lemma B.4.3. Let R0 = ∥µµµ(0)− µ̂µµ∥2 and η0 ∈ (0,1]. For any T0 > 1 and z > 0, let the sample
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size satisfy

n≥ 8(e−1)
4− e

T0T 1/2BT0

ε
max

{
τη0

R0
,

(
τη0

R0

)2}
, (B.30)

where BT0 =
√

d+
√

2(logT0 + z). Then, the noisy gradient descent iterates µµµ(t) defined in (2.21)

satisfy

max
1≤t≤T0

∥µµµ(t)− µ̂µµ∥2 ≤ 2R0

with probability (over {gggt}
T0−1
t=0 ) at least 1− e−z.

Proof of Lemma B.4.3. Recall that µµµ(t+1) = µµµ(t)−η0∇L̂τ(µµµ
(t))+η0hhht , where hhht = 2T 1/2τ

gggt
εn .

Moreover, ∥∇L̂τ(θθθ)∥2 ≤ τ and ∥∇2L̂τ(θθθ)∥2 ≤ 1 for all θθθ ∈ Rd . Therefore,

⟨∇L̂τ(θθθ 1)−∇L̂τ(θθθ 2),θθθ 1−θθθ 2⟩ ≥ ∥∇L̂τ(θθθ 1)−∇L̂τ(θθθ 2)∥2
2, θθθ 1,θθθ 2 ∈ Rd.

Since ∇L̂τ(µ̂µµ) = 0, taking (θθθ 1,θθθ 2) = (µµµ(t), µ̂µµ) for any t gives

⟨∇L̂τ(µµµ
(t)),µµµ(t)− µ̂µµ⟩ ≥ ∥∇L̂τ(µµµ

(t))∥2
2.

Then, for any fixed step size 0 < η0 ≤ 1, we have

∥µµµ(t+1)− µ̂µµ∥2
2 = ∥µµµ(t)−η0∇L̂τ(µµµ

(t))+η0hhht− µ̂µµ∥2
2

= ∥µµµ(t)− µ̂µµ∥2
2 +η

2
0∥∇L̂τ(µµµ

(t))−hhht∥2
2−2η0⟨µµµ(t)− µ̂µµ,∇L̂τ(µµµ

(t))−hhht⟩

≤ ∥µµµ(t)− µ̂µµ∥2
2 +η

2
0∥∇L̂τ(µµµ

(t))∥2
2 +η

2
0∥hhht∥2

2 +2η
2
0∥∇L̂τ(µµµ

(t))∥2∥hhht∥2

−2η0∥∇L̂τ(µµµ
(t))∥2

2 +2η0∥µµµ(t)− µ̂µµ∥2∥hhht∥2

≤ ∥µµµ(t)− µ̂µµ∥2
2 +η

2
0∥hhht∥2

2 +2η0∥hhht∥2
{

η0∥∇L̂τ(µµµ
(t))∥2 +∥µµµ(t)− µ̂µµ∥2

}
≤ ∥µµµ(t)− µ̂µµ∥2

2 +η
2
0∥hhht∥2

2 +2η0∥hhht∥2(η0τ +∥µµµ(t)− µ̂µµ∥2). (B.31)
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For any integer T0 ≥ 1 and z > 0, Lemma B.4.2 shows that

max
0≤t≤T0−1

∥hhht∥2 ≤
2T 1/2τBT0

εn
=: epriv

with probability at least 1− e−z, where BT0 = d1/2 +
√

2(logT0 + z). Throughout the rest of the

proof, we assume this inequality holds.

For some η ∈ (0,1) to be determined, it follows from (B.31) that

∥µµµ(t+1)− µ̂µµ∥2
2 ≤ (1+η)∥µµµ(t)− µ̂µµ∥2

2 +(1+1/η)η2
0 e2

priv +2η
2
0 τepriv,

for t = 0,1, . . . ,T0−1. This recursive bound further implies

∥µµµ(t)− µ̂µµ∥2
2 ≤ (1+η)t∥µµµ(0)− µ̂µµ∥2

2 +{(1+1/η)η2
0 e2

priv +2η
2
0 τepriv}

t−1

∑
k=0

(1+η)k

≤ (1+η)t∥µµµ(0)− µ̂µµ∥2
2 +

(1+η)t−1
η

{(1+1/η)epriv +2τ}η2
0 epriv.

Note that under the sample size requirement (B.30), we have

(e−1)(T0 +1)T0η
2
0 e2

priv ≤ 2(e−1)T 2
0 η

2
0 e2

priv ≤
4− e

2
R2

0,

and 2τ(e−1)T0η2
0 epriv ≤ (4− e)R2

0/2. Thus, provided T0 ≥ 2, we take η = 1/T0 ∈ (0,1) and

obtain

∥µµµ(t)− µ̂µµ∥2
2 ≤ eR2

0 +(e−1)
{
(T0 +1)epriv +2τ

}
T0η

2
0 epriv ≤ eR2

0 +(4− e)R2
0 = 4R2

0

for all t = 1, . . . ,T0, as claimed.

Finally, the following lemma is a direct consequence of Corollary 4.4.8 in Vershynin

(2018).
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Lemma B.4.4. Let E be a d×d symmetric random matrix whose entries Ei j on and above the

diagonal are independent N (0,1). Then, for any z > 0 we have ∥E∥2 ≲
√

d+ z with probability

at least 1−4e−z2
.

B.4.2 Proof of Theorem 2.3.1

Recall the event E1 = E1(r0,χ) given in (2.22). To control the random perturbations in

noisy gradient descent, for some ρ ∈ (0,1) to be determined, define

E2 = E2(z) =
{

max
0≤t≤T−1

∥gggt∥2 ≤ BT

}⋂{T−1

∑
t=0

(1−ρ)t∥gggT−1−t∥2
2 ≤ 2ρ

−1d +3z
}
, (B.32)

where BT = BT (z) := d1/2+
√

2(logT + z). It thus follows from Lemma B.4.2 that P{E2(z)} ≥

1−2e−z. In the following, we prove the result by conditioning on the event E1∩E2. Starting

from an initial value µµµ(0) ∈Θ(r0), the following proposition shows that all successive iterates

will stay in the ball Θ(r0).

Proposition B.4.1. Under the conditions of Theorem 2.3.1, and conditioning on E1, all the

iterates µµµ(t) (t = 1, . . . ,T ) stay in the local ball Θ(r0).

Next, we establish a contraction property for the noisy gradient descent iterates. Define

µ̃µµ
(t+1)

= µµµ
(t)−η0∇L̂τ(µµµ

(t)) and hhht = 2T 1/2 τ

εn
gggt , t = 0,1, . . . ,T −1,

and note that µµµ(t+1)= µ̃µµ
(t+1)

+η0hhht . Under the sample size requirement (2.24), Proposition B.4.1

ensures that µµµ(t) ∈Θ(r0) for all t = 0,1, . . . ,T . Similarly, it can be shown that the non-private

gradient descent iterates µ̃µµ
(t) also stay in the ball Θ(r0) for t = 1, . . . ,T . For simplicity, set

δδδ
(t) = µµµ

(t)− µ̂µµ, δ̃δδ
(t)

= µ̃µµ
(t)− µ̂µµ for t = 0,1, . . . ,T.
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For any η ∈ (0,1), at each iteration we bound ∥δδδ (t+1)∥2 = ∥δ̃δδ
(t+1)

+η0hhht∥2 as

∥δδδ (t+1)∥2
2 = ∥δ̃δδ

(t+1)
∥2

2 +η
2
0∥hhht∥2

2 +2η0⟨δ̃δδ
(t+1)

,hhht⟩

≤ (1+η)∥δ̃δδ
(t+1)
∥2

2 +(1+η
−1)η2

0∥hhht∥2
2

= (1+η)∥δδδ (t)∥2
2 +(1+η

−1)η2
0∥hhht∥2

2 (B.33)

+2η0(1+η)

{
η0

2
∥∇L̂τ(µµµ

(t))∥2
2−⟨µµµ(t)− µ̂µµ,∇L̂τ(µµµ

(t))⟩︸ ︷︷ ︸
Π

}
.

To bound Π, we use the local strong convexity and smoothness properties of L̂τ(·). From (B.24)

and (B.26) we see that

L̂τ(µ̂µµ)− L̂τ(µµµ
(t))−⟨∇L̂τ(µµµ

(t)), µ̂µµ−µµµ
(t)⟩ ≥ 1−χ

2
∥µµµ(t)− µ̂µµ∥2

2

and

L̂τ(µ̃µµ
(t+1)

)− L̂τ(µµµ
(t))≤ ⟨∇L̂τ(µµµ

(t)), µ̃µµ
(t+1)−µµµ

(t)⟩+ 1
2
∥µ̃µµ(t+1)−µµµ

(t)∥2
2.

Together, these upper and lower bounds imply

0≤ L̂τ(µ̃µµ
(t+1)

)− L̂τ(µ̂µµ)

≤ ⟨∇L̂τ(µµµ
(t)), µ̃µµ

(t+1)− µ̂µµ⟩+ 1
2
∥µ̃µµ(t+1)−µµµ

(t)∥2
2−

1−χ

2
∥µµµ(t)− µ̂µµ∥2

2

= ⟨∇L̂τ(µµµ
(t)), µ̃µµ

(t+1)− µ̂µµ⟩+
η2

0
2
∥∇L̂τ(µµµ

(t))∥2
2−

1−χ

2
∥µµµ(t)− µ̂µµ∥2

2

= ⟨∇L̂τ(µµµ
(t)),µµµ(t)− µ̂µµ⟩−η0(1−η0/2)∥∇L̂τ(µµµ

(t))∥2
2−

1−χ

2
∥µµµ(t)− µ̂µµ∥2

2

≤ ⟨∇L̂τ(µµµ
(t)),µµµ(t)− µ̂µµ⟩− η0

2
∥∇L̂τ(µµµ

(t))∥2
2−

1−χ

2
∥µµµ(t)− µ̂µµ∥2

2.
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Substituting this into (B.33) gives

∥δδδ (t+1)∥2
2 ≤

{
1+η−η0(1−χ)(1+η)

}
∥δδδ (t)∥2

2 +(1+η
−1)η2

0∥hhht∥2
2

= (1+η)
{

1− (1−χ)η0
}
∥δδδ (t)∥2

2 +(1+η
−1)η2

0∥hhht∥2
2.

Taking ρ = η2 and η = (1−χ)η0, we conclude that

∥δδδ (t+1)∥2
2 ≤ (1−ρ)∥δδδ (t)∥2

2 +(1+η
−1)η2

0∥hhht∥2
2, t = 0,1, . . . ,T −1.

This recursive bound further implies

∥µµµ(T )− µ̂µµ∥2
2 ≤ (1−ρ)T∥δδδ (0)∥2

2 +4η
2
0 (1+η

−1)T
τ2

(εn)2

T−1

∑
t=0

(1−ρ)t∥gggT−1−t∥2
2. (B.34)

Recall that ∑
T−1
t=0 (1−ρ)t∥gggT−1−t∥2

2 ≤ 2ρ−1d+3z on E2(z). Conditioned on E1, the final

iterate µµµ(T ) satisfies the bound

∥µµµ(T )− µ̂µµ∥2
2 ≤ (1−ρ)T r2

0 +4η0(η0 +(1−χ)−1)(2ρ
−1d +3z)T

τ2

(εn)2

with probability (over {gggt}T−1
t=0 }) at least 1−2e−z. This concludes the proof.

B.4.3 Proof of Theorem 2.3.2

Recall that mq = E∥xxx− µµµ∥q
2 ≥ tr(Σ)q/2 and ε ≤ 1. Throughout the proof, we assume

that (n,τ) satisfies τ ≳ m1/q
q so that mq/τq ≲ 1. For each uuu ∈ Rd , define independent random

variables

Si,uuu =
ψτ(∥xxxi−µµµ∥2)

∥xxxi−µµµ∥2
⟨uuu,xxxi−µµµ⟩, for i = 1, . . . ,n.
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From the proof of Theorem 2.2.3, we have |ESi,uuu| ≤ ∥uuu∥2 ·bτ ≤ ∥uuu∥2 ·mqτ1−q for all uuu ∈ Rd .

Given 0 < ε ≤ 1, it follows from Corollary 2.3.2 with z = logn that

∣∣∣∣∣√n⟨uuu/∥uuu∥Σ,µµµ
(T )−µµµ⟩− 1√

n

n

∑
i=1

Si,uuu−ESi,uuu

∥uuu∥Σ

∣∣∣∣∣
≤ ∥u

uu∥2

∥uuu∥Σ

∥∥∥∥√n(µµµ(T )−µµµ)− 1√
n

n

∑
i=1

(Si,uuu−ESi,uuu)

∥∥∥∥
2

≲
∥uuu∥2

∥uuu∥Σ

{(√
tr(Σ)+ λ̄ logn+

τ logn√
n

+
mq
√

n
τq−1

)(
mq

τq +

√
logn

n

)
+

mq
√

n
τq−1 +(d + logn)1/2(logn)1/2 τ

ε
√

n

}
≲
∥uuu∥2

∥uuu∥Σ

{√
tr(Σ)+ λ̄ logn

(
mq

τq +

√
logn

n

)
+

mq
√

n
τq−1 +(d + logn)1/2(logn)1/2 τ

ε
√

n︸ ︷︷ ︸
R′n,τ

}

≤
R′n,τ
λ

1/2

with probability at least 1−8n−1.

Combining this inequality with (B.8), (B.9) and in (B.10), we obtain that for any x ∈ R,

P(
√

n⟨uuu/∥uuu∥Σ,µµµ
(T )−µµµ⟩ ≤ x)

≤ P

(
1√
n

n

∑
i=1

Si,uuu−ESi,uuu

∥uuu∥Σ

≤ x+C8
R′n,τ
λ

1/2

)
+

8
n

≤Φ(x)+
C8√
2π

R′n,τ
λ

1/2 +C9

(
ν3√

n
+ν

2/q
q m1−2/q

q τ
2−q
)
.

A reversed inequality can be similarly obtained. Choosing τ ≍ m1/q
q { εn√

(d+logn) logn
}1/q, we

obtain that

R′n,τ ≲
√

tr(Σ)+ λ̄ logn
{√

(d + logn) logn
εn

+

√
logn

n

}
+m1/q

q
√

n
{√

(d + logn) logn
εn

}1− 1
q

≲ m1/q
q

{√
(d + logn) logn

ε

}1−1/q

n−(1/2−1/q),
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where the last step follows from the inequality m1/q
q ≥

√
tr(Σ) and τ ≳ m1/q

q ≳
√

tr(Σ)/n.

Moreover, it follows that

ν
2/q
q m1−2/q

q τ
2−q ≲ ν

2/q
q

{√
(d + logn) logn

εn

}1−2/q

.

Combining these bounds and the two sides of the inequalities proves the claim. Note that our

assumption n ≳
√
(d + logn) logn/ε guarantees the requirement τ ≳ m1/q

q in the beginning of

the proof.

B.4.4 Proof of Proposition 2.3.2

To begin with, for any T0 ≥ 2 and z > 0, define the event

E3 = E3(z) =
{

max
0≤t≤T0−1

∥gggt∥2 ≤ BT0

}

where BT0 :=
√

d +
√

2(logT0 + z). Lemma B.4.2 ensures that P{E3(z)} ≥ 1− e−z. Moreover,

we assume that the sample size n satisfies

n≥ 4T 1/2BT0

ε
max

[
τ{2R0 +(T0 +1)(2τ +1/2)}

∆
,
2(e−1)

4− e
T0 max

{
τη0

R0
,

(
τη0

R0

)2}]
(B.35)

Recall that µµµ(t+1) = µµµ(t)−η0∇L̂τ(µµµ
(t))+η0hhht , where hhht = 2T 1/2τgggt/(εn) and η0 ∈ (0,1]. In

the following, we prove the result by conditioning on the event E3. By the definition of hhht ,

max
0≤t≤T0−1

∥hhht∥2 ≤ epriv :=
2τT 1/2BT0

εn
. (B.36)
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From the smoothness property (B.26), we see that for each t = 0,1, . . . ,T0−1,

L̂τ(µµµ
(t+1))≤ L̂τ(µµµ

(t))+ ⟨∇L̂τ(µµµ
(t)),µµµ(t+1)−µµµ

(t)⟩+ 1
2
∥µµµ(t+1)−µµµ

(t)∥2
2

= L̂τ(µµµ
(t))−η0⟨∇L̂τ(µµµ

(t)),∇L̂τ(µµµ
(t))−hhht⟩+

η2
0

2
∥∇L̂τ(µµµ

(t))−hhht∥2
2

≤ L̂τ(µµµ
(t))−η0(1−η0/2)∥∇L̂τ(µµµ

(t))∥2
2

+η0(1+η0)∥∇L̂τ(µµµ
(t))∥2∥hhht∥2 +

η2
0

2
∥hhht∥2

2.

Using the bound (B.36), and the facts that ∥∇L̂τ(·)∥2 ≤ τ and η0 ∈ (0,1], we obtain

L̂τ(µµµ
(t+1))≤ L̂τ(µµµ

(t))− η0

2
∥∇L̂τ(µµµ

(t))∥2
2 +(2τ + epriv/2)epriv (B.37)

for all t ≤ T0−1. Moreover, the convexity of L̂τ implies

L̂τ(µµµ
(t))≤ L̂τ(µ̂µµ)+ ⟨L̂τ(µµµ

(t)),µµµ(t)− µ̂µµ⟩,

and hence

L̂τ(µµµ
(t+1))≤ L̂τ(µ̂µµ)+ ⟨L̂τ(µµµ

(t)),µµµ(t)− µ̂µµ⟩− η0

2
∥∇L̂τ(µµµ

(t))∥2
2︸ ︷︷ ︸

Πt

+(2τ + epriv/2)epriv.
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To bound Πt , note that

Πt =
1

2η0

(
2η0⟨L̂τ(µµµ

(t)),µµµ(t)− µ̂µµ⟩−η
2
0∥∇L̂τ(µµµ

(t))∥2
2

)
=

1
2η0

(
∥µµµ(t)− µ̂µµ∥2

2−∥µµµ(t)− µ̂µµ−η0∇L̂τ(µµµ
(t))∥2

2

)
=

1
2η0

(
∥µµµ(t)− µ̂µµ∥2

2−∥µµµ(t+1)− µ̂µµ−η0hhht∥2
2

)
=

1
2η0

(
∥µµµ(t)− µ̂µµ∥2

2−∥µµµ(t+1)− µ̂µµ∥2
2−η

2
0∥hhht∥2

2 +2η0⟨µµµ(t+1)− µ̂µµ,hhht⟩
)

≤ 1
2η0

(
∥µµµ(t)− µ̂µµ∥2

2−∥µµµ(t+1)− µ̂µµ∥2
2−η

2
0∥hhht∥2

2

)
+∥µµµ(t+1)− µ̂µµ∥2∥hhht∥2,

where the last step is due the Cauchy-Schwarz inequality. Summing over t = 0, . . . ,T0−1 gives

T0−1

∑
t=0

{
L̂τ(µµµ

(t))− L̂τ(µ̂µµ)
}

≤ 1
2η0

{
∥µµµ(0)− µ̂µµ∥2

2−∥µµµ(T0)− µ̂µµ∥2
2
}
+

T0−1

∑
t=0
∥µµµ(t+1)− µ̂µµ∥2∥hhht∥2 +T0(2τ + epriv/2)epriv.

(B.38)

On the other hand, (B.37) implies

L̂τ(µµµ
(T0))≤ L̂τ(µµµ

(t))+T0(2τ + epriv/2)epriv for all t ≤ T0.

Therefore,

L̂τ(µµµ
(T0))≤ 1

T0

T0

∑
t=1

L̂τ(µµµ
(t))+T0(2τ + epriv/2)epriv.
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Combining this with (B.38) and Lemma B.4.3, we obtain

L̂τ(µµµ
(T0))− L̂τ(µ̂µµ)≤

1
T0

T0

∑
t=1

{
L̂τ(µµµ

(t))− L̂τ(µ̂µµ)
}
+T0(2τ + epriv/2)epriv

≤ 1
2η0T0

R2
0 +2eprivR0 +(T0 +1)(2τ + epriv/2)epriv

≤ ∆,

provided that T0 ≥ R2
0/(η0∆) and

n≥ 4{2R0 +(T0 +1)(2τ +1/2)}BT0T 1/2τ

∆ε
.

Here we use the fact that epriv < 1 under the sample size condition (B.35).

It remains to prove the second claim (2.25). Recall that conditioning on E1, µ̂µµ ∈Θ(r0/2)

and L̂τ(·) satisfies (B.24). Define

∆̂1 = inf
{θθθ :∥θθθ−µ̂µµ∥2>r0/2}

L̂τ(θθθ)− L̂τ(µ̂µµ).

The definition implies that any θθθ such that L̂τ(θθθ)< L̂τ(µ̂µµ)+ ∆̂1 must satisfy ∥θθθ − µ̂µµ∥2 ≤ r0/2.

By the convexity of L̂τ(·), the infimum is achieved at some point µ̃µµ such that ∥µ̃µµ− µ̂µµ∥2 = r0/2.

Also, µ̃µµ ∈Θ(r0) due to the triangle inequality. Using (B.24) and conditioning on the event E1,

we get

∆̂1 = L̂τ(µ̃µµ)− L̂τ(µ̂µµ)≥
1−χ

2
∥µ̃µµ− µ̂µµ∥2

2 =
(1−χ)r2

0
8

.

Taking ∆ = (1−χ)r2
0/8, we see that ∥µµµ(T0)− µ̂µµ∥2 ≤ r0/2 conditioned the event E1∩E3. By the

triangle inequality, ∥µµµ(T0)−µµµ∥2 ≤ r0, as claimed.
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B.4.5 Proof of Proposition 2.3.3

Recall that µ̂µµ is the non-private robust estimator defined in (2.1). Leveraging Theo-

rem 2.2.1 and Lemma 2.2.1, we have

∥µ̂µµ−µµµ∥2 ≲ λ̄
1/2

√
r(Σ)+ z

n
+

τz
n
+ λ̄

1/2

√
tr(Σ)
τ

with probability at least 1−2e−z. Thus, the event {µ̂µµ ∈Θ(τ/4)} holds with the same probability,

provided that τ ≳
√

tr(Σ) and n ≳ r(Σ)+z. Turning to the second part of the event E1, combining

Lemma B.3.1 with Markov’s inequality yields that with probability at least 1− e−z,

inf
θθθ∈Θ(τ/2)

λmin(∇
2L̂τ(θθθ))≥ 1− 4tr(Σ)

τ2 −
√

z
2n

= 1−χ.

Remark that χ is strictly less than 1 as long as τ ≳
√

tr(Σ) and n ≳ z. This proves the claim.

B.4.6 Proof of Proposition 2.3.5

By definition,

∥∥∥∥Σ̂ξ ,ε −
(

Σ̂ξ +
4ξ

εn
E
)∥∥∥∥

2
≤
∥∥∥∥Σ̂ξ −

(
Σ̂ξ +

4ξ

εn
E
)∥∥∥∥

2
,

which further implies

∥Σ̂ξ ,ε − Σ̂ξ∥2 ≤
∥∥∥∥Σ̂ξ ,ε −

(
Σ̂ξ +

4ξ

εn
E
)∥∥∥∥

2
+

4ξ

εn
∥E∥2 ≤

8ξ

εn
∥E∥2.

Applying Lemma B.4.4 with t =
√

log(4n) we see that ∥E∥2 ≲
√

d+
√

log(4n) with probability

at least 1−n−1. Combining this bound with Proposition 2.2.1 proves the claimed result.
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B.4.7 Proof of Proposition B.4.1

Note that µµµ(t+1) = µµµ(t)−η0∇L̂τ(µµµ
(t))+2η0T 1/2τ(εn)−1gggt for t = 0,1, . . . ,T −1, and

µµµ(0) ∈ Θ(r0). Now assume that ∥µµµ(t)− µµµ∥2 ≤ r0 for some t ≥ 0. Proceeding via proof by

contradiction, suppose ∥µµµ(t+1)−µµµ∥2 > r0. From Lemma B.4.1 we see that, conditioning on E1,

1−χ

4
r0 · ∥µµµ(t+1)− µ̂µµ∥2 ≤ L̂τ(µµµ

(t+1))− L̂τ(µ̂µµ).

For the right-hand side, we have

L̂τ(µµµ
(t+1))− L̂τ(µ̂µµ) = L̂τ(µµµ

(t+1))− L̂τ(µµµ
(t))+ L̂τ(µµµ

(t))− L̂τ(µ̂µµ)

(i)
≤ ⟨∇L̂τ(µµµ

(t)),µµµ(t+1)−µµµ
(t)⟩+ 1

2
∥µµµ(t+1)−µµµ

(t)∥2
2−⟨∇L̂τ(µµµ

(t)), µ̂µµ−µµµ
(t)⟩

=
1

η0
⟨µµµ(t)−µµµ

(t+1),µµµ(t+1)− µ̂µµ⟩+ 1
2
∥µµµ(t+1)−µµµ

(t)∥2
2 +2T 1/2 τ

εn
⟨gggt ,µµµ

(t+1)− µ̂µµ⟩

=
1

2η0
∥µµµ(t)− µ̂µµ∥2

2−
1

2η0
∥µµµ(t+1)− µ̂µµ∥2

2−
1

2η0
∥µµµ(t+1)−µµµ

(t)∥2
2

+
1
2
∥µµµ(t+1)−µµµ

(t)∥2
2 +2T 1/2 τ

εn
⟨gggt ,µµµ

(t+1)− µ̂µµ⟩
(ii)
≤ 1

2η0
∥µµµ(t)− µ̂µµ∥2

2−
1

2η0
∥µµµ(t+1)− µ̂µµ∥2

2 +2T 1/2 τ

εn
∥µµµ(t+1)− µ̂µµ∥2 · ∥gggt∥2

(iii)
≤ 1

2η0
∥µµµ(t)− µ̂µµ∥2

2−
1

2η0
∥µµµ(t+1)− µ̂µµ∥2

2 +2T 1/2BT
τ

εn
∥µµµ(t+1)− µ̂µµ∥2

where inequality (i) follows from the smoothness property (B.26), inequality (ii) holds if η0 ≤ 1,

and inequality (iii) uses conditioning on E2. Provided 2T 1/2BT τ(εn)−1 ≤ 1−χ

4 r0, combining the

above lower and upper bounds on L̂τ(µµµ
(t+1))− L̂τ(µµµ) yields

∥µµµ(t+1)−µµµ∥2 ≤ ∥µµµ(t)−µµµ∥2 ≤ r0,

which leads to a contradiction. Therefore, starting from an initial value µµµ(0) ∈ Θ(r0), and

conditioning on the event E1∩E2 with suitably chosen parameters, we must have ∥µµµ(t)−µµµ∥2≤ r0
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for all t = 1, . . . ,T .
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Appendix C

Supplementary Material for Chapter 3

C.1 Proofs of Main Theorems

C.1.1 Supporting technical lemmas

We first introduce some basic notations which will be used throughout. Recall that

quantile regression residuals are defined as εi =Yi− f0(Xi) for 1≤ i≤ n and ε =Y − f0(X). For

any f : [0,1]d → R, we define

Z( f )(X ,ε) = {Y − f (X)}1{Y ≤ f (X)}+α f (X),

and denote Zi( f ) := Z( f )(Xi,εi) for 1≤ i≤ n. Furthermore, we write

ωi = Z( f0)(Xi,εi)−αg0(Xi). (C.1)

Then, for any τ > 0, we can express the empirical joint Huber loss (3.8) as

R̂τ( f ,g) =
1
n

n

∑
i=1

ℓτ(Zi( f )−αg(Xi))

for real-valued functions f ,g on [0,1]d . Also, note that

ωi = εi1(εi ≤ 0)+α f0(Xi)−αg0(Xi) = εi,−−E(εi,−|Xi),
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where εi,− = εi1(εi ≤ 0). Throughout the proof, we assume that max(∥ f0∥∞,∥g0∥∞) ≤ M0.

For ease of notations, we write ∑
n
i=1(Wi−EWi) = ∑

n
i=1(1−E)Wi for any sequence of random

variables {Wi}n
i=1.

Recall that Rτ(·, ·) represents the population joint loss function, which is the expectation

of the empirical joint Huber loss function,

Rτ( f ,g) = ER̂τ( f ,g) = Eℓτ(Zi( f )−αg(Xi))

for any fixed functions f and g. The following two lemmas establish both lower and upper

bounds for the excess Huber risk under heavy-tailed noises and light-tailed noises, respectively.

Lemma C.1.1. Assume Condition 1 with p≥ 2 holds and let τ ≥ c4 = 2max{4M0,(2νp)
1/p}.

Then, for any f ,g : [0,1]d → [−M0,M0], we have

Rτ( f ,g)−Rτ( f ,g0)≥
α2

4
∥g−g0∥2

2−α∥g−g0∥2

{
p̄
2
∥ f − f0∥2

4 +
νp

(τ/2)p−1

}
,

and

Rτ( f ,g)−Rτ( f ,g0)≤
α2

2
∥g−g0∥2

2 +α∥g−g0∥2

{
p̄
2
∥ f − f0∥2

4 +
νp

(τ/2)p−1

}
.

Lemma C.1.2. Assume Condition 2 holds for some σ0 > 0 and let

τ ≥ c7 = 2max{4M0,σ0(log4)1/2}.

For any functions f ,g : [0,1]d → [−M0,M0], we have

Rτ( f ,g)−Rτ( f ,g0)≥
α2

4
∥g−g0∥2

2−α∥g−g0∥2

(
p̄
2
∥ f − f0∥2

4 + c14e−τ2/(2σ2
0 )

)
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and

Rτ( f ,g)−Rτ( f ,g0)≤
α2

2
∥g−g0∥2

2 +α∥g−g0∥2

(
p̄
2
∥ f − f0∥2

4 + c14e−τ2/(2σ2
0 )

)
,

where c14 = 4M0 +2σ0.

For the truncated neural network function class Gn = FDNN(d,L,N,M0), define

Gn(η) = {g ∈ Gn : ∥g−g0∥2 ≤ η}, η > 0.

Moreover, for any function pair ( f ,g), we denote the difference of Huber losses as

h f ,g(X ,ε) = ℓτ(Z( f )(X ,ε)−αg(X))− ℓτ(Z( f )(X ,ε)−αg0(X)). (C.2)

In order to obtain the convergence rate of the ES estimator ĝn given a generic QR estimate

f̂n ∈Fn, it is necessary to derive concentration inequalities for the supremum of local empirical

processes that are of the form

sup
f∈Fn

sup
g∈Gn(η)

∣∣∣∣1n n

∑
i=1

{
h f ,g(Xi,εi)−Eh f ,g(Xi,εi)

}∣∣∣∣
for some η > 0. To this end, by the fundamental theorem of calculus and the triangle inequality,
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the supremum is upper bounded by a sum of three suprema, namely,

sup
f∈Fn

sup
g∈Gn(η)

∣∣∣∣1n n

∑
i=1

(1−E)h f ,g(Xi,εi)

∣∣∣∣
= sup

f∈Fn

sup
g∈Gn(η)

∣∣∣∣1n n

∑
i=1

(1−E)
{∫

α∆g(Xi)

0
ψτ(ωi +Zi( f )−Zi( f0)+ t)dt

}∣∣∣∣
≤ sup

g∈Gn(η)

∣∣∣∣1n n

∑
i=1

(1−E)
{∫

α∆g(Xi)

0
ψτ(ωi)dt

}∣∣∣∣ (C.3)

+ sup
g∈Gn(η)

∣∣∣∣1n n

∑
i=1

(1−E)
[∫

α∆g(Xi)

0
{ψτ(ωi + t)−ψτ(ωi)}dt

]∣∣∣∣
+ sup

f∈Fn

sup
g∈Gn(η)

∣∣∣∣1n n

∑
i=1

(1−E)
[∫

α∆g(Xi)

0

{
ψτ(ωi +Zi( f )−Zi( f0)+ t)−ψτ(ωi + t)

}
dt
]∣∣∣∣,

where ∆g(X) = g0(X)−g(X). The following three lemmas give concentration inequalities for

the above three suprema. Recall that

Vn,τ,νp = LN

√
log(LN) log(n2τν

−1/p
p )

n
and Vn = LN

√
log(LN) logn

n
.

Lemma C.1.3. Assume E(|ωi|p|Xi) ≤ νp < ∞ almost surely (over Xi) for p ≥ 2. Then, there

exists a universal constant c15 > 0 such that, for any η ≥max(
√

τVn,τ,νp,1/n),0≤ x≤ nη2/τ

and τ ≥ ν
1/p
p ,

P

{
sup

g∈Gn(η)

∣∣∣∣1n n

∑
i=1

(1−E)∆g(Xi)ψτ(ωi)

∣∣∣∣≥ c15 ·η(ν
1/p
p +

√
τ)

(
Vn,τ,νp +

√
x
n

)}
≤ e−x.

Lemma C.1.4. There exists a universal constant c16 > 0 such that for any τ > 0,η ≥ Vn and

0≤ x≤ nη2,

P

[
sup

g∈Gn(η)

∣∣∣∣1n n

∑
i=1

(1−E)
[∫

α∆g(Xi)

0
{ψτ(ωi + t)−ψτ(ωi)}dt

]∣∣∣∣≥ c16 ·α2
η

(
Vn +

√
x
n

)]

≤ e−x.

212



Lemma C.1.5. Write

Wn :=

√
{Pdim(Fn)+(LN)2 log(LN)} logn

n
.

There exists a universal constant c17 > 0 such that for any τ > 0,η ≥Wn and 0≤ x≤ nη2,

P

{
sup
f∈Fn

sup
g∈Gn(η)

∣∣∣∣1n n

∑
i=1

(1−E)
[∫

α∆g(Xi)

0

{
ψτ(ωi +Zi( f )−Zi( f0)+ t)−ψτ(ωi + t)

}
dt
]∣∣∣∣

≥ c17 ·αη

(
Wn +

√
x
n

)}
≤ e−x.

Assuming that the random variables ωi defined in (C.1) are sub-Gaussian, we can derive

a more refined tail inequality for the supremum of local empirical processes.

Lemma C.1.6. Assume that ωi satisfies

E
(
eω2

i /σ2
0 |Xi
)
≤ 2 almost surely (over Xi) (C.4)

for some σ0 > 0. Then, there exists a universal constant c18 > 0 such that for any η ≥Vn and

0≤ x≤ nη2, the following bound

sup
g∈Gn(η)

∣∣∣∣1n n

∑
i=1

(1−E)
{∫

α∆g(Xi)

0
ψτ(ωi)dt

}∣∣∣∣≤ c18 ·ασ0η

{
Vn + e−τ2/(2σ2

0 )+

√
x
n

}

holds with probability at least 1−3e−x.

To establish a convergence rate for the deep quantile regression estimator, we also require

lower and upper bounds on the excess quantile risk, similar to the analysis of ES estimators.

Recalling the definition of Q̂α( f ) in (3.9), we define the population check loss function as

Qα( f ) = EQ̂α( f ) = Eρα(Yi− f (Xi))
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for any f : [0,1]d → R.

Lemma C.1.7. Assume Condition 3 holds. For any function f : [0,1]d → [−M0,M0], the

population check loss function satisfies

c19∥ f − f0∥2
2 ≤Qα( f )−Qα( f0)≤ c20∥ f − f0∥2

2,

where c19 = min{p/(8M0), p2/(32M0l0)} and c20 = p̄/2.

Next, we write Fn = FDNN(d,L,N,M0), and for any δ > 0,

Fn(δ ) = { f ∈Fn : ∥ f − f0∥2 ≤ δ}.

The next lemma characterizes the tail probabilities of the empirical quantile process.

Lemma C.1.8. There exists a universal constant c21 > 0 such that for any δ ≥Vn and 0≤ x≤

nδ 2,

P

[
sup

f∈Fn(δ )

∣∣∣∣1n n

∑
i=1

(1−E)
{

ρα(Yi− f (Xi))−ρα(Yi− f0(Xi))
}∣∣∣∣≥ c21 ·δ

(
Vn +

√
x
n

)]
≤ e−x.

C.1.2 Proof of Proposition 3.3.1

Following the proof of Lemma C.1.1, we can readily derive that provided τ ≥ c4,

Rτ( f0,g)−Rτ( f0,g0)≥
α2

4
∥g−g0∥2

2−α∥g−g0∥2
νp

(τ/2)p−1

for any real-valued function f with ∥ f∥∞ ≤M0. Taking g = g0,τ , the claim follows immediately

from the fact that Rτ( f0,g0,τ)−Rτ( f0,g0)≤ 0.
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C.1.3 Proof of Theorem 3.4.1

To begin with, denote for any u≥ 1 fixed that

η∗ = c5

{
ηs +ηb +ηa +δs +ηopt +δ

2
4 +(ν

1/p
p +

√
τ)

√
u
n

}
,

where c5 is given by

c5 = max(
√

24 ·7 p̄,
√

28 ·24,192c15,192c16,192c17)≥ 1. (C.5)

Here, c15,c16 and c17 are defined in Lemma C.1.3, Lemma C.1.4 and Lemma C.1.5, respectively.

For integers j = 1,2, . . . , define donut-shaped sets

Dn, j := Gn(2 j
η∗/α)\Gn(2 j−1

η∗/α) =
{

g ∈ Gn : 2 j−1
η∗ < α∥g−g0∥2 ≤ 2 j

η∗
}
.

Recall the local function class F0(δ ) = { f ∈Fn : ∥ f − f0∥4 ≤ δ} for any δ > 0. Write

P
{
∃ f ∈F0(δ4) such that sup

g∈Tn(ηopt; f )
α∥g−g0∥2 ≥ η∗

}
≤

∞

∑
j=1

P
{
∃ f ∈F0(δ4) such that ∃g ∈Tn(δopt; f )∩Dn, j

}
. (C.6)

Then, it suffices to bound each probability on the right-hand side of (C.6). Conditioning on the

event { f ∈F0(δ4)}, Lemma C.1.1 implies that every g ∈Dn, j satisfies

22 j−2

4
η

2
∗ ≤Rτ( f ,g)−Rτ( f ,g0)+2 j

η∗

(
p̄
2

δ
2
4 +ηb

)
≤Rτ( f ,g)−Rτ( f ,g0)+6p̄2

δ
4
4 +24η

2
b +

22 j

48
η

2
∗ , (C.7)

where the last inequality follows from the basic inequalities ab≤ 12a2 +b2/48 and (a+b)2 ≤

2(a2 +b2) for any a,b ∈ R.
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We will now establish an upper bound for Rτ( f ,g)−Rτ( f ,g0), which appears on the

right-hand side of inequality (C.7). The definition of ηa in (3.2) allows us to choose gn ∈ Gn such

that ∥gn−g0∥2 ≤ 2ηa. When we condition on the event { f ∈F0(δ4),g ∈ Tn(ηopt; f )∩Dn, j},

it follows from the definition of Tn(ηopt; f ) that

Rτ( f ,g)−Rτ( f ,g0)

≤Rτ( f ,g)− R̂τ( f ,g)+ R̂τ( f ,gn)−Rτ( f ,gn)+Rτ( f ,gn)−Rτ( f ,g0)+η
2
opt.

The upper bound in Lemma C.1.1 with g = gn implies

Rτ( f ,gn)−Rτ( f ,g0)≤ 2α
2
η

2
a +α ·ηa

(
p̄
2

δ
2
4 +ηb

)
≤ 17

8
η

2
a + p̄2

δ
4
4 +4η

2
b ,

which, combined with the earlier inequality, further yields

Rτ( f ,g)−Rτ( f ,g0)≤Rτ( f ,g)− R̂τ( f ,g)+ R̂τ( f ,gn)−Rτ( f ,gn)

+3η
2
a + p̄2

δ
4
4 +4η

2
b +η

2
opt. (C.8)

For any f ∈Fn and g ∈ Gn, recall the definition of h f ,g(X ,ε) in (C.2). Moreover, define

∆n( f ,g) =
1
n

n

∑
i=1

{
h f ,g(Xi,εi)−Eh f ,g(Xi,εi)

}
, (C.9)

such that

Rτ( f ,g)− R̂τ( f ,g)+ R̂τ( f ,gn)−Rτ( f ,gn) = ∆n( f ,gn)−∆n( f ,g).
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Combining this with the bounds (C.7) and (C.8) yields

P
{
∃ f ∈F0(δ4) such that ∃g ∈Tn(ηopt; f )∩Dn, j

}
≤ P

{
∃ f ∈F0(δ4) and ∃g ∈Dn, j such that

∆n( f ,gn)−∆n( f ,g)≥ 22 j

24
η

2
∗ −3η

2
a −7p̄2

δ
4
4 −28η

2
b −η

2
opt

}
(i)
≤ P

{
∃ f ∈F0(δ4) and ∃g ∈Dn, j such that ∆n( f ,gn)−∆n( f ,g)≥ 22 j

32
η

2
∗

}
(ii)
≤ P

{
sup
f∈Fn

sup
g∈Gn(2 jη∗/α)

|∆n( f ,g)| ≥ 1
64

22 j
η

2
∗

}
, (C.10)

where the second inequality (i) follows from the definition of c5 in (C.5) that

3η
2
a +7p̄2

δ
4
4 +28η

2
b +η

2
opt ≤

1
24

c2
5(η

2
a +δ

4
4 +η

2
b +η

2
opt)

≤ 22 j

96
η

2
∗ for j ≥ 1,

and the last inequality (ii) follows from the choice of gn, which satisfies

∥gn−g0∥2 ≤ 2ηa ≤ 2 j
η∗/α

for any j ≥ 1.

So, the key task is to derive a concentration inequality for the supremum of the empirical
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process {∆n( f ,g) : f ∈Fn,g ∈ Gn(2 jη∗/α)}. From the bound (C.3), we can see that

P
{

sup
f∈Fn

sup
g∈Gn(2 jη∗/α)

|∆n( f ,g)| ≥ 1
64

22 j
η

2
∗

}
≤ P

[
sup

g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
{∫

α∆g(Xi)

0
ψτ(ωi)dt

}∣∣∣∣≥ 1
192

22 j
η

2
∗

]
+P
{

sup
g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
[∫

α∆g(Xi)

0

{
ψτ(ωi + t)−ψτ(ωi)

}
dt
]∣∣∣∣≥ 1

192
22 j

η
2
∗

}
+P
{

sup
f∈Fn

sup
g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
[∫

α∆g(Xi)

0

{
ψτ(ωi +Zi( f )−Zi( f0)+ t)−ψτ(ωi + t)

}
dt
]∣∣∣∣

≥ 1
192

22 j
η

2
∗

}
=: P1 +P2 +P2. (C.11)

We proceed to bound the three probabilities P1,P2 and P3, separately. We choose

η = 2 jη∗/α and x = 22 ju for the given u≥ 1 to apply Lemma C.1.3. Note that η ≥max((ν1/p
p +

√
τ)Vn,τ,νp,1/n) and 0 ≤ x ≤ nη2/τ as 0 < α < 1 and c5 > 1. Furthermore, τ ≥ c4 implies

τ/ν
1/p
p ≥ 1. Therefore, applying Lemma C.1.3 gives

P

[
sup

g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
{∫

α∆g(Xi)

0
ψτ(ωi)dt

}∣∣∣∣≥ c15

c5
22 j

η
2
∗

]

≤ P

[
sup

g∈Gn(2 jη∗/α)

∣∣∣∣αn n

∑
i=1

(1−E)
{

ψτ(ωi)∆g(Xi)
}∣∣∣∣≥ c15 ·αη(ν

1/p
p +

√
τ)

(
Vn,τ,νp +

√
x
n

)]

≤ e−x = e−22 ju.

Here, we remark that the choice of c5 in (C.5) is such that c15/c5 ≤ 1/192. Thus, the above

probability bound implies

P1 ≤ exp(−22 ju).

Similarly, for η = 2 jη∗/α and x = 22 ju, it follows that η ≥max(Wn,Vn) and x≤ nη2. Combin-
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ing Lemma C.1.4, Lemma C.1.5 with the choice of c5 in (C.5) yields

P2 ≤ exp(−22 ju) and P3 ≤ exp(−22 ju).

Together, the above bounds on P1,P2 and P3, (C.6), (C.10) and (C.11) imply

P
{
∃ f ∈F0(δ4) such that sup

g∈Tn(ηopt; f )
∥g−g0∥2 ≥ η∗

}
≤

∞

∑
j=1

3exp(−22 ju)

≤
∞

∑
j=1

3e− ju

= 3(1− e−u2
)−1e−u

≤ 3(1− e−1)−1e−u,

where the last inequality uses the fact that u≥ 1. This completes the proof.

C.1.4 Proof of Theorem 3.4.2

The proof employs the truncation argument as in Kuchibhotla and Patra (2022) and Fan

et al. (2022), and the peeling argument as in the proof of Theorem 3.4.1.

For any u≥ 1, define

η∗ := c6 ·
√

u(ηs +ηa +δs +δ
2
4 +ηopt),

where c6 is given by

c6 = max
(√

24 ·4p̄,
√

72,4 ·192c15,2 ·192c16,2 ·192c17
)
≥ 4. (C.12)

We note that it is sufficient to consider the case where u≤ n and νp ≤ np. Otherwise, η∗ ≳ 1,

so that the deviation bound becomes trivial due to the uniform bounded property of g0 and

Gn. Denote R( f ,g) = ER̂( f ,g) for any f ,g, where R̂ is given in (3.8), and define Dn, j =
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Gn(2 jη∗/α) \Gn(2 j−1η∗/α) for any j ≥ 1. Taking τ = ∞ in Lemma C.1.1, every g ∈ Dn, j

satisfies

22 j−2

4
η

2
∗ ≤R( f ,g)−R( f ,g0)+2 j

η∗ ·
p̄
2

δ
2
4

≤R( f ,g)−R( f ,g0)+3p̄2
δ

4
4 +

22 j

48
η

2
∗ , (C.13)

conditioning on the event { f ∈F0(δ4)}. Choose gn ∈ Gn satisfying ∥gn−g0∥2 ≤ 2ηa, which is

possible by the definition of ηa. Conditioning on the event { f ∈F0(δ4) and g∈Tn(ηopt)∩Dn, j},

we have

R( f ,g)−R( f ,g0)

≤R( f ,g)− R̂( f ,g)+ R̂( f ,gn)−R( f ,gn)+R( f ,gn)−R( f ,g0)+η
2
opt

≤R( f ,g)− R̂( f ,g)+ R̂( f ,gn)−R( f ,gn)+2α
2
η

2
a +αηa ·

p̄
2

δ
2
4 +η

2
opt

≤R( f ,g)− R̂( f ,g)+ R̂( f ,gn)−R( f ,gn)+
33
16

α
2
η

2
a + p̄2

δ
4
4 +η

2
opt,

where the second inequality follows from the upper bound in Lemma C.1.1. Combining this

bound with (C.13) gives

22 j

24
η

2
∗ ≤R( f ,g)− R̂( f ,g)+ R̂( f ,gn)−R( f ,gn)+4p̄2

δ
2
4 +3η

2
a +η

2
opt,

conditioning on the same event. From the choice of c6 in (C.12), we have

4p̄2
δ

2
4 +3η

2
a +η

2
opt ≤

22 j

96
η

2
∗ .

Then, by employing the peeling argument and following a similar line of reasoning that leads
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to (C.10), we can obtain

P
{
∃ f ∈F0(δ4) such that sup

g∈Tn(ηopt; f )
α∥g−g0∥2 ≥ η∗

}

≤
∞

∑
j=1

P

{
sup
f∈Fn

sup
g∈Gn(2 jη∗/α)

|∆n( f ,g)| ≥ 1
64

22 j
η

2
∗

}
, (C.14)

where ∆n( f ,g) is defined as

∆n( f ,g) =
1

2n

n

∑
i=1

(1−E)[{Zi( f )−αg(Xi)}2−{Zi( f )−αg0(Xi)}2].

The bound (C.3) with τ = ∞ gives

P

{
sup
f∈Fn

sup
g∈Gn(2 jη∗/α)

|∆n( f ,g)| ≥ 1
64

22 j
η

2
∗

}

≤ P

[
sup

g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
{∫

α∆g(Xi)

0
ωidt

}∣∣∣∣≥ 1
192

22 j
η

2
∗

]

+P

[
sup

g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
{∫

α∆g(Xi)

0
tdt
}∣∣∣∣≥ 1

192
22 j

η
2
∗

]

+P

{
sup
f∈Fn

sup
g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
[∫

α∆g(Xi)

0

{
Zi( f )−Zi( f0)

}
dt
]∣∣∣∣≥ 1

192
22 j

η
2
∗

}

=: P1 +P2 +P2. (C.15)

For η = 2 jη∗/α and x = 22 jnuV 2
n , it follows that η ≥Vn and x≤ nη2. By Lemma C.1.4,

we have

P

[
sup

g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
{∫

α∆g(Xi)

0
tdt
}∣∣∣∣≥ 2c16

c6
22 j

η
2
∗

]

≤ P

[
sup

g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
{∫

α∆g(Xi)

0
tdt
}∣∣∣∣≥ c16 ·αη

(
Vn +

√
x
n

)]

≤ exp(−22 jnuV 2
n ).
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By the definition of c6 in (C.12), we have 2c16/c6 ≤ 1/192 so that P2 ≤ exp(−22 jnuV 2
n ). Simi-

larly, applying Lemma C.1.5 yields P3 ≤ exp(−22 jnuV 2
n ).

We next derive an upper bound of the probability P1. Remark that

sup
g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
{

αωi∆g(Xi)
}∣∣∣∣

≤ sup
g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
{

αψB j(ωi)∆g(Xi)
}∣∣∣∣

+ sup
g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
{

αωi1(|ωi|> B j)∆g(Xi)
}∣∣∣∣, (C.16)

where we choose B j = uν
1/p
p V−2/p

n . Given our assumption that u≥ 1 and Vn ≤ 1, it follows that

B j/ν
1/p
p ≥ 1. Furthermore, we only consider the case u≤ n and νp ≤ np, implying B j/ν

1/p
p ≤ n3.

Thus, η∗ satisfies

η∗ ≥ 4u
(
ν

1/p
p Vn +ν

1/2p
p V 1−1/p

n
)
≥ LN(ν

1/p
p +

√
B j)

√
(NL)2 log(nB jν

−1/p
p )

n

=: (ν1/p
p +

√
B j)Vn,B j,νp.

Choose τ = B j,η = 2 jη∗/α and x = 22 jnV 2
n , which satisfy τ · x≤ nη2. From Lemma C.1.3 it

follows that

P

[
sup

g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
{

αψB j(ωi)∆g(Xi)
}∣∣∣∣≥ 2c15

c6
22 j

η
2
∗

]

≤ P

[
sup

g∈Gn(2 jη∗)

∣∣∣∣1n n

∑
i=1

(1−E)
{

αψB j(ωi)∆g(Xi)
}∣∣∣∣≥ α · c15η(ν

1/p
p +

√
B j)

(
Vn,B j,νp +

√
x
n

)]

≤ e−22 jnV 2
n .
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Thus, from the choice of c6, the above probability bound implies that

P

[
sup

g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
{

αψB j(ωi)∆g(Xi)
}∣∣∣∣≥ 1

2 ·192
22 j

η
2
∗

]
≤ e−22 jnV 2

n . (C.17)

Turning to the second term on the right-hand side of (C.16), we apply Markov’s inequality

to obtain that for any y > 0,

P

[
sup

g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
{

αωi1(|ωi|> B j)∆g(Xi)
}∣∣∣∣> y

]

≤ 1
y
E

[
sup

g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
{

αωi1(|ωi|> B j)∆g(Xi)
}∣∣∣∣
]

≤ 4αM0

y
E{|ωi|1(|ωi|> B j)},

where the last inequality follows from the uniform boundedness of Gn and g0. Furthermore,

E{|ωi|1(|ωi|> B j)} ≤
E(|ωi|p)

Bp−1
j

≤
νp

Bp−1
j

.

Combining this expectation bound with y = 22 jη2
∗/(2 ·192) in the earlier bound gives

P

[
sup

g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
{

αωi1(|ωi|> B j)∆g(Xi)
}∣∣∣∣> 1

2 ·192
22 j

η
2
∗

]
≤

8 ·192M0νp

22 jη2
∗Bp−1

j

≲
1

up22 j ,

where the last inequality follows from the choice of B j, which satisfies

Bp−1
j η

2
∗ ≥ up−1

ν
1−1/p
p V−2+2/p

n uν
1/p
p V 2−2/p

n = up
νp.
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Together, the above probability bound, (C.17) and the choice of c6 yield

P1 ≲ exp(−22 jnV 2
n )+

1
up22 j .

Finally, it follows from (C.14), (C.15) and the upper bounds on P1,P2 and P3 that

P

{
∃ f ∈F0(δ4) such that sup

g∈Tn(ηopt; f )
α∥g−g0∥2 ≥ η∗

}

≲
∞

∑
j=1

{
exp(−22 jnu2V 2

n )+ exp(−22 jnV 2
n )+

1
up22 j

}
≲ e−nV 2

n +
1
up ,

where the second inequality follows from the fact that u≥ 1. This proves the claim.

C.1.5 Proof of Theorem 3.4.3

For any u≥ 1, denote

η∗ = c8

(
ηs +ηb +ηa +δs +ηopt +δ

2
4 +σ0

√
u
n

)
,

where c8 is given by

c8 = max(
√

24 ·7 p̄,
√

28 ·24,192c16,192c17,192c18)≥ 1.

Recall the definition of notations F0(δ ) and ∆n in the proof of Theorem 3.4.1. By employing

the peeling argument and following a similar line of reasoning that leads to (C.10) in conjunction
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with Lemma C.1.2 and the definition of η∗, it can be shown that

P

{
∃ f ∈F0(δ4) such that sup

g∈Tn(ηopt; f )
α∥g−g0∥2 ≥ η∗

}

≤ P

{
sup
f∈Fn

sup
g∈Gn(2 jη∗/α)

|∆n( f ,g)| ≥ 1
64

22 j
η

2
∗

}
, (C.18)

where ∆n is defined in (C.9). Moreover, we have for each j ≥ 1 that

P

{
sup
f∈Fn

sup
g∈Gn(2 jη∗/α)

|∆n( f ,g)| ≥ 1
64

22 j
η

2
∗

}

≤ P

[
sup

g∈Gn(2 jη∗)

∣∣∣∣1n n

∑
i=1

(1−E)
{∫

α∆g(Xi)

0
ψτ(ωi)dt

}∣∣∣∣≥ 1
192

22 j
η

2
∗

]

+P

{
sup

g∈Gn(2 jη∗)

∣∣∣∣1n n

∑
i=1

(1−E)
[∫

α∆g(Xi)

0

{
ψτ(ωi + t)−ψτ(ωi)

}
dt
]∣∣∣∣≥ 1

192
22 j

η
2
∗

}

+P

{
sup
f∈Fn

sup
g∈Gn(η)

∣∣∣∣1n n

∑
i=1

(1−E)
[∫

α∆g(Xi)

0

{
ψτ(ωi +Zi( f )−Zi( f0)+ t)−ψτ(ωi + t)

}
dt
]∣∣∣∣

≥ 1
128

22 j
η

2
∗

}

=: P1 +P2 +P3.

To bound P1, we choose η = 2 jη∗/α and x = 22 ju. Then, η ≥ Vn, 0 ≤ x ≤ nη2 and

Vn + e−τ2/(2σ2
0 )+

√
x/n≤ 2 jη∗/c8. Thus, applying Lemma C.1.6 yields

P

{
sup

g∈Gn(2 jη∗/α)

∣∣∣∣1n n

∑
i=1

(1−E)
{∫

α∆g(Xi)

0
ψτ(ωi)dt

}∣∣∣∣≥ c17

c8
22 j

η
2
∗

}
≤ e−22 ju2

,

which, combined with the choice of c8, further implies

P1 ≤ e−22 ju.

Moreover, for the same choice of η and x, Lemma C.1.4 and Lemma C.1.5 imply that P2≤ e−22 ju
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and P2 ≤ e−22 ju, respectively.

Combining the upper bounds on P1,P2 and P3 with (C.18) implies

P
{
∃ f ∈F0(δ4) such that sup

g∈Tn(ηopt; f )
∥g−g0∥2 ≥ η∗

}
≤ 3

∞

∑
j=1

e−22 ju

≤ 3
∞

∑
j=1

e− ju

≤ 3(1− e−1)−1e−u,

which completes the proof.

C.1.6 Proof of Theorem 3.4.4

Following a similar line to the proof of Theorem 3.4.1, we start with the peeling argument.

To begin with, let δ∗ = c9(δs +δa +δopt +
√

u/n) for given u≥ 1, where c9 is given by

c9 = max{(
√

8c20/c19,
√

2/c19,16c21/c19} ≥ 1. (C.19)

Here, c19 and c20 are given in Lemma C.1.7 and c21 is given in Lemma C.1.8. We then define

the donut-shaped sets for integers j = 1,2, . . . as

Dn, j := Fn(2 j
δ∗)\Fn(2 j−1

δ∗) = { f ∈Fn : 2 j−1
δ∗ < ∥ f − f0∥2 ≤ 2 j

δ∗},

so that we can write

P
{
∃ f ∈Sn(δopt) such that ∥ f − f0∥2 ≥ δ∗

}
≤

∞

∑
j=1

P
{
∃ f ∈Sn(δopt)∩Dn, j

}
. (C.20)
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Therefore, it reduces to bounding each probability P{∃ f ∈Sn(δopt)∩Dn, j} separately. Follow-

ing Lemma C.1.7, any f ∈Dn, j satisfies

c1922 j−2
δ

2
∗ ≤ c19∥ f − f0∥2

2 ≤Qα( f )−Qα( f0). (C.21)

We next derive an upper bound of the right-hand side of (C.21). By the definition of δa, there

exists fn ∈Fn such that ∥ fn− f0∥2 ≤ 2δa. Now, for any f ∈Sn(δopt)∩Dn, j, we have

Qα( f )−Qα( f0)

= Qα( f )− Q̂α( f )+ Q̂α( f )− Q̂α( fn)+ Q̂α( fn)−Qα( fn)+Qα( fn)−Qα( f0)

≤Qα( f )− Q̂α( f )+ Q̂α( fn)−Qα( fn)+Qα( fn)−Qα( f0)+δ
2
opt,

where the last line follows from the definition of Sn(δopt). By Lemma C.1.7, it follows that

Qα( fn)−Qα( f0)≤ 4c20δ 2
a . Denoting

∆n( f ) =
1
n

n

∑
i=1

(1−E)
{

ρα(Yi− f (Xi)−ρα(Yi− f0(Xi)
}
,

the earlier inequality is further bounded as

Qα( f )−Qα( f0)≤ ∆n( fn)−∆n( f )+4c20δ
2
a +δ

2
opt. (C.22)
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Note that fn ∈ Fn(2 jδ∗) for any j ≥ 1 because 2δa ≤ 2 jδ∗ for any j ≥ 1. Combining this

with (C.22) and (C.21), we obtain upper bounds of the probability P{∃ f ∈Sn(δopt)∩Dn, j} as

P{∃ f ∈Sn(δopt)∩Dn, j}

≤ P
{
∃ f ∈Dn, j such that ∆n( fn)−∆n( f )≥ c19

4
22 j

δ
2
∗ −4c20δ

2
a −δ

2
opt

}
≤ P

{
sup

f∈Fn(2 jδ∗)
|∆n( f )| ≥ c19

16
22 j

δ
2
∗

}
, (C.23)

where the last line follows from the choice of c9 in (C.19) that

c19

8
22 j

δ
2
∗ ≥

c19

2
c2

9(δa +δopt)
2 ≥ 4c20δ

2
a +δ

2
opt

for any j ≥ 1.

We next bound the probability P{sup f∈Fn(2 jδ∗) |∆n( f )| ≥ c1922 jδ 2
∗ /16}. We choose

δ = 2 jδ∗ and x = 22 ju to apply Lemma C.1.8. Since c9 ≥ 1, we have δ ≥ δs and 0≤ x≤ nδ 2.

Then, Lemma C.1.8 yields

P

{
sup

f∈Fn(2 jδ∗)
|∆n( f )| ≥ c21

c9
22 j

δ
2
∗

}

= P

[
sup

f∈Fn(2 jδ∗)

∣∣∣∣1n n

∑
i=1

(1−E)
{

ρα(Yi− f (Xi))−ρα(Yi− f0(Xi))
}∣∣∣∣≥ c21

c9
22 j

δ
2
∗

]

≤ P

[
sup

f∈Fn(2 jδ∗)

∣∣∣∣1n n

∑
i=1

(1−E)
{

ρα(Yi− f (Xi))−ρα(Yi− f0(Xi))
}∣∣∣∣≥ c21δ

(
δs +

√
x
n

)]

≤ exp(−x) = exp(−22 ju).

Since c9 satisfies c21/c9 ≤ c19/16, the above probability bound yields

P

{
sup

f∈Fn(2 jδ∗)
|∆n( f )| ≥ c19

16
22 j

δ
2
∗

}
≤ exp(−22 ju).

228



Combining this with (C.20) and (C.23) implies

P
{
∃ f ∈Sn(δopt) such that ∥ f − f0∥2 ≥ δ∗

}
≤

∞

∑
j=1

exp(−22 ju)

≤
∞

∑
j=1

exp(− ju)

≤ (1− e−1)−1e−u,

which proves the claim.

C.1.7 Proof of Theorem 3.4.5

The proof proceeds by specifying each term in the error bound in Theorem 3.4.4. By the

assumption, we have δopt ≤ δn. For the approximation error, we can utilize Proposition 3.2.1

since the probability measure of Xi is absolutely continuous with respect to the Lebesgue measure.

Applying Proposition 3.2.1 with our chosen values of L0 and N0, there exists a universal constant

C1 > 0 such that for any f0 ∈H (d, l,M0,P),

δa = inf
f∈Fn
∥ f − f0∥2 ≤ c3(L0N0)

−2γ∗ ≤C1c3

(
log6 n

n

)γ∗/(2γ∗+1)

.

Furthermore, from the choice of L and N, we have

LN ≤ c1c2⌈L0 logL0⌉⌈N0 logN0⌉ ≤ 4c1c2(L0N0) logL0 logN0.

Then, it follows that log(LN)≤C2c1c2 log(L0N0) for some universal constant C2 > 0. Combining

this with the choice of L0 and N0 gives

δs = LN

√
log(LN) logn

n
≤C3(c1c2)

3/2 (L0N0 logL0 logN0){log(L0N0) logn}1/2
√

n

≤C4(c1c2)
3/2 (L0N0) log3 n√

n
≤C5(c1c2)

3/2
(

log6 n
n

)γ∗/(2γ∗+1)
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for some universal positive constants C3 – C5. Remark that the prefactors c1 – c3 have a

polynomial dependence on tmax so that the prefactors C1c3 and C5(c1c2)
3/2 in the bounds of δa

and δs also demonstrate a polynomial dependence on tmax. Therefore, there exists a positive

constant c10 > 0, which depends on tmax polynomially and satisfies that for any u≥ 1,

c9

(
δs +δa +δopt +

u√
n

)
≤ c10

(
δn +

√
u
n

)
.

Plugging these values into the deviation bound in Theorem 3.4.4 establishes the claim.

C.1.8 Proof of Theorem 3.4.6

In a similar manner to the proof of Theorem 3.4.5, we proceed to specify each term that

constitutes the bound in Theorem 3.4.1. To begin with, recall that we choose τ as

τ ≍ ν
1/p
p

(
n

log6 n

)2γ∗(1−ζp)/(2γ∗+ζp)

with ζp = 1− 1
2p−1

.

Then, for all sufficiently large n satisfying

(
n

log6 n

) γ∗
2γ∗+ζp

≳ max
{

ν
1/p
p ,M0/ν

1/p
p
}p−1/2

, (C.24)

we have τ ≳ ν
2/p
p and τ ≥ c4. Furthermore, we have τν

−1/p
p ≲ n. Thus, following a similar

argument in the proof of Theorem 3.4.5 yields

ηs = (ν
1/p
p +

√
τ)

√
(LN)2 log(LN) log(n2τν

−1/p
p )

n
≤C1(c1c2)

3/2√
τ
(L0N0) log3 n√

n

≤C2(c1c2)
3/2

ν
1/(2p)
p

(
log6 n

n

) γ∗ζp
2γ∗+ζp
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for some universal constants C1,C2 > 0. In addition, we have

ηb =
νp

(τ/2)p−1 ≲ ν
1/p
p

(
log6 n

n

) 2γ∗(1−ζp)(p−1)
2γ∗+ζp

= ν
1/p
p

(
log6 n

n

) γ∗ζp
2γ∗+ζp

,

and there exist universal constants C3,C4 > 0 such that

δs =

√
Pdim(Fn) logn

n
≤C3

√
(LN)2 log(LN) logn

n
≤C4(c1c2)

3/2
(

log6 n
n

) γ∗
2γ∗+ζp

≤C4(c1c2)
3/2
(

log6 n
n

) γ∗ζp
2γ∗+ζp

, (C.25)

where the first inequality follows from Lemma C.2.4. Regarding the approximation error ηa,

Proposition 3.2.1 implies that there exists a universal positive constant C5 satisfying

ηa = inf
g∈Gn
∥g−g0∥2 ≤ c3(L0N0)

−2γ∗ ≤C5c3

(
log6 n

n

)γ∗ζp/(2γ∗+ζp)

∀g0 ∈H (d, l,M0,P).

By the definition, the optimization error ηopt ≤ ηAH
n . Next, we apply Theorem 3.4.4 to find an

upper bound of ∥ f − f0∥4 for f ∈S (δopt). By the definition, δopt ≤ ηAH
n , and following the

same argument for deriving an upper bound of the approximation ηa gives

inf
f∈Fn
∥ f − f0∥2 ≤C5c3

(
log6 n

n

)γ∗ζp/(2γ∗+ζp)

.

Combining the two bounds with (C.25) and applying Theorem 3.4.4, we have for any f0 ∈

H (d, l,M0,P) that

P

[
sup

f∈S (δopt)

∥ f − f0∥2 ≥C6

{
max

(
ν

1/p
p ,1

)
·
(

log6 n
n

)γ∗ζp/(2γ∗+ζp)

+

√
u
n

}]
≲ e−u,
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where C6 has a polynomial dependence on tmax. Since ∥ f0∥∞ ≤ M0 and ∥ f∥∞ ≤ M0 for any

f ∈Fn, this implies

P

[
sup

f∈S (δopt)

∥ f − f0∥2
4 ≥ 2M0 ·C6

{
max

(
ν

1/p
p ,1

)
·
(

log6 n
n

)γ∗ζp/(2γ∗+ζp)

+

√
u
n

}]
≲ e−u.

Finally, under the scaling condition C.24, we have

(ν
1/p
p +

√
τ)

√
u
n
≲
√

τ

√
u
n
≲ ν

1/(2p)
p

√
u

n(2γ∗+1)ζp/(4γ∗+2ζp)
≤ ν

1/(2p)
p

√
u

nζp
.

Putting the pieces together into the bound (3.15), there exists c11 > 0 with a polynomial depen-

dence on tmax satisfying

P

{
sup

f∈Sn(δopt),g∈Tn,τ (ηopt; f )
α∥g−g0∥2 ≥ c11

[
η

AH
n +max

{
ν

1/(2p)
p ,1

}√ u
nζp

]}
≲ e−u.

This concludes the proof of the claim.

C.1.9 Proof of Theorem 3.4.7

To apply Theorem 3.4.2, we follow a similar line of argument in the proof of Theo-

rem 3.4.6. To begin with, from the choice of L and N, there exist some positive constants

C1,C2 > 0 satisfying

Vn =

√
(LN)2 log(LN) logn

n
≤C1(c1c2)

3/2 (L0N0) log3 n√
n

≤C2(c1c2)
3/2
(

log6 n
n

) γ∗
2γ∗+ξp

. (C.26)
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Given that n is sufficiently large so that Vn ≤ 1, we have

ηs = ν
1/p
p Vn +ν

1/(2p)
p V 1−1/p

n ≤ 2C2(c1c2)
3/2 max

{
ν

1/p
p ,ν

1/(2p)
p

}
·
(

log6 n
n

) γ∗ξp
2γ∗+ξp

≤ 2C2(c1c2)
3/2 max

(
ν

1/p
p ,1

)
·
(

log6 n
n

) γ∗ξp
2γ∗+ξp

.

Furthermore, Proposition 3.2.1 implies

ηa ≤C3c3

(
log6 n

n

)γ∗ξp/(2γ∗+ξp)

,

and the optimization error satisfies ηopt ≤ ηLS
n . Turning to deriving a high-probability bound of

∥ f − f0∥4 for f ∈S (δopt), note that δopt ≤ ηLS
n and

inf
f∈Fn
∥ f − f0∥2 ≤C4c3

(
log6 n

n

)γ∗ξp/(2γ∗+ξp)

∀ f0 ∈H (d, l,M0,P).

Combining these two bounds with (C.26), Theorem 3.4.4 implies that there exists a constant C5

with a polynomial dependence on tmax satisfying

P

[
sup

f∈S (δopt)

∥ f − f0∥2 ≥C5

{
max

(
ν

1/p
p ,1

)
·
(

log6 n
n

)γ∗ξp/(2γ∗+ξp)

+

√
x
n

}]
≲ e−x

for any x≥ 1. Taking x = n ·u{log6(n)/n}2γ∗ξp/(2γ∗+ξp) ≥ n1/p in this bound and recalling the

boundedness of Fn and f0, we further have

P

{
sup

f∈S (δopt)

∥ f − f0∥2
4 ≥ 4C5M0

√
u ·max

(
ν

1/p
p ,1

)( log6 n
n

)γ∗ξp/(2γ∗+ξp)
}

≲ e−n1/p
.

Remark that it suffices to consider the case u ≤ n2. Otherwise, the deviation bound becomes

trivial by the uniform boundedness of g0 and Gn. Then, putting the pieces together and applying

Theorem 3.4.2, there exists a positive constant c12 with a polynomial dependence on tmax, which
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satisfies

P

[
sup

f∈Sn(δopt),g∈Tn,τ (ηopt; f )
α∥g−g0∥2 ≥ c12 ·uη

LS
n

]
≲ e−nV 2

n + e−n1/p
+

1
u2p

≲ e−C6n1/p
+

1
up

≲
1

n2p +
1
up

≲
1
up

for sufficiently large n and 1≤ u≤ n2. This proves the theorem.

C.1.10 Proof of Theorem 3.4.8

By following a similar argument as presented in the proof of Theorem 3.4.6, the theorem

can be readily derived from Proposition 3.2.1, Theorem 3.4.5 and Theorem 3.4.3.

C.1.11 Proof of Proposition 3.2.1

The following ReLU network approximation result for the function class H β ([0,1]d,M0)

plays a crucial role in the proof of Proposition 3.2.1.

Lemma C.1.9 (Theorem 3.3 in Jiao et al. (2023)). For any C0 > 0, assume f ∈H β ([0,1]d,C0)

with β = r+ s, r = ⌊β⌋ ∈ N0 and s ∈ (0,1]. For any L0,N0 ∈ N and δ ∈ (0,1/(3B)] with B =

⌈(L0N0)
2/d⌉, there exists a function φ ∈FDNN(d,L,N) with depth L = 21(r+1)2L0⌈log2(8L0)⌉

and width N = 38(r+1)2dr+1N0⌈log2(8N0)⌉ such that

| f (xxx)−φ(xxx)| ≤ 19C0(r+1)2dr+(β∨1)/2(L0N0)
−2β/d

for all xxx ∈ [0,1]d \Ω([0,1]d,B,δ ), where

Ω([0,1]d,B,δ ) =
d⋃

j=1

{
xxx = (x1, . . . ,xd)

T ∈ [0,1]d : x j ∈
B−1⋃
b=1

(b/B−δ ,b/B)
}
.

234



We also need the following lemma which is derived from the discussions in Section B.1

of Fan et al. (2022).

Lemma C.1.10. Assume that gi ∈ FDNN(d,Li,Ni) for 1 ≤ i ≤ t for some t ∈ N and h ∈

FDNN(t,L,N). Then, we have

h(g1, . . . ,gt) ∈FDNN

(
d,L+ max

1≤i≤t
Li,N∨

t

∑
i=1

Ni

)
.

The proof of Proposition 3.2.1 is based on and refines the argument presented in the proof

of Proposition 3.5 in Fan et al. (2022). The primary distinction lies in the use of Lemma C.1.9,

which results in a polynomial dependence on tmax for the prefactors in our approximation bound

and the width N. In contrast, the approximation error from Proposition 3.5 in Fan et al. (2022)

exhibits an exponential dependence on tmax. Furthermore, the proof of Proposition 3.2.1 requires

a more delicate analysis to manage unfavorable subsets in which the approximation bound is not

valid.

Proof of Proposition 3.2.1. To begin with, define βmax = sup(β ,t)∈P β and tmax = sup(β ,t)∈P t.

We first show that there exist positive constants c1 – c3 that depend on d polynomially such that

for any f0 ∈H (d, l,M0,P) and δ0 ∈ (0,1), there exists a neural network

f ∗ ∈FDNN(d,c1⌈L0 logL0⌉,c2⌈N0 logN0⌉,M0)

such that

| f0(xxx)− f ∗(xxx)| ≤ c3(L0N0)
−2γ∗ for all xxx ∈ [0,1]d \Ξ0, (C.27)

where Ξ0 ⊆ [0,1]d is defined below and the Lebesgue measure of Ξ0 is less than δ0.

STEP 1. CONSTRUCTION OF NEURAL NETWORKS. For a fixed f0 ∈H (d, l,M0,P) with

l > 1, we denote h(l)1 (xxx) = f0(xxx). By the definition of H (d, l,M0,P), h(l)1 (xxx) is recursively
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computed consisting of various hierarchical interaction models at level i ∈ {1, . . . , l−1}. Let Ri

denote the number of hierarchical composition models at level i, which are necessary to compute

h(l)1 . For each level i ∈ {1, . . . , l}, we denote h(i)j : Rd → R to be the j-th ( j ∈ {1, . . . ,Ri})

hierarchical composition model at the i-th level. From the definition, each function h(i)j depends

on functions at level i−1 through a function g(i)j ∈H β
(i)
j (Rt(i)j ,M0) with (β

(i)
j , t(i)j ) ∈P . Then,

h(l)1 is recursively described as

h(i)j (xxx) = g(i)j

(
h(i−1)

∑
j−1
k=1 t(i)k +1

(xxx), . . . ,h(i−1)

∑
j
k=1 t(i)k

(xxx)
)

(C.28)

for j ∈ {1, . . . ,Ri} and i ∈ {2, . . . , l}, and

h(1)j (xxx) = g(1)j

(
x j1, . . . ,x j

t(1)j

)

for some { j1, . . . , j
t(1)j
} ⊂ {1, . . . ,d} and xxx ∈ [0,1]d . Furthermore, we can recursively calculate

that

Rl = 1 and Ri =
Ri+1

∑
j=1

t(i+1)
j for i ∈ {1, . . . , l−1},

so that Ri ≤ t l−i
max for i ∈ {1, . . . , l}.

To approximate f0, we construct a sequence of deep ReLU neural networks, approxi-

mating the sequence of functions h(i)j . For the given δ0, we start with i = 1 and j ∈ {1, . . . ,R1}.

Note that it suffices to approximate each function g(1)j on the domain [0,1]t
(1)
j . Define B(1)

j =

⌈(L0N0)
2/t(1)j ⌉ and choose

δ
(1)
j = δ0/(3l ·R1t(1)j B(1)

j ) ∈ (0,1/(3B(1)
j )].

By applying Lemma C.1.9 with C0 = M0,β = β
(1)
j and δ = δ

(1)
j , there exists a function g̃(1)j in
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FDNN(t
(1)
j ,L(1)

j ,N(1)
j ) with some L(1)

j ,N(1)
j ∈ N such that

∣∣g̃(1)j (yyy)−gs
j(yyy)
∣∣≤C(1)

j (L0N0)
−2β

(1)
j /t(1)j ≤C(1)

j (L0N0)
−2γ∗ (C.29)

for all yyy ∈ [0,1]t
(1)
j \Ω([0,1]t

(1)
j ,B(1)

j ,u(1)j ), where C(1)
j = 19M0(⌊β

(1)
j ⌋+ 1)2d⌊β

(1)
j ⌋+β

(1)
j /2 and

Ω is defined in Lemma C.1.9. Here, the last inequality holds by the definition of γ∗ and

recall that P ∈ [1,∞)×N+ so that β
(1)
j ≥ 1. Remark that for any t ∈ N,L1 ≤ L2 and N1 ≤

N2, FDNN(t,L1,N1) ⊂ FDNN(t,L2,N2). Therefore, we can regard g̃(1)j to be a function in

FDNN(t
(1)
j ,L′,N′), where

L′ =C1⌈L0 logL0⌉ and N′ =C2⌈N0 logN0⌉

with C1 = 63(⌊βmax⌋+1)2 and C2 = 114(⌊βmax⌋+1)2t⌊βmax⌋+1
max . Remark that the range of g̃(1)j

may not be contained in [−M0,M0]. To correct this, we truncate each neural networks g̃(1)j as

ĝ(1)j := max[min{g̃(1)j (zzz),M0},−M0] = σ(2M0−σ(M0− g̃(1)j (zzz)))−M0,

where σ(·) is the ReLU activation function. Note that if g ∈FDNN(t,L1,N1) for some t,L1,N1 ∈

N, then for any a,b ∈ R, aσ(g)+ b ∈FDNN(t,L1 + 1,N1). Therefore, ĝ(1)j ∈FDNN(t
(1)
j ,L′+

2,N′). Now, we define

ĥ(1)j (xxx) = ĝ(1)j

(
x j1, . . . ,x j

t(1)j

)
for xxx ∈ [0,1]d.
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Since ∥g(1)j ∥∞ ≤M0, (C.29) implies that

∣∣ĥ(1)j (xxx)−h(1)j (xxx)
∣∣= ∣∣∣∣ĝ(1)j

(
x j1, . . . ,x j

t(1)j

)
−g(1)j

(
x j1, . . . ,x j

t(1)j

)∣∣∣∣
≤C(1)

j (L0N0)
−2γ∗

≤C3(L0N0)
−2γ∗ (C.30)

for all xxx ∈ [0,1]d \Ξ
(1)
j , where C3 is defined as

C3 = 19 ·2⌊βmax⌋M⌊βmax⌋+1
0 (⌊βmax⌋+1)2t⌊βmax⌋+βmax/2

max ., (C.31)

and

Ξ
(1)
j =

t(1)j⋃
k=1

{
xxx = (x1, . . . ,xd)

T ∈ [0,1]d : xk ∈
B(1)

j −1⋃
b=1

(b/B(1)
j −δ ,b/B(1)

j )

}
.

Note that the Lebesgue measure of ∪R1
j=1Ξ

(1)
j is not larger than δ0/(3l).

Next, we recursively construct a neural network ĥ(i)j for i ∈ {2, . . . , l} and j ∈ {1, . . . ,Ri}

to approximate h(i)j . Suppose that ĥ(i−1)
j′ is defined for j′ ∈ {1, . . . ,Ri−1}. Define B(i)

j =

⌈(L0N0)
2/t(i)j ⌉ and choose δ

(i)
j ∈ (0,1/(3B(i)

j )] to be determined. Note that it suffices to ap-

proximate g(i)j on the domain [−M0,M0]
t(i)j . Define the function

ḡ(i)j (zzz) = g(i)j (2M0zzz−M0) for zzz ∈ [0,1]t
(i)
j .

Then, it is easy to see that ḡ(i)j is contained in H β
(i)
j ([0,1]t

(i)
j ,2β

(i)
j M

β
(i)
j +1

0 ), and satisfies

g(i)j (yyy) = ḡ(i)j

(
yyy+M0

2M0

)
for yyy ∈ [−M0,M0]

t(i)j . (C.32)

Applying Lemma C.1.9 with C0 = 2β
(i)
j M

β
(i)
j +1

0 ,β = β
(i)
j and δ = δ

(i)
j , a similar argument as in
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the case of i = 1 gives a function g̃(i)j ∈FDNN(t
(i)
j ,L′,M′) such that

∣∣g̃(i)j (zzz)− ḡ(i)j (zzz)
∣∣≤C3(L0N0)

−2γ∗

for all zzz ∈ [0,1]t
(i)
j \Ω([0,1]t

(i)
j ,B(i)

j ,δ
(i)
j ). To ensure that the range of the approximating neural

network is in [−M0,M0], we truncate g̃(i)j as

ĝ(i)j := max[min{g̃(i)j (zzz),M0},−M0] = σ(2M0−σ(M0− g̃(i)j (zzz)))−M0,

so that ĝ(i)j ∈FDNN(t
(i)
j ,L′+2,N′). Also, by (C.32), we have

∣∣∣∣ĝ(i)j

(
yyy+M0

2M0

)
− ḡ(i)j

(
yyy+M0

2M0

)∣∣∣∣≤C3(L0N0)
−2γ∗ (C.33)

for all yyy ∈ [−M0,M0]
t(i)j except the small subset. Now, we construct a neural network as

ĥ(i)j (xxx) = ĝ(i)j

( ĥ(i−1)

∑
j−1
k=1 t(i)k +1

(xxx)+M0

2M0
, . . . ,

ĥ(i−1)

∑
j
k=1 t(i)k

(xxx)+M0

2M0

)
,

which approximates h(i)j defined in (C.28). To determine the value of δ
(i)
j given neural networks

ĥ(i−1)
j′ for 1≤ j′ ≤ Ri−1, consider the map rrr(i)j : [0,1]d → Rt(i)j defined as

rrr(i)j (xxx) :=

( ĥ(i−1)

∑
j−1
k=1 t(i)k +1

(xxx)+M0

2M0
, . . . ,

ĥ(i−1)

∑
j
k=1 t(i)k

(xxx)+M0

2M0

)
for xxx ∈ [0,1]d.

Then, we choose δ
(i)
j such that the Lebesgue measure of ∪Ri

j=1Ξ
(i)
j is less than δ0/l, where

Ξ
(i)
j :=

(
rrr(i)j
)−1(

Ω
(
[0,1]t

(i)
j ,B(i)

j ,δ
(i)
j
))
.

The existence of δ
(i)
j is guaranteed, as each rrr(i)j is a continuous function. Finally, we set a neural
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network f ∗ = ĥ(l)1 recursively, which approximates f0. Remark that by the definition, we have

∥ f ∗∥∞ ≤M0. Also, denoting

Ξ0 = ∪l
i=1∪

Ri
j=1 Ξ

(i)
j ,

it follows that the Lebesgue measure of Ξ0 is less than δ0 by construction.

STEP 2. CALCULATING WIDTHS AND DEPTHS. To calculate the width and depth of f ∗, we

sequentially specify width and depth of ĥ(i)j from i = 1 to i = l. For i = 1, from the construction of

ĥ(1)j , we have ĥ(1)j ∈FDNN(t
(1)
j ,L′+2,N′). Recursively, for 2≤ i≤ l, combining Lemma C.1.10

with the inequality Ri ≤ t l−i
max implies that ĥ(i)j ∈FDNN(t

(i)
j , i(L′+2), t i−1

maxN′). Therefore, we have

f ∗ ∈F (d,L,N), where the depth L satisfies

l(L′+2)≤ c1⌈L0 logL0⌉=: L

with c1 = 2lC1, and the width N satisfies

t l−1
maxN′ ≤ c2⌈N0 logN0⌉=: N,

where c2 = t l−1
maxC2.

STEP 3. CALCULATING APPROXIMATION ERRORS. Now, we calculate the approximation error

bound of f ∗. To this end, we show by induction on i that

∣∣ĥ(i)j (xxx)−h(i)j (xxx)
∣∣≤C3(M0t1/2

max +1)i−1(L0N0)
−2γ∗ for xxx ∈ [0,1]d \Ξ0. (C.34)

Starting with the case of i = 1, (C.34) holds for j = 1, . . . ,R1 by (C.30). Suppose that (C.34)

holds for some i−1 and every j = 1, . . . ,Ri−1. Denoting

www =

(
h(i−1)

∑
j−1
k=1 t(i)k +1

(xxx), . . . ,h(i−1)

∑
j
k=1 t(i)k

(xxx)
)

and ŵww =

(
ĥ(i−1)

∑
j−1
k=1 t(i)k +1

(xxx), . . . , ĥ(i−1)

∑
j
k=1 t(i)k

(xxx)
)
,
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we have that for any xxx ∈ [0,1]d ,

∣∣ĥ(i)j (xxx)−h(i)j (xxx)
∣∣= ∣∣∣ĝ(i)j

(ŵww+M0

2M0

)
− ḡ(i)j

(www+M0

2M0

)∣∣∣
≤
∣∣∣ĝ(i)j

(ŵww+M0

2M0

)
− ḡ(i)j

(ŵww+M0

2M0

)∣∣∣+ ∣∣∣ḡ(i)j

(ŵww+M0

2M0

)
− ḡ(i)j

(www+M0

2M0

)∣∣∣.
Now, (C.33) gives that

∣∣∣ĝ(i)j

(ŵww+M0

2M0

)
− ḡ(i)j

(ŵww+M0

2M0

)∣∣∣≤C3(L0N0)
−2γ∗,

when xxx ∈ [0,1]d \Ξ0. Moreover, note that P ⊆ [1,∞)×N so that g(i)j is M0-Lipschitz by the

definition of the Hölder function class. Therefore, when xxx ∈ [0,1]d \Ξ0, we have

∣∣∣ḡ(i)j

(ŵww+M0

2M0

)
− ḡ(i)j

(www+M0

2M0

)∣∣∣= |g(i)j (ŵww)−g(i)j (www)|

≤M0∥ŵww−www∥2

≤M0t1/2
max∥ŵww−www∥∞

≤M0t1/2
max(1+M0t1/2

max)
i−2C3(L0N0)

−2γ∗ ,

where the last inequality follows from the induction hypothesis. Together with earlier inequalities,

we have for xxx ∈ [0,1]d \Ξ0 that

∣∣ĥ(i)j (xxx)−h(i)j (xxx)
∣∣≤C3(L0N0)

−2γ∗+M0t1/2
max(1+M0t1/2

max)
i−2C3(L0N0)

−2γ∗

≤C3(1+M0t1/2
max)

i−1(L0N0)
−2γ∗.

Therefore, inductively, we have

| f ∗(xxx)− f0(xxx)|= |ĥ
(l)
1 (xxx)−h(l)1 (xxx)| ≤C3(1+M0t1/2

max)
l−1︸ ︷︷ ︸

=:c3

(L0N0)
−2γ∗
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for any xxx ∈ [0,1]d \Ξ0, which establishes the claim. Remark that from the definition of C3

in (C.31), c3 also has a polynomial dependence on tmax.

To complete the proof, fix a function f0 ∈H (d, l,M0,P) and ε > 0. Since the given

measure µ is absolutely continuous with respect to the Lebesgue measure, there exists δ0 ∈ (0,1)

satisfying that any measurable set E whose Lebesgue measure is less than δ0 satisfies µ(E )< ε .

Then, there exist a measurable set Ξ0 whose Lebesgue measure is less than δ0, and a neural

network f ∗ ∈FDNN(d,c1⌈L0 logL0⌉,c2⌈N0 logN0⌉,M0) which satisfies (C.27). Therefore, it

follows that

{∫
[0,1]d
| f0(xxx)− f ∗(xxx)|2µ(dxxx)

}1/2

≤
{∫

[0,1]d\Ξ0

| f0(xxx)− f ∗(xxx)|2µ(dxxx)
}1/2

+

{∫
Ξ0

| f0(xxx)− f ∗(xxx)|2µ(dxxx)
}1/2

≤ c3(L0N0)
−2γ∗+2M0ε

1/2.

Since ε is arbitrary, this completes the proof.

C.1.12 Proof of Proposition 3.4.1

For simplicity, we only consider the case when τ = 0.5. Also, we assume that Xi

follows the uniform distribution and εi is independent with Xi and follows the normal distri-

bution N (0,σ2) with σ2 = (2π p2)−1. Remark that pεi|Xi(0) = p. When t∗ ≤ d, we have

H β ∗([0,1]t
∗
,M0)⊆H (d, l,P,M0), which implies

inf
f̂n

sup
f0∈H (d,l,P,M0)

X∼PX

E∥ f̂n− f0∥2 ≥ inf
f̂n

sup
f0∈H β∗([0,1]t

∗
,M0)

X∼Unif([0,1]d)

E∥ f̂n− f0∥2.
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Here, the supremum on the left-hand side is taken over all data generating processes (X ,Y )

satisfying

Y = f0(X)+ ε,

where f0 ∈H (d, l,P,M0), and the quantile regression noise ε satisfies P(ε ≤ 0|X) = 0.5 and

Condition 3. The supremum on the right-hand side is taken over all data generating processes

(X ,Y ) with f0 ∈H β ∗([0,1]t
∗
,M0) and ε ∼N (0,σ2). Then, applying Theorem 3.2 of Györfi et

al. (2002) establishes the claim.

C.2 Proof of Technical Lemmas

We frequently utilize Talagrand’s inequality throughout the proofs of technical lemmas

to obtain non-asymptotic bounds of suprema of empirical processes. The following refined

Talagrand inequality is derived from Theorem 7.3 in Bousquet (2003) combining with the basic

inequalities that
√

a+b≤
√

a+
√

b and 2
√

ab≤ a+b for any a,b≥ 0.

Lemma C.2.1 (Talagrand’s inequality). Let X1, . . . ,Xn be i.i.d. random variables from some

distribution PX and F be a measurable class of functions such that E f (X) = 0 for any f ∈F .

Assume sup f∈F ∥ f∥∞ ≤ A and let σ be a positive constant such that σ2 ≥ sup f∈F E f 2(Xi).

Then, for any x > 0,

P

[
sup
f∈F

∣∣∣∣1n n

∑
i=1

f (Xi)

∣∣∣∣≥ 2E

{
sup
f∈F

∣∣∣∣1n n

∑
i=1

f (Xi)

∣∣∣∣
}
+σ

√
2x
n
+

4Ax
3n

]
≤ e−x.

We next introduce the definition of uniform covering number followed by Lemma C.2.2

which bounds the uniform covering number of a function class with the finite pseudo dimension.

Definition C.2.1 (Uniform covering number). Let n ∈N+ and F = { f : X →R} be a function

class. For a given ε > 0, the uniform covering number under L∞-norm for the function class F
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is defined as

N∞(ε,F ,n) = sup
(x1,...,xn)∈X n

N(ε,F |x1,...,xn,∥ · ∥∞),

where F |x1,...,xn = {( f (x1), . . . , f (xn))
T : f ∈F} ⊂ Rn and N(ε,W ,∥ · ∥∞) is the ε-covering

number of a subset W ⊂ Rn under the supremum norm ∥ · ∥∞.

Lemma C.2.2 (Uniform covering number bound). Let F be a set of real functions bounded by

A≥ 1 with finite pseudo dimension Pdim(F )< ∞. For any ε ∈ (0,A), we have

logN∞(ε,F ,n)≤ Pdim(F ) · log(enA/ε).

Proof. By Theorem 12.2 of Anthony and Bartlett (1999), we have

N∞(ε,F ,n)≤
Pdim(F )

∑
i=1

( n

i

)(
A
ε

)i

.

Therefore, when n ≥ Pdim(F ), it follows that N∞(ε,F ,n) ≤ {enA/(εPdim(F )}Pdim(F ), so

the inequality holds. Meanwhile, when n < Pdim(F ), we have

N∞(ε,F ,n)≤
n

∑
i=1

( n

i

)(
A
ε

)i

=

(
1+

A
ε

)n

,

which establishes the claim since ε ∈ (0,A).

We also need the following maximal inequality to prove technical lemmas.

Lemma C.2.3 (A maximal inequality (Chernozhukov, Chetverikov and Kato, 2014)). Denote

S = [0,1]d ×R and let F be a measurable class of functions S→ R, to which a measurable

envelope F is attached. Assume that ∥F∥2 < ∞ and let σ2 > 0 be any positive constant such that

sup f∈F E f (X ,ε)2 ≤ σ2 ≤ ∥F∥2
2. Furthermore, we assume that there exists constants A≥ e and
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v≥ 1 such that supQ N(ε∥F∥Q,2,F ,∥ · ∥Q,2)≤ (A/ε)v for any 0 < ε ≤ 1, where the supremum

is taken over all n-discrete probability measures Q on S and N(ε,F ,∥ · ∥Q,2) is the ε-covering

number of F under the L2(Q) norm. Then,

E

{
sup
f∈F

∣∣∣∣ 1√
n

n

∑
i=1

f (Yi,Xi)−E f (Yi,Xi)

∣∣∣∣
}

≲ σ

√
v log

(
A∥F∥2

σ

)
+

v∥F̄∥2√
n

log
(

A∥F∥2

σ

)
,

where F̄ = max1≤i≤n F(Xi,εi).

Finally, the next lemma bounds the pseudo dimension of the class of deep ReLU neural

networks, which allows us to apply Lemma C.2.2 when F is a class of ReLU deep neural

networks.

Lemma C.2.4. Let F = FDNN(d,L,N,M) be the function class of deep ReLU neural networks

truncated at M > 0. Then, it follows that

Pdim(F )≲ (LN)2 log(LN).

Proof. Proof of Lemma C.2.4. Denote W to be the number of all parameters of the network

FDNN(d,L,N). Then, we have Pdim(FDNN(d,L,N))≲WL log(W ) by Theorem 7 of Bartlett et

al. (2019). Since W ≲ LN2, it follows that

Pdim(FDNN(d,L,N))≲ L2N2 log(LN).

To calculate the pseudo dimension of the truncated neural network, note that the truncation

function TM(·) is a non-decreasing function. Therefore, applying Theorem 11.3 of Anthony and

Bartlett (1999) completes the proof.
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C.2.1 Proof of Lemma C.1.1

To begin with, we fix real-valued functions f and g. By the definition of the joint excess

risk, we can represent Rτ as follows:

Rτ( f ,g) = Eℓτ(Zi( f )−αg(Xi)).

We first derive the lower bound of the excess joint risk Rτ . Recall that ℓ′τ = ψτ , and ψτ

is absolutely continuous and has a derivative ψ ′τ(t) = 1(|t| ≤ τ). From the fundamental theorem

of calculus, it follows that for every a,b ∈ R,

ℓτ(a+b)− ℓτ(a) = ψτ(a)b+
∫ b

0
ψ
′
τ(a+ t)(b− t)dt.

Therefore, denoting ∆g(Xi) = g0(Xi)−g(Xi), it follows that

Rτ( f ,g)−Rτ( f ,g0) = Eℓτ(Zi( f )−αg(Xi))−Eℓτ(Zi( f )−αg0(Xi))

= E
{

ψτ(Zi( f )−αg0(Xi)) ·α∆g(Xi)
}︸ ︷︷ ︸

=:I

+E

[∫
α∆g(Xi)

0
ψ
′
τ(Zi( f )−αg0(Xi)+ t){α∆g(Xi)− t}dt

]
︸ ︷︷ ︸

=:II

. (C.35)

We next bound I and II separately.

We first bound the term I. Let EXi be the conditional expectation given Xi. Observe that

we can write

EXi

{
ψτ(Zi( f )−αg0(Xi))

}
= EXi

{
ψτ(Zi( f )−αg0(Xi))−ψτ(ωi)

}
+EXiψτ(ωi). (C.36)

To bound the first term on the right-hand side of (C.36), the fundamental theorem of calculus
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and the definition of ωi in (C.1) imply

EXi

{
ψτ(Zi( f )−αg0(Xi))−ψτ(ωi)

}
= EXi

{∫ Zi( f )−Zi( f0)

0
ψ
′
τ(ωi + t)dt

}
= EXi

[∫ Zi( f )−Zi( f0)

0

{
1−1(|ωi + t|> τ)

}
dt
]
. (C.37)

Denote ∆ f (Xi) = f0(Xi)− f (Xi), and pεi|Xi to be the conditional density function of εi given Xi.

Then, we have

EXi

{∫ Zi( f )−Zi( f0)

0
1 ·dt

}
= EXi

{
Zi( f )−Zi( f0)

}
= E

[
{εi +∆ f (Xi)}1{εi ≤−∆ f (Xi)}−α∆ f (Xi)− εi1(εi ≤ 0)

]
=
∫

∆ f (Xi)

−∞

{
t +∆ f (Xi)

}
pεi|Xi(t)dt−

∫ 0

−∞

t pεi|Xi(t)dt−α∆ f (Xi)

=
∫ −∆ f (Xi)

0
t pεi|Xi(t)dt +∆ f (Xi)

∫ −∆ f (Xi)

0
pεi|Xi(t)dt,

where the last line follows from the model assumption P(εi ≤ 0|Xi) = α . Combining this with

Condition 1 gives

∣∣∣∣∣EXi

{∫ Zi( f )−Zi( f0)

0
1 ·dt

}∣∣∣∣∣=
∣∣∣∣∣
∫ −∆ f (Xi)

0

{
t +∆ f (Xi)

}
pε|Xi(t)dt

∣∣∣∣∣≤ p̄
2
{

∆ f (Xi)
}2
. (C.38)

To establish a bound of the remaining term on the right-hand side of (C.37), we find an upper

bound of Zi( f )−Zi( f0). We first assume that ∆ f (Xi)≤ 0. From the definition of Zi( f ), we have

∣∣Zi( f )−Zi( f0)
∣∣

=
∣∣{Yi− f (Xi)}1{Yi ≤ f (Xi)}−{Yi− f0(Xi)}1{Yi ≤ f0(Xi)}+α{ f (Xi)− f0(Xi)}

∣∣
≤
∣∣{∆ f (Xi)}1(Yi ≤ f0(Xi)}+{Yi− f (Xi)}1{ f0(Xi)< Yi ≤ f (Xi)}−α∆ f (Xi)

∣∣
≤
∣∣∆ f (Xi)

∣∣,
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where the first inequality follows from the assumption ∆ f (Xi)≤ 0 and the second inequality is

derived from the following inequality

f0(Xi)− f (Xi)≤ {Yi− f (Xi)}1{ f0(Xi)< Yi ≤ f (Xi)} ≤ 0.

Exchanging the roles of f and f0 gives the same inequality when ∆ f (Xi)> 0, leading to

∣∣Zi( f )−Zi( f0)
∣∣≤ ∣∣∆ f (Xi)

∣∣= ∣∣ f (Xi)− f0(Xi)
∣∣. (C.39)

Therefore, we have

∣∣∣∣∣EXi

{∫ Zi( f )−Zi( f0)

0
1(|ωi + t|> τ)dt

}∣∣∣∣∣
≤ EXi

{∫ |∆ f (Xi)|

0
1(|ωi + t|> τ)dt

}
≤ EXi

{∫ |∆ f (Xi)|

0
1(|ωi|> τ/2)+1(|∆ f (Xi)|> τ/2)dt

}
= EXi

{∫ |∆ f (Xi)|

0
1(|ωi|> τ/2)dt

}
, (C.40)

where the last step follows, provided τ ≥ 4M0 so that |∆ f (Xi)|= | f (Xi)− f0(Xi)| ≤ 2M0 ≤ τ/2.

By Markov’s inequality and Condition 1, it follows that

P(|ωi|> τ/2|Xi)≤
EXi(|ωi|p)
(τ/2)p ≤

2pνp

τ p . (C.41)

Combining this with Fubini’s theorem gives

∣∣∣∣∣EXi

{∫ Zi( f )−Zi( f0)

0
1(|ωi + t|> τ)dt

}∣∣∣∣∣≤ 2pνp

τ p |∆ f (Xi)| ≤
2p−2νp

τ p−1 ,

where the last inequality follows given τ ≥ 8M0. Finally, for EXi{ψτ(ωi)}, note that |ψτ(t)−t|=
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(|t|− τ)1(|t|> τ). Since EXi(ωi) = 0, we obtain

∣∣EXi{ψτ(ωi)}
∣∣= ∣∣EXi

{
ψτ(ωi)−ωi

}∣∣
≤ EXi

{
(|ωi|− τ)1(|ωi|> τ)

}
≤ EXi(|ωi|p)

τ p−1 ≤
νp

τ p−1 . (C.42)

Putting the pieces into (C.36), we have

∣∣EXi

{
ψτ(Zi( f )−αg0(Xi))

}∣∣≤ p̄
2
{

∆ f (Xi)
}2

+
2p−1νp

τ p−1 ,

which, combined with Hölder’s inequality, further implies

|I| ≤ α∥g−g0∥2

(
p̄
2
∥ f − f0∥2

4 +
2p−1νp

τ p−1

)
, (C.43)

when τ ≥ 8M0.

We next turn to bound II. By the definition of ψ ′τ and ωi, we have

II = E
[∫

α∆g(Xi)

0
1{|Zi( f )−αg0(Xi)+ t| ≤ τ}{α∆g(Xi)− t}dt

]
= E

{∫
α∆g(Xi)

0

[
1−1{|ωi +Zi( f )−Zi( f0)+ t|> τ}

]
{α∆g(Xi)− t}dt

}
.

Furthermore, |Zi( f )−Zi( f0)| ≤ | f (Xi)− f0(Xi)| ≤ 2M0 from (C.39). Therefore, we obtain

EXi

{∫
α∆g(Xi)

0

[
1−1{|ωi +Zi( f )−Zi( f0)+ t|> τ}

]
{α∆g(Xi)− t}dt

}
≥ EXi

{∫
α∆g(Xi)

0

[
1−1{|ωi|> τ/2}−1{|∆ f (Xi)|+ |α∆g(Xi)|> τ/2}

]
{α∆g(Xi)− t}dt

}
= EXi

{∫
α∆g(Xi)

0

[
1−1{|ωi|> τ/2}

]
{α∆g(Xi)− t}dt

}
, (C.44)
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as long as τ ≥ 8M0. By Markov’s inequality and Condition 1,

P(|ωi|> τ/2|Xi)≤
2pνp

τ p ≤
1
2
,

provided that τ ≥ 2(2νp)
1/p. Therefore, taking the expectation, we obtain

II≥ E
[

α
2

{
∆g(Xi)

}2

2
{1−P(|ωi|> τ/2|Xi)}

]
≥ E

[
α2{∆g(Xi)

}2

4

]
=

α2∥g−g0∥2
2

4
, (C.45)

as long as τ ≥max{8M0,2(2νp)
1/p}.

Combining (C.43) with (C.45) yields that when τ ≥max{8M0,2(2νp)
1/p},

Rτ( f ,g)−Rτ( f ,g0)≥
α2

4
∥g−g0∥2

2−α∥g−g0∥2

(
p̄
2
∥ f − f0∥2

4 +
2p−1νp

τ p−1

)
.

Next, we derive the upper bound of the excess joint risk. From the decomposition (C.35),

we have the upper bound of the term |I| as in (C.43). In addition, 0≤ ψ ′τ(·)≤ 1, so that

II = E

[∫
α∆g(Xi)

0
ψ
′
τ(Zi( f )−αg0(Xi)+ t){α∆g(Xi)− t}dt

]

≤ E

[∫
α∆g(Xi)

0
{α∆g(Xi)− t}dt

]
=

α2

2
∥g−g0∥2

2. (C.46)

Therefore, we obtain

Rτ( f ,g)−Rτ( f ,g0)≤ E

[∫
α∆g(Xi)

0
ψ
′
τ(Zi( f )−αg0(Xi)+ t){α∆g(Xi)− t}dt

]

+
∣∣E{ψτ(Zi( f )−αg0(Xi)) ·α∆g(Xi)

}∣∣
≤ α2

2
∥g−g0∥2

2 +α∥g−g0∥2

(
p̄
2
∥ f − f0∥2

4 +
2p−1νp

τ p−1

)
,

which completes the proof.
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C.2.2 Proof of Lemma C.1.2

The proof follows a similar structure to that of Lemma C.1.1 with the exception that we

employ more refined bounds for (C.41) and (C.42) by utilizing the sub-Gaussian property of ωi.

Recall that EXi represents the conditional expectation given Xi. By Markov’s inequality,

we have

P(|ωi|> τ/2|Xi) = P{exp(ω2
i /σ

2
0 )> exp(τ2/(4σ

2
0 ))|Xi}

≤ e−t2/(4σ2
0 )EXi{exp(ω2

i /σ
2
0 )} ≤ 2e−τ2/(4σ2

0 ), (C.47)

where the last inequality follows from Condition 2. To find a refined bound of EXiψτ(ωi), note

that xex2/2 ≤ ex2
for any x≥ 0. Since EXiωi = 0, it follows that

∣∣EXiψτ(ωi)
∣∣= ∣∣EXi

{
ψτ(ωi)−ωi

}∣∣≤ EXi

{
|ωi|1(|ωi|> τ)

}
= σ0EXi

{
|ωi/σ0|1(|ωi/σ0|> τ/σ0)

}
= σ0EXi

[
|ωi/σ0|1

{
exp
(

ω2
i

2σ2
0

)
> exp

(
τ2

2σ2
0

)}]
≤ σ0e−τ2/(2σ2

0 )EXi

{
|ωi/σ0|exp

(
ω2

i

2σ2
0

)}
≤ σ0e−τ2/(2σ2

0 )EXi{exp(ω2
i /σ

2
0 )} ≤ 2σ0e−τ2/(2σ2

0 ). (C.48)

Based on these two bounds, we prove the lemma. Provided that τ ≥ 4M0, (C.40)

and (C.47) give

∣∣∣∣∣EXi

{∫ Zi( f )−Zi( f0)

0
1(|ωi + t|> τ)dt

}∣∣∣∣∣≤ EXi

{∫ |∆ f (Xi)|

0
1(|ωi|> τ/2)dt

}
≤ 2e−τ2/(2σ2

0 )|∆ f (Xi)|

≤ 4M0e−τ2/(2σ2
0 ),
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which, together with (C.36), (C.37), (C.38) and (C.48), further implies

∣∣E{ψτ(Zi( f )−αg0(Xi)) ·α∆g(Xi)
}∣∣

≤ α∥g−g0∥2

{
p̄
2
∥ f − f0∥2

4 +(4M0 +2σ0)e−τ2/(2σ2
0 )

}
. (C.49)

Next, we have from (C.44) that

E
[∫

α∆g(Xi)

0
1{|Zi( f )−αg0(Xi)+ t| ≤ τ}{α∆g(Xi)− t}dt

]
≥ E

{
EXi

[∫
α∆g(Xi)

0

{
1−1(|ωi|> τ/2)

}
{α∆g(Xi)− t}dt

]}
,

as long as τ ≥ 8M0. By (C.47), note that P(|ωi|> τ/2|Xi)≤ 1/2 provided that τ ≥ 2σ0
√

log4.

Therefore, the earlier expectation bound is further lower bounded as

E
[∫

α∆g(Xi)

0
1{|Zi( f )−αg0(Xi)+ t| ≤ τ}{α∆g(Xi)− t}dt

]
≥ E

[
α

2{∆g(Xi)}2

2
{1−P(|ωi|> τ/2|Xi)}

]
≥ α2∥g−g0∥2

4
.

Together, this bound, (C.49) and (C.35) give the lower bound of joint Huber loss.

For the upper bound of joint Huber loss, combining the decomposition (C.35) with (C.46)

and (C.49) yields the upper bound.

C.2.3 Proof of Lemma C.1.3

Recall the definition of ωi in (C.1). Denote

mg(Xi,εi) = ∆g(Xi)ψτ(ωi)
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for any g ∈ Gn. From the definition of ψτ(·) and the boundedness of g ∈ Gn and g0, we obtain

sup
g∈Gn(η)

|mg(Xi,εi)|= sup
g∈Gn(η)

|∆g(Xi)| · τ ≤ 2M0τ,

which further implies supg∈Gn(η) |mB
g (Xi,εi)− EmB

g (Xi,εi)| ≤ 4M0τ =: A. Moreover, since

ψτ(ωi)≤ |ωi|, it follows that

sup
g∈Gn(η)

E
{

mg(Xi,εi)
}2 ≤ sup

g∈Gn(η)

E{∆2
g(Xi)ω

2
i }

≤ ν
2/p
p sup

g∈Gn(η)

E{g(Xi)−g0(Xi)}2

≤ ν
2/p
p η

2,

where the second inequality follows from Jensen’s inequality. We thus have

sup
g∈Gn(η)

E
{

mg(Xi,εi)−Emg(Xi,εi)
}2 ≤ sup

g∈Gn(η)

E{mg(Xi,εi)}2 ≤ ν
2/p
p η

2 =: σ
2.

Denoting E(η) := Esupg∈Gn(η) |n−1
∑

n
i=1 mg(Xi)−Emg(Xi)|, Lemma C.2.1 implies

P

{
sup

g∈Gn(η)

∣∣∣∣1n n

∑
i=1

mg(Xi,εi)−Emg(Xi,εi)

∣∣∣∣≥ 2E(η)+σ

√
2x
n
+

4Ax
3n

}
≤ e−x (C.50)

for any x≥ 0.

To establish an upper bound of E(η), we first find an upper bound of the uniform covering

number for the function class Mn(η) := {mg : g ∈ Gn(η)}. For any g,g′ ∈ Gn(η), it follows that

∣∣mg(Xi,εi)−mg′(Xi,εi)
∣∣= ∣∣ψτ(εi)

{
∆g(Xi)−∆g′(Xi)

}∣∣≤ τ|g(Xi)−g′(Xi)|.
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Combining this with Lemma C.2.2 and Lemma C.2.4 yields

logN∞(ε,Mn(η),n)≤ logN∞(ε/(τ),Gn,n)

≲ log
(

2enM0τ

ε

)
(NL)2 log(NL). (C.51)

Now, let F(Xi,εi) := 2M0τ . Then, F is an envelop function of the function class Mn(η).

Denoting F̄ := max1≤i≤n F(Xi,εi) = F , we have

∥F∥Q,2 = ∥F∥2 = 2M0τ, and ∥F̄∥2 = 2M0τ

for any n-discrete probability measure Q. Therefore, for any n-discrete probability measure Q,

logN(ε∥F∥Q,2,Mn(η),∥ · ∥Q,2)≤ logN∞(ε∥F∥Q,2,Mn(η),n)≲ (LN)2 log(LN) log
(

en
ε

)
.

Combining this with Lemma C.2.3, it follows that for any η ≥ 1/n and τ/ν
1/p
p ≥ 1,

E(η)≲ σ ·LN

√
log(LN)

n
log
(

en ·2M0τ

σ

)
+

(LN)2 log(LN) ·2M0τ

n
log
(

en ·2M0τ

σ

)
≲

{
ν

1/p
p η ·LN

√
log(LN)

n
log
(

nτ

ν
1/p
p η

)
+

(LN)2 log(LN)τ

n
log
(

nτ

ν
1/p
p η

)}

≲

{
ν

1/p
p η ·LN

√
log(LN) log(n2τν

−1/p
p )

n
+

τ(LN)2 log(LN) log(n2τν
−1/p
p )

n

}
= (ν

1/p
p ηVn,τ,νp + τV 2

n,τ,νp
).

Therefore, there exists a universal constant C1 > 0 such that

E(η)≤C1 ·η(ν
1/p
p +

√
τ)Vn,τ,νp

for any η ≥max(
√

τVn,τ,νp,1/n). Also, if 0≤ x≤ nη2/τ , we have τx/n≤ η
√

τ
√

x/n. Putting
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the pieces together in (C.50), there exists a universal constant c15 > 0 such that for any τ/ν
1/p
p ≥

1,η ≥max(
√

τVn,τ,νp,1) and 0≤ x≤ nη2/τ ,

P

{
sup

g∈Gn(η)

∣∣∣∣1n n

∑
i=1

(1−E)mg(Xi,εi)

∣∣∣∣≥ c15 ·η(ν
1/p
p +

√
τ)

(
Vn,τ,νp +

√
x
n

)}
≤ e−x,

which completes the proof.

C.2.4 Proof of Lemma C.1.4

For each g ∈ Gn(η), define

mg(Xi,εi) :=
∫

α∆g(Xi)

0

{
ψτ(ωi + t)−ψτ(ωi)

}
dt,

and let Mn(η) := {m = mg : g ∈ Gn(η)}. To employ Lemma C.2.1, note that

sup
m∈Mn(η)

|m(Xi,εi)|= sup
g∈Gn(η)

∣∣∣∣∫ α∆g(Xi)

0

{
ψτ(ωi + t)−ψτ(ωi)

}
dt
∣∣∣∣

≤ sup
g∈Gn(η)

∣∣∣∣∫ α∆g(Xi)

0
|t|dt

∣∣∣∣≤ 2α
2M2

0 ,

where the first inequality follows from the Lipschitz property of ψτ(·). Thus, we have

sup
m∈Mn(η)

|m(Xi,εi)−Em(Xi,εi)| ≤ 4α
2M2

0 =: A.

Also, by the Lipschitz property of ψτ(·) and the boundedness, we have

sup
m∈Mn(η)

E
{

m(Xi,εi)
}2

= sup
g∈Gn(η)

E
[∫

α∆g(Xi)

0

{
ψτ(ωi + t)−ψτ(ωi)

}
dt
]2

≤ sup
g∈Gn(η)

E
{∫

α∆g(Xi)

0
|t|dt

}2

= sup
g∈Gn(η)

α4

4
E
{

g(Xi)−g0(Xi)
}4

≤ α
4M2

0 sup
g∈Gn(η)

E
{

g(Xi)−g0(Xi)
}2 ≤ α

4M2
0η

2,
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which further implies

sup
m∈Mn(η)

E
{

m(Xi,εi)−Em(Xi,εi)
}2 ≤ sup

m∈Mn(η)

E
{

m(Xi,εi)
}2 ≤ α

4M2
0η

2 =: σ
2.

Then, applying Lemma C.2.1 yields

P

{
sup

m∈Mn(η)

∣∣∣∣1n n

∑
i=1

m(Xi,εi)−Em(Xi,εi)

∣∣∣∣≥ 2E(η)+σ

√
2x
n
+

4Ax
3n

}
≤ e−x (C.52)

for any x≥ 0, where E(η) = Esupm∈Mn(η) |n−1
∑

n
i=1(1−E)m(Xi,εi)|.

We follow a similar argument as in the proofs of Lemma C.1.3 to derive a bound of E(η).

By the Lipschitz property of ψτ , we have for any g,g′ ∈ Gn that

∣∣mg(Xi,εi)−mg′(Xi,εi)
∣∣= ∣∣∣∣∫ α∆g(Xi)

α∆g′(Xi)

{
ψτ(ωi + t)−ψτ(ωi)

}
dt
∣∣∣∣

≤
∣∣∣∣∫ α∆g(Xi)

α∆g′(Xi)
|t|dt

∣∣∣∣= α2

2

∣∣{∆g(Xi)}2−
{

∆g′(Xi)
}2∣∣

≤ 2α
2M0

∣∣g(Xi)−g′(Xi)
∣∣.

Together with Lemma C.2.2 and Lemma C.2.4, we obtain for any 0 < ε < 4α2M2
0 that

logN∞(ε,Mn(η),n)≤ logN∞(ε/(2α
2M0),Gn,n)≲ (LN)2 log(LN) log(4α

2M2
0ne/ε).

We choose an envelope function F := 4α2M2
0 . Then, for any n-discrete probability Q,

logN(ε∥F∥Q,2,Mn(η),∥ · ∥Q,2)≲ (LN)2 log(LN) log(ne/ε).
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Thus, by Lemma C.2.3, we have

E(η)≲ σ ·LN

√
log(LN)

n
log
(

en4α2M2
0

σ

)
+

(LN)2 log(LN) ·4α2M2
0

n
log
(

en4α2M2
0

σ

)

≲ α
2
{

η ·LN

√
log(LN)

n
log
(

en
η

)
+

(LN)2 log(LN)

n
log
(

en
η

)}
≤ α

2(ηVn +V 2
n ),

as long as η ≥ 1/n. Thus, we have E(η) ≲ α2η ·Vn for η ≥ Vn. Also, if 0 ≤ x ≤ nη2, then

x/n≤ η
√

x/n. Putting the pieces together in (C.52), there exists a universal constant c16 > 0

satisfying

P
{

sup
g∈Gn(η)

∣∣∣∣1n n

∑
i=1

(1−E)
[∫

α∆g(Xi)

0

{
ψτ(ωi + t)−ψτ(ωi)

}
dt
]∣∣∣∣

≥ c16α
2
η

(
Vn +

√
x
n

)}
≤ e−x

for η ≥Vn. This establishes the claim.

C.2.5 Proof of Lemma C.1.5

For each given g ∈ Gn(η) and f ∈Fn, define

m f ,g(Xi,εi) =
∫

α∆g(Xi)

0

{
ψτ(ωi +Zi( f )−Zi( f0)+ t)−ψτ(ωi + t)

}
dt,

and let Mn(η) = {m = m f ,g : f ∈Fn and g ∈ Gn(η)}. Then, we need to find a high probability

bound of the following empirical process,

sup
m∈Mn(η)

∣∣∣∣1n n

∑
i=1

(1−E)m(Xi,εi)

∣∣∣∣.
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To apply Lemma C.2.1, it follows from the bounded property of Fn,Gn, f0 and g0 that

sup
m∈Mn(η)

|m(Xi,εi)|= sup
f∈Fn

sup
g∈Gn(η)

∣∣∣∣∣
∫

α∆g(Xi)

0

{
ψτ(ωi +Zi( f )−Zi( f0)+ t)−ψτ(ωi + t)

}
dt

∣∣∣∣∣
≤ sup

f∈Fn

sup
g∈Gn(η)

α|∆g(Xi)|| f (Xi)− f0(Xi)| ≤ 4αM2
0 ,

where the first inequality follows from (C.39) and

∣∣ψτ(ωi +Zi( f )−Zi( f0)+ t)−ψτ(ωi + t)
∣∣≤ |Zi( f )−Zi( f0)|.

Therefore, we obtain supm∈Mn(η) |m(Xi,εi)−Em(Xi,εi)| ≤ 8αM2
0 =: A. Moreover, it follows

from (C.39) that

sup
m∈Mn(η)

E
{

m(Xi,εi)
}2 ≤ 4M2

0α
2 sup

g∈Gn(η)

E
{

g(Xi)−g0(Xi)}2 ≤ 4M2
0α

2
η

2,

which further implies

sup
m∈Mn(η)

E
{

m(Xi,εi)−Em(Xi,εi)
}2 ≤ sup

m∈Mn(η)

E
{

m(Xi,εi)
}2 ≤ 4M2

0α
2
η

2 =: σ
2.

Denoting E(η) = Esupm∈Mn(η) |n−1
∑

n
i=1 m(Xi,εi)−Em(Xi,εi)|, Lemma C.2.1 gives

P

{
sup

m∈Mn(η)

∣∣∣∣1n n

∑
i=1

m(Xi,εi)−Em(Xi,εi)

∣∣∣∣≥ 2E(η)+σ

√
2x
n
+

4Ax
3n

}
≤ e−x (C.53)

for any x≥ 0.

Next, we turn to bounding the expectation, E(η). We choose F = 4αM2
0 to be an

envelope function of Mn(η). To calculate the uniform covering number of the function class
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Mn(η), note that following a similar argument which leads to (C.39) gives that

|Zi( f )−Zi( f ′)| ≤ | f (Xi)− f ′(Xi)|

for any f , f ′ ∈Fn. Thus, given f , f ′ ∈Fn and g,g′ ∈ Gn, we have

|m f ,g(Xi,εi)−m f ′,g′(Xi,εi)|

≤ |m f ,g(Xi,εi)−m f ′,g(Xi,εi)|+ |m f ′,g(Xi,εi)−m f ′,g′(Xi,εi)|

=

∣∣∣∣∫ α∆g(Xi)

0

{
ψτ(ωi +Zi( f )−Zi( f0)+ t)−ψτ(ωi +Zi( f ′)−Zi( f0)+ t)

}
dt
∣∣∣∣

+

∣∣∣∣∫ α∆g(Xi)

α∆g′(Xi)

{
ψτ(ωi +Zi( f ′)−Zi( f0)+ t)−ψτ(ωi + t)

}
dt
∣∣∣∣

≤ α|g(Xi)−g0(Xi)||Zi( f )−Zi( f ′)|+α|g(Xi)−g′(Xi)||Zi( f ′)−Zi( f0)|

≤ α ·2M0| f (Xi)− f ′(Xi)|+α ·2M0|g(Xi)−g0(Xi)|,

where the second inequality follows from the Lipschitz property of ψτ , and the last inequality

holds by the bounded property. Thus, it follows that

N∞(ε ·4M2
0α,Mn(η),n)≤ N∞(ε ·M0,Fn,n) ·N∞(ε ·M0,Gn,n),

which, combined with Lemma C.2.2 and Lemma C.2.4, implies that

logN(ε∥F∥Q,2,Mn(η),∥ · ∥Q,2)≲ {(LN)2 log(LN)+Pdim(Fn)} log(en/ε)
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for any n-discrete probability Q. Together, this and Lemma C.2.3 give

E(η)≲ σ

√
(LN)2 log(LN)+Pdim(Fn)

n
log
(

en ·4αM2
0

σ

)
+

4αM2
0 · {(LN)2 log(LN)+Pdim(Fn)}

n
log
(

en ·4αM2
0

σ

)
≲ α(ηWn +W 2

n ),

as long as η ≥ 1/n. Therefore, there exists a universal constant C1 > 0 satisfying E(η) ≤

C1αηWn for η ≥Wn. Combining this with (C.53), there exists a universal positive constant c17

such that for any 0≤ x≤ nη2,

P

{
sup

h∈Hn(η)

∣∣∣∣1n n

∑
i=1

h(Xi)−Eh(Xi)

∣∣∣∣≥ c17αη

(
Wn +

√
x
n

)}
≤ e−x.

This completes the proof.

C.2.6 Proof of Lemma C.1.6

To begin with, note that

sup
g∈Gn(η)

∣∣E[ψτ(ωi)
{

g(Xi)−g0(Xi)
}]∣∣≤ sup

g∈Gn(η)

E
[∣∣E{ψτ(ωi)

∣∣Xi
}∣∣ · ∣∣g(Xi)−g0(Xi)

∣∣]
≤ 2σ0e−τ2/(2σ2

0 ) ·η , (C.54)

where the last inequality follows from (C.48). Therefore, it suffices to derive a bound for the tail

probabilities of

sup
g∈Gn(η)

∣∣∣∣1n n

∑
i=1

ψτ(ωi)
{

g(Xi)−g0(Xi)
}∣∣∣∣.

To this end, we first fix covariates (X1, . . . ,Xn) and let EX and PX be the conditional expectation

and conditional probability given (X1, . . . ,Xn), respectively. Consider the stochastic process

260



{Sg : g ∈ Gn∪{g0}}, where Sg is defined as

Sg :=
1√
n

n

∑
i=1

{
ψτ(ωi)−EX ψτ(ωi)

}{
g(Xi)−g0(Xi)

}
.

Since |ψτ(t)| ≤ |t|, the assumption (C.4) implies that EX exp(ψ2
τ (ωi)/σ2

0 )≤ 2. Combining this

with Proposition 2.6.1 and Lemma 2.6.8 in Vershynin (2018), there exists a universal constant

C1 > 0 such that

PX(|Sg−S′g| ≥ x)≤ 2exp
(
− x2

C1σ2
0∥g−g′∥2

n

)
for g,g′ ∈ Gn∪{g0},

where ∥ · ∥2
n is the empirical L2 norm defined as

∥g−g′∥2
n :=

1
n

n

∑
i=1

{
g(Xi)−g′(Xi)

}2
.

Now, we denote

Mn(v) := Mn(v;(X1, . . . ,Xn)) = {g ∈ Gn∪{g0} : ∥g−g0∥n ≤ v}

for any v≥ 0. Applying Theorem 8.1.6 in Vershynin (2018), there exists an absolute constant

C2 > 0 such that for every v,x≥ 0,

PX

[
sup

g,g′∈Mn(v)
|Sg−Sg′| ≥C2σ0

{∫ 2v

0

√
logN(ε,Gn∪{g0},∥ · ∥n)dε + v

√
x
}]
≤ 2e−x.

(C.55)

For any (X1, . . . ,Xn), it follows that

N(ε,Gn∪{g0},∥ · ∥n)≤ 1+N∞(ε,Gn,n).
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Then, by combining Lemma C.2.2 and Lemma C.2.4, it follows that

∫ 2v

0

√
logN(ε,Gn∪{g0},∥ · ∥n)dε

≤
∫ 2v

0

√
1+ logN∞(ε,Gn,n)dε

≲
∫ 2v

0

√
1+(LN)2 log(LN) log(enM0/ε)dε

≲ LN
√

log(LN)

{
v+ v

√
log(enM0)+

∫ 2v

0

√
log(1/ε)∨0

}
.

By the inequality
∫ x

0

√
log(1/ε)∨0dε ≤ x

√
(1/x)∨1, we obtain

∫ 2v

0

√
log(1/ε)∨0 ≲ v

√
(1/v)∨1≤ v

√
logn

for any v≥ 1/n. Thus, the earlier inequality gives

∫ 2v

0

√
logN(ε,Gn∪{g0},∥ · ∥n)dε ≲ v ·LN

√
log(LN) logn,

which, combined with (C.55), further implies that for any x≥ 0,

PX

[
sup

g,g′∈M (v)
|Sg−Sg′| ≥C3σ0

{
v
√

(LN)2 log(LN) logn+ v
√

x
}]
≤ 2e−x,

as long as v≥ 1/n, where C3 is a universal constant. Since g0 ∈M (v) for any v≥ 0, this tail

probability further implies with probability at least 1−2e−x (conditioned on (X1, . . . ,Xn)) that

sup
g∈Gn

∥g−g0∥n≤v

∣∣∣∣1n n

∑
i=1

{
ψτ(ωi)−EX ψτ(ωi)

}{
g(Xi)−g0(Xi)

}∣∣∣∣≤C3σ0v
(

Vn +

√
x
n

)
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for v≥ 1/n and x≥ 0. Moreover, it follows from the Cauchy-Schwartz inequality that

sup
∥g−g0∥n≤v

∣∣∣∣1n n

∑
i=1

{
EX ψτ(ωi)

}{
g(Xi)−g0(Xi)

}∣∣∣∣≤ [1
n

n

∑
i=1

{
EX ψτ(ωi)

}2
]1/2

v

≤ 2σ0ve−τ2/(2σ2
0 ),

where the last inequality follows from (C.48). Together, this bound and the earlier tail probability

imply that with probability at least 1−2e−x,

sup
g∈Gn

∥g−g0∥n≤v

∣∣∣∣1n n

∑
i=1

ψτ(ωi)
{

g(Xi)−g0(Xi)
}∣∣∣∣≤max(C3,2)σ0v

{
Vn + e−τ2/(2σ2

0 )+

√
x
n

}
. (C.56)

Note that when τ = ∞, we have

1
n

n

∑
i=1

(1−E)
[∫

α∆g(Xi)

0

{
ψτ(ωi + t)−ψτ(ωi)

}
dt
]
=

α2

2
(
∥g−g0∥2

n−∥g−g0∥2
2
)
.

Therefore, Lemma C.1.4 with τ = ∞ implies that for η ≥Vn and 0≤ x≤ nη2 that

sup
g∈Gn(η)

∣∣∥g−g0∥2
n−∥g−g0∥2

2
∣∣≤ 2c16η

(
Vn +

√
x
n

)
≤ 4c16η

2 (C.57)

with probability at least 1− e−x. Conditioned on the event where the inequality (C.57) holds, we

obtain

sup
g∈Gn(η)

∥g−gn∥2
n ≤ sup

g∈Gn(η)

∣∣∥g−g0∥2
n−∥g−g0∥2

2
∣∣+ sup

g∈Gn(η)

∥g−g0∥2
2 ≤ (1+4c16)η

2.

Thus, for the event B(η) defined as

B(η) :=
{

sup
g∈Gn(η)

∥g−g0∥n ≤ (1+4c16)
1/2

η

}
,

we have P{B(η)} ≥ 1− e−x for any 0 ≤ x ≤ nη2. Therefore, denoting C4 = max(C3,2)(1+
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4c16)
1/2, we obtain

P

[
sup

g∈Gn(η)

∣∣∣∣1n n

∑
i=1

ψτ(ωi)
{

g(Xi)−g0(Xi)
}∣∣∣∣≥C4σ0η

{
Vn + e−τ2/(2σ2

0 )+

√
x
n

}]

≤ P

[
sup

g∈Gn(η)

∣∣∣∣1n n

∑
i=1

ψτ(ωi)
{

g(Xi)−g0(Xi)
}∣∣∣∣≥C4σ0η

{
Vn + e−τ2/(2σ2

0 )+

√
x
n

}∣∣∣∣∣B(η)

]
+ e−x

≤ 3e−x,

where the last inequality follows from (C.56) after taking v = (1+4c16)
1/2η . Combining this

with (C.54) gives

P

[
sup

g∈Gn(η)

∣∣∣∣1n n

∑
i=1

(1−E)ψτ(ωi)
{

g(Xi)−g0(Xi)
}∣∣∣∣≥ (C4 +2)︸ ︷︷ ︸

=:c18

σ0η

{
Vn + e−τ2/(2σ2

0 )+

√
x
n

}]

≤ 3e−x (C.58)

for η ≥Vn and 0≤ x≤ nη2. This completes the proof.

C.2.7 Proof of Lemma C.1.7

We first prove the lower bound. From the Lipschitz continuity of pε|X(·), it follows that

pε|X(t)≥ p/2 when |t| ≤ p/(2l0). Then, we apply Lemma S6 in the supplement of Padilla and

Chatterjee (2022) to obtain

Qα( f )−Qα( f0)≥min
(

p
4
,

p2

16l0

)
Emin

[
| f (X)− f0(X)|,{ f (X)− f0(X)}2].

On the other hand, we have { f (X)− f0(X)}2 ≤ 2M0| f (X)− f0(X)| by the definition of Fn.

Combining this with the earlier inequality and the assumption that M0 ≥ 1, we have the desired

lower bound of the excess quantile risk.

We next prove the upper bound. From Knight’s inequality (see, e.g., Knight (1998)), for
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any u,v ∈ R, it follows that

ρτ(u− v)−ρτ(u) =−v{τ−1(u≤ 0)}+
∫ v

0
{1(u≤ t)−1(u≤ 0)}dt.

Taking expectation this equality with u = εi and v = f (Xi)− f0(Xi), we obtain

Lτ( f )−Lτ( f0) = E
∫ f (X)− f0(X)

0

∫ t

0
pε|X(s)dsdt ≤ p̄

2
∥ f − f0∥2

2,

where the last inequality follows from Condition 3. This concludes the proof.

C.2.8 Proof of Lemma C.1.8

For each f ∈Fn(δ ), denote

m f (Xi,εi) := ρα(Yi− f (Xi))−ρα(Yi− f0(Xi)).

Since ρα(·) is a Lipschitz function, we have

sup
f∈Fn(δ )

|m f (Xi,εi)| ≤ sup
f∈Fn(δ )

| f (Xi)− f0(Xi)| ≤ 2M0.

Therefore, sup f∈Fn(δ ) |m f (Xi,εi)−Em f (Xi,εi)| ≤ 4M0 =: A. Moreover,

sup
f∈Fn(δ )

E
{

m f (Xi,εi)
}2 ≤ sup

f∈Fn(δ )

E
{

f (Xi)− f0(Xi)
}2 ≤ δ

2,

which further implies

sup
f∈Fn(δ )

E
{

m f (Xi,εi)−Em f (Xi,εi)
}2 ≤ sup

f∈Fn(δ )

E
{

m f (Xi,εi)
}2 ≤ δ

2 =: σ
2.
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Denoting E(δ ) = Esup f∈Fn(δ ) |n
−1

∑
n
i=1 m f (Xi,εi)−Em f (Xi,εi)|, Lemma C.2.1 gives

P

{
sup

f∈Fn(δ )

∣∣∣∣1n n

∑
i=1

m f (Xi,εi)−Em f (Xi,εi)

∣∣∣∣≥ 2E(δ )+σ

√
2x
n
+

4Ax
3n

}
≤ e−x (C.59)

for any x≥ 0.

Now, we find an upper bound of the expectation E(δ ). We denote Mn(δ ) := {m f (Xi,εi) :

f ∈Fn(δ )}. Combining the Lipschitz continuity of ρα(·) with Lemma C.2.2 and Lemma C.2.4

gives that for any ε ∈ (0,M0),

logN∞(ε,Mn(δ ),n)≤ logN∞(ε,Fn,n)≲ (LN)2 log(LN) log(M0ne/ε).

Also, the Lipschitz property of ρα(·) implies that F = 2M0 is an envelope function of Mn(δ ).

Thus, for any n-discrete probability measure Q,

logN(ε∥F∥Q,2,Mn(δ ),∥ · ∥Q,2)≲ (LN)2 log(LN) log(en/(2ε)).

Applying Lemma C.2.3, we have

E(δ )≲ σ

√
(LN)2 log(LN)

n
log
(

enM0

σ

)
+2M0

(LN)2 log(LN)

n
log
(

enM0

σ

)
≲ δVn +V 2

n

for any δ ≥ 1/n. Thus, when δ ≥Vn, we have E(δ )≲ δVn. By combining this and (C.59), there

exists a universal positive constant c21 > 0 such that

P

{
sup

f∈Fn(δ )

∣∣∣∣1n n

∑
i=1

m f (Xi,εi)−Em f (Xi,εi)

∣∣∣∣≥ c21δ

(
Vn +

√
x
n

)}

≤ e−x
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holds for any 0≤ x≤ nδ 2 and δ ≥Vn. This completes the proof.
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Appendix D

Supplementary Material for Chapter 4

D.1 Some Comparisons with Previous Studies

COMPARISON WITH EXISTING WORK ON QUANTILE KERNEL RIDGE REGRESSION. Nonpara-

metric quantile regression using the kernel method has been extensively studied in the literature.

For instance, Takeuchi et al. (2006) and Li et al. (2007) explored quantile KRR estimators

and developed efficient algorithms for their implementation. They also established theoretical

properties of the estimators, with a focus on excess risk analysis under strong assumptions, such

as a uniformly bounded function class or bounded quantile residuals. Furthermore, their analysis

is confined to the scenario where rq = 0. Under the assumption of bounded response variables,

Steinwart and Christmann (2011) derived convergence rates in the L2-norm for quantile KRR

estimators, which are minimax optimal.

Using kernels with eigenvalues that decay polynomially, Lian (2022) established the L2

convergence rate for Q-KRR estimators without imposing the above restrictive assumptions.

Upon closer examination, we identify a potential minor gap in the proof of Theorem 1 therein,

which relies on a local strong convexity of the expected risk that for some constant C > 0,

E{ρτ(Yi− f (Xi))−ρτ(Yi− f0(Xi))} ≥C∥ f − f0∥2
2 whenever ∥ f − f0∥H ≤ 1. However, in the

proof of Theorem 1, this local strong convexity is used without ensuring that f̂ satisfies ∥ f̂ −

f0∥H ≤ 1. Our result extends Theorem 1 of Lian (2022) to any RKHS satisfying Condition 4.2.1.

We present a self-contained proof of Theorem 4.3.1, addressing the above gap in Lian (2022).
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Furthermore, our finding eliminates the need for the stringent moment/boundedness assumptions

frequently imposed in the literature.

COMPARISON WITH EXISTING WORK ON FUNCTIONAL BAHADUR REPRESENTATION. Recall

that ĝora is a standard KRR estimator obtained by regressing Zi( f0)/τ on Xi. The functional Ba-

hadur representation provided in Theorem 4.3.3 is of independent interest and, more importantly,

improves the existing results in certain cases, as we explain below.

Shang and Cheng (2013) studied penalized nonparametric estimators when E(Y |X) =

F(g0(X)) for some known link function F(·), and the unknown function g0 belongs to an RKHS

with eigenvalues that decay polynomially with exponent β > 1. Their estimator reduces to the

least squares KRR estimator when F is the identity function. Under our notations, Theorem 3.5

and Lemma 3.1 in Shang and Cheng (2013) imply that with high probability,

∥∥∥∥τ(ĝora−gλe)−
1
n

n

∑
i=1

ωi(TK +λeI)−1KXi

∥∥∥∥
∞

≲D
1/2
λe

∆SC(λe,n),

where ∆SC(λe) := (λ
−1/(2β )
e n−1/2 +λ

1/2
e )λ

−(3β−1)/(2β 2)
e (log logn)1/2n−1/2. By Example B.2,

Dλe ≍ λ
−1/β
e when the kernel has β -polynomially decaying eigenvalues. Applying The-

orem 4.3.3 with re = 0 yields ∆1(λe) ≍ (λ
−1/(2β )
e n−1/2 + λ

1/2
e )λ

−1/(2β )
e

√
log(n)/n. Since

(3β −1)/(2β 2)> 1/(2β ) for any β > 1/2, we have ∆SC > ∆1 for all 0 < λe < 1. Furthermore,

for ∆SC(λe) = o(n−1/2) to be achieved, it is necessary to have β > (3+
√

5)/2≈ 2.618, whereas

we only need β > 1.

D.2 Statistical Theory for Finite-rank, Polynomial and
Exponential Decay Kernels

We first explore three classes of kernel functions: finite-rank kernels, polynomial decay

kernels, and exponential decay kernels, while determining their respective effective dimensions.

Example 1 (Finite-rank kernels). The kernel K is considered to have a finite rank of m when its
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eigenvalues µ j = 0 for all j > m. An illustrative example is the m-th order polynomial kernel,

defined as K(x1,x2) = (1+xT
1x2)

m, x1,x2 ∈Rd , which has a rank of
(d+m

m

)
. This class of kernels

encompasses linear and polynomial functions, and more broadly, any function class based on

finite dictionary vectors. It is easy to see that Dλ ≤ m for any λ > 0 when the kernel has a finite

rank of m.

Example 2 (Polynomial decay kernels). Another commonly used class of kernels has eigenvalues

that exhibit β -polynomial decay µ j ≍ j−β for some β > 1. Typical examples include spline

kernels, Sobolev kernels, and Laplacian kernels. To calculate the effective dimensions of

such kernels, note that µ j/(µ j +λ )≍ 1/(1+λ jβ ) when the kernel K has eigenvalues with β -

polynomial decay. By bounding the sums with integrals, we obtain Dλ ≍ ∑
∞
j=1(1+λ · jβ )−1 ≍

cβ λ−1/β , where cβ is a positive constant depending only on β .

Example 3 (Exponential decay kernels). The eigenvalues {µ j} j≥1 exhibit β -exponential decay

if, for some β > 0, they satisfy µ j ≍ exp(−cβ jβ ) for some cβ > 0. This class of kernels includes

Gaussian kernels defined as K(x,x′) = exp(−∥x− x′∥2
2/σ2) for x,x′ ∈X and σ2 > 0, where

∥ · ∥2 denotes the Euclidean distance. Similar to the case of polynomial decay kernels, the

effective dimension can be computed by bounding the sums with integrals. For 0 < λ < 1, it

holds Dλ ≍ ∑
∞
j=1(1+λ · ecβ jβ )−1 ≍C log1/β (1/λ ), where the constant C depends only on β

and cβ .

By applying the theoretical results from Section 4.3, we explicitly provide upper bounds

for the convergence rate of the proposed estimator for each type of RKHS, followed by pointwise

asymptotic normality. For ease of presentation, we impose the following condition throughout

this section.

Condition D.2.1 (Source condition). The true conditional quantile and expected shortfall func-

tions satisfy f0 = T rq
K f ∗ and g0 = T re

K g∗ for some f ∗,g∗ ∈ BH (1) and 0≤ rq,re ≤ 1/2.
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D.2.1 Finite-rank kernels

We first consider a kernel with a finite rank of m for some m ∈ N. In this case, we have

Dλ ≤ m for any λ > 0. Combining this with Theorems 4.3.1 and 4.3.2, we obtain the following

corollary for kernels with a finite rank.

Corollary D.2.1 (Convergence rates under finite-rank kernels). Assume Conditions 4.2.1, 4.3.1,

4.3.3 and D.2.1 hold. For any t > 0, ( f̂ , ĝ) = ( f̂n(λq), ĝn(λe)) with λq ≍ λe ≍ (m+ t)/n satisfy

that, with probability at least 1−7e−t ,

∥ f̂ − f0∥2 ≲

√
m+ t

n
and τ∥ĝ−g0∥2 ≲

√
m+ t

n

as long as n ≳ m log(n).

The above rates are minimax-optimal, as shown in Theorem 2 of Raskutti, Wainwright

and Yu (2012). Next, we establish the pointwise asymptotic normality of the ES-KRR estimator

under finite-rank kernels and verify the validity of the bootstrap procedure.

Corollary D.2.2 (Pointwise asymptotic normality under finite-rank kernels). Assume that the

same conditions as in Corollary D.2.1 hold with t = logn, m = o(n1/3) and µ1 ≥ µ2 ≥ ·· · ≥

µm > 0. If ρ2
λe
(x0)→ ρ2(x0) for some ρ2(x0)> 0, the two-step ES-KRR estimator ĝ satisfies

τ
√

n/m(ĝ−g0)(x0)
d−→N (0,ρ2(x0)).

Corollary D.2.3 (Validity of bootstrap under finite-rank kernels). Assume that the same condi-

tions as in Corollary D.2.2 hold. If x0 ∈X satisfies ρ2
λ
(x0)>C for any sufficiently small λ > 0

with a constant C > 0, then we have |P{g0(x0) ∈I ♭
α(x0)}− (1−α)|= o(1) for any α ∈ (0,1).

D.2.2 Polynomial decay kernels

We next consider an RKHS whose kernel has β -polynomially decaying eigenvalues for

some β > 1, that is, µ j ≍ j−β for j≥ 1. Recall that the effective dimension satisfies Dλ ≍ λ−1/β .

The following corollary establishes non-asymptotic L2-error bounds for f̂ and ĝ.
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Corollary D.2.4 (Convergence rates under polynomial decay kernels). Assume Conditions 4.2.1–

4.3.3 and D.2.1 hold. For any t ∈ (0,n), we choose

λq ≍ n−β/{(2rq+1)β+1}+
t
n

and λe ≍ n−β/{(2re+1)β+1}+
t
n
.

Then, f̂ and ĝ satisfy that, with probability at least 1−7e−t ,

∥ f̂ − f0∥2 ≲ n−(2rq+1)β/{(4rq+2)β+2}+

√
t
n

and τ∥ĝ−g0∥2 ≲ n−e∗+

√
t
n
,

where

e∗ = min
{

(2re +1)β
(4re +2)β +2

,
(4rq +2)β −1
(4rq +2)β +2

}
.

In particular, if (rq,re,β ) satisfy

{(2rq +1)β −2}{(2re +1)β +2} ≥ −3, (D.1)

then with the same probability,

∥ f̂ − f0∥2 ≲ n
− (2rq+1)β

(4rq+2)β+2 +

√
t
n

and τ∥ĝ−g0∥2 ≲ n−
(2re+1)β

(4re+2)β+2 +

√
t
n
.

An immediate consequence of Corollary D.2.4 is that ∥ f̂ − f0∥2 = OP(n
− (2rq+1)β

(4rq+2)β+2 ),

implying that f̂ attains the minimax optimal convergence rate by Theorem 4 of Suzuki and

Sugiyama (2013) with d = M = 1 in their notations. Given that 0 ≤ rq,re ≤ 1/2, a sufficient

condition for (D.1) is β ≥ (
√

3+1)/2≈ 1.366; see Lemma D.4.1 for details. Thus, under this

mild condition on β , even when re > rq, ĝ achieves the minimax optimal convergence rate,

τ∥ĝ− g0∥2 = OP(n
− (2re+1)β

(4re+2)β+2 ). If (rq,re,β ) fail to satisfy (D.1), implying re > rq, ĝ does not

attain the above minimax optimal convergence rate. Nevertheless, as e∗ is strictly larger than
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(2rq + 1)β/{(4rq + 2)β + 2}, ĝ achieves a faster convergence rate compared to the nuisance

estimator f̂ . This is attributed to the orthogonal property (4.5) of the score function.

Remark D.2.1 (An alternative assumption to condition (D.1)). With an additional strong as-

sumption on the RKHS, ĝ can attain an optimal convergence rate for any (rq,re,β ). Specifically,

assume that the function KXi satisfies the following L4–L2 norm equivalence: (E⟨KXi,h⟩4H )1/4 ≤

κ(E⟨KXi,h⟩2H )1/2 for any h ∈ H , where κ > 0 is a dimension-free constant. This L4–L2

norm equivalence can be interpreted as the uniform boundedness of the kurtosis of the one-

dimensional marginal ⟨KXi,h⟩H for any direction h ∈H . Then, by the definition of the RKHS,

the equivalence implies that ∥h∥2
4 = (E⟨KXi,h⟩4H )1/2 ≤ κ2E⟨KXi,h⟩2H = κ2∥h∥2

2 for any h ∈H .

Following a similar line of arguments as in the proof of Corollary D.2.4, we can conclude that ĝ

attains the optimal convergence rate for any 0≤ rq,re,≤ 1/2, and β > 1.

However, we note that, to the best of our knowledge, there are no specific settings in which

a polynomial decay kernel satisfies the L4–L2 norm equivalence. One sufficient condition for the

equivalence is that KXi is a Gaussian random element in H , or more generally, {⟨KXi,h⟩H : h ∈

H } is a sub-Gaussian function class (Lecué and Mendelson, 2013). Nevertheless, it remains

uncertain when these conditions can be fulfilled. Thus, our analysis does not assume this stringent

theoretical conditions.

Next, by combining the bound for the effective dimension with Corollary 4.3.1 and

Theorem 4.3.6, we establish the pointwise asymptotic normality of the ES-KRR estimator

and verify the validity of the confidence interval I ♭
α(x0), defined in (4.15) for any α ∈ (0,1),

respectively.

Corollary D.2.5 (Pointwise asymptotic normality under polynomial decay kernels). Assume

Conditions 4.2.1–4.3.3 and D.2.1 hold. Moreover, we assume that (2rq+1)β > 2,(2re+1)β > 3

and 0 < re ≤ 1/2, and choose λq ≍ n−β/{(2rq+1)β+1} and λe ≍ n−ι with 1/(2re + 1) < ι <

min(1,β/2). If ρ2
λe
(x0)→ ρ2(x0) for some ρ2(x0) > 0, the two-step ES-KRR estimator ĝ
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satisfies

τ

√
n

Dλe

(ĝ−g0)(x0)
d−→N (0,ρ2(x0)).

Corollary D.2.6 (Validity of bootstrap under polynomial decay kernels). Assume that the same

conditions as in Corollary D.2.5 hold. If x0 ∈X satisfies ρ2
λ
(x0)>C for any sufficiently small

λ > 0 with a constant C > 0, then we have |P{g0(x0) ∈ I ♭
α(x0)}− (1−α)| = o(1) for any

α ∈ (0,1).

As a concrete example, consider the p-th order periodic Sobolev space H p
0 [0,1] defined

as follows:

H p
0 [0,1] :=

{
h : [0,1]→ R :h( j) is absolutely continuous and satisfies h( j)(0) = h( j)(1)

for j = 0,1, . . . , p−1, and
∫ 1

0
{h(p)(x)}2dx < ∞

}
,

where p is larger than 1/2 and h( j) denotes the j-th derivative of h. Assuming that PX is the

uniform distribution on [0,1], the corresponding Sobolev kernels are

K(x,x′) = 1+
∞

∑
j=1

2cos(2π j(x− x′))
(2π j)2p ;

see Chapter 4 in Gu (2013) for details. The Sobolev kernel has uniformly bounded eigenfunctions

φ j(x) =


1, j = 0,
√

2cos( jπx), j = 2k for k = 1,2, . . . ,
√

2sin(( j+1)πx), j = 2k−1 for k = 1,2, . . . ,

(D.2)
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and the corresponding eigenvalues are

µ j =


1, j = 0,

( jπ)−2p, j = 2k for k = 1,2, . . . ,

{( j+1)π}−2p, j = 2k−1 for k = 1,2, . . . .

(D.3)

Moreover, by following a similar argument as in the proof of Lemma 4.1 in Zhao, Cheng and

Liu (2016), there exists a lower bound for ρ2
λ
(x0) for any sufficiently small λ > 0 and x0 ∈ [0,1],

affirming that this kernel satisfies the condition in Corollary D.2.6.

Lemma D.2.1 (Lower bound for ρ2
λ
(x0) under periodic Sobolev spaces.). Assume that PX is

the uniform distribution over [0,1] and H = H p
0 [0,1] with eigenfunctions (D.2) and eigen-

values (D.3). Moreover, suppose that there exists an absolute constant σ > 0 satisfying

E(ω2
i |Xi)≥ σ2. Then, there exists a constant c11 = c11(p)> 0 such that for any λ ∈ (0,(2π)−2p)

and x0 ∈ [0,1], we have ρ2
λ
(x0)≥ c11σ2.

D.2.3 Exponential decay kernels

Finally, we consider an RKHS whose kernel has β -exponentially decaying eigenvalues

for some β > 0, that is, µ j ≍ exp(−cβ jβ ) for some cβ > 0. Since the effective dimension of

this type of kernels satisfies Dλ ≍ log1/β (1/λ ) for any λ ∈ (0,1), applying Theorem 4.3.1 and

Theorem 4.3.2 establishes non-asymptotic L2-error bounds for f̂ and ĝ as follows.

Corollary D.2.7 (Convergence rates under exponential decay kernels). Assume Conditions 4.2.1–

4.3.3 and D.2.1 hold. For any t > 0, f̂ and ĝ with λq ≍ λe ≍ {t + log1/β (n)}/n satisfy that, with

probability at least 1−7e−t ,

∥ f̂ − f0∥2 ≲

√
t + log1/β (n)

n
and τ∥ĝ−g0∥2 ≲

√
t + log1/β (n)

n
.
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Corollary D.2.7 implies that

∥ f̂ − f0∥2 = OP

(
log1/(2β )(n)√

n

)
and τ∥ĝ−g0∥2 = OP

(
log1/(2β )(n)√

n

)
,

and the rates are minimax optimal by Zhang, Duchi and Wainwright (2013) when β = 2. We

next derive the pointwise asymptotic normality and verify the validity of the confidence intervals

I ♭
α(x0).

Corollary D.2.8 (Pointwise asymptotic normality under exponential decay kernels). Assume

Conditions 4.2.1–4.3.3 and D.2.1 hold. Moreover, we assume that 0 < re ≤ 1/2, and choose λq ≍

λe ≍ log1/β (n)/n. If ρ2
λe
(x0)→ ρ2(x0) for some ρ2(x0)> 0, the two-step ES-KRR estimator ĝ

satisfies

τ

√
n

Dλe

(ĝ−g0)(x0)
d−→N (0,ρ2(x0)).

Corollary D.2.9 (Validity of bootstrap under exponential decay kernels). Assume that the same

conditions as in Corollary D.2.8 hold. If x0 ∈X satisfies ρ2
λ
(x0)>C for any sufficiently small

λ > 0 with a constant C > 0, then we have |P{g0(x0) ∈ I ♭
α(x0)}− (1−α)| = o(1) for any

α ∈ (0,1).

To illustrate a specific example, assume that X = [−π,π] and PX is the uniform distri-

bution on X . For any θ > 0, the periodic Gaussian reproducing kernel on [−π,π], introduced

in Smola, Schölkopf and Müller (1998), is defined as follows:

K(x,x′) =
1
π

∞

∑
j=1

exp(− j2
θ

2/2)cos( j(x− x′)),

along with the corresponding RKHS space H∞
θ

given by

H∞
θ :=

{
h : [−π,π]→ R :

∞

∑
j=0

θ 2 j

j!2 j

∫
π

−π

{h( j)(x)}2dx < ∞

}
,
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referred to as the infinite-order periodic Sobolev space H∞
θ

(Lin and Brown, 2004). The infinite-

order periodic Sobolev space also has uniformly bounded eigenfunctions

φ j(x) =


1√
2π
, j = 0,

1√
π

cos( jπx/2), j = 2k for k = 1,2, . . . ,

1√
π

sin(( j+1)πx/2), j = 2k−1 for k = 1,2, . . . ,

(D.4)

and the associated eigenvalues are

µ j =


1, j = 0,

exp(− j2θ 2/8), j = 2k for k = 1,2, . . . ,

exp(−( j+1)2θ 2/8), j = 2k−1 for k = 1,2, . . . .

(D.5)

Furthermore, the following lemma demonstrates an explicit lower bound for ρ2
λ
(x0) for any suffi-

ciently small λ and x0 ∈ [0,1], implying that this kernel satisfies the condition in Corollary D.2.9.

Lemma D.2.2 (Lower bound for ρ2
λ
(x0) under infinite-order periodic Sobolev spaces.). Assume

that PX is the uniform distribution over [−π,π] and H = H∞
θ

with eigenfunctions (D.4) and

eigenvalues (D.5). Moreover, suppose that there exists σ > 0 satisfying E(ω2
i |Xi)≥ σ2. Then,

there exists a constant c12 = c12(θ) > 0 such that for any λ ∈ (0,min(1/e,e−2θ 2
)) and x0 ∈

[−π,π], we have ρ2
λ
(x0)≥ c12σ2.

D.3 Proofs for Section 4.3

This section presents the proofs of the results in Section 4.3, and also Proposition 4.2.1.

The proofs for the technical lemmas involved are deferred to Section D.5. For ease of notation,

we use the expression ∑
n
i=1(Ri−ERi) = ∑

n
i=1(1−E)Ri for any sequence of random variables

Ri
n
i=1.
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D.3.1 Proof of Proposition 4.2.1

Let S : H →Rn be the sampling operator defined as S( f )= (⟨KXi, f ⟩H )n
i=1 =( f (Xi))

n
i=1.

Its adjoint operator S∗ : Rn→H is given by S∗(a) = ∑
n
i=1 aiKXi for any a = (a1,a2, . . . ,an)

T.

To see this, note that

⟨S( f ),a⟩=
n

∑
i=1

ai f (Xi) =

〈
f ,

n

∑
i=1

aiKXi

〉
H

= ⟨ f ,S∗(a)⟩H .

Recall that K = (K(Xi,X j))1≤i, j≤n ∈ Rn×n. Then, for any f ∈H and aaa ∈ Rn,

S∗S( f ) = S∗(( f (Xi))
n
i=1) =

n

∑
i=1

f (Xi)KXi =
n

∑
i=1

(KXi⊗KXi)︸ ︷︷ ︸
=nT̂

f and

SS∗(aaa) = S
( n

∑
i=1

aiKXi

)
=

( n

∑
i=1

aiKXi(X j)

)n

j=1
=

( n

∑
i=1

aiK(Xi,X j)

)n

j=1
= Kaaa.

Therefore, we have S∗S/n = T̂ and SS∗/n = K/n. Moreover,

kx0 = (K(X1,x0), . . . ,K(Xn,x0))
T = (Kx0(X1), . . . ,Kx0(Xn))

T = S(Kx0),

which implies that vx0 = (vx0,1, . . . ,vx0,n)
T ∈ Rn defined in (4.13) satisfies

vx0 = (K/n+λeIn)
−1kx0 = (SS∗/n+λeIn)

−1kx0 = (SS∗/n+λeIn)
−1S(Kx0).

Denoting T̂λe = T̂ +λeI with the identity operator I, we have

(
T̂−1

λe
KXi(x0)

)n
i=1 =

(
⟨T̂−1

λe
KXi,Kx0⟩H

)n
i=1 =

(
⟨KXi, T̂

−1
λe

Kx0⟩H
)n

i=1 = S(T̂−1
λe

Kx0),

where the second equality is due to the fact that T̂λe is an invertible self-adjoint operator.
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Let Ui =Wi−1 be the centered random weights, and define the n-vector

u =
(
U1{Z1( f̂ )/τ− ĝ(X1)},U2{Z2( f̂ )/τ− ĝ(X2)}, . . . ,Un{Zn( f̂ )/τ− ĝ(Xn)}

)T
.

The above calculations imply

1
n

n

∑
i=1

Ui{Zi( f̂ )/τ− ĝ(Xi)}vx0,i =
uTv
n

=
1
n

uT(SS∗/n+λeIn)
−1S(Kx0)

and

1
n

n

∑
i=1

Ui{Zi( f̂ )/τ− ĝ(Xi)}T̂−1
λe

KXi(x0)

=
1
n

uTS(T̂−1
λe

Kx0) =
1
n

uTS(S∗S/n+λeI)−1(Kx0).

Hence, it suffices to prove that

(SS∗/n+λeIn)
−1S = S(S∗S/n+λeI)−1. (D.6)

Note that

(SS∗/n+λeIn)S(S∗S/n+λeI)−1 = (SS∗S/n+λeS)(S∗S/n+λeI)−1

= S(S∗S/n+λeI)(S∗S/n+λeI)−1

= S.

Multiplying (SS∗/n+λeI)−1 on both sides of the above equation yields (D.6), thereby complet-

ing the proof.
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D.3.2 Proof of Theorem 4.3.1

To prove Theorem 4.3.1, we first introduce two technical lemmas as building blocks. The

first lemma below establishes a lower bound for the expected excess risk using the check loss.

Lemma D.3.1. Under Condition 4.3.1 on the conditional density function pεi|Xi , the population

excess risk satisfies the lower bound

E
{

ρτ(Yi− f (Xi))−ρτ(Yi− f0(Xi))
}
≥ c13

M
∥ f − f0∥2

2

for all f : X → R satisfying ∥ f − f0∥∞ ≤M with M ≥ 1, where c13 = min{p/2, pl0/4}.

Without loss of generality, throughout the following we assume c13 ≤ 1 for ease of

presentation; otherwise, it suffices to define c13 = min{1, p/2, pl0/4}.

Next, we characterize the concentration properties of the empirical excess risk around

the population excess risk uniformly in a local neighborhood of f0.

Lemma D.3.2. Assume Condition 4.2.1 holds. There exists a universal constant c14 > 0 such

that for any t,λ > 0 and δ2,δH > 0, the bound

sup
f∈H :∥ f− f0∥2≤δ2,
∥ f− f0∥H ≤δH

∣∣∣∣1n n

∑
i=1

(1−E)
{

ρτ(Yi− f (Xi))−ρτ(Yi− f0(Xi))
}∣∣∣∣ (D.7)

≤ c14

(
δ

√
Dλ

n
+δ2

√
t
n
+δH

t
n

)

holds with probability at least 1− e−t , where δ 2 = δ 2
2 +λδ 2

H .

Lemma D.3.2 presents a localized version of Lemma 1 in Lian (2022), the latter ad-

dressing a ratio-type suprema of empirical processes. For ratio-type empirical processes, the

applicability of the standard contraction inequality may raise concerns. Instead, we direct our

attention to the original empirical process, restricting the function f to a local neighborhood of

f0. With the above preparations, we are ready to prove Theorem 4.3.1.
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Proof of Theorem 4.3.1. For any t > 0 and δ2,δH > 0, let E (δ2,δH ) be the event on which

(D.7) holds with δ 2 = δ 2
2 + λqδ 2

H , that is, E (δ2,δH ) = {(D.7) holds}. By Lemma D.3.2,

P{E (δ2,δH )} ≥ 1− e−t . For some C1 ≥ 1 to be determined, assume that the KRR estimator f̂

defined in (4.6) satisfies

√
c13

8C1
∥ f̂ − f0∥2 +

1
2

λ
1/2
q ∥ f̂ − f0∥H >C1δn :=C1

(
λ

rq+1/2
q ∥ f ∗∥H +

√
Dλq + t

n

)
. (D.8)

By the optimality of f̂ , we have

1
n

n

∑
i=1

ρτ(Yi− f̂ (Xi))+λq∥ f̂∥2
H ≤

1
n

n

∑
i=1

ρτ(Yi− f0(Xi))+λq∥ f0∥2
H .

Since both ρτ(·) and ∥ · ∥H are convex, there exists some f̃ = ν f̂ +(1−ν) f0 with ν ∈ (0,1)

such that

√
c13

8C1
∥ f̃ − f0∥2 +

1
2

λ
1/2
q ∥ f̃ − f0∥H =C1δn (D.9)

and

1
n

n

∑
i=1

ρτ(Yi− f̃ (Xi))+λq∥ f̃∥2
H ≤

1
n

n

∑
i=1

ρτ(Yi− f0(Xi))+λq∥ f0∥2
H .

It follows that

E
{

ρτ(Yi− f̃ (Xi))−ρτ(Yi− f0(Xi))
}

≤ λq
(
∥ f0∥2

H −∥ f̃∥2
H

)
+

1
n

n

∑
i=1

(1−E)
{

ρτ(Yi− f0(Xi))−ρτ(Yi− f̃ (Xi))
}

≤ λq
(
∥ f0∥2

H −∥ f̃∥2
H

)
+ sup
∥ f− f0∥2≤δ2
∥ f− f0∥H ≤δH

∣∣∣∣1n n

∑
i=1

(1−E)
{

ρτ(Yi− f0(Xi))−ρτ(Yi− f (Xi))
}∣∣∣∣,
(D.10)
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where δ2 =
√

8/c13C3/2
1 δn and δH = 2C1λ

−1/2
q δn. Since C1/c13 ≥ 1, δ 2

2 +λqδ 2
H ≤ 12 C3

1
c13

δ 2
n .

Provided that λq ≥ t/n, conditioned on E (δ2,δH ) we have

sup
∥ f− f0∥2≤δ2
∥ f− f0∥H ≤δH

∣∣∣∣1n n

∑
i=1

(1−E)
{

ρτ(Yi− f0(Xi))−ρτ(Yi− f (Xi))
}∣∣∣∣

≤ c14

(√
12
c13

C3/2
1 δn

√
Dλq

n
+

√
8

c13
C3/2

1 δn

√
t
n
+2C1λ

−1/2
q δn

t
n

)

≤ c14C1δn

(√
12C1

c13

√
Dλq

n
+

√
8C1

c13

√
t
n
+2

√
t
n

)

≤ 5c14C1

√
C1

c13
δn

√
Dλq + t

n
≤ 5c14C1

√
C1

c13
δ

2
n , (D.11)

where the third inequality uses the fact that C1/c13 ≥ 1. For the term λq(∥ f0∥2
H −∥ f̃∥2

H ) on

the right-hand side of (D.10), note that

λq
(
∥ f0∥2

H −∥ f̃∥2
H

)
=−2λq⟨ f0, f̃ − f0⟩H −λq∥ f̃ − f0∥2

H

≤ 2λq|⟨ f0, f̃ − f0⟩H |−λq∥ f̃ − f0∥2
H

= 2λq|⟨T
rq

K f ∗, f̃ − f0⟩H |−λq∥ f̃ − f0∥2
H

(i)
= 2λq|⟨ f ∗,T

rq
K ( f̃ − f0)⟩H |−λq∥ f̃ − f0∥2

H

(ii)
≤ 2λ

rq+1/2
q ∥ f ∗∥H · ∥λ

−rq+1/2
q T rq

K ( f̃ − f0)∥H −λq∥ f̃ − f0∥2
H , (D.12)

where step (i) follows from the self-adjoint property of T rq
K and step (ii) is based on Cauchy-

Schwarz inequality. To further bound the first term on the right-hand side of (D.12), we claim

that for any h ∈H and 0≤ rq ≤ 1/2,

⟨λ 1−2rq
q T 2rq

K h,h⟩H ≤ ⟨(λqI +TK)h,h⟩H . (D.13)
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To see this, write h(·) = ∑
∞
j=1 h jφ j(·), and note that

⟨λ 1−2rq
q T 2rq

K h,h⟩H =
∞

∑
j=1

µ
2rq
j λ

1−2rq
q

h2
j

µ j
=

∞

∑
j=1

(
λq

h2
j

µ j

)1−2rq

· (h2
j)

2rq

≤ (1−2rq)λq

∞

∑
j=1

h2
j

µ j
+2rq

∞

∑
j=1

h2
j

(
by Young’s inequality

)

≤ λq

∞

∑
j=1

h2
j

µ j
+

∞

∑
j=1

h2
j

= λq∥h∥2
H + ⟨TKh,h⟩H .

This verifies (D.13), from which it follows by taking h = f̃ − f0 that

∥λ−rq+1/2
q T rq

K ( f̃ − f0)∥H =

√〈
λ
−rq+1/2
q T rq

K ( f̃ − f0),λ
−rq+1/2
q T rq

K ( f̃ − f0)
〉
H

≤
√〈

f̃ − f0,(λqI +TK)( f̃ − f0)
〉
H

≤ λ
1/2
q ∥ f̃ − f0∥H +∥ f̃ − f0∥2.

Combining this bound with (D.12) yields

λq
(
∥ f0∥2

H −∥ f̃∥2
H

)
≤ 2λ

rq+1
q ∥ f ∗∥H ∥ f̃ − f0∥H︸ ︷︷ ︸

=2λ
rq+1/2
q ∥ f ∗∥H ·λ

1/2
q ∥ f̃− f0∥H

+2λ
rq+1/2
q ∥ f ∗∥H ∥ f̃ − f0∥2−λq∥ f̃ − f0∥2

H

≤ 2λ
1+2rq
q ∥ f ∗∥2

H +
λq

2
∥ f̃ − f0∥2

H +2λ
rq+1/2
q ∥ f ∗∥H ∥ f̃ − f0∥2−λq∥ f̃ − f0∥2

H

= 2λ
1+2rq
q ∥ f ∗∥2

H +2λ
rq+1/2
q ∥ f ∗∥H ∥ f̃ − f0∥2−

λq

2
∥ f̃ − f0∥2

H

≤ 2δ
2
n +2C1

√
8C1

c13
δ

2
n −

λq

2
∥ f̃ − f0∥2

H , (D.14)

where the last inequality follows from the definition of δn in (D.8) and (D.9).
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Turning to the left-hand side of (D.10), again using (D.8) and (D.9) yields

∥ f̃ − f0∥∞ ≤ ∥ f̃ − f0∥H ≤ 2C1λ
−1/2
q δn = 2C1

(
λ

rq
q ∥ f ∗∥H +λ

−1/2
q

√
Dλq + t

n

)
≤ 4C1,

where the last inequality is due to the conditions imposed on λq, that is, λq ≥ (Dλq + t)/n and

λ
rq
q ∥ f ∗∥H ≤ 1. Combining (D.10), (D.11) and (D.14), and taking M = 4C1 in Lemma D.3.1,

we obtain that conditioned on E (δ1,δ2),

c13

4C1
∥ f̃ − f0∥2

2 ≤ 5c14C1

√
C1

c13
δ

2
n +2δ

2
n +2C1

√
8C1

c13
δ

2
n −

λq

2
∥ f̃ − f0∥2

H ,

which further implies

(√
c13

8C1
∥ f̃ − f0∥2 +

1
2

λ
1/2
q ∥ f̃ − f0∥H

)2

≤ c13

4C1
∥ f̃ − f0∥2

2 +
λq

2
∥ f̃ − f0∥2

H

≤

(
5c14C1

√
C1

c13
+2+2C1

√
8C1

c13

)
δ

2
n .

Based on the above inequality, we can choose a sufficiently large C1 > 1 such that

5c14C1
√

C1/c13+2+2C1
√

8C1/c13 <C2
1 . However, the construction of f̃ , assuming f̂ satisfies

(D.8), ensures that

(√
c13

8C1
∥ f̃ − f0∥2 +

1
2

λ
1/2
q ∥ f̃ − f0∥H

)2

=C2
1δ

2
n .

This leads to a contradiction conditioned on E (δ2,δH ). Therefore, we must have

√
c13

8C1
∥ f̂ − f0∥2 +

1
2
∥ f̂ − f0∥H ≤C1δn

on the event E (δ2,δH ) that occurs with probability at least 1− e−t . This implies the claimed

bounds with c1 =C3/2
1

√
8/c13 and c2 = 2C1.
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D.3.3 Proof of Theorem 4.3.2

To begin with, we introduce the following notations that will be used frequently. Recall

the QR residuals defined as εi = Yi− f0(Xi) for 1≤ i≤ n and ε = Y − f0(X). For any function

f : X → R, define

Z( f )(X ,ε) = {Y − f (X)}1{Y ≤ f (X)}+ τ f (X), (D.15)

and Zi( f ) = Z( f )(Xi,εi) for 1≤ i≤ n. Furthermore, define the zero-mean ES residuals

ωi = Z( f0)(Xi,εi)− τg0(Xi),

which can be equivalently expressed as

ωi = εi1(εi ≤ 0)+ τ f0(Xi)− τg0(Xi) = εi,−−E(εi,−|Xi),

where εi,− = εi1(εi ≤ 0). Condition 4.3.2 implies that logE(etωi|Xi)≤ σ2
0 t2/2 (almost surely)

for any t ∈ R.

Similar to the proof of Theorem 4.3.1, we also need to establish concentration bounds

for the empirical processes that will arise in the proof. For any function h : X → R, define

the empirical L2-norm ∥h∥n =
√

(1/n)∑
n
i=1 h2(Xi). The following lemma characterizes the

relationship between the empirical and population L2-norms for functions in H .

Lemma D.3.3. Assume Condition 4.2.1 holds and let λe ≥ 9/n. Then, the following event

S = S (λe) :=

{
1
2
≤
∥h∥2

n +λe∥h∥2
H

∥h∥2
2 +λe∥h∥2

H

≤ 3
2

for all h ∈H

}

holds with probability at least 1−14Dλee
−3nλe/32. Here we use the convention 0/0 = 1.

Next, Lemma D.3.4 and Lemma D.3.5 provide high probability bounds for a multiplier
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empirical process and a product empirical process, respectively. In the majority of RKHS

literature, the zero-mean error terms ωi in the multiplier process {(1/n)∑ωih(Xi) : h ∈H }

are typically assumed to be bounded. However, this constraint is relaxed, as demonstrated in

Lemma D.3.4. In comparison to the analysis for joint linear models, the primary technical

challenge lies in controlling the multiplier process in Lemma D.3.5. Specifically, the bound

(D.16), a nontrivial extension of Lemma G.1 in He et al. (2023), relies on a Gaussian comparison

inequality for product empirical processes, an upper bound (under expectation) on the opera-

tor norm of sums of bounded random matrices, along with a series of intricate probabilistic

inequalities. Lemma D.3.5 can be more broadly applied to the analysis of KRR estimators with

nonparametrically generated response variables, and therefore is of independent interest.

Lemma D.3.4. Assume Conditions 4.2.1 and 4.3.2 hold. There exists an absolute constant

c15 > 0 such that for any t > 0, the following event

Mt :=

{
1
n

n

∑
i=1

ωih(Xi)≤
1
4
∥h∥2

n +
λe

4
∥h∥2

H + c15σ
2
0
Dλe + t

n
, ∀h ∈H

}

satisfies P(M c
t ∩S )≤ 4e−t , where the event S is defined in Lemma D.3.3.

Lemma D.3.5. Assume Conditions 4.2.1, 4.3.2 and 4.3.3 hold. There exists a universal constant

c16 > 0 such that for any 0 < t ≲ λen and n≥C2
φ
Dλe logn, with probability at least 1− e−t , the

bound

τ

n

n

∑
i=1
{Zi( f )−Zi( f0)}{g(Xi)−g0(Xi)} ≤

τ2

16
∥g−g0∥2

2 +
λeτ2

16
∥g−g0∥2

H

+
p̄τ

2
∥ f − f0∥2

4∥g−g0∥2 + c16C2
φ δ

2
2
Dλq(Dλe + t)

n
(D.16)

holds uniformly over f ,g ∈H satisfying ∥ f − f0∥2
2 +λq∥ f − f0∥2

H ≤ δ 2
2 .

With the above preparations, we are ready to prove Theorem 4.3.2.
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Proof of Theorem 4.3.2. Note that ĝ can be equivalently defined as the minimizer of g 7→

(1/n)∑
n
i=1{Zi( f̂ )− τg(Xi)}2 +λe∥τg∥2

H . We consider the change of variables

h = τg, ĥ = τ ĝ and h0 = τg0,

so that ωi = Zi( f0)−h0(Xi). By the optimality of ĝ,

1
n

n

∑
i=1
{Zi( f̂ )− ĥ(Xi)}2 +λe∥ĥ∥2

H ≤
1
n

n

∑
i=1
{Zi( f̂ )−h0(Xi)}2 +λe∥h0∥2

H .

After a simple algebra, this further implies

∥ĥ−h0∥2
n ≤

2
n

n

∑
i=1

ωi(ĥ−h0)(Xi)+
2
n

n

∑
i=1
{Zi( f̂ )−Zi( f0)}{ĥ(Xi)−h0(Xi)}

+λe
(
∥h0∥2

H −∥ĥ∥2
H

)
. (D.17)

For any t > 0, let S and Mt be the events defined in Lemma D.3.3 and Lemma D.3.4, respectively.

In addition, let Pt be the event on which the bound (D.16) holds uniformly for f ,g ∈H with

∥ f − f0∥2
2 +λq∥ f − f0∥2

H ≤ δ 2
2 . Provided that λe ≥ 32

3
t+log(14Dλe)

n , we have

14Dλe exp(−3nλe/32) = exp{log(14Dλe)−3nλe/32} ≤ e−t .

Together, Lemma D.3.3, Lemma D.3.4 and Lemma D.3.5 imply

P(S c∪M c
t ∪Pc

t )≤ P(S c∪M c
t )+P(Pc

t ) = P(S c)+P(S ∩M c
t )+P(Pc

t )≤ 6e−t .

By the definition of these events and the notations in Theorem 4.3.2, it follows from (D.17) that
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conditioned on Mt ∩Pt ,

∥ĥ−h0∥2
n ≤

1
2
∥ĥ−h0∥2

n +
1
8
∥ĥ−h0∥2

2 +
5λe

8
∥ĥ−h0∥2

H

+ p̄∥ĥ−h0∥2∥ f̂ − f0∥2
4 +λe

(
∥h0∥2

H −∥ĥ∥2
H

)
+C1(γ

2
s +δ

2
s ), (D.18)

where C1 > 0 is a universal constant. Recall that g0 = T re
k g∗ with 0 ≤ re ≤ 1/2 and g∗ ∈H .

Following a similar argument that leads to (D.14), we have

λe
(
∥g0∥2

H −∥ĝ∥2
H

)
≤ 2λ

re+1
e ∥g∗∥H ∥ĝ−g0∥H +2λ

re+1/2
e ∥g∗∥H ∥ĝ−g0∥2−λe∥ĝ−g0∥2

H

≤ 16λ
2re+1
e ∥g∗∥2

H +
λe

16
∥ĝ−g0∥2

H +2λ
re+1/2
e ∥g∗∥H ∥ĝ−g0∥2−λe∥ĝ−g0∥2

H . (D.19)

Moreover, conditioned on S it holds

1
4
∥ĝ−g0∥2

2 ≤
1
2
∥ĝ−g0∥2

n +
λe

4
∥ĝ−g0∥2

H .

Combining this with (D.18) and (D.19), we obtain that on the event S ∩Mt ∩Pt ,

1
4
∥ĥ−h0∥2

2 ≤
1
2
∥ĥ−h0∥2

n +
λe

4
∥ĥ−h0∥2

H

≤ 1
8
∥ĥ−h0∥2

2 +∥ĥ−h0∥2
(

p̄∥ f̂ − f0∥2
4 +2λ

re+1/2
e ∥h∗∥H

)
− λe

16
∥ĥ−h0∥2

H +16λ
2re+1
e ∥h∗∥2

H +C1(γ
2
s +δ

2
s ),

which further implies

2∥ĥ−h0∥2
2 ≤ 2∥ĥ−h0∥2

2 +λe∥ĥ−h0∥2
H

≤ ∥ĥ−h0∥2
(
16 p̄∥ f̂ − f0∥2

4 +32λ
re+1/2
e ∥h∗∥H

)
+256λ

2re+1
e ∥h∗∥2

H +16C1(γ
2
s +δ

2
s ),

(D.20)
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where h∗ = τg∗. By reorganizing the terms, it follows that

∥ĥ−h0∥2 ≤ 8p̄∥ f̂ − f0∥2
4 +16(1+1/

√
2)λ re+1/2

e ∥h∗∥H +2
√

2C1

√
γ2

s +δ 2
s

≤ c3
(
λ

re+1/2
e ∥h∗∥H + p̄∥ f̂ − f0∥2

4 + γs +δs
)

for some absolute constant c3 > 0. Finally, combining this L2-error bound with (D.20) results in

the claimed bound on ∥ĥ−h0∥H , thereby completing the proof.

D.3.4 Proof of Theorem 4.3.3

Under Condition 4.3.3, we can define an equivalent kernel (Silverman, 1984) and use its

norm to establish a tighter upper bound for the L∞-norm of functions in H ; see Lemma D.3.6

and the subsequent discussion for details.

For any λ > 0 fixed, define a new inner product ⟨·, ·⟩λ on H as

⟨ f ,g⟩λ = ⟨ f ,g⟩2 +λ ⟨ f ,g⟩H for f ,g ∈H ,

where ⟨ f ,g⟩2 = ⟨ f ,g⟩L2(PX ) =
∫
X f (x)g(x)dPX(x). Recall that {φ j} j≥1 are the eigenfunctions

of TK with the associated eigenvalues {µ j} j≥1. For f = ∑
∞
j=1 f jφ j and g = ∑

∞
j=1 g jφ j, we have

⟨ f ,g⟩λ =
∞

∑
j=1

f jg j +λ

∞

∑
j=1

f jg j

µ j
=

∞

∑
j=1

f jg j

ν j
,

where

ν j =
1

1+λ/µ j
=

µ j

µ j +λ
for j ≥ 1.

Let Hλ be the new RKHS associated with ⟨·, ·⟩λ . Note that Hλ is the same functional space as
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H , but with a different reproducing kernel Kλ , referred to as the equivalent kernel, defined as

Kλ (x1,x2) =
∞

∑
j=1

ν jφ j(x1)φ j(x2), x1,x2 ∈X .

In the following, we write ∥ f∥2
λ
= ⟨ f , f ⟩λ for any f ∈Hλ , and let ∥ · ∥op,λ be the operator norm

with respect to Hλ , that is, for any T : H →H ,

∥T∥op,λ = sup
∥ f∥λ≤1

⟨T f , f ⟩λ .

Here λ is the regularization parameter, which is typically chosen as a small number. We remark

that the above ∥ · ∥λ should not be confused with the L2-norm ∥ · ∥2.

We first describe a relationship between the norms ∥ · ∥∞ and ∥ · ∥λ , the proof of which is

established in (D.79) within the proof of Lemma D.3.5.

Lemma D.3.6. Under Conditions 4.2.1 and 4.3.3, the bound ∥h∥∞ ≤CφD
1/2
λ
∥h∥λ holds for any

h ∈H .

This lemma demonstrates that the norm ∥ · ∥λ can provide a tighter upper bound for the

supremum norm of functions in H compared to using the original RKHS norm ∥ · ∥H . To

illustrate, Condition 4.2.1 implies that ∥h∥∞ ≤ ∥h∥H for any h ∈H . However, Lemma D.3.6

shows that

∥h∥∞ ≤CφD
1/2
λ
∥h∥λ =CφD

1/2
λ

√
∥h∥2

2 +λ∥h∥2
H .

Therefore, if Dλ (∥h∥2
2 +λ∥h∥2

H ) is smaller in order than ∥h∥2
H , using the norm ∥ ·∥λ results in

a tighter bound for the supremum norm compared to using ∥ · ∥H .

Next, define

Tλ = TK +λ I, T̂ =
1
n

n

∑
i=1

KXi⊗KXi and T̂λ = T̂ +λ I. (D.21)
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Here, for h1,h2 ∈H , their tensor product h1⊗h2 : H →H is a rank-one operator satisfying

(h1⊗h2)h = ⟨h2,h⟩H h1 for any h ∈H . Note that E(KXi⊗KXi) = TK by definition (4.3).

Lemma D.3.7. Suppose that ∥T−1
λ

(T̂ −TK)∥op,λ ≤ ζ < 1 for some λ > 0. Then, there exists an

operator A : H →H such that

T̂−1
λ
−T−1

λ
= AT−1

λ
with ∥A∥op,λ ≤

ζ

1−ζ
.

Finally, we compile several concentration results necessary for proving the functional

Bahadur representation.

Lemma D.3.8. Assume that Conditions 4.2.1, 4.3.2 and 4.3.3 hold. Then, there exists a universal

constant c17 > 0 such that for any t > 0 and λ ≳ (t + logDλ )/n, we have

P

(∥∥∥∥1
n

n

∑
i=1

ωiT−1
λ

KXi

∥∥∥∥
λ

≥ c17σ0

√
Dλ + t

n

)
≤ 5e−t , (D.22)

and

P

{∥∥T−1
λ

(T̂ −TK)
∥∥

op,λ ≥ 4

(
C2

φDλ

t + logn
n

∨
CφD

1/2
λ

√
t + logn

n

)}
≤ 14Dλ

n
e−t . (D.23)

Moreover, if we further assume that n≥C2
φ
Dλe logn, then, with probability at least 1− e−t , the

bound

∥∥∥∥1
n

n

∑
i=1
{Zi( f )−Zi( f0)}T−1

λ
KXi

∥∥∥∥
λ

≤ c18Cφ δ2D
1/2
λq

√
t +Dλe

n
+

p̄
2
∥ f − f0∥2

4 (D.24)

holds uniformly for f ∈H with ∥ f − f0∥2
2 +λq∥ f − f0∥2

H ≤ δ 2
2 , where c18 > 0 is an absolute

constant.

Now, we are ready to prove Theorem 4.3.3.

Proof of Theorem 4.3.3. To begin with, recall the population (penalized) risk minimizer gλe given
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in (4.12), which can be written as gλe = T−1
λe

TKg0. We first prove the Bahadur representation of

the two-step ES estimator ĝ ∈ argming∈H L̂n( f̂ ,g). Write the empirical risk L̂n( f̂ ,g) as

L̂n( f̂ ,g) =
1
n

n

∑
i=1
{Zi( f̂ )/τ−g(Xi)}2 +λe∥g∥2

H

=
1
n

n

∑
i=1
{Zi( f̂ )/τ−⟨g,KXi⟩H }

2 +λe⟨g,g⟩H

=
1
n

n

∑
i=1
{Zi( f̂ )/τ}2 +

〈(
1
n

n

∑
i=1

KXi⊗KXi +λeI
)

︸ ︷︷ ︸
= T̂λe

g,g
〉

H

−
〈

2
τn

n

∑
i=1

Zi( f̂ )KXi,g
〉

H

.

By taking the Fréchet derivative of g→ L̂n( f̂ ,g), the empirical risk minimizer ĝ admits the

closed-form expression

ĝ = T̂−1
λe

1
τn

n

∑
i=1

Zi( f̂ )KXi. (D.25)

STEP I. DECOMPOSITION OF ĝ− gλe . From the model setup Zi( f0) = τg0(Xi)+ωi and the

reproducing property of KXi , we derive that

τ(ĝ−gλe)

= T̂−1
λe

1
n

n

∑
i=1

Zi( f̂ )KXi− τT−1
λe

TKg0

= T̂−1
λe

1
n

n

∑
i=1
{Zi( f̂ )−Zi( f0)+Zi( f0)}KXi− τT−1

λe
TKg0

= T̂−1
λe

1
n

n

∑
i=1
{Zi( f̂ )−Zi( f0)}KXi + T̂−1

λe

1
n

n

∑
i=1

ωiKXi + τT̂−1
λe

T̂ g0− τT−1
λe

TKg0

= T−1
λe

[
1
n

n

∑
i=1
{Zi( f̂ )−Zi( f0)}KXi +

1
n

n

∑
i=1

ωiKXi

]
+ τT̂−1

λe
T̂ g0− τT−1

λe
TKg0

+
(
T̂−1

λe
−T−1

λe

)[1
n

n

∑
i=1
{Zi( f̂ )−Zi( f0)}KXi +

1
n

n

∑
i=1

ωiKXi

]
. (D.26)
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Observe that

T̂−1
λe

T̂ g0−T−1
λe

TKg0 = (T̂−1
λe
−T−1

λe
)T̂ g0 +T−1

λe
(T̂ −TK)g0 (D.27)

= (T̂−1
λe
−T−1

λe
)(T̂ −TK)g0 +(T̂−1

λe
−T−1

λe
)TKg0 +T−1

λe
(T̂ −TK)g0.

Here, note that

(T̂−1
λe
−T−1

λe
)TKg0 +T−1

λe
(T̂ −TK)g0

= T̂−1
λe

(Tλe− T̂λe)T
−1

λe
TKg0 +T−1

λe
(T̂ −TK)g0

=−T̂−1
λe

(T̂ −TK)gλe +T−1
λe

(T̂ −TK)g0

=−(T̂−1
λe
−T−1

λe
)(T̂ −TK)gλe−T−1

λe
(T̂ −TK)gλe +T−1

λe
(T̂ −TK)g0

=−(T̂−1
λe
−T−1

λe
)(T̂ −TK)gλe +T−1

λe
(T̂ −TK)(g0−gλe).

Together, the above equality and (D.27) yield

T̂−1
λe

T̂ g0−T−1
λe

TKg0 = (T̂−1
λe
−T−1

λe
)(T̂ −TK)(g0−gλe)+T−1

λe
(T̂ −TK)(g0−gλe),

which, combined with (D.26), further implies

τ(ĝ−gλe)−
1
n

n

∑
i=1

ωiT−1
λe

KXi

= T−1
λe

[
1
n

n

∑
i=1
{Zi( f̂ )−Zi( f0)}KXi + τ(T̂ −TK)(g0−gλe)

]
(D.28)

+(T̂−1
λe
−T−1

λe
)

[
1
n

n

∑
i=1
{Zi( f̂ )−Zi( f0)}KXi +

1
n

n

∑
i=1

ωiKXi + τ(T̂ −TK)(g0−gλe)

]
.

STEP II. OCCURRENCES OF “GOOD” EVENTS WITH HIGH PROBABILITY. The decomposition

in (D.28) suggests that (1/n)∑
n
i=1 ωiT−1

λe
KXi should be the leading term, while the remaining

terms are of higher order. In this step, we introduce the “good” events on which the remainders
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are well controlled and then establish high probability bounds for these events. To this end, let

n≥ 64C2
φ
Dλe(t + logn) so that ζ := 4Cφ

√
Dλe(t + logn)/n≤ 1/2. It then follows from (D.23)

that the event

Et :=
{
∥T−1

λe
(T̂ −TK)∥op,λe ≤ ζ

}
occurs with probability at least 1− e−t .

To apply (D.24), we need to determine the order of δ2 and establish the convergence rate

of f̂ under the L4-norm. For the former, Theorem 4.3.1 implies that with probability at least

1− e−t ,

∥ f̂ − f0∥2
2 +λq∥ f̂ − f0∥2

H ≲

(
λ

rq+1/2
q ∥ f ∗∥H +

√
Dλq + t

n

)2

.

By taking

δ2 ≍ λ
rq+1/2
q ∥ f ∗∥H +

√
Dλq + t

n

and applying Lemma D.3.6, we conclude that with probability at least 1− e−t , ∥ f̂ − f0∥2
2 +

λq∥ f̂ − f0∥2
H ≤ δ 2

2 ,

∥ f̂ − f0∥∞ ≤CφD
1/2
λq

(
∥ f̂ − f0∥2

2 +λq∥ f̂ − f0∥2
H

)1/2 ≤CφD
1/2
λq

δ2,

and moreover,

∥ f̂ − f0∥2
4 =

{
EX∼PX ( f̂ − f0)

4(X)
}1/2 ≤ ∥ f̂ − f0∥∞∥ f̂ − f0∥2 ≤CφD

1/2
λq

δ
2
2 . (D.29)

Let Bt be the event on which the following bounds

∥∥∥∥1
n

n

∑
i=1

ωiT−1
λe

KXi

∥∥∥∥
λe

≤ γ1 := c17σ0

√
Dλe + t

n
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and

∥∥∥∥1
n

n

∑
i=1
{Zi( f̂ )−Zi( f0)}T−1

λe
KXi

∥∥∥∥
λe

≤ γ2 :=c18Cφ δ2D
1/2
λq

√
t +Dλe

n
+

p̄
2

CφD
1/2
λq

δ
2
2

hold. By Lemma D.3.8 and (D.29), the event Bt occurs with probability at least 1− 7e−t .

Consequently, we have P(Et ∩Bt)≥ 1−8e−t .

STEP III. HIGH PROBABILITY BOUND FOR THE REMAINDER TERM. We combine the results

in Step I and Step II to complete the proof of the Bahadur representation of ĝ. Define

Remn := τ(ĝ−gλe)−
1
n

n

∑
i=1

ωiT−1
λe

KXi,

which equals the right-hand side of (D.28). Conditioned on Et ∩Bt , it is easy to see that

∥∥∥∥∥T−1
λe

[
1
n

n

∑
i=1
{Zi( f̂ )−Zi( f0)}KXi + τ(T̂ −TK)(g0−gλe)

]∥∥∥∥∥
λe

≤ γ2 + τζ∥g0−gλe∥λe.

On the other hand, it follows from Lemma D.3.7 that,

∥∥∥∥∥(T̂−1
λe
−T−1

λe
)

[
1
n

n

∑
i=1
{Zi( f̂ )−Zi( f0)}KXi +

1
n

n

∑
i=1

ωiKXi + τ(T̂ −TK)(g0−gλe)

]∥∥∥∥∥
λe

≤ ζ

1−ζ
·

∥∥∥∥∥T−1
λe

[
1
n

n

∑
i=1
{Zi( f̂ )−Zi( f0)}KXi +

1
n

n

∑
i=1

ωiKXi + τ(T̂ −TK)(g0−gλe)

]∥∥∥∥∥
λe

≤ 2ζ
(
γ1 + γ2 + τζ∥g0−gλe∥λe

)
,

where the second inequality is due to the fact that ζ ≤ 1/2. Combining the above bounds, we

obtain that conditioned on Et ∩Bt ,

∥Remn∥λe ≤ γ2 + τζ∥g0−gλe∥λe +2ζ
(
γ1 + γ2 + τζ∥g0−gλe∥λe

)
≤ 2γ2 +2τζ∥g0−gλe∥λe +2ζ γ1.
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It remains to bound the (deterministic) bias term ∥g0−gλe∥λe . Recalling that g0 = T re
K g∗ with

g∗ = ∑
∞
j=1 g jφ j ∈H , we have

g0−gλe = g0−T−1
λe

TKg0 =
∞

∑
j=1

µ
re
j g jφ j−

∞

∑
j=1

µ j

µ j +λe
µ

re
j g jφ j =

∞

∑
j=1

λe

µ j +λe
µ

re
j g jφ j.

Hence,

∥g0−gλe∥
2
λe
=

∞

∑
j=1

λ 2
e

(µ j +λe)2 µ
2re
j g2

j ·
µ j +λe

µ j
(D.30)

= λ
1+2re
e

∞

∑
j=1

λ 1−2re
e µ

2re
j

(µ j +λe)1−2re(µ j +λe)2re

g2
j

µ j
≤ λ

1+2re
e

∞

∑
j=1

g2
j

µ j
= λ

2re+1
e ∥g∗∥2

H .

Putting the pieces together and recalling the notations in Theorem 4.3.3, we obtain that with

probability at least 1−8e−t ,

∥Remn∥λe ≤ 2ζ
(
γ1 + τλ

re+1/2
e ∥g∗∥H

)
+2γ2 ≍ ∆1(λe)+∆2(λq,λe).

Combining this bound on the ∥ · ∥λe-norm with Lemma D.3.6 completes the proof of (4.16).

To obtain the functional Bahadur representation (4.17) for the oracle estimator ĝora, note

that ĝora is the empirical risk minimizer of g→ L̂n( f0,g) when the true conditional quantile

function is plugged in. Therefore, using a similar argument that leads to (D.25), we obtain the

following closed-form expression of ĝora:

ĝora = T̂−1
λe

1
τn

n

∑
i=1

Zi( f0)KXi.
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Following a similar line of arguments that leads to (D.28), it can be shown that

Remn,ora

:= τ(ĝora−gλe)−
1
n

n

∑
i=1

ωiT−1
λe

KXi

= τT−1
λe

(T̂ −TK)(g0−gλe)+(T̂−1
λe
−T−1

λe
)

{
1
n

n

∑
i=1

ωiKXi + τ(T̂ −TK)(g0−gλe)

}
.

The rest of the proof closely resembles that in the case of ĝn and is therefore omitted here to

avoid repetitive calculations.

D.3.5 Proof of Theorem 4.3.4

Keeping the notations used in Theorem 4.3.3 and fixing x0 ∈X , we write

ρ
2
λe
= ρ

2
λe
(x0) =

E{ωiT−1
λe

KXi(x0)}2

Dλe

and Sn =
1√
n

n

∑
i=1

ωiT−1
λe

KXi(x0)

throughout the proof.

We first prove the Berry-Esseen bound for the two-step estimator ĝ. From (4.16) we see

that with probability at least 1−8e−t ,

∥∥∥∥τ(ĝ−gλe)−
1
n

n

∑
i=1

ωiT−1
λe

KXi

∥∥∥∥
∞

≤ c5D
1/2
λe
{∆1(λe)+∆2(λq,λe)},

which implies

∣∣τ√n(ĝ−gλe)(x0)−Sn
∣∣≤ c5D

1/2
λe

√
n{∆1(λe)+∆2(λq,λe)}. (D.31)

Applying the Berry-Esseen theorem (see, e.g. Tyurin (2011)), we obtain

sup
u∈R

∣∣P{Sn ≤ Var(Sn)
1/2u

}
−G(u)

∣∣≤ 0.5
E|ωiT−1

λe
KXi(x0)|3

[E{ωiT−1
λe

KXi(x0)}2]3/2

1√
n
,
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where G(·) denotes the standard normal distribution function, that is,

G(x) =
1√
2π

∫ x

−∞

e−u2/2du.

By definition of ρ2
λe

in (4.19),

[E{ωiT−1
λe

KXi(x0)}2]3/2 =D
3/2
λe

ρ
3
λe
.

For the third absolute moment, let PXi and EXi be the conditional probability and conditional

expectation given Xi, respectively. Condition 4.3.2 implies that for any u > 0,

PXi(|ωi|> u)≤ inf
s>0

{
e−suEXi(e

s|ωi|)
}

≤ inf
s>0

{
e−suEXi(e

sωi + e−sωi)
}
≤ inf

s>0
(2e−sueσ2

0 s2/2) = 2e−u2/(2σ2
0 ), (D.32)

where the first inequality follows from Markov’s inequality and the last step is obtained by

choosing s = u/σ2
0 . Therefore, the (conditional) third moment of |ωi| satisfies

EXi(|ωi|3) = 3
∫

∞

0
u2PXi(|ωi|> u)du≤ 6

∫
∞

0
u2e−u2/(2σ2

0 )du

= 6
√

2σ
3
0

∫
∞

0
u1/2e−udu = 3

√
2πσ

3
0 ,

where the second equality is obtained by a change of variables. Moreover, note that

∣∣T−1
λe

KXi(x0)
∣∣= ∣∣∣∣ ∞

∑
j=1

µ j

µ j +λe
φ j(Xi)φ j(x0)

∣∣∣∣≤C2
φDλe ,

and E{T−1
λe

KXi(x0)}2 ≤C2
φ
Dλe by a similar argument as in (4.18). Combining the above bounds
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yields

sup
u∈R

∣∣P{Sn ≤ Var(Sn)
1/2u

}
−G(u)

∣∣≤ 0.5
E|ωiT−1

λe
KXi(x0)|3

D
3/2
λe

ρ3
λe

1√
n

≤ 3
√

2π

2
σ

3
0

C2
φ
DλeE{T

−1
λe

KXi(x0)}2

D
3/2
λe

ρ3
λe

1√
n

≤ 3
√

2π

2
C4

φ

σ3
0

ρ3
λe

√
Dλe

n
. (D.33)

Let ξ ∼ N (0,1) and recall that Var(Sn)
1/2 = D

1/2
λe

ρλe . Denoting ∆1 = ∆1(λe) and

∆2 = ∆2(λq,λe) for brevity, it follows from (D.31) and (D.33) that, for any u ∈ R,

P
{√

n
Dλe

τ

ρλe

(ĝ−gλe)(x0)≤ u
}

≤ P
{

Var(Sn)
−1/2Sn ≤ u+ c5ρ

−1
λe

√
n(∆1 +∆2)

}
+8e−t

≤ P
{

ξ ≤ u+ c5ρ
−1
λe

√
n(∆1 +∆2)

}
+8e−t +

3
√

2π

2
C4

φ

σ3
0

ρ3
λe

√
Dλe

n

≤ P(ξ ≤ u)+8e−t +
3
√

2π

2
C4

φ

σ3
0

ρ3
λe

√
Dλe

n
+

c5√
2π

ρ
−1
λe

√
n(∆1 +∆2).

Here, the last inequality follows from the fact that G(b)−G(a)≤ (2π)−1/2(b−a) for any a≤ b.

A similar argument leads to a series of reverse inequalities. The above bounds are independent

of u, so that the same inequalities hold uniformly over u ∈ R. Moreover, by the definition

of ∆1, σ0
√

Dλe/n ≤
√

n∆1. This completes the proof of the Berry-Esseen bound for ĝ with

c7 = c7(Cφ ,ρλe,σ0) =
3
2

√
2πC4

φ
σ2

0 ρ
−3
λe

+ c5(2π)−1/2ρ
−1
λe

.

For the two-step oracle estimator ĝora, the bound (4.17) yields that, with probability at

least 1−6e−t ,

∥∥∥∥τ(ĝora−gλe)−
1
n

n

∑
i=1

ωiT−1
λe

KXi

∥∥∥∥
∞

≤ c6D
1/2
λe

∆1,
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thus implying

∣∣∣∣τ√n(ĝora−gλe)(x0)−
1√
n

n

∑
i=1

ωiT−1
λe

KXi(x0)

∣∣∣∣≤ c6D
1/2
λe

√
n∆1.

By combining the above inequality with (D.33), the Berry-Esseen bound for ĝora can be es-

tablished using a similar line of reasoning as in the case of ĝ. The proof is omitted here for

brevity.

D.3.6 Proof of Theorem 4.3.5

Following the notation in the proof of Proposition 4.2.1, define centered random weights

Ui = Wi−EWi = Wi− 1 for i = 1, . . . ,n. We begin by establishing an upper bound on the

difference between τB♭(x0)=
1
n ∑UiZi( f̂ )− τ ĝ(Xi)T̂−1

λe
KXi(x0) and the sum 1

n ∑UiωiT−1
λe

KXi(x0)

under the ∥ · ∥λe-norm. Recall that P∗(·) = P(·|Dn) denotes the conditional probability given

Dn = {(Yi,Xi)}n
i=1. Let E∗(·) = E(·|Dn) and Var∗(·) = Var(·|Dn) be the conditional expectation

and conditional variance given Dn, respectively.

Lemma D.3.9. Assume that Conditions 4.2.1–4.3.4 hold, and f0 = T rq
K f ∗ and g0 = T re

K g∗ for

some 0≤ rq,re≤ 1/2 and f ∗,g∗ ∈H . For any t > 0, let λq≥ (Dλq +t)/n, λ
rq
q ∥ f ∗∥H ≤ 1, λe ≳

(t + logDλe)/n and n≥ 64C2
φ
Dλe(t + logn) logn. Define δn := δn(λq,n, t) and γn := γn(λe,n, t)

as

δn = λ
rq+1/2
q ∥ f ∗∥H +

√
Dλq + t

n
and γn = τλ

re+1/2
e ∥g∗∥H +σ0

√
Dλe + t

n
.

Moreover, denote

δs := δnD
1/2
λq

√
t +Dλe

n
.

Then, there exists an event G (t) with P{G (t)} ≥ 1−12e−t such that, with P∗-probability at least
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1−5e−t conditioned on G (t),

∥∥∥∥1
n

n

∑
i=1

Ui{Zi( f̂ )− τ ĝ(Xi)}T̂−1
λe

KXi−
1
n

n

∑
i=1

UiωiT−1
λe

KXi

∥∥∥∥
λe

≤ c19∆♭(λq,λe,n, t),

where

∆♭(λq,λe,n, t) = γnD
1/2
λe

√
t + logn

n
+(δs +D

1/2
λq

δ
2
n ) = ∆1(λe)+∆2(λq,λe),

and c19 = c19(Cφ ,σ0,σW ) is a positive constant depending only on (Cφ ,σ0,σW ).

Now, we are ready to prove Theorem 4.3.5.

Proof of Theorem 4.3.5. Following the notations in the proof of Theorem 4.3.4 and fixing x0 ∈

X , we write ρ2
λe
= ρ2

λe
(x0). Without loss of generality, assume that the sample size satisfies

n≥ 256C6
φ (σ0/ρλe)

4Dλet. (D.34)

Otherwise, the right-hand side of the bound (4.20) exceeds 1, so that (4.20) holds trivially.

By combining Lemmas D.3.6 and D.3.9 and denoting ∆♭ = ∆♭(λq,λe,n, t) for simplicity,

it follows that, conditioned on G (t) defined in Lemma D.3.9, the bound

∥∥∥∥1
n

n

∑
i=1

Ui{Zi( f̂ )− τ ĝ(Xi)}T̂−1
λe

KXi−
1
n

n

∑
i=1

Ui ωiT−1
λe

KXi

∥∥∥∥
∞

≤C1D
1/2
λe

∆♭

holds with P∗-probability at least 1− 5e−t , where C1 only depends on (Cφ ,σ0,σW ). Given

x0 ∈X , define

S♭n =
1√
n

n

∑
i=1

Ui ωiT−1
λe

KXi(x0).
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Then, with P∗-probability at least 1−5e−t conditioned on G (t),

|τ
√

nB♭(x0)−S♭n|=
∣∣∣∣ 1√

n

n

∑
i=1

Ui{Zi( f̂ )− τ ĝ(Xi)}T̂−1
λe

KXi(x0)−
1√
n

n

∑
i=1

Ui ωiT−1
λe

KXi(x0)

∣∣∣∣
≤C1D

1/2
λe

√
n∆♭. (D.35)

Applying a conditional version of the Berry-Esseen inequality, we have

sup
u∈R

∣∣P∗{S♭n ≤ Var∗(S♭n)
1/2u

}
−G(u)

∣∣≲ σ3
W n−1

∑
n
i=1 |ωiT−1

λe
KXi(x0)|3

√
n{Var∗(S♭n)}3/2 , (D.36)

where Var∗(S♭n) = n−1
∑

n
i=1 ω2

i {T
−1

λe
KXi(x0)}2.

We then establish high probability bounds for the data-dependent quantities, Var∗(S♭n)

and n−1
∑

n
i=1 |ωiT−1

λe
KXi(x0)|3. Note that E{ωiT−1

λe
KXi(x0)}2 = ρ2

λe
Dλe by the definition of ρλe

in (4.19). Thus

∣∣Var∗(S♭n)/E{ωiT−1
λe

KXi(x0)}2−1
∣∣= ∣∣∣∣1n n

∑
i=1

(1−E)
ω2

i {T
−1

λe
KXi(x0)}2

ρ2
λe
Dλe

∣∣∣∣.
Next, we apply Bernstein’s inequality to bound the right-hand side. By (D.32), we have for any

u > 0 that PXi(ω
2
i ≥ u) = PXi(|ωi| ≥

√
u)≤ 2e−u/(2σ2

0 ), which implies PXi(ω
2
i ≥ 2σ2

0 u)≤ 2e−u.

Then, for any l ≥ 1, it follows that

EXi

(
|ωi|2l)= (2σ

2
0 )

ll
∫

∞

0
ul−1PXi

(
ω

2
i ≥ 2σ

2
0 u
)
du≤ 2(2σ

2
0 )

ll
∫

∞

0
ul−1e−udu

= 2(2σ
2
0 )

ll!. (D.37)

Moreover,

∥∥T−1
λe

KXi(x0)
∥∥

∞
=

∥∥∥∥ ∞

∑
j=1

µ j

µ j +λe
φ j(Xi)φ j(x0)

∥∥∥∥
∞

≤C2
φDλe ,
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so that

E{T−1
λe

KXi(x0)}2l ≤ ∥T−1
λe

KXi(x0)∥2l−2
∞ E{T−1

λe
KXi(x0)}2

= ∥T−1
λe

KXi(x0)∥2l−2
∞ E

{
∞

∑
j=1

µ j

µ j +λe
φ j(Xi)φ j(x0)

}2

= ∥T−1
λe

KXi(x0)∥2l−2
∞

∞

∑
j=1

(
µ j

µ j +λe

)2

φ
2
j (x0)

≤
(
C2

φDλe

)2l−2
∞

∑
j=1

µ j

µ j +λe
φ

2
j (x0)

≤
(
C2

φDλe

)2l−2C2
φDλe .

Combining the above inequalities, we have

E

[
ω2

i {T
−1

λe
KXi(x0)}2

ρ2
λe
Dλe

]2

≤ 16C6
φ

σ4
0

ρ4
λe

Dλe

and for l ≥ 2

E
∣∣∣∣ω2

i {T
−1

λe
KXi(x0)}2

ρ2
λe
Dλe

∣∣∣∣l ≤ 2
(

2σ2
0

ρ2
λe

)l

l!C4l−2
φ

Dl−1
λe
≤ l!

2
·16C6

φ

σ4
0

ρ4
λe

Dλe ·
(

C4
φDλe

4σ2
0

ρ2
λe

)l−2

.

Applying Bernstein’s inequality (see, e.g. Lemma 2.2.10 in van der Vaart and Wellner (1996)),

it follows that with probability at least 1−2e−t ,

∣∣Var∗(S♭n)/E{ωiT−1
λe

KXi(x0)}2−1
∣∣≤ 4

√
2C3

φ

σ2
0

ρ2
λe

√
Dλet

n
+8C4

φ

σ2
0

ρ2
λe

Dλet
n

≤ 8C3
φ

σ2
0

ρ2
λe

√
Dλet

n
, (D.38)

where the last inequality follows from the fact that 8CφD
1/2
λe

√
t/n≤ 1. Moreover, combining
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(D.38) and (D.34) yields

1
2
E{ω1T−1

λe
KX1(x0)}2 ≤ Var∗(S♭n) =

1
n

n

∑
i=1

ω
2
i {T−1

λe
KXi(x0)}2 ≤ 3

2
E{ω1T−1

λe
KX1(x0)}2, (D.39)

which further implies

1
n

n

∑
i=1
|ωiT−1

λe
KXi(x0)|3 ≤ max

1≤i≤n
|ωiT−1

λe
KXi(x0)| ·

1
n

n

∑
i=1
|ωiT−1

λe
KXi(x0)|2

≤ 3
2

max
1≤i≤n

|ωiT−1
λe

KXi(x0)| ·E{ω1T−1
λe

KX1(x0)}2. (D.40)

By Condition 4.3.2 and the fact that ∥T−1
λe

KXi(x0)∥∞ ≤C2
φ
Dλe , we have

P
{

max
1≤i≤n

|ωiT−1
λe

KXi(x0)| ≥C2
φ σ0Dλe

√
2(t + logn)

}
≤ P

{
max

1≤i≤n
|ωi| ≥ σ0

√
2(t + logn)

}
≤ nP

{
|ω1| ≥ σ0

√
2(t + logn)

}
≤ 2e−t ,

where the last inequality follows from (D.32). In view of this and (D.38), the event G ′(t), defined

as

G ′(t) :=
{∣∣∣∣ Var∗(S♭n)

E{ωiT−1
λe

KXi(x0)}2
−1
∣∣∣∣≤ 1

2
, max

1≤i≤n
|ωiT−1

λe
KXi(x0)| ≤C2

φ σ0Dλe

√
2(t + logn)

}
,

satisfies P{G ′(t)} ≥ 1−4e−t given the sample size requirement (D.34). Moreover, it follows

from (D.36), (D.39) and (D.40) that, conditioned on the event G ′(t),

sup
u∈R

∣∣P∗{S♭n ≤ Var∗(S♭n)
1/2u

}
−G(u)

∣∣≤C3
σ3

WC2
φ

σ0
√

t + logn
√

n
·
DλeE{ω1T−1

λe
KX1(x0)}2

[E{ω1T−1
λe

KX1(x0)}2]3/2

=C3
σ3

WC2
φ

σ0

ρλe

√
Dλe(t + logn)

n
, (D.41)
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where the last line uses the fact that E{ω1T−1
λe

KX1(x0)}2 = ρ2
λe
Dλe , and C3 > 0 is an absolute

constant.

To compare the two normal distribution functions G(u/[E{ωiT−1
λe

KXi(x0)}2]1/2) and

G(u/Var∗(S♭n)
1/2), we apply the following inequality that can be derived from Pinsker’s inequal-

ity (see, e.g. Lemma A.7 in the supplement of Spokoiny and Zhilova (2015)):

sup
u∈R

∣∣∣∣G( u
Var∗(S♭n)1/2

)
−G

(
u

[E{ωiT−1
λe

KXi(x0)}2]1/2

)∣∣∣∣≤ 1
2

∣∣∣∣ Var∗(S♭n)
E{ωiT−1

λe
KXi(x0)}2

−1
∣∣∣∣ (D.42)

as long as |Var∗(S♭n)/E{ωiT−1
λe

KXi(x0)}2− 1| ≤ 1/2. Recall the notations ∆1 = ∆1(λe) and

∆2 = ∆2(λq,λe) in Theorem 4.3.4. Applying Lemma D.3.6 and (D.30) gives

|gλe(x0)−g0(x0)| ≤ ∥gλe−g0∥∞ ≤CφD
1/2
λe

λ
re+1/2
e ∥g∗∥H .

Combining the above calculations with Theorem 4.3.4, we conclude that for any u ∈ R,

there exists a constant C2 depending only on (σW ,σ0,Cφ ,ρλe) such that, conditioned on G ′(t),

P
{

τ
√

n(ĝ−g0)(x0)≤ u
}

= P
{

τ
√

n(ĝ−gλe)(x0)≤ u− τ
√

n(gλe−g0)(x0)
}

≤ G
(

u− τ
√

n(gλe−g0)(x0)

[E{ωiT−1
λe

KXi(x0)}2]1/2

)
+ c7
√

n(∆1 +∆2)+8e−t

≤ G
( u−C1D

1/2
λe

∆♭
√

n

[E{ωiT−1
λe

KXi(x0)}2]1/2

)
+ c7
√

n(∆1 +∆2)+8e−t +

√
n{C1∆♭+ τCφ λ

re+1/2
e ∥g∗∥H }√

2πρλe

≤ G
(u−C1D

1/2
λe

∆♭
√

n

Var∗(S♭n)1/2

)
+C2
√

n(∆1 +∆2 + τλ
re+1/2
e ∥g∗∥H )+8e−t +4C3

φ

σ2
0

ρ2
λe

√
Dλet

n
.

(D.43)
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Here, the second inequality follows from the fact that for any u1 ≤ u2,

G
(

u2

[E{ωiT−1
λe

KXi(x0)}2]1/2

)
−G

(
u1

[E{ωiT−1
λe

KXi(x0)}2]1/2

)
≤ u2−u1

(2πρ2
λe
Dλe)

1/2 ,

and the last inequality is a consequence of (D.38) and (D.42). Moreover, combining (D.35)

and (D.41) yields that conditioned on G (t)∩G ′(t),

G
(u−C1D

1/2
λe

∆♭
√

n

Var∗(S♭n)1/2

)
≤ P∗{S♭n ≤ u−C1D

1/2
λe

∆♭

√
n}+C3

σ3
WC2

φ
σ0

ρλe

√
Dλe(t + logn)

n

≤ P∗{τ
√

nB♭(x0)≤ u}+C3
σ3

WC2
φ

σ0

ρλe

√
Dλe(t + logn)

n
+5e−t .

This, joint with (D.43), yields that conditioned on G (t)∩G ′(t) that satisfies P{G (t)∩G ′(t)} ≥

1−16e−t ,

P
{

ĝ(x0)−g0(x0)≤ u
}
−P∗

{
B♭(x0)≤ u

}
≤ c9
√

n(∆1 +∆2 + τλ
re+1/2
e ∥g∗∥H )+13e−t ,

where c9 = c9(Cφ ,σ0,σW ,ρλe)> 0. A similar argument leads to a series of reverse inequalities,

which completes the proof.

D.3.7 Proof of Theorem 4.3.6

Following the notations in the proof of Theorem 4.3.5 and fixing x0 ∈X , we write

ρ2
λe
= ρ2

λe
(x0), ∆1 = ∆1(λe) and ∆2 = ∆2(λq,λe) for brevity. We first claim the following anti-

concentration inequality for ĝ(x0)−g0(x0):

P
{

ĝ(x0)−g0(x0)> u
}
≤ P

{
ĝ(x0)−g0(x0)> u+η

}
+∆anti(η)+16e−t (D.44)
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for any u ∈ R and η ≥ 0, where

∆anti(η) := 2c7
√

n(∆1 +∆2)+
τ√

2πρλe

√
n

Dλe

η . (D.45)

We prove (D.44) through Gaussian approximation. By Theorem 4.3.4, it holds for any u′ ∈ R

that

P
{

ĝ(x0)−gλe(x0)> u′
}
≤ P

(
ξ >

τ

ρλe

√
n

Dλe

u′
)
+ c7
√

n(∆1 +∆2)+8e−t ,

where ξ ∼N (0,1). Moreover,

P
(

ξ >
τ

ρλe

√
n

Dλe

u′
)
≤ P

{
ξ >

τ

ρλe

√
n

Dλe

(u′+η)

}
+

τ√
2πρλe

√
n

Dλe

η

≤ P
{

ĝ(x0)−gλe(x0)> u′+η
}
+

τ√
2πρλe

√
n

Dλe

η

+ c7
√

n(∆1 +∆2)+8e−t ,

where the first inequality uses G(b)−G(a) ≤ (2π)−1/2(b− a) for any a ≤ b and the second

follows from Theorem 4.3.4 again. Combining the above inequalities, we have

P
{

ĝ(x0)−gλe(x0)> u′
}
−P
{

ĝ(x0)−gλe(x0)> u′+η
}

≤ 2c7
√

n(∆1 +∆2)+
τ√

2πρλe

√
n

Dλe

η +16e−t .

Since the above inequality holds for any u′ ∈ R, the claim (D.44) follows by taking u′ =

u+g0(x0)−gλe(x0).

Now, we are ready to prove Theorem 4.3.6. Define

uα = uα(x0) = inf
{

u ∈ R : P{ĝ(x0)−g0(x0)> u} ≤ α
}

for α ∈ (0,1),
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and denote

∆
′ = c9

√
n(∆1 +∆2 + τλ

re+1/2
e ∥g∗∥H )+13e−t , (D.46)

where c9 is defined in Theorem 4.3.5. Theorem 4.3.5 ensures that there exists an event G (t)

satisfying P{G (t)} ≥ 1−15e−t such that conditioned on G (t),

P∗{B♭(x0)> uα−∆′}

 = 0 < α if α ≤ ∆′,

≤ P
{

ĝ(x0)−g0(x0)> uα−∆′
}
+∆′ ≤ α if α > ∆′.

This implies that u♭α defined in (4.15) satisfies u♭α ≤ uα−∆′ . Similarly, conditioned on the same

event G (t), it holds

P
{

ĝ(x0)−g0(x0)> u♭α
}
≤ P∗{B♭(x0)> u♭α}+∆

′ ≤ α +∆
′,

which implies uα+∆′ ≤ u♭α . In sum, conditioned on G (t), we have

uα+∆′ ≤ u♭α ≤ uα−∆′. (D.47)

Remark that by the definition of uα , if the distribution of ĝ(x0)− g0(x0) is continuous at uα ,

then P{ĝ(x0)−g0(x0)> uα}= α; otherwise, P{ĝ(x0)−g0(x0)> uα −η} ≥ α for any η > 0.

Combining this observation with (D.47) and the anti-concentration inequality (D.44), we obtain

P
{

ĝ(x0)−g0(x0)> u♭α}

≥ P
{

ĝ(x0)−g0(x0)> uα−∆′
}
−15e−t

≥ P
{

ĝ(x0)−g0(x0)> uα−∆′−
D

1/2
λe

n

}
−∆anti

(
D

1/2
λe

n

)
−31e−t

≥ α−∆
′−∆anti

(
D

1/2
λe

n

)
−31e−t .
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Similarly, it can shown from (D.47) that

P
{

ĝ(x0)−g0(x0)> u♭α} ≤ P
{

ĝ(x0)−g0(x0)> uα+∆′}+15e−t ≤ α +∆
′+15e−t .

Combining the above two bounds with the definitions of ∆anti in (D.45) and ∆′ in (D.46), we

conclude that for any α ∈ (0,1),

∣∣P{ĝ(x0)−g0(x0)> u♭α}−α
∣∣≤ ∆

′+∆anti

(
D

1/2
λe

n

)
+31e−t

≤C1
√

n(∆1 +∆2 + τλ
re+1/2
e ∥g∗∥H )+31e−t ,

where C1 =C1(Cφ ,σ0,σW ,ρλe) is a positive constant. This proves the claim of the theorem by

noting that

∣∣P{g0(x0) ∈I ♭
α(x0)

}
− (1−α)

∣∣
≤
∣∣P{ĝ(x0)−g0(x0)> u♭

α/2}−α/2
∣∣+ ∣∣P{ĝ(x0)−g0(x0)< u♭1−α/2}−α/2

∣∣
=
∣∣P{ĝ(x0)−g0(x0)> u♭

α/2}−α/2
∣∣+ ∣∣P{ĝ(x0)−g0(x0)≥ u♭1−α/2}− (1−α/2)

∣∣.

D.4 Proofs for Section D.2

In this section, we give the proofs of the results in Section D.2.

D.4.1 Proof of Corollary D.2.1

To begin with, recall that λq ≍ λe ≍ (m+ t)/n. Since Dλq ≤ m, it follows by Theo-

rem 4.3.1 that ∥ f̂ − f0∥2
2 +λq∥ f̂ − f0∥2

H ≲ (m+ t)/n with probability at least 1− e−t , establish-

ing the claimed bound for f̂ . Moreover, conditioned on this event, Theorem 4.3.2 yields that,
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with probability at least 1−6e−t

τ∥ĝ−g0∥2 ≲ σ0

√
m+ t

n
+Cφ D

1/2
λq

m+ t
n

+ p̄∥ f̂ − f0∥2
4. (D.48)

Applying (D.29) gives ∥ f̂ − f0∥2
4 ≲CφD

1/2
λq

(m+ t)/n. Combining this with (D.48) and the fact

that Dλq ≤ λ−1
q establishes the bound for ĝ, which completes the proof.

D.4.2 Proof of Corollary D.2.2

Since λq ≍ λe ≍ (m+ logn)/n and Dλ ≤ m for any λ > 0, we have

δn(λq,n, logn)≲

√
m+ logn

n
and γn(λe,n, logn)≲

√
m+ logn

n
.

Then, it follows that

∆1(λe) = γnD
1/2
λe

√
logn

n
≲

√
m(logn)(m+ logn)

n
= o(n−1/2)

and

∆2(λq,λe)δn

{
D

1/2
λq

√
logn+Dλe

n
+D

1/2
λq

δn

}
≲
√

m
m+ logn

n
= o(n−1/2)

provided that m3 = o(n). Moreover, ρ2
λe
(x0)→ ρ2(x0) and Dλe/m→ 1 as n→∞. Thus, applying

Corollary 4.3.1 gives

τ

√
n
m
(ĝ−gλe)(x0)

d→N (0,ρ2(x0)). (D.49)
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For the bias term (gλe−g0)(x0), we first remark that there exists g∗ = ∑
m
j=1 g jφ j ∈H satisfying

g0 = T 1/2
K g∗ when g0 ∈H and µm > 0. To see this, note that

g0 =
m

∑
j=1
⟨g0,φ j⟩2φ j =

m

∑
j=1

⟨g0,φ j⟩2√
µ j

√
µ jφ j =:

m

∑
j=1

g j
√

µ jφ j,

where g j = ⟨g0,φ j⟩2/
√

µ j for 1≤ j ≤ m. Then, it is obvious that g0 = T 1/2
K g∗ and g∗ satisfies

∥g∗∥2
H = ∑

m
j=1⟨g0,φ j⟩22/µ2

j ≤ µ−1
m ∥g0∥2

H < ∞. Combining this with (D.30) and Lemma D.3.6

gives

|(gλe−g0)(x0)| ≤ ∥gλe−g0∥∞ ≤CφD
1/2
λe

λe∥g∗∥H ≤CφD
1/2
λe

λeµ
−1/2
m ∥g0∥H .

Thus,

√
n
m
|(gλe−g0)(x0)|≲

√
n

√
Dλe

m
· m+ logn

n
= o(1),

where the last equality is derived by the assumption m3 = o(n). Combining this with (D.49)

establishes the claim.

D.4.3 Proof of Corollary D.2.3

We show that ∆1(λe) = o(n−1/2) and ∆2(λq,λe) = o(n−1/2) in the proof of Corol-

lary D.2.2. Moreover, there exists g∗ ∈H satisfying g0 = T 1/2
K g∗ and

√
nλe = o(1) under

the given assumptions. By examining the proof of Theorem 4.3.6, we observe that the prefactor

term c10 depends on the inverse of ρλe(x0); that is, c10 is uniformly bounded as long as ρλe(x0)

is uniformly lower bounded by some constant for any sufficiently small λe > 0. Thus, applying

Theorem 4.3.6 with t = logn leads to

|P{g0(x0) ∈I ♭
α(x0)}− (1−α)|= o(1),
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thereby completing the proof.

D.4.4 Proof of Corollary D.2.4

For completeness, we first demonstrate that Dλ ≍ λ−1/β for any λ ∈ (0,1) when the

kernel has β -polynomially decaying eigenvalues with β > 1. To establish this, note that

Dλ =
∞

∑
j=1

µ j

µ j +λ
≍

∞

∑
j=1

1
1+λ jβ

.

For a fixed λ , (1+λ jβ ) is decreasing with respect to j, so we can further deduce that

Dλ ≲
∫

∞

0

1
1+λxβ

dx = λ
−1/β

∫
∞

0

1
1+ xβ

dx = λ
−1/β

(∫ 1

0

1
1+ xβ

dx+
∫

∞

1

1
1+ xβ

dx
)

≤ λ
−1/β

(
1+

1
β −1

)
=

β

β −1
λ
−1/β , (D.50)

where the first equality is derived by a change of variables. Similarly,

Dλ ≳
∫

∞

1

1
1+λxβ

dx≥ λ
−1/β

∫
∞

1

1
1+ xβ

dx≥ λ−1/β

2

∫
∞

1

1
xβ

dx =
1

2(β −1)
λ
−1/β ,

where the second inequality follows from a change of variables and the fact that λ < 1. Combin-

ing the above two bounds shows that Dλ ≍ λ−1/β .

Since we choose

λq ≍ n−β/{(2rq+1)β+1}+
t
n
,

312



Theorem 4.3.1 yields that, with probability at least 1− e−t ,

∥ f̂ − f0∥2
2 +λq∥ f̂ − f0∥2

H ≲ λ
2rq+1
q +

Dλq + t

n
≍ λ

2rq+1
q +

λ
−1/β
q + t

n

≲ n−(2rq+1)β/{(2rq+1)β+1}+
t
n

(D.51)

provided that 0 < t < n.

Turning to ĝ, conditioned on the event where the inequality (D.51) holds, applying (D.29)

gives

∥ f̂ − f0∥2
4 ≲CφD

1/2
λq

[
n−(2rq+1)β/{(2rq+1)β+1}+

t
n

]
≲ n−{(4rq+2)β−1}/{(4rq+2)β+2}+

√
t
n
.

Then, Theorem 4.3.2 implies that, conditioned on the event where the inequality (D.51) holds, it

follows with probability at least 1−6e−t that

τ∥ĝ−g0∥2 ≲ λ
re+1/2
e +σ0

√
Dλe + t

n
+n−{(4rq+2)β−1}/{(4rq+2)β+2}+

√
t
n

+Cφ

[
n−(2rq+1)β/{(4rq+2)β+2}+

√
t
n

]
λ
−1/(2β )
q

√
t +λ

−1/β
e

n

≲ n−(2re+1)β/{(4re+2)β+2}+n−{(4rq+2)β−1}/{(4rq+2)β+2}+

√
t
n
.

This proves the claim.

D.4.5 Sufficient conditions for (D.1)

By Corollary D.2.4, ĝ attains the minimax optimal convergence rate when (rq,re,β ) sat-

isfy (D.1). The following lemma identifies several sufficient conditions for (D.1), but additional

conditions may also exist.

Lemma D.4.1 (Sufficient conditions for (D.1)). Let 0≤ rq,re ≤ 1/2 and β > 1. Then, (rq,re,β )
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satisfy (D.1) when one of the following inequalities holds:

• (2rq +1)β ≥ 2;

• re ≤ rq; or

• β ≥ (
√

3+1)/2.

Proof. Recall the inequality (D.1),

{(2rq +1)β −2}{(2re +1)β +2} ≥ −3.

First, it is obvious that (2re + 1)β + 2 > 0, so the inequality holds when (2rq + 1)β − 2 ≥ 0.

Second, if re ≤ rq, then it follows for any 0≤ re,rq ≤ 1/2 and β > 1 that

{(2rq +1)β −2}{(2re +1)β +2}= (2rq +1)(2re +1)β 2−4(re− rq)β −4

≥ β
2−4 >−3,

implying the inquality (D.1).

Finally, we remark that by the quadratic formula, any rq,re ∈ [0,1/2] satisfy (D.1) if

β ≥ sup
0≤rq,re≤1/2

−2rq +2re +
√

4(rq− re)2 +(2rq +1)(2re +1)
(2rq +1)(2re +1)

= sup
0≤rq,re≤1/2

1
2rq−2re +

√
4(rq− re)2 +(2rq +1)(2re +1)

=
[

inf
1≤x,y≤2

{√
(x− y)2 + xy+ x− y

}]−1
=

√
3+1
2

,

where the last equality follows from the fact that the infimum is obtained at x = 1 and y = 2.

This completes the proof.
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D.4.6 Proof of Corollary D.2.5

Recall that λq ≍ n−β/{(2rq+1)β+1} and λe ≍ n−ι with 1/(2re + 1) < ι < min(1,β/3).

Since Dλ ≍ λ−1/β for λ ∈ (0,1), we have

δn(λq,n, logn) = λ
rq+1/2
q ∥ f ∗∥H +

√
Dλq + logn

n
≲ n−(2rq+1)β/{(4rq+2)β+2},

and

γn(λe,n, logn) = τλ
re+1/2
e ∥g∗∥H +σ0

√
Dλe + logn

n
≲ n−ι(re+1/2)+n(ι−β )/(2β )

≲ n(ι−β )/(2β ).

Then, it follows that

∆1(λe) = γnD
1/2
λe

√
logn

n
≲ n(ι−β )/β log1/2(n) = o(n−1/2),

where the last equality follows by the assumption ι < β/3. Moreover,

∆2(λq,λe)

= δn

{
D

1/2
λq

√
logn+Dλe

n
+D

1/2
λq

δn

}

≲ δn

√
Dλq log(n)

n
+δn

√
DλqDλe

n
+D

1/2
λq

δ
2
n

≲ n−(2rq+1)β/{(2rq+1)β+1} log1/2(n)+n−(2rq+1)β/{(2rq+1)β+1}nι/(2β )

+n{1−(4rq+2)β}/{(4rq+2)β+2}

= o(n−1/2),
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where the last equality follows from the assumption (2rq +1)β > 2 and ι < β/3. Combining

the above bounds with Corollary 4.3.1 gives

τ

√
n

Dλe

(ĝ−gλe)(x0)
d→N (0,ρ2(x0)). (D.52)

For the bias term (gλe−g0)(x0), combining Lemma D.3.6 and (D.30) yields

|(gλe−g0)(x0)| ≤ ∥gλe−g0∥∞ ≤CφD
1/2
λe

λ
re+1/2
e ∥g∗∥H .

Thus,

√
n

Dλe

|(gλe−g0)(x0)|≲
√

nn−ι(re+1/2) = o(1),

where the last inequality is derived by the assumption ι > 1/(2re + 1). Combining this

with (D.52) establishes the claim.

D.4.7 Proof of Corollary D.2.6

The proof follows a similar line of argument as the proof of Corollary D.2.3; therefore,

we omit it for brevity.

D.4.8 Proof of Corollary D.2.7

We first show that when the kernel has β -exponentially decaying eigenvalues with β > 0,

Dλ ≍ log1/β (1/λ ) for any λ ∈ (0,1). To establish this, we have that for some cβ > 0,

Dλ =
∞

∑
j=1

µ j

µ j +λ
≍

∞

∑
j=1

1

1+λecβ jβ
.
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Thus, we can deduce that

Dλ ≲
∫

∞

0

1

1+λecβ xβ
dx =

∫ {c−1
β

log(1/λ )}1/β

0

1

1+λecβ xβ
dx+

∫
∞

{c−1
β

log(1/λ )}1/β

1

1+λecβ xβ
dx

≤
{

log(1/λ )

cβ

}1/β

+
1

βcβ

∫
∞

0

1
(1+ ex){x+ log(1/λ )}(β−1)/β

dx

≤
{

log(1/λ )

cβ

}1/β

+
log−(β−1)/β (1/λ )

βcβ

∫
∞

0

1
1+ ex dx

≲ log1/β (1/λ ), (D.53)

where the second inequality follows from a change of variables. Moreover,

Dλ ≳
∫

∞

1

1

1+λecβ xβ
dx≥

∫ {c−1
β

log(1/λ )}1/β

1

1

1+λecβ xβ
dx≥ 1

2
[
{c−1

β
log(1/λ )}1/β −1]

≳ log1/β (1/λ ). (D.54)

Combining the above two bounds shows that Dλ ≍ log1/β (1/λ ).

Now, recall that λq≍{t+ log1/β (n)}/n, implying Dλq ≲ log1/β (n). Thus, Theorem 4.3.1

implies that, with probability at least 1− e−t ,

∥ f̂ − f0∥2
2 +λq∥ f̂ − f0∥2

H ≲
t + log1/β (n)

n
.

Moreover, conditioned on the event where the above inequality holds, applying (D.29) gives

∥ f̂ − f0∥2
4 ≲CφD

1/2
λq

t + log1/β (n)
n

≲ log1/(2β )(n) · t + log1/β (n)
n

.
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Combining this with Theorem 4.3.2 gives

τ∥ĝ−g0∥2 ≲ σ0

√
Dλq + t

n
+

√
t + log1/β (n)

n
+ log1/(2β )(n) · t + log1/β (n)

n

+Cφ

√
t + log1/β (n)

n
log1/β (1/λq)

√
t + log1/β (1/λe)

n

≲

√
t + log1/β (n)

n
,

which completes the proof.

D.4.9 Proof of Corollary D.2.8

Recall that λq ≍ λe ≍ log1/β (n)/n and 0 < re ≤ 1/2. Since Dλ ≍ log1/β (1/λ ) for

λ ∈ (0,1), we have

δn(λq,n, logn) = λ
rq+1/2
q ∥ f ∗∥H +

√
Dλq + logn

n
≲

√
log1/β (n)+ log(n)

n
,

and

γn(λe,n, logn) = τλ
re+1/2
e ∥g∗∥H +σ0

√
Dλe + logn

n
≲

√
log1/β (n)+ log(n)

n
.

Then, it follows that

∆1(λe) = γnD
1/2
λe

√
logn

n
= o(n−1/2),
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and

∆2(λq,λe) = δn

{
D

1/2
λq

√
logn+Dλe

n
+D

1/2
λq

δn

}

≲ δn

√
Dλq log(n)

n
+δn

√
DλqDλe

n
+D

1/2
λq

δ
2
n = o(n−1/2).

Combining the above bounds with Corollary 4.3.1 gives

τ

√
n

Dλe

(ĝ−gλe)(x0)
d→N (0,ρ2(x0)). (D.55)

For the bias term (gλe−g0)(x0), combining Lemma D.3.6 and (D.30) yields

|(gλe−g0)(x0)| ≤ ∥gλe−g0∥∞ ≤CφD
1/2
λe

λ
re+1/2
e ∥g∗∥H .

Thus,

√
n

Dλe

|(gλe−g0)(x0)|≲
√

n
{

log1/β (n)
n

}re+1/2

= o(1),

where the last equality is derived by the assumption re > 0. Combining this with (D.55) estab-

lishes the claim.

D.4.10 Proof of Corollary D.2.9

The proof follows a similar line of argument as in the proof of Corollary D.2.3, and

therefore is omitted.
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D.4.11 Proof of Lemma D.2.1

To begin with, recall the eigenfunctions (D.2) and eigenvalues (D.3). Then, for any

x0 ∈ [0,1], we have

E{ωi(TK +λ I)−1KXi(x0)}2 ≥ σ
2E{(TK +λ I)−1KXi(x0)}2

≥ σ
2E
{

∞

∑
j=1

µ j

µ j +λ
φ j(x0)φ j(Xi)

}2

= σ
2

∞

∑
j=1

(
µ j

µ j +λ

)2

φ
2
j (x0)

= 2σ
2

∞

∑
k=1

1
{1+λ (2kπ)2p}2 . (D.56)

For a fixed λ > 0, {1+λ (2kπ)2p}2 is decreasing with respect to k, so it follows that

∞

∑
k=1

1
{1+λ (2kπ)2p}2 ≥

∫
∞

1

1
{1+λ (2xπ)2p}2 dx≥ λ−1/(2p)

2π

∫
∞

1

1
(1+ x2p)2 dx

≥ λ−1/(2p)

8π

∫
∞

1

1
x4p dx

=
λ−1/(2p)

8π

1
4p−1

, (D.57)

where the second inequality follows by a change of variables and the assumption λ ≤ (2π)−2p.

On the other hand, following a similar argument as in (D.50) gives

Dλ =
∞

∑
j=0

µ j

µ j +λ
=

1
1+λ

+2
∞

∑
k=1

1
1+λ (2kπ)2p ≤

1
1+λ

+2
∫

∞

0

1
1+λ (2xπ)2p dx

=
1

1+λ
+

λ−1/(2p)

π

∫
∞

0

1
1+ x2p dx

≤ 1
1+λ

+
λ−1/(2p)

π

2p
2p−1

≤ 4p−1
2p−1

λ
−1/(2p).
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Combining this with (D.56) and (D.57) yields

ρ
2
λe
(x0) =

E{ωi(TK +λ I)−1KXi(x0)}2

Dλ

≥ 2p−1
4π(4p−1)2 ·σ

2.

This implies the claimed lower bound with c11 = (2p−1)/{4π(4p−1)2}.

D.4.12 Proof of Lemma D.2.2

By the eigensystem (D.4) and (D.5), it follows that for any x0 ∈ [−π,π],

E{ωi(TK +λ I)−1KXi(x0)}2 ≥ σ
2E{(TK +λ I)−1KXi(x0)}2

≥ σ
2E
{

∞

∑
j=1

µ j

µ j +λ
φ j(x0)φ j(Xi)

}2

=
σ2

π

∞

∑
k=1

1
(1+λek2θ 2/2)2

. (D.58)

Then, applying a similar argument as in (D.54) gives

∞

∑
k=1

1
(1+λek2θ 2/2)2

≥
∫

∞

1

1
(1+λex2θ 2/2)2

dx≥
∫ √2θ−1 log1/2(1/λ )

1

1
(1+λex2θ 2/2)2

dx

≥ 1
4

{√
2

θ
log1/2(1/λ )−1

}
≥
√

2
8θ

log1/2(1/λ ), (D.59)
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where the last inequality follows from the assumption log(1/λ )≥ 2θ 2. On the other hand, by

following a similar argument as in (D.53), we have

Dλ =
∞

∑
j=0

µ j

µ j +λ
=

1
1+λ

+2
∞

∑
k=1

1
1+λek2θ 2/2

≤ 1
1+λ

+2
∫

∞

0

1
1+λex2θ 2/2

dx

=
1

1+λ
+2

∫ √2θ−1 log1/2(1/λ )

0

1
1+λex2θ 2/2

dx+2
∫

∞

√
2θ−1 log1/2(1/λ )

1
1+λex2θ 2/2

dx

≤ 1
1+λ

+
2
√

2
θ

log1/2(1/λ )+
1√
2θ

∫
∞

0

1
(1+ ex){x+ log(1/λ )}1/2 dx

≤ 1
1+λ

+
2
√

2
θ

log1/2(1/λ )+
log−1/2(1/λ )√

2θ

∫
∞

0

1
1+ ex dx

=
1

1+λ
+

2
√

2
θ

log1/2(1/λ )+
log(2) log−1/2(1/λ )√

2θ

≤
(

1+
2
√

2
θ

+
log2√

2θ

)
log1/2(1/λ ),

where the last inequality follows from the assumption λ < 1/e. Combining this with (D.58) and

(D.59) yields the claimed lower bound, where c12 only depends on θ .

D.5 Proof of Technical Lemmas

D.5.1 Proof of Lemma D.3.1

By Lemma S6 in the supplement of Padilla and Chatterjee (2022), we have

E
{

ρτ(Yi− f (Xi))−ρτ(Yi− f0(Xi))
}

≥min
(

p
2
,
l0 p
4

)
E
{
| f (Xi)− f0(Xi)|∧ | f (Xi)− f0(Xi)|2

}
.

When ∥ f − f0∥∞ ≤M with M ≥ 1, we get

| f (Xi)− f0(Xi)| ≥ | f (Xi)− f0(Xi)|2/M almost surely,
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which further implies

E
{

ρτ(Yi− f (Xi))−ρτ(Yi− f0(Xi))
}
≥ 1

M
min

(
p
2
,
l0 p
4

)
︸ ︷︷ ︸

=:c13

∥ f − f0∥2
2,

as claimed.

D.5.2 Proof of Lemma D.3.2

To begin with, for any δ2,δH > 0, define the following random fluctuation term:

Ω(δ2,δH ) := sup
f∈H ,∥ f− f0∥2≤δ2,∥ f− f0∥H ≤δH

∣∣∣∣1n n

∑
i=1

(1−E)
{

ρτ(Yi− f (Xi))−ρτ(Yi− f0(Xi))
}∣∣∣∣.

Since ρτ(·) is a Lipschitz function and ∥ f − f0∥∞ ≤ ∥ f − f0∥H by Condition 4.2.1, we have

Var
(
ρτ(Yi− f (Xi))−ρτ(Yi− f0(Xi))

)
≤ E

{
ρτ(Yi− f (Xi))−ρτ(Yi− f0(Xi))

}2

≤ E{ f (Xi)− f0(Xi)}2 ≤ δ
2
2 ,

and

∥∥ρτ(Yi− f (Xi))−ρτ(Yi− f0(Xi))
∥∥

∞
≤ ∥ f − f0∥∞ ≤ δH ,

when ∥ f − f0∥2 ≤ δ2 and ∥ f − f0∥H ≤ δH . By Theorem 7.3 in Bousquet (2003), for any t > 0,

Ω(δ2,δH ) satisfies

Ω(δ2,δH )≤ 2EΩ(δ2,δH )+δ2

√
2t
n
+δH

8t
3n

(D.60)

with probability at least 1− e−t .

For the expected value EΩ(δ2,δH ), applying Rademacher symmetrization and Tala-
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grand’s contraction principle (see, e.g. Theorem 4.12 in Ledoux and Talagrand (1991)) yields

EΩ(δ2,δH )≤ 2E

[
sup

f∈H ,∥ f− f0∥2≤δ2,∥ f− f0∥H ≤δH

∣∣∣∣1n n

∑
i=1

ei
{

ρτ(Yi− f (Xi))−ρτ(Yi− f0(Xi))
}∣∣∣∣
]

≤ 4E

[
sup

f∈H ,∥ f− f0∥2≤δ2,∥ f− f0∥H ≤δH

∣∣∣∣1n n

∑
i=1

ei
{

f (Xi)− f0(Xi)
}∣∣∣∣
]
,

where e1,e2, . . . ,en are independent Rademacher random variables that are independent of

{Xi}n
i=1. Now, for any λ > 0, ∥ f − f0∥2 ≤ δ2 and ∥ f − f0∥H ≤ δH imply that ∥ f − f0∥2

2 +

λ∥ f − f0∥2
H ≤ δ 2 := δ 2

2 +λδ 2
H . Thus, the expected value is further bounded as

EΩ(δ2,δH )≤ 4E

{
sup

h∈H ,∥h∥2
2+λ∥h∥2

H ≤δ 2

∣∣∣∣1n n

∑
i=1

eih(Xi)

∣∣∣∣
}
.

For any h ∈H with the expansion h(·) = ∑
∞
j=1 θ jφ j(·), we have ∥h∥2

2 = ∑
∞
j=1 θ 2

j and ∥h∥2
H =

∑
∞
j=1 θ 2

j /µ j. This implies that if h = ∑
∞
j=1 θ jφ j satisfies ∥h∥2

2 + λ∥h∥2
H ≤ δ 2, then {θ j}∞

j=1

satisfy ∑
∞
j=1 θ 2

j /ν j ≤ δ 2, where ν j = µ j/(µ j +λ ) for j ≥ 1. Combining this with the above

inequality, we have

EΩ(δ2,δH )≤ 4E
{

sup
{θ j}∞

j=1:∑∞
j=1 θ 2

j /ν j≤δ 2

∣∣∣∣1n n

∑
i=1

ei

∞

∑
j=1

θ jφ j(Xi)

∣∣∣∣}

=
4
n
E
{

sup
{θ j}∞

j=1:∑∞
j=1 θ 2

j /ν j≤δ 2

∣∣∣∣ ∞

∑
j=1

θ j√
ν j

n

∑
i=1

ei
√

ν jφ j(Xi)

∣∣∣∣}
(i)
≤ 4

n

[
E
{

sup
{θ j}∞

j=1:∑∞
j=1 θ 2

j /ν j≤δ 2

∣∣∣∣ ∞

∑
j=1

θ j√
ν j

n

∑
i=1

ei
√

ν jφ j(Xi)

∣∣∣∣2}]1/2

(ii)
≤ 4δ

n

[
E

∞

∑
j=1

{ n

∑
i=1

ei
√

ν jφ j(Xi)

}2]1/2

(iii)
=

4δ√
n

(
∞

∑
j=1

ν j

)1/2

= 4δ

√
Dλ

n
. (D.61)

Here, step (i) is due to Jensen’s inequality, step (ii) is obtained by the Cauchy-Schwarz inequality,

and step (iii) follows from the orthonormality of {φ j}∞
j=1. Combining this with (D.60), we have
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with probability at least 1− e−t that

Ω(δ2,δH )≤ c14

{
δ

√
Dλ

n
+δ2

√
t
n
+δH

t
n

}
,

where c14 = 8. This completes the proof.

D.5.3 Proof of Lemma D.3.3

We introduce the following notations that will be used frequently. Let ℓ2 = ℓ2(N) be the

Hilbert space of square-summable infinite sequences, that is,

ℓ2 =

{
θθθ = (θ1,θ2, . . .)

T ∈ RN :
∞

∑
j=1

θ
2
j < ∞

}
.

Denote by ∥ · ∥ℓ2 = ∥ · ∥ℓ2(N) the ℓ2-norm in the space ℓ2(N) induced by the inner product

⟨θθθ 1,θθθ 2⟩ℓ2 = ⟨θθθ 1,θθθ 2⟩ℓ2(N) = ∑
∞
j=1 θ1, jθ2, j for θθθ 1 = (θ1,1,θ1,2, . . .)

T and θθθ 2 = (θ2,1,θ2,2, . . .)
T .

Now, we define

Φ(x) = (
√

µ1φ1(x),
√

µ2φ2(x), . . .)T for x ∈X ,

where {φ j} j≥1 is a sequence of orthonormal eigenfunctions of TK with an associated set of

non-negative eigenvalues {µ j} j≥1. Recall the relationship (4.4) and Condition 4.2.1. Thus,

∥Φ(x)∥2
ℓ2
= ∑

∞
j=1 µ jφ

2
j (x) = K(x,x)≤ 1, which implies Φ(x) ∈ ℓ2 for any x ∈X . For any h ∈

H , we can express h(·) = ⟨θθθ h,Φ(·)⟩ℓ2 , where θθθ h = (θh,1,θh,2, . . .)
T with θh, j = ⟨h,φ j⟩2/

√
µ j.

Here, we adopt the convention 0/0 = 0. With this representation, ∥h∥2
H = ∥θθθ h∥2

ℓ2
and ∥h∥2

2 =

∑
∞
j=1 µ jθ

2
h, j.

For any self-adjoint operator A on a separable Hilbert space, ∥A∥op denotes the operator

norm of A. Moreover, given two self-adjoint opeartors A and B, we write A⪯ B (A⪰ B) if and

only if A−B is negative (positive) semidefinite. In the proof, we utilize the following Bernstein

inequality for a sum of self-adjoint operators. The proof can be found in Section 3.2 of Minsker
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(2017).

Lemma D.5.1 (Bernstein’s inequality for bounded self-adjoint operators). Let M1,M2, . . . ,Mn

be n independent self-adjoint operators on a separable Hilbert space. Assume that for any

1 ≤ i ≤ n, EMi = 0 and ∥Mi∥op ≤ B for some B ≥ 0. Moreover, there exist positive trace-

class operator V and σ > 0 such that (1/n)∑
n
i=1EM2

i ⪯ V with ∥V∥op ≤ σ2. Then, for any

u≥ B/(3n)+
√

σ2/n,

P
(∥∥∥∥1

n

n

∑
i=1

Mi

∥∥∥∥
op
≥ u
)
≤ 14

tr(V)

σ2 exp
(
− nu2/2

σ2 +Bu/3

)
.

In particular, for any t ≥ 1/2,

P
(∥∥∥∥1

n

n

∑
i=1

Mi

∥∥∥∥
op
≥ σ

√
2t
n
+

2B
3

t
n

)
≤ 14

tr(V)

σ2 e−t .

With these notations and Lemma D.5.1, we are ready to prove Lemma D.3.3.

Proof of Lemma D.3.3. Define

Σ = E
{

Φ(X)Φ(X)T
}

and Σ̂ =
1
n

n

∑
i=1

Φ(Xi)Φ(Xi)
T,

which are self-adjoint operators in ℓ2. We remark that Σ is the infinite-dimensional diagonal

matrix with entries µ1 ≥ µ2 ≥ ·· · ≥ 0. For any h ∈H with the expansion h = ⟨θθθ h,Φ⟩ℓ2 , we can

write

∥h∥2
2 = ⟨θθθ h,Σθθθ h⟩ℓ2 and ∥h∥2

n =
1
n

n

∑
i=1
⟨θθθ h,Φ(Xi)⟩2ℓ2

= ⟨θθθ h, Σ̂θθθ h⟩ℓ2,

which further imply

∥h∥2
2 +λe∥h∥2

H = ⟨θθθ h,(Σ+λeI)θθθ h⟩ℓ2 and ∥h∥2
n +λe∥h∥2

H = ⟨θθθ h,(Σ̂+λeI)θθθ h⟩ℓ2.
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Thus, it suffices to prove that

1
2
(Σ+λeI)⪯ Σ̂+λeI ⪯ 3

2
(Σ+λeI).

To this end, for any 1≤ i≤ n, define

Mi = (Σ+λeI)−1/2{Σ−Φ(Xi)Φ(Xi)
T}(Σ+λeI)−1/2,

which is well-defined for any λe > 0. Since Σ = E{Φ(Xi)Φ(Xi)
T}, Mi satisfies

∥Mi∥op ≤ 2 sup
x∈X

∥∥(Σ+λeI)−1/2
Φ(x)Φ(x)T(Σ+λeI)−1/2∥∥

op

≤ 2
λe

sup
x∈X

∥∥Φ(x)Φ(x)T
∥∥

op =
2
λe

sup
x∈X

∥∥Φ(x)
∥∥2
ℓ2
≤ 2

λe
,

where the second inequality follows from Σ+λeI ⪰ λeI and the last inequality is obtained by

Condition 4.2.1. Moreover,

EM2
i ⪯ E

{
(Σ+λeI)−1/2

Φ(Xi)Φ(Xi)
T(Σ+λeI)−1/2}2

⪯ 1
λe

(
Σ+λeI

)−1/2E
{

Φ(Xi)Φ(Xi)
T
}(

Σ+λeI
)−1/2

=
1
λe

(Σ+λeI)−1/2
Σ(Σ+λeI)−1/2 =: V,

where the second inequality follows from Σ+λeI ⪰ λeI and ∥Φ(Xi)∥2
ℓ2
≤ 1 by Condition 4.2.1.

Remark that V is the infinite-dimensional diagonal matrix with entries µ1/(λeµ1 + λ 2
e ) ≥

µ2/(λeµ2 + λ 2
e ) ≥ ·· · ≥ 0, so tr(V) = Dλe/λe and ∥V∥op ≤ λ−1

e . Therefore, Lemma D.5.1

implies that

P
(∥∥∥∥1

n

n

∑
i=1

Mi

∥∥∥∥
op
≥ 1

2

)
≤ 14Dλe exp

(
− 3n

32
λe

)
,
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as long as nλe ≥ 9. Note that

1
n

n

∑
i=1

Mi = (Σ+λeI)−1/2(Σ− Σ̂)(Σ+λeI)−1/2.

Consequently, the previous probability bound implies that the bounds

Σ− Σ̂⪯ 1
2

Σ+
1
2

λeI, and Σ̂−Σ⪯ 1
2

Σ+
1
2

λeI

hold with probability at least 1−14Dλe exp(−3nλe/32). This is equivalent to

P
{

1
2
(Σ+λeI)⪯ Σ̂+λeI ⪯ 3

2
(Σ+λeI)

}
≥ 1−14Dλe exp

(
− 3n

32
λe

)
,

which establishes the claim.

D.5.4 Proof of Lemma D.3.4

To begin with, note that

sup
h∈H

∣∣∣∣∣1n n

∑
i=1

ωi
h(Xi)

∥h∥n +λ
1/2
e ∥h∥H

∣∣∣∣∣≤ sup
h∈H ,∥h∥n≤1,∥h∥H ≤λ

−1/2
e

∣∣∣∣∣1n n

∑
i=1

ωih(Xi)

∣∣∣∣∣. (D.62)

To establish a non-asymptotic bound for the right-hand side, we begin by fixing covariates

{Xi}n
i=1 and define EX and PX as the conditional expectation and conditional probability given

{Xi}n
i=1, respectively. Moreover, let Sh = n−1/2

∑
n
i=1 ωih(Xi) for any h ∈H and recall that

∥ · ∥n denotes the empirical L2-norm. By following a similar line of arguments as in (D.32),

Condition 4.3.2 implies that for any u > 0 and h,h′ ∈H ,

PX

(
|Sh−Sh′| ≥ u

)
≤ 2exp

(
− u2

2σ2
0∥h−h′∥2

n

)
.
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Therefore, (Sh)h∈H is a sub-Gaussian process with respect to the metric dn, which is defined as

dn(h,h′) = σ0∥h−h′∥n.

Denoting T = T(λe) = {h ∈H : ∥h∥n ≤ 1,∥h∥H ≤ λ
−1/2
e }, it is easy to see that the

diameter of T with respect to dn, that is, suph,h′∈T dn(h,h′), is bounded by 2σ0. Define the

γ2-functional γ2(T,dn) as

γ2(T,dn) := inf
(Tk)

∞
k=0:|T0|=1,|Tk|≤22k

sup
h∈T

∞

∑
k=0

2k/2 inf
h′∈Tk

dn(h,h′),

where (Tk)
∞
k=0 is a sequence of subsets of T and |Tk| denotes the cardinality of Tk. Applying a

conditional version of the generic chaining bound (e.g., Theorem 8.5.5 in Vershynin (2018)),

there exists a universal constant C1 > 0 satisfying

sup
h∈T
|Sh|= sup

h∈T

∣∣∣∣∣ 1√
n

n

∑
i=1

ωih(Xi)

∣∣∣∣∣≤C1

{
γ2(T,dn)+σ0

√
t
}

(D.63)

with PX -probability at least 1−2e−t . To bound γ2(T,dn), let ξ1, . . . ,ξn be independent standard

normal random variables, which are independent of {Xi}n
i=1, and define Gh = σ0

1√
n ∑

n
i=1 ξih(Xi)

for h ∈H . Then, (Gh)h∈T is a mean-zero Gaussian process on T with the metric dn conditioned

on {Xi}n
i=1. By a conditional version of Talagrand’s majorizing measure theorem (e.g., Theorem

8.6.1 in Vershynin (2018)), there exists a universal constant C2 > 0 satisfying

γ2(T,dn)≤C2EX

(
sup
h∈T
|Gh|

)
=C2σ0EX

{
sup
h∈T

∣∣∣∣∣ 1√
n

n

∑
i=1

ξih(Xi)

∣∣∣∣∣
}
.

Combining this bound with (D.63), we have

PX

{
sup
h∈T

∣∣∣∣∣1n n

∑
i=1

ωih(Xi)

∣∣∣∣∣≤C3σ0

[
EX

{
sup
h∈T

∣∣∣∣∣1n n

∑
i=1

ξih(Xi)

∣∣∣∣∣
}
+

√
t
n

]}
≥ 1−2e−t , (D.64)

where C3 > 0 is an absolute constant.

To establish a high probability bound for EX{suph∈T |(1/n)∑
n
i=1 ξih(Xi)|}, which repre-
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sents the empirical Gaussian complexity of the set T, we utilize Cauchy-Schwarz and Hoffmann-

Jørgensen inequalities to bound it by the empirical Rademacher complexity of T. Subsequently,

we apply Klein’s version of Talagrand’s inequality to establish a high probability bound for the

empirical Rademacher complexity in terms of the population Rademacher complexity as in the

proof of Proposition 5 in Koltchinskii and Yuan (2010).

To begin with, we first derive a bound for the empirical Gaussian complexity in terms

of eigenvalues of the normalized kernel matrix. In detail, let µ̂1 ≥ µ̂2 ≥ ·· · ≥ µ̂n ≥ 0 be the

eigenvalues of the normalized kernel matrix K/n, where K = (K(Xi,X j))1≤i, j≤n. Following a

similar argument as in the proof of Lemma 13.22 in Wainwright (2019), the empirical Gaussian

complexity can be written as

EX

{
sup
h∈T

∣∣∣∣1n n

∑
i=1

ξih(Xi)

∣∣∣∣}= EX

{
sup
θθθ∈T′

∣∣∣∣ 1√
n

n

∑
i=1

ξiθi

∣∣∣∣}, (D.65)

where the set T′ ⊂ Rn is defined as

T′ :=
{

θθθ = (θ1,θ2, . . . ,θn)
T ∈ Rn : ∥θθθ∥2

2 ≤ 1,
n

∑
i=1

θ 2
i

µ̂i
≤ λ

−1
e

}
. (D.66)

Denote ν̂i = µ̂i/(µ̂i +λe) for 1≤ i≤ n, and define the ellipsoid set D(η)⊂ Rn for any η > 0 as

follows:

D(η) :=
{

θθθ = (θ1,θ2, . . . ,θn)
T ∈ Rn :

n

∑
i=1

θ 2
i

ν̂i
≤ η

}
. (D.67)

It is easy to see that T′ ⊂ D(2), which implies

EX

{
sup
θθθ∈T′

∣∣∣∣ n

∑
i=1

ξiθi

∣∣∣∣}≤ EX

{
sup

θθθ∈D(2)

∣∣∣∣ n

∑
i=1

ξiθi

∣∣∣∣}.
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Then, by applying Jensen’s inequality and the Cauchy-Schwarz inequality, we obtain

{
EX

(
sup
θθθ∈T′

∣∣∣∣ n

∑
i=1

ξiθi

∣∣∣∣)}2

≤ EX

{
sup

θθθ∈D(2)

∣∣∣∣ n

∑
i=1

ξiθi

∣∣∣∣2}= EX

{
sup

θθθ∈D(2)

∣∣∣∣ n

∑
i=1

√
ν̂iξi

θi√
ν̂i

∣∣∣∣2}
= 2EX

( n

∑
i=1

ν̂iξ
2
i

)
= 2

n

∑
i=1

ν̂i, (D.68)

which, combined with (D.65), further implies

EX

{
sup
h∈T

∣∣∣∣1n n

∑
i=1

ξih(Xi)

∣∣∣∣}≤
√

2
n

( n

∑
i=1

ν̂i

)1/2

. (D.69)

Now, let e1,e2, . . . ,en be independent Rademacher variables that are independent of

{Xi}n
i=1. Following a similar argument as in (D.65) yields

EX

{
sup
h∈T

∣∣∣∣1n n

∑
i=1

eih(Xi)

∣∣∣∣}= EX

(
sup
θθθ∈T′

∣∣∣∣ 1√
n

n

∑
i=1

eiθi

∣∣∣∣).
By the definitions of T′ in (D.66) and D(η) in (D.67), it is obvious that D(1)⊂T′, which implies

EX

{
sup
θθθ∈T′

∣∣∣∣ n

∑
i=1

eiθi

∣∣∣∣}≥ EX

{
sup

θθθ∈D(1)

∣∣∣∣ n

∑
i=1

eiθi

∣∣∣∣}.
Remark that |eiθi| ≤ 1 for any θθθ ∈ D(1) and 1≤ i≤ n. Hence, applying Hoffmann-Jørgensen

inequality (see, e.g. Theorem 6.20 in Ledoux and Talagrand (1991)) gives

EX

{
sup

θθθ∈D(1)

∣∣∣∣ n

∑
i=1

eiθi

∣∣∣∣}≳

[
EX

{
sup

θθθ∈D(1)

∣∣∣∣ n

∑
i=1

eiθi

∣∣∣∣2}]1/2

−1.

Note that EX{supθθθ∈D(1) |∑n
i=1 eiθi|2}= ∑

n
i=1 ν̂i by employing a similar argument as in (D.68).

Putting the pieces together, we obtain

EX

{
sup
h∈T

∣∣∣∣1n n

∑
i=1

eih(Xi)

∣∣∣∣}≥ EX

{
sup

θθθ∈D(1)

∣∣∣∣ 1√
n

n

∑
i=1

eiθi

∣∣∣∣}≳
1√
n

( n

∑
i=1

ν̂i

)1/2

− 1√
n
,
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which, combined with (D.69), further implies

EX

{
sup
h∈T

∣∣∣∣1n n

∑
i=1

ξih(Xi)

∣∣∣∣}≤C4

[
EX

{
sup
h∈T

∣∣∣∣1n n

∑
i=1

eih(Xi)

∣∣∣∣}+
1√
n

]
, (D.70)

where C4 > 0 is a universal constant.

Turning to establish a high-probability bound for the empirical Rademacher complex-

ity of T in (D.70), note that for any h ∈ T and 1 ≤ i ≤ n, we have ∥eih(Xi)∥∞ ≤ λ
−1/2
e and

(1/n)∑
n
i=1EX{e2

i h2(Xi)}= ∥h∥2
n ≤ 1. Thus, applying a conditional version of Theorem 3.3.10

in Giné and Nickl (2016) yields that the bound

EX

{
sup
h∈T

∣∣∣∣1n n

∑
i=1

eih(Xi)

∣∣∣∣}≲ sup
h∈T

∣∣∣∣1n n

∑
i=1

eih(Xi)

∣∣∣∣+√ t
n
+λ

−1/2
e

t
n

≲ sup
h∈T

∣∣∣∣1n n

∑
i=1

eih(Xi)

∣∣∣∣+√ t
n

holds with PX -probability at least 1−e−t , where the last inequality follows from the fact λe ≳ t/n.

Combining this with (D.64) and (D.70) and taking expectation over {Xi}n
i=1, there exists an

absolute constant C5 > 0 satisfying

P

{
sup
h∈T

∣∣∣∣∣1n n

∑
i=1

ωih(Xi)

∣∣∣∣∣≥C5σ0

[
sup
h∈T

∣∣∣∣1n n

∑
i=1

eih(Xi)

∣∣∣∣+
√

t +1
n

]}
≤ 3e−t . (D.71)

Now, recall the definition of the event S = S (λe) in Lemma D.3.3. Conditioned on S ,

h ∈ T satisfies ∥h∥2 ≤
√

3. Thus, conditioned on S ,

sup
h∈T

∣∣∣∣1n n

∑
i=1

eih(Xi)

∣∣∣∣≤ sup
∥h∥2≤

√
3,∥h∥H ≤λ

−1/2
e

∣∣∣∣1n n

∑
i=1

eih(Xi)

∣∣∣∣.
Remark that for any 1 ≤ i ≤ n and h ∈ H with ∥h∥2 ≤

√
3 and ∥h∥H ≤ λ

−1/2
e , we have

∥eih(Xi)∥∞ ≤ λ
−1/2
e and E{e2

i h2(Xi)} ≤ 3. Therefore, by applying Theorem 7.3 in Bousquet
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(2003) and recalling the fact λe ≳ t/n, it follows that, with probability at least 1− e−t ,

sup
∥h∥2≤

√
3,∥h∥H ≤λ

−1/2
e

∣∣∣∣1n n

∑
i=1

eih(Xi)

∣∣∣∣≲ E

{
sup

∥h∥2≤
√

3,∥h∥H ≤λ
−1/2
e

∣∣∣∣1n n

∑
i=1

eih(Xi)

∣∣∣∣
}
+

√
t
n
. (D.72)

We next derive a bound for the expectation in the above inequality. If we write h(·)=∑
∞
j=1 θ jφ j(·)

for any function h ∈H with ∥h∥2 ≤
√

3 and ∥h∥H ≤ λ
−1/2
e , {θ j}∞

j=1 satisfy ∑
∞
j=1 θ 2

j /ν j,e ≤ 4,

where ν j,e = µ j/(µ j +λe). Thus, we have

E

{
sup

∥h∥2≤
√

3,∥h∥H ≤λ
−1/2
e

∣∣∣∣1n n

∑
i=1

eih(Xi)

∣∣∣∣
}
≤ E

{
sup

{θ j}∞
j=1:∑∞

j=1 θ 2
j /ν j,e≤4

∣∣∣∣1n n

∑
i=1

ei

∞

∑
j=1

θ jφ j(Xi)

∣∣∣∣
}
.

Then, following a similar argument as in (D.61) gives

E

{
sup

∥h∥2≤2,∥h∥H ≤λ
−1/2
e

∣∣∣∣1n n

∑
i=1

eih(Xi)

∣∣∣∣
}
≤ 2√

n

(
∞

∑
j=1

ν j,e

)1/2

= 2

√
Dλe

n
.

Putting the pieces together, (D.71), (D.72) and the above inequality yield

P

[{
sup
h∈T

∣∣∣∣∣1n n

∑
i=1

ωih(Xi)

∣∣∣∣∣≥C6σ0

√
Dλe + t

n

}⋂
S

]
≤ 4e−t , (D.73)

where C6 is a universal positive constant. Combining this bound with (D.62), we have

P

[{
sup

h∈H

∣∣∣∣1n n

∑
i=1

ωih(Xi)

∣∣∣∣≥ 1
4
(∥h∥2

n +λe∥h∥2
H )+2C2

6σ
2
0
Dλe + t

n

}⋂
S

]
≤ 4e−t .

This proves the claimed bound with c15 = 2C2
6 .
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D.5.5 Proof of Lemma D.3.5

For any real-valued functions f ,g on X , note that

1
n

n

∑
i=1
{Zi( f )−Zi( f0)}{g(Xi)−g0(Xi)}

=
1
n

n

∑
i=1

(1−E){Zi( f )−Zi( f0)}{g(Xi)−g0(Xi)}+E{Zi( f )−Zi( f0)}{g(Xi)−g0(Xi)}.

STEP I. BOUND FOR THE EXPECTED VALUE TERM. We first establish a bound for the ex-

pectation E{Zi( f )−Zi( f0)}{g(Xi)−g0(Xi)}. Let EXi be the conditional expectation given Xi

and denoting ∆ f (Xi) = f0(Xi)− f (Xi). Recall that εi = Yi− f0(Xi) and pεi|Xi is the conditional

density function of εi given Xi. By the definition of Zi( f ), we have

Zi( f )−Zi( f0)

= {Yi− f (Xi)}1{Yi ≤ f (Xi)}−{Yi− f0(Xi)}1{Yi ≤ f0(Xi)}+ τ{ f (Xi)− f0(Xi)}, (D.74)

which implies

EXi{Zi( f )−Zi( f0)}

= EXi

[
{εi +∆ f (Xi)}1{εi ≤−∆ f (Xi)}− εi1(εi ≤ 0)− τ∆ f (Xi)

]
=
∫ −∆ f (Xi)

−∞

{u+∆ f (Xi)}pεi|Xi(u)du−
∫ 0

−∞

upεi|Xi(u)du− τ∆ f (Xi)

=
∫ −∆ f (Xi)

0
upεi|Xi(u)du+∆ f (Xi)

∫ −∆ f (Xi)

−∞

pεi|Xi(u)du−∆ f (Xi)
∫ 0

−∞

pεi|Xi(u)du

=
∫ −∆ f (Xi)

0
{u+∆ f (Xi)}pεi|Xi(u)du,

where the third equality follows from the model assumption P(εi ≤ 0|Xi) = τ . By Condition
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4.3.2 that supu∈R pεi|Xi(u)≤ p̄ for some constant p̄ > 0, it holds

∣∣EXi{Zi( f )−Zi( f0)}
∣∣≤ p̄

∣∣∣∣∣
∫ −∆ f (Xi)

0

{
u+∆ f (Xi)

}
du

∣∣∣∣∣≤ p̄
2
{

f (Xi)− f0(Xi)
}2
.

Consequently,

∣∣E{Zi( f )−Zi( f0)}{g0(Xi)−g(Xi)}
∣∣≤ E

[∣∣EXi{Zi( f )−Zi( f0)}
∣∣ · ∣∣g(Xi)−g0(Xi)

∣∣]
≤ p̄

2
E
[
{ f (Xi)− f0(Xi)}2∣∣g(Xi)−g0(Xi)

∣∣]
≤ p̄

2
∥ f − f0∥2

4∥g−g0∥2, (D.75)

where the last line follows from Hölder’s inequality.

STEP II. HIGH PROBABILITY BOUND FOR THE RANDOM FLUCTUATION TERM. In this step,

we establish a high probability bound for the random fluctuation term by applying Talagrand’s

inequality. Denote ∆ f = f0− f for any f ∈H and

F (δ2) = F (δ2,λq) = {h ∈H : ∥h∥2
2 +λq∥h∥2

H ≤ δ
2
2 }.

It is evident that

sup
∆ f∈F (δ2),g∈H

∣∣∣∣∣1n n

∑
i=1

(1−E)
{Zi( f )−Zi( f0)}{g(Xi)−g0(Xi)}
∥g−g0∥2 +λ

1/2
e ∥g−g0∥H

∣∣∣∣∣
≤ sup

∆ f∈F (δ2)

sup
∥h∥H ≤λ

−1/2
e ,∥h∥2≤1

∣∣∣∣∣1n n

∑
i=1

(1−E)
{

Zi( f )−Zi( f0)
}

h(Xi)

∣∣∣∣∣︸ ︷︷ ︸
=:Ω

. (D.76)

We first establish a relationship between Zi( f )−Zi( f0) and f − f0. Suppose ∆ f (Xi) = f0(Xi)−
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f (Xi)≤ 0. By (D.74), we have

∣∣Zi( f )−Zi( f0)
∣∣

=
∣∣{Yi− f (Xi)}1{Yi ≤ f (Xi)}−{Yi− f0(Xi)}1{Yi ≤ f0(Xi)}+ τ{ f (Xi)− f0(Xi)}

∣∣
≤
∣∣∆ f (Xi)1{Yi ≤ f0(Xi)}+{Yi− f (Xi)}1{ f0(Xi)< Yi ≤ f (Xi)}− τ∆ f (Xi)

∣∣
≤max(τ,1− τ)

∣∣∆ f (Xi)
∣∣≤ ∣∣∆ f (Xi)

∣∣, (D.77)

where the first inequality follows from the assumption ∆ f (Xi)≤ 0, and the second inequality is

obtained by the following inequality

f0(Xi)− f (Xi)≤ {Yi− f (Xi)}1{ f0(Xi)≤ Yi ≤ f (Xi)} ≤ 0.

By exchanging the roles of f and f0 in (D.77), the same inequality holds when ∆ f (Xi) > 0,

leading to

∣∣Zi( f )−Zi( f0)
∣∣≤ ∣∣ f (Xi)− f0(Xi)

∣∣. (D.78)

Now, we claim for any h ∈H and λ > 0 that

∥h∥2
∞ ≤C2

φDλ (∥h∥2
2 +λ∥h∥2

H ). (D.79)

336



Write h(·) = ∑
∞
j=1 θ jφ j(·) and ν j = µ j/(µ j +λ ) for j ≥ 1, we have

sup
x∈X

h2(x) = sup
x∈X

{
∞

∑
j=1

θ jφ j(x)
}2

= sup
x∈X

{
∞

∑
j=1

θ j√
ν j

√
ν jφ j(x)

}2

≤ sup
x∈X

∞

∑
j=1

ν jφ
2
j (x) ·

∞

∑
j=1

θ 2
j

ν j

≤C2
φDλ

∞

∑
j=1

θ 2
j

ν j
=C2

φDλ (∥h∥2
2 +λ∥h∥2

H ),

where the first inequality follows from the Cauchy-Schwarz inequality and the second inequality

follows from Condition 4.3.3. This verifies (D.79). Thus, for any ∆ f ∈F (δ2) and h ∈H with

∥h∥H ≤ λ
−1/2
e and ∥h∥2 ≤ 1, combining (D.78) and (D.79) with λ = λq yields

∥∥{Zi( f )−Zi( f0)}h(Xi)
∥∥

∞
≤
∥∥Zi( f )−Zi( f0)

∥∥
∞
·
∥∥h(Xi)

∥∥
∞

≤
∥∥ f (Xi)− f0(Xi)

∥∥
∞
·
∥∥h(Xi)

∥∥
∞
≤CφD

1/2
λq

δ2λ
−1/2
e .

Moreover,

Var
(
{Zi( f )−Zi( f0)}h(Xi)

)
≤ E

[
{Zi( f )−Zi( f0)}h(Xi)

]2
≤ ∥Zi( f )−Zi( f0)∥2

∞E{h2(Xi)}

≤C2
φDλqδ

2
2 E{h2(Xi)} ≤C2

φDλqδ
2
2 .

By applying Theorem 7.3 in Bousquet (2003), the bound

Ω≤ 2EΩ+CφD
1/2
λq

δ2

√
2t
n
+CφD

1/2
λq

δ2λ
−1/2
e

8t
3n
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holds with probability at least 1− e−t for any t > 0. Since λe ≳ t/n, it follows that

Ω ≲ EΩ+CφD
1/2
λq

δ2

√
t
n

(D.80)

with the same probability.

STEP III. BOUND FOR THE EXPECTED VALUE OF THE RANDOM FLUCTUATION TERM. We

next establish an upper bound for EΩ. By employing Rademacher symmetrization, we have

EΩ≤ 2E

[
sup

∆ f∈F (δ2)

sup
∥h∥H ≤λ

−1/2
e ,∥h∥2≤1

∣∣∣∣∣1n n

∑
i=1

ei
{

Zi( f )−Zi( f0)
}

h(Xi)

∣∣∣∣∣
]
,

where e1,e2, . . . ,en are independent Rademacher random variables. Now, we write h(·) =

∑
∞
j=1 h jφ j(·). Then, ∥h∥H ≤ λ−1

e and ∥h∥2 ≤ 1 imply ∑ j≥1(1+λe/µ j)h2
j = ∑ j≥1 h2

j/ν j,e ≤ 2,

where ν j,e = µ j/(µ j +λe) for j ≥ 1. Consequently, we have

EΩ≤ 2E

[
sup

∆ f∈F (δ2)

sup
∑ j≥1 h2

j/ν j,e≤2

∣∣∣∣1n n

∑
i=1

ei
{

Zi( f )−Zi( f0)
} ∞

∑
j=1

h jφ j(Xi)

∣∣∣∣
]
.

Note that

E

[
sup

∆ f∈F (δ2)

sup
∑ j≥1 h2

j/ν j,e≤2

∣∣∣∣ n

∑
i=1

ei
{

Zi( f )−Zi( f0)
} ∞

∑
j=1

h jφ j(Xi)

∣∣∣∣2
]

= E

[
sup

∆ f∈F (δ2)

sup
∑ j≥1 h2

j/ν j,e≤2

∣∣∣∣ ∞

∑
j=1

h j√
ν j,e

n

∑
i=1

ei
{

Zi( f )−Zi( f0)
}√

ν j,eφ j(Xi)

∣∣∣∣2
]

≤ 2E

[
sup

∆ f∈F (δ2)

∞

∑
j=1

∣∣∣∣ n

∑
i=1

ei
{

Zi( f )−Zi( f0)
}√

ν j,eφ j(Xi)

∣∣∣∣2
]

≤ 2
∞

∑
j=1

ν j,eE

{[
sup

∆ f∈F (δ2)

∣∣∣∣∣ n

∑
i=1

ei
{

Zi( f )−Zi( f0)
}

φ j(Xi)

∣∣∣∣∣
]2}

= 2C2
φ

∞

∑
j=1

ν j,eE

{[
sup

∆ f∈F (δ2)

∣∣∣∣∣ n

∑
i=1

ei
{

Zi( f )−Zi( f0)
}φ j(Xi)

Cφ

∣∣∣∣∣
]2}

,
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where the first inequality comes from the Cauchy-Schwartz inequality, and the second inequality

follows by the triangular inequality. Now, we fix j ≥ 1. To employ Theorem 4.12 in Ledoux

and Talagrand (1991), we take F(u) = u2 for u≥ 0, which is convex and increasing for u≥ 0.

Moreover, let T be a subset of Rn such that

T :=
{

ttt = (t1, t2, . . . , tn) ∈ Rn : ti = f (Xi)− f0(Xi), 1≤ i≤ n
}
,

and define ϕi : R→ R as

ϕi(a) =
φ j(Xi)

Cφ

{
(εi−a)1(εi ≤ a)+ τ f0(Xi)+ τa−Zi( f0)

}
,

so that ϕi( f (Xi)− f0(Xi)) = {Zi( f )−Zi( f0)}φ j(Xi)/Cφ . Moreover, note that ϕi is a contraction

for 1≤ i≤ n by Condition 4.3.3 and (D.78). Then, by Theorem 4.12 in Ledoux and Talagrand

(1991), we have

E

{[
sup

∆ f∈F (δ2)

∣∣∣∣∣ n

∑
i=1

ei
{

Zi( f )−Zi( f0)
}φ j(Xi)

Cφ

∣∣∣∣∣
]2}

= EF
(

sup
ttt∈T

∣∣∣∣ n

∑
i=1

eiϕi(ti)
∣∣∣∣)

≤ 4EF
(

sup
ttt∈T

∣∣∣∣ n

∑
i=1

eiti

∣∣∣∣)
= 4E

[
sup

∆ f∈F (δ2)

∣∣∣∣ n

∑
i=1

ei
{

f (Xi)− f0(Xi)
}∣∣∣∣2].

After writing f − f0 = ∑k≥1 fkφk, it follows that

E
[

sup
∆ f∈F (δ2)

∣∣∣∣ n

∑
i=1

ei
{

f (Xi)− f0(Xi)
}∣∣∣∣2]= E

[
sup

∆ f∈F (δ2)

∣∣∣∣ n

∑
i=1

ei

∞

∑
k=1

fkφk(Xi)

∣∣∣∣2].
Since ∆ f ∈F (δ2) is equivalent to ∑

∞
k=1 f 2

k /νk,q ≤ δ 2
2 with νk,q = µk/(µk +λq) for k ≥ 1, we
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have

E
[

sup
∆ f∈F (δ2)

∣∣∣∣ n

∑
i=1

ei

∞

∑
k=1

fkφk(Xi)

∣∣∣∣2]= E
{

sup
∆ f∈F (δ2)

∣∣∣∣ ∞

∑
k=1

fk√
νk,q

n

∑
i=1

ei
√

νk,qφk(Xi)

∣∣∣∣2}

≤ δ
2
2 ·

∞

∑
k=1

E
{ n

∑
i=1

ei
√

νk,eφk(Xi)

}2

= δ
2
2

∞

∑
k=1

E
{ n

∑
i=1

νk,qφ
2
k (Xi)

}
= nδ

2
2Dλq,

where the first inequality follows from the Cauchy-Schwartz inequality. Putting the pieces

together and applying Jensen’s inequality, we obtain

E

[
sup

∆ f∈F (δ2)

sup
∑ j≥1 h2

j/ν j,e≤2

∣∣∣∣1n n

∑
i=1

ei
{

Zi( f )−Zi( f0)
} ∞

∑
j=1

h jφ j(Xi)

∣∣∣∣
]

≤Cφ

√
8
n

δ2

√
Dλq

(
∞

∑
j=1

ν j,e

)1/2

=Cφ δ2

√
8
n

√
DλqDλe,

which further implies

EΩ≤Cφ δ2

√
32DλqDλe

n
. (D.81)

STEP IV. CONCLUSION OF THE PROOF. Putting the pieces together, (D.76), (D.80) and (D.81)

yield

sup
∆ f∈F (δ2),g∈H

∣∣∣∣∣1n n

∑
i=1

(1−E)
{Zi( f )−Zi( f0)}{g(Xi)−g0(Xi)}
∥g−g0∥2 +λ

1/2
e ∥g−g0∥H

∣∣∣∣∣≤Ω ≲Cφ δ2

√
Dλq(t +Dλe)

n

(D.82)
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with probability at least 1− e−t . This implies

sup
∆ f∈F (δ2),g∈H

∣∣∣∣∣τn n

∑
i=1

(1−E){Zi( f )−Zi( f0)}{g(Xi)−g0(Xi)}

∣∣∣∣∣
≤ τ2

16
∥g−g0∥2

2 +
λeτ2

16
∥g−g0∥2

H + c16C2
φ δ

2
2
Dλq(Dλe + t)

n

for a universal constant c16 > 0 with the same probability. Together, this bound and (D.75) give

that with probability at least 1− e−t , the bound

τ

n

n

∑
i=1
{Zi( f )−Zi( f0)}{g(Xi)−g0(Xi)} ≤

τ2

16
∥g−g0∥2

2 +
λeτ2

16
∥g−g0∥2

H

+
p̄
2

τ∥ f − f0∥2
4∥g−g0∥2 + c16C2

φ δ
2
2
Dλq(Dλe + t)

n

holds uniformly for all g∈H and f ∈H with ∥ f − f0∥2
2+λq∥ f − f0∥2

H ≤ δ 2
2 , which completes

the proof.

D.5.6 Proof of Lemma D.3.7

To begin with, we denote E = T̂λ −Tλ = T̂ −TK . Since T̂λ ⪰ λ I and Tλ ⪰ λ I, T̂λ and

Tλ are invertible. Note that (I +T−1
λ

E)T̂−1
λ

= T−1
λ

. To see this,

(I +T−1
λ

E)T̂−1
λ

= T̂−1
λ

+T−1
λ

ET̂−1
λ

= T̂−1
λ

+T−1
λ

(T̂λ −Tλ )T̂
−1

λ
= T−1

λ
. (D.83)

Since ∥T−1
λ

E∥op,λ ≤ ζ < 1 by the assumption, the operator (I + T−1
λ

E) is invertible and its

inverse can be written as (I+T−1
λ

E)−1 = ∑
∞
k=0(−T−1

λ
E)k (see, e.g. Corollary VII.2.3 in Conway

(1990)). Therefore,

∥(I +T−1
λ

E)−1− I∥op,λ =

∥∥∥∥ ∞

∑
k=1

(−T−1
λ

E)k
∥∥∥∥

op,λ
≤

∞

∑
k=1

∥∥T−1
λ

E
∥∥k

op,λ ≤
∞

∑
k=1

ζ
k =

ζ

1−ζ
.
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Let A := (I +T−1
λ

E)−1− I. By (D.83), we have

T̂−1
λ
−T−1

λ
= (I +T−1

λ
E)−1T−1

λ
−T−1

λ
= AT−1

λ
,

and ∥A∥op,λ ≤ ζ/(1−ζ ), thereby completing the proof.

D.5.7 Proof of Lemma D.3.8

Proof of (D.22). Since λ ≳ (t + logDλ )/n, it follows from Lemma D.3.3 that the event

S =

{
1
2
≤
∥h∥2

n +λ∥h∥2
H

∥h∥2
2 +λ∥h∥2

H

≤ 3
2

for all h ∈H

}

occurs with probability at least 1−e−t . Conditioned on S , ∥h∥λ ≤ 1 implies ∥h∥n ≤
√

3/2 and

∥h∥H ≤ λ−1/2. Furthermore, if we write h = ∑
∞
j=1 h jφ j,

〈
T−1

λ
KXi,h

〉
λ
=

〈
∞

∑
j=1

µ j

µ j +λ
φ j(Xi)φ j,

∞

∑
j=1

h jφ j

〉
λ

=
∞

∑
j=1

h jφ j(Xi) = h(Xi). (D.84)

Thus,

∥∥∥∥∥1
n

n

∑
i=1

ωiT−1
λ

KXi

∥∥∥∥∥
λ

= sup
∥h∥λ≤1

〈
1
n

n

∑
i=1

ωiT−1
λ

KXi,h
〉

λ

≤ sup
∥h∥n≤

√
3/2,∥h∥H ≤λ−1/2

∣∣∣∣1n n

∑
i=1

ωih(Xi)

∣∣∣∣.
Then, by employing the same argument which derives (D.73) in Lemma D.3.4, it can be shown

that there exists an absolute constant c17 > 0 satisfying

P

[{
sup

∥h∥n≤
√

3/2,∥h∥H ≤λ−1/2

∣∣∣∣1n n

∑
i=1

ωih(Xi)

∣∣∣∣≥ c17σ0

√
Dλ + t

n

}⋂
S

]
≤ 4e−t .
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Combining this probability bound with the fact that P(S )≥ 1−e−t establishes the bound (D.22).

Proof of (D.23). Define Φλ (x) = (
√

ν1φ1(x),
√

ν2φ2(x), . . .)T for x ∈X , where ν j = µ j/(µ j +

λ ) for j ≥ 1. By Condition 4.3.3,

∥Φλ (x)∥2
ℓ2
=

∞

∑
j=1

ν jφ
2
j (x)≤C2

φDλ < ∞,

so that Φλ (x) ∈ ℓ2 for any x ∈X . Also, for any h ∈H , we can express h(·) = ⟨θθθ h,Φλ (·)⟩ℓ2 ,

where θθθ h = (θh,1,θh,2, . . .)
T with θh, j = ⟨h,φ j⟩2/

√
ν j. Then, ∥h∥2

λ
= ∥θθθ h∥2

ℓ2
. Since ET̂ = TK ,

we can write

∥T−1
λ

(T̂ −TK)∥op,λ = sup
∥h∥λ≤1

∣∣∣∣〈1
n

n

∑
i=1

(1−E)T−1
λ

(KXi⊗KXi)h,h
〉

λ

∣∣∣∣.
For h = ⟨θθθ h,Φλ ⟩ℓ2 with θθθ h = (θh,1,θh,2, . . .)

T, we have

⟨T−1
λ

(KXi⊗KXi)h,h⟩λ = ⟨h(Xi)T−1
λ

KXi,h⟩λ

= h(Xi) ·

〈
∞

∑
j=1

µ j

µ j +λ
φ j(Xi)φ j,

∞

∑
j=1

θh, j
√

ν jφ j

〉
λ

= h(Xi)
∞

∑
j=1

θh, j
√

ν jφ j(Xi) = ⟨θθθ h,Φλ (Xi)⟩2ℓ2
.

Thus,

∥T−1
λ

(T̂ −TK)∥op,λ = sup
∥θθθ h∥ℓ2≤1

∣∣∣∣〈1
n

n

∑
i=1

(1−E)Φλ (Xi)Φλ (Xi)
T
θθθ h,θθθ h

〉
ℓ2

∣∣∣∣
=

∥∥∥∥1
n

n

∑
i=1

(1−E)Φλ (Xi)Φλ (Xi)
T

∥∥∥∥
op
. (D.85)
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Define Mi = (1−E)Φλ (Xi)Φλ (Xi)
T. By the definition, Mi is centered and satisfies

∥∥Mi
∥∥

op ≤ 2 sup
x∈X

∥∥Φλ (x)Φλ (x)
T∥op = 2 sup

x∈X

∥∥Φλ (x)
∥∥2
ℓ2
≤ 2C2

φDλ .

Moreover,

EM2
i ⪯ E∥Φλ (Xi)∥2

ℓ2
Φλ (Xi)Φλ (Xi)

T ⪯C2
φDλEΦλ (Xi)Φλ (Xi)

T =: V.

Since ν j = µ j/(µ j +λ ), we have

∥V∥op =C2
φDλ max

j≥1

µ j

µ j +λ
≤C2

φDλ , tr(V) =C2
φDλ

∞

∑
j=1

µ j

µ j +λ
=C2

φD
2
λ
.

Applying Lemma D.5.1 yields that for any t > 0,

P
{∥∥∥∥1

n

n

∑
i=1

Mi

∥∥∥∥
op
≥ 4

3
C2

φ

Dλ (t + logn)
n

+2Cφ

√
Dλ (t + logn)

n

}
≤ 14Dλ e−t−logn, (D.86)

which, together with (D.85), establishes the bound (D.23).

Proof of (D.24). To begin with, observe that

∥∥∥∥1
n

n

∑
i=1

{
Zi( f )−Zi( f0)

}
T−1

λ
KXi

∥∥∥∥
λ

= sup
∥h∥λ≤1

1
n

n

∑
i=1

{
Zi( f )−Zi( f0)

}〈
T−1

λ
KXi,h

〉
λ

= sup
∥h∥λ≤1

1
n

n

∑
i=1

{
Zi( f )−Zi( f0)

}
h(Xi),

where the last step follows from (D.84). This implies

∥∥∥∥1
n

n

∑
i=1

{
Zi( f )−Zi( f0)

}
T−1

λ
KXi

∥∥∥∥
λ

≤ sup
∥h∥λ≤1

∣∣∣∣1n n

∑
i=1

(1−E)
{

Zi( f )−Zi( f0)
}

h(Xi)

∣∣∣∣
+ sup
∥h∥λ≤1

E
∣∣{Zi( f )−Zi( f0)

}
h(Xi)

∣∣. (D.87)
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For the expectation bound, we remark that h ∈H with ∥h∥λ ≤ 1 satisfies ∥h∥2 ≤ 1. Therefore,

by (D.75), we have for any f ∈H that

sup
∥h∥λ≤1

E
∣∣{Zi( f )−Zi( f0)

}
h(Xi)

∣∣≤ sup
∥h∥2≤1

p̄
2
∥ f − f0∥2

4∥h∥2 ≤
p̄
2
∥ f − f0∥2

4. (D.88)

Turning to the random fluctuation term, we note that h ∈H with ∥h∥λ ≤ 1 satisfies

∥h∥2 ≤ 1 and ∥h∥H ≤ λ−1/2. Thus, if we denote ∆ f = f0− f for any f ∈H and F (δ2) :=

{h ∈H : ∥h∥2
2 +λq∥h∥2

H ≤ δ 2
2 }, we have

sup
∆ f∈F (δ2)

sup
∥h∥λ≤1

∣∣∣∣1n n

∑
i=1

(1−E)
{

Zi( f )−Zi( f0)
}

h(Xi)

∣∣∣∣
≤ sup

∆ f∈F (δ2)

sup
∥h∥H ≤λ−1/2,∥h∥2≤1

∣∣∣∣1n n

∑
i=1

{
Zi( f )−Zi( f0)

}
h(Xi)

∣∣∣∣.
Since the right-hand side of the above inequality is identical to the random variable Ω introduced

in (D.76) within the proof of Lemma D.3.5, (D.82) implies that, with probability at least 1− e−t ,

sup
∆ f∈F (δ2)

sup
∥h∥H ≤λ−1/2,∥h∥2≤1

∣∣∣∣1n n

∑
i=1

(1−E)
{

Zi( f )−Zi( f0)
}

h(Xi)

∣∣∣∣≲Cφ δ2

√
Dλq(Dλe + t)

n
.

Combining this bound with (D.87) and (D.88) establishes the claim.

D.5.8 Proof of Lemma D.3.9

In the proof, we need Bernstein’s inequality for unbounded self-adjoint operators. The

following lemma is an extension of Proposition 4.1 in Klochkov and Zhivotovskiy (2020)

to self-adjoint operators in an infinite-dimensional separable Hilbert space. This extension

follows a similar argument as the one presented in Section 3.2 of Minsker (2017), so we omit

the proof details for brevity. For any p ≥ 1, define ∥ · ∥ψp to be the ψp-Orlicz norm, that is,

∥R∥ψp := inf{u > 0 : Eψp(|R|/u)≤ 1} for any random variable R, where ψp : R→R is defined

as ψp(x) = exp(xp)−1.
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Lemma D.5.2. Let M1,M2, . . . ,Mn be n independent self-adjoint random operators on a sep-

arable Hilbert space. Assume that EMi = 0 for 1 ≤ i ≤ n and ∥max1≤i≤n ∥Mi∥op∥ψ1 ≤ B

for some B ≥ 0. Moreover, there exist positive trace-class operator V and σ > 0 such that

(1/n)∑
n
i=1EM2

i ⪯ V and ∥V∥op ≤ σ2. Then, there exists an absolute constant C > 0 such that

for any u ≳ B/n+
√

σ2/n,

P

(∥∥∥∥1
n

n

∑
i=1

Mi

∥∥∥∥
op
≥ u

)
≤ 15

tr(V)

σ2 exp
{
−C
(

nu2

σ2 +
nu
B

)}
.

Now, we are ready to prove the lemma.

Proof of Lemma D.3.9. To begin with, recall that

δn = λ
rq+1/2
q ∥ f ∗∥H +

√
Dλq + t

n
and γn = τλ

re+1/2
e ∥g∗∥H +σ0

√
Dλe + t

n
.

Theorem 4.3.1 implies that the event

G1(t) :=
{
∥ f̂ − f0∥2

2 +λq∥ f̂ − f0∥2
H ≤C2

1δ
2
n
}

occurs with probability at least 1− e−t , where C1 > 0 is an absolute constant. Then, conditioned

on G1(t), (D.79) implies ∥ f̂ − f0∥2
4 ≤ ∥ f̂ − f0∥∞∥ f̂ − f0∥2 ≤C2

1CφD
1/2
λq

δ 2
n . Combining this with

Theorem 4.3.2 and recalling the definition of δs, there exists an absolute constant C2 > 0 such

that the event

G2(t) :=
{
∥ĝ−g0∥2

2 +λe∥ĝ−g0∥2
H ≤C2

2 r2
n/τ

2 :=C2
2(γn +δs + p̄CφD

1/2
λq

δ
2
n )

2/τ
2
}

(D.89)

satisfies P{G1(t)∩G2(t)} ≥ 1−7e−t .
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Now, note that ωi = Zi( f0)− τg0(Xi) and thus

1
n

n

∑
i=1

Ui
{

Zi( f̂ )− τ ĝ(Xi)
}

T̂−1
λe

KXi−
1
n

n

∑
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UiωiT−1
λe

KXi

=
(
T̂−1

λe
−T−1

λe

)[1
n

n

∑
i=1

Ui
{

Zi( f̂ )− τ ĝ(Xi)
}

KXi

]
+T−1

λe

[
1
n

n

∑
i=1

Ui
{

Zi( f̂ )−Zi( f0)+ τg0(Xi)− τ ĝ(Xi)
}

KXi

]
=
(
T̂−1

λe
−T−1

λe

)1
n

n

∑
i=1

UiωiKXi

+
(
T̂−1

λe
−T−1

λe

)[1
n

n

∑
i=1

Ui
{

Zi( f̂ )−Zi( f0)+ τg0(Xi)− τ ĝ(Xi)
}

KXi

]
+T−1

λe

[
1
n

n

∑
i=1

Ui
{

Zi( f̂ )−Zi( f0)+ τg0(Xi)− τ ĝ(Xi)
}

KXi

]
. (D.90)

When n ≥ 64C2
φ
Dλe(t + logn) logn, ζ := 4CφD

1/2
λe

√
(t + logn)/n ≤ 1/2 and Lemma D.3.8

implies that the event

G3(t) :=
{∥∥T−1

λe
(T̂ −TK)

∥∥
op,λe
≤ ζ

}
occurs with probability at least 1− e−t . Denote

D1 :=
∥∥∥∥1

n

n

∑
i=1

UiωiT−1
λe

KXi

∥∥∥∥
λe

, D2 := sup
∆ f∈F (C1δn)

∥∥∥∥1
n

n

∑
i=1

Ui
{

Zi( f )−Zi( f0)
}

T−1
λe

KXi

∥∥∥∥
λe

,

and D3 := sup
∥g−g0∥λe≤C2rn/τ

∥∥∥∥1
n

n

∑
i=1

Uiτ
{

g(Xi)−g0(Xi)
}

T−1
λe

KXi

∥∥∥∥
λe

,

where ∆ f = f0− f for f ∈H and F (C1δn) := {h∈H : ∥h∥2
2+λq∥h∥2

H ≤C2
1δ 2

n }. By applying

a similar argument as in the proof of Theorem 4.3.3, Lemma D.3.7 and the decomposition (D.90)
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imply that, conditioned on G1(t)∩G2(t)∩G3(t),

∥∥∥∥1
n

n

∑
i=1

Ui
{

Zi( f̂ )− τ ĝ(Xi)
}

T̂−1
λe

KXi−
1
n

n

∑
i=1

UiωiT−1
λe

KXi

∥∥∥∥
λe

≤ 2ζ D1 +(1+2ζ )(D2 +D3)

≤ 2ζ D1 +2(D2 +D3). (D.91)

Therefore, it suffices to establish high-probability bounds for D1,D2 and D3, respectively.

STEP I. BOUND FOR D1. Note that ⟨T−1
λe

KXi,h⟩λe = h(Xi) for any h ∈H by (D.84). Thus,

D1 =

∥∥∥∥1
n

n

∑
i=1

UiωiT−1
λe

KXi

∥∥∥∥
λe

= sup
∥h∥λe≤1

〈
1
n

n

∑
i=1

UiωiT−1
λe

KXi,h
〉

λe

= sup
∥h∥λe≤1

1
n

n

∑
i=1

Uiωih(Xi).

Applying a similar argument as in the proof of Lemma D.3.4, combining conditional versions of

the generic chaining bound (Theorem 8.5.5 in Vershynin (2018)) and Talagrand’s majorizing

measure theorem (Theorem 8.6.1 in Vershynin (2018)) yields that, with P∗-probability at least

1−2e−t ,

sup
∥h∥λe≤1

1
n

n

∑
i=1

Uiωih(Xi)

≲ σW

[
E∗
{

sup
∥h∥λe≤1

∣∣∣∣1n n

∑
i=1

ξiωih(Xi)

∣∣∣∣
}
+ sup
∥h∥λe≤1

{
1
n

n

∑
i=1

ω
2
i h2(Xi)

}1/2√ t
n

]
, (D.92)

where ξ1, . . . ,ξn ∼N (0,1) are mutually independent, and are also independent of Dn.

We next establish bounds for the data-dependent quantities on the right-hand side

of (D.92). By Jensen’s inequality, we have

E∗
{

sup
∥h∥λe≤1

∣∣∣∣ n

∑
i=1

ξiωih(Xi)

∣∣∣∣
}
≤

[
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{
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∥h∥λe≤1

∣∣∣∣ n

∑
i=1

ξiωih(Xi)

∣∣∣∣2
}]1/2

. (D.93)

If we write h(·) = ∑
∞
j=1 θh, jφ j(·) with ∥h∥λe ≤ 1, then {θh, j}∞

j=1 satisfies ∑
∞
j=1 θ 2

h, j/ν j,e ≤ 1,
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where ν j,e = µ j/(µ j +λe). By the Cauchy-Schwarz inequality,

E∗
{
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∣∣∣∣ n

∑
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ξiωih(Xi)

∣∣∣∣2
}
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∑

∞
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∑
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∑
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ν j,eφ j(Xi)

∣∣∣∣2
≤C2

φ
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∑
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∑
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ω
2
i =C2

φDλe

n

∑
i=1

ω
2
i ,

To bound the data-dependent quantity ∑
n
i=1 ω2

i , note that ωi is sub-Gaussian, so Lemma 2.7.6 in

Vershynin (2018) implies ω2
i is sub-exponential and ∥ω2

i ∥ψ1 = ∥ωi∥2
ψ2

≲ σ2
0 . Then, by Theorem

2.8.1 in Vershynin (2018), we have

1
n
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∑
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ω
2
i = Eω

2
i +

1
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∑
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(1−E)ω2
i ≲ σ

2
0 +σ

2
0

(√
t
n
∨ t

n

)
≲ σ

2
0

with probability at least 1− 2e−t when n ≳ t. Thus, it follows that, with probability at least

1−2e−t ,

E∗
{
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∥h∥λe≤1
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∑
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ξiωih(Xi)

∣∣∣∣2
}

≲C2
φ σ

2
0Dλen,

which, combined with (D.93), further implies
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{
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i=1

ξiωih(Xi)

∣∣∣∣
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n
. (D.94)

Turning to the second term in the right-hand side of (D.92), remark that

sup
∥h∥λe≤1

1
n

n

∑
i=1

ω
2
i h2(Xi)≤ sup

∥h∥λe≤1

1
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∑
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(1−E)ω2
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2
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1
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i h2(Xi)+4σ

2
0 , (D.95)
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where the last inequality follows by (D.37) and the fact that h ∈H with ∥h∥λe ≤ 1 satisfies

∥h∥2≤ 1. Now, denote Φλe(·)= (
√

ν1,eφ1(·),
√

ν2,eφ2(·), . . .)T with ν j,e = µ j/(µ j+λe) for j≥ 1.

Note that ∥Φλe(·)∥
2
ℓ2
=∑

∞
j=1 ν j,eφ j(·)2≤C2

φ
Dλe . Moreover, if we write h(·) = ⟨θθθ ,Φλe(·)⟩ℓ2 with

θθθ = (θ1,θ2, . . .)
T, then ∥h∥2

λe
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∞
j=1 θ 2
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. Therefore, we have
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∑
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(1−E)ω2
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T
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op
.

To apply Lemma D.5.2, remark that

∥∥∥∥ max
1≤i≤n

∥∥(1−E)ω2
i Φλe(Xi)Φλe(Xi)

T
∥∥
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ω
2
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log(n) max
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∥ω2
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φ σ

2
0Dλe logn,

where the third inequality follows from Lemma 2.2.2 in van der Vaart and Wellner (1996) and

the last inequality uses ∥ω2
i ∥ψ1 ≲ σ2

0 again. Moreover,

1
n

n

∑
i=1

E
{
(1−E)ω2

i Φλe(Xi)Φλe(Xi)
T
}2 ⪯ 1
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4
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⪯ 16σ
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⪯ 16σ
4
0C2

φDλeEΦλe(Xi)Φλe(Xi)
T =: V1.

Then, it is obvious that tr(V1) = 16σ4
0C2

φ
D2

λe
and ∥V1∥op ≤ 16σ4

0C2
φ
Dλe . Note that under the

sample size requirement n≥ 64C2
φ
Dλe(t + logn) logn, 15Dλee

−t−logn ≤ e−t . Thus, under this
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sample size requirement, Lemma D.5.2 implies that, with probability at least 1− e−t ,

∥∥∥∥1
n
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∑
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n
+
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0Dλe log(n)(t + logn)

n

≲ σ
2
0 .

Combining the above inequality with (D.92), (D.94) and (D.95), we conclude that there exists an

event G4(t) such that P{G4(t)} ≥ 1−3e−t and with P∗-probability at least 1−2e−t conditioned

on G4(t),

D1 = sup
∥h∥λe≤1

1
n

n

∑
i=1

Uiωih(Xi)≤C3

√
Dλe + t

n
, (D.96)

where C3 =C3(Cφ ,σ0,σW )> 0.

STEP II. BOUND FOR D2. Remark that

D2 = sup
∆ f∈F (C1δn)

∥∥∥∥1
n
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∑
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{

Zi( f )−Zi( f0)
}

T−1
λe

KXi

∥∥∥∥
λe

= sup
∆ f∈F (C1δn)

sup
∥h∥λe≤1

〈
1
n

n

∑
i=1

Ui
{

Zi( f )−Zi( f0)
}

T−1
λe

KXi,h
〉

λe

= sup
∆ f∈F (C1δn)

sup
∥h∥λe≤1

1
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∑
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Ui
{

Zi( f )−Zi( f0)
}

h(Xi).

By following a similar argument as (D.92) in Step I, combining conditional versions of the generic

chaining bound and Talagrand’s majorizing measure theorem gives that, with P∗-probability at
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least 1−2e−t ,
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, (D.97)

where ξ1, . . . ,ξn ∼N (0,1) are mutually independent, and are also independent of Dn.

We first establish a high probability bound for the first term on the right-hand side

of (D.97). To apply a similar argument as in the derivation of (D.81), write h(·) = ∑ j≥1 h jφ j(·).

Then, ∥h∥λe ≤ 1 is equivalent to ∑ j≥1 h2
j/ν j,e≤ 1, where ν j,e = µ j/(µ j+λe) for j≥ 1. Applying

the Cauchy-Schwartz inequality yields
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.

Now, fix j ≥ 1 and take F(u) = u2 for u≥ 0. Moreover, let T be a subset of Rn such that

T :=
{

ttt = (t1, t2, . . . , tn) ∈ Rn : ti = f (Xi)− f0(Xi), 1≤ i≤ n,∆ f ∈F (C1δn)
}
,

and define ϕi : R→ R as

ϕi(a) =
φ j(Xi)

Cφ

{
(εi−a)1(εi ≤ a)+ τ f0(Xi)+ τa−Zi( f0)

}
,
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so that ϕi( f (Xi)− f0(Xi)) = {Zi( f )−Zi( f0)}φ j(Xi)/Cφ . Since ϕi is a contraction for 1≤ i≤ n

by Condition 4.3.3 and (D.78), applying Corollary 3.17 in Ledoux and Talagrand (1991) gives
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After writing f − f0 = ∑k≥1 fkφk, it follows that
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we have
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where the first inequality follows from the Cauchy-Schwartz inequality. Putting the pieces
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together and applying Jensen’s inequality, we have
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. (D.98)

For the second term on the right-hand side of (D.97), recall that ∆ f = f0− f and F (C1δn) =

{h ∈H : ∥h∥2
2 +λq∥h∥2

H ≤C2
1δ 2

n }. Combining (D.78) and (D.79) with λ = λq gives
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Thus, we have
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Moreover, if we write h(·) = ⟨θθθ ,Φλe(·)⟩ℓ2 , where θθθ = (θ1,θ2, . . .)
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. Therefore,
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.

To derive a high probability bound for the operator norm, we apply the bound (D.86) for λ = λe,

leading to

P
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∑
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Under the sample size requirement n≥ 64C2
φ
Dλe(t + logn), the above probability bound implies
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that the event G5(t), defined as
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(D.99)

satisfies P{G5(t)} ≥ 1−e−t . Then, since
∥∥EΦλe(X1)Φλe(X1)

T
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which implies
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By combining the above bound, (D.97) and (D.98), it follows that
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with P∗-probability at least 1−2e−t conditioned on G5(t), where C4 =C4(Cφ ,σW ).

355



STEP III. BOUND FOR D3. Note that
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Recall that Φλe(·) = (
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To apply Lemma D.5.2, note that ∥Φλe(Xi)Φλe(Xi)
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Dλe . Therefore,
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where the third inequality is obtained by Lemma 2.2.2 in van der Vaart and Wellner (1996) and
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the last inequality is due to Condition 4.3.4. Furthermore,
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by the sample size requirement. Thus, applying Lemma D.5.2 yields that, conditioned on G5(t),

the bound

∥∥∥∥1
n

n

∑
i=1

UiΦλe(Xi)Φλe(Xi)
T

∥∥∥∥
op

≲CφD
1/2
λe

√
t + logn

n
+C2

φDλeσW
(logn)1/2(t + logn)

n
.

≲ max(Cφ ,σW )D
1/2
λe

√
t + logn

n

holds with P∗-probability at least 1− e−t , where the last inequality follows from the sample size

requirement. Combining this bound with (D.102) and (D.103) yields that, conditioned on G5(t),

it holds with P∗-probability at least 1− e−t that

D3 ≤C5rnD
1/2
λe

√
t + logn

n
, (D.104)

where C5 =C5(Cφ ,σW ).

STEP IV. CONCLUDING THE PROOF. Let G (t) = G1(t)∩G2(t)∩G3(t)∩G4(t)∩G5(t), which

satisfies P{G (t)} ≥ 1−12e−t . Recall that ζ = 4CφD
1/2
λe

√
(t + logn)/n≤ 1/2 under the sample

size requirement. Combining the decomposition (D.91) with the bounds (D.96), (D.101) and

(D.104), and recalling the definition of rn in (D.89), it follows that, conditioned on the event
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G (t), the bounds

∥∥∥∥1
n

n

∑
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Zi( f̂ )− τ ĝ(Xi)
}
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1
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n

√
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n
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δ
2
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1/2
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n

≤C6

(
γnD

1/2
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n
+δs +D

1/2
λq

δ
2
n

)

hold with P∗-probability at least 1−5e−t , where C6 =C6(Cφ ,σ0,σW )> 0 and the last inequality

follows by the sample size requirement n≥ 64C2
φ
Dλe(t + logn). This establishes the claim.
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MIRONOV, I. (2017). Rényi differential privacy. In 2017 IEEE 30th Computer Security Founda-
tions Symposium (CSF) 263–275.

MO, K. C. and HIGGINS, R. W. (1998). Tropical influences on California precipitation. J.
Climate 11 412–430.

369



MURTAGH, J. and VADHAN, S. (2016). The complexity of computing the optimal composition
of differential privacy. In Theory of Cryptography Conference 157–175.

NAZAROV, F. (2003). On the maximal perimeter of a convex set in Rn with respect to a Gaussian
measure. In Geometric Aspects of Functional Analysis. Lecture Notes in Math. 1807 169–187.
Berlin: Springer.

NEGAHBAN, S. and WAINWRIGHT, M. J. (2011). Estimation of (near) low-rank matrices with
noise and high-dimensional scaling. Ann. Statist. 39 1069–1097.

NEGAHBAN, S. and WAINWRIGHT, M. J. (2012). Restricted strong convexity and weighted
matrix completion: Optimal bounds with noise. J. Mach. Learn. Res. 13 1665–1697.

NEGAHBAN, S. N., RAVIKUMAR, P., WAINWRIGHT, M. J. and YU, B. (2012). A unified
framework for high-dimensional analysis of M-estimators with decomposable regularizers.
Statisti. Sci. 27 538–557.

OLMA, T. (2021). Nonparametric estimation of truncated conditional expectation functions.
arXiv preprint arXiv:2109.06150.

OTTER, D. W., MEDINA, J. R. and KALITA, J. K. (2021). A survey of the usages of deep
learning for natural language processing. In IEEE Transactions on Neural Networks and
Learning Systems 32 604–624.

PADILLA, O, H. M. and CHATTERJEE, S. (2022). Risk bounds for quantile trend filtering.
Biometrika 109 751–768.

PADILLA, O. H. M., TANSEY, W. and CHEN, Y. (2022). Quantile regression with ReLU
Networks: Estimators and minimax rates. J. Mach. Learn. Res. 23 1–42.

PAN, X. and ZHOU, W.-X. (2021). Multiplier bootstrap for quantile regression: non-asymptotic
theory under random design. Information and Inference: A Journal of the IMA 10 813–861.

PATTON, A. J., ZIEGEL, J. F. and CHEN, R. (2019). Dynamic semiparametric models for
expected shortfall (and Value-at-Risk). J. Econometrics. 211 388–413.

PENG, X. and WANG, H. J. (2023). Inference for joint quantile and expected shortfall regression.
Stat 12 e619.

RASKUTTI, G., WAINWRIGHT, M. J. and YU, B. (2012). Minimax-optimal rates for sparse
additive models over kernel classes via convex programming. J. Mach. Learn. Res. 13 389–427.

RECHT, B., FAZEL, M. and PARRILO, P. A. (2010). Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization. SIAM Rev. 52 471–501.

370



ROCKAFELLAR, R. T. and ROYSET, J. O. (2010). On buffered failure probability in design and
optimization of structures. Reliability Engineering & System Safety 95 499–510.

ROCKAFELLAR, R. T., URYASEV, S. and ZABARANKIN, M. (2008). Risk tuning with general-
ized linear regression. Math. Oper. Res. 33 712–729.

ROCKAFELLAR, R. T. and URYASEV, S. (2000). Optimization of conditional value-at-risk.
Journal of Risk 2 21–42.

ROCKAFELLAR, R. T. and URYASEV, S. (2002). Conditional value-at-risk for general loss
distributions. Journal of Banking & Finance 26 1443–1471.

ROHDE, A. and STEINBERGER, L. (2020). Geometrizing rates of convergence under local
differential privacy constraints. Ann. Statist. 48 2646–2670.

ROHDE, A. and TSYBAKOV, A. (2011). Estimation of high-dimensional low-rank matrices. Ann.
Statist. 39 887–930.

ROPELEWSKI, C. F. and HALPERT, M. S. (1986). North American precipitation and temperature
patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev. 114 2352–
2362.

ROPELEWSKI, C. F. and HALPERT, M. S. (1996). Quantifying southern oscillation-precipitation
relationships. J. Climate 9 1043–1059.

SAUNDERS, C., GAMMERMAN, A. and VOVK, V. (1998). Ridge regression learning algorithm
in dual variables. In ICML ’98 515–521.

SCAILLET, O. (2005). Nonparametric estimation of conditional expected shortfall. Revue Assur-
ances et Gestion des Risques/Insurance and Risk Management Journal 74 639–660.

SCHMIDT-HIEBER, J. (2020). Nonparametric regression using deep neural networks with ReLU
activation function. Ann. Statist. 48 1875–1897.
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