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Spinal NGF restores opioid sensitivity
in neuropathic rats: Possible role of
NGF as a regulator of CCK-induced

anti-opioid effects
Catherine M Cahill PhD1, Terence J Coderre PhD2,3,4
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CM Cahill, TJ Coderre.

Spinal NGF restores opioid sensitivity in neuropathic rats:

Possible role of NGF as a regulator of CCK-induced anti-

opioid effects.

Pain 2000;5(1):49-57.

The breadth of peripheral effects produced by nerve growth factor

(NGF) in nociceptive processing has been well documented. How-

ever, less is known about the functional significance of central

NGF in nociceptive transmission. The effect of NGF on the nerv-

ous system is dependent on the developmental stage. During the

prenatal developmental period, NGF is critical for survival of no-

ciceptors; in the postnatal period it regulates the expression of no-

ciceptor phenotype, and in the adult it contributes to pain following

an inflammatory insult. The implications for central NGF in the ex-

pression and regulation of spinal neuropeptides that are involved in

pain mechanisms are reviewed. Knowledge has been gained by

studies using peripheral nerve injury models that cause a depriva-

tion of central NGF. These models also give rise to the develop-

ment of pain syndromes, which encompass spontaneous pain,

hyperalgesia and allodynia, routinely referred to as neuropathic

pain. These models provide an approach for examining the contri-

bution of central NGF to nociceptive transmission. Chronic pain

emanating from a nerve injury is typically refractory to traditional

analgesics such as opioids. Recent evidence suggests that supple-

mentation of spinal NGF restores morphine-induced antinocicep-

tion in an animal model of neuropathic pain. This effect appears to

be mediated by alterations in spinal levels of cholecystokinin. The

authors hypothesize that NGF is critical in maintaining neuro-

chemical homeostasis in the spinal cord of nociceptive neurons,

and that supplementation may be beneficial in restoring and/or

maintaining opioid analgesia in chronic pain conditions resulting

from traumatic nerve injury.

Key Words: Allodynia; Cholecystokinin; Nerve growth factor;

Opiate; Pain

Le NGF spinal rétablit la sensibilité aux
opioïdes chez les rats neuropathiques : rôle
possible du NGF comme régulateur des effets
anti-opioïdes induits par la cholécystokinine
RÉSUMÉ : L’étendue des effets périphériques produits par le facteur
de croissance nerveuse (NGF) dans le processus nociceptif est bien
documentée. Cependant, la signification fonctionnelle du NGF central
dans la transmission nociceptive est moins connue. L’effet du NGF sur
le système nerveux dépend du stade de développement de ce système.
Pendant la période de développement prénatale, le NGF est essentiel à
la survie des nocicepteurs ; dans la période postnatale, il régule
l’expression du phénotype des nocicepteurs, et chez l’adulte, il
contribue à la douleur résultant d’une atteinte inflammatoire. Les
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Injury to the peripheral or central nervous system (CNS)

gives rise to the development of pain syndromes that usu-

ally include spontaneous pain, hyperalgesia and allodynia

(1,2), routinely referred to as neuropathic pain. Following

peripheral nerve injury in humans, neuropathic pain devel-

ops, including mechanical allodynia, defined as perception

of pain in response to a normally innocuous tactile stimulus

(3). Several animal models of neuropathic pain have been de-

veloped to investigate the mechanisms and pathologies that

precipitate chronic pain (4-6). The development of neuro-

pathic pain has been attributed to an increase in excitability, a

decrease in inhibition and structural reorganization of neu-

rons within the dorsal spinal cord (7) (Table 1). One of the

morphological changes that occurs following damage to a

peripheral nerve is the sprouting of myelinated cutaneous

A-beta fibres into lamina II of the dorsal spinal cord (8-12).

This creates close proximity between fibres that normally

mediate nonpainful mechanical information and primary af-

ferents that are involved in nociceptive transmission. In fact,

one study reported that the A fibres that sprout within the su-

perficial lamina make synaptic connections (11). It has been

hypothesized that this morphological change underlies the

expression of mechanical allodynia. One might speculate

that the activation of large afferent fibres could cause the de-

polarization of small diameter afferent nerve terminals, and

thus induce the release of transmitters and neuromodulators

involved in nociceptive transmission. Therefore, innocuous

mechanical stimuli could give rise to a painful response via

the new synaptic connections made between large and small

diameter afferent terminals within the superficial dorsal

horn. It is not known what triggers the morphological

change; however, there is a correlation between the reduction

in the retrograde supply of peripherally produced trophic fac-

tors (including nerve growth factor [NGF]) and nerve

injury-induced effects. Certainly, NGF is reduced in sensory

neurons following axotomy (13). We review evidence that

NGF can reverse some of the adverse effects produced by pe-

ripheral nerve injury.

The treatment of neuropathic pain is considered to be

highly contentious, but a review evaluated various existing

treatments (14). Generally, neuropathic pain states are unre-

sponsive to traditional analgesics such as opioids (15-17).

Several animal studies have confirmed clinical observations

that opioids have little or no therapeutic benefit in alleviating

neuropathic pain. Thus, in rats that exhibit nerve injury-

induced allodynia and hyperalgesia, intrathecal morphine

was found to be ineffective at increasing mechanical re-

sponse thresholds, or withdrawal latencies to radiant heat or

cold water (18-22). Various hypotheses have been formu-

lated to explain the lack of opioid effectiveness, including a re-

duction in the number of opioid receptors, and activation of

N-methyl-D-aspartate (NMDA) and/or cholecystokinin (CCK)

receptors.

CCK IN NOCICEPTION

CCK has been demonstrated to be an important modulator

within the mammalian nervous system, including having a

role in the transmission and modulation of nociceptive infor-

mation (23,24). The predominant form of CCK in the brain is

an eight-amino acid residue peptide (CCK
26-33

) that exists in

both sulphated and, to a lesser extent, desulphated forms.

Pharmacological studies have identified two major subtypes

of CCK receptors based on their ability to recognize sul-

phated or desulphated CCK (25,26). This classification was

confirmed by the recent cloning of both CCK-A and CCK-B

receptors (27). Anatomically, CCK and its receptors are pres-

ent in various areas of the CNS that are involved in nocicep-

tive processing. CCK mRNA (28,29) and peptides (30) have

been identified in small and medium sized dorsal root gan-
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TABLE 1
Neuronal and molecular mechanisms of neuropathic pain

Afferent nerve terminal

Release of local factors (cytokines, nerve growth factor)

Nerve sprouting

Increased sensitivity of neuronal sprouts to mechanical,
chemical and thermal stimuli

Dorsal root ganglia

Spontaneous activity

Increased innervation of A fibres by sympathetic terminals

Increased evoked activity

Spinal cord

Sprouting of large afferent terminals into ‘nociceptive
lamina’

Expansion of receptive fields

Changes in neuropeptide levels and their receptors

Central sensitization

implications du NGF central dans l’expression et dans la régulation des
neuropeptides spinaux qui sont impliqués dans les mécanismes de la
douleur sont passées en revue. Les connaissances se sont aussi
améliorées en procédant à des études utilisant des modèles de lésions
nerveuses périphériques qui entraînent une carence de NGF central. Ces
modèles entraînent aussi le développement de syndromes douloureux,
qui englobent la douleur spontanée, l’hyperalgie et l’allodynie,
communément appelés douleur neuropathique. Ces modèles fournissent
une approche pour étudier la contribution du NGF central à la
transmission nociceptive. Une douleur chronique provenant d’une
lésion nerveuse est typiquement réfractaire aux analgésiques classiques

comme les opioïdes. Des données récentes laissent à penser que
l’administration d’un supplément de NGF spinal rétablit
l’antinociception induite par la morphine dans un modèle animal de
douleur neuropathique. Cet effet semble être médié par des
modifications survenant dans les niveaux de cholécystokinine spinale.
Les auteurs émettent l’hypothèse que le NGF est essentiel au maintien de
l’homéostase neurochimique des neurones nociceptifs dans la moelle
épinière et que l’administration d’un supplément de NGF pourrait
permettre de rétablir et/ou de maintenir une analgésie opioïde dans les
cas de douleur chronique résultant d’une atteinte nerveuse d’origine
traumatique.
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glion (DRG) cells, although other studies using both in situ

hybridization (28,29) and immunocytochemical (31) tech-

niques have found very few DRG cells expressing CCK.

Others have claimed that CCK is not normally present in nor-

mal DRG cells in the rat (32,33). In the rat dorsal horn of the

spinal cord, numerous interneurons and descending fibres

contain CCK (29,34,35).

CCK differs from most other neuropeptides that modulate

nociceptive transmission in that it appears to act indirectly by

interaction with the opioid system. The hypothesis that CCK

may be an anti-opioid peptide is derived from studies demon-

strating that exogenous application of CCK attenuates the

analgesic effect of morphine and beta-endorphin (36,37).

This observation has since been confirmed by many reports

that used both behavioural and electrophysiological nocicep-

tive techniques. Under normal conditions, CCK causes a

marked inhibition of the antinociceptive effects of morphine

and selective mu opioid receptor agonists (38,39), and at-

tenuates morphine-induced inhibition of C fibre-evoked dis-

charges of dorsal horn nociceptive neurons (37). Endogenous

CCK tonically inhibits opioid-induced antinociception, and

selective CCK antagonists potentiate morphine-induced

antinociception (23,24,40-45). Furthermore, an antisense oli-

gonucleotide directed against the CCK-B receptor mRNA was

shown to enhance morphine-induced antinociception (46),

suggesting that CCK produces a tonic inhibition of morphine-

induced analgesic effects through an action at CCK-B recep-

tors. The results of a recent clinical study underscore the con-

tribution of CCK and its anti-opioid effects in chronic pain

states because the CCK receptor antagonist proglumide in-

creased the analgesic effect of morphine in some patients

with chronic benign pain (47).

Many studies have demonstrated that opioids enhance the

release of CCK through activation of opioid receptors on

CCK-containing neurons (Figure 1). Recently, morphine

was shown to evoke the release of CCK from cortical regions

via activation of a delta-opioid receptor (48). High concen-

trations of morphine or a delta-opioid receptor agonist,

(D-Ser8)-leucine enkephalin-Thr, were shown to enhance a

calcium-dependent release of CCK from the rat substantia

nigra (49), and [D-Ala2]deltorphin augmented CCK release

from dorsal horn lumbar spinal cord slices (50). This excita-

tory action of opioids via activation of the delta-opioid recep-

tor subtype has also been implicated in the development of

opioid tolerance.

CCK does not elicit hyperalgesic effects, nor do CCK an-

tagonists produce antinociception, indicating that endoge-

nous CCK has no tonic inhibition on endogenous opioids

(51). The mechanism by which CCK produces its anti-opioid

effect remains elusive, although many hypotheses have been

formulated. Within the CNS, the distribution of CCK paral-

lels that of the endogenous opioids within the pain process-

ing areas (52-55), providing anatomical evidence that a

functional relationship may exist between these two trans-

mitter systems. One of the possible mechanisms of CCK’s

anti-opioid activity was proposed to be consequential to

CCK producing an attenuation of the binding affinity of mu

opioid receptors for its ligands (56). It has also been proposed

that CCK’s anti-opioid effects involve interactions between

intracellular signalling cascades following activation of both

CCK and mu opioid receptors (57). Although anatomical

studies have yet to verify the coexistence of CCK-B and mu

opioid receptors on the same nerve terminal, CCK-B receptor

binding sites are present on capsaicin-sensitive small diameter

primary afferent neurons (58). Moreover, CCK reverses the ef-

fects of mu opioid agonists in a whole cell patch clamp record-

ing of acutely dissociated DRG neurons (59). Together, these

studies strongly suggest the colocalization of CCK-B and

opioid receptors, and the occurrence of CCK-opioid interac-

tions within the same primary afferent neuron.

It has been established that CCK receptor signalling oc-

curs predominantly via the phospholipase C-1,4,5-inositol

triphosphate/1,2-diacylglycerol (IP3/DAG)-protein kinase C

(PKC) pathway (27). CCK receptors activate pertussis toxin-

sensitive G proteins that are coupled to membrane-bound

phospholipase C, which in turn causes an increase in IP3 and

the subsequent release of intracellular calcium. DAG acti-

vates PKC, resulting in its translocation to the membrane,

where it can phosphorylate various proteins. It has been

shown that stimulation of PKC can result in the phosphoryla-

tion and desensitization of opioid receptors (60-62). It is

highly possible that this signalling cascade may underlie

CCK’s anti-opioid effects because it has recently been dem-

onstrated that local pretreatment with a PKC inhibitor, cal-

phostin C, abolished the inhibitory effects of CCK on

opioid-induced antinociception (63).

CCK INCREASES FOLLOWING NERVE INJURY

It was hypothesized that one of the possible reasons for the

relative refractory analgesic efficacy of opioids in neuro-

pathic pain may be an increase in CCK in the spinal cord.

Thus, the lack of morphine effectiveness in alleviating neuro-

pathic nociception may partially result from an increase in

Pain Res Manage Vol 5 No 1 Spring 2000 51
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Figure 1) Schematic representation of the interaction between cholecys-
tokinin (CCK) and the opioid system at the level of the spinal cord.
Chronic administration of morphine has been shown to increase endoge-
nous CCK via activation of the delta opioid receptor (OR). In turn, CCK
decreases the levels of endogenous enkephalins and activates CCK-B re-
ceptors to elicit an anti-opioid effect, resulting in the attenuation of
morphine-induced antinociception. Blockade of CCK-B receptors with
selective antagonists has been shown to attenuate the development of
tolerance to opioid-induced antinociception
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this anti-opioid peptide following peripheral nerve injury. In-

deed, intrathecal co-administration of a CCK antagonist and

morphine has been found to produce an antiallodynic effect

in nerve-injured rats, while intrathecal morphine alone was

without effect (64). Moreover, it was shown that CCK an-

tagonists could potentiate the antihyperalgesic effect of mor-

phine in nerve-injured rats, although this effect varied among

various animal models of neuropathic pain (65). Others have

demonstrated that systemic administration of a CCK-B an-

tagonist prevents the development of opioid insensitivity in

an animal model of peripheral neuropathy (66). In keeping

with the CCK hypothesis, in the flexor-reflex model of

spinalized rats, systemic morphine exhibited a reduced

antinociceptive potency in axotomized rats compared with

normal rats, and administration of a CCK-B antagonist was

found to potentiate the effect of morphine in this model (21).

It was suggested that the anti-opioid effect elicited by CCK

may be due to tonic inhibition of enkephalin release because

the enhanced effect of morphine with a CCK-B antagonist

was prevented by pretreatment with a selective delta-opioid

receptor antagonist (45,64). Supporting evidence was pro-

vided by another study that showed that the systemic ad-

ministration of a CCK-B receptor antagonist produced

antiallodynic effects that were naloxone reversible in a

model of chronic pain induced by a spinal cord lesion (67).

Changes in CCK levels have been shown to occur follow-

ing peripheral nerve injury, with a dramatic upregulation of

CCK-like material and CCK mRNA in the rat occurring after

sciatic nerve transection (29,68). In situ hybridization studies

have also shown a dramatic increase in the expression of

CCK-B receptor mRNA in rat DRG neurons after peripheral

nerve section (69) and in primary afferents after unilateral

section of the sciatic nerve (20). One of the mechanisms for

the increase in CCK following nerve injury may be the en-

hanced activity at NMDA receptors, because the activation

of NMDA receptors was found to elicit the release of CCK-

like immunoreactivity from rat cerebral cortex in vivo (70),

from cortical slices (71) and, more recently, from synato-

somes (72). These studies provide a rationale for the hy-

pothesis that the increase in the synthesis and release of CCK

from excitatory interneurons in the dorsal spinal cord follow-

ing peripheral nerve injury may impede opioid-induced

antinociception (73,74).

NGF IN NOCICEPTION

NGF has an established role in the survival, differentiation,

development and maintenance of phenotype for small diame-

ter, primary afferent neurons involved in nociceptive trans-

mission (75). Nociceptive neurons are generally thought to

express the NGF-selective trkA receptor. In the absence of

NGF, C and A-delta fibres are absent in sensory ganglia,

and their corresponding nerve endings are missing both in

the periphery and spinal cord (76,77). Overexpression of

NGF produces the opposite effect, resulting in the hypertro-

phy of small diameter, primary afferent neurons innervating

the skin (77-79), a condition that produces thermal hyperal-

gesia in the affected animal (80). The scope of NGF’s action

in establishing and maintaining nociceptors for normal pre-

and postnatal development is well documented (81).

The contribution of NGF to inflammatory hyperalgesia

was suggested to be mediated by its activation of high affinity

trkA receptors on mast cells and primary sensory neurons

(82). Peripherally produced NGF normally maintains the

sensitivity of nociceptive sensory neurons, but in some in-

flammatory states, an increase in NGF occurs in the skin (83).

The augmentation of NGF appears to be partly responsible

for the hyperalgesia and allodynia that typically accompany

such an insult. Thus, neutralization of NGF during inflamma-

tion with the use of either antibodies directed at NGF (84,85)

or trkA-immunoglobulin G immunoadhesion molecules for

NGF (86) attenuates hyperalgesia. Moreover, NGF is suffi-

cient to induce hyperalgesia because administration either

locally or systemically induces a decrease in thermal no-

ciceptive thresholds (85,87). Similarly, it was demonstrated

that NGF was necessary for the mechanical hyperalgesia

that ensues following an inflammatory insult (88). The pe-

ripheral and central mechanisms implicated in NGF-

induced hyperalgesia have been extensively reviewed (81).

NGF plays a role in the dynamic control of neuropeptide

levels in adult sensory neurons (89-91) and, therefore, may

contribute to inflammatory hyperalgesia by altering the re-

lease of peptides from sensory neurons. The role of periph-

eral NGF in nociception is demonstrated in studies showing

that anti-NGF or trkA fusion molecules attenuate Freund’s

adjuvant-induced increase in preprotachykinin A mRNA

(92), substance P and calcitonin gene-related peptide

(CGRP) (86,91).

ALTERATIONS IN NGF FOLLOWING

NERVE INJURY

Although NGF is not necessary for neuronal survival in

adults, it does appear to influence neuronal growth following

denervation induced by peripheral nerve damage. In sensory

systems, NGF is specifically taken up along peripheral and

central processes of sensory neurons and retrogradely trans-

ported to the cell body (93). The depletion of NGF in the spi-

nal dorsal horn following sciatic nerve axotomy (10) or

chronic constriction injury (12) is thought to precipitate col-

lateral sprouting of large diameter afferent fibres of laminae

III to V into lamina II of the spinal cord. In support of this

hypothesis, it was discovered that supplementation of spinal

NGF by continuous intrathecal infusion suppressed the sprout-

ing of these axon terminals into neighbouring denervated lam-

ina (94). Sciatic nerve transection was shown to decrease the

density of NGF binding sites on DRG neurons, and intrathecal

NGF infusion partially reversed this reduction but did not influ-

ence NGF binding to neurons with intact axons (95).

Studies have demonstrated that disruption of NGF trans-

port is correlated with changes in neuropeptide levels in the

spinal cord and DRG that occur following peripheral nerve

axotomy or constriction injury (95,96). Moreover, continu-

ous infusion of NGF to the proximal stump of a transected

sciatic nerve mitigates some of the morphological, biochemi-

cal and electrophysiological alterations in axotomized DRG

52 Pain Res Manage Vol 5 No 1 Spring 2000
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perikarya (97-102). Several studies have provided evidence

that NGF is involved in neural, anatomical and molecular

plasticity of primary afferents (103-106).

Although the occurrence of collateral sprouting and the

decrease in spinal NGF are accepted, the clinical relevance of

these events elicited in animal models of neuropathic pain is

unclear. However, a functional correlate is suggested in that

NGF supplementation attenuates injury-induced allodynia

and hyperalgesia (107,108). There is also evidence that NGF

may be neuroprotective to DRG neurons against drug- and

diabetes-induced neuropathies (109). Beneficial effects of NGF

supplementation have also been reported in alleviating neuro-

pathic pain, in that infusion of NGF directly on the sciatic nerve

prevents the development of thermal hyperalgesia and partially

blocks mechanical allodynia in a sciatic nerve constriction

model (110,111). However, local administration of anti-NGF

decreased the severity of autotomy and blocked collateral

sprouting, suggesting that neutralization of peripheral NGF

may also be advantageous in blocking neuropathic pain (111).

NGF REVERSES CCK-INDUCED

OPIOID INSENSITIVITY

As discussed above, many studies have demonstrated a de-

crease in NGF in the sciatic nerve and central terminals in

animal models of neuropathic pain (112). However, Verge

and colleagues (105) demonstrated that delayed chronic in-

trathecal administration of NGF counteracted sciatic nerve

constriction-induced changes in neuropeptide content, in-

cluding the injury-induced increase in CCK. The phenotypic

changes displayed within sensory neurons of the dorsal horn

can be pre-empted by supplementation with NGF (95,113-

115). Thus, nerve injury-induced increases in CCK may par-

tially mediate the lack of morphine effectiveness. We pro-

pose that supplementation of NGF may help to restore CCK

levels to preinjury levels, thus allowing morphine to elicit its

full antinociceptive actions. Moreover, other studies have

demonstrated that NGF can regulate CCK levels. Intraven-

tricular administration of NGF has been shown to decrease

CCK levels within the hypothalamus (115). This may explain

the observation in mice overexpressing NGF that there is an

enhanced efficacy of morphine following induction of ther-

mal hyperalgesia.

We have confirmed the observation that intrathecal mor-

phine is ineffective in increasing mechanical response

thresholds, latencies to radiant heat or sensitivity to cold wa-

ter in rats exhibiting nerve injury-induced allodynia and hy-

peralgesia (18-22). Nevertheless, delayed intrathecal NGF

infusion was beneficial in restoring morphine-induced anti-

hyperalgesic and antiallodynic effects indicative of neuro-

pathic pain (unpublished data). In the study by Cahill and

Coderre (unpublished data), delayed chronic intrathecal infu-

sion of NGF could not alleviate decreased nociceptive

thresholds in neuropathic rats, it only influenced morphine

sensitivity (Table 2). While the mechanism by which NGF

may regulate morphine antinociception in this model remains

elusive, we have implicated the potential relevance of CCK

as an important inhibitory modulator of opioid antinocicep-

tion in neuropathic pain states.

To validate further the hypothesis that endogenous spinal

NGF is important in maintaining opioid-induced antino-

ciception, we attempted to mimic the decreased effectiveness

of opioid antinociception that occurs in neuropathic pain

models by neutralizing endogenous levels of NGF with

chronic intrathecal infusion of antibodies directed against pu-

rified 2.5S NGF. A previous study (116) demonstrated that

changes in density and distribution of calcitonin gene-related

peptide could be manipulated by changes in endogenous lev-

els of NGF. Thus, chronic intrathecal anti-NGF treatment re-

sulted in altered expression of CGRP in the dorsal horn of rat

spinal cord (117). We recently discovered (unpublished data)

that treating rats with intrathecal anti-NGF had no significant

effect on morphine-induced antinociception compared with

that seen in control rats infused with immunoglobulin G

(IgG). However, whereas morphine-induced antinociception

was potentiated by pretreatment with an intrathecal CCK-B

receptor antagonist in anti-NGF-treated rats, there was no

significant effect in IgG-treated controls (Table 3). These re-

sults draw a positive correlation between a decrease in NGF

and CCK receptor antagonism restoring opioid antinocicep-

tion. It is tempting to suggest that endogenous NGF appears

to be important in maintaining the neuropeptide homeostasis,

Pain Res Manage Vol 5 No 1 Spring 2000 53
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TABLE 2
Percentage maximum possible effect (MPE) produced by
intrathecal morphine (20 µg) obtained on day 14 following
sciatic nerve constriction of nerve-injured animals

% MPE of intrathecal morphine (20 µg)
in neuropathic rats (day 16 after injury)

Stimulus Chronic spinal IgG Chronic spinal NGF

Thermal plantar test 12.5±2.80 35.2±4.50*

Cold water response
frequency

20.6±1.59 74.7±10.1**

Cold water response
duration

21.9±4.80 87.2±15.3**

50% Von Frey
threshold

26.1±3.86 59.4±10.3*

Values are means ± SEM (n = five to nine per group). Statistical analysis using a
paired t test revealed that mechanical response thresholds, and withdrawal la-
tencies to either cold or heat following intrathecal morphine in nerve growth
factor (NGF) -treated rats were significantly increased compared with
premorphine values. *P=0.05; **P=0.01. IgG Immunoglobulin G

TABLE 3

Percentage change in morphine-induced antinociception by
cholecystokinin (CCK)-B receptor antagonist

Immunoglobulin G Antinerve growth factor

8.3±0.72 84.8±10.9*

Percentage change in morphine (5 µg) -induced antinociception following pre-
treatment of intrathecal vehicle or CCK receptor antagonist (LY225910, 10 nmol)
in rats chronically infused for seven days with intrathecal immunoglobulin G or
antinerve growth factor (NGF) via osmotic minipumps. Statistical analysis using a
paired t test revealed that the percentage increase in antinociception elicited by
intrathecal morphine following LY225910 in anti-NGF treated rats was signifi-
cantly increased compared with that in IgG-treated rats. *P=0.05
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including CCK, that is required for maintaining opioid effec-

tiveness (Figure 2).

CONCLUSIONS

Many authors have attempted to understand the mechanisms

involved in the development and maintenance of chronic

pain. The ultimate goal of these authors is to facilitate the de-

velopment of new therapies for optimal pain treatment. Pain

is generated by a number of processes that are qualitatively

different, requiring multiple modalities for treatment.

Accordingly, opioids are often very effective for the manage-

ment of pain with an inflammatory origin, whereas opioids

have low efficacy or no effect on alleviating pain resulting

from nerve injuries. The upregulation of CCK that ensues

following nerve injury depresses the ability of endogenous

opioids to modulate nociceptive transmission, resulting in the

appearance of neuropathic pain syndromes and the reduction

of the effectiveness of exogenously administered opioids.

NGF may play a role in the central plasticity and sensitiza-

tion that occur following traumatic nerve injury. The low

amount of central NGF, due do the attenuation of its transport

to the CNS, forms part of the adaptive response that may in-

advertently lead to the development of chronic pain. Changes

in NGF may be related to the clinical phenomenon of opioid

insensitivity that occurs in chronic pain of neuropathic origin.

Nerve injury leads to complex changes in neuropeptide ex-

pression within primary afferents that correlate with changes

in their phenotype; these events, particularly increases in

CCK and its receptor, are thought to elicit neuropathic pain. It

must be kept in mind that there are considerable species and

strain differences in the reaction to neuronal damage (68).

Moreover, variations in peptide levels are evident in the

various animal models implemented for the induction of

neuropathic pain-like characteristics within a species strain.

Thus, clinically useful drugs for treating neuropathic pain

may need to be tailored to specific patient populations

where the pathology is well defined and symptoms have

been properly charted.

Consequently, it has been proposed that NGF may, at the

appropriate time, dose, site and mode of administration, pro-

vide prophylaxis and treatment in conditions that lead to

chronic pain (117). Although intrathecal NGF does not alter

neuropathic nociceptive behaviours, it does restore

antiallodynic and antihyperalgesic effects of morphine. We

propose that by normalizing the spinal levels of CCK, in-

trathecal administration of NGF may ameliorate the chronic

pain associated with traumatic nerve injury by re-

establishing the effectiveness of conventional opioid thera-

pies for pain management.
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Figure 2) Schematic representation of the changes that occur following
peripheral nerve injury. These changes include an increase in the levels
of cholecystokinin (CCK) and CCK-B receptors in dorsal root ganglia cells
and spinal cord. Alterations in the spinal levels of nerve growth factor
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pathic pain. The augmentation of spinal CCK and CCK-B receptors may
be the result of the attenuation of spinal NGF. Intrathecal infusion of NGF
has been shown to attenuate spinal CCK and reverse opioid insensitivity
in an animal model of neuropathic pain. DRG Dorsal root ganglion
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