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ABSTRACT: Silicone bottlebrush copolymers and networks derived from
cyclic carbosiloxanes are reported and shown to have enhanced properties
and recyclability compared with traditional dimethylsiloxane-based
materials. The preparation of these materials is enabled by the synthesis
of well-defined heterotelechelic macromonomers with Si−H and
norbornene chain ends via anionic ring-opening polymerization of the
hybrid carbosiloxane monomer 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclo-
pentane. These novel heterotelechelic α-Si−H/ω-norbornene macro-
monomers undergo efficient ring-opening metathesis copolymerization to
yield functional bottlebrush polymers with accurate control over molecular
weight and functional-group density. Si−H groups retained at the ends of
side-chains after ring-opening metathesis copolymerization allow for the
preparation of supersoft networks via hydrosilylation with cross-linkers
such as tetrakis[dimethyl(vinyl)silyl]orthosilicate. In contrast to traditional PDMS systems, the incorporation of poly(carbosiloxane)
side chains allows the resulting networks to be recycled back to the original monomer (>85% recovery) via depolymerization at
elevated temperatures (250 °C) in the presence of base catalysts (potassium hydroxide and tetramethylammonium hydroxide). The
recovered monomer was successfully repolymerized through anionic ring-opening polymerization with no decrease in structural
fidelity or activity. In summary, this combination of unique (macro)monomer design and bottlebrush architecture creates new
opportunities in sustainable practices by offering a robust, recyclable alternative to commercial silicone-based materials.

■ INTRODUCTION
Polysiloxanes, commonly known as silicones, are ubiquitous in
daily life, serving as key components in numerous commercial
products.1,2 The most common silicone, polydimethylsiloxane
(PDMS), is readily incorporated into cross-linked networks
using commercially available kits such as SYLGARD 184, which
are based on linear building blocks and robust catalysts.3−5 A
powerful and defining feature of this and other silicone-based
materials is the inorganic polymer backbone containing Si−O
bonds, which creates unique physical properties such as a low
glass-transition temperature (Tg), high optical transparency, low
surface tension, and good biocompatibility.6−9 Consequently,
silicones are used in a broad range of applications such as
coatings,8,10 photolithography,6−16 microfluidics,17−19 elec-
tronics,20−24 and medical devices.25−27

One strategy to broaden the potential applicability of silicones
is identifying new and/or improved properties by varying
macromolecular architecture.28−32 In particular, bottlebrush
polymers have received significant attention due to their unique
network properties that arise from a high density of polymeric
side chains attached to backbone repeat units while also
remaining synthetically accessible.33,34 For example, the
presence of such side chains suppresses entanglements and
results in supersoft properties (G′ < 100 kPa), even in the
absence of solvent.28,29,35,36 Because of its ubiquity, PDMS is a

common choice for the side-chain chemistry of bottlebrushes;
we and others have recently demonstrated the promise of these
systems30,37−40 in a variety of applications ranging from high-
sensitivity capacitive sensors38 to biological tissue mimics41,42

and efficient dielectric actuators.43,44

This widespread and growing prevalence of silicone-based
materials contrasts with the more limited literature on silicone
recycling and/or upcycling.45−47 Although PDMS itself may be
depolymerized with either base catalysis in the presence of heat
or fluoride catalysis, this process produces a complex mixture of
cyclic siloxane units (commonly referred to as D4, D5, and D6)
which are unsuitable for the anionic ring-opening polymer-
ization of well-defined PDMS due to their low ring strains
(Figure 1, top).48−53 As a result, the development of novel
monomers and synthesis strategies that allow for recycling or
upcycling of siloxane-containing network materials, coupled
with control over macromolecular architecture and properties,
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represents a significant opportunity for creating sustainable
silicone-based systems.

To investigate alternatives to PDMS, researchers have focused
on the polymer derived from a known but under-explored cyclic
carbosiloxane: poly(2,2,5,5-tetramethyl-2,5-disila-1-oxacyclo-
pentane) (PTMOSC).54 PTMOSC was first reported in the
1960s by Merker et al. in a series of papers55−57 with the polymer
being synthesized through a hydrosilylation reaction between
divinyltetramethyldisiloxane and tetramethyldisiloxane. Signifi-
cantly, Merker was able to show that this parent polymer could
be depolymerized under high temperatures with a base catalyst
to recover the five-membered ring monomer, 2,2,5,5-tetrameth-
yl-2,5-disila-1-oxacyclopentane (TMOSC).55,57 Subsequent
work by various groups demonstrated that this monomer can
be subjected to different ring-opening polymerization methods
(acid-catalyzed, base-catalyzed, anionic, and cationic) to yield
PTMOSC (Figure 1, bottom).58−62 Like PDMS, this alternative
carbosiloxane polymer exhibits a low glass-transition temper-
ature (Tg), high optical transparency, low surface tension, and

good biocompatibility.63−65 In a seminal 2022 paper, Bian and
McCarthy prepared networks based on linear PTMOSC and
demonstrated that these cross-linked materials are efficiently
recyclable to the cyclic carbosiloxane monomer in high yield.54

Here, inspired by the recyclability of PTMOSC and the
unique mechanical properties of bottlebrush networks, we
report a facile synthetic method for preparing PTMOSC
bottlebrush networks. As expected, these tailorable materials
were supersoft with plateau moduli ranging from 3 to 40 kPa, but
unlike PDMS analogues, PTMOSC networks are mechanically
robust and easily recycled back to monomer in high yield
(>85%). Recycled TMOSC is readily repolymerized into well-
defined, linear PTMOSC building blocks. In summary, we
explore herein the significant potential of carbosiloxane-based
PTMOSC derivatives as easily recyclable alternatives to PDMS
for use in architecturally complex materials such as bottlebrush
networks.

■ RESULTS AND DISCUSSION
Network Design and Synthesis. PTMOSC bottlebrush

networks were fabricated via a stepwise synthesis strategy that
allows for precise control over and rigorous characterization of
key bottlebrush parameters. Well-defined, linear PTMOSC
macromonomers were synthesized by anionic ring-opening
polymerization of the cyclic carbosiloxane initiated from either
n-butyl lithium or a novel silyl hydride (Si−H) initiator (Scheme
1). Both polymerizations were terminated with a norbornene
chlorosilane to yield heterotelechelic macromonomers compat-
ible with ring-opening metathesis polymerization, adapting a
previously published method.37 These macromonomers were
characterized via nuclear magnetic resonance (1H and 13C
NMR) spectroscopy and size-exclusion chromatography (SEC)
to determine their degree of polymerization (Nsc) and dispersity
(Đ) (Figure 2) with the macromonomer Nsc being accurately
controlled by varying the ratio of monomer to initiator. 1H NMR
and SEC confirmed that both heterotelechelic and monofunc-
tional macromonomers were prepared with Nsc = 8, 16, and 29
repeating units and Đ < 1.2 (Figures S1−S8).

Ring-opening metathesis copolymerization of the hetero-
telechelic and monofunctional macromonomers yielded bottle-
brush copolymers with controlled backbone degrees of
polymerization (Nbb) and numbers of Si−H cross-linking sites
(ncl, i.e., the number of Si−H side chains per bottlebrush

Figure 1. Comparison of the recycling potential of the siloxane PDMS
(top) and the cyclic carbosiloxane PTMOSC (bottom). PTMOSC is
recyclable to the original monomer, while the depolymerization of
PDMS results in a mixture of less reactive cyclic oligomers (D4, D5, and
D6) that are not suitable for anionic ring-opening polymerization
(AROP).

Scheme 1. Synthesis of Heterotelechelic PTMOSC (H−Si Macromonomer) (Top) and Monofunctional PTMOSC (Butyl
Macromonomer) (Bottom) Macromonomers via Anionic Ring-Opening Polymerization
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molecule, Scheme 2). This allows Nbb to be tuned by simply
varying the ratio of macromonomer to Grubbs catalyst (Nbb =
50−300), while ncl was modulated by varying the molar ratio of
the two macromonomers in the starting bottlebrush reaction (ncl
= 10−30). 1H NMR and SEC (Figures 2 and S9−S13) were
used to determine Nbb and Đ, with ncl being determined by
integrating the distinctive Si−H and butyl end groups observed
at 3.8 and 0.9 ppm, respectively, in the 1H NMR spectrum
(Figures S14 and S15). It should be noted that the functional
bottlebrush polymers were prepared on multigram scales and are
stable to storage under ambient conditions for extended periods
of time.

From these bottlebrush copolymers, networks were prepared
by a simple hydrosilylation reaction. Si−H moieties attached to
the PTMOSC bottlebrush side chains were reacted with
commercially available tetrakis[dimethyl(vinyl)silyl]-
orthosilicate (a 4-arm vinyl cross-linker) in the presence of
Karstedt’s catalyst with dimethyl maleate added as an inhibitor
to prevent immediate curing of the material. This allows the
formulation to be mixed well and degassed prior to curing.66 To
establish proper curing conditions for network formation, a
bottlebrush network was cured in situ on an oscillatory
rheometer. A mixture of functionalized bottlebrush, tetrafunc-
tional cross-linker, Karstedt’s catalyst, and dimethyl maleate was
loaded onto the rheometer at room temperature. As expected,
the mixture was a flowable liquid, as evidenced by the storage
modulus being less than the loss modulus (G′ < G″).

Figure 2.Normalized SEC traces of bottlebrush copolymers with varied
Nbb and a constant number of cross-linking sites (ncl = 10) prepared
from macromonomers with Nsc = 29.

Scheme 2. Synthesis of Bottlebrush Copolymers via Ring-Opening Metathesis Copolymerization and Network Formation via
Hydrosilylation (Top); Corresponding Chemical Structures of Macromonomers, Bottlebrush Copolymer, 4-Arm Vinyl
Crosslinker, and an Optical Image of the Resulting Bottlebrush Network (Bottom)
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Subsequent rapid heating of the solution to 100 °C yielded an
immediate increase in G′ and solidification (G′ > G″), followed
by a plateau in G′ within approximately 1.5 h (Figures 3 and
S18). To ensure complete cross-linking, all subsequent networks
were cured at 100 °C overnight.
Mechanical Characterization. To demonstrate control

over the material properties of PTMOSC bottlebrush networks,
rheometry experiments were performed on three separate series
of samples. Specifically, the low-frequency plateau modulus
Gx�which we define as the measured value of G′ at a frequency
of 0.01 rad/s�was found to be tunable between 3 and 40 kPa by
varying several key design parameters. Consistent with existing
bottlebrush literature,67,68 increasing the Nbb of PTMOSC
bottlebrushes resulted in a decreasing Gx (Figures 4 and S19). As
Nbb increases at constant ncl, Gx decreases due to a reduction in
cross-linking density. A similar result was observed by
decreasing ncl (Figure S20) and increasing Nsc (Figure S21).
We note that one sample (Nbb = 200, ncl = 10, Nsc = 29)�
denoted by the black circles in Figure 4�is present in all three
series of networks, serving as a convenient point of comparison.
Thus, the bottlebrush network architecture offers three design
features for easily tuning the plateau modulus of these materials.

Surprisingly, PTMOSC bottlebrush networks are consider-
ably more mechanically robust compared to PDMS analogues.
This effect is immediately evident upon qualitatively handling
the samples and was further quantified by cyclic compression
testing. For comparison purposes, we prepared similar PDMS
bottlebrush networks (NBB = 200, ncl = 10, Nsc = 64) using
methods described in our prior work (Figures S22−S25).37 It
should be noted that these PDMS bottlebrush networks have the
same side-chain molecular weight as the PTMOSC bottlebrush
networks (Nbb = 200, ncl = 10, Nsc = 29). Furthermore, the
plateau modulus of the PDMS network (Gx = 6 kPa) is
comparable to that of the PTMOSC network (Gx = 4 kPa)
(Figure S26). To highlight the improved mechanical properties
of PTMOSC-based materials, networks were subjected to three
cycles of compression (to a gap of 1 mm between rheometer
plates) and retraction. The PTMOSC bottlebrush network
remained intact after three compressions with no indication of
damage (Figure 5, top). Conversely, the PDMS bottlebrush
fractured during the first compression, a distinction that
becomes more visually apparent during the second compression

(Figure 5, bottom). Complete recordings of these compression
experiments are available as Videos S1 and S2. In a similar
manner, we also prepared a traditional network based on linear
PDMS building blocks. As expected, unlike the bottlebrush
networks, this linear network did not possess supersoft
mechanical properties, exhibiting a plateau modulus (Gx = 103
kPa) two orders of magnitude larger than the bottlebrush
networks (Figure S26).
Recycling and Repolymerization. As envisaged, all of the

PTMOSC materials (macromonomers, bottlebrushes, and
networks) display significant potential as recyclable materials
(Figure 6a), undergoing triggered depolymerization in the
presence of heat and base to yield pure TMOSC monomer in
excellent yield. Linear macromonomers and bottlebrushes were
observed to cleanly degrade to monomer at 250 °C in the
presence of potassium hydroxide (KOH) over 2 h. The absence
of solvent in the degradation process is a major advantage and
allows the cyclic carbosiloxane monomer to be directly purified
by distillation in situ from the reaction mixture. As previously
noted by Bian and McCarthy,54 the degradation of networks

Figure 3. Curing profile of a PTMOSC bottlebrush network via
hydrosilylation. Oscillatory rheometry indicates complete curing within
1.5 h after heating to 100 °C.

Figure 4. Frequency sweeps for a series of PTMOSC bottlebrush
networks demonstrating the supersoft and tunable plateau moduli of
these materials (Gx = 3−40 kPa). This series of networks illustrates the
effect of changing the backbone degree of polymerization (Nbb = 50−
300) while holding the side-chain degree of polymerization (Nsc = 29)
and number of cross-linking sites (ncl = 10) constant.

Figure 5. Optical images of PTMOSC bottlebrush (top) and PDMS
bottlebrush (bottom) networks subjected to cyclic compression tests.
The PDMS bottlebrush network fractures upon compression unlike the
PTMOSC bottlebrush network, which remains intact after three
compression cycles. The slight yellow tint of these materials is due to
residual Karstedt’s catalyst.
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(here, a bottlebrush) presents difficulties due to the limited
solubility and diffusion of KOH within a tightly cross-linked
structure. To address this challenge, a two-step depolymeriza-
tion strategy was developed to recycle bottlebrush networks into
TMOSC monomer. In this case, cross-linked networks were
initially immersed in a minimal amount of toluene, mixed with
KOH and a catalytic amount of tetramethylammonium
hydroxide, and heated to 120 °C. After 12 h, complete
dissolution of the cross-linked gel was observed with a
homogeneous solution being obtained. Analysis of this mixture
by 1H, 13C, and 29Si NMR spectroscopy combined with SEC
chromatography and gas chromatography−high-resolution
mass spectrometry (GC-HRMS) shows primarily the formation
of macrocyclic trimer of the carbosiloxane building block
(Figures S27−S30). Following solvent removal via vacuum
distillation, the residue was heated at 250 °C for 2 h, successfully
depolymerizing the trimer into the desired TMOSC monomer
with isolated yields of >85%. To better illustrate the ability to
recover pristine, usable TMOSC monomer, we prepared a
PTMOSC network containing a small amount of cadmium
sulfoselenide as a red pigment (Figure 6b). Following the initial
degradation of this network to give a red solution of trimers,
further degradation and distillation afforded the clear and
colorless cyclic carbosiloxane in high yield and purity. The purity
of this recycled monomer was highlighted by repolymerization
via anionic ring-opening polymerization with the same func-
tional Si−H initiator used previously, but in this case, the linear
chain was terminated with vinyl chlorosilane (Scheme 3).
Significantly, 1H NMR analysis revealed distinct resonances for
the Si−H (α−chain end) and vinyl end groups (ω−chain end)

at 3.8 and 5.7−6.2 ppm, respectively (Figures S31−S33). By
varying the monomer/initiator ratio with the recycled TMOSC
monomer, heterotelechelic PTMOSC linear polymers were
again successfully prepared with accurate control over
experimental molar-mass dispersity (Đ < 1.2) and degrees of
polymerization (37, 137, and 212) that compare favorably with
the theoretical values of 38, 140, and 210 (Figure S34). This
ability to recycle even complex cross-linked networks containing
additives back to high-purity monomers clearly illustrates the
recyclability and sustainability of PTMOSC-based materials.

■ CONCLUSIONS
In summary, novel PTMOSC bottlebrush networks were
demonstrated with enhanced properties and recyclability
compared to traditional PDMS systems. The synthesis of
these materials leverages a versatile cyclic carbosiloxane
monomer that allows for the controlled synthesis of hetero-
telechelic and monofunctional macromonomers, which undergo
efficient ring-opening metathesis polymerization to yield side-
chain-functionalized bottlebrush copolymers. These bottlebrush
building blocks containing Si−H groups can be efficiently cross-
linked via hydrosilylation with tetrakis[dimethyl(vinyl)silyl]-
orthosilicate as a tetrafunctional cross-linker. The plateau
modulus of these networks is readily tuned by varying
parameters such as Nbb, ncl, and Nsc of the starting bottlebrush
copolymer with values ranging from 3 to 40 kPa being readily
obtained. PTMSOC bottlebrush networks were demonstrated
to be considerably more robust than PDMS analogues, showing
minimal damage after repeated compression compared to the
catastrophic failure and fracture observed with analogous similar
PDMS systems. By virtue of using a carbosiloxane monomer, all
of the PTMOSC materials�including, notably, the bottlebrush
networks�were successfully recycled back to high-purity
TMOSC monomer in excellent yield. This purity was clearly
illustrated by subsequent repolymerization to create well-
controlled linear polymers via anionic ring-opening polymer-
ization without any further purification. The inherent
recyclability and enhanced properties of carbosiloxane-based
materials like bottlebrush networks make PTMSOC a promising
candidate for increasing the performance and sustainability of
advanced silicones.

Figure 6. (a) All PTMOSC materials (linear macromonomers,
bottlebrush copolymers, and networks) can be recycled back to
TMOSC monomer. (b) Optical images of a dyed PTMOSC
bottlebrush network (left) and recovered TMOSC (right) highlight
the ability to regenerate pristine monomer even from architecturally
complex materials containing additives.

Scheme 3. Synthesis of Heterotelechelic PTMOSC from
Recycled TMOSC Monomer via Anionic Ring-Opening
Polymerizationa

aThis polymerization was initiated with the same functional Si−H
initiator but terminated with vinyl chlorosilane, showcasing the ability
to use recycled TMOSC to make new telechelic polymers.
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