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‘PION-NUCLEON AND KAON-NUCLEON SCATTERING

: : *
IN THE VENEZIANO MODEL

Edmond'L.-BergérJr and Geoffrey C. Fox
Lawrence Radiation Laboratory

University of California
Berkeley, -California

May 8, 1969

 ABSTRACT
‘"Wé’preéént:a’comprehensive phenomenological
examination of the Veneziano ansatz for pion—nucleon
and.kaon—nucleoh proéesses. Using invariant amplifudes
éénstructed as sums of beta—functionvferms: wé éttempt

to fit simultaneously all the relevant high andiiow :

energy scattering data as well as the elastic widths

of baryon resonances. We disguss a useful technique

for insuring that the theoretical amplitudes will possess

the observed spin and parity structure of the physical

spectrumiof ba:yon sfates.

Our'méin conclusions are:

(a) Sizeable subsidiary terms are required. .

(b) The pfedicted dﬁality relation between the
s-channel (baryon) and the t-channel (meson) Regge poles
is not supported quantitatively.

(c) Using the polynomial fesidue function suggeste&

by the model, we have performed detailed fits to all N
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backward data and elastic widths. The model fails to
provide an adequate extrapolation from the scattering
data to the widths of the A5(1258) and its recurrences;
acceptable agreement is found for the other trajectories.
Moreover, the residues of the ¥ tfajectories are in
méfked disagreement with exéhange degenefacy.'

(d) WwWithin a factor of two in amplitude, the model
reproduces available KN charge-exchange data from thresh-
0ld to the highest energy.

(e) A Pomeranchuk trajectory with normal slope
(af ~ 1 (GeV)_g) is consistent with both the Veneziano
model and all data.

(f) The model does not provide any natural reso-
lution of the difficulties inherent in classical Regge-
pole model fits and thus supports the view that Regge-cuts

are important.
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INTRODUCTION

The proposal by,Venezianol of én elegant béta-functioh represen-
taﬁion.for the hédronic scattefing amplitude»has opened a-new chapter
in theoretical inveétigations_of stfong interaction phenomena..2 In a
simple clbsed form, the amplitude is analytié,»crOSSing symmetric, and
has Regge-behavior at high enefgiés. Moreover, in a straightforward
fasﬁion, it can be expanded as»é_sﬁm‘of zer§ tdtal—widih resonance—pdle
terms, thus exhibiting a fofm of duality3 by quantitatively associating

asymptotic behavior to low energy resonance structure in one simple

function. In addition, research has revealed an interesting felationf

ship of the representation to PCAC requirements for processes involving

4,5

From the phenomenological point oflview, the Veneziano repre-

sentation provides several attractive possibiiities.' It relates the

'parametérizatibn of the residue structure of a Regge pole to the

trajectory itself, removing the erstWhiie freedom of an arbifrary

multiplicative form factor in the momentum transfer (t). Also, assuming

- that a given physical process can be represented by the sum of a small

number of beﬁa function terms, the representation provides a strong

~

0) and backward (u = 0)

~

quantitativé connection between forward (t
scattering éi high energy: featufes;of the daﬁa Which,-dominated by'v
distinct Regge-pole exchanges, have ﬁntil'nOW'éeemed uncorrelatéd.
Fufthermoré, the extension of tﬁe beta—functioﬁ representation from the

1,2,4,5

quasi—two-body.scattering domain to multiparticleiprocesses

promises, among other things, an understanding of interference effects
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at the locus of intersecting resonance bands in Dalitz plots.’4 This
last feature requifes for its implementation, of course, some procedure
for overcoming the unitarity-violating zero-width aspect>of the model.
These phenomenological éonsequences of the model are largely untested
as yet.

In this paper, we present a critical discussion of meson-baryon

scattering within the framework of the Veneziano model.6 Because pion=-nucleon

and kaon-nucleon séattering are perhaps the best studied hadronic
processes, both theoretically and phenomenologically, it should be
instructive to examine in detail the extent to which the model increases
our understanding of these processes. Our aim is to indicate in a
comprehensive fashion both the strong points and the limitations of the
Veneziano beta-function parameterization for these processeé.

Very recently, enthusiasm has been generétéd for the poinf of
view which holds that the Veneziano form is to be regarded as a Born
approximation.7 Presumably this means that "higher-order" terms would
be important in achieving agreement with naturé; for example, a
"unitarized" version is suggested by Mandelstam to eliminate the parity-
doubling which occurs in his quark-substrate model even for meson
trgjectories. The methods for obtaining the higher-order terms and/or
unitarity corrections are as yet ill-defined and likely to be involved.

In our investigation, we sdhght to represent meson-baryon scattering

simply as a sum of beta-functions, and our conclusions are limited to that

viewpoint.

-
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Whereas there are certain general aspects of the Veneziano-type
model which are helpful in gaining a unified qualitative picture of
strong interaction phenomena, our conclusions on the quantitative side

are somewhat pessimistic. Detailed empirical knowledge of meson—baryon

- scattering is far more SOphisticated than the capabilities of the model.

To:be sure, itbis.very possibly true that azfinitevset\of‘resonance'
widths and a finiteinumber of differential cross-section points can be
fitted using a similarly finite:numter of beta-fnnction terms. However,
the more terms one is forced to employ, the smaller is the predictive
or3.even, the unifying content of the model. In partionlar,
many features of the data»enable.one}to demonstrate the existence
of sizeable snbsidiary9 terms'in the'Veneziano expansion.
Moreover, we find it impossible to achieve a oompeiling representation
which properly ielates even.the magnitudes of the leading-trajectory
bafyon-iesonance widths withvthe‘sizes of the forWard and backward
differentiai”cnoss-sections.

Outside the realm of precise fits to data, however, some useful
features emerge. Firstly, there is the relation between the asymptotic

t-channel. Regge pole parameters and the qualitative behd%ior of the

s-channel resonances of the intermediate energy range. We have in mind,

for example, the cross-over effect; this is discussed in Sections II-A

and III. Secondly, the Veneziano representation yields a new method for
quantitaively estimating the’nonasymptotio corrections to the Regge
formalism. This could be useful for deternining how good a fit one

should demand from a high energy approximation. Finally, as has been
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6

pointed ocut by Virasoro and Amann, 1t suggests a possibly useful

-

parameterization of the variation of baryon widths as function of their
mass.

In Section I, after establishing notation; we focus upon those
technical features of the Veneziano formula that are relevant to a
reasonable description of meson-baryon scattering. These include
signature, parity doubling, PCAC, positivity, and the absence of ghosts.
After these theoretical points, we review in Section II the experimental
picture of.méson—baryon scattering which the Veneziano expansion éhould
reproduce. We examine several aspects of Regge-pole theory fits to
forward elastic scattering data, including exchange degeneracy and the
cross-over effects, and also study the nature of the Pomeranchuk
trajectory. For pion-nucleon forward elastic data, we present a good
fit to exisfing déta using P', p, and Pomeranchuk pole trajectories,
all with normal slope (i.e. near 1.0 (GeV/c)-g). The value for the
scale cénstant Sy éT ~ 1 suggested by the Veneziano formula is
consistent with the forward data.

| Apart from this treatment of the high-energy forward elastic
data, in Section IT we also discuss the zeros in the scattering ampli-
tude at specific values of t and u required in order to obtain the
correct spin-parity structure of the baryon resonance spectrum. From‘
the Veneziano exparision, we subsequently extract a parémeterization for
the residue functions of the various baryon trajecfdries; In general,

v Py
the model suggests that the reduced residue is a polynomial in (s)2.
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We determine the corresponding residues from the published data on

elastic widths, and present curves showing this empirical variation

- with mass. We believe that plots of this type will also prove useful

in other reactions for summarizing the data and predicting the elastic
widths of undiscovered resonances. . |

In Sectién II-b,.wé'giﬁe results of a comprehensive fit to al1
high-energy backward N scattering data. We employ the polynomial

form for residues, suggestéd by the Veneziano model, constraining them,

as much as_possible,'to reproduce the elastic widths of physical states

along the trajectories. Because it specifies the residue structure of

" secondary trajectories, such as the 'NYJ the Veneziano approach allows

us to go further than previous fits to backward data.

Some'éxplicit.beta-funqtion fepreéentatiéns for meSon;baryon.
séatteriﬁg.afe presented'iﬁ:Seétidn iII, and there we analyze the
extent to which they realize the disiderata given in Sections I and IT.
We concentrate on the-kaon-nucleon process, and compare several
Veneziano-type parameterizations with both scattering data and resonance
widths. One exciting feature not present in traditional Regge fits is
thé péésibility of representing KN scatterihg data from threshold to
infinity with the same functional form.

In - the final section, we summarize our .conclusions.

Thé reader interesﬁed primarily in heW“phenomenological results

is directed to Sections II-A, IT-D, and IIT.
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I. NOTATION AND TECHNICAL ASPECTS OF THE VENEZIANO REPRESENTATION
In this section we define our notation, discuss the choice of

an appropriate set of amplitudes, and give a general expansion for these

108

amplitudes in terms of Veneziano beta-~function terms. Securing the
aﬁpropriate asymptotic behavior‘and spin structure‘of the ampiitudes
imposes certain restrictions on the terms in the expansibns. Fufther
limitations and relationships between terms arise from incorporating
into the repreéentation general properties of meson-baryon scattering
such as signature for trajectories, positivity of resonance widths, and
absence of ghosts.

~A. Notation

The kinematics of meson-baryon scattering are relegated to
Appendix I. With reference to Fig. 1, we point out that the s and u
channels are meson—bar&on channels, whereas the %+ channel is a meson~-meson
channel. The description of pseudoscalar-meson and spin—%-baryon
scattering requires 2 x T independent amplitudes, where T 1s the total
number of distinct (conserved) values of total isospin. In Section I-B
we will elaborate somewhat on the alternative choices, but for
definiteness here we consider the standard invariant amplitudes:

A(I) (s,t,u) and B(I) (s,t,u) which are free of kinematical
singularities. The superscript (I) is an isospin index. In the
particular case of plon-nucleon scattering, we may use the amplitudes 1%

A(i)(s,t,u) and B(i)(s,t,u) which have the properties

2 (s,6,m) = a0 (u5,0) (1)
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B<t) (s,t,u) = ¥ B(i) (u,t,s) (2>

and where the +(-) functions Have pure isospin I =0 (1) in the
t channel,

If we adopt, as héve other researchers, the view that a
Veneziano—tYpe representation should be established for the A 'andJ B

functions, then we have, in general, expansions of the form

D -] Z | CA(I)(z’m,n’B,m_ r(e - o, (1) rn - Gyls))

- mn S _ r - aM('t)- - &B(S)> :

. Z DA(;)(g’h,i;Bl’Bg) r(g - an.(SD rn - 3 00)
g_’h,i ri - aBl(S) - &BQ(U)>
BL,B2 . . |

G ) r - ae) |
. Z £,V (,0,7,8,1) G - ) F(q_ () )
B vt o - r(r - aM(t) - aB(uX>

B,M ,

where aM(t) denotes a particular meson trajectory and &B = aB -‘% B

with aB being a baryon trajectory function. Similar expansioﬁs are

appropriate for B(I)(s,t,u). The sums run independently over all meson

trajectories, M, and over all baryon trajectoriesf B, Bl, B2, appropri-
ate to fhe proceés being considered, as well as over all integer valugs
of ¢, m n, g, h, i, p, @, and r. Restrictions upon and/or relation-
ships between ﬁhe constants CA(I), CB(I), DA(I), DB(I), EA(I), and

EB(I) arise from imposing certain physical requirements, such as:
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(a) No states with exotic guantum numbers, as, for instance,
B=0, I=2,and B=1, 8 =1. s

(b) Absence of states with unphysical spin values; this restficts
the values of the integers " £ through r, as discussed in
Section I-C.

(c) Appropriate spin-parity structure at the baryon resonance
positions (&é(s) = k, where k is an integer) and at the
meson pole values GéM(t) = K).

(d) Appropriate isospin structure at the baryon and meson
resonance positions. |

(e) Signature properties.

The requirements (c), (d), (e) are in practice applied only

for the leading trajectories. Spécifically (d) eétablishes algebraic

relations between the coefficients for the different isospin values

) b
within the sets {EA(I), cA(J)> , {DA(I), DA(J)} , and
g (D g () Secondly, (e) relates th tants C, D, and E, in
R . Secondly, (e) relates the constants C, D, and E, in

pairs, for each isospin, I. Finally, (c) connects the two spin ampli-
tudes A and B, whereas all other requirements apply to A and B
separately.

The situation is much simpler in certain meson-baryon reactions &
where entire summations can be eliminated. For example, in kaon-nucleon
scattering, because the Kfp system has no known prominent resonances,

we want no terms involving aB(u) (let the s channel




&

k3

&

-9- | " UCRL-18886

correspond to K scattering); therefore only the terms of the first
summation in Eg. (3) survive. On the other'hand, consider 7z —>ﬁ+2_;
since no = 2 mesons are promlnent the first and third summations in

Eq. (3) are eliminated; a priori.

In pion-nucleon scatterlng, the symmetry property given in
(l) and (2) can be directly employed to relate the constants of
the thlrd summation of Eq. (5) to those in the flrst, and also to
bpreecribe structure within the second summation.
~',Later in ﬁhis paper, when we discuss the spin-parity structufe'

of the baryon states; it will prove coqvenient.to use terms such as .

r@ - o () @ - Ty(s)) .
U RN R A ) N ®

(élt + e 8 +C

2 P

with ,-and c, constants. This form is not quite that of a

5

typical term in Eq. (3), but assuming linear trajectories, we can

€10 S

always rewrite it as a particular linear combination of terms within a
given summation on the right-hand side of Eq.(3). A similar statement

of course applies to (s,u) type terms.

The reader not familiar with the methods'for extracting asymptotic

behaviors and pole residues from Eq. (3) is referred to earlier litera-
ture. We now state our reasons for working with the invariant amplitudes,

A and B, rather than with some other sef.
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B. CHOICE OF AMPLITUDES

Besides having the convenient crossing properties listed in
Eq. (1) and (2), the invariant amplitudes A(I) (s,t) and B(I) (s,t)

have simple asymptotic behavior, as s -,

M
A ~ s at fixed t
aﬁ
~ 8 at fixed u
o -1 (5)
B ~ s M qt‘fixed t
aé
~ 8 at fixed u

Other properties one would like to establish iﬁclude,positivity
of pole residues, parity, and more generally the proper t dependence
of the amplitude demanded by the observed spin-parity structure of the
s-channel resonances. All of these are simply described only in terms
of partial wave amplitudes, and there is no full amplitude which allows
even a vaguely complete treatment.

One might like to use the t-channel nonflip amplitude

A' = A+ (s - w) B whose imaginary part in the forward direc-

Ml -t/

tion is Im A’ and so positive. Although this has good

= P1ap “total

[§ 3

crossing properties, the kinematic singularity at +t = hM? would appear

to be intolerable in the Veneziano approach which exploits analyticity §
in all‘thrée channels. Similarly A + (s - u)B/4M reduces to A' at

t = O, but complicates the statement of Regge behavior at fixed u.

Finally, the s-channel nonflip amplitude A + E ab(S)B would allow

1

[N
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quite a nice discussion of positivity but does not have good s «—u
crossing. This difficulty with crossing is not important for writing
terms that have ohly .s and t chahnel ﬁoles“for these can be easily

symmetrized by writing s «>u terms for the crossed amplitude (both

.in spin and isospin space) e.g. one writes . (s,t) terms for

A+ Eiab(s)B and nfp eléstic scattering, then adds (s,u) terms for
A +»Elab(u)B' for ﬂfp scattering. The difficulty arises in the treat-
ment of beta-function terms containing both s channel and u channel

poles,

Finding no sufficiently significant advantage in any of these

. alternative choices of amplitudes, we present the remainder of this

discussion largely in terms of the traditional A and B functions.

C. Structure of the Veneziano Formula for ‘A and B

The expansion of the functions A(I)(s,t,u) and ‘B(I)(s,t,u)
was éiven in Eq. (3); vInvthis section, ﬁé will specialize to pion-
nucleon scattering'forvdefiniteneés énd elaborate somewhat on the
properties‘of individual térms iﬁ the expansions. As noted, the desired

amplitudes are expanded in a series of the form

(o - &'B(s)) (k- o (1))

= (6)
r(a - Gg(s) - %)
and similar terms with s replaced by u, and
r(w - oy (s) r(e - @gp(w) (1)
2 . .

rQe - oy (s) '_aBe(u)>
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where m, n, and £ are integers and &é = aB

trajectories, B, we can take N, A, or NY and for the mesons, M, we

- % . For the baryon

have the exchange degenerate P' and p trajectories. Whereas this
exchange degeneracy (ap = aP,) is not necessary if one-considers only
7N, it is enforced by factorization and the absence of resonances in

n+n+ and Z+n+ elastic scattering. In particular, we cannot allow a
multiplicative fi&ed'pole for the p so that like the ©P' its residue
function has a zero‘at ap'= O in both A and B. This restricts 2

in (6) to be »1. There are no restrictions on the possible combinations
‘of trajectories in a single term. Moreover, as far as pilon-nucleon
scattering itself is concerhed, the Pomeranchuk trajectofy (with any
siope) may be treated on an equal footing with the p and P' trajec-
tories and thus included as a possible candidate for aM(t) in expres-
sion-(6). However, in the SU(3) related kaon-nucleon process, treating
the Pomeranchuk in this manner, without an exchange degenerate paytner,
would lead to the prediction of exotic resonances in the K+p sysﬁem.lo
(The elastic widths of these exotic states are fairly narrow, however,
as we note in Section ITI-E.)

In Tables I and II, for the (s,t) and (s,u) terms respec-
tively, we record the nature of the asymptotic behavior associated with
various sets of integers (4,m,n). We do this for only those terms
which contribute asymptotically to leading order in at least one
channel. 1In order to satisfy the limitations given in expression (5)
(and similar ones appropriate when u - ), n>m, and n > £ in

all terms; moreover, for the (s,t) and (u,t) terms in B(s,t,u),
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it is further necessary that n .be »m + 1. These conditions are
also required (but not sufficient) in assﬁring that the spin associated
with a partiéular pole be ﬁo greater than that of the appfopriate
resonant state; to guarantee polynomial residues, m + £ > n.

Wé note, in passing, that fhe absenée of a physical state at

dA(s) = % does not prevent our using m = O in (6) and (7) when

- dealing with that trajectbryu Upon taking the approﬁriate linear com=--

bination of (6) and (7) reqﬁired to obtain the correct signature;vwe
will see that the résidue at aA(s> = % ‘is zero. ‘Notice, however,
that the term with m = 0 couples nonasymptétiéally as s —o for t
fixed'in'the A .amplitude; Howéver,'only that m = O term provides a
large constant term in the A residue fﬁnctioh; we elaborate on thé'
importance of this in Section II-C. For the SU(B) symmetric, kaon-

nucleon situation, there must be exchange degéneiacy (and thus no

signature propertiés) for the baryon trajectories if exotic KN

*
1

requifes ‘m 2> 1 for the SU(B) symmetric trajectory of AB' Similar

resonances are to be avoided. Thus, the absence of a JP = Y

N

arguments in gN —KI imply m >-1. for the AS itself.

Beyond the restrictions ofvappropriate asymptotic behavior and
resonance angular momentum properties alluded to above, the other
elementary constraints on the selection of terms in Egs. (3), (6), and
(7) include crossing symmetry, signature, positivity of resonance widths,
parity doubling, and isospin ( or, more generally,l SU(3) structure).

It 1s possible to guérantee these simply only for the leading trajectorigs

in the representation. We will now comment upon some technical questions

associated with these desirable properties.
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D. Signature

Obtaining signature for trgjectorieé in the Veneziano model is
by no means natural. Both K. Igi and M. Virasoro,6 however, choée to
impose signature in a manner which gtrohgly cotupled the overall contri-
butions of the various baryon trajectories. Specifically in their

solutions, a term of the form

f@ -:aBi(s)> rs - aB2(u)> |

- - ) (8)
ryz. - ag (s) - aBg(u.)) o

which cOntributes ih'leading order both as s — at fixed u and as
u —aw.‘af fixed:s, served to generate the signétufé pfoperties‘for both
béryon trajeétoriés .aBl and aBE;‘ Therefore the mulfiplicativé
coupling strength constant, é, enters'info the definition of the
residues of both trajectories and thus, for example, would tend to
associate (gg/hn), the pion-nucleon coupling constant, to FA’ the
elastic width of the 1238 resonénce, in too restrictive a fashion. The
magnitudes of the asymptotic N and A exchangé magnitudes are also
constrained to be of similar magnitude in this type of solution. VA
more reaiistic and less restrictive solution necessarily involves some
terms which contribute to nonleading order in at least one channel. As
will be established in detail in Section II, these subsidiary terms

are also strongly suggested by other features of the low-energy resonance

structure.

»®
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E. Parity-Doubling

» A naive Venegiano formula for meson-baryon scattering generates

parity-doubled trajectories. This is a general feature of all theoreti-

!v
cal models that enforce analyticity at s = 0. If we cunningly adjust
the constants multiplying the subsidiary terms in Eq. (3), we may abolish
these parity doubled states. Thié is stsible for the leading trajec-
tories, but not for the lower lying trajectories, if oné wishes to retain
Regge aéymptotic behavior.
The partial waves -of definite parity are given by (let
l - -
L =J - 'é')
+1
a9 o & dz ((P, . +P )£ +£) - (P, -P, )£ - £.)]
2 25 E 2 L A S R N~
-1 )
(9)
+1 , ‘
a9 - 1 /. dz ((P +P )£, +£,) + (P, ~P )£, -f.)}
TP- n _ £+1 2711 2 2 £+17/V1 2
o (10)
Now near‘ t = O;
P,-P,, ~ 1-zc t/s o | (11)
and
P+ P ~ 2 . . : (12)
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Moreover,
3 o, (0) :
8n(s)? B M
A (f.l + fg) = Av +E B o~ s (13)
SN o (0)+% :
g 22 g 2
8ﬁ2§1 (£, - 1) = }Ea'é + wB o~ s . (1k)

Thus, as the integrals are presumab;y dominated by the forward
peak, the (fl + fg) term dominates, whence aTP+J ~ aTP_J . It
follows that it is impossible not to have some parity—doubling, and so
one can only consider removing the doubling for the leading trajectories,
with £ > (s)%; which eventually decouple from the cross section.
However, even this modest aim is not easy, and in practice, one puts

zeros into the residue functions by hand at_thevpositions of the

unwanted resonances.

F. Positivity

(1) A remarkable feature of the Veneziano form for s-x
scattering was that it gave positive widths for essentially all
resonances, 1f a reasonable intercept for the p meson trajectory
was employed.1l One might expect a similar situation in meson-baryon
scattering. However, one even runs into trouble for the leading
trajectory in nlN, whereas this was quite trivial in the nx case.'
The width of a resonance qf spin J and mass MR on the leading

trajectory is

»
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R, B . )
r - _‘_l__2_q2.3 yi=2 (3 +1/2) r(j + 3/2) s
. D ) .
R ker) | r(ey +2)
Where
i = 1 for 1P = =1
i = 2 for 1P = +1

and the léading_trajectory residue isl

S o a 1 j-= S R

R, = 1lim (Mﬁ' - s) 8x(s)2 £,/ 2 ., . (16)

, s _ e i . :
s—eMR ‘ .

It 1s evidently convenient to treat both parities together,

1
however, and to use, say- f, =A+ [(s)2 - M]B. One considers then
1

the poles for both positive and negative values of (3)5. In this

approach, positivity of T implies that the residue must be positive

)~

(negative) for (s)2 positive (negative). Therefore, because the
residues of the poles in A and B are functions of s and hot

1 ‘
(s)2, we deduce that at a given pole, the leading power of s in: the

residue for A must be no higher than for ‘B. This requirement is not

trivial because, in constructing the functions A and B, the simplest
choice for the Ny trajecfory is to make B's residue contribution
a constant whereas A must be at least linear in s, if the parity-

partner state to the nucleon is to be abolished. We will illustrate

. this further with examples in Sections II-C and III.
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The situation is further complicated by the fact that in nature,
parity partners are evidently extinguished, at least for the lower-lying
recurrences.

(2) In order to gain further insight into the matter of guaran-
teeing positivity for all baryon resonance states, we review the gnr
situation more fully.ll It is possible to présent a simple, if non-
rigorous, argumeﬁt leading to an inequality which guarantees that all

‘but a finite number of states will have positive widths. One begins

with a single (s,t) Veneziano-type form, e.g.

F@l—%ﬁﬂ)FQ ;%JU>

. (x7)
r@ - al(s) - az(t)> !

At the pole position 'al(s) - m', the residue is

m+n-4

(-1) I(N +y) : (18)

r(m' -m+ 1)  r(y)

where
vy = ag(t) -2 +1
and
N = m' +£-n .,
The modulus of this function is symmetric about y = - % (N -1). To

avoid having a backward peak whose magnitude is as large as that of the
forward peak (albeit with oscillating sign, as one moves up through
the successive s-channel resonances), the last zero of (18), for
y < 0, must fall very near or outside the physical region boundary

(u ~0). This implies that

£

.
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ocl(o.) + ozgv(O) +2>n . | : (199

where 3 is the sum of the squares of the external masses.

In qxn scattering S ~0 and n > 1 gives 'ap(O) > 0.5. In

 the N scattering the application of Eq. (19) is beclouded. We really

should use fl and f2 not A or B, to start considering positivity,
and even then necessafy conditions»are difficult to find. Moreover,

we éhould employ SUKB) symmetry to find reactions with exotic channels

so as to be able to apply Eq. (19) to (s,t) and (s,d)‘.terms_separately.

-We may continue to use Eq. (19) as a guide, remembering to use

. =Q

i B % for baryons. " Then the inequality is 1ess;étringent than in

vnn, because X ~ 1.80 not 0.08. However, one can draw the general

conclusion that for'high lying baryon trajectories, such as AB’ we can
expect many Veneziano-type térmsz whereas for the lower-lying NY‘ we

are restricted to fewer terms in Eq. (3).

G. PCAC
Ademollo et al.v5 have made the interesting observation that_the
PCAC condition plué the beta-function representation imply the (approxi-.
mately valid) quantization relations: aA(O) - aN(O) = 0.5 and |
aA(O) = aﬁ(o). The PCAC gondition in, say, W or oy gcattering may |
be stated as A'(s = N?, t =0, ug = 0) = 0 where M is the mass of
the external baryon and {g; that of the external meson. (See Section

I-B for a definition of A'.) Take, for simplicity, N elastic

scattering and treat only the s-t terms. (The neglect of s-u terms
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may be justified by considering n'2+ —an‘z+.) Then the guantization
relation ensures that the A contribution vanishes in the PCAC limit if

we take for A either of the forms:

r(1 - &A) r(i - ag) r(-a,) r@ - ap) .

r(1 - a, - ap) r(1 - a, - ap)

these will be seen in Section IIT to be reasonable as first guesses.

Unfortunately, there remain terms involving the nucleon trajectory.

‘

r(t - ay) r@ - ap)

and

The simplest form of these is A = aN —
r(1 - Oy = ap)

r(- o) r@-oa)
B = b n D . Then if u° = O the amplitude

N —_
r(1 - O - ap)

0, takes the form

it

7 = A+ 15—%M¥El B, which is A' at t

r@d -o) r@ -o)
[aN - bN/(EM aﬁ(O)] — £, Choosing ay = bN/(QMJ')

r(1 - O = ap) )

achieves the PCAC result, but at the cost of decoupling the nucleon trajec-

tory entirely from this amplitude. This violates positivity (Z must be
positive at t = 0) and the desired isospin structure of the high |
energy behavior.in A'.. On the other hand, as we shall see in Section
II-B, the ratio Z(t = 0)/B(t = 0) 1is rather small (} 0.1 for the
D13 (1520)) and so indeed a. ~ bN/(ZMj') to 10%. This does not seem

quite good enough; perhaps one should enforce the PCAC result

-
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ay = bN/(EMa') exactly, and then add small terms to Z of the form

(1 - &N) r(ax -a)
7 = (zls + z,b +v23) - ) L
i —CtN-Oép

where 2 Z5s and z_ . are arranged so as to obtain the PCAC vanishing -

3
along with a more satisfactory value of Z at t =0 for the higher
recurrences of the nucleon. It is curious that whereas in #-x

2,5,6

scattering, positivity and PCAC seem to be correlated, a similarly

naive beta function choice in N scattering only achieves PCAC at the

cost of violating positivity.
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IT. EMPIRICAL.KNOWLEDGE OF MESON-BARYON SCATTERING

To ascertain which particular linear combination of beta-function
terms should be written for A(i)(s,t,u) and B(i)(s,t,u), we must first
abstract from the data on N ahd KN scattering certain salient
structure fof these amplitudes, as alfunctioniof s and t separately.
We may then hope to build that structure into our choice of terms. There
are several noteworthy features associated with particular values of t.
In the first subsection, wé focus upon the forward elastic scattering
regibn in N and KN ﬁrocesses. We stress thevéoncluéions dfawn from
present Regge-pole théory fits both as to the reiativé‘maghitudes of
the various exchanges and as to>the structure in t of their reéidue
functions. In the process of our investigation, we refitted existing
data and, as a.byproduct, obtained a good fit to ap .elastic data
using a normal slope Pomeranchuk trajectory.  Thé femaining subsections
deal wifh various aspects of the baryon spectrum. We first diséuss and
tabulate the zeros of the amplitudes at certain values of t and u
required in order to obtaiﬁ the correct spin-parity structure of the
s-channel resonances. The correspondence of the positions of these
zeros with analogous structure in differential cross-sections is
emphasized. Next, from the general form of the Veneziano expansion, we
extract a formal parameterization for both the elastic widths of the
resonances on parent baryon trajectories and the backward elastic
scattering data. This leads to the definition of a reduced residue

function based on the model. From the data, we extract the empirical

<)
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values of the residue function and quantitatively examine in the last
subsection the adequacy of the Veneziano model parameterization of these

baryon residues.

A. Properties of A(s,t,u) and B(s,t,u)

Followihg From High-energy Forward

Scattering Data

'In this sectlon we present a review.of the Regge pole descriptioﬁ
of xN and KN forward elastic scattering and examine éritica}ly the
status of various features of the model fits. We take the usual
model of P, P', w, p, and"A2 exchange, witﬁ the.last four trajectories
Having intércept ‘a(0) = 0.k -»0.65 and‘sloﬁe @' (0) ~1. 1In the
exchange degenerate limit described by the Veneziano formula, these
.féur poles have a commonbintercept and slope. For definiteness, suppose

the high~energy limit of.the amplitudes A' and B 1is

A’(i)(s,t)

i

ROIBROIS A

and - | (20)

(1)

. . . a't)q
R N I O R I N
where n(l) is the signature factor, given by

(1) _ 1) i
T @

sin &

and (i) 1labels the contribution of a given pole. The.functions CLé(t)

and ,d}é(t) are classical Regge-pole model residues whosexstiructure is

glven below in Section (1) L
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We have placed the scale factors, 8, = 1, as suggested by the
Véneziano formula when a trajectory has slope l. In this regard, iﬂ is.
certainly interesting to note that all experimental data which call for
a slope o'(0) ~1 indeed have a t-dependence consistent with the
scale factor S, 251.12 For géneral slope @', the Veneziano formula
predictsu S, = l/a'; but this value is certéinly not consistent with
' that data indicative of a trajectory slope much leés than 1. 1In
particular, if one wishes tobincorporate the‘Pomeranchuk trajectory
into a Venezlano form, as suggested”by Wong,lo the experimental t
dependence necessitates a trajectory slope of approximately unity. In
this section, we will consider both cases - one in which the Pomeranchuk
‘trajectory has a universal slope near one and the other in which it

has a very small slope.

(1) Structure in t of the residues

For both cases, independent of the Pomeranchuk trajectory's
properties, the data suggest a residue zero at t =-Ou2(GeV/c)2 in
those nonflip amplitudes, A', associated with p, w, and A2 quantum
numbers. (i.e. the corresponding C(é(t) are proportional to t + 0.2.)
The supporting evidence is the cross-over feature in the p, Kp, and

13

pp elastic differential momentum transfer distributions. In addition,
a residue zero in the p' guantum numbers flip amplitude, B, at the
point ap ~0, t~-0.6 (GeV/c)Q, is prescribed by N charge exchange
data.l3 The P' and A2 residue functions for both A' and B must

contain zeros at aP' =0 and aA = O, respectively, to eliminate

2
ghosts at those positions.
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We now invoke the concept of exchange degeneracy and conclude
that (with ¢, =Q =qQ, = o) both A' and B should possess the
P o A2 w
residue zero at o = O for each t-channel quantum_nﬁmber. In classical
language, this corresponds to the Regge poles choosing nonsense at

o = 0. This o factor is, indeed, generated automatically by the

Venéziano approach which suggests

o (t)

noal(t)/rla)

(21)

il

) -« M@

with FCL'(t)' and _(t) nonsingular.
The zero in A' at t = -0.2 (GeV/c)2 is more controversial.

We consider first associating it with the residue of each Regge-pole.

Via exchange degeneraéy, the obsérved w zero at t = —0.2 (GeV/c)2 suggests
a similar one in the P’ amplitude. This pro#ideé the appealiﬁg possibility
that the Pomerénchuk.trajectory can havé univérsal sloﬁé of aﬁproximately
‘one. The sign change in the P' - Pomeranchukon interference term at.

t ~ -0.2 (Ge'\/’/c)2 will yield the observed lack of shrinkage in np
scattering. 1In fig. 2a, we demonstrate the fit achieved to np forward
elastic scattering in thisifashion. The details of this fit are exiied

to Appendix 2; for comparison, we present a staﬁdardlu lQW‘slope
Pomeranchukon fit in Fig. 2b. Mbreover, it ié also attréctive for

duality reasons to associate the t ~ -0.2 (GeV/c)2 residue zero with

the contributions of these poles.. As emphasized by Dolen, Horn, and

Schmid,3 and by Dikmen,15 the contributions of the prominent s channel
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resonances in gp and Xp scattering vanish at t ~ -0.2 (GeV/c)2 in
the nonflip amplitude, A', and at t ~ -0.6 (Gev/c)2 in the flip a
amplitude, B. (To be described in Section II-B) According to reasoning
similar to that of Harari, therefore, the contributions.of the t-channel
Regge poles, except for the Poﬁéranchukon, should have the same zeros.16

Unfortunately, however, the above scheme is clearly inconsistent
with factorization. From the residue zero in A' at t ~ 90.2’(GeV/c)2,
one derives a square root zero associated with all vertices KKM, mnM,
and piM where M 1s the RéggéFpole exchanged. This, in turn implies
an unobserved residue zero in the spin flip B amplitude also at
t ~-0.2 (GéV/c)E. Furthermore, the requifement of exchange degéneracy
itself forces an unobserved zero in the p and w residue functions
in. &' at a=0, t~-0.6(Gev/c)2.tT

To get around these difficuities one must add additional
t-channel effects besides the ﬁegge poles listed above. There are two
ways to do this, and the different methods suggest quite different
t-channel structure for Veneziano representations of KN and N
scattering. The first method is illustrated in Fig. 3a. If we
continue to associate zeros at t ~ -0.2 (GeV/c)2 with the Regge pole
residues, as above, then some secondary trajectory or cut mechanism

must serve to cancel the t ~ -0.6 (GeV/c)2 zero from A'. This way

~out has the feature of retaining duality of leading t channel Regge

v

poles with leading s channel resonances, and presumably the effect
required could be quantitatively small.18 To avoid the factorization

induced zero in ‘B at t ~ -0.2 (GeV/c)e, one must conclude that it
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is inappfopriatejto impose factorization on nonunitary solutions, such

aé those of the’Véneziano-type.. We will say more abéut thi; later.
The second method for curing the difficulties requires

disassociéting the t‘: -0.2 zero from a éingle Regge polé residue

altogether. It is-illustrafed in Fig. 3b. The leading Regge pole is

presumed to have only the one zero at o = O in A'. A secondary
trajectory or cutl9 having the same quanﬁum numbers interfers with the

leading pole and the zero of the effective amplitude is moved to

t ~ 40.2_(GeV/c)2. This femedy pféServes factorization of pole residues
but disagrees with the duality picture given above.' However, it may be
that the duality argument was too simple; Inasmuéhbas it 1s only the
leéding baryoﬁ resonances whose contribufions vanish at t ~ —0.2'(GeV/c)%

One-may imagine that if the cdntributions of the ehtire, degenerate

Veneziano-model tower of baryon resonances were included, then the

duality zero would be moved out to t ~ -0;6'(GeV/c)2; An altered
form of_duality between resonances and Regge ?oleé'could thué be restored,
although the asymmetry between A' and B seems inelegant. Moreover,

if we define "background" to be "experiment" minus the contributions of .

. leading trajectories, we see that this’background would not have the

Pomerahchuk-quantum numbers, as conjectured by Harari.l6
The'discussian of the above feW'pafaéréphs pertained to a view
;f data in which the Pbmeranchuk trajectory has near normal slope of
approximately ﬁnity. The standard fit of Rérita et al.,lh concluded
that. a smaller slope O < ag-s 0.3, is preferred. This alternative
allows, indeed somewhat prefers, the P' trajectory to vanish at

larger ftl,v
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For instance, Barger and Phillipszo have suggested an extra
zero at t ~ -0.6 (GeV/c)EL Thus, in the model in which the P has
normal slope, A' for the P' has residue zeros at t ~ -0.2 and -0.6
(GeV/c)g; the models in which P has a small slope lead to a rough
coincidence of the two zeros at t =~ -0.6 (GeV/c)g. This version is
now not (obviously) inconsistent with factorization for the P', but,
nevertheless, the low slope Pomeranchukon model does not cure the
t =~ -O.2I(GeV/c)2 factorizatibn difficulties connected with the other
quantum riumbers.

(2) Numerical values of the residues at t = O

We now turn to a discussion of the numerical valueskof the
residues which we should try to‘reproduce with our Veneziano parameteriza-
tion. Héving diécusSed the ¢ variafion above; we needqconsidef oniy
the values at t = 0. One may also hope that the effects of cuts will
be at their smallest there. The values of @' may be determined beét‘

ctotal’gl and the errors estimated from varying the

from data on
intercepts over the range a(0) = 0.4 —»0.6. The values of & for

p and A2 exchange are determined from fits to aN and KN charge
exchange data, which are dominated by the B amplitude; errors may be
estimated from varying the parameterization of Q' aﬁd from the

effect of different methods of achieving the nonzero polarization in

7N charge exchange. The values of A for the P' and w are

L3

essentially undetermined by the high-energy fits and are known only

through the use of FESR.lB’22
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We list numerical values in Taﬁle IIT for the N and KN
couplings, with our estiﬁateévof the errors. Our isospin conventions
are given in Appendix I.

We note, in passing, that'the reduced residue of the Pomeranehukon
is not barticularly different frem that of the P'.v There is also no
explanatibn of the fact that the ratio @./(vAr) for the P and P
is such that there 'is 1ittie or no aN polarization frem“their inter-
ference. These WOuld-net seem to be pfoperties of two objects which
the low slope (or fixed pble/cut)' P models claim to be quite different
entities. o ; | o

(3) Theoretical interpretation

‘io summarize part (1) of this section, we claim that there is
elready disagreement betweeﬁ'thedry and experiment and that a specific
hedel, like the Veﬁeziane form can ohly méﬁe things wofse. in ény case,
one must pﬁt a zero in the P, w, Ag, and p 'reSidﬁes iﬁ A and B
at o =vO. We then have the two poesibilities given‘belew:

(a) Model of Figure 3(a)

Here we arrange the values of A and B, for each pole, eo
that when A' is formed, the zero at t ~ -O.2V3(GeV/c)2 will be
generated. This, as describedvin (1), is'suﬁerficially consistent with
the s-channel>resonances. The unobserved zero at -0.6 (GeV/c)2 in A’
for p and w is deemed to be filled in by cuts. Similarly, the
factorization crisis predicted by this modei: namely a double zero
at -0.2 in pp and pﬁ. scattering, not the desired single one, is

cynically swept aside by not considering baryon-baryon reactions.
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Again, it may simply be that one should not try to enforce factorization
in the narrow resonance approximation which viclates explicit unitarity.
This may be an important conclusion both for the problem of constructing
Veneziano forﬁs for more general amplitudes and also for dynamical
attempts to generate the Regge poles associated by duélity with the
s-channel resonancés. Finally, we note that Mandélstam's Quark model?
generates extra trajectories of the same intercept as the customary

0, W, Ag; and P', and it may be that these explain the lack of factoriza-
tion observed for t < 0. We consider this extra trajectory model in
Section III but find it unattractive.

Having constructed the above solution, we can now allow exotic
resonances, as does wOpg,lO and add the Pomeranchukon with slope ~1.0.
One amusing possibilify is that there is a limit in which the Pomeranchukon
is exchange degenerate with a trajectory of the w gquantum numbers
(perhaps one of the extra trajectories mentioned above in connection
with factorization breakdown) and that unitarity forces aP(O) up to

1, breaking the exchange degeneracy.

(b) Model of Figure 3(b)

Here, one would not tr& to associate the t =~ -0.2 (GeV/c)2
zero with Regge poles. We remember that it is only the higher spin
members of a baryon towerlthat have this zero. Then, cuts (absorption
effects) will tend to supcress the lower partial waves, leaving the
higher partial waves and hence the -0.2 zero more pronounced in the
real world than in the Veneziano limit. We will find in Section ITI

that most simple series of beta-functions correspond to this possibility

K
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and not to (a). As we can see from the values of CLf/VA4 in Table III,
if a. and A are constant in t, (as is true in the simplest Veneziano

parameterization), then only for the p and A2 will the very small

cratio  g'/v.- lead to the -0.2 zero: here coming from the -

(4 - t) factor in the definition of @',
a' = o +Mf/(” - t) .

Any -correspondence between the crossover zero and the s-channel

resonances is reduced to the level of an accident: the resonances have

a zero at .t ~ -0.2 (Grev/c,)2 in A+ vB/(2M)(= A" at t = 0) whose

asymptotic limit, o~ + (U-/2M), would have no zero, for constant Q- -

and 4~ .

B. The Baryon Spectrﬁm and the t-dependence

of A and B at a Resonance Pole

Perhaps dug to'ourwmore detéiled knowledge from;phase shifts,
the baryon spectrum appearé to be more complicated than that of the
mesons. We must consider both the internal symmetry (SUé or SUB)
and the spin-parity stfucture of thege resonances.

(1) Exchange degeneracy - internal symmetry

M@ny authors have considered the consequences of exchange
degeneracy.zjs In KN scattering there is a rather exact degeneracy

between the I = 0 88U, partners of the N  and the N. and between

3 Y

the I =1 éUB . partners of the A and the D15 ("parity partner of

the nucleon's first recurrence”). Such a degeneracy is of course a
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minimum prerequisite for the successful application of the Venegziano
form to KN scattering, but also suggests that we should treat the
N/Ny. and the A/D15 pairs of trajectories symmetrically in other SU3 )
related reactions (such as nlN scattering itself) where the mass

degeneracy is not apparent. Similarly, X scattering contains two

channels x-£% - x~2% and -2t - x'5”, which have only s-t and

s-u terms, respectively. Here, exchange degeneracy is required, in

the Veneziano approach but in nature it does not appear to be quite as

precise as in KN scattering.

(2) Spin-parity structure

As emphasized by Hararieu and by Ma,ndelstam,7 the nonrelativistic
’quark model appears to predict the observed states very well. The
s-wave (56, 0%), the p-wave (70, 17), and d-wave (56,‘2+) are evident.
Furthermore, there is a radial excitation, another (56, 0%). Unfor-
tunately, such a structure is manifestly inconsistent with any simple
model that incorporates analyticity at u = O: MacDowell symmetry
predicts unobserved parity-doubled states for the leading trajectory.
Similarly, the theoretical and experimental structure of the daughters
will be in disagreement. We do not know of any fundamental solution
to this problem but will instead adopt a phenomenological approach.

Dolen, Horn, and Schmid5 emphasized the correlation between the
zeros of the t-channel Regge-pole residues and those~of*the s-channel
resonance contributions. 1In Table IV, for some of the low-lying resonances

in =N and KN scattering, we give the t and u positions of the zeros
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'of‘.A, A', and B. We observe that all three shOW'interestingbsystematic

effects. The A trajectory has zeros in ‘A. at t ~ -0.6, -1.6,"

and in B at t.~ 2.5, -0.6, =1.6,--+. The D15 has a similar zero

strucfure, supporting its classification as exchange degenerate with

the A. The zeros for t < 0 can be obtained from ‘the F_1(+ ap) =0

factor in the Venééiand;form, whereas the t ~ 2;5 zero in. B,

crucial in ensuring; as experimentally observed, that the ' A have no

daughter, must be explicitly put iﬁ by hand: i.e. by writing

re - a(+) rla - 0,(s ))
F(n - o t)-a())

- 2.5).

The nucleon and NT contributions seem consistent with Just
the zeros;ffom '<%(ap)>-l. -One may investigate the zero stfucture‘in'
vd:ious SUg related reactibns to éee if they chahge'éééording to'the'
preéise'valﬁe pf thé interéept 6f the t—éhannél pole., In
nll —>KAf(or - Kz) fbriiﬁstanpé,'the zero at t ~ =0.6 moves to
.Q-O;M which.éorrelates with a break in thelﬁigh énergy cross-section
at this value and suggests a value of aK*(O) ~ 0.4 (K*(890) | or
K (1400 )) . |

‘ The approiimate matching of the zeros of the Veneziano form
and those of the expérimentallyvprominent resonances eliminates
uhobserved daughters of large width. However, one still must ensure
that A and B (and hence A') have the right relativé magnitude.

"We thus list in Table V the relative values of A, B, and A' at

t =0 for our resonances. We note that A' 1is often much.smallervthan

A or B and this goes hand in hand with the celebrated "cross-over"




~3)- " UCRL-18886

zero in A’ near t ~ -0.2, discussed in the previous section. The
overall magnitude (i;e. width) of the resonance is best handled by the
plots in Section II-C.

Finally, we remark on the syétematics of the u;zeros which are
useful for constructing s-u terms. The A family has, in B, oﬁe
scurrilous zero at a u value corresponding to the t ~ 2.5 zero, in
addition to the regular family at u ~ =0.4, -1.4,--.. The latter are
presumably associated with some linear combination of zeros from
r‘l(+ &N), P_l(+ &ﬁ ), and r—l(-l + aA),‘ The existence of more than
one u-channel trajgctory clearly complicates the problem. The A
family in A has fhe same u ~ -0.4, -1.4 series, plus another.single
zero at u ~ 0.7, approximately the nucleon position. The association
of this zero with the nucleon is.supported by a similar analysis of |
n% elastic scattering, where the corresponding zero becomes
u~ 1.2~ mZ,Ag' Such a correlation implies a particular relation petﬁeen
the SU3 mass-splitting of the external and internal particles.

The nucleon family has the same structure in A and B, with

a rough zero sequence u ~ =-0.2, ~-l1.2,°°".

C. General Expression for the Baryon Residue Functions

In this section we present the general parameterization for
the elastic widths of resonances on the parent baryon trajectories and
for the backward angles differential cross section, as prescribed by
the Veneziano model expansioh of the amplitudes. The parameterizatioﬁ

is the product of an essentially kinematical factor times an energy
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dependent polynomial controlled by the constants which multiply the
various beta-function terms in the Veneziano expansions, Eq. (3). Less

complete but similar'diséussions were given previbusly b'.y'Amann6 and

; ViraSoro}é We then treat the experimental data in analogous fashion;
after dividing:empirical resohance widths Ey the above;mentionédb
Kinematical factor, we present the resulting reduced widths as a
function of fesonance mass. The energy dependence of this reduced
fésidue function, coupled with information on the residue- culled from’
backward scattering data; should.enable one td Jjudge how'maﬁy terms are
required in the polynomial, and thus to estimate the complexity required
in a Venezilano parameterigation of meson-baryon scattering.

We begin by extracting from Eq. (3) only those terms which
contribute to the widths of resonances on the general baryon-parent-
'trajectory, aB(u); the required terms are thbse from the second
summation with g = 1 and those from the third with: p =Tr. We note

that this set of terms also supplies the leading Regge behavior

CXB(U)-% ) ) :
s for large s .at fixed wu. Denoting this part of the ampli-

I)

tude, A( , we have
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< - t - a_(u)
A(I) B > , < S_v EA(I)(p;Q;M) F(p aM( )) F<q aB( ))

q=0,1,2-- - pzq‘ _F(P - (XM(JG) - &B(u))

-

. Z b (Dg,q,80) (s - %y () (g - 3(w)

R CRE —= X
£2q r{g - og{s) -y u))
Bl

For convenience in what follows, we define

(-1)% Z g, Vp,0m (25)

- M3p=q

a}qt(l)

1

a,’m - e 2 p,M(g,q,81) . (2b)

Blsg=q

Similar quantities 1é?qt(1) and ﬂsgs(I) are understood as appropriate

for the B(I)(s,t,u) amplitudes. We remind the reader that the
. second summation in Eq. (22) vanishes for kaon-nucleon scattering,
whereas, in pion-nucleon scattering, signature is obtained by
imposing Czqt(l) =T CZqS(I) where T = +1 for N, and T = -1 for
N, and Ayl | | '

In the limit Oy(u) —»k = J - %, where J is the total spin

of the resonance, we again retain only terms contributing to widths of
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resonances on the pareﬁt trajectory and, after setting

- 2k
Eof < )~ e HEEHE R
derive .
J-= J-x
b 2(4g®) 2 p(g +3)
(1) 2
A ~ 5 P l(Z)
(MJ - u) r(aJ) J-35
gt
. T 2 T =
X g e @7+ PP, (25)
qu--;- R
_where"
P
l, q :, O .
O: q > J' %
c = (26)
aJ ﬁ q ,
I [ 0+3-1), 1<qgv- 3
i=1

that one may express c¢

and b denotes the slope of the trajectory, ‘aé(u) = aB(O) + bu. Note
in terms of M
qd

1, using J = aB(O) + b MJQ.
After-employing-the formulas of Appendix I, one obtains the

elastic widths of the two parity states at a given J:

J+ = %

(8, =) k() ¥ (an)

, (27)
where the essentially kinematic factor,
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2
Lo 2 2 '
() "0+ 3 o (28)

K(J) = 5 -
M r(a2y + 2)

and »
= E{:: ch[- (My - M) {1Zt(l) + (-1)J'%1§25(I)}

A e )
a<I-%

J

A E IR A} (29)

In Eq. (27), the + (-) sign is appropriate for states with
TP = -1 (+1), where P 1is the parity of the state, P = - (-1)L.

For pion-nucleon scattering, employing Eq. (A-1k), one derives

2 resonance poles and

_ (+) (_)
A - . s = -
u 2A at the I )
7 resonance poles, theref’ore, combining

A oo ) agthe 1 -
u u 2
these results with the signature requirement, one reduces Eq. (29) to
1 1
A ) - 3T (e r()7?)
(=) _ ()
X Z Cag [aqt (MJ M) ﬂqt 1. (%0)
a<I-3 |

For kaon-nucleon scattering, the absence of (s,u) terms in the

Veneziano expansion leads to the reduction

(31)

e = ¥ e td e o B D)

q
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The-constanﬁs C;ﬁ and 1§? in these eqnations are obviously different
for'eaeh’trajeCtory considered; however, 1f one wishes fo'simultaneously
fit the resonance w1dths of all traJectorles in | 7-N scattering, say,
then definite constralnts exist between the sets (éz ‘ﬁb for the
different tragectorles, as can be ‘seen by examlnlng the connectlon
' between Ed. (3) and Eq. (22).

Some elementafy deduetions basedbon tnese expression relefe to
the fositivity of widths. Because (I)(M ) and -Y(I)(-MJ) are
proportional té the elastic widths of the two parity states, respectively,
at a given J, and because,bin the.definitien of 7, .3 ~og% s Mqu
vfor large J, it is enident that‘fo enforce positiVity fef both narity
| states, then ‘ﬁ? % 0 1if C?_t % 0. Indeed 1&? must grow approxi-
.mately as fast as C? tA{T The absence of parity doubllng for the
nucleon is assured by settlng g27 () VO 1n7Eq. (BQ) for that

trajectory. To rigorously eliminate parlty doubling of the first states

on the .AB ‘and NY trajectories, one must impose the linear relation-

1 : 1 .
ship»s ;aqt( ) ‘:-(MA + M) éﬁqt() : end

1 v 1 o .
) (<) _ (-) . :
;;%xi7gt = <Mblj - M) ;;;'ﬁgzt s resnect;vely, however, tne

kinematical factor (Eu - M) in Eq. (27) naturally makes the elastic
widths of all parity partner states of the AB trajectory small. In
fact, the elastic width of the A(1238) parity partner tends to be

two order of magnitude smaller than that of the A itself, and so one
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may elect to relax rigorous eliminatibn for that trajéctory, A similar

* .
10 In kaon-nucleon

scattering. This kinematic suppression may not be relevant for we judge

argument applies to the A's SU(3) partner, Y

that the Veneziano expressionh should be constructed so as to fit the
invariant amplitudes and not the partial wave amplitudes. It is these
latter which are most subject to the possibly large unitarity effects
not present in the model.

The experimental widths of the known baryon trajectories should"
provide a means for estimating the number of terms required in fhe
summations of Egs. (29) - (31). We have therefore computed the empirical
values for Y(I)(Mj) by insérting the known values25 Qf Pez for the-
left-hand side of Eq. (27). These are shown for the N, A, A, and I

trajectories in Figs. 4-9. 1In obtaining the plotted values, we allowed

v : : 2
the value of the empirical resonance mass 2 to vary from MJ - FTOT/A
-to MJ + LiOT/h. and b, the trajectory slope, to run over the range

0.9 < b 1.0; this explains ﬁhe brackets shown in the figureé.

Both parity states, where available, are given on the same
graph. We note the absence of candidates for parity doubled status with
the AS resonances. We suggest that this absence of parity doubling,
generally, may well be a unitarity effect, especially strong for states
near threshold; higher along the trajectory, the MacDowell symmetry
analyticity constraint should reassert itself, and parity doubling would
be restored.

The graphs indicaté no dramatic structure in Y[(u)%] but

certainly allow considerable-fléxibility in possible parameterizationsL
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It appears that the sums in Egs. (30) and (31) can safely be terminated
after two or three terms. The Systematic structure of the plots for
the Na and Ny_ trajectories and, to a lesser extent, thafvfor the
A trajéctory residue suggeét that the experimentally determined elastic
widths for the high-spin objects on these trajectories could be in error
by as much as a féctor of four too small. In this connection, it is
significant to recall'that, in general, the determinationsg for elastic
widths obtained from backward scattering data are significantly larger
than those derived from:the forward dgta.26 |
.;Backward scattering (u = 0) da£a points are also given in
the figures because the differential cross sections for s — o at
fixed- u ié alsb determined‘by ﬁhe‘same fﬁnctioﬁ, Y. ’indéed,‘as
s)—ew .fdr'fixedk u; Eq,ﬁ(é2), becomes (with cha given by (26) éfter
replacement of J by .o)

g%
A @ L _(es) ®
B cos aB(u) F(aB(u) + %)

L g o ?
X Z “qo {dqt(l) e aqs(l)} ' (%)
a | S

_ ' N L
- In the pion-nucleon ‘situation, upon forming ,f[(u)2] and
employing isospin and signature relations, one derives
: ) - inc

@b e ame ) w0 (1),
P (wE) 2 Bpf ! ‘1,
) 2 cos ﬁ aB(ﬁj' F(aB N %) 4 [(g)

(33)
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where

T(I)[(U)%] _ 3(_1)1*’% X 2 Z an {aqt(-) _ [(u)% - Ml -th('))..
a
(34)

The isospin index, I, 1s the total isospin in the exchange, u, channel.
The similarity to Eq.(30) is obvious and shows how the reduced residue
function parameterizes both the widths df resonance spectrum and the
backward scattering region in a uniform fashion.

For purposes of comparison, we point out that in their phenom-
enological fits, Barger and Cline27 have retained only the factor

(a, + %)(aB + %) from vr'l(aB + %) and used a parameterization

B
-1 :
(D¢ ()2 3 %=
()2l = gl1l o+ s(w) ](l/so) with B and & constants.
1 .
Similarly restricting the 7¥y[(u)2] of Eq. (34) to terms at most
1
linear in (u)2 for all trajectories (i.e. @ < 1 in the sum) has,
among other things, the consequences of removing all Na terms from

A(s,t,u), decoupling the AE and NY trajectory terms at s - w®

for fixed +t, and thus forcing A to have the asymptotically nonleading

aM(t)-l
behavior s . Because all baryon trajectories must couple

asymptotically at t = O, (see Section II-A), a consistent solution
thus requires g > 1 and, therefore, residue functions at least cubic
in (u)%} The term with g = O seems strongly demanded at least for.
the A trajectory by the nearly linear form of the residue shown in

Fig. L.
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The salient features of the parameterizatioh givén in Ecs. (33)
and (34) are the factor F—l(aB + %) and the absence of any ekﬁonential
type of form-factor in (u)%. Tt is of considerable iﬁpor£ance fovcheck
whether this-lattgr feature is supportable experimentaliy because, if
correct, it provides thé important'possibiiity‘ofueitrapolating from

the scattering region to distant poles. Except for the famous dip

near QY = - % , there is little evidence ekperimentally for the
differential cross sectibn dips pfedicted by the factor r-l(aB + %);
in particular the absence of the asserted dip .near Q, = —_%, has been

the cause of some consternation.fdr standérd Regge-pole theory fits.27’28

However, it should be notgd‘that,all butvtye G = = % dip oqéur at
fa;rly large values Qf u Mwhere secondary trajectory or cut mechanisms
aré'presumably important.

We have attempted to test whether the Veneziano.parameterization

for the resonance widths on a given parent trajectory and for that

portion of do/du attfibutable to the trajecfory are consistent. This

is discussed in the following subsection.

D. Pion-Nucleon Backward Scattering and Resonance Widths

In general,.the Regge-pole model asserts the intimafe connection
between the baryon resonances (u > 0) and the baryon'exchange ampli-
tude in the region of backward scattering (u < 0). This connection is
established via the trajectory function a[(u)%j, and its reduced
residue function, Y[(u)%]. However, classical Regge model fits to

either the backward- or the forward-angles scattering data could never



- UCRL-18886

be extrapolated reliably to the poles at u or t > 0 because of the
essentially arbitrary nature of the residue function. The Veneziano

model, by specifying both the F_l(a + 1) factor and the scale factor

7]

(so), provides a general preécription for pole extfapolation. Hence,

it becomes important to test this recipe in those cases where we know
both the values of the physical pole-residues and the details of the
scattering data controlled by the corresponding Regge-trajectory. 1In
this section, we examine the success of the Veneziano model prescription
for the A, Ny and NY trajectories in x-N scattering. This exam-
ination is only a limited teét of the model in the sense that the
forward-angles data is ignored for the time being, as are the relation-
ships which must exist between the constants appearing in the residue
functions for the different baryon trajectories. If reasonableagreement
with the baryon residue function aspect is achieved, these other problems
could be attacked subseguently.

Restricting ourselves to reduced residue functions with only four (!)

parameters, e.g., rewriting Eq. (34) as,

V@) = ap + b ()P 4 e + A [(a)T (35)

we find that our best solution in the case of the AB trajectory yields
a A(1238) width a factor of two too small. For the N, and N
situations, the problem is much less constrained, and we can achieve )

solutions in agreement with both backward data and baryon resonance

widths.




b5- | UCRL-18886

(1) A residue

We begin by discussing the A& because it is presumably the

sole contributor to " p backward scattering and because several
resonance widths are well determined, as shown in Fig. 4. Many diffi-
culties have been encountered in previous Regge-pole theory fitng‘BOl

to x"p data; these include the anomalously small value of the»cross-

section at u = 0, the absence of a dip near a, = - 5/2, discussed in

the previous section,band the considérable discrepancy with respect to

pole extfapolation. ‘To these, we would add another uncertainty: we
have extracted an effectlve tragectory for the avallable 'n'p' backward
data,5 th1s is dlsplayed in Fig. 10. The effectlve traJéctory appears

to deviate substantlally, for u < -0.2 (GeV/c) , from the linear form

with slope near unlty, expected from draw1ng a llne through the AB

resonance spectrum Nevertheless, we sought a flt to the 7~p Dbackward
elastic data using the full Regge-pole formulation and a AB trajectory
of varlable slope. Retalnlng only data hav1ng u > -0.75 (GeV/c R we
found that the X2 values did not significantly change as the_slope was
varied over the range 0.3 to 1.0 (GeV/c)-E; The Ay ‘trajectory is

evidently pcorly specified from the backward data. (We note thét the

systematic errors quoted on the experimental data51 are rather large.

In our analysis, we have allowed for this feature, assuming it to be an
effect independent.of u. Because this systematic error.feature is as

important to the process of obtaining a good fit as is the variation |
of‘the A trajectory slope,vwe feel that shrinkage (or its absence)

in the data is yet to be demonstrated.)
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The ver& small size of the = p cross-section in the backward
direction provides the essential constraint in the problem of finding a
suitable tﬁ[(u)%]. These data in fact require that both v, and
dfa/d[(u)%] near u = 0 be two orders of magnitude smaller than the
appropriate pole value, YA(1.258 GeV). That the derivative must be so
small can be appreciated by examining Eq. (A-10) near the backward
direction for large s: do/du cc |A'[2 + sin @ IBIE/M, where 6 is
the direct channel center of mass scattering angle. Because the varia-
tion of do/du away from cos © = -1 is slight, |B| cannot be large.
However, the contributions of the B amplitude to Y[(u)%], Eg. (34),

1 : ,
? - M], and so the magnitude of B

énter multiplied by the factor [(u)
near u = O is essentially the derivative, dYA/d(u)%, there.

In order to proceed, we appropriated a A trajectory linear in
u, passing through the resonance positions (slope =~ 0.9), and sought
forms for tﬁ[(u)%] which would yield sensible agreement with both the
backward-angles #°p data and the reduéed residues in the resonancé
region. Although a residue of the form a, + bA(u)% would seem accept-
able frém a first glancé at Fig. 4, it is ruled out by the considerations
of the previous paragréph. K. Igi used a guadratic form
a, + bA(u)T?lj + c,u, for the residue;6 a curve computed with his parameters
is shown on Fig. 4. His width for the A(1238) is a factor of U4 too
small, as he noted, but his fit to the backward x~p data is most

unacceptable (X2

=5 X 106), except at u = 0, due to his large B
amplitude. (See also Section I-D on this point.) A guadratic solution

also has the disadvantage of giving negative widths for parity-partner.

»
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states,vas we have noted earlier. We adopted, therefdre, a four para-
meter form of the type given in Eq. (35) and converged on the following

compromise:
aA[(u)%] = =0.02 + 0.9 u 3 (36)
I - ST . |
T [(W?2] = 273+ 517 + [(w)? - MI(27.2 + 3h.5 u) . (37)

The A (1238) elastic width is 53 MeV, ~45% of its experimental valu_e_,52

~and ¥ on 82 © p backward data'points5l is 246, A plot of this
ancﬁioh ié_also'givéﬁ on Fig. L; fhe'genefal égfeement with thé
émpiricél residues is qualitatively not'unféasonaﬁle, but the X°  for
the backward fit seems much too large.

Moreover, from the theoretical point of view, this solution is

not particularly apﬁealing because it gives no evidence for a zero at

Q, = 1/2. ‘As we remarked in Section I-C, because there is no observed
state at JP = % on the exchange degenerate ZB - 26 trajectory, a

Veneziano'parametérization for KN scattering may have terms with the

factor TI'(m - &Y*) only if m > 1; consequently the Y

residue
1 .

function will contain the facﬁor (aY* - %). Via SU(3) symmetry
arguments, thefeforé, the A redﬁced residﬁe might also bé expected to
vhave, as a factor, the term (aA - %). Alternatively, the absence of
strangeness +1 baryon states implies exchange degeneracy ofvthe.
s_chaﬁnel and t Ehannél exchanges in aN — KZ which‘suggesfs more

directly, therefore, that the (OA - %) factor is appropriate in the -
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A reduced residue. These arguments provide theoretical support for

the ad hoc suggestion, by Igi et al., that there should be such a wrong-

. 29 '

signature, nonsense zero.
Without increasing the number of free parameters, we may

consider solutions in which the zero at aA = % is imposed, a priori.

In our best four-parameter fit of this type, we settled upon

a, = 0.09 +0.9u ; . (38)

1
)

v, o= (g - 2)(5.2 + 6.0 u + (W7 - MI(29.4 + 5.8 u)).

(39)

For this case the Xg on 82 x7p backward data poiﬁts’is 150, and the
A (1238) width is =~ 60 Mev.0% We also present a plot of this particular
reéidue sdlution in Fig. 4; although the agreement withrthe backward

data and the A (1238) width is fairlylgood, the presehcé of the

(qA - %) factor causes the residue to grow too rapidly at large '(u)%l.
It ﬁay also be noted that the rather large coefficients of the terms in
Eq.(39) proportional to u and to u3/2 indicate no systematic tendency

for subsidiary terms in the Veneziano expansion to be small. Moreover,

we call attention to the fact that even with the aA = + % Zero
factored out, the small value of ﬁﬁ at u =0 is achieved through

substantial cancellation between the contributions of the A and B
amplitudes.
Finally, we examined also a six-parameter residue structure,

keeping terms up to u5/2 in the A's residue parameterization, but

»
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releasing the zero at aAb= + %. ‘This fit can leéd té an estimate of
the size ofﬁterms in the A residue which are noﬁVénishiné at
a, = l/é and thereby measure to what extent the underlyiﬁg'Symmetry
discussed above is reflected in the nQN féituatibn. The qualitétive
features of such a solution are very similar:to thbseuofﬁthe solution
given in Egs. (38) and (39); viz., a reasonably gobd fit to the backward
scattering data and an elastic width of 80 MeV for the A are obtained;
but at the price of a residue function which produces unreaéonably
large elastic ﬁidths.for the higher fecﬁrrenées alQng the frajectory.
Soﬁé physical érgﬁments may be advanced to explain away these
difficulties with the A residue. We list them and consider each
briefiy'ih this paragraph. (1) The small cross-section at u = 0 may
be associated with a vanishihg of the residue funétion near the‘backﬁard.
directién;55 as we noted, our soiutioh; Eé..(56), is indicative of
cancellation which reduces the residue from its nafural sizé near
u = 0. Absorption effectsBu (in the s channel) are asserted to be
large for such vanishing residue functions and could serve to signifi-
cantly alter the shape of the differential cross section for u < 0.°7
(2) A A 'trajectory with a substantial term linear in (u)% has been
advanced by Paschose8 and others. Such a‘trajegtory is nof inconsistent
with the Veneziano‘mdéel;36 we tried it and found, lowever, that its
use does not lead‘to essential improvement_over our preferred solutions,

Egs. (37) and (39). (3) The effects of unitarity (in the u channel)

might be substantial in the partial wave containing the A (1238) state,
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and thus play a great role in determining the A's width. Tt will be
recalled that the N/D model calculations of some years ago, based on
unitarity and analyticity, were able to generate the A (1238) state
successfully from crossed-channel nucleon/exchange.57 To estimate this
effect in the Veneziaﬁo model, we employed the K-matrix formalism58 but
found that the discontinuity generated by the Crossed-cﬁannel nucleon
state is only 10% of that due to the direct channel A pole.

We summarize this study of the A residue function by pointing
out that the Veneziano parameterization does ndf in fact provide.a
quantitatively acceptable procedure for extrapolation from the backward
scattering region to the resonance poles on the A trajectory.59
Within the Veneziano framework, the best solution involves at least
four parameters and yields typical resonance widths a factor of two
too small. There are two plausible methods for resolving this discrep-
ancy. Firstly, one may conceivé that the Veneziano parameterization is
simply too naive. In particular, it may be judged that the true residue
function should explicitly vanish at all parity partner locations.
However, in this regard, we note that the parity parther states in our
solutions, for mass < 3.0 GeV all have elastic widths less than 30%
of the experimentally observed <P = -1 states. Secondly, it méy well
be that the size of the backward elastic cross section is no true
reflection of the A Regge-pole residue function; we recall our

previous comment on the possiblity of large absorption correc'cions.uO

»
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(‘2) N, - N, residues

‘Achieving agreement with the Ny, and NT residue data is much
less difficult but also much less constrained. It may be seen from
' comparing'ﬁhe data points in Figures 5 and 6 that the Nst -residue
function is expected to be of similar size to that of the Na' There~
fore, the contribution of the NT to the backwara 7N’ datg5; will
diffei typically from thé Na only in the intercept

Q%N,(O) e (0) + 0.5,which strongly favors the Nd) and the signature
o Y

factor (which favors the Nf near u = 0). ‘In our various fits to.the'~
déta, we fixed the A, using parameters determined from the x™p -

fit, and varied the residues of the Na and N_ to obtain.agréement

y
ﬁith the widths of Figs. SVahd.6 and the data on both xTp elastic and
7P CEX.0V We tried thrée types Of'fit;: |

(i) = Delta fixed at parameters of Eqsi (36), (37).

(ii) Delfa fiked at parameters of Eqs. (38), (39).

(iii) - As (i) but with an added éven-signapufe, I, = % amplitude,
having ‘the same trajectory as the 4 énd a residue function fixed
equal to O.hj times that of the A given in Egs. (38) and (39). This

fit is motivated by the exchange degeneracy which occurs in KN

scattering between the ' SU, partners of the A and the D15(1680). .

5»
The constant of proportionality, 0.43, is estimated from Figs. 4 and 5.
This type of fit would seem more sensible than (1) and (ii), but rather

depressing in that four trajectories‘allows one far too many parameters

with which to fit the backward data.
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Tn all the fits, (i), (ii), or (iii), the N, 1is clearly dominant

and the three subsidiary trajectories, A, NY’ and D15, contribute about
31

equally. The various experiments on N CEX backward scattering are not

notably consistent with each other. However, they all seem to indicate

that there should be destructive interference between the Iu = %' and

the I =

u contributions to the CEX reaction. This feature is realized

PPN

in fit (i), but not in fits (ii) and (iii). The values of Y[(u)%] at
the resonance positions, given in Figs. 5 and 6, were not an important
constraint in the fits; in particular the NY‘ contribution is badly
determined.

We can try to limit the freedom in the fits by requiring agree-
ment with the trend of the n+p polarization déta measured near 3

(Gev/c).L‘l

In fits (ii).and (iii), the A - N, interference term gives

positive polarization which rises to a maximum of approximately one

near u = -0.1 (GeV/c)2 and then vanishes when oy = -0.5 (at u = -0.15
(GeV/c)2>. The D15 addition in fit (iii) produces similar behavior.

In fit (i), the A and N, interfere to give polarization of the oppo-

site sign to that of fit (ii). We present the result of a type (i) fit,

fpr which the experimentally observedul positive polarization in

n+p —>n+p near u =0 comes from the N_ - NY interference. term.

o4

The trajectories of the fit are:

-0.34 + 0.88 u (40)

aNa(u)

-0.75 + 0.9 u . (k1)

()
(o
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In terms of the four parameter form given in Egq. (35), the

residue functions are

vy [(@P] = (10h - 18k u) + [(w)? - MI(295 + 106 w) 5 (k2)
Ta : o
Ty [(u)%] = (-131 + 21 u) + [(u)% - MJ(-170 + 110 u) . (43)
Y : . ' : , .

”-Tﬁese are plotted in Figs: 5 aﬁd 6«{:We note that the ratio of the
" reduced residue of the N%~ to that of the Na is smalleriat u=0"
than it is in the resonance region, (u)% ~ -1.5 GeV.

‘Ethacting a reliable paraméterization for the subsidiary NY
and D trajectories will requife more good data. Sﬁécifibally, we

15

would suggest differential-cross-section and polérization measurements
in all charge‘éonfigurétibﬂs over a wide\raﬁgé.é£ enérgies for lab
momenta greater than 5 GeV/c.: Particularly crﬁcial is the mattéf of
thé‘éorrect relétive normaliééfion Bétween aaté of différent energieé.
Our valﬁeévfor the Ny. can be regardéd only as'rgprésentative.
Similariy, our skepticism ofvthe fundamenfai nature ofvour fitbpreﬁents
us from plotting any of oui predicﬁions for (or fits to) the N
backward data. (We will supply these to.any interested reader.)
| We close this section on' a dbleful, if realistic note by under-
scoring the unfortunate features of our best fit, répresenteq in Eqs..

(36), (37), and (40) through (43). 1In addition to the unproven shrinkage

and poor Aﬁ pole extrapolation in © p ‘backward elastic scatterihg,

- the fit also indicates a marked violation of even approximate exchange-

degeneracy. Specifically, the A% residue does not have the desired

a, = % zero, and the N, residue function bears 1ittlé resemblance to

that of the Na'
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IITI. EXPLICIT VENEZIANO FUNCTION PARAMETERIZATIONS
In this section, we derive and discuss several explicit Veneziano-
type representations for the pion-nucleon and kaon-nucleon processes.
We endeavor to incorporate into these parameterizations both the general
requirements of appropriate isospin, signature, positivity, and spin-
parity content discussed in Section I, as well as the more specific

structure emphasized in Section IT.

A. K-N Scattering - First Approximation

We begin by treating K-N scaftering'iﬂ"the most obvious
manner. In this approximation, exotic resonances are presumed absent,
and thus we include no strangeness +1 bdryon trajectories in our
functions. Moreover, for the same reason, the t-channel meson trajec-
tories are taken in exchange-degenerate pairs as are the s-channel KN
frajectories. We deal, therefore, only with Veneziaﬁo terms of the
(s,t) type. This problem is thus considerably more simple than the
=N situation_(treétéd in Section III-F) which demands, in addition,
(u, t) and then (s, u) type terms for signature reasons. In this
first approximation, ﬁe also do not include the Pomeranchuk trajectory
as a possible t-channel exchange. To do so in KN scattering, without
accepting the price of exotic u channel resonances, would require
installing the Pomeranchuk trajectory as an exchange degenerate object;
this seems inappropriaste. We return tb the Pomeranchuk situation in‘
Section ITII-E where we argue that there is no compelling reason to
leave 1t out of a Venezianp representation; in fact, it can be associated

directly with low-lying exotic KN states.

A3
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A good solution to K-N scattering at this first level was
independently obtained by Inami;6 we wiil fifst motivate his resuit,
discuss its properties, énd then go on to possible improvements. Our
approach bégins'with'the results we established in Sectidn'IIFB ielating
to the t;dépeﬁdenée requifed‘@f the A(s, t, u) and B(s, f, u)b
functions if appropriate spinkand parity is to be secufed for the s
channel résbhances. Next, we hote that the t dependence of a single
Veneziano form, Eq. (6),, near a pole ai(s) =m', is given by
r(z - ag(t))/F(h -m' - ag(t)) which has zeroes for t values,

‘a,(t) = £-1, ---, n -m'. In Table IV, the states on the hy = Ay
trajgctory are shown to possess a structure of zeros in both A and B
which is roughly consistent ﬁith the prediction of a single Veneziano
.beta~function expréssién, For the ZB - 26 pair, a similar statement

is true for the A amplitude, but the B function re@uirés-an_additional
zero at t ~ 2. 3(GeV/Ej2.

We are thus led to consider the representation

Prearie
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Qj - AY I =0 KN Amplitude
. 0) . r(1 - ocA) r(l - o) ) Ao F(ﬂ/\l r(1 - o)
1 Al r(1 - a, - O‘t) r{l - a, - ozt)
B (O) F(-a/\) P(l - C(t)
1 = Apy -
: r(x - a, - at)
Iy - Iy "I =1 KN Amplitude
(kL)
(1) r(r - az) r(1 - at)
g ! r(l -a.-ao) |
% t
(1) , r(1 - qz) r{1 - ozt)
B, = zBl(to - t) -
r(e - Q. - at)
As noted, the isospin indices,‘I, in A(I) and B(I) denote

the total isospin value in s channel KN system. Crossing relations,
which préscfibe the u channel KN amplitudes in terms of the above, are
given in Apvendix I. For notational convenience, we write

where A denotes the A_ - AY exchange. degenerate

- 1
a, = O-/J(,S)'§) o

A

trajectory; o

5 = az(s) - %, where 2  denotes the ¥

| 8 - 26 pairj.and
a = ap(b) =»aA2(t) = ag(t) = aP,(t). Our omission of the I, - ..

trajectory froﬁ these formulae may be justified by Fig. 9; the residue
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function has a quite small magnitude when compared with that of

Aa - AY‘ or 25 - 26.

We emphasize that Eq. Lk is essentially the simplest one can
’ 9

devise for the KN process in that only two terms of a subsidiary nature

‘appear; The term proportional to AA2 is subsidiary because it does

not contribute in leading order as s — o for t fixed. It is present

Asimpiy to achieve the precise extermination of the parity partner of the

+ . ' ’ s .
gt - % © A(1115); it is in fact -small and unimportant. The other

subsidiary term is that proportional to t_ in 1) mhe (¢ - t)

(¢]

term is indeed a crucial factor in B Dbecause it leads to reversal of

the sign of the I term between large t (where it is normalized

Bl
by the Yl* (ZB - 28) widths) and the t = 0 point, where it contrib-
utés asymptotically to known high-ehergy forward sCatteriﬁg.v Tefms
proportional to F(—&Z) are exCludgd becauée %hey would predict an
uhoﬁserved JP =‘%- state, and no f(—at) terms appear fof similaf
reasons. We femark, hbwever, that in this solution the reduced'residue
function for the A trajectory is quadratic in (u)%; and thus positivity
caﬁnot bevguaranteedvfor the elastic.widths of both parity states on the |
parent trajector;;r.11L2

The values of tﬁe.constants appearing_in Eq. (L44) may be estab-
lighed in various ways. We will presént two‘different approaches and

then go’ on to a discussion of the properties of the solutions. Inami's

approach was guided by the assertion that, in accordance with Nature,

: +
certain residues should vanish. He chose to abolish the % and %

states of the A +trajectory, the state of the ¥ trajectory, and

PO
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+ B
the % daughter state of the 3 +trajectory. This is accomplished
essentially by using the to value listed in Table IV and determining
the ratlog_ AAl/ABl ,ind ;Al/ZBl from the values listed in Tgble v
2 2 - - T
. for thg 5 and 5 states of the Aa AY‘ and ZB ZB trajec

tories, respectively. TInami then fixed his two remaining parametersvby
adopting the high-energy fitted values of A' at t =0 in-the two
different isospin states. (See Table III) We denote his solution

'(I); in units of A = c =1 and GeV, it is

Ay = 555 Ao = -zuiu CApyy = 138.7
zAl: = -22.4 Iy = -9.8 t, = 2.3
axf = -1l.24k + ¢ . (Solution T)
az = =0.9 + s
/
Q. = 0.5 + ¢t

In order to illustrate the uncertainty present in even this .
simplest parameterization, we present a second set of valués, denoted

Solution I',
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A ‘= 48.0 A = -2L.6 Ay 117.5

Al A2 -

ZAl = f20.7 ZBl = -2&.2 tO = 0.62
aA = 115 4+ 0.9 s - (Solution I')
a. = -0.8+470.9s

oy = 0.55 + 0.9 ¢t

With this solutiqn; the low-energy daughter9 stafes and parity
partner states are nof abolished. with quite the same religious éxactitude
as in Solution I.‘waeveg according to X?, a much better overail fit
is achieved tbva éollectibn of KN and KN ‘scattering data as well as
to the widths of sundry parent and daughtér state resonance widths.
Before presenting a critique of these.solutions, we list the relevant

data against which we judged the solutions.

B. KN¥ Data Sefr

(1) Resonance widths

The empirical elastic widths of states on the parent
Qj - AY and ZB - Za- tr%jectéries were.discussed invSection I1-D and
thé reduced residue funcﬁions were éxtracted éﬁd plotted in Figs. 7 and
8, respectiveiy. We also assumed that elastic widths of daughter9 states
are rather small (i, % thé‘size of the pafent widths) but positive. 1In
some cases, widths of suchlstatés can in fact be estimated by using the'

results of =N phase shift analysisuB and invoking 8U(3) symmetry.

The handlingof the daughter states in the model is, in general, a
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difficult prbblem because certainly some of the lower lying embryo
resonances in the Veneziano formulation will acquire total widths so
large that they will never be discerned empirically. Some of the inter-
esting low-lying states predicted by the cuark model will be discussed

later.

(2) Forward scattering data

Some of the qualitative features of the high-energy data were

discussed in Section II-A. The data which we employed is explicitly

(i) Xp _)Konhh at 3.5 GeV/c and 5 to 12.3 GeV/c

- (i1) K'n —sKOph5 0.35 to 0.81 GeV/c, 0.86 to 1.36 GeV/c,
2.3 GeV/c, and

3.0 GeV/ec.

The K+n data is particularly interesting information from the stana;
point of a cbmpléte test of the model. All of the applicétions of the
model we havé so far discussed in this paper have involved comparing

data against a guantity extracted from the model via.a limiting procedure.
This is necessary because of the unitarity-violating zero width aspect

of the model which places resonance poles directly on the real energy
aXxes. However, in the approximation to which we work, there are no

KN resonances and thus no poles in the K'n channel above threshold.

The full model, without limiting operations, may therefore be used in

K+n scattering and applied even at guite low energies. The omission

of a Pomeranchuk trajectory from our formalism recuires that comparison
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of the Veneziano form be restricted to the charge-exchange process,

however.

(3) Kfp backward scattering

The‘data included are distributiqns from exposurés at 0.99‘to
2.45, 2.76, 3.53, 3.55, 5;2, and 6.9 GeV/c,u6 Actually, we estimaté
that it is not reliable to use such data below 1.3 GeV/c because the
effects of the neglected t-channel Pomeranchuk trajectory may be important.
The statements, made inﬂ(E), about a complete test of the model apply

here also, of course.

(4) KN scattering lengths.

~ We use the.valuesu7 O and -1.47 in the Iu'='0 and. 1 KN
states? respectively. These‘afe not very important data as the
I# ;”O, combination may be;affected¢quite‘significanﬁly,by the Pomeran=-
chukon, whereasvthgl It = lk part is alreédy implied by the ibw energy.
K'n CEX data, 0.35 to 0.81 (GeV/c)?, from which it was.extracted, |

in fact.

C. Critique of Solutions I and I"

Havingrdetermined the constants in his paraméteiization_as
discussed above, Inami found that his expression (I) produced good
agreement with both K_p charge~exchénge data and K+p backward
- scattering data, as fepro@ucéd in Figé; 1l.and 12. 1In this section, wé
discuss the significance of these verified predictions and also commént
upon the value giveh by his solution for the elastic widths and scattering

lengths.
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We begin with the X p gaﬁon result. Given the value of A',
asymptotically, a good fit to the K_p charge exchange data will be
obtained once one specifies, in addition, the approximately correct
value for the ratio (A’/VB) at t = 0. This was done when thée correct
spin parity structure of the low energy spectrum was imposed. We argue
Eelow that theé success achieved in the fit is therefore not a triumph
for the particular Veneziano formulation, bﬁt is a praétically expecteq
résult of a wide class of models which embpdy a duality of resonances
and Regge-poles. To maké this more quantitative, we first focus
on some general features of the duality of resonances and Regge
poles, well-known from FESR results.3 Both of.the s~-channel

trajectories, L. - £. and Aa.— A, (or, for that matter,

B &) Y

Na, Ny, and A. in the N situation), are associated with large values

of the B amplitude and a small ratio A‘/VB. In Table V, this is
shown to be the case for the high-spin memﬁers of each resdnénce tower.
Any Veneziano form, which does not contain daughter states with huge
widths, must exhibit this feature, and, indeed, as we noted, the ratio
conditions were imposed in each of the s channel isospin states when the’
parameters of solution (I) were derived. The signs of the amplitudes
‘are also such that the Ay - AY and the ZB - 26 terms interfere
constructively in forming the B amplitude with t channel isospin

It =1 but destructively in It = 0. "The well determined, high-energy

value of A' at t = O served to normalize solution‘(I),-and values

= 0) were deduced.

t

for B(I, = 1) and B(It
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The B(It = 0) number is small, due to the cancéllatiohs, but is
essentialiy undetermiﬁed'experimentally. The major testable prediction
£ = 1), which is supported. However, as this discussion
indicates, essentially the same prediction would come from any model
imposing duality and normalizing to A'. The only surpfiSing.aSpect is
that the pfeéise numerical Values Inami uses pfoduce uﬁdénnily good
agreement with the t = O values of Table III-E.

Upon examining the t depéndenéeé of Solutionva and If, we
find that ‘A, B; and A':(IJG = O)vare essentiallyvconstant, subjectvto

the expected 0o = -n zeros, whereas A'(I, = 1) has the sought-for

t
cross-over zero at t ~ -0.25 (GeV/c)g. These effects are also expected
because, as explainéd in Section II, any roughly constant A and B
will generate the crossover zero in A'(it =1) but not in A'(It = 0),

simply as a consequence of the . 1 -:t/(hMg) factor (see Eg. A—ll)'andb

the appropriate magnitude of A'/vB at t = 0. As noted, this latter

- guantity is small for the I, =1 amplitude but of order unity for

t

It = Qt ~ The absence of a crossover zero in A’ (w exchange) implies
that Solutions I and I' will poérly reproduce the empirical value of
the difference, do/dt (K'p elastic) - do/dt (K'p elastic).

The predictions of Solutioh I for the reduced residue functions
of the baryon trajectories are given iﬁ Figs. 7 and 8. The baryon
widfhs fér both (1) and (I') are a factor of two to three times too
small in cdmparison with the empirical values. |

The fit which Tnami achieved to the backward K'p scattering |

data, Fig. 11, is a free prediction and reasonably good, but this may
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beva fluke. From Fig. 7, one may note that inami’s value for the
@1 - AY résidue is approximately a factor of two smaller than that
obtained by Bargeru8 from a classical Regge ﬁodel fit fto the data. The
difference can be attributed to the very different size of the Zo - Z
contribution between the two cases. In fact, Solution I gives a value
for the ZB - ZS residue whiph is an ordervof magnitude larger than the
value estimated from applying SU(3) arguments, at fixed u, to the
known ' A - N coupling at u = 0. Whereas the = trajectory was
neglected by Barger,M8 it is quite important in the parameterization of
Solution I. The resolution of this question awaits reliable high energy
béckward scattering data for K+n —aKop or K+n —>K+n. However, a
preliminary answer is possible inasmuch as the full Veneziéno formula
can be ﬁsed'to study low energy K+n charge-~exchange data, which extend
to the backward angles. Solution I is seen to give mﬁch foo smali a
cross-section whereas a phgnomenological model, normalized to fhe
backward K+p data énd using a smaller Zv conﬁfibution is in better
agreement with the data. In particular, when we tried to extend our
parameterization beyond that of Eq. (44) we found good solutions with
a very small % contribution at u = O. However, our best solutions
did not exhibit this feature.

We notice from Fig. 13 that the fit to the K+n CEX data is
generally rather poor. At low energies, the theory predicts more s-wave
and less P-wave than is indicated by the data. The presence of the

large P-wave component of the data may be identified with rapid variation

of the amplitude produced by the nearby baryon poles. The residues of



-65=- ' | UCRL-18886

these poles are too small in both (I) and (I'). In the next section,
solutions will bevCOnsidered whose residues at the nearby poles agree

better with experiment, and a larger P-wave component will be generated.

D. Impfoved Veneziano Parameterization of KN
We gain some inkling as té the'sourééhéf the deficiencies of
‘Solution T by exémining the’resuits.of a.partial wave analysis of the
various Tesonanée poies. in Téble VI is é'ﬁreséntafion'éf thé widths of
tﬁe members of the resonance tower associated with the F17(20%0) state

of the ZB'- 5 family. The widths are bleasantly positiVe, éx;epf

o}
. _ T+ o S o .
for the % state, which has a small negative width. On reflection,
: +
vthis latter feature is curious because the % state is- the SU5

partner of the experimentally observed 'F35(1910), which, in turn, is
a‘member of the tower associated with the F37(1950), corrésbondiﬁgly
the partner ofiéhe F17(2030). Moreover, these stétes,'parents, and
daughters,-are cl&ésified successfully by the quark mod.elel‘L in the
(56,2+) representation. Both the reasonably large elastic widths in
7l (PeE(F55)/FeE(F57) ~ 0.5, which via 8U(3) implies the same ratio -
in XN) and the theoretical'associatiqn with the quark model suggest
vvthat‘we should seek a solution with feasonable préperties for this

. - o V . v

3

% state. Similar considerations relate the 5  daughter of the
D15(1770) state in KN to thefcorresponding Su(3) partners D15(1675),
D13(1730), and D55(i67o) iﬁ_ . | |

From Tables IV and V-may be noted the amusing fact that the F55"

destructively interferes with its-pareﬁt F57~iﬁ both the A énd B
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amplitudes. This fact would enable one to increase the size of>the

F37 width without sacrificing the desired high energy limiting values
of A and B. In particular, the F35 + F37 combination does not
necessarily have the effective zero at the canonical t = 2.3

(Gev/c)2 position in the B amplitude; the addition of the F35 moves
it to smaller t. For this reason, the simple Solution I is suspect in
that the zero at t = 2.5.(GeV/c)2 is present unaltered in the high
energy limit.

We can try similar arguments for states on the Aa - AY
trajectory, but there are no obvious quark daughters for the F05(1690).
One evident discrepancy in I is that the ﬁx - AT residue function is
quadratic in (s)%, implying necessarily negative widths for all the
parity partner states above a critical mass value.
| Based upon such thoughts, plus some trigl and error, from our
Pandora's box of possible éxtra Veneziano forms, we select a few that

are particularly helpful. These are in addition to those in Eq. (Lk),

and therefore,

A, -A. KN I =0 Amplitude

. . F(l -a ) I‘(2 - ) -
20) Al(O) s ocﬁ X
r(e - a, - oct) .
(0) (o) rd - o) r(2-a) r(x - @)r@ - a,)
B = Bl + ABE . — + ABB

F(Q-aA_at) F(E"Q’A-at)
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. -3 KV I=1 Amplitude

B~ "B
@y .. Mmoo
WA(l) _ Al(l) ‘5 r(2 az— (1 - o,).
| rig -a, - o)
(45)
51 _ Bl(1)_ . ZBg r(e - &éi P2 - o)
Cor(3 o, o)
5 - F P - o)
. s azi ra - o)
r(z - Qs - Oét)

A computer search was performed to find'thé'set of constants
which would best fit theldata set given in Section III-B. These values.

are

My = 68j0 Mo = '35'5v’ s = §lf5
Agy = 254.2 - Ay = -3%3.8 AB5 = =90.9
} ’ (Solution B')
ZA]_ = -20.2 ' ZAQ = =1.1 B ZBl .= —26.6
t = -0.64 M = 75.4 :;Bg =. 3.6 -

0 . ‘ B3
with the same baryon and meson intercepts as in.Solution' (I').

We notice that this solution-in the = 5§ segment is not essen- -

tially different from (I'). We have also obtained fits with a larger

value of ZAl' The data on the Yl (1385)  is not sufficiently precise

to determine the size of £

NE but when we study =N scattering we
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find that the solution analogous to (I') gives much too small a A

*
width. A typical fit with a larger Y, (1385) coupling is:

Ay = -57.6 Ao = =37.3 AA5 = 80.5
Agy = 256.9 Agp = -50.2 AB5 = -;06.7
(Solution B)
Ty = ~45.0 (fixed) Sap = 9T Zp = -29.0
t, = 1.52 ZB5 = =5.9 | Tay = 6.6

Solutions (I), (I'),’(B), and (B') all yield quite similar
valﬁes of X2 for the scattering data. In all cases, the major
discrepancy bétween»theory ana experiment‘is the K+n CEX data,

‘Fig. 1%, at the lowest momentum, 0.35 (GeV/c). The computer was unable

k9

to reproduce the cancellation - necessary to yleld a rather small

s-wave at'lOW'energy. In Fig. 13a, éne may choose between the devil
and the deep blue sea. Fits (I) and (I') have too small a p-wave,
whereas (B) and (é') have a reasonable p-wave but a disastrously
large s-wave component (too large by a factor of two in the amplitude).
We tried many alternatives in én attempt to improve the fit. The

': addition of various beta function terms to our amplitude, with small
multiplicative coefficients, in fact, will yield agreement with the
0.35 GeV/c data. However, all of our fits which were successful at
0.35 GeV/c fell well below the data curves at higher values of energy.'

In Fig. 11, the (I) and (B) fits to the K'p backward elastic

data are presented. The quantitative agreement between theory and
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50 :Figure 12

experiment seems to gét‘worsé as the enefgy incréaéés.
presents the fits to the  Kp CEX data which are adequgte.

The'majér difference (and claimed imﬁrovemenﬁ) between‘(I),
(I‘} and (B), (B{)' lies in the values:bf”the béryon fesidﬁe functions,
.whiéh afé’typically a féctor of 2 largéfAEntthe r(Bj'ana_(B') fits. |
vIanable VI, we give thelrésults,of the partial Wéyé ahalyses of the
Fl?(EOBO)-towér."As rumored earlier in fhis subsection, £he residue
of the Fl5. is positive in '(B)L This happy state of‘affairs is
in fact énjo&ed by. (I');l(B), and (B’)  bﬁt'néf,’as'We7Said,nby (1).
In Figs..7 and_8, we piotfthe residue,functioné Bf'the‘léading bafybn'
- trajectories for'Solutions (1) and (B).'

In Fig. 14, the deviations Of‘our Véﬁéziano modelASOiutionsl
from the elastic scatbering data are illustrated. To achieve a fit
fo elastic data éné must, bf_éouréé,vinéiﬁdé'éﬁ:;ﬁﬁropfiateLPomeraﬁchuk
trajectory contribution. We did this simplj 5y‘pafam§£erizing the
queranéhuk amplituae ss in Egs. (26) and (21) with af(ﬁ)'=31 +'o.8§ t
a (0) = 2.5, .4(0) = -10;5, and with the only t depeﬁdence‘of c:(fﬁ»
and 4@(t) specified by inserting a Veneziano type scale factor,
S, = l/aﬁ, into the formulas. The results of the addition of such é
Pomeranchuk amplitude to Solutionv(B') are given in the figuré;
however, the othef solutions have vefy similar features. The difference

51

between the experimental values of K+p .and K-p elastic scatteriﬁg
is clearly not well reproduced. As we have remarked before, such a
failure is to be expected of any model which does not possess the

S 2
crossover zero in the A'(It's 0) amplitude at t ~ -0.2 (GeV/c)".
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We should hastily admit that the sparkling fit to the 9.8 GeV/c K+p
data is by no means representative; the high slope Pomeranchukon yields
too much shrinkage.52
In conclusion, we may say that the results of the fits (B) and
(B') are disappointing. We carried out a rather extensive search,
adding in turn many different individual beta functions terms, and
combinations thereof, to our amplitudes in an effort to find a good
overall fit. Our lack of success suggests to us that there are substan-
tial effects outside the scope of the model. More specifically, for
instance, as we noted, the fits (I) and (I') exhibited discrepancies,
which are typically a factor of two in magnitude. In our effort to
achieve improvement, we determined Solutions (B) and (B'). These two
solutions do yield satisfactory agreement with the magnitudes of reson-
ance widths and certain othervquantities assoclated with the form of the
amplitude in its high energy limit. However, they fail to reproduce a
(possibly) more subtle effect associated with energy dependence. As we
have remarked, the model should fit the KN data over the whole energy
range, from threshold on up; but we were unable to overcome discrepancies
in overall magnitude for the .K+n CEX data, and in t-variation for
the K+p backward scattering data particularly in the 2.0 to 3.0 GeV/c
region. These features remained qualitatively invariant when we added
further Veneziano beta-function terms to the set given in Eq. (45).
Our lack of success in fitting the Ktp elastic data (after adding a
Pomeranchuk trajectory, and using the Veneziano model relation
s = lﬁa') is also‘indicative of indicative of the presence of

0

important effects outside the framework of the model.52
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E. General Deductioné and Cbmments

(l) Nonasymptotic Cofrectiohs) Cuts, and Two-trajectory Solutions

Wé wish to emphasiié é rathér alarming general consequence of
dealing with the a@flifudes A and B. It is the nonflip amplitude,
A, which is the dominaﬁt ampiitude in aetermining experimental croés
éections;'-Noﬁ'surprisingly, therefore, A'.“and"B, not A and B, are
fhe'amplitudes parameterized in classical Régge-polé‘thebry.fits.
However, askwe.érgﬁed in Seétion II-B, A and B are the sensible
.amplitﬁdes from the'Véneiiadb médel viewpoint. Moreover; A' is
essentiall& £he diffefence béfweeh'the tWo fﬁnctions A" and ~B QhoSe
magnitudes are typically five times that of the resultant, A'. This
impiiés that;”in our plebian‘approabh gt_least,yfhe nénasymbtotic terms
in A' will inhg;it the typical'sizévof the coefficients in’ A; not
fhat of the'asymp£otic coefficienﬁ in A’.:-For.example; if‘We use the
parameters of Solution (I), at 5vGeV/c'inb.K;p‘ CEX,'tHé effect of - ”
‘employing_thé correct definition of A rather_thén fhe asymptotic form,
A" A + sB/(2M(1 - t/(hM?))), is a reduction of the cross-section by
some.ho% in the forward direction.

Recall, now, that itlis A" which exhibits the most obvious
violations of our or'anyvsimple Reggé model. For this is the infamous
amplitude.in which the crossover zero does or does not apﬁear and which
does not exhibit the t ~ -0.6 (Gev/c)2 zero in_eithef K'p; K*p |
elaétic or the N dﬁd KN CEX amplitudes. Perhaps the correct;
buf rather barren, deduction is that the effects of cuts are small near

t =0 in A and B, but can become very important in the differenCe, 
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A'. More quantitatively, we call Section II to mind and the suggestion
from Mandlestam's inodel7 that the leading meson’trajectories are
doubled.55 One need only suppose that in the real world, for each t
channel quantum number, ‘A and B have effective intercepts which
differ by ~0.05 near t =0 in order to generate effects in A'
that simulate the crossover effect over as wide a range of energies as
it has so far been experimentally verified. However, we could find no
reasonable model that gave this result as Well as the correct sign of
the polarization in N CEX.

We. would like to stress, as a general comment, that simple
Regge theory should only be expected.to hold for certain amplitudes in
which the duality associated resonances are large. This may be useful

in understanding why simple Regge theory is often an abysmal failure.

(2) Pomeranchuk trajectory -

As noted before, the Pomeranchukon was'nbt explicitly included
as a normal slope trajectory function in any of the Veneziano function
parameterizatiohs discussed'in this section. However, we did notice
that it may be aséociated, via duality, with the mysterious Cool511L
bump in KN scattering; if normalization is established by using the .
high-energy total cross-section data, then the elastic width of the
.possible resonance, and its recurrences, may be deduced. .These values
are not unreasonable.

More quantitativeiy, regarding the Kﬁp channel as the
u channel,'aé usual, we suppose that terms appear in A aﬁd B  having

the form

SRRk
i) ?:3:5.
3
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. r(1 - &c(u)) r@ - o%(t))

P - G - (1)

() TG - p(t)

b
P orQ - G () - a(v)

with ap(t) =1+ t. A complete treatmenf fequirés additional terms,
of course, in order to achieve signature for théifomeranchﬁk trajectory
and the elimination of the j = 0 daughter sfate at' ap = 1. HoWe&er,
because we:éive this argument for illustratiVe'purposes, we ignore
these cohsiderations as well as those relating fofﬁoésible (s, u)
terms. |

The data (Table III) suggests that the real world lies somewhere

betwgén'the limits b =13, a -0 and b =17, ay = 3. If we
take &; = -3.6 + u so that the Cool bump has J = %, then its larger
component; the %— state, has elastic width vdrying from 90 to i7O
MeV,'aécording to the two choiées of b. However, if we take

ac = -é.6 +u .and the j = %+ assignment for the Cool bump; then the

elastic width wvaries from 30 to 40 MeV. 1In this latter case; the
'daughters of the Cool bump have positive elastic widths of similar
size. 1In either case, the predicted elastic width seems consistent
with thafnsuggested by a haive interpretation of the.data as a

resonance.
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In both cases the Pomeranchukon corresponds to a shorter range

force than the P':. the J = % case being one unit lower in the
j plane and the J = % two units lower than the leading resonances,
associated with the P'. TFinally, although available K p backward

elastic datau6 are at much too low energy for a decisive test, they are

consistent with a z* exchange interpretation.

F. Veneziano Function Parameterizations of Pion-Nucleon Scattering

Our treatment of the pion-nucleon process will be rélatively
brief because fewer detailed checks on the model are possible in thié_
process than were available in the kaon-nucleon situation. This fact
afises from a combination of circumstances. On the one hand,'bécéuse
all channels admit resonance poles, there is much more freedom in.the
choice of possible beta function expressions. Secondly, there ié
effectively less useful data with which to test the model in the pion-
nucleon case. This latter handicap is also a result of the fact that
there are no nN states with exotic quantum numbers. The unitarity -
violation inherent in the zero-widih model precludes using the model
exactly at small values of the energy in any channel, as was ?ossible
in the K+n charge exchange process discussed earlier. Effectively,
therefore, because we are not incorporating possible unitérization
schemes, our tests of the beta-function representations can examine
only their high energy conseqguences, after limiting procedures have

been employed.
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The major technical difficulty, but one which we shall be able .
to sidestep, fortﬁnately, is associated with the (s - u) type terms,
given in the second summation of Eq. (3). There are at least three

~baryon trajectories: N , N and £, and four if the D15(1680) is

Y’
judged to lie on a distinct trajectory. As a result, evehfif m, n,
end £ are restricted to small values, there is_a‘decidedly3large

number of possible terms of the form

T(m - &él(si>»P ﬁ - 532(u)>

r(n - aBi(S) - &ﬁe(u)>

For examﬁlé, if all terms with m, n, £ =0o0r 1 are allowed g

(?, 2 >n > max (m, ﬂ)), sﬁbject‘bnly to the fequi?ements of crossing
symmetry and the festriq£ion that m £ 0 and n £ O for the A, then
.50 beta—functiqn terms arisé. These are then subject to l2yconstrainté
“which arise-from abolishing the spin % Poles55 df_the vNa and N_ }om‘the
A amplitudevand from guaranteéing apprépriate_iséspin properties in

the various channels. Although.thé results of Section II-B and the

- values in Table IV-c suggest that certain of these terms are dominant,
‘it,ié clear that 38 parametérs is more than the number of data points'
availéble for defermining them. Furthermore, there is reason‘to believe
thaf the resfriction to terms with vm, n,.andv'ﬁ-g 1 'is an implausible
simplification. Coﬁsider, for instance,'the possibly mythical limit7

in wﬁlch ,aB = aﬁa'; aNT = aA‘— l» and imagine that
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) r(—&B(s_)) r(—&B(u)) -

RO
(o) - )

(46)

= ec(s - u

‘Upon breaking the degeneracy, we discover terms such as

( ) r(l - a,(s)) r(@ - a,(w))

r(z - ad(s) - aa(u))

When these are reexpressed in the form of pure beta function terms,
we obtain terms proportional to P(Q - &A(s)), for example, which were
‘ignored in the above éount of 50 functions.

The above di5cu$éion emphasizes again the great arbitrariness
of the Veneziano-type of expansion. No strong a priori principles
exist which could be employed to choose between the various beta-
function terms. The only working criterion is that of fitting the
available information. Inasmuch as the tests of the model are primarily
“in the high-energy domain, however, it is possible to avoid altogether
writing down explicitly any terms of either the (s - u) or the
(u - t) types. This simplification arises from exploitation of
crossing symmetry and the exﬁerimentally observed signature property
of the meson and»the baryon trajectoriesf

In particular, let us see explicitly how knowledge of the
(s, t) terms alone is sufficient for generating the baryon residue
functions and the high—energy\behavior of the amplitude near both

t =0 and u =0. In the limit s -« for fixed &, the contributions
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of (s, u) terms vanish exponentially, but

P - () - o (4)

r(z - ags) - oy(t)

(t)+m-£
(o)™

ra - a,(t)) ,

where b is-thé trajéctory's slope. :Crossing symmetry reguires that
for each (s, t) term, we add (or subtract) an identical term with s

replaced'by u. 'After'doiné so, and'takinébthé limit s ;f“ aﬁ:fixéd‘
ﬁ, we find thdtﬁthe'overall‘résult is éqﬁivalent to multipiying the
riéht-hand sideJof.the.aﬁové statement by the Signature.factor,'

(1 + e-lﬁa ), for the meson trajectdry.* Nexé, consider the .situation

near uw =0 as s —w. The (s, t) terms give an exponentially
vanishing contribution, but their required (u; t) counterparts

provide the limit

&B(u)+n-E 

(bs), r - - a(w) -

The effect of adding the beta-function terms of (s, u) fype,‘required
to establish signature alongvthe baryon trajectory, is simply to
multiply this limit by the baryon signafure factor - (1 f.e—lﬂaB).
In the remainder of this section, therefofe, we Will write
down éxplicitly only the (s, t) variety of terms and model our
discussion on that given fbrA KN scattering‘éarlier ih this Séction,:
| -Because we are not concerned in detail with the-daughter9 struc-

ture in the model, isospin reqﬁirements can be invoked to justify our.

writing down expansions for the A(+) and vB(+) amplitudes only. We
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assert that all terms containing a given s-channel trajectory must
satisfy exactly the isospin restriction demanded by the states on the

parent trajectory. For the Na and NY situations therefore, for any

(+)

given beta-function type of term appearing in the expansion for A
(or B(+)), there must be an identical term in A(—) (or B(—)). This

is true because we want no N or N_  poles to appear in the s-channel

a
isospin 2 amplitude, ASB/2 = A(+) - A(-);

> For the A trajectory

case, there are two physically meaningful alternatives:

PO AN

(a) The A is a pure I = state. The relationship

4 1/2

S = A(+) + EA(—) implies that the coefficient of a given beta-

function term in A(-) be equal to -0.5 that in the A(+) amplitude.

(b) The isospin along the A trajectory alternates; the odd

I = g~, whereas the even ones have I = % .

The first even signature, I = % state would be the D15(1680). The

desired isospin relation in this case is: A(-) ~ -0.24 A(+).

signature states have

By analogy with the solutions (I) and (I') given for the kaon-

nucleon situation, we considered:
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(1) Nucleon Terms

D

= D, (t_ - t)
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- (b)
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The trajectories are: aM . 0.55 + 0.9 ¢, M =P or op.

aﬁ = -0.85 + 0.9 s ,

&N = -1.15 + 0.9 s ,
T

and = =0.4 +0.9s .

Y

By fitting to the values of the high energy forward scattering
amplitudes, given in Table III, and to the spin-parity structure of the

baryon resonances, we found the parameters

+

NAl = h.5, » NBl = 18.7, GAlb = 7.1,
+ : + ‘ +
Ggp = 11.6, Dy, = -15.1, Dy = ~7-9
and t_ = 1.68 . o (m-1)

The corresponding values of gg/hr, RA’ ~and FN are 3.3,
Y

22 MeV, and 24 MeV, respectively. (In computing these numbers, proper
account has been taken of the effect of the required (s - u) terms,
which doubles the values computed from (s, t) terms alone.) These

three values are roughly a factor of four too small. TFor Solution -1

we made the pure isospin % choice for the A. Parameters determined

from an alternating isospin assignment for the A are

1]
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+ S+ + :
Ny = .u.l o Ny = 1529 Gpyy = 7.2
) + _ o . +.._ _' ’ + _ _
_ GBl[ = 11.5 Dy = 34.8 Dg; - = -13.1.
and t =32 , _ (m-2)

L, = 39 MeV,.and PN?;= 2L Mev.

In determining these two sets of parameters, we did not enforce

with (6% /bx) = 2.8,

£he values offthe baryon residue function near u = 0, known f;om'the
analyéis.of'backwétd.scatféfing dafé, éé“diséuséea iﬁ<éectiohviI-D.

it would thereforé appear that, rega}&léss_ofithis constr;int'or of the
difficulﬁies'asééciatéd ﬁitﬁ_ (s F'u)‘ tefms; one is éimpiy:unable to
gecﬁre‘quantitatiVé égreemenf, Within thevmodel,'between,thevmagnitudes
'of‘the‘baryon reéonance-wiaths and the values of fhe_high-energy, |
forwérd-angleé différential cro$évsection; This'diéégréeﬁent is séme-
what wor;evthan in the kaon-nucleon'préblém; Sdlﬁtions (1) and (1')

in X-N bwefg deﬁermined by methods similar to those used iﬁ éetting
(m-1) and (II-2), but gave widths off typically by a factor of two.

By introducing additional Veneziano beta-function expressions »
into the fray, ones which qonfribute‘asymﬁtotically toinonleading order
at t :‘O, one can, ofzcourse, achieve magnificent agreement with  the
baryén resonance widths. However, the pauéity of relevant data
precludes any check on their significaﬂée. We will not report such.
results here because they are simply eXamples‘of curve-fitting, even
more blétantly so than are sOlutions.(B) and (B') of our KN

investigation. S L
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IV. DISCUSSION AND CONCLUSIONS

As a result of the investigation reported here, we can offer
several conclusions regarding the strong-interaction dynamids of the
kaon-nucleon and pion-nucleon sys?ems. In this concluding section, we
present our estimate of the relevance and success of the Veneziano beta-
function representation for meson-baryon scattering. We then go on to
summarize the phenomenological status of the Pomeranchukon. Finally,
we suggest that a realistic scheme for quantitatively fitting experi-
mental data could be based on the asymptotic Regge pole content of the
Veneziano model if one were to include explicitly, in addition, the
Regge-cuts generated from the poles. The Veneziano‘model has the dis-
tinctly attractive feature, in this regard, of specifying précisely the
momentum transfer structure of the Regge-poie residue, including all
nonsense factors. This could resolve a problem which has caused trouble
in previous investigations of high energy reactions: without an unam-
biguous definition of the pole residue, it has always been very diffi-

cult to distinguish between poles and cuts pheonomenologically.

A. Estimate of the Success of the VenezianoARepresentation

We begin by listing, in the form of questions, our criteria for
Jjudging the usefulness of the Veneziano model representation.

(1) 1Is it possible to write an a priori theoreticaily justi-
fiable and convenient parameterization of the meson-baryon process in

terms of the beta-function expansions?
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(2) 'In terms of these general parameterisatibns,,can one
reprqduce.as good fits tovémpirical.highFénérgy distributions as aré
achieved in élassicallRegge-pole'thebry?

(5) The model contains both thsibaryon fssonance polss and thé
associated Reége trajectories, and it preScriﬁes a broceduré for extrapo-
lating from the region of physicai scattering to.thevvalues of the
resonahée pole residues. Is this>featufetSuppsrtéd'quantitstiyely in
ﬁature?

(4) The ‘model inccrporétes duality. _Theréfore, the magnitudes.

of the widths of the baryon resonances should be determined by the

magnitudes of the t-channel meson-exchange tréjéctdries,'énd vice-versa.

Is the éuantitative felatisnship between thsse values,‘as specified by

ths model, in agreement with ths empirical s;tqgtipn?'._ - ' » ” 3
(5) Inasmuch as.the;mpael islintended:téLbe applicable oVervthe

entire range of values of s, t, and u, are checks possible either at

‘low energy, or as s'_aw for fixed angles, away from ‘u=0 and t = 0,

and are these verified in nature?
(6) To what eitent is the daughter structure in the model
physically medningful? | : |
| These‘afe'some of the questions to which we address ourselves; '

within this framework, we propose the following conclusions.

(1) Parameterization of meson-baryon scattering amplitudes

This first item divides itself into two'parts: (a) choice of .

amplitudes, and (b) parameterizations thereof.
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" (a) We chose to work with the standard invariant amplitudes
A(s, t, u) and B(s, t, u) Dbecause crossing properties can be specified
most conveniently in terms of these. However, retaining crossing has‘
its price; as we noted in Section I-B, the amplitudes A and B are
not especially natural for expressing the correct spin and parity
stfucture for the resonances or for guaranteeing positivity of their
widths. Moreover, the high-energy forward elastic scattering data is
best described in terms of the nonflip amplitude A', and not in terms
of A. This is significant, as discussed in Section III-E, because A
often turns out to be an order of magniﬁude smaller than eitﬁef A or
B.

(b) Other than vague simplicity, we could establish no strong
and easily implemented principles for a priori limitation of the types
or number of beta-function terms in the parameterization of A and B.
As .a working hypothesis, we adopted the approach of starting with a
minimum set of terms and then adding subsidiary terms, as necessary, to
achieve the various requiremeﬁts discussed in Sections I and II.9
Finally, as a result of our searches and fits to the data, we found no
systematic tendency which would indicate that the coefficients of

subsidiary terms are small.

(2) High-energy Regge-pole fits

Roughly speaking, the Veneziano parameterization, per se, does
. as well as a noncontrived, classical Regge-pole model in fitting the

high-energy differential cross-section data near the forward and backward
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 directions} However, thisbis tiue only if we ignore the questions of
overall normalization, which will be addressed in conclusions (3) and
(h). The t-dependence of the data is consisfent with the sﬁggesfionr
from the modél of slole varying residues ﬁith the tréditional scale
factor, s_, equal to ‘ar. Difficulties do arise as & result of
notserved shrinkage (suggesting a' <<.i) and unobserved dipé.' The
laﬁter have been discussed in Section II;A:-for the-forwardvscattering
data, and in Section II-D for the bdckward direction."The most
serioué‘fault of‘the predicted - t dependence of the Veheziano model is
its failﬁre to reproduce the cross-over zéro. 'However,.all.éflfhese
difficulties,arg also present in classical Regge pole»ﬁhenomenology
unless one contrives to insert or to remove nonsense fagtors, in a
purely ad hoc manner, and torvary the residue structure arbitrarily.
Thué, the Veneziano formalisﬁ suggests-that;the resolution. of all these
problems lies not in even more complicated pole parameterizafions but

rather in other explanations, such as ‘Regge cuts.

(3) Pole extrapolation

The failure in fhe case of the A trajectorj is significant,
as we discussed in Section II-D, bﬁt the Veneziano ﬁodel seems to
provide an adequate parameferization of the residue functions of the‘
other.major baryon trajectories; We foﬁhdgthat the residue; of the
states on the Na; ZB - 28, and Aa - AY- trajecﬁories are related wel;
by the model to the corresponding backwardzscattering:data. Nevertheiess,

we are not sure that this agreement should be taken seriously becaﬁse_
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of the failure with the A, which is the best determined experimentally.
On a purely phenomenological level, however, our successful fesidue
parameterizations for the Na and @y - AY trajectories could bé
applied usefully to other elastic reactions as well as to multiple
production processes.

Pole extrapdlation tests are not meaningful for the meson
trajectories because the baryon-baryon-meson residues are essentially

unknown.

(L) Duality B

\The eXpressiQn of duality in the model is its most attractive
aspect. However, we found that the duality'structure of the model agrees
with nature only in an order of magnitude sense. For example, if in
7N scattering one makes the simplestchoices of terms and normalizes to
the high-energy, t = O data, then the predicted values for gg/hﬁ,

the plon~nucleon coupling constant, and for T the elastic width of

N
the A(1238), are typically a factor of L too small. Stated othervise,
in order to achieve agreement with gz/hﬂ and r, one is forced to
accept the presence-of terms_with very large coefficients which contrib-
ute asymptotically in nonleading order at t = O. Becéuse all.channeis
in the #N process contain resonanées, no low energy checks on these

nonasymptotic terms are possible. In kaon-nucleon scattering, good

agreement with the baryon resonance widths was obtained at the price of
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adding such terms. There, a check on theirveffépts at low energy was
possible through a study of the K*p _anq K+n_ reactiqns.' As repbrted
in Section III-D, our examination of the Kfn CEX reaction indicated

oniy_fair agreement at low energies.

(5) Low energy and fixed angle behavior

‘Certain low energy tests of the Veneziano model amplitude are
possible in pion-nucleon écattering, but, for thé most part, the full
power of the model'canhOt be realized becéuée'éf‘thg unitérity'éonflicf.
For the reasons already given in'Sécfibh 7-G, we have no‘égnclusion"
regarding whether the PCAC condition is consistént with the model. It
pfoﬁébly could be made so, but withéut'ény attendant_cbnééQuéhées{ A
similar remark applies to the scattéfing iengths, in:that‘théré are not
enough additional low energy checks tb‘réhdér meaﬁingful p}édictivev
péwer from a férced agréement with PCAC and the scattering lengths. It
is already too obvious from studying Just the high-energy data that a
large number of nonasymptotic, subsidiary terms are required.

This fundamental drawback is less damaging in kaon-nucleon
scattering. -As we noted in Section III—ﬁ,-however, too large an s-wave
component 1s present in.the model, and it is not easy to remove it
without also removing the necessary b wave. The scattering lengths in
our best solutions aré correépondingly a factor of two too largé. We
discussed other aspects of the inconsistency between low and high energy

fits to the KN data in Section IIT.
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Overall, much of the model's potential is unrealized because of
the unitarity difficulty associated with zero-total-width resonance
poles located on the real energy axes. One conceivable remedy for the
7-N problem might invelve trying to determine the coefficients of the
necessary subsidiary terms by fitting the detailed x-N phase shift
data. TFor example, this could be accomplished on a limited basis by
equating. the integral of the discontinuity of the Venezliano-model
amplitude, across the real axis, with the same quantity derived from
thg phase shifts. |

We insert é plea at this point for more good data at all
energies. ‘Irrespective of the details of the Veneziano model, it is
likely to be followed by other models which closely relate high and low
11energy phenomena. Therefore, it woﬁld be most advantageous to have-much
béfter.information on both the‘isospin and energy dependence of the KN
system. Additional polarization measurements in the elastic and charge-
exchange processes would also be most useful in indicating the magnitude
of the background contribution in both t-channel isospin states. The
Veneziano model predicts a purely real KN amplitude in all charge
states; the only imaginary part comes from the addition of the (Itbz 0)
Pomeranchukon. Improved measurements are aesirable at both high and
low energies.

We have not taken seriously the predictions of our parameteriza-
tions for the large s, fixed angle behavior because thé rather accurate
pp data indicates that phenomena in that region are dominated by effects

outside the model, such as cuts. In particular, the distribution in
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1

momentum transfer for the p-p scattering data exhibits a change of
slope at avalue of +  which varies in position from t = -0.5 (GeV/C)E,

at Py, =5.0 (Gev/e) to t.=-1.0 (GeV/c)2 at P

1 = l9.Q'(GeV/c).‘

lab
Any currently accepted Pomeranéhuk parameterization,. or the Veneziano
formalism, in its asymptotic limit,56 fail to reproduce this experi-
mental feature. It is easy to show that the Pomeranchuk Regge-pole
contribution alone falls very far below the data in.thé.intermediate'

o7

angle region.

(6) - Daughters and parity doubling

We did not make a concerted attempt to take the daughter9

structure of the model ;eriously; butvsoﬁe'refiébtions émergé; (a) In
'pion-nﬁcledn scattering, for examﬁle; aﬁ almoSt iﬁeﬁitablé consequence
of a Veneziano model parameterization for thé ampiifhdés‘ A and B
will- be the abpearance of daughter states generated by theva -
tfajectbry in both the isospin, :I»= i/2' and I ; 3/2, configurations.
Such diseases can, éf course, be remedied by the addition of compensa;

tory subsidiary beta-function terms, but the process of correcting for

the secondary diseases could go on, ad infinitum. (b) The daughter
trajectories in fhe pion-nucleon problem wiil'not have definite signa-
ture, even though this property may have been enforced for the states
along the parent trajectory. (¢) For 511 four solufions té_the kaon- .
nucleon process, (I), (I'), (B), and (B') in Section III, we computéd-
the elastic widths Qf the daughter states up té J = 11/2; in all

cases, most were positive and of similar size to those of the parents:’
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This result does not seem unreasonable, but we have not pursued a
detailed comparison with expériment. We made comments iﬁ Section ITT
on the size of daughters expected on the basis of the quark model.

One rather model independent statement about the leading baryon
trajectories is that they will create parity-doubled, mass-degenerate
states. The elastic widths of the two staﬁes in' a given pair can differ
greatly in the low mass region, but they grow increasingly independent
of parity as the mass is increased along the trajectory. This‘asymptoﬁic
limit is rather slowly realized in Solutions (B) and (B') of Section III;
even at J = li/2, the wrong parity states of both the A - A_ and

6 Y
. - trajectories have roughly l/h the elastic width of their

B B
partners. Nevertheless, this degeneracy should be borne in mind when
meson-baryon scattering data are analyzed for thevspin-parity structure
of resbnant states; The daughter states are also, of course, predicted
to be parity doubled. The typical sizés of these effects can be apbre-
ciated from a glance at Table VI. We have no practical or helpful

suggestions to make to those seeking to untangle the spin-parity structure

of such mass-degenerate towers in the experimental data.

B. The Pomeranchukon

We have studied the Pomeranchukon in processes where there are
direct channel resonances, such as =N, KN, and pp scattering, as
well as in those without resonances. Our analysis of ntp scattering

showed explicitly that a Pomeranchuk trajectory with high slope

(a% ~ 1.0) 1is consistent with the data. For reactions of the second
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type, we offer fwo coﬂsiderations;' (a) In Section ITI, Qe pointedvout
that a Pomeranchukon constrained to fulfill the Veneziano model residue
structure and the relatien,. 8, 7 l/a'; cannotvreéroduce simultaneously
both the s and t vdependence of fhe data. However, the fite in

Fig. 14 strongly suggest that the difficuity is eesoeiafed with thevway_
the Veneziano model handles the P' and w quantum number exchanges .-
Any simple scheme in'which the P’ end w trajectories are exchange
degenerate will predict a zero in the o quaﬁtum number amplitudes at .
vqw(t) = 0. 1In nature, the zero is not observed there but at

t ~ -0.2 (GeV/c)g, the cross-over point, in the A' amplitude. In
order to fit the data, ‘we are compelled to include additional peies or
cuts; the effects of these would be sﬁfficienfly large so thet it seems
likeiy that a Pomeranchuk trajectoryvhaVing'slepe af ; 1 would also

be admissible. (b) Our second consideration involves states with exotic -

quantum numbers. We demonstrated in Section III-E, that the Pomeranchuk

54

trajectory may well be associated via duality with the Cool bump
M .

(or 2 ) seen in KN processes. This interpretation indicates that

exotic resonances will have values of mass-squared roughly 2 (GeV)2

greater than that of the lowest nonexotic states and values of spin

typically one or two units smaller than those of the nonexotic states

of similar mass. We.would certainly encourage experimental effert
aimed at locating and sfudying’the properties of enhancements which
have exotic quantum numbers.:

Our argumeﬁte are hardly cdnelusive,iend 80 wevcan only’stress

that there is really no compelling evidence for or against the conjecture
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that the Pomeranchukon is an object essentially different from any

16
other Regge trajectory.

C. Phenomenological Uses of the Veneziano Formula

Perhaps the most stfiking suCcesé we found for the Veneziano
model Was the agreement, Within a factor of two, for the K'n —>Kop
process over the entire range of measured energies. This is‘illustrated.
in Fig. 13. We hasten to point.out, however, that this agreement was
not achieved in the most straighiforward manner. Specifically, successful
application of the model to data anaiysis requires, at least, that one
construct scattéring amplitudes which enforce explicitly the observed
spin and isospin structure of the low energy spectrum. 'Although this is
sometimes equivalent to using a single'beta-fUnction term, as has been

2 v . .
> more care is required when the extern-

proposed for x~-x scattering,
nal particles have nonzero spin. Complicated sums of beta-function
expressions may be fequired, in general, with the result that one loses
the.attractive simplicity of the original Veneziano proposal. Moreover,
it is not often easy to visualize in advance what the overall effects
will be when one varies the values of the constant coefficients multi-
plying the various beta-function terms.

With respect to insuring the correct spin-parity structure, a
very useful technique exists for determination of the desired expansions.
As we described in Section II-B, one first deduces the positions of the

zeros in t and u required of the invariant amplitudes by the angular

functions, d\HJ(e), associated with observed spin and parity values of
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the.physical sﬁectrum. Subsequentiy, the Veﬁeziano beta function
expansions may be designed to match this analytic étructure at the pole
residues. waeVér, the exambles we havé‘studied indicate that even this
will not guarantee detailed agreeménf with experihent.58
At high energy, the difficulﬁieéibf the Véneiiano model are

essentially those which élso beset classical Reggé—pole models.
Nevertheless,;an attractive phenomeﬁological:feature of the model is
ﬁhat it doés'bffer a reasbnably UﬁiQﬁe definition'bf»the fofm of the
Regge-pole contribution to a given reapﬁion.- The Veneziano approach
‘specifies therrelation so;= 1/a"  and the presenée of all the nonsense
zeros in thg residue function, and it prédicts shrinkage characteristic
of a universal trajectory slope near unity. This aspect could be
exploited in a scheme which attributes thé empirical deviations frém
such a"simpie Regge-pole description to the effects of cuts and not to
complicatéd residue functions59 and/or fo random trajectory slopeé'
adjusted for Nature's whims. With ﬁhe.ReggéFpole structure giveﬁ by the
Venezilano formélism, it will be possible to test various models of

cuts without the customary ambiguity of the traditional Regge-pole
models. Cuts generafed from the absorption modelBh using input pole

residues similaf to those we just descfibed have been studied recently

with some encouraging successes.



-9hL- UCRL-18886

ACKNOWLEDGMENTS
We have benefitted from discussions with Professor Geoffrey
Chew and Professor David Jackson. One of us (E.L.B.) is grateful to
Geoffrey Chew for warm hospitality and to Dartmouth College for Faculty

Fellowship support.



-95- .. UCRL-18886

APPENDIX I

Kinematics and Notation

We collect and present in this Appendix oufexplicit definitions
of the various amplitude functions used in the text and their relation-
ships to measurable cross sections and resonance widths.

, . 5 . 5

. With reference to Fig. 1, we define s = (p +a)” = (p' +g')";

‘ \2 N2 : 2 2
t=(p-p) =(a-a)% and u=(p-9a)" = (p' -q) where

p(p') and q(q') are.the four-momenta ofuthe incident (outgoing) -

baryon and meson;frespectively, The S-matrix is given, with isospin

labels suppressed, as
S = 8 + 1(21)h 6(p' +q -p-gq) T (A-1)
£,i £,i ‘ TS £,i

with

T(p'5a"; p,a) = ulp')[A +3(d + d")B] ulp) . - (a-2)
The functions A(s,t,u) and B(s,t,u) are free of kinematical singu-
larities; our Dirac spinor amplitudes satisfy (g - M) u(p) = O and
u(p) ﬁ(p) = 2M. In this paper, M denotes the baryon mass and p the

meson mass. We define the kinematicai gquantity

I O S VIO 1 I )

which is the energy of the baryon in the center-of-mass of the s channei;

the corresponding E  is obtained from (A-3) by replacing s with u.

, : 1 o 1
We Wlll also use vy = E(S -u)-and w = (s - M+ uT)/12(s)2]
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(1) Partial wave analysis

The usual fis functions are

(B, + M)
f = —— {A'+ [(s)® - M]B} , (A-La)
8x(s)® : ' -

1
2

and

(Eé - M) 1 v
—=—— {-A + [(s)® + M]B} . (A-hpb)
8r(s)e

—y
|

In terms of these functions, partial wave amplitudes associated with a
particular total angular momentum, J, and parity, P = - (—l)L, are given
by

, +1

1 s ‘~ S :

5 dz [£," P (z) + £, Py ,(2)] ,  (&-5)

-1

where 2z is the cosine of the s~-channel scattering angle, given in

terms of s and t Dby
2
z = 14+ t/29° , , (A-6)
with

N P N R RN G VI (a-7)

. 1 - 1
Notice that fls[—(s)z]‘= - fgs[(s)z] and that
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i oL . '
aJ 1 [(s)2] = -ai_J 1[~(s)?], the usual MacDowell symmetry statement.
> = _5 .
. : 1

the text, we ¥ (w)? AT -mgp = e vy
In» e text, we use (w)2] - = - L{u)s - MIB = E_+M) 1 u

BN

(2) Resonance widths

.Near a resonance of‘mass, MR; total width, I'; and elastic

width, ~reé,-
T /4. ' _
aJ(S) N geﬂMR R. R . (A—S)
L . (MR) T s - IPMR
where qR‘vis obtained upon setting s =_M’R2 in (A—?).

. In the zero-total-width Veneziano model approach, the
“resonances" occur on the. real energy axis,sénd.thus the imaginary term
in the denominator of (A-8) vanishes. One may, nevertheless, expand

the expreséion,‘given by'the'Veneziano representatioh, for the left-hand

s expressions as the

side of (A-8) and identify the corresponding T,

"elastic widths" of the various pole terms.

(3) Differential cross sections
Several alternative forms may be given for the‘differential_
‘cross sections. It is tréditional'toAuse'éither
- do S

2 |
o R B I T )

°or, more commonly in Regge theory fits,.
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(M + E
do _ -2 N\ a 5
at (l uM2>, o 1-t/(uM2
| (A-10)
where
+ /(M)
A" = A+ “lab / B (A-11)

1 - t/(F)

and E, . = (s - W - pg)/(EM). In terms of the nonspin-flip amplitude,
A', the total cross section 1s gilven by
GT(S) = ’<im Av(s, t = O)>/plab‘ Because we write a Veneziano
representation for A and B, it is convenient to use (A-10) for
backward scattering, also, after replacing t by 2M2 + Bpg -5 - u.
Note, also, that the coefficienf of [B!2 in (A-10) is proportional to
sin2 @s, and therefore vanishes for both forward and backward
scattering.

For the convenience of those making comparisons between our
results and those of Barger and Cline,27 especially as regards the
backward data, we remark here that our reduced residue, Y(I)[(u)%],

given in Eq. (34) of the text may be expressed in terms of theirs

(see their Eq. (15)> by

Diw?) - 16 ———) Tt e, )
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where is, of course, the reduced residue function of Barger and

"¢
Cline. The quantity So is their scale factor, b 1is the trajectory:

slope, o = a(0) + bu, and the factor r(a + %)"'enters'bedause they keep

i) (o + %) factor from <}(a + %J>—l-

only the (a + >

(4) TIsospin conventions -

{a) N scattering

For pion-nucleon scattering, we express our results in terms
of the (+) amplitudes.

In terms of these, the amplitudes in the s channel for a state

I

of definite isospin, I, ‘AT, and B_', are.

RO INORS

b=
=
]

(A-1%a)

a3 ;,"A(+) a0 | o (A-130)

i . . - N
For n-p elastic scattering and for = p —>ﬂon in the s-channel, we

have

Aﬂ?%ﬁ?

S + A(-) ; v | - - (A-13c)

e i i
AT PTTE - ; ' | (A-134)

. | |
R A (A-13e) -
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The same algebraic equations hold for BS in terms of B(i). The
+ (-) amplitude is associated with a state of definite isospin

I, =0 (1) in the t channel. For u-channel scattering, the amplitudes

t

AﬁI for a state of definite isospin, I, are:

A(+) - EA(-)

=
=
i

; (A-1ka)

Au5Z2 NG RSO ~ (A-1kDb)

Again, the same algebraic equations hold for Bu in terms of B(i)}
However, in the definition of flu (or any other u-channel quantity)
the sign of B 1is the opposite of that appropriate in the s channel

amplitude. This is also true in KN scattering. ZExplicitly,

(5, + 1)
£ e St - ()

'8n(u)§

5 mp) . (A-15)

This should be contrasted with Eq. (A-La).
In order to make our normalization and sign convention State-

ments more explicit, we remark that at the nucleon pole position,

2 1

() - 1 ‘
B s,t, = (A-16
( R ¢ M2 - s ' ME -u )

Because there is no parity-partner for the nucleon, our A(t)(s,t,u)

amplitudes have no pole at the nucleon position.
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(b) XN scattering

The expressions for the experimental amplitudes in terms of

our s-channel states of definite isospin are:

S a1 (0) (1),
A(Kp —»Kp) = F (A +A )
(a-17a)
-y - L, 0, , @, |
AJKprn)f 2(%wf¢A$.)  3
in the u;channel,
,+ + (1
A(Kp -K'p) = Au( ) .
(A-170)
s (K k%) = Loa (0, (D)y
Au(K n -Kp) = 2(_Au' .+ A, Y.
The .é-u croséing fofmula is
, | Ty
, (© L3 A (@
u 2 2 ©s : _
| - L | . - (A-18)
(1) 1 1 (1)
Au 2 2 AS’ :
\ /
In Table.III, the isospin conVention is such that
- - P! W A2 ’
A(Kp »Kp) = & +aY+4aP +a R _ (A-19)

normalizes the four t-channel amplitudes cdrreSponding to the féur

isospin - G parity combinations (0,+), (0,-), (1,+), (1,-), respectively.
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APPENDIX II

Description of the Fits Displayed in Figure 2

In Fig. 2, two fits to the x"p elastic differential cross-
section are presented.6l The parameters of the fits were actually
obtained from a simultanéoﬁs minimum _xg' fit to all available ﬁ+p
and ﬁ-p elastic as well as n_p —anon data above.the lab momentum
5 GeV/c and in the -t interval 0 < [t| <1 (GeV/c)e. Data on

'polarization,A do/dt, and Re/Im were used. For both fits,

°TOTAL’
the P, P', p, and p' Regge poles were employed, and their residue
funétions were parameterized'staidly, as in the paper of Fox and

59 In the context of t-channel helicity amplitudes, the

Sertorio.
reduced residue functions were written és linear functions of t,
_permitting, for instance, the P’ residue to develop a zero in the
physical regidﬁ. Theée are "classical" Regge-pole model fits: the
several trajectory intercepts and residue parameters were varied inde-

pendently in achieving the best fits.

The distinction between the two fits is basically that in

Fig. 2(a), The Pomeranchuk trajectory has slope 0.7, as recommended by'

Dikmen,ls'whereas in Fig. 2(b) its slope is 0.3, as in Rarita et a.l.‘ll‘L

As explained in the text, the ébsence of shrinkage in the data is
obtéined in (a) through the vanishing of the P' residue at t = —0;2
(GeV/c)a. The x2 for fit (b) is somewhat smaller than that for (a):
400 vs 435 on the U450 elastic scattering points. (These X2 values
are actually artifically reduced because the errors on the lower energy
ddta points were increased62 in the fit to simulate neglected lower-

lying trajectories.)
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We feel thét'neither'fit should be acceﬁted ﬁnériﬁically
outside the range [|t| < 0.5 (GeV/c)Q BecauSe like fits do not work
successfully in pp scattering for ;t > O.5'(GeV/c)2, over-a similar
energy range. (See our comment in Section IV—B.) If, gs a consequence,
~ one restricts attention to the smaller t range (]t] <. 0.5 (GeV/é)%),
the errors in the defermination of the Pomeranchuk trajectoryﬂs slope
grow; undoubtedly, avslope df i-is consistent with the fit (a) and a
slope of 0 with the Fit (v).

A second note of caution rglates to FESR results. The fits

3

given do not feprdducé well the FESR resulté, ‘which haQe‘the rather
low cutoff (s)%'z 2.19 (GeV)E. The disprépancy would disappear,
 however, if the largér._t vaiues (|t] > 0.5 (GeV/c)g) were ﬁegleéted.

| The outcome of the expliéit Veneziano model fits to KN
scaftering, deécribed in Section III, also sheds some light on .the high;i
slope Pomeraﬁchukon fit. As will be recélled,-in the .KN -situation,
the residue functions for the P' and w Reggefpoles did not naturélly
have the.cross—over zero.‘ Thié result teﬁds to support the pérticular
alternétive, discussed in Section II-A, vi'in which the residue of the
P' Regge pole vanishes at t ~ -0.6 (GeV/c)gand in which the zero at
t =~ -0.2 (GeV/c)2 is achieved only as 2 result of the mixture of the
P' plus the absofption cuts, Whicﬁ>remoVe the‘low pértial waves. The
Sﬁggestion is, therefore, that.the P' used in the fité of this.
-Appendix is not really a simple pole. However, left unaltefed is our

basic contention that the 7N elastic data admits a good fit with a

Pomeranchuk trajectory of high slope.
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Dikmen has given fits to KN and pp scattering'using a
Pomeranchukon of high slope.65 His results are difficult to interpret
within our framework, however, until a procedure is devised for removing
the unobserved zero at t = -0.6 (GeV/c)2 from the amplitude with the

w gquantum numbers. See Fig. 1k aﬁd Section III-Ekon this point.

With respect to the point about removing unobserved zerosvfrom
ampiitudes, Igi6 has suggested that the corresponding Veneziano model
prediction of zero cross-section in N CEX at t = -0.6 (GeV/c)-2
will be rendered compatible with the data if nonasymptotic terms are
retained. He has in mind employing the terms in his Veneziano expansion
which fall like s_l iﬁ comparison with those of the leading Regge-
"pole. However, there is evidence from (ac/dt(K'p elastic) - do/dt
(K'p elastici), (éq/dt (pp elastic) - do/dt (pp elastici),
do/dt (YW — x°N), and both the polarization and do/dt data on
1P — x°n that the energy dependence in the dip region does not differ

appreciably from that expected of the leading pole.6u
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Table I. We list in Table I the lowest values of the integers
m, n, and 4 for the typical term given in expression (6) of
-the text. Here, B - M_'signifies‘that.the term in question

' contributes asymﬁtotigélly to léading order.inwboth the s

on‘('t)‘

and the t channels (i.e., as . s in A and as

ot ‘ i | Ay

s ~in B when s - w® at flxed. t, and as 't,

in either A or B .when t ;yw ,at fixed sj. ‘The type
(B -1) - M is asymptotic ét fixed t, s — oo, but down by |
l/t for fixéd s, 't -—s®. The othe? térms of
" these types afe found‘by incremepting'the 1is£ed m, n, and

£ by the saﬁe‘integer. All terms of the (s,t) ﬁvarietyv
vanish exﬁoneﬁfially for s - .af fixed u. |

The (u,t) terms are handled similarly and, for x-N

‘scattering, prescribed from these (s,t) terms by crossing.
) T : -

symmetry, Eqs. (1) and (2).

| (s, t) Terms

Type. Baryon m | Meson £ n
B -M o) 1 1
(B -1)-M I 1 2 B amplitude
. B-(M-1) 0 2 2
B-M 1 1 1
(B-1)-M 2 ' 1 2 A amplitude
B-M-1) { 0 1 |
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Table IT. The asymptotic properties of the (s,u) terms expression-
(7) of the text, are given for the lowest values of m, n, and £.
These have the same structure for A(s,t,u). and B(s,t,u). Here,

B - B signifies that the term contributes asymptotically to leading
order both gé s - at fixed u and as ‘u s at fixed s;

oy (u) A
€.g., as s as s -, for fixed u. The type B - (B - 1)
is asymptotic at fixed s, u - «, but down by l/sA for fixed u,
s »wo. For (s,u) type terms, fixed t 1limits are exponentially .
vaniéhingfv Other terms with the same asymptotic properties as those

listéd are found by incrementing the listed m, £, and n by the same

integer.

.(s, u) Terms

Type m(s) £(u) | n

B-(B-1) 0 1 1
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Table ITI. Listed are the values of the coefficients 0(1) from the
dptical theorem expressidn appropriate to the various elastic

amplitudes; with s in (GeV)", Opopar, 1P millibarms is given by:

03895 1 ) (1) 70 (31 r Gy

Thé'indéx"(i) ‘labels the Regge poles P, P', w, p, and A ' T(l)

23
denotes the siénatufe, and a(i) ié’thewt}éjéétory‘intercept at

t = 0. In meson-baryon sCattering,"d(l) =2M aj(i) at t = 0.

{
(See'Eq. (21) of the text for the definition of = ol .) 1In Tables
IIIQA'through III-C, the intercepts of the last foqr poles were

- fixed to be equal, and only the coefficients, o(i), were. varied.
The qﬁantities in Table ITI-D were obtained by allowing the inter-

2

cepts to vary also. The X° on the four fits was 298, 231, 242,

and 198, respectively, on 231 data points. Data on and

" OporaL
on the ratio Re/Im of the t =0 amplitude were used.65' The o
and A2 couplings to NN -are not.listed because they are very
poorly determined!\ The wx couplingsvfor P and P' have been
‘determined by factbrization afguments._ Table IIT-E pfesents the

value of the ratio 4/a', at t = O, where A ana @' are

defined in Eq. (20) of the text.
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Table III (Continued-1).

Pole | Intercept | '. 'a(i)
«P =P |KD KD|DP oD |nn s
P 0.99 -19.4 -15.4 -3%.3 -11.%
P! 0.4 -3%.3 -14.8 -75.2 -1h.7
A w 0.4 0.0 21.3 65 . 4 0.0
0 0.k 10.1 6.2 - -
A, 0.4 0.0 -4 L - 0.0
P 1.0 -17.2 -1uL1 -30.1 -9.77
P) 0.5 -28.9 -12.5 -54.8 -15.2
B w 0.5 0.0 12.8 39,4 0.0
P 0.5 6.1 3.7 - -
A, 0.5 0.0 2.6 - 0.0
i P 1.0 -14.9 -12.7 -27.1 -8.1
P! 0.6 -25.6 -10.5 -hli2 |} -16.0
C w 0.6 0.0 8.0 24.0 0.0
o) 0.6 3.9 2.3 - -
A, 0.6 0.0 -1}7 - 0.0
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Table IIT (Continued-2).

Pole | Intercept R | N cy( i)
1P >0 PlKD-KDIDPD PP |n —on o
P 1.01 -15.2 -12.7 | -2%6.0 | . -8.9
P 0.59 -25.9 | -l2.2 | -52.9 -12.7
D W 0.43 0.0 1 17.7 55.4 0.0
o | 0,59 Cohl - o
A, | 0.k0 0.0 | b5 - 0.0

Table TII-E

"~ Pole (b-/at)
P, P', or 0.0 ¢ 3.0
A, or o 15.0 « 30.0




Table IV. We list the positions of the zeros in the amplitudes A, B, and A'
prescribed by the angular functions associated with the various resonant

states. All values are in units of (GeV/c)g.

Table IVa. The values of t at the zero positions in - N elastic scattering.

A B A
P33(l256) -0. 4k - - 2.31 - - L.73 | -0.11 - - &
O
; Dl5(l680) -0.56 | -1.65 - 2.691 -0.66 1 - L.34 | -0.28 | -1.0 - '
P, (1950) | -0.52 | -1.b5 | -2.63 | 2.83| -0.63 -1.6 | 4.161-0.26 | -1.11 | -1.93
F35(l910) -0.6 | -1.48 - - -0.52 | -1.39 - -0.2 | =0.94 | -1.71
{
N(938) - - - - - - 0.0k { - - -
D13(1518) -0.4bh - - -0.k - - -0.17 | -0.64 - - §
' =
Fl5(1688) -0.k 1 -0.99 - -0.35 1 -0.9k - -0.14 i -0.64 | -1.16 - 5%
i o3
6y, (2190) | -0.61 | -1.7 | -2.69 1 -0.51 | -1.53 | -2.58 {-0.2 | -0.98 -2.06 | -2.92 § o




‘Table IV (Continued-1).

: Téble IVb. .The values of" t at the zefo.pdsitions:in' KIN-. elastic scattering.
A B Al

P15(1585) -0.38 - - 2.37 - - 4,67 { 0.06 - -
D15(1765) -0.45 { -1.53 | - 2.72 {=0.51"| - §.32 {-0.22 [<0.79 | -
Fy,(2030) § -0.48 | -1.33 | -2.5k | 2.89|-0.58 S1.45 8 b.15 [ -0.25 { -1.0 |-1.76
A(1116) - - - - - - 0.36 | . - - -
D03(152O) -0.12 - - -0.12'} - - -0.05 {-0.18 - -
FO5(18i5) -0.35 | -0.87 - -0.31} -0.84 - '-0;13 -0.57 § =1.03%’ -
GO7(2100) 043¢ -1.2 | <1.91 -o.3§. 1.1 {-1.85-; -0.15.. -0.71‘ ~1.48 | -2.09

-T1T-

' 9ggeT-TuoNn



Table IV (Continued-2).

Table IVe. The values of u at the zero positions in. N elastic scattering.
A B a
.P55(1256) 0.71 - - - - -2.0 0.38 - - -4 46
Dl5(168oj 0.64 0.5 - 1-0.35{ - [-3.71 0.001-0.73{ - 1{-5.35
F57(l950) 0.661% -0.52 -;.uu -0.37 | -1.33 -L.84 | -0.0Lk ; -0.85 41.71v -6.13
F55(l910) - 70.26 ~1.1h4 -0.35 -1.22 - -0.02 |} -0.8 { -1.53 -
N(938) - - - - - - 0.88{ - - -
D,,(1518) | -0.06 - - {-0.09} - - 0.1k} -0.33] - -
Fl5(l688) -0.07 | =0.66 - -0.11 | -0.7 - 0.1 | -0.hk2{ -0.92 -
Gl7(2190) -0.31 }-1.3 {-2.39 1 -0.42 |-1.4k7} -2.48} -0.08 | ~0.94 | -2.01}| -2.8

-cTtl-

9888 T-THON
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Table V. The values of the contributions at t = 0 to the amplitudes

A, B,fand A'.of the same resonances listed in Table IV. The

normalization is arbitrarily adjusted such that aLJ = +1 (or -1
_if.thé state is below threshold); _aLJ is defined in Eq. A-5.

Table Va. N elastic scattering

A " B A
, , | B - R B
P33(l256) 177 , 9 53
D15(168o) 275 -204 67
¥, (1950) 468 -238 | 104
F55(l910) 7-558 ' 309 76
N(938) 0 11210 - | - -13
Dl3(1518) -226 358 b1
F15(1688) . =koo RTTC R 68
Gl7(2190) -551 , 322 117
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Table V (Continued).

Table Vb. KN elastic scattering

A B A
P13(1385) 305 -808 =37
Dl5<l765) 352 -265 71
Fl7(2050) 529 -263 109
A(1116) -2h +13%2 -15
D03(1520) ~-728 1218 L
Fos(1815) -509 503 73
Go7(2100) -662 | 442 | 113
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Table VI. The partial wave ahalySis.of the resonance tower,
under the F17(2030), for two of the solutions presenteéd for
KN ééatteriﬁg in séction ITI. The kinematic factors have

been evaluated at the pole position predicted by the'

theoretical trajectories. Listed is Fel(MeV).
Solution (I) Solution (B)
v q TP+ FTP_ ' TP+ : TP_
0.5 - 5.7 | 8.9 2.0 | s2.5
‘ 1.5 2.7 8.3 | -18.3 -5.9
2.5 -0.% 9.0 5.7 5.0
3.5 0.2 - 8.9 | 2.2 29.9
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MA? + 1 (GeV)g.' This is indeed



33.

3L,
35.

36.

37

120~ UCRL-18886
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N+~
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. ‘ i ‘ + :
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2(+)
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K+p"séaftering similar to the one we gave for 'nN in Section II-D.
However, because the data are rather sparse at high energies, they

are forced to use lower energy data. They claim well-nigh perfect

agreement, but several sobering comments are in order. Firstly,

we demonstrated in Section II-D that a good fit is not obtainable

-in the x~p situation where the data'arevchh bettér’and where

the fit is far more constraiﬁed,'because only one trajectory

contributes. ~The résidue parameterization is also rather naive.

It leads‘to'pafity partner states of negative elastic width~on

the bﬁd - AT - trajectory. ‘A parameterization as simple'as the one

they used in the . Ty

case would give“pobr results for the

" SU(3) related o, - 4. Secohdly,'thé dsymptotic approximations

B ® |
they employ give results which differ by a factor of two from those
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FIGURE CAPTIONS
Scétfering diagram for mgson—baryon scattering; s = (p + q)g,
t=(p' -p)°, u-= (p' - q)? where p (p') and q (q') are
the four-vectors of the initial (final) baryon and meson,

respectively.

Fits to x"p elastic do/dt data, described in Appendix 2.

.The data points for neighboring energy values are separated

from each other by one decade. The total (P+P +p+p")
contribution is presented as an unadorned solid line ahd that
of the P alone as a solid line with x's. At the lowest
energy, the P’ qtrajectory confribntion is giyen in order to
show how its residué ze£5 moves as the P slope is altered.

In (&) the P has ﬁlope 0.7 andbiﬁ (b) -slope 0.3 (Gev/c)-g.
Two possible "Born" Regge pole structures in the‘amplitude

A" (so0lid line) with the dashed line fepresenting‘the effecti#e
result after secondary trajectory or cut contributions have
been included so as to obtain agreement with nature. Situation
(a) is favored by duality and (b) by factorization. Two
poésibilities.exist for the (b) case at larger f.; the-éecond
zero‘is sugzested by the spin?parify structure of s channel
resonances.

Reduced residue fuﬁction for the A% trajectory in -N

* scattering. The quantity is defined in Eds. (27) and (30)

of the text: The bracketed empirical values were extracted

from listed elastic widths (Ref. 25); the brackets show the
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I‘ Fig. 6.
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spread determined by varying the trajectory slope from 0.9 to
’ -2 : L .
1.0-(Gev) “ and the resonance position from M, + FTOT/M to
' he tab
MR TOT/A where MR and Iy 10T ‘are the tabulated (Ref 25)
resonance mass and total w1dths, respectlvely The x at

(u)2 = 0 denotes the value obtained from r~p backward elastic

- scattering fits, Ref. 27J The dashed curve was obtained using

K. Igi's parameterization (Ref. 6) of aN  scattering based

upon the Veneziano model. The dot-dashed curve (cubic) and the

- solid curve (o, = L zero) result from the parameterizations

N2

“discussed in Section II-D of the text, Egs{ (37) and (39),

fespectively.

Reduced residue function for thev Na trajectory in‘ ﬂNv
scattering. The descriptionliﬁ the caption for Fig. L applies
here also, Two backward seattering data points appéar,
reflecting the sign uncertainty of.the fits in Ref. 27.  The
dashed curve was coﬁputed'from“igi’s (Ref; 6) paraﬁeters;_note
that the parity partner.staﬁes in his:solution [(u)%’> 0]

will have negative elastic widths. The s0lid curve displays

-the fit obtained in this paper, as discussed in Section II-D:
" Reduced residue function’for the NY tra]ectory For the
' purposes of thls Dlot the unobserved Darlty vartner states of

- the Gl7 and D13 were assigned elastic widths ecual to

those of the observed 7P = +1 states. The meaning of the
curves is the same as for Fig. 5; see the caption of Fig. L

for the definition of the brackets.
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Reduced residue functioﬁ for the @1 - AY exchange degenerate
trajectory pair. The bracketed quantities are defined in the
caption to Fig. 4. The backward data point (x) comes from
Ref. L8; giKN/hn was taken to be 1h + 3. The dashed curve
was computed using the solution given by Inami, Ref. 6, and the
solid curve using the parameters of our Solution (B), giveﬁ in
Section IIIiD.

Reduced residue function for the ZB - 28 exchange degenerate
trajectory pﬁir. The bracketed quantities are defined in the
caption to Fig. 4. Parity partner states of the same elastic
width as the 6orrespondiﬁg observed states [(u)%i> 0] would
ha&e values of T[(u)é] < -10°. The bracketed values for the
P13(1385) were found frgﬁ SU5 applied to the A(122%8). As
discussed in the text the backward data point.is too uncertain
to 56 placed on the graph. The curves have the same meaning

as those in Fig. 7.

Reduced residue function for the %x - ZY exchange degenerate
trajectory pair. The bracketed quantities are defined in the
caption to Fig. 4. The data comes from Refs. 25 and 66;
gZKN/hn was taken to lie between O and 3.

The values of the effective «a in nip backward scattering,

obtained from fitting do/du, at various u values, to the form

2aeff—2

CA(s - t) . The systematic normalization errors on the

.

data were taken into account, as described in the text, Section

IT-D. We can only be ashamed of the ridiculously small error
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off which reflect the customary inapplicability

' of the normal laws of statistics to high ‘energy data. If, as

: might be true .in x p backward scattering, the data is

. 1
dominated by a single (u)® dependent trajectory, O pp
o 1 ’ : 1 - : 1
measures % {af (W)°] + al- (v)2]} = Re aof(u)2].

K'p backward scattering Ref. L6. The dashed curve is the

Solution (I), and the solid curve is the Solution (B), given

in Section IIT-D. The dot-dashed line denotes the Solution

(B), but calculated with the usual Regge asymptotic approxie
oo . .l_ N
mation (proportional to e 2) in ther A and B amplitudes,

(rather than the full Véneziano formulé); "The data are at

- lab momenta of (a) 1.61; (b) 1.79; (c) 2.33; (d) 2.76; -

v(e) 5.2 GeV/e.

‘Ko »K°n scattering Ref. Lhk. The data are at lab momenta

of (a) 7.1; (b) 12.3 GeV/c, The curves are defined in the

- caption for Fig. 11.

+ . ' : ‘ :
K n'—aKOp scattering, Ref. 45. The theoretical curves have
not been corrected for any deuterium effects. ‘We have not -

plotted the experimentalpoints-near the forward direction

where such corrections are dominaht. The data are at lab

momenta of (a) 0.35; (v) O.55; (¢) 0.64; () 0.97;5 (e) 1.36;

(f) 3 GeV/c. Only at 3 GeV have deuterium corrections been
applied to the experimental points. The curves are described

in the caption for Fiz. 11.
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Fig. 1bh. Ktp elastic scatteriﬁg, Ref. 51. Figure 1h(a) displays
the K p scattering data at 9.71 and 10 GeV/c. Figure 1k(b)
shows K+p at 9.8 GeV/c. Both curves give the theoretical
predictions for Kp (solid line) and"K\i) (dotted line)
scat‘tering obtained from superimposing a Pomeranchukon onto

Solution (B') as described in Section III-D.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.




TECHNICAL INFORMATION DIVISION
LAWRENCE RADIATION LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

"R i ey





