
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
The Grothendieck Construction in Categorical Network Theory

Permalink
https://escholarship.org/uc/item/1w56q1b5

Author
Moeller, Joseph Patrick

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1w56q1b5
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

The Grothendieck Construction in Categorical Network Theory

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

by

Joseph Patrick Moeller

December 2020

Dissertation Committee:

Dr. John C. Baez, Chairperson
Dr. Wee Liang Gan
Dr. Carl Mautner

Copyright by
Joseph Patrick Moeller

2020

The Dissertation of Joseph Patrick Moeller is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

First of all, I owe all of my achievements to my wife, Paola. I couldn’t have gotten here

without my parents: Daniel, Andrea, Tonie, Maria, and Luis, or my siblings: Danielle,

Anthony, Samantha, David, and Luis.

I would like to thank my advisor, John Baez, for his support, dedication, and his

unique and brilliant style of advising. I could not have become the researcher I am under

another’s instruction. I would also like to thank Christina Vasilakopoulou, whose kindness,

energy, and expertise cultivated a deeper appreciation of category theory in me. My expe-

rience was also greatly enriched by my academic siblings: Daniel Cicala, Kenny Courser,

Brandon Coya, Jason Erbele, Jade Master, Franciscus Rebro, and Christian Williams, and

by my cohort: Justin Davis, Ethan Kowalenko, Derek Lowenberg, Michel Manrique, and

Michael Pierce.

I would like to thank the UCR math department. Professors from whom I learned

a ton of algebra, topology, and category theory include Julie Bergner, Vyjayanthi Chari,

Wee-Liang Gan, José Gonzalez, Jacob Greenstein, Carl Mautner, Reinhard Schultz, and

Steffano Vidussi. Special thanks goes to the department chair Yat-Sun Poon, as well as

Margarita Roman, Randy Morgan, and James Marberry, and many others who keep the

whole thing together.

The material in Chapter 2 consists of work from both Network models joint with

John Baez, John Foley, and Blake Pollard [BFMP20]. Chapter 3 consists of work done in

my paper Noncommutative network models [Moe20]. Chapter 4 arose from Network models

from Petri nets with catalysts joint with Baez and Foley [BFM19]. Chapter 5 consists of

iv

joint work with Christina Vasilakopoulou appearing in our paper Monoidal Grothendieck

construction [MV20]. Part of this work was performed with funding from a subcontract with

Metron Scientific Solutions working on DARPA’s Complex Adaptive System Composition

and Design Environment (CASCADE) project.

v

To Teresa Danielle Moeller.

vi

ABSTRACT OF THE DISSERTATION

The Grothendieck Construction in Categorical Network Theory

by

Joseph Patrick Moeller

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, December 2020

Dr. John C. Baez, Chairperson

In this thesis, we present a flexible framework for specifying and constructing operads

which are suited to reasoning about network construction. The data used to present these

operads is called a network model, a monoidal variant of Joyal’s combinatorial species. The

construction of the operad required that we develop a monoidal lift of the Grothendieck

construction. We then demonstrate how concepts like priority and dependency can be

represented in this framework. For the former, we generalize Green’s graph products of

groups to the context of universal algebra. For the latter, we examine the emergence of

monoidal fibrations from the presence of catalysts in Petri nets.

vii

Contents

1 Introduction 1

2 Network Models 13
2.1 Introduction . 13
2.2 One-Colored Network Models . 22
2.3 General Network Models . 31
2.4 Operads from Network Models . 42

3 Noncommutative Network Models 55
3.1 Introduction . 55
3.2 Graph Products . 61
3.3 Free Network Models . 77
3.4 Commitment Networks . 84

4 Petri Nets 87
4.1 Introduction . 87
4.2 Petri Nets . 91
4.3 Catalysts . 95
4.4 Premonoidal Categories . 106

5 Monoidal Grothendieck Construction 112
5.1 Introduction . 112
5.2 Monoidal Fibres and Monoidal Fibrations 116
5.3 Indexed Categories and Monoidal Structures 123
5.4 Two Monoidal Grothendieck Constructions 129
5.5 Summary of Structures . 134
5.6 The (Co)cartesian Case . 140
5.7 Examples . 149

A Monoidal Categories 163
A.1 Definitions . 163
A.2 Examples . 167

viii

A.3 Monoid Objects . 170
A.4 The Eckmann–Hilton Argument . 172
A.5 Characterizing (co)cartesian monoidal categories 173

B Monoidal 2-Categories and Pseudomonoids 181
B.1 Monoidal 2-Categories . 181
B.2 Pseudomonoids . 184

C Fibrations and Indexed Categories 189
C.1 Fibrations . 189
C.2 Indexed Categories . 193
C.3 The Grothendieck Construction . 195
C.4 Examples . 198

D Species and Operads 203
D.1 Combinatorial Species . 203
D.2 Operads . 205

Bibliography 211

ix

Chapter 1

Introduction

Search and Rescue

Imagine that you have a network of boats, planes, and drones tasked with rescuing

sailors who have fallen overboard in a hurricane. You want to be able to task these agents

to search certain areas for survivors in an intelligent way. You do not want to waste time

and resources by double searching some areas while other areas get neglected. Also, if one

of the searchers gets taken out by the storm, you must update the tasking so that other

agents can cover the areas which the downed agent has yet to search, as well as recording

that there is a new known person in need of rescue.

In 2015, DARPA launched a program called Complex Adaptive System Composi-

tion and Design Environment, or CASCADE. The goal of this program was to write software

that would be able to handle this sort of tasking of agents in a network in a flexible and

responsive way. The bulk of this thesis was developed while I was working on this project

with Metron Scientific Solutions Inc., developing a mathematically principled foundation

1

around which this software could be designed. John Baez, John Foley, Blake Pollard, and

I developed the theory of network models to address this challenge [BFMP20].

Network Operads

Large complex networks can be viewed as being built up from small simple pieces.

This sort of many-to-one composition is perfectly suited to being modeled using operads.

While a category can be described as a system of composition for a collection of arrows

which have a specified input type and a specified output type, an operad is a system of

composition for a collection of trees which have a specified family of input types and a

single specified output type.

7→ 7→

We use the word “operations” instead of “trees”, hence the name operad. Like categories,

operads were originally developed in algebraic topology [May72, BV73]. Also like categories,

operads have since found applications elsewhere, including physics and computer science

[MSS02, Mén15]. We include a review of the basics of operads needed for this thesis in

Appendix D.2.

In a network operad, the operations describe ways of sticking together a collection

of networks to form a new larger network. To get a network operad, we treat a network as

one of these operations and define the composition as overlaying a bunch of small networks

on top of a large base network. For example, in the following picture, we are considering

2

simple graphs as a sort of network. On the left, we are starting with a base network

consisting of nine nodes and four edges, and we are attempting to attach more edges by

overlaying three smaller graphs. The result of the operadic composition is on the right.

1 2

3

4 5

6 7

8 9

1 2

3

1 2

3 4

1 2

=
1 2

3

4 5

6 7

8 9

This example is fairly elementary, and it is probably not too difficult for someone

comfortable with the notions to define this operad. However, it is not just simple graphs that

one needs when talking about managing and tasking complex networks of various sorts of

agents with various forms of communication and capabilities. One could continue replicating

the procedure for constructing network operads for each type of network whenever needed,

but this is an inefficient strategy. Instead, we devised a general recipe for constructing such

an operad for a given network type, and a general method for specifying a network type in

an efficient way, using what we call a network model. All of this is done in the language of

category theory, so we also have a theory of how morphisms between network models give

morphisms between their operads.

3

Constructing Network Operads

There is a well-known trick for extracting an operad from any symmetric monoidal

category. An operation in the operad is defined to be a morphism from a tensor product

of a finite family of objects to a single object. This is called the underlying operad of the

symmetric monoidal category. So now we have shifted the problem of defining an operad

where the operations are networks to defining a symmetric monoidal category where the

morphisms are networks. To achieve this, we can use the famous Grothendieck construc-

tion—though we need to enhance it to suit our purposes.

Monoidal Grothendieck Construction

The Grothendieck construction is a well-known trick for turning a family of cate-

gories indexed by the objects of some other category into a single category in an intelligent

way [Gro71]. What we really would like is that morphisms in the indexing category trans-

late into morphisms in our total category between objects from the corresponding indices.

The classic example is the family of categories ModR of R-modules, indexed by the objects

of Ring, the category of rings. Sometimes, one would like to talk about a single category of

modules over all possible rings to study the interactions between such modules. The naive

thing to do would be to just take the coproduct, defining

Mod =
∐

R∈Ring
ModR.

However, in this category an R-module and an S-module would have no morphisms between

them. This runs counter to the goal of having a single category for reasoning about the

4

interactions of modules over potentially different rings. If f : R → S is a ring homomor-

phism, there is a way of turning S-modules into R-modules using f , called pullback. If M

is an S-module, m ∈M , and r ∈ R, pulling back M along f defines an R-module structure

on the underlying abelian group of M . We define the action of r ∈ R on m ∈ M by the

following formula.

r ·m = f(r) ·m

This construction turns out to give a functor

f∗ : ModS → ModR.

We should hope also that the data of these functors is included in the total category we

construct. Indeed, the Grothendieck construction accomplishes precisely this.

However, it is not simply a category that we need, but a symmetric monoidal

category. So we built an enhanced version of the Grothendieck construction, which takes

family of categories indexed by a symmetric monoidal category and constructs a symmetric

monoidal category [BFMP20]. Christina Vasilakopoulou and I extended this modification

to solve the monoidality problem in the Grothendieck correspondence [MV20].

These two steps constitute the construction of the desired network operad: we

start with a monoidal indexed category, use the monoidal Grothendieck construction to

produce a symmetric monoidal category, and then take its underlying operad. This leads

to another question though: what monoidal indexed categories should we feed into this

construction in order to produce network operads?

5

Network Models

The answer is that we should take a monoidal version of Joyal’s combinatorial

species [Joy81]. A combinatorial species is a functor F : FinBij → Set. One way of looking

at this is as a family of symmetric group actions, one for each natural number. Another

way of looking at it is as a particular type of indexed category, where there is a family of

discrete categories (sets) indexed by the natural numbers, and functors (functions) between

them corresponding to the morphisms in FinBij. So this is something to which we can apply

the Grothendieck construction. The resulting total category is a groupoid which has all the

elements in all the sets as the objects, and an isomorphism between these elements if they

are in the same orbit under the symmetric group action.

Recall our example of a network operad where an operation is a simple graph. To

build this, we can start with the species of simple graphs SG: FinBij → Set. We give this

the structure of a lax monoidal functor (FinBij,+)→ (Set,×) by equipping it with a natural

map SG(m) × SG(n) → SG(m + n) given by disjoint union. We include the data of the

overlaying of graphs as a monoid structure on the set SG(n) of simple graphs on n nodes.

The product of two graphs on n nodes is another graph on n nodes given by identifying

corresponding nodes, and including an edge wherever either of the original graphs had one.

So now we have a lax symmetric monoidal functor (SG,t) : (FinBij,+) → (Mon,×). We

call such a map a network model. When we take the Grothendieck construction of this, we

treat the monoids as one-object categories. By doing this, the resulting category has objects

given by finite sets, a morphism n→ n is given by a simple graph on n nodes, composition

overlays the graphs, and tensor sets them side by side.

6

Constructing Network Models

Network operads are constructed from network models. How do we get our hands

on some network models? We know about a few examples of network models: simple graphs,

directed graphs, multigraphs, colored vertices, etc. Ideally, we would have a (functorial)

way to generate network models from some simple description of what we want a network

to look like.

We can begin by examining the basic example: simple graphs. It consists of a

family of monoids SG(n) where the elements are simple graphs on n nodes, with symmetric

group actions which permute the nodes, and a “disjoint union” operation t : SG(m) ×

SG(n)→ SG(m+n). The level-0 and level-1 monoids are both trivial. The first interesting

one is level-2, where the monoid is isomorphic to the Boolean truth values with the “or”

operation. The rest of the monoids in this network model can be seen as built from SG(2).

A simple graph with n nodes has
(
n
2

)
places where it can either have or not have an edge. We

can define the monoid SG(n) to be the product of
(
n
2

)
copies of SG(1), indexed by distinct

pairs of nodes. This leads to the general construction: given a monoid M , let M(n) be the

monoid given by the product
(
n
2

)
copies of M . Then the collection of these monoids M is

a network model, where a network has an element of M between every pair of nodes, and

overlaying two networks simply requires performing the monoid operation at every pair of

nodes. This construction covers the example of simple graphs by design, but also includes

multigraphs, directed graphs, graphs with colored edges, and many other examples.

7

Noncommutative Network Models

Another property we wanted to be able to represent within the network operads

framework was forms of communication which had a built-in limitation on the number of

connections. This is a natural issue in the search and rescue domain problem [Moe20].

There is no natural way to decide which edges not to include when the limit of

connections is reached. This means that the network must have some extra data built into

it. In particular, it must remember the order in which the connections were added to each

node. For this, we need the edge components of the constituent monoids to not commute

with each other. Due to a variant of the Eckmann-Hilton argument, edge components of a

network model’s constituent monoid actually must commute with each other if they do not

share any of their nodes. This means the most we can ask for is that edge components of

the network model do not commute with each other when edges have a node in common.

We cannot simply take iterated products of the monoid as we did before because

the edge components of the resulting monoids always commute with each other. We also

cannot simply take coproducts because the edge components do not commute with each

other in way that are necessary for a network model. Therefore, we must have a mix

of products and coproducts depending on which edges share a node and which do not.

Specifically, if two edges share a node, then elements of the corresponding edge components

of the monoid must not commute with each other, and if they do not share a node, they

must commute with each other. Such a monoid can be constructed using graph products of

monoids, introduced for groups in Elisabeth Green’s thesis [Gre90]. The idea is to produce

a new monoid from a finite set of monoids by assigning them to the nodes in a graph, taking

8

the coproduct of them all, then imposing commutativity relations between elements coming

from monoids which had an edge between them in the graph.

What indexing graph should we use though? We want a copy of the monoid for

every possible edge. So our indexing graph should have
(
n
2

)
nodes, one for every subset of

cardinality 2. We want to impose commutativity between two edge components whenever

the corresponding edges do not share a node, so we add an edge for each pair of cardinality

2 subsets which have empty intersection. This is precisely the definition of what are called

the Kneser graphs! The first few non-empty ones are depicted below.

For a given monoid M , we thus define the corresponding network model to be the

graph product of M with itself indexed by the corresponding Kneser graph. In fact, this

construction gives the free network model on M , forming a left adjoint to the functor which

evaluates a network model at 2. This provides a solution to the problem of representing

degree limited networks in the language of network operads. This construction gives a

network operad where the networks are graphs such that every vertex has degree ≤ N , and

the network does not take an edge if this limit would be exceeded.

9

Petri Nets with Catalysts

Network models are also able to describe scenarios where there is an agent or

agents that can manipulate and transport resources within the network [BFM19]. Baez,

Foley, and I use a simple structure called a Petri net to represent resources and processes

that transform them [BB18]. A Petri net can be drawn as a directed graph with vertices of

two kinds: places or species, which we draw as yellow circles below, and transitions, which

we draw as blue squares:

Petri nets are intended to model resources in a network of processes. Sometimes, we repre-

sent the resources by a finite number of tokens in each place:

•

••

This is called a marking. We can then “run” the Petri net by repeatedly changing the

marking using the transitions. For example, the above marking can change to this:

•
•

and then this:

••

•

Thus, the places represent different types of resource, and the transitions describe ways that

one collection of resources of specified types can turn into another such collection.

An agent might pick up a box and carry it over to a truck, and then drive the

truck over to a new warehouse, and then unload the box. In this scenario, the gasoline in

10

the truck might be a resource that considered to be consumed by this process, but the agent

is not. This qualitative difference between the agent as a resource and the gasoline as a

resource leads to a quantitative difference. Specifically, the number of agents in this network

is never changing, but the number of gallons of gasoline is. What this means for the Petri

net model of this network is that there is no combination of transition firing that change

the number of agents. This gives us a fibration of the commutative monoidal category of

executions for the Petri net. However, unlike the monoidal fibrations described earlier, the

fibres here are only premonoidal in general, not quite monoidal. This gives an example of

a generalized network model, one where the monoids in the original definition are replaced

with categories.

Outline of the Thesis

I begin by laying out the theory of network models and network operads in Chap-

ter 2. Section 2.2 and Section 2.3 contain basic definitions and examples. The construction

of a network operad from a network model and several examples of algebras of network

operads are given in Section 2.4.

In Chapter 3, more constructions of network models are given. The construction

of free network models from a given monoid is detailed in Section 3.3. This depends on a

generalization of Green’s graph products given in Section 3.2. In section 3.4, an example of

an algebra for a noncommutative network model arising from limitations on communication

networks is given.

11

Chapter 4 discusses the construction of network models from Petri nets with cat-

alysts. In Section 4.2, the basic notions for the categorical treatment of Petri nets are

recalled. Section 4.3 explains what it means for a Petri net to have catalysts. Section 4.4

describes how catalysts induce a premonoidal fibration on the category of executions, and

explain how this gives an example of a generalized network model.

I finish with a self-contained treatment of the monoidal Grothendieck construction

in Chapter 5. As the theoretical underpinning of the theory of network models, it is the

most technically dense, and thus saved for the most enduring of readers. Section 5.2 and

Section 5.3 describe monoidal fibrations and indexed categories. Section 5.4 details the

corresponding Grothendieck constructions for each monoidal variant. Section 5.6 discusses

the special case of when the base category is co/cartesian. In Section 5.5, we give a nuts-and-

bolts description of the monoidal structures constructed in various scenarios. Section 5.7

demonstrates the potential usefulness of the construction with examples from categorical

algebra and dynamical systems.

I wanted to include my own explanations and several references for preliminary ma-

terials, but did not want this to clutter the primary narrative of the thesis. I have included

much of this in several appendices. I discuss some of the basic theory of monoidal categories

in Appendix A; monoidal 2-categories and Gray monoids in Appendix B; fibrations, indexed

categories, and the Grothendieck construction in Appendix C; and combinatorial species

and operads in Appendix D.

12

Chapter 2

Network Models

2.1 Introduction

In this chapter, we study operads suited for designing networks. These could be

networks where the vertices represent fixed or moving agents and the edges represent com-

munication channels. More generally, they could be networks where the vertices represent

entities of various types, and the edges represent relationships between these entities, e.g.

that one agent is committed to take some action involving the other. The work done is

this chapter arose from an example where the vertices represent planes, boats and drones

involved in a search and rescue mission in the Caribbean [BFMP16, BFMP17]. However,

even for this one example, we want a flexible formalism that can handle networks of many

kinds, described at a level of detail that the user is free to adjust.

To achieve this flexibility, we introduce a general concept of network model. Simply

put, a network model is a kind of network. Any network model gives an operad whose

operations are ways to build larger networks of this kind by gluing smaller ones. This

13

operad has a canonical algebra where the operations act to assemble networks of the given

kind. But it also has other algebras, where it acts to assemble networks of this kind equipped

with extra structure and properties. This flexibility is important in applications.

What exactly is a kind of network? At the crudest level, we can model networks

as simple graphs. If the vertices are agents of some sort and the edges represent commu-

nication channels, this means we allow at most one channel between any pair of agents.

However, simple graphs are too restrictive for many applications. If we allow multiple

communication channels between a pair of agents, we should replace simple graphs with

multigraphs. Alternatively, we may wish to allow directed channels, where the sender and

receiver have different capabilities: for example, signals may only be able to flow in one

direction. This requires replacing simple graphs with directed graphs. To combine these

features we could use directed multigraphs. It is also important to consider graphs with

colored vertices, to specify different types of agents, and colored edges, to specify different

types of channels. This leads us to colored directed multigraphs. All these are examples of

what we mean by a kind of network. Even more complicated kinds, such as hypergraphs

or Petri nets, are likely to become important as we proceed. Thus, instead of separately

studying all these kinds of networks, we introduce a unified notion that subsumes all these

variants: a network model. Namely, given a set C of vertex colors, a network model F is

a lax symmetric monoidal functor F : S(C)→ Cat, where S(C) is the free strict symmetric

monoidal category on C and Cat is the category of small categories, considered with its

cartesian monoidal structure. Unpacking this definition takes a little work. It simplifies in

the special case where F takes values in Mon, the category of monoids. It simplifies further

14

when C is a singleton, since then S(C) is the groupoid S, where objects are natural numbers

and morphisms from m to n are bijections σ : {1, . . . ,m} → {1, . . . , n}. If we impose both

these simplifying assumptions, we have what we call a one-colored network model: a

lax symmetric monoidal functor F : S→ Mon. As we shall see, the network model of simple

graphs is a one-colored network model, and so are many other motivating examples.

Joyal began an extensive study of functors F : S→ Set, which are now commonly

called species [Joy81, Joy86, BLL98]. Any type of extra structure that can be placed on

finite sets and transported along bijections defines a species if we take F (n) to be the set

of structures that can be placed on the set {1, . . . , n}. From this perspective, a one-colored

network model is a species with some extra operations.

This perspective is helpful for understanding what a one-colored network model

F : S→ Mon is actually like. If we call elements of F (n) networks with n vertices, then:

1. Since F (n) is a monoid, we can overlay two networks with the same number of

vertices and get a new one. We denote this operation by

∪ : F (n)× F (n)→ F (n).

For example:

∪ =

21

4 3

21

4 3

21

4 3

2. Since F is a functor, the group Sn acts on the monoid F (n). Thus, for each σ ∈ Sn,

we have a monoid automorphism that we call

σ : F (n)→ F (n).

15

For example, if σ = (2 3) ∈ S3, then

σ : 7→
21

3

21

3

3. Since F is lax monoidal, we have an operation

t : F (m)× F (n)→ F (m+ n)

We call this operation the disjoint union of networks. For example:

t =

21

3

21

4 3

54

7 6

21

3

The first two operations are present whenever we have a functor F : S→ Mon. The last two

are present whenever we have a lax symmetric monoidal functor F : S→ Set. When F is a

one-colored network model we have all three—and unpacking the definition further, we see

that they obey some equations, which we list in Theorem 2.3. For example, the interchange

law

(g ∪ g′) t (h ∪ h′) = (g t h) ∪ (g′ t h′)

holds whenever g, g′ ∈ F (m) and h, h′ ∈ F (n).

In Section 2.2 we study one-colored network models more formally, and give many

examples. In Section 2.2.1 we describe a systematic procedure for getting one-colored

network models from monoids. In Section 2.3 we study general network models and give

examples of these. In Section 2.3.1 we describe a category NetMod of network models, and

show that the procedure for getting network models from monoids is functorial. We also

16

make NetMod into a symmetric monoidal category, and give examples of how to build new

networks models by tensoring old ones.

Our main result is that any network model gives a typed operad, also known as

a colored operad or symmetric multicategory [Yau16]. A typed operad describes ways of

sticking together things of various types to get new things of various types. An algebra of

the operad gives a particular specification of these things and the results of sticking them

together. We review the definitions of operads and their algebras in Appendix D.2. A bit

more precisely, a typed operad O has:

• a set T of types,

• sets of operations O(t1, ..., tn; t) where ti, t ∈ T ,

• ways to compose any operation

f ∈ O(t1, . . . , tn; t)

with operations

gi ∈ O(ti1, . . . , tiki ; ti) (1 ≤ i ≤ n)

to obtain an operation

f ◦ (g1, . . . , gn) ∈ O(t1i, . . . , t1k1 , . . . , tn1, . . . tnkn ; t),

• and ways to permute the arguments of operations,

which obey some rules [Yau16]. An algebra A of O specifies a set A(t) for each type t ∈ T

such that the operations of O act on these sets. Thus, it has:

17

• for each type t ∈ T , a set A(t) of things of type t,

• ways to apply any operation

f ∈ O(t1, . . . , tn; t)

to things

ai ∈ A(ti) (1 ≤ i ≤ n)

to obtain a thing

α(f)(a1, . . . , an) ∈ A(t).

Again, we demand that some rules hold [Yau16].

In Theorem 2.30 we describe the typed operad OF arising from a one-colored

network model F . The set of types is N, since we can think of ‘network with n vertices’ as

a type. The sets of operations are given as follows:

OF (n1, . . . , nk;n) =

Sn × F (n) if n1 + · · ·+ nk = n

∅ otherwise.

The key idea here is that we can overlay a network in F (n) on the disjoint union of networks

with n1, . . . , nk vertices and get a new network with n vertices as long as n1 + · · ·nk = n.

We can also permute the vertices; this accounts for the group Sn. But the most important

fact is that networks serve as operations to assemble networks, thanks to our ability to

overlay them.

Using this fact, we show in Example 2.32 that the operad OF has a canonical

algebra AF whose elements are simply networks of the kind described by F :

AF (n) = F (n).

18

In this algebra any operation

(σ, g) ∈ OF (n1, . . . , nk;n) = Sn × F (n)

acts on a k-tuple of networks

hi ∈ AF (ni) = F (ni) (1 ≤ i ≤ k)

to give the network

α(σ, g)(h1, . . . , hk) = g ∪ σ(h1 t · · · t hk) ∈ AF (n).

In other words, we first take the disjoint union of the networks hi, then permute their

vertices with σ, and then overlay the network g.

An example is in order, since the generality of the formalism may hide the simplic-

ity of the idea. The easiest example of our theory is the network model for simple graphs.

In Example 2.4 we describe a one-colored network model SG: S→ Mon such that SG(n) is

the collection of simple graphs with vertex set n = {1, . . . , n}. Such a simple graph is really

a collection of 2-element subsets of n, called edges. Thus, we may overlay simple graphs

g, g′ ∈ SG(n) by taking their union g ∪ g′. This operation makes SG(n) into a monoid.

Now consider an operation f ∈ OSG(3, 4, 2; 9). This is an element of S9 × SG(9):

a permutation of the set {1, . . . , 9} together with a simple graph having this set of vertices.

If we take the permutation to be the identity for simplicity, this operation is just a simple

19

graph g ∈ SG(9). We can draw an example as follows:

3

9

51

8

4

6

2

7

The dashed circles indicate that we are thinking of this simple graph as an element of

O(3, 4, 2; 9): an operation that can be used to assemble simple graphs with 3, 4, and 2

vertices, respectively, to produce one with 9 vertices.

Next let us see how this operation acts on the canonical algebra ASG, whose

elements are simple graphs. Suppose we have elements a1 ∈ ASG(3), a2 ∈ ASG(4) and

a3 ∈ ASG(2):

3

2

21

1

1

3

2

4

We can act on these by the operation f to obtain α(f)(a1, a2, a3) ∈ ASG(9). It looks like

20

this:

3

9

51

8

4

6

2

7

We have simply taken the disjoint union of a1, a2, and a3 and then overlaid g, obtaining a

simple graph with 9 vertices.

The canonical algebra is one of the simplest algebras of the operad OSG. We can

define many more interesting algebras for this operad. For example, we might wish to use

this operad to describe communication networks where the communicating entities have

locations and the communication channels have limits on their range. To include location

data, we can choose A(n) for n ∈ N to be the set of all graphs with n vertices where each

vertex is an actual point in the plane R2. To handle range-limited communications, we

could instead choose A(n) to be the set of all graphs with n vertices in R2 where an edge is

permitted between two vertices only if their Euclidean distance is less than some specified

value. This still gives a well-defined algebra: when we apply an operation, we simply omit

those edges from the resulting graph that would violate this restriction.

Besides the plethora of interesting algebras for the operad OSG, and useful homo-

morphisms between these, one can also modify the operad by choosing another network

model. This provides additional flexibility in the formalism. Different network models give

21

different operads, and the construction of operads from network models is functorial, so

morphisms of network models give morphisms of operads.

In Section 2.4 we apply the machinery provided by Chapter 5 to build operads from

network models. We also describe some algebras of these operads, and in Example 2.35 we

discuss an algebra whose elements are networks of range-limited communication channels.

2.2 One-Colored Network Models

We begin with a special class of network models: those where the vertices of the

network have just one color. To define these, we use S to stand for a skeleton of the groupoid

of finite sets and bijections:

Definition 2.1. Let S, the symmetric groupoid, be the groupoid for which:

• objects are natural numbers n ∈ N,

• a morphism from m to n is a bijection σ : {1, . . . ,m} → {1, . . . , n}

and bijections are composed in the usual way.

There are no morphisms in S from m to n unless m = n. For each n ∈ N, the

endomorphisms of n form the symmetric group Sn. It is convenient to write n for the set

{1, . . . , n}, so that a morphism σ : n→ n in S is the same as a bijection σ : n→ n.

There is a functor +: S× S→ S defined as follows. Given m,n ∈ N we let m+ n

be the usual sum, and given σ ∈ Sm and τ ∈ Sn, let σ + τ ∈ Sm+n be as follows:

(σ + τ)(j) =

σ(j) if j ≤ m

τ(j −m) +m otherwise.

(2.1)

22

For objects m,n ∈ S, let Bm,n be the block permutation of m+ n which swaps the first m

with the last n. For example B4,3 : 7→ 7 is the permutation (1473625):

The tensor product + and braiding B give S the structure of a strict symmetric monoidal

category. This follows as a special case of Proposition 2.16.

Definition 2.2. A one-colored network model is a lax symmetric monoidal functor

F : S→ Mon.

Here Mon is the category with monoids as objects and monoid homomorphisms as mor-

phisms, considered with its cartesian monoidal structure.

Algebraically, a network model is a family of monoids {Mn}n∈N each with a group

action of the corresponding symmetric group Sn, such that the product of any two embed

into the one indexed by the sum of their indices equivariantly, i.e. in a way which respects

the group action: Mm ×Mn ↪→Mm+n.

Many examples of network models are given below. A pedestrian way to verify

that these examples really are network models is to use the following result:

Theorem 2.3. A one-colored network model F : S→ Mon is the same as:

• a family of sets {F (n)}n∈N

• distinguished identity elements en ∈ F (n)

• a family of overlay functions ∪ : F (n)× F (n)→ F (n)

23

• a bijection σ : F (n)→ F (n) for each σ ∈ Sn

• a family of disjoint union functions t : F (m)× F (n)→ F (m+ n)

satisfying the following equations:

1. en ∪ g = g ∪ en = g

2. g1 ∪ (g2 ∪ g3) = (g1 ∪ g2) ∪ g3

3. σ(g1 ∪ g2) = σg1 ∪ σg2

4. σen = en

5. (σ2σ1)g = σ2(σ1g)

6. (g1∪g2)t(h1∪h2) = (g1th1)∪(g2th2)

7. 1(g) = g

8. em t en = em+n

9. σg t τh = (σ + τ)(g t h)

10. g1 t (g2 t g3) = (g1 t g2) t g3

11. e0 t g = g t e0 = g

12. Bm,n(h t g) = g t h

for g, gi ∈ F (n), h, hi ∈ F (m), σ, σi ∈ Sn, τ ∈ Sm, and 1 the identity of Sn.

Proof. Having a functor F : S→ Mon is equivalent to having the first four items satisfying

Equations 1–6. The binary operation ∪ gives the set F (n) the structure of a monoid, with

en acting as the identity. Equation 1 tells us en acts as an identity, and Equation 2 gives the

associativity of ∪. Equations 3 and 4 tell us that σ is a monoid homomorphism. Equations

5 and 6 say that the map (σ, g) 7→ σg defines an action of Sn on F (n) for each n. All of

these actions together give us the functor F : S→ Mon.

That the functor is lax monoidal is equivalent to having item 5 satisfying Equations

7–11. Equations 7 and 8 tell us that t is a family of monoid homomorphisms. Equation

9 tells us that it is a natural transformation. Equation 10 tells us that the associativity

24

hexagon diagram for lax monoidal functors commutes for F . Equation 11 implies the

commutativity of the left and right unitor square diagrams. That the lax monoidal functor

is symmetric is equivalent to Equation 12. It tells us that the square diagram for symmetric

monoidal functors commutes for F .

This is one of the simplest examples of a network model:

Example 2.4 (Simple graphs). Let a simple graph on a set V be a set of 2-element

subsets of V , called edges. There is a one-colored network model SG: S→ Mon such that

SG(n) is the set of simple graphs on n.

To construct this network model, we make SG(n) into a monoid where the product

of simple graphs g1, g2 ∈ SG(n) is their union g1 ∪ g2. Intuitively speaking, to form their

union, we ‘overlay’ these graphs by taking the union of their sets of edges. The simple graph

on n with no edges acts as the unit for this operation. The groups Sn acts on the monoids

SG(n) by permuting vertices, and these actions define a functor SG: S→ Mon.

Given simple graphs g ∈ SG(m) and h ∈ SG(n) we define gth ∈ SG(m+n) to be

their disjoint union. This gives a monoid homomorphism t : SG(m)× SG(n)→ SG(m+n)

because

(g1 ∪ g2) t (h1 ∪ h2) = (g1 t h1) ∪ (g2 t h2).

This in turn gives a natural transformation with components

tm,n : SG(m)× SG(n)→ SG(m+ n),

which makes SG into lax symmetric monoidal functor.

One can prove this construction really gives a network model using either Theo-

rem 2.3, which requires verifying a list of equations, or Theorem 2.11, which gives a general

25

procedure for getting a network model from a monoid M by letting elements of ΓM (n) be

maps from the complete graph on n to M . If we take M = B = {F, T} with ‘or’ as the

monoid operation, this procedure gives the network model SG = ΓB. We explain this in

Example 2.12.

There are many other kinds of graph, and many of them give network models:

Example 2.5 (Directed graphs). Let a directed graph on a set V be a collection of

ordered pairs (i, j) ∈ V 2 such that i 6= j. These pairs are called directed edges. There is

a network model DG: S→ Mon such that DG(n) is the set of directed graphs on n. As in

Example 2.4, the monoid operation on DG(n) is union.

Example 2.6 (Multigraphs). Let a multigraph on a set V be a multiset of 2-element

subsets of V . If we define MG(n) to be the set of multigraphs on n, then there are at least

two natural choices for the monoid operation on MG(n). The most direct generalization of

SG of Example 2.4 is the network model MG: S→ Mon with values (MG(n),∪) where ∪ is

now union of edge multisets. That is, the multiplicity of {i, j} in g ∪ h is maximum of the

multiplicity of {i, j} in g and the multiplicity of {i, j} in h. Alternatively, there is another

network model MG+ : S→ Mon with values (MG(n),+) where + is multiset sum. That is,

g + h obtained by adding multiplicities of corresponding edges.

Example 2.7 (Directed multigraphs). Let a directed multigraph on a set V be a

multiset of ordered pairs (i, j) ∈ V 2 such that i 6= j. There is a network model DMG: S→

Mon such that DMG(n) is the set of directed multigraphs on n with monoid operation the

union of multisets. Alternatively, there is a network model with values (DMG(n),+) where

+ is multiset sum.

26

Example 2.8 (Hypergraphs). Let a hypergraph on a set V be a set of nonempty subsets

of V , called hyperedges. There is a network model HG: S→ Mon such that HG(n) is the

set of hypergraphs on n. The monoid operation HG(n) is union.

Example 2.9 (Graphs with colored edges). Fix a set B of edge colors and let SG: S→

Mon be the network model of simple graphs as in Example 2.4. Then there is a network

model H : S→ Mon with

H(n) = SG(n)B

making the product of B copies of the monoid SG(n) into a monoid in the usual way. In this

model, a network is a B-tuple of simple graphs, which we may view as a graph with at most

one edge of each color between any pair of distinct vertices. We describe this construction

in more detail in Example 2.24.

There are also examples of network models not involving graphs:

Example 2.10 (Partitions). A poset is a lattice if every finite subset has both an infimum

and a supremum. If L is a lattice, then (L,∨) and (L,∧) are both monoids, where x ∨ y is

the supremum of {x, y} ⊆ L and x ∧ y is the infimum.

Let P (n) be the set of partitions of the set n. This is a lattice where π ≤ π′ if the

partition π is finer than π′. Thus, P (n) can be made a monoid in either of the two ways

mentioned above. Denote these monoids as P∨(n) and P∧(n). These monoids extend to

give two network models P∨, P∧ : S→ Mon.

27

2.2.1 One-colored network models from monoids

There is a systematic procedure that gives many of the network models we have

seen so far. To do this, we take networks to be ways of labelling the edges of a complete

graph by elements of some monoid M . The operation of overlaying two of these networks

is then described using the monoid operation.

For example, consider the Boolean monoid B: that is, the set {F, T} with ‘inclusive

or’ as its monoid operation. A complete graph with edges labelled by elements of B can be

seen as a simple graph if we let T indicate the presence of an edge between two vertices and

F the absence of an edge. To overlay two simple graphs g1, g2 with the same set of vertices

we simply take the ‘or’ of their edge labels. This gives our first example of a network model,

Example 2.4.

To formalize this we need some definitions. Given n ∈ N, let E(n) be the set

of 2-element subsets of n = {1, . . . , n}. We call the members of E(n) edges, since they

correspond to edges of the complete graph on the set n. We call the elements of an edge

e ∈ E(n) its vertices.

Let M be a monoid. For n ∈ N, let ΓM (n) be the set of functions g : E(n) → M .

Define the operation ∪ : ΓM (n)×ΓM (n)→ ΓM (n) by (g1∪g2)(e) = g1(e)g2(e) for e ∈ E(n).

Define the map t : ΓM (m)× ΓM (n)→ ΓM (m+ n) by

(g1 t g2)(e) =

g1(e) if both vertices of e are ≤ m

g2(e) if both vertices of e are > m

the identity of M otherwise

The symmetric group Sn acts on ΓM (n) by σ(g)(e) = g(σ−1(e)).

28

Theorem 2.11. For each monoid M the data above gives a one-colored network model

ΓM : S→ Mon.

Proof. We can define ΓM as the composite of two functors, E : S→ Inj and M− : Inj→ Mon,

where Inj is the category of sets and injections.

The functor E : S → Inj sends each object n ∈ S to E(n), and it sends each

morphism σ : n → n to the permutation of E(n) that maps any edge e = {x, y} ∈ E(n)

to σ(e) = {σ(x), σ(y)}. The category Inj does not have coproducts, but it is closed under

coproducts in Set. It thus becomes symmetric monoidal with + as its tensor product and

the empty set as the unit object. For any m,n ∈ S there is an injection

µm,n : E(m) + E(n)→ E(m+ n)

expressing the fact that a 2-element subset of either m or n gives a 2-element subset of

m + n. The functor E : S → Inj becomes lax symmetric monoidal with these maps µm,n

giving the lax preservation of the tensor product.

The functor M− : Inj→ Mon sends each set X to the set MX made into a monoid

with pointwise operations, and it sends each function f : X → Y to the monoid homomor-

phism Mf : MX →MY given by

(Mfg)(y) =

g(f−1(y)) if y ∈ im(f)

1 otherwise

for any g ∈ MX . Using the natural isomorphisms MX+Y ∼= MX ×MY and M∅ ∼= 1 this

functor can be made symmetric monoidal.

As the composite of the lax symmetric monoidal functor E : S → Inj and the

symmetric monoidal functor M− : Inj → Mon, the functor ΓM : S → Mon is lax symmetric

29

monoidal, and thus a network model. With the help of Theorem 2.3, it is easy to check

that this description of ΓM is equivalent to that in the theorem statement.

Example 2.12 (Simple graphs, revisited). Let B = {F, T} be the Boolean monoid. If

we interpret T and F as ‘edge’ and ‘no edge’ respectively, then ΓB is just SG, the network

model of simple graphs discussed in Example 2.4.

Recall from Example 2.6 that a multigraph on the set n is a multisubset of E(n),

or in other words, a function g : E(n)→ N. There are many ways to create a network model

F : S→ Mon for which F (n) is the set of multigraphs on the set n, since N has many monoid

structures. Two of the most important are these:

Example 2.13 (Multigraphs with addition for overlaying). Let (N,+) be N made

into a monoid with the usual notion of addition as +. In this network model, overlaying two

multigraphs g1, g2 : E(n)→ N gives a multigraph g : E(n)→ N with g(e) = g1(e) + g2(e). In

fact, this notion of overlay corresponds to forming the multiset sum of edge multisets and

Γ(N,+) is the network model of multigraphs called MG+ in Example 2.6.

Example 2.14 (Multigraphs with maximum for overlaying). Let (N,max) be N made

into a monoid with max as the monoid operation. Then Γ(N,max) is a network model where

overlaying two multigraphs g1, g2 : E(n) → N gives a multigraph g : E(n) → N with g(e) =

g1(e) max g2(e). For this monoid structure overlaying two copies of the same multigraph

gives the same multigraph. In other words, every element in each monoid Γ(N,max)(n) is

idempotent and Γ(N,max) is the network model of multigraphs called MG in Example 2.6.

30

Example 2.15 (Multigraphs with at most k edges between vertices). For any k ∈ N,

let Bk be the set {0, . . . , k} made into a monoid with the monoid operation ⊕ given by

x⊕ y = (x+ y) min k

and 0 as its unit element. For example, B0 is the trivial monoid and B1 is isomorphic to the

Boolean monoid. There is a network model ΓBk such that ΓBk(n) is the set of multigraphs

on n with at most k edges between any two distinct vertices.

2.3 General Network Models

The network models described so far allow us to handle graphs with colored edges,

but not with colored vertices. Colored vertices are extremely important for applications in

which we have a network of agents of different types. Thus, network models will involve a

set C of vertex colors in general. This requires that we replace S by the free strict symmetric

monoidal category generated by the color set C. Thus, we begin by recalling this category.

For any set C, there is a category S(C) for which:

• Objects are formal expressions of the form

c1 ⊗ · · · ⊗ cn

for n ∈ N and c1, . . . , cn ∈ C. We denote the unique object with n = 0 as I.

• There exist morphisms from c1 ⊗ · · · ⊗ cm to c′1 ⊗ · · · ⊗ c′n only if m = n, and in that

case a morphism is a permutation σ ∈ Sn such that c′σ(i) = ci for all i.

• Composition is the usual composition of permutations.

31

Note that elements of C can be identified with certain objects of S(C), namely the

one-fold tensor products. We do this in what follows.

Proposition 2.16. S(C) can be given the structure of a strict symmetric monoidal category

making it into the free strict symmetric monoidal category on the set C. Thus, if A is

any strict symmetric monoidal category and f : C → Ob(A) is any function from C to

objects of the A, there exists a unique strict symmetric monoidal functor F : S(C) → A

with F (c) = f(c) for all c ∈ C.

Proof. This is well-known; see for example Sassone [Sas94, Sec. 3] or Gambino and Joyal

[GJ17, Sec. 3.1]. The tensor product of objects is ⊗, the unit for the tensor product is I,

and the braiding

(c1 ⊗ · · · ⊗ cm)⊗ (c′1 ⊗ · · · ⊗ c′n)→ (c′1 ⊗ · · · ⊗ c′n)⊗ (c1 ⊗ · · · ⊗ cm)

is the block permutation Bm,n. Given f : C → Ob(A), we define F : S(C) → A on objects

by

F (c1 ⊗ · · · ⊗ cn) = f(c1)⊗ · · · ⊗ f(cn),

and it is easy to check that F is strict symmmetric monoidal, and the unique functor with

the required properties.

Definition 2.17. Let C be a set, called the set of vertex colors. A C-colored network

model is a lax symmetric monoidal functor

F : S(C)→ Cat.

A network model is a C-colored network model for some set C.

32

If C has just one element, S(C) ∼= S and a C-colored network model is a one-colored

network model in the sense of Definition 2.2. Here are some more interesting examples:

Example 2.18 (Simple graphs with colored vertices). There is a network model of

simple graphs with C-colored vertices. To construct this, we start with the network model

of simple graphs SG: S → Mon given in Example 2.4. There is a unique function from

C to the one-element set. By Proposition 2.16, this function extends uniquely to a strict

symmetric monoidal functor

F : S(C)→ S.

An object in S(C) is formal tensor product of n colors in C; applying F to this object

we forget the colors and obtain the object n ∈ S. Composing F and SG, we obtain a lax

symmetric monoidal functor

S(C)
F−→ S

SG−→ Mon

which is the desired network model. We can use the same idea to ‘color’ any of the network

models in Section 2.2.

Alternatively, suppose we want a network model of simple graphs with C-colored

vertices where an edge can only connect two vertices of the same color. For this we take

a cartesian product of C copies of the functor SG, obtaining a lax symmetric monoidal

functor

SGC : SC → MonC .

There is a function h : C → Ob(SC) sending each c ∈ C to the object of SC that equals

1 ∈ S in the cth place and 0 ∈ S elsewhere. Thus, by Proposition 2.16, h extends uniquely

33

to a strict symmetric monoidal functor

HC : S(C)→ SC .

Furthermore, the product in Mon gives a symmetric monoidal functor

Π: MonC → Mon.

Composing all these, we obtain a lax symmetric monoidal functor

S(C)
HC−→ SC

SGC−→ MonC
Π−→ Mon

which is the desired network model.

More generally, if we have a network model Fc : S→ Mon for each color c ∈ C, we

can use the same idea to create a network model:

S(C) SC MonC Mon
HC

∏
c∈C Fc

∏

in which the vertices of color c ∈ C partake in a network of type Fc.

Example 2.19 (Petri nets). Petri nets are a kind of network widely used in computer

science, chemistry and other disciplines [BP17]. A Petri net (S, T, i, o) is a pair of finite

sets and a pair of functions i, o : S×T → N. Let P (m,n) be the set of Petri nets (m,n, i, o).

This becomes a monoid with product

(m,n, i, o) ∪ (m,n, i′, o′) = (m,n, i+ i′, o+ o′)

The groups Sm × Sn naturally act on these monoids, so we have a functor

P : S2 → Mon.

34

There are also ‘disjoint union’ operations

t : P (m,n)× P (m′, n′)→ P (m+m′, n+ n′)

making P into a lax symmetric monoidal functor. In Example 2.18 we described a strict

symmetric monoidal functor HC : S(C) → SC for any set C. In the case of the 2-element

set this gives

H2 : S(2)→ S2.

We define the network model of Petri nets to be the composite

S(2)
H2−→ S2 P−→ Mon.

2.3.1 Categories of network models

For each choice of the set C of vertex colors, we can define a category NetModC

of C-colored network models. However, it is useful to create a larger category NetMod

containing all these as subcategories, since there are important maps between network

models that involve changing the vertex colors.

Definition 2.20. For any set C, let NetModC be the category for which:

• an object is a C-colored network model, that is, a lax symmetric monoidal functor

F : S(C)→ Cat,

• a morphism is a monoidal natural transformation between such functors:

S(C) Cat

F

F ′

g

and composition is the usual composition of monoidal natural transformations.

35

In particular, NetMod1 is the category of one-colored network models. For an

example involving this category, consider the network models built from monoids in Sec-

tion 2.2.1. Any monoid M gives a one-colored network model ΓM for which an element

of ΓM (n) is a way of labelling the edges of the complete graph on n by elements of M .

Thus, we should expect any homomorphism of monoids f : M →M ′ to give a morphism of

network models Γf : ΓM → ΓM ′ for which

Γf (n) : ΓM (n)→ ΓM ′(n)

applies f to each edge label.

Indeed, this is the case. As explained in the proof of Theorem 2.11, the network

model ΓM is the composite

S
E−→ Inj

M−−→ Mon.

The homomorphism f gives a natural transformation

f− : M− ⇒M ′−

that assigns to any finite set X the monoid homomorphism

fX : MX → M ′X

g 7→ f ◦ g.

It is easy to check that this natural transformation is monoidal. Thus, we can whisker it

with the lax symmetric monoidal functor E to get a morphism of network models:

S Inj MonE

M−

M ′−

f−

and we call this Γf : ΓM → ΓM ′ .

36

Theorem 2.21. There is a functor

Γ: Mon→ NetMod1

sending any monoid M to the network model ΓM and any homomorphism of monoids

f : M →M ′ to the morphism of network models Γf : ΓM → ΓM ′.

Proof. To check that Γ preserves composition, note that

S Inj MonE

M−

M ′−

f−

M ′′−

f ′−

equals

S Inj MonE

M−

M ′′−

(f ′f)−

since f ′−f− = (f ′f)−. Similarly Γ preserves identities.

It has been said that category theory is the subject in which even the examples

need examples. So, we give an example of the above result:

Example 2.22 (Imposing a cutoff on the number of edges). In Example 2.13 we

described the network model of multigraphs MG+ as Γ(N,+). In Example 2.15 we described

a network model ΓBk of multigraphs with at most k edges between any two distinct vertices.

There is a homomorphism of monoids

f : (N,+)→ Bk

n 7→ nmin k

37

and this induces a morphism of network models

Γf : Γ(N,+) → ΓBk .

This morphism imposes a cutoff on the number of edges between any two distinct vertices:

if there are more than k, this morphism keeps only k of them. In particular, if k = 1, Bk is

the Boolean monoid, and

Γf : MG+ → SG

sends any multigraph to the corresponding simple graph.

One useful way to combine C-colored networks is by ‘tensoring’ them. This makes

NetModC into a symmetric monoidal category:

Theorem 2.23. For any set C, the category NetModC can be made into a symmetric

monoidal category with the tensor product defined pointwise, so that for objects F, F ′ ∈

NetModC we have

(F ⊗ F ′)(x) = F (x)× F ′(x)

for any object or morphism x in S(C), and for morphisms φ, φ′ in NetModC we have

(φ⊗ φ′)x = φx × φ′x

for any object x ∈ S(C).

Proof. More generally, for any symmetric monoidal categories A and B, there is a symmetric

monoidal category SymMonCat(A,B) whose objects are lax symmetric monoidal functors

from A to B and whose morphisms are monoidal natural transformations, with the tensor

product defined pointwise. The proof in the ‘weak’ case was given by Hyland and Power

[HP02], and the lax case works the same way.

38

If F, F ′ : S(C)→ Mon then their tensor product again takes values in Mon. There

are many interesting examples of this kind:

Example 2.24 (Graphs with colored edges, revisited). In Example 2.9 we described

network models of simple graphs with colored edges. The above result lets us build these

network models starting from more basic data. To do this we start with the network model

for simple graphs, SG: S→ Mon, discussed in Example 2.4. Fixing a set B of ‘edge colors’,

we then take a tensor product of copies of SG, one for each b ∈ B. The result is a network

model SG⊗B : S→ Mon with

SG⊗B(n) = SG(n)B

for each n ∈ N.

Example 2.25 (Combined networks). We can also combine networks of different kinds.

For example, if DG: S→ Mon is the network model of directed graphs given in Example 2.5

and MG: S→ Mon is the network model of multigraphs given in Example 2.6, then

DG⊗MG: S→ Mon

is another network model, and we can think of an element of (DG⊗MG)(n) as a directed

graph with red edges together with a multigraph with blue edges on the set n.

Next we describe a category NetMod of network models with arbitrary color sets,

which includes all the categories NetModC as subcategories. To do this, first we introduce

‘color-changing’ functors. Recall that elements of C can be seen as certain objects of S(C),

namely the 1-fold tensor products. If f : C → C ′ is a function, there exists a unique strict

39

symmetric monoidal functor f∗ : S(C)→ S(C ′) that equals f on objects of the form c ∈ C.

This follows from Proposition 2.16.

Next, we define an indexed category NetMod− : Setop → CAT that sends any set C

to NetModC and any function f : C → D to the functor that sends any D-colored network

model F : S(D)→ Cat to the C-colored network model given by the composite

S(C)
f∗−→ S(D)

F−→ Cat.

Applying the Grothendieck construction (see Appendix C) to this indexed category, we

define the category of network models to be

NetMod =

∫
NetMod−.

In elementary terms, NetMod has:

• pairs (C,F) for objects, where C is a set and F : S(C)→ Cat is a C-colored network

model.

• pairs (f, g) : (C,F) → (D,G) for morphisms, where f : C → D is a function and

g : F ⇒ G ◦ f∗ is a morphism of network models.

Example 2.26 (Simple graphs with colored vertices, revisited). In Example 2.18 we

constructed the network model of simple graphs with colored vertices. We started with the

network model for simple graphs, which is a one-colored network model SG: S→ Mon. The

unique function ! : C → 1 gives a strict symmetric monoidal functor !∗ : S(C) → S(1) ∼= S.

The network model of simple graphs with C-colored vertices is the composite

S(C)
!∗−→ S

SG−−→ Mon

40

and there is a morphism from this to the network model of simple graphs, which has the

effect of forgetting the vertex colors.

In fact, NetMod can be understood as a subcategory of the following category:

Definition 2.27. Let SymMonICat be the category where:

• objects are pairs (C, F) where C is a small symmetric monoidal category and F : C →

Cat is a lax symmetric monoidal functor, where Cat is considered with its cartesian

monoidal structure.

• morphisms from (C, F) to (C′, F ′) are pairs (G, g) where G : C → C′ is a lax symmetric

monoidal functor and g : F ⇒ F ′ ◦G is a symmetric monoidal natural transformation:

C

Cat

C′

F

G

F ′

g

We shall use this way of thinking in the next two sections to build operads from

network models. It must be said that SymMonICat is naturally a 2-category where a 2-

morphism ξ : (G, g)⇒ (G′, g′) is a natural transformation ξ : G→ G′ such that

C C′

Cat = Cat.

C C′

G G′

F

G

F

F ′

g′
ξ

F ′

g

and here we are considering its 1-dimensional truncation. The 2-dimensional structure

is detailed in Appendix C, and utilized in Chapter 5. This lets us define 2-morphisms

between network models, extending NetMod to a 2-category. We do not seem to need these

41

2-morphisms in our applications, so we suppress 2-categorical considerations in most of

what follows.

2.4 Operads from Network Models

Next we describe the operad associated to a network model. This construction

is given in two steps. For the first step, we can use the strict symmetric Grothendieck

construction of Section 5.4 to define a strict symmetric monoidal category
∫
F from a given

network model F : S(C) → Cat. For the second step, we then use the underlying operad

construction (recalled in Proposition D.11) to build an operad OF .

Definition 2.28. Given a network model F : S(C)→ Cat, define the network operad OF

to be Op(
∫
F).

For the sake of the unfamiliar reader, we give a brief description of these construc-

tions in the specific context of network models, which does not assume prior knowledge. We

recall the ordinary Grothendieck construction in Appendix C, and Chapter 5 is entirely dedi-

cated to studying the (braided/symmetric) monoidal variants of it. For the sake of the reader

not yet familiar with that material, we give a nuts-and-bolts description of the symmetric

monoidal category (
∫
F,⊗φ) built from a network model (F, φ) : (S(C),⊗)→ (Mon,×).

The objects of
∫
F correspond to objects of S(C), which are formal expressions of

the form c1 ⊗ · · · ⊗ cn with n ∈ N and ci ∈ C. The morphisms of
∫
F are pairs (σ, g) where

σ : c1⊗ · · ·⊗ cn → cσ1⊗ · · ·⊗ cσn is a morphism in S(C), and g is an element of the monoid

F (cσ1 ⊗ · · · ⊗ cσn). Composition is given by (σ, g) ◦ (τ, h) = (στ, g · Fσ(h)). The tensor

product of two objects is given by concatenation. The tensor product of two morphisms is

42

given by (σ, g)⊗ (τ, h) = (σ⊗ τ, φ(g, h)). The unit object is (I, φ0), where I is the monoidal

unit for S(C) and φ0 is the unit laxator for F .

For a one-object network model F , a more compact description of the category∫
F can be given by the following formula, where monoids and groups are being considered

as one-object categories by default.∫
F ∼=

∐
n∈N

F (n) o Sn

The network operad OF is a typed operad where the types are ordered k-tuples of

elements of C. For objects xi, x of
∫
F , the operations inOF are given byOF (x1, . . . , xn;x) =∫

F (x1 ⊗ · · · ⊗ xn, x).

Now suppose that F is a one-colored network model, so that F : S → Mon.

Then the objects of S are simply natural numbers, so OF is an N-typed operad. Given

n1, . . . , nk, n ∈ N, we have

OF (n1, . . . , nk;n) = hom∫F (n1 + · · ·+ nk, n).

By definition, a morphism in this homset is a pair consisting of a bijection σ : n1+· · ·+nk →

n and an element of the monoid F (n). So, we have

OF (n1, . . . , nk;n) =

Sn × F (n) if n1 + · · ·nk = n

∅ otherwise.

(2.2)

Here is the basic example:

Example 2.29 (Simple network operad). If SG: S→ Mon is the network model of sim-

ple graphs in Example 2.4, we call OSG the simple network operad. By Equation (2.2),

an operation in OSG(n1, . . . , nk; k) is an element of Sn together with a simple graph having

n = {1, . . . , n} as its set of vertices.

43

The operads coming from other one-colored network models work similarly. For

example, if DG: S→ Mon is the network model of directed graphs from Example 2.5, then

an operation in OSG(n1, . . . , nk;n) is an element of Sn together with a directed graph having

n as its set of vertices.

In Theorem 2.3 we gave a pedestrian description of one-colored network models.

We can describe the corresponding network operads in the same style:

Theorem 2.30. Suppose F is a one-colored network model. Then the network operad OF

is the N-typed operad for which the following hold:

1. The sets of operations are given by

OF (n1, . . . , nk;n) =

Sn × F (n) if n1 + · · ·nk = n

∅ otherwise.

2. Composition of operations is given as follows. Suppose that

(σ, g) ∈ Sn × F (n) = OF (n1, . . . , nk;n)

and for 1 ≤ i ≤ k we have

(τi, hi) ∈ Sni × F (ni) = OF (ni1, . . . , niji ;ni).

Then

(σ, g) ◦ ((τ1, h1), . . . , (τk, hk)) = (σ(τ1 + · · ·+ τk), g ∪ σ(h1 t · · · t hk))

where + is defined in Equation (2.1), while ∪ and t are defined in Theorem 2.3.

3. The identity operation in OF (n;n) is (1, en), where 1 is the identity in Sn and en is

the identity in the monoid F (n).

44

4. The right action of the symmetric group Sk on OF (n1, . . . , nk;n) is given as follows.

Given (σ, g) ∈ OF (n1, . . . , nk;n) and τ ∈ Sk, we have

(σ, g)τ = (στ, g).

Proof. This is a straightforward combination of the underlying operad of a symmetric

monoidal category and the symmetric monoidal structure on
∫
F .

The construction of operads from symmetric monoidal categories described in

Proposition D.11 is functorial, so the construction of operads from network models is as

well.

Theorem 2.31. The assignment of a network model F : S(C) → Cat to the operad OF =

Op(
∫
G) and a morphism of network models (G, g) : (C,F)→ (C ′, F ′G′) to the operad mor-

phism OG = Op(Γ̂) is a functor

O : NetMod→ Opd.

Proof. There is a functor ∫
: NetMod→ SymMonCat

given by restricting the strict symmetric monoidal Grothendieck construction of Theo-

rem 5.8 to NetMod. Composing this with the functor

Op : SymMonCat→ Opd

constructed in Proposition D.12 we obtain a functor O : NetMod→ Opd with the properties

stated in the theorem. Since these properties specify how O acts on objects and morphisms,

it is unique.

45

2.4.1 Algebras of network operads

Our interest in network operads comes from their use in designing and tasking

networks of mobile agents. The operations in a network operad are ways of assembling

larger networks of a given kind from smaller ones. To describe how these operations act

in a concrete situation we need to specify an algebra of the operad. The flexibility of this

approach to system design takes advantage of the fact that a single operad can have many

different algebras, related by homomorphisms.

An algebra A of a typed operad O specifies a set A(t) for each type t ∈ T such that

the operations of O can be applied to act on these sets. That is, each algebra A specifies:

• for each type t ∈ T , a set A(t), and

• for any types t1, . . . , tn, t ∈ T , a function

α : O(t1, . . . , tn; t)→ hom(A(t1)× · · · ×A(tn), A(t))

obeying some rules that generalize those for the action of a monoid on a set [Yau16]. All

the examples in this section are algebras of network operads constructed from one-colored

network models F : S → Mon. This allows us to use Theorem 2.30, which describes OF

explicitly.

The most basic algebra of such a network operad OF is its ‘canonical algebra’,

where it acts on the kind of network described by the network model F :

Example 2.32 (The canonical algebra). Let F : S → Mon be a one-colored network

model. Then the operad OF has a canonical algebra AF with

AF (n) = F (n)

46

for each n ∈ N , the type set of OF . In this algebra any operation

(σ, g) ∈ OF (n1, . . . , nk;n) = Sn × F (n)

acts on a k-tuple of elements

hi ∈ AF (ni) = F (ni) (1 ≤ i ≤ k)

to give

α(σ, g)(h1, . . . , hk) = g ∪ σ(h1 t · · · t hk) ∈ A(n).

Here we use Theorem 2.3, which gives us the ability to overlay networks using the monoid

structure ∪ : F (n)×F (n)→ F (n), take their ‘disjoint union’ using maps t : F (m)×F (m′)→

F (m+m′), and act on F (n) by elements of Sn. Using the equations listed in this theorem

one can check that α obeys the axioms of an operad algebra.

When we want to work with networks that have more properties than those cap-

tured by a given network model, we can equip elements of the canonical algebra with extra

attributes. Three typical kinds of network attributes are vertex attributes, edge attributes,

and ‘global network’ attributes. For our present purposes, we focus on vertex attributes.

Vertex attributes can capture internal properties (or states) of agents in a network such as

their locations, capabilities, performance characteristics, etc.

Example 2.33 (Independent vertex attributes). For any one-colored network model

F : S→ Mon and any set X, we can form an algebra AX of the operad OF that consists of

networks whose vertices have attributes taking values in X. To do this, we define

AX(n) = F (n)×Xn.

47

In this algebra, any operation

(σ, g) ∈ OF (n1, . . . , nk;n) = Sn × F (n)

acts on a k-tuple of elements

(hi, xi) ∈ F (ni)×Xni (1 ≤ i ≤ k)

to give

αX(σ, g) = (g ∪ σ(h1 t · · · t hk), σ(x1, . . . , xk)).

Here (x1, . . . , xk) ∈ Xn is defined using the canonical bijection

Xn ∼=
k∏
i=1

Xni

when n1 + · · · + nk = n, and σ ∈ Sn acts on Xn by permutation of coordinates. In other

words, αX acts via α on the F (ni) factors while permuting the vertex attributes Xn in the

same way that the vertices of the network h1 t · · · t hk are permuted.

One can easily check that the projections F (n)×Xn → F (n) define a homomor-

phism of OF -algebras, which we call

πX : AX → A.

This homomorphism ‘forgets the vertex attributes’ taking values in the set X.

Example 2.34 (Simple networks with a rule obeyed by edges). Let OSG be the

simple network operad as explained in Example 2.29. We can form an algebra of the

operad OSG that consists of simple graphs whose vertices have attributes taking values in

some set X, but where an edge is permitted between two vertices only if their attributes

48

obey some condition. We specify this condition using a symmetric function

p : X ×X → B

where B = {F, T}. An edge is not permitted between vertices with attributes (x1, x2) ∈

X ×X if this function evaluates to F .

To define this algebra, which we call Ap, we let Ap(n) ⊆ SG(n) × Xn be the set

of pairs (g, x) such that for all edges {i, j} ∈ g the attributes of the vertices i and j make p

true:

p(x(i), x(j)) = T.

There is a function

τp : AX(n)→ Ap(n)

that discards edges {i, j} for which p(x(i), x(j)) = F . Recall that AX(n) = SG(n) × Xn,

and recall from Example 2.12 that we can regard SG(n) as the set of functions g : E(n)→ B.

Then we define τp by

τp(g, x) = (g, x)

where

g{i, j} =

g{i, j} if p(x(i), x(j)) = T

F if p(x(i), x(j)) = F.

We can define an action αp of OSG on the sets Ap(n) with the help of this function. Namely,

49

we take αp to be the composite

OSG(n1, . . . , nk;n)×Ap(n1)× · · · ×Ap(nk)

OSG(n1, . . . , nk;n)×AX(n1)× · · · ×AX(nk)

AX(n)

Ap(n)

αX

τp

where the action αX was defined in Example 2.33. One can check that αp makes the sets

Ap(n) into an algebra of OSG, which we call Ap. One can further check that the maps τ

define a homomorphism of OSG-algebras, which we call

τp : AX → Ap.

Example 2.35 (Range-limited networks). We can use the previous examples to model

range-limited communications between entities in a plane. First, let X = R2 and form the

algebra AX of the simple network operad OSG. Elements of AX(n) are simple graphs with

vertices in the plane.

Then, choose a real number L ≥ 0 and let d be the usual Euclidean distance

function on the plane. Define p : X × X → B by setting p(x, y) = T if d(x, y) ≤ L and

p(x, y) = F otherwise. Elements of Ap(n) are simple graphs with vertices in the plane such

that no edge has length greater than L.

Example 2.36 (Networks with edge count limits). Recall the network model for

multigraphs MG+, defined in Example 2.6 and clarified in Example 2.13. An element of

MG+(n) is a multigraph on the set n, namely a function g : E(n) → N where E(n) is the

set of 2-element subsets of n. If we fix a set X we obtain an algebra AX of OMG+ as

50

in Example 2.33. The set AX(n) consists of multigraphs on n where the vertices have

attributes taking values in X.

Starting from AX we can form another algebra where there is an upper bound

on how many edges are allowed between two vertices, depending on their attributes. We

specify this upper bound using a symmetric function

b : X ×X → N.

To define this algebra, which we call Ab, let Ab(n) ⊆ MG+(n)×Xn be the set of

pairs (g, x) such that for all {i, j} ∈ E(n) we have

g(i, j) ≤ b(x(i), x(j)).

Much as in Example 2.34 there is function

π : AX(n)→ Ab(n)

that enforces this upper bound: for each g ∈ AX(n) its image π(g) is obtained by reducing

the number of edges between vertices i and j to the minimum of g(i, j) and β(i, j):

π(g)(i, j) = g(i, j) minβ(i, j).

We can define an action αb of OMG on the sets Ab(n) as follows:

OMG(n1, . . . , nk;n)×Ap(n1)× · · · ×Ap(nk)

OMG(n1, . . . , nk;n)×AX(n1)× · · · ×AX(nk)

AX(n)

Ap(n)

αX

π

51

One can check that αb indeed makes the sets Ab(n) into an algebra of OMG+ , which we call

Ab, and that the maps πp define a homomorphism of OMG+-algebras, which we call

πp : AX → Ab.

Example 2.37 (Range-limited networks, revisited). We can use Example 2.36 to

model entities in the plane that have two types of communication channel, one of which has

range L1 and another of which has a lesser range L2 < L1. To do this, take X = R2 and

define b : X ×X → N by

b(x, y) =

0 if d(x, y) > L1

1 if L2 < d(x, y) ≤ L1

2 if d(x, y) ≤ L2

Elements of Ab(n) are multigraphs with vertices in the plane having no edges between

vertices whose distance is > L1, at most one edge between vertices whose distance is ≤ L1

but > L2, and at most two edges between vertices whose distance is ≤ L2.

Moreover, the attentive reader may notice that the action αb of OMG+ for this

specific choice of b factors through an action of OΓB2
, where ΓB2 is the network model

defined in Example 2.15. That is, operations OΓB2
(n1, . . . , nk;n) = Sn × ΓB2(n) where

ΓB2(n) is the set of multigraphs on n with at most 2 edges between vertices are sufficient

to compose these range-limited networks. This is due to the fact that the values of this

b : X ×X → N are at most 2.

These examples indicate that vertex attributes and constraints can be systemati-

cally added to the canonical algebra to build more interesting algebras, which are related

by homomorphisms. Example 2.33 illustrates how adding extra attributes to the networks

52

in some algebra A can give networks that are elements of an algebra A′ equipped with a

homomorphism π : A′ → A that forgets these extra attributes. Example 2.36 illustrates

how imposing extra constraints on the networks in some algebra A can give an algebra A′

equipped with a homomorphism τ : A→ A′ that imposes these constraints: this works only

if there is a well-behaved systematic procedure, defined by τ , for imposing the constraints

on any element of A to get an element of A′.

The examples given so far scarcely begin to illustrate the rich possibilities of net-

work operads and their algebras. In particular, it is worth noting that all the specific

examples of network models described here involve commutative monoids. However, non-

commutative monoids are also important. Suppose, for example, that we wish to model

entities with a limited number of point-to-point communication interfaces—e.g. devices

with a finite number p of USB ports. More formally, we wish to act on sets of degree-

limited networks Adeg(n) ⊂ SG(n) × Nn made up of pairs (g, p) such that the degree of

each vertex i, deg(i), is at most the degree-limiting attribute of i: deg(i) ≤ p(i). Näıvely,

we might attempt to construct a map τdeg : AN → Adeg as in Example 2.36 to obtain an

action of the simple network operad OSG. However, this is turns out to be impossible. For

example, if attempt to build a network from devices with a single USB port, and we attempt

to connect multiple USB cables to one of these devices, the relevant network operad must

include a rule saying which attempts, if any, are successful. Since we cannot prioritize links

from some vertices over others—which would break the symmetry built into any network

model—the order in which these attempts are made must be relevant. Since the monoids

SG(n) are commutative, they cannot capture this feature of the situation.

53

The solution is to use a class of noncommutative monoids dubbed ‘graphic monoids’

by Lawvere [Law89b]: namely, those that obey the identity aba = ab. These allow us to

construct a one-colored network model Γ: S→ Mon whose network operad OΓ acts on Adeg.

For our USB device example, the relation aba = ab means that first attempting to connect

some USB cables between some devices (a), second attempting to connect some further

USB cables (b), and third attempting to connect some USB cables precisely as attempted

in the first step (a, again) has the same result as only performing the first two steps (ab).

We will explore more to do with noncommutativity in network models in Chapter 3.

54

Chapter 3

Noncommutative Network Models

3.1 Introduction

In Theorem 2.11, we gave a functorial construction of a network model from a

monoid, which we call the ordinary network model for weighted graphs. In this chapter, we

provide a different construction in order to realize a larger class of networks as algebras

of network operads, which we call the free varietal network model for weighted graphs. In

Section 3.4, we give an example of a family of networks which cannot form an algebra for any

ordinary network model for weighted graphs, but does for a varietal one. In this chapter, we

give a construction for the free network model on a given monoid. This describes networks

which look like the given monoid when you restrict to looking at the combinatorial behavior

at a single pair of nodes. In Section 3.3, we give a concrete construction of a left adjoint to

the functor which evaluates a network model at its second level. This requires a categorical

treatment and generalization of Green’s theory of products of groups indexed by a graph,

(i.e. graph products of groups) [Gre90], which we give in Section 3.2.

55

This construction is designed to model networks which carry information on the

edges. For example, with N a monoid under addition, ΓN is a network model for loopless

undirected multigraphs where overlaying is given by adding the number of edges. A similar

example is ΓB = SG. There is a monoid homomorphism N → B which sends all but 0

to T . This induces a map of network models ΓN → ΓB. Essentially this map reduces the

information of a graph from the number of connections between each pair of vertices to just

the existence of any connection.

Example 3.1 (Algebra for range-limited communication). Consider a communica-

tion network where each node represents a boat and an edge between two nodes represents

a working communication channel between the corresponding boats. Some forms of com-

munication are restricted by the distance between those communicating. Assume that there

is a known maximal distance over which our boats can communicate. Networks of this sort

form an algebra of the simple graphs operad in the following way.

Let (X, d) be a metric space, and 0 ≤ L ∈ R. Our boats will be located at points

in this space. The operad OSG has an algebra (Ad,L, α) defined as follows. The set Ad,L(n)

is the set of pairs (h, f) where h ∈ SG(n) is a simple graph and f : n → X is a function

such that if {v1, v2} is an edge in g then d(f(v1), f(v2)) ≤ L. The number L represents the

maximal distance over which the boat’s communication channels operate. Notice that this

condition does not demand that all connections within range must be made. An operation

(σ, g) ∈ OSG(n1, . . . ,nk; n) acts on a k-tuple (hi, fi) ∈ Ad,L(ni) by

α(σ, g)((h1, f1), . . . , (hk, fk)) = (g ∪ σ(h1 t · · · t hk), f1 t · · · t fk).

Elements of this algebra are simple graphs in the space X with an upper limit on edge

56

lengths. When an operation acts on one of these, it tries to put new edges into the graph,

but fails to when the range limit is exceeded [BFMP20].

A characteristic of the construction given in Theorem 2.11 is that elements of

the resulting monoids that correspond to different edges automatically commute with each

other. For example, for a monoid M , the fourth constituent monoid of the ordinary M

network model is ΓM (4) = M6. Then the element (m1, 0, 0, 0, 0, 0) represents a graph with

one edge with weight m1 ∈ M , the element (0,m2, 0, 0, 0, 0) represents a graph with a

different edge with weight m2 ∈M , and

(m1, 0, 0, 0, 0, 0) ∪ (0,m2, 0, 0, 0, 0) = (m1,m2, 0, 0, 0, 0)

= (0,m2, 0, 0, 0, 0) ∪ (m1, 0, 0, 0, 0, 0).

This commutativity between edges means that networks given by ordinary network

models cannot record information about the order in which edges were added to it. The

ability to record such information about a network is desirable, for example, if one wishes

to model networks which have a limit on the number of connections each agent can make

to other agents.

The degree of a vertex in a simple graph is the number of edges which include

that vertex. The degree of a graph is the maximum degree of its vertices. A graph is said

to have degree bounded by k, or simply bounded degree, if the degree of each vertex

is less than or equal to k. Let Bk(n) denote the set of networks with n vertices and degree

bound k. One might guess that the family of such networks could form an algebra for the

simple graphs operad.

57

Question. Does the collection of networks of bounded degree form an algebra of a network

operad? If so, is there such an algebra which is useful in applications?

Specifically, can networks of bounded degree form an algebra of OSG, the simple

graph operad? Setting two graphs next to each other will not change the degree of any

of the vertices. Overlaying them almost definitely will, which makes defining an action of

SG(n) on Bk(n) less obvious.

Ordinary network models are not sufficient to model this type of network because

the graph monoids it produced could not remember the order that edges were added into a

network. Even if M is a noncommutative monoid, since ΓM is a product of several copies

of M , one for each pair of vertices, it cannot distinguish the order that two different edges

touching v1 were added to a network if their other endpoints are different.

Instead of taking the product of
(
n
2

)
copies of M , we consider taking the coproduct,

so as not to impose any commutativity relations between the edges. Since the lax structure

map t : F (m)× F (n)→ F (m + n) associated to a network model F : S→ Mon must be a

monoid homomorphism, then

(a t b) ∪ (c t d) = (a ∪ c) t (b ∪ d).

In particular, if we let ∅ denote the the identity of F (n) for any n, then

(a t ∅) ∪ (∅ t b) = (a ∪ ∅) t (∅ ∪ b)

= (∅ ∪ a) t (b ∪ ∅)

= (∅ t b) ∪ (a t ∅).

This is reminiscent of the Eckmann–Hilton argument (see Appendix A), but notice that the

58

domains of the operations ∪ and t are not the same. This equation says that elements which

correspond to disjoint edges must commute with each other. Simply taking the coproduct

of
(
n
2

)
copies of M cannot give the constituent monoids of a network model.

For a collection of monoids {Mi}i∈I , elements of the product monoid which come

from different components always commute with each other. In the coproduct, they never

do. A graph product (in the sense of Green [Gre90]) of such a collection allows one to impose

commutativity between certain components and not others by indicating such relations via a

simple graph. The calculation above shows that the constituent monoids of a network model

must satisfy certain partial commutativity relations. We use graph products to construct

a family of monoids with the right amount of commutativity to both answer the question

above and satisfy the conditions of being a network model. The following theorems are

proven in Section 3.3.

Theorem 3.2. The functor NetMod→ Mon defined by F 7→ F (2) has a left adjoint

Γ−,Mon : Mon→ NetMod.

The fact that this construction is a left adjoint tells us that the network models

constructed are ones in which the only relations that hold are those that follow from the

defining axioms of network models.

A variety of monoids is the class of all monoids satisfying a given set of identities.

For example, Mon has subcategories CMon of commutative monoids and GMon of graphic

monoids which are varieties of monoids satisfying the equations

ab = ba and aba = ab

59

respectively. Given a variety of monoids V, let NetModV be the subcategory of NetMod

consisting of V-valued network models. We recreate graph products in varieties of monoids

to obtain a more general result.

Theorem 3.3. The functor NetModV → V defined by F 7→ F (2) has a left adjoint

Γ−,V : V → NetModV .

In particular, if V = CMon, since products and coproducts are the same in CMon,

the ordinary M network model and the CMon varietal M network model are also the same.

Note that this does not indicate that Γ−,V is a complete generalization of Γ− from Theorem

2.11, since ΓM is not an example of Γ−,V when M is not commutative.

The ordinary construction for a network model given a monoid M has constituent

monoids given by finite cartesian powers of M . To include the networks described in the

question above into the theory of network models, we must construct a network model from

a given monoid which does not impose as much commutativity as the ordinary construction

does, specifically among elements corresponding to different edges. The first attempt at a

solution is to use coproducts instead of products. However, in this section we saw that we

cannot create the constituent monoids of a network model simply by taking them to be

coproducts of M instead of products. There must be some commutativity between different

edges, specifically between edges which do not share a vertex.

Given a monoid M , we want to create a family of monoids indexed by N, the nth

of which looks like a copy of M for each edge in the complete graph on n, has minimal com-

mutativity relations between these edge components, but does have commutativity relations

between disjoint edges. Partial commutativity like this can be described with Green’s graph

60

products, which we describe in Section 3.2.1. The type of graph which describes disjoint-

ness of edges in a graph as we need is called a Kneser graph, which we describe in Section

3.2.2. Besides concerning ourselves with relations between edge components, sometimes we

also want the constituent monoids in a network model to obey certain relations which M

obeys. In Section 3.2.4 we describe varieties of monoids and a construction which produces

monoids in a chosen variety. In Section 3.3 we prove this construction is functorial, and in

Section 3.4 we use this construction to give a positive answer to the question.

3.2 Graph Products

This section is dedicated to constructing the constituent monoids for the network

models we want. In this section there are two different ways that graphs are being used.

It is important that the reader does not get these confused. One way is the graphs which

are elements of the constituent monoids of the network models we are constructing. The

other way we use graphs is to index the Green product (which we define in Section 3.2.1)

to describe commutativity relations in the constituent monoids of the network models we

are constructing.

A network model is essentially a family of monoids with properties similar to the

simple graphs example, so we think of the elements of these monoids as graphs, and we

think of the operation as overlaying the graphs. These monoids have partial commutativity

relations they must satisfy, as we see in Section 2.2. The graphs we use in the Green prod-

uct, the Kneser graphs, are there to describe the partial commutativity in the constituent

monoids.

61

3.2.1 Green Products

Given a family of monoids {Mv}v∈V indexed by a set V , there are two obvious

ways to combine them to get a new monoid, the product and the coproduct. From an

algebraic perspective, a significant difference between these two is whether or not elements

that came from different components commute with each other. In the product they do.

In the coproduct they do not. Green products, or commonly graph products, of groups were

introduced in 1990 by Green [Gre90], and later generalized to monoids by Veloso da Costa

[Vel01]. The idea provides something of a sliding scale of relative commutativity between

components. We follow [FK09] in the following definitions.

By a simple graph G = (V,E), we mean a set V which we call the set of

vertices, and a set E ⊆
(
V
2

)
, which we call the set of edges. A map of simple graphs

f : (V,E)→ (V ′, E′) is a function f : V → V ′ such that if {u, v} ∈ E then {f(u), f(v)} ∈ E′.

Let SimpleGph denote the category of simple graphs and maps of simple graphs.

For a set V , a family of monoids {Mv}v∈V , and a simple graph G = (V,E), the

G Green product (or simply Green product when unambiguous) of {Mv}v∈V , denoted

G(Mv), is

G(Mv) =

(∐
v∈V

Mv

)
/RG

where RG is the congruence generated by the relation

{(mn, nm)|m ∈Mv, n ∈Mu, u, v are adjacent in G}

where the operation in the free product is denoted by concatenation. If G is the complete

graph on n vertices, then G(Mv) ∼=
∏
Mv. If G is the n-vertex graph with no edges, then

G(Mv) ∼=
∐
Mv.

62

We call each Mv a component of the Green product. Elements of G(Mv) are

written as expressions as in the free product, mv1
1 . . .mvk

k ∈ G(Mv) where the superscript

indicates that mi ∈ Mvi . We often consider Green products of several copies of the same

monoid, so this notation allows one to distguish elements coming from different components

of the product, even if they happen to come from the same monoid. The intention and result

of the imposed relations is that for an expression mv1
1 . . .mvk

k of an element, if there is an

i such that {vi, vi+1} ∈ E, then we can rewrite the expression by replacing mvi
i m

vi+1

i+1 with

m
vi+1

i+1 m
vi
i . This move is called a shuffle, and two expressions are called shuffle equivalent

if one can be obtained from the other by a sequence of shuffles. An expression mv1
1 . . .mvk

k

is reduced if whenever i < j and vi = vj , there exists l with i < l < j and {vi, vl} /∈ E.

If two reduced expressions are shuffle equivalent, they are clearly expressions of the same

element. The converse is also true.

Theorem 3.4 ([FK09], Thm. 1.1). Every element of M is represented by a reduced ex-

pression. Two reduced expressions represent the same element of M if and only if they are

shuffle equivalent.

In this section, we use a categorical description of Green products to define a

similar construction in a more general context. The relevant property of Mon that we need

for this generalization is that Mon is a pointed category.

Let C be a category. An object of C which is both initial and terminal is called a

zero object. If C has such an object, C is called a pointed category [Qui67]. For any two

objects A,B of a pointed category, there is a unique map 0: A→ B which is the composite

of the unique map from A to the zero object, and the unique map from the zero object

63

to B. If C is a pointed category with finite products, then for two objects A,B of C, the

objects admit canonical maps A→ A×B.

A

A×B

A B

1
∃!iA 0

πA πB

So we have the following maps

A B

A×B

A B

iA iB

πBπA

satisfying the following properties.

πAiA = 1A πBiB = 1B

πBiA = 0 πAiB = 0

This is suggestive of a biproduct, but in a general pointed category A×B is not necessarily

isomorphic to A+B.

In Section 3.3, we use a generalized Green product to construct network models.

A generalized Green product is a colimit of a diagram whose shape is derived from a given

graph. We describe the shapes of the diagrams here with directed multi-graphs. We refer

to them here as quivers to help distinguish them from other variants of graphs and the role

they play in this chapter. A quiver is a pair of sets E, V , respectively called the set of edges

and set of vertices, and a pair of functions s, t : E → V assigning to each edge its starting

64

vertex and its terminating vertex respectively. A map of quivers is a pair of functions

E1 E2

V1 V2

s1 t1

fE

s2 t2

fV

such that the s-square and the t-square both commute.

We will use the word cospan to refer to the quiver with the following shape.

• → • ← •

Define a functor IC : SimpleGph→ Quiv which replaces every edge with a cospan (IC stands

for ‘insert cospan’). Specifically, given a simple graph (V,E) where E ⊆
(
V
2

)
, define the

quiver Q1 ⇒ Q0 where Q0 = V tE and Q1 = {(v, e) ∈ V ×E| v ∈ e}, then define the source

map s : Q1 → Q0 by projection onto the first component, and the target map t : Q1 → Q0

by projection onto the second component. For example, the simple graph

1 2

34

gives the quiver

1 {1, 2} 2

{1, 4} {1, 3} {2, 3}

4 3

Let G = (V,E) and G′ = (V ′, E′) be simple graphs, and f : G → G′ a map of

simple graphs. Define a map of quivers ICf : IC(G) → IC(G′) by ICf0 = fV t fE and

ICf1(v, e) = (fV (v), fE(e)).

65

IC(G)1 IC(G′)1

IC(G)0 IC(G′)0

sG tG

ICf1

sG′ tG′

ICf0

This construction gives a coproduct preserving functor IC : SimpleGph→ Quiv.

Let F : Quiv → Cat denote the free category (or path category) functor [ML98].

Since F is a left adjoint, it preserves colimits. Notice that any quiver of the form IC(G)

would never have a path of length greater than 1. Thus the free path category on IC(G)

simply has identity morphisms adjoined.

The objects in the category F (IC(G)) come from two places. There is an object

for each vertex of G, and there is an object at the apex of the cospan for each edge in

G. We call these two subsets of objects vertex objects and edge objects. We abuse

notation and refer to the object given by the vertex u by the same name, and similar for

edge objects.

If {Mv}v∈V is a family of monoids indexed by the set V , that means that there

is a functor M : V → Mon from the set V thought of as a discrete category. Notice that

if G is a simple graph with vertex set V , then the discrete category V is a subcategory of

F (IC(G)). We can then extend the functor M to

D : F (IC(G))→ Mon

in the following way. Obviously we let D(u) = Mu for a vertex object u. If {u, v} is an edge

in G, then D({u, v}) = Mu ×Mv. The morphism (u, {u, v}) is sent to the canonical map

Mu →Mu×Mv. For example, for a family of monoids {M1, . . .M4}, we have the following

diagram.

66

M1 M1 ×M2 M2

M1 ×M4 M1 ×M3 M2 ×M3

M4 M3

Since there are no non-trivial pairs of composable morphisms in categories of the form

F (IC(G)), nothing further needs to be checked to confirm D is a functor.

Despite the way we are denoting these products, we are not considering them to

be ordered products. Alternatively, we could have used a more cumbersome notation that

does not suggest any order on the factors.

Theorem 3.5. Let V be a set, {Mv}v∈V be a family of monoids indexed by V , and G =

(V,E) be a simple graph with vertex set V . The G Green product of Mv is the colimit of

the diagram D : F (IC(G))→ Mon defined as above.

G(Mv) ∼= colimD.

Proof. We show that G(Mv) satisfies the necessary universal property. The vertex objects

in the diagram have inclusion maps into the edge objects iu,v : Mu →Mu×Mv, and all the

objects have inclusion maps into G(Mv), ju : Mu → G(Mv) and ju,v : Mu ×Mv → G(Mv)

such that ju,v ◦ iu,v = ju. Note that due to the fact that we have unordered products for

objects, there is some redundancy in our notation, namely ju,v = jv,u. If we have a monoid

Q and maps fu : Mu → Q and fu,v : Mu ×Mv → Q such that

fu,v = fv,u

fu,v ◦ iu,v = fu,

67

then we define a map φ : G(Mv) → Q by φ(mv1
1 . . .mvk

k) = fv1(m1) . . . fvk(mk). Since this

map is defined via expressions of elements, Theorem 3.4 tells us that to check this map is

well-defined, we need only check that the values of two expressions that differ by a shuffle

are the same. Let mv1
1 . . .mvk

k be an expression, and i such that {vi, vi+1} ∈ E.

φ(mvi
i m

vi+1

i+1) = fvi(mi)fvi+1(mi+1)

= fvi,vi+1(mi,mi+1)

= fvi+1(mi+1)fvi(mi)

= φ(m
vi+1

i+1 m
vi
i)

It is clear that

φ(mv1
1 . . .mvk

k) = φ(mv1
1 . . .m

vi−1

i−1)φ(mvi
i m

vi+1

i+1)φ(m
vi+2

i+2 . . .m
vk
k),

so two shuffle equivalent expressions have the same value under φ, and φ is well-defined. It

is clearly a monoid homomorphism, and has the property φ ◦ ju = fu and φ ◦ ju,v = fu,v.

To show this map is unique, assume there is another such map ψ : G(Mv) → Q. Since

ψ ◦ ju = fu, then ψ(mu) = f(u), and

ψ(mv1
1 . . .mvk

k) = ψ(mv1
1) . . . ψ(mvk

k)

= fv1(m1) . . . fvk(mk)

= φ(mv1
1 . . .mvk

k).

This result makes it reasonable to generalize Green products in the following way.

Definition 3.6. Let C be a pointed category with finite products and finite colimits, V a

set, {Av}v∈V a family of objects of C indexed by V , and G a simple graph with vertex set

68

V . Let D : F (IC(G)) → C be the diagram defined by v 7→ Av, {u, v} 7→ Au × Av, and the

morphism (u, {u, v}) is mapped to the inclusion Au → Au × Av as above. The G Green

product of {Av}v∈V is the colimit of D in C,

GC(Av) = colimD.

If C = Mon, we denote the Green product simply as G(Av).

In Section 3.3, we use this general notion of graph products in varieties of monoids

to construct network models whose constituent monoids are in those varieties. Note that

since F ◦ IC is a functor, the group Aut(G) of graph automorphisms of G naturally acts on

GC(Av).

3.2.2 Kneser Graphs

We focus here on a special family of simple graphs known as the Kneser graphs

[Lov78]. The Kneser graph KGn,m has vertex set
(
n
m

)
, the set of m-element subsets of an

n-element set, and an edge between two vertices if they are disjoint subsets. Since a simple

graph is defined as a collection of two-element subsets of an n-element set, the Kneser graph

KGn,2 has a vertex for each edge in the complete graph on n, and has an edge between

every pair of vertices which correspond to disjoint edges. So the Kneser graph KGn,2 can be

thought of as describing the disjointness of edges in the complete graph on n. For instance,

the complete graph on 5 is

69

and the corresponding Kneser graph KG5,2 is the Petersen graph:

For sets X,Y and a function f : X → Y , let f [U] = {f(x)|x ∈ U} for U ⊆ X. Let FinInj

denote the category of finite sets and injective functions.

Lemma 3.7. For k ∈ N, there is a functor
(−
k

)
: FinInj→ FinInj which sends X to

(
X
k

)
the

set of k-element subsets of X, and injections f : X → Y to the functions
(
f
k

)
:
(
X
k

)
→
(
Y
k

)
defined by

(
f
k

)
(U) = f [U].

Note that this result holds for Inj the category of sets and injective functions, but

we only require FinInj for our purposes.

Proof. If f : X → Y is an injection, then |f [U]| = |U | for U ⊆ X. It then makes sense

to restrict the induced map on power sets to subsets of a fixed cardinality. The map(
f
k

)
:
(
m
k

)
→
(
n
k

)
defined by

(
f
k

)
(U) = f [U] is then well defined. If f [U] = f [V] and x ∈ U ,

then f(x) ∈ f [U] = f [V], which implies there is a y ∈ V such that f(y) = f(x). Since f is

injective, then x = y ∈ V . Thus U = V by symmetry.

Let iX and iY denote the following inclusion maps.

X Y

X + Y

iX iY

70

Since these maps are injective, they induce maps
(
iX
k

)
,
(
iY
k

)
, and we get a map ΦX,Y :

(
X
k

)
+(

Y
k

)
→
(
X+Y
k

)
by the universal property in the following way.

(
X
k

) (
Y
k

)
(
X
k

)
+
(
Y
k

)
(
X+Y
k

)

jX

(iXk)

jY

(iYk)∃!ΦX,Y

Lemma 3.8. The functor
(−
k

)
is made lax symmetric monoidal

(

(
−
k

)
,Φ, φ) : (FinInj,+, ∅)→ (FinInj,+, ∅)

where the components of Φ are defined as above.

Proof. The family of maps {ΦX,Y } is clearly a natural transformation. There is no choice for

the map φ : ∅ →
(∅
k

)
. The left and right unitor laws hold trivially. Checking the coherence

conditions for the associator and the symmetry are straightforward computations.

For n, k ∈ N, the simple graph KGn,k has vertex set V =
(
n
k

)
and edge set

{{u, v} ⊆
(
V
2

)
|u ∩ v = ∅}. If f : m → n is injective, then we get a map

(
f
k

)
between

the vertex sets of KGm,k and KGn,k. Let {u, v} ∈
(
V
2

)
be an edge in KGm,k. Then

f [u] ∩ f [v] = ∅ by injectivity, so {f [u], f [v]} is an edge of KGn,k. An injection f then

induces a map of graphs, denoted KGf,k : KGm,k → KGn,k. Since
(
f
k

)
is injective, KGf,k

is an embedding. Nothing about this construction requires finiteness of the sets involved,

but our applications only call for finite graphs.

Proposition 3.9. For k ∈ N, there is functor KG−,k : FinInj → SimpleGph which sends n

to KGn,k and f : m→ n to KGf,k.

71

Not only does KGm,k embed into KGn,k when m < n, but KGm,k+KGn,k embeds

into KGm+n,k. We construct the embedding KGm,k +KGn,k → KGm+n,k by using the lax

structure map from Lemma 3.8 for the vertex map, Φm,n :
(
m
k

)
+
(
n
k

)
→
(
m+n
k

)
. Restricting

this map to either
(
m
k

)
(resp.

(
n
k

)
) gives the map

(
im
k

)
(resp.

(
in
k

)
) which we already know

induces a map of graphs. Thus Φm,n induces a map of graphs, which we call Ψm,n.

Proposition 3.10. The functor KG−,k is made lax (symmetric) monoidal

(KG−,k,Ψ): (Inj,+)→ (SimpleGph,+)

where the components of Ψ are defined as above.

Proof. All the necessary properties for Ψ are inherited immediately from Φ.

Let (L,Λ): (Inj,+) → (Cat,+) be the composite L = F ◦ IC ◦ KG−,2 with the

obvious laxator. Let M be a monoid. Then from the construction given in the previous

subsection, for each n we get a diagram Dn : L(n)→ Mon which sends all vertex objects to

M , all edge objects to M ×M , and all nontrivial morphisms to inclusions M → M ×M .

Taking the colimit of Dn then gives the Green product KGn,2(M). Note that we identify

constituent monoids with the corresponding submonoid of the graph product when this can

be done without confusion.

Proposition 3.11. Let Mp,q be a
(
m+n

2

)
family of monoids, and G1 and G2 be graphs with m

and n vertices respectively. Let a1 ∈Mp1,q1 with p1, q1 ≤ m and a2 ∈Mp2,q2 with p2, q2 > m,

and let a1, a2 be their values under the canonical inclusions Mp,q ↪→ (G1 tG2)(Mp,q). Then

a1a2 = a2a1 in (G1 tG2)(Mp,q).

72

Proof. By definition, there is an edge in the Kneser graph KGm+n,2 between the vertices

p1, q1 and p2, q2. This imposes the desired commutativity relation.

3.2.3 Varieties of Monoids

A finitary algebraic theory or Lawvere theory is a category T with finite

products in which every object is isomorphic to a finite cartesian power xn =
∏n x of a

distinguished object x [Law63, ALR03]. An algebra of a theory T , or T -algebra, is a

product preserving functor T → Set. Let TAlg denote the category of T -algebras with

natural transformations for morphisms. We are primarily concerned with monoids in this

chapter. The theory of monoids TMon has morphisms m : x× x→ x and e : x0 → x, which

makes the following diagrams commute.

x3 x2 x× x0 x2 x0 × x

x2 x x

m×1x

1x×m

m

1x×e

'
m

e×1x

'

m

A variety of T -algebras is a full subcategory of TAlg which is closed under prod-

ucts, subobjects, and homomorphic images. Birkhoff’s theorem implies that this is equiva-

lent to the category T ′Alg of algebras of another theory T ′ which has the same morphisms,

but satisfies more commutative diagrams [BS81]. For example, commutative monoids are

given by algebras of the theory of commutative monoids TCMon, which has morphisms m, e

as in TMon, satisfies the same commutative diagrams as TMon, but also satisfies the following

commutative diagram

x2 x2

x
m

b

m

where b : x2 → x2 is the braid isomorphism. We only use varieties of monoids in this

73

chapter, so we give these “extra” conditions by equations, e.g. commutative monoids are

those which satisfy the equation ab = ba for all elements a, b. We call the extra equations

the defining equations of the variety.

A graphic monoid is a monoid which satisfies the graphic identity : aba = ab for

all elements a, b. Graphic monoids are algebras of a theory TGMon. A semigroup obeying this

relation is known as a left regular band [MSS20]. The term graphic monoid was introduced

by Lawvere [Law89a]. Let M be a graphic monoid. If we let b be the unit of M , then the

graphic relation says that a2 = a. Every element of M is idempotent. If a, c ∈ M , then

ca = c if c already has a as a factor.

Graphic monoids are present when talking about types of information where a

piece of information cannot contain the same piece of information twice. A simple example

can be seen in the powerset of a given set X, given the structure of a monoid by union.

Of course, this example is overly simple because the operation is commutative idempotent,

which is stronger than graphic. A more interesting example can be seen by considering the

following simple graph.

a b c
x y

We will define a monoid structure on the set M = {1, a, b, c, x, y} in the following way.

First, 1 is a freely adjoined identity element. For p, q ∈M \{1}, define pq as follows. Pick a

generic point f in p and a generic point g in q. Then move a small distance along a straight

line path from f to g. We define the product pq to be the component of the graph you land

74

in. Here are some example computations:

ab = x aa = a

bc = y xb = x

ac = x ca = y

The last two demonstrate that this monoid is not commutative. More complicated examples

can be constructed by using the same idea for the operation, but applying it to different

spaces.

The following fact is critical in Chapter 2. It follows immediately from the defini-

tions.

Lemma 3.12. Every variety of monoids is a pointed category and has finite colimits.

3.2.4 Varietal Network Models

Our motivation for using graphic monoids is that we use the graphic relation to

model “commitment” in the following way. Let M be a graphic monoid, where we think

of an element of M as a task or list of tasks. If we first commit to doing task x, and then

commit to doing task y, then we have the element xy as our task list, indicating that we

committed to x before y. If we then try to commit to to doing x, the graphic relation saves

us from recording this information twice. The relation also preserves the order in which we

committed to x and y: if x is a task list of the form x = ab, and we have committed to xy,

and then try to commit to bc, we get (xy)(bc) = (aby)(bc) = a(byb)c = a(by)c = abyc = xyc.

We want to construct a network model from a monoid in a variety V which has

constituent monoids that are also in V. IfM is a monoid in a variety V, then each constituent

75

monoid ΓM (n) is a product of several copies of M , and so is also in V by definition. Thus

the ordinary network model (given in Theorem 2.11) restricted to a variety gives a functor

V → NetModV , where NetModV denotes the category of V-valued network models.

The free product of two monoids is a monoid, M +N an element of which is given

by a list with entries in the set M tN such that if two consecutive entries of a list are either

both elements of M or both elements of N , then the list is identified with the list that is the

same everywhere except that those two entries are reduced to one entry occupied by their

product. Note that the empty list is identified with both the singleton list consisting of the

identity element of M , and the singleton list consisting of the identity element of N . Free

products of monoids gives the coproduct in the category of monoids Mon. Free products

of monoids are very similar to free products of groups, which can be found in most books

introducing group theory [Hun74].

If two monoids M and N are in a variety V, taking their free product will not nec-

essarily produce a monoid in V, i.e. varieties are not necessarily closed under the coproduct

of Mon. It is easy to find an example demonstrating this. Consider IMon, the variety of

idempotent monoids, i.e. monoids satisfying the equation x2 = x for all elements x. The

boolean monoid B is an object in IMon. The free product of B with itself B + B can be

generated by elements a and b which correspond to the element 1 in each copy of B. The

element ab ∈ B + B is not idempotent, as abab 6= ab. However, every variety V does have

coproducts. The coproduct in a variety of monoids is the quotient of the free product by

the congruence relation generated by the variety’s defining equations. In Section 3.3 we

give a construction V → NetModV which uses colimits in order to impose minimal relations.

76

Lemma 3.12 tells us that it makes sense to talk about Green products in a variety,

which we call varietal Green products. In the next section, we use varietal Green products

with Kneser graphs to construct network models.

3.3 Free Network Models

In this section, we state and prove the main result of this chapter. It says that

given a monoid M in a variety V, we can construct a network model whose constituent

monoids are also in V, while avoiding to impose commutativity relations when possible. In

the following section, we see how this construction resolves the dilemma presented in the

question.

Let M be a monoid in a variety V. Define ΓM,V(n) to be the KGn,2 Green product

of
(
n
2

)
copies of M .

Theorem 3.13. For V a variety of monoids, Γ−,V : V → NetModV is a functor, as given

above. The network model ΓM,V is called the V-varietal network model for M-weighted

graphs, or just the varietal M network model.

In order to prove this, we must first show that a monoid M gives a network

model, i.e. a lax symmetric monoidal functor. The laxator for ΓM,V is canonically defined,

but perhaps it is not as immediate as the one for the ordinary M network model. We treat

this first before returning to the proof of the main theorem.

Let A and B be objects in a pointed category with finite products and coproducts.

Let pA : A×B → A and pB : A×B → B denote the canonical projections, and iA : A→ A+B

and iB : B → A+B the canonical inclusions. The category CMon of commutative monoids

77

is such a category. Recall that the operation of a monoid is a monoid homomorphism if and

only if the monoid is commutative. We have

A×B

A (A+B)× (A+B) B

A+B A+B A+B

pA pB

iA ∗ iB

where ∗ denotes the operation in the commutative monoid A + B, and the dashed arrow

is < iApA, iBpB > given by universal property. The composite of the two maps going

down the middle is the inverse to the canonical map A+ B → A× B. The operation in a

noncommutative monoid is not a monoid homomorphism, but all the above maps still exist

as functions. Recall that we let ∪ denote the operation in the monoids ΓM,V(n). There is

always a homomorphism φm,n : ΓM,V(m) + ΓM,V(n)→ ΓM,V(m+ n) by universal property

of coproducts. Let

γ : (ΓM,V(m) + ΓM,V(n))× (ΓM,V(m) + ΓM,V(n))→ ΓM,V(m) + ΓM,V(n)

denote the monoid operation of the coproduct.

ΓM,V(m)× ΓM,V(n)

ΓM,V(m) (ΓM,V(m) + ΓM,V(n))× (ΓM,V(m) + ΓM,V(n)) ΓM,V(n)

ΓM,V(m) + ΓM,V(n) ΓM,V(m) + ΓM,V(n) ΓM,V(m) + ΓM,V(n)

ΓM,V(m+ n)

p1 p2

i1 γ i2

φ

78

The monoids ΓM,V(n) are constructed specifically so that φ ◦ γ◦ < i1 ◦ p1, i2 ◦ p2 > is a

monoid homomorphism despite the fact that γ is not.

In the proof of the following theorem, we utilize a string diagrammatic calculus

suited for reasoning in a symmetric monoidal category. We refer the reader to Selinger’s

thorough exposition of such string diagramatic languages and their use in category theory

[Sel11].

Lemma 3.14. The function ΓM,V(m)×ΓM,V(n)→ ΓM,V(m+n) given by φ◦(i1◦p1∪i2◦p2)

is a monoid homomorphism. Moreover, the family of maps of this form gives a natural

transformation, denoted t.

Proof. We have the following actors in play:

• the monoid operations ∪k : ΓM,V(k) for k = m,n,m + n (we leave off the subscripts

below)

• the monoid operation of the coproduct

γ : (ΓM,V(m) + ΓM,V(n))× (ΓM,V(m) + ΓM,V(n))→ ΓM,V(m) + ΓM,V(n)

• the canonical inclusion maps i1 : ΓM,V(m)→ ΓM,V(m)→ ΓM,V(n) and i2 : ΓM,V(n)→

ΓM,V(m)→ ΓM,V(n)

• the canonical map φ : ΓM,V(m) + ΓM,V(n)→ ΓM,V(m+ n)

We represent these string diagramatically (read from top to bottom) as follows. Note

that these are digrams in Set with its cartesian monoidal structure, because the monoid

79

operations ∪k and γ are not necessarily monoid homomorphisms.

∪ , γ , i1 , i2 , φ

We define t : ΓM,V(m)× ΓM,V(n)→ ΓM,V(m+ n) as follows.

t =
φ φ

∪

i1 i2

(3.1)

Proposition 3.11 gives the following equation.

φ φ

∪

i2 i1

=
φ φ

∪

i1 i2

(3.2)

Since φ is a homomorphism, we get the following equation.

∪

φ φ
=

γ

φ

(3.3)

Since i1 and i2 are homomorphisms, we get the following equations.

γ

ij ij
=

γ

ij

(3.4)

80

We want to show that (g t h) ∪ (g′ t h′) = (g ∪ g′) t (h ∪ h′). We compute:

t t

∪
=
3.1 ∪ ∪

∪

i1 i2 i1 i2

φ φ φ φ

i1 i2 i1 i2

φ φ φ φ

∪

∪

∪

=
(3.2)

=

i1 i2i1 i2

φ φ φ φ

∪

∪

∪

=

i1 i2i1 i2

φ φ φ φ

∪ ∪

∪

i1 i2i1 i2

γ γ

φ φ

∪

=
(3.3)

=
(3.4)

t

∪ ∪

i1

φ

i2

φ
=

(3.1)

t

∪ ∪

81

Let σ ∈ Sm and τ ∈ Sn. Then

ΓM,V(σ + τ)(g t h) = ΓM,V(σ + τ)φ(i1(g) ∪ i2(h))

= ΓM,V(σ)φ(i1(g)) ∪ ΓM,V(τ)φ(i2(h))

= ΓM,V(σ(g)) t ΓM,V(τ(h)),

so the following diagram commutes.

ΓM,V(m)× ΓM,V(n) ΓM,V(m+ n)

ΓM,V(m)× ΓM,V(n) ΓM,V(m+ n)

t

ΓM,V (σ)×ΓM,V (τ) ΓM,V (σ+τ)

t

Thus t is a natural transformation.

Proof of Theorem 3.13. Checking the coherence conditions for t to be a laxator is a straight-

forward computation. Let f : M → N . Then define the natural transformation fV : ΓM,V →

ΓN,V with components (fV)n : ΓM,V(n) → ΓN,V(n) given by the universal property. Com-

position is clearly preserved.

Theorem 3.15. The functor Γ−,V is left adjoint to E : NetModV → V where E(F) = F (2)

for (F,Φ): (S,+)→ (V,×) a V-network model.

Because of this, we call ΓM,V the free V-valued network model on the monoid

M or the free V network model on M .

Proof. By construction, ΓM,V(2) = M , so let the unit η = 11V : 1V → Γ−,V(2).

We use the universal property of ΓM,V to construct the counit. We define a map

F (2) → F (n) for each vertex in KGn,2, and a map F (2) × F (2) → F (n) for each edge in

KGn,2.

82

If i, j ≤ n, then F ((1 i)(2 j)) : F (n) → F (n). If e is the unit of the monoid

F (n− 2), and m ∈ F (2), then Φ2,n−2(m, e) ∈ F (n). Define maps ci,j : F (2)→ F (n) by

ci,j = F ((1 i)(2 j))(Φ2,n−2(m, e)).

The intuition here is that m is a value on one edge of the graph, and e is a graph with n−2

vertices and no edges. Then Φ(m, e) is the graph with n vertices, and just one m-valued

edge between vertices 1 and 2. Then the permutation (1 i)(2 j) permutes this one-edge

graph to put m between vertex i and vertex j. So the map ci,j places the one-edge monoid

M at the i, j-position in the n-vertex monoid.

Define maps ci,j,p,q : F (2)× F (2)→ F (n) by ci,j,p,q(m,m
′) = ci,j(m)cp,q(m

′). The

second gives a monoid homomorphism precisely because (F,Φ) is a network model.

Then we get a map (εF)n : ΓF (2),V(n) → F (n) by universal property, which gives

a monoidal natural transformation automatically. That these maps form the components

of a natural transformation can be seen by a routine computation.

Notice that

(εΓ−,V)M = εΓM,V = 1ΓM,V ,

(Γ−,Vη)M = Γ1M ,V = 1ΓM,V ,

(Eε)F = E(εF) = (εF)2 = 1F (2),

(ηE)F = ηF (2) = 1F (2).

Thus, checking that the snake equations hold is routine.

Example 3.16. In CMon, products and coproducts are isomorphic. In particular, for a

commutative monoid M , ΓM,CMon
∼= ΓM .

83

Note that this does not indicate that varietal network models completely encom-

pass ordinary network models. If M is a noncommutative monoid,then ΓM,CMon is not

defined, but ΓM is.

3.4 Commitment Networks

The motivating example of network models in general is SG, the network model of

simple graphs. By Example 3.16, this network model is an example of the main construction

of this chapter, SG = ΓB,CMon. The boolean monoid is not only an object in CMon, it is

also an object in GMon, the variety of graphic monoids. Then we can consider the network

models ΓB,Mon and ΓB,GMon.

Example 3.17. Elements of the monoid ΓB,Mon(n) are words ep1,q1 . . . epk,qk . These words

are interpreted as graphs with edges that look like they were built with popsicle sticks, and

if two edges lie directly on top of each other, they are identified. Besides that relation, you

can stack edges as high as you want by placing them between different pairs of vertices, but

sharing one vertex.

There are networks one could imagine building with this popsicle stick intuition

which are not allowed by this formalism. For instance, consider a network with three

nodes and an edge for each pair of nodes, each overlapping exactly one of its neighbors,

forming an Escher-esque ever-ascending staircase. This sort of network is not allowed by

the formalism, since networks are actually equivalence classes of words, where letters have a

definite position relative to each other. This is an important feature for this network model

as it is necessary to guarantee that the procedure in the following example is well-defined,

84

giving an algebra of the related network operad. What this means in terms of popsicle stick

intuition is that allowed networks are built by placing popsicle sticks one at a time.

Example 3.18. Elements of the ΓB,GMon(n) are similar to those in the previous example,

except that they must obey the graphic identity, xyx = xy for all x, y ∈ ΓB,GMon(n). What

this means in the graphical interpretation is that all edges can be identified with the lowest

occuring instance of an edge on the same vertex pair. This means that these networks in

reduced form have at most as many edges as the complete simple graph with the same

number of edges. Essentially these networks are simple graphs with a partial order on the

edges which respects disjointness of edges.

The networks in the previous example have exactly what we need in a network

model to realize networks of bounded degree as an algebra of a network operad.

Example 3.19 (Networks of bounded degree, revisited). The degree of a vertex in

a simple graph is the number of edges in the graph which contain that vertex. For k ∈ N,

we say that a simple graph is k-bounded if all vertices have degree less than or equal to

k. Then we can consider the set Bk(n) of k-bounded simple graphs. We can define an

action of ΓB,GMon(n) on Bk(n) in the following way. Let g = e1 . . . el ∈ ΓB,GMon(n) and

h ∈ Bk(n). Choose a graph h′ ∈ ΓB,GMon(n) which has the same edges as h. Define h0 = h′,

then define hi = hi−1ei if that is k-bounded, else hi = hi−1. Let hg denote hl, which is a

k-bounded element of ΓB,GMon(n). Let ΓkB,GMon(n) denote the set of k-bounded elements of

ΓB,GMon(n). There is a function s : ΓkB,GMon(n)→ Bk(n). So we define hg to be s(hl). This

is independent of the choice of h′ and defines an action of ΓB,GMon on Bk(n).

85

The networks in the question in Section 3.1 can be represented by simple graphs

with vertex degrees bounded by k. Then Bk(n) gives an algebra of the operad OB,GMon.

This resolves the conflict encountered in the question in Section 3.1. Ordinary network

models could not record the order in which edges were added to a network, which was

necessary to define a systematic way of attempting to add new connections to a network

which has degree limitations on each vertex.

86

Chapter 4

Petri Nets

4.1 Introduction

Petri nets are a widely studied formalism for describing collections of entities of

different types, and how they turn into other entities [GV13, Pet81]. In this chapter, we

combine Petri nets with network models. This is worthwhile because while both formalisms

involve networks, they serve different functions, and are in some sense complementary.

A Petri net can be drawn as a bipartite directed graph with vertices of two kinds:

places, drawn as circles below, and transitions drawn as squares:

In applications to chemistry, places are also called species. When we run a Petri net, we

start by placing a finite number of tokens in each place:

•

••

87

This is called a marking. Then we repeatedly change the marking using the transitions. For

example, the above marking can change to this:

•
•

and then this:

••

•

Thus, the places represent different types of entity, and the transitions describe ways that

one collection of entities of specified types can turn into another such collection.

Network models serve a different function than Petri nets: they are a general tool

for working with networks of many kinds. A network model is a lax symmetric monoidal

functor G : S(C)→ Cat, where S(C) is the free strict symmetric monoidal category on a set

C. Elements of C represent different kinds of “agents”. Unlike in a Petri net, we do not

usually consider processes where these agents turn into other agents. Instead, we wish to

study everything that can be done with a fixed collection of agents. Any object x ∈ S(C) is

of the form c1 ⊗ · · · ⊗ cn for some ci ∈ C; thus, it describes a collection of agents of various

kinds. The functor G maps this object to a category G(x) that describes everything that

can be done with this collection of agents.

In many examples considered so far, G(x) is a category whose morphisms are

graphs whose nodes are agents of types c1, . . . , cn. Composing these morphisms corresponds

to overlaying graphs. Network models of this sort let us design networks where the nodes

are agents and the edges are communication channels or shared commitments. In Chapter 2,

the operation of overlaying graphs was always commutative. In Chapter 3 we introduced

more general noncommutative overlay operations. This lets us design networks where each

88

agent has a limit on how many communication channels or commitments it can handle;

the noncommutativity allows us to take a first come, first served approach to resolving

conflicting commitments.

Here we take a different tack: we instead take G(x) to be a category whose mor-

phisms are processes that the given collection of agents, x, can carry out. Composition of

morphisms corresponds to carrying out first one process and then another.

This idea meshes well with Petri net theory, because any Petri net P determines

a symmetric monoidal category FP whose morphisms are processes that can be carried

out using this Petri net. More precisely, the objects in FP are markings of P , and the

morphisms are sequences of ways to change these markings using transitions, e.g.:

•
•

•
•• → •

••

Given a Petri net, then, how do we construct a network model G : S(C)→ Cat, and

in particular, what is the set C? In a network model the elements of C represent different

kinds of agents. In the simplest scenario, these agents persist in time. Thus, it is natural

to take C to be some set of “catalysts”. In chemistry, a reaction may require a catalyst to

proceed, but it neither increases nor decrease the amount of this catalyst present. For a

Petri net, catalysts are species that are neither increased nor decreased in number by any

transition. For example, species a is a catalyst in the following Petri net, so we outline it

in red:

cb

a

τ1

τ2

89

but neither b nor c is a catalyst. The transition τ1 requires one token of type a as input

to proceed, but it also outputs one token of this type, so the total number of such tokens

is unchanged. Similarly, the transition τ2 requires no tokens of type a as input to proceed,

and it also outputs no tokens of this type, so the total number of such tokens is unchanged.

In Theorem 4.9 we prove that given any Petri net P , and any subset C of the

catalysts of P , there is a network model G : S(C) → Cat. An object x ∈ S(C) says how

many tokens of each catalyst are present; G(x) is then the subcategory of FP where the

objects are markings that have this specified amount of each catalyst, and morphisms are

processes going between these.

From the functorG : S(C)→ Cat we can construct a category
∫
G by the Grothendieck

construction. BecauseG is symmetric monoidal we can make
∫
G into a symmetric monoidal

category by the monoidal Grothendieck construction of Chapter 5. The tensor product in∫
G describes doing processes in parallel. The category

∫
G is similar to FP , but it is

better suited to applications where agents each have their own individuality, because FP

is actually a commutative monoidal category, where permuting agents has no effect at all,

while
∫
G is not so degenerate. In Theorem 4.12 we make this precise by more concretely

describing
∫
G as a symmetric monoidal category, and clarifying its relation to FP .

There are no morphisms between an object of G(x) and an object of G(x′) unless

x ∼= x′, since no transitions can change the amount of catalysts present. The category FP

is thus a disjoint union, or more precisely a coproduct, of subcategories FPi where i, an

element of free commutative monoid on C, specifies the amount of each catalyst present.

The tensor product on FP has the property that tensoring an object in FPi with one in

90

FPj gives an object in FPi+j , and similarly for morphisms.

However, in Prop. 4.15 we show that each subcategory FPi also has its own tensor

product, which describes doing one process and then another while reusing catalyst tokens.

This tensor product makes FPi into a premonoidal category—an interesting generalization

of a monoidal category which we recall. Finally, in Theorem 4.17 we show that these

monoidal structures define a lift of the functor G : S(C) → Cat to a functor Ĝ : S(C) →

PreMonCat, where PreMonCat is the category of strict premonoidal categories.

4.2 Petri Nets

A Petri net generates a symmetric monoidal category whose objects are tensor

products of species and whose morphisms are built from the transitions by repeatedly taking

composites and tensor products. There is a long line of work on this topic starting with

the papers of Meseguer–Montanari [MM90] and Engberg–Winskel [EW90], both dating to

roughly 1990. It continues to this day, because the issues involved are surprisingly subtle

[DMM89, Sas94, Sas95, Sas96, SS05, Mas20]. In particular, there are various kinds of

symmetric monoidal categories to choose from. Following the work of Master and Baez

[BM20] we use ‘commutative’ monoidal categories. These are just commutative monoid

objects in Cat, so their associator:

αa,b,c : (a⊗ b)⊗ c ∼−→ a⊗ (b⊗ c),

their left and right unitor:

λa : I ⊗ a ∼−→ a, ρa : a⊗ I ∼−→ a,

91

and even their braiding:

σa,b : a⊗ b ∼−→ b⊗ a

are all identity morphisms. While every symmetric monoidal category is equivalent to one

with trivial associator and unitors, this ceases to be true if we also require the braiding

to be trivial. However, it seems that Petri nets most naturally serve to present symmetric

monoidal categories of this very strict sort. Thus, we shall describe a functor from the

category of Petri nets to the category of commutative monoidal categories, which we call

CMonCat:

F : Petri→ CMonCat.

To begin, let CMon be the category of commutative monoids and monoid homo-

morphisms. There is a forgetful functor from CMon to Set that sends commutative monoids

to their underlying sets and monoid homomorphisms to their underlying functions. It has

a left adjoint N : Set→ CMon sending any set X to the free commutative monoid on X. An

element a ∈ N[X] is formal linear combination of elements of X:

a =
∑
x∈X

ax x,

where the coefficients ax are natural numbers and all but finitely many are zero. The set

X naturally includes in N[X], and for any function f : X → Y , N[f] : N[X] → N[Y] is the

unique monoid homomorphism that extends f . We often abuse language and use N[X] to

mean the underlying set of the free commutative monoid on X.

Definition 4.1. A Petri net is a pair of functions of the following form:

T N[S].
s

t

92

We call T the set of transitions, S the set of places or species, s the source function,

and t the target function. We call an element of N[S] a marking of the Petri net.

For example, in this Petri net:

τ1

τ2

a

b

c

we have S = {a, b, c}, T = {τ1, τ2}, and

s(τ1) = a+ b t(τ1) = c

s(τ2) = c t(τ2) = 2b.

The term ‘species’ is used in applications of Petri nets to chemistry. Since the concept of

‘catalyst’ also arose in chemistry, we henceforth use the term ‘species’ rather than ‘places’.

Definition 4.2. A Petri net morphism from the Petri net P to the Petri net P ′ is a pair

of functions (f : T → T ′, g : S → S′) such that the following diagrams commute:

T N[S]

T ′ N[S′]

s

f N[g]

s′

T N[S]

T ′ N[S′]

t

f N[g]

t′

Let Petri denote the category of Petri nets and Petri net morphisms with composition

defined by

(f, g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ g′).

Definition 4.3. A commutative monoidal category is a commutative monoid object

in (Cat,×). Let CMonCat denote the category of commutative monoid objects in (Cat,×).

More concretely, a commutative monoidal category is a strict monoidal category

for which a ⊗ b = b ⊗ a for all pairs of objects and all pairs of morphisms, and the braid

isomorphism a⊗ b→ b⊗ a is the identity map.

93

Every Petri net P = (s, t : T → N[S]) gives rise to a commutative monoidal cate-

gory FP as follows. We take the commutative monoid of objects Ob(FP) to be the free

commutative monoid on S. We construct the commutative monoid of morphisms Mor(FP)

as follows. First we generate morphisms recursively:

• for every transition τ ∈ T we include a morphism τ : s(τ)→ t(τ);

• for any object a we include a morphism 1a : a→ a;

• for any morphisms f : a→ b and g : a′ → b′ we include a morphism denoted f+g : a+

a′ → b+ b′ to serve as their tensor product;

• for any morphisms f : a → b and g : b → c we include a morphism g ◦ f : a → c to

serve as their composite.

Then we quotient by an equivalence relation on morphisms that imposes the laws of a

commutative monoidal category, obtaining the commutative monoid Mor(FP).

Similarly, morphisms between Petri nets give morphisms between their commuta-

tive monoidal categories. Given a Petri net morphism

T N[S]

T ′ N[S′]

f N[g]

we define the functor F (f, g) : FP → FP ′ to be N[g] on objects, and on morphisms to be

the unique map extending f that preserves identities, composition, and the tensor product.

This functor is strict symmetric monoidal.

Proposition 4.4. There is a functor F : Petri→ CMonCat defined as above.

94

Proof. This is straightforward; the proof that F is a left adjoint is harder [Mas20], but we

do not need this here.

4.3 Catalysts

One thinks of a transition τ of a Petri net as a process that consumes the source

species s(τ) and produces the target species t(τ). An example of something that can be

represented by a Petri net is a chemical reaction network [BB18, BP17]. Indeed, this is

why Carl Petri originally invented them. A ‘catalyst’ in a chemical reaction is a species

that is necessary for the reaction to occur, or helps lower the activation energy for reaction,

but is neither increased nor depleted by the reaction. We use a modest generalization of

this notion, defining a catalyst in a Petri net to be a species that is neither increased nor

depleted by any transition in the Petri net.

Given a Petri net s, t : T → N[S], recall that for any marking a ∈ N[S] we have

a =
∑
x∈S

axx

for certain coefficients ax ∈ N. Thus, for any transition τ of a Petri net, s(τ)x is the

coefficient of the place x in the source of τ , while t(τ)x is its coefficient in the target of τ .

Definition 4.5. A species x ∈ S in a Petri net P = (s, t : T → N[S]) is called a catalyst

if s(τ)x = t(τ)x for every transition τ ∈ T . Let Scat ⊆ S denote the set of catalysts in P .

Definition 4.6. A Petri net with catalysts is a Petri net P = (s, t : T → N[S]) with a

chosen subset C ⊆ Scat. We denote a Petri net P with catalysts C as (P,C).

95

Suppose we have a Petri net with catalysts (P,C). Recall that the set of objects

of FP is the free commutative monoid N[C]. We have a natural isomorphism

N[S] ∼= N[C]× N[S \ C].

We write

πC : N[S]→ N[C]

for the projection. Given any object a ∈ FP , πC(a) says how many catalysts of each species

in C occur in a.

Definition 4.7. Given a Petri net with catalysts (P,C) and any i ∈ N[C], let FPi be the

full subcategory of FP whose objects are objects a ∈ FP with πC(a) = i.

Morphisms in FPi describe processes that the Petri net can carry out with a

specific fixed amount of every catalyst. Since no transition in P creates or destroys any

catalyst, if f : a→ b is a morphism in FP then

πC(a) = πC(b).

Thus, FP is the coproduct of all the subcategories FPi:

FP ∼=
∐

i∈N[C]

FPi

as categories. The subcategories FPi are not generally monoidal subcategories because if

a, b ∈ FP and a+ b is their tensor product then

πC(a+ b) = πC(a) + πC(b)

so for any i, j ∈ N[C] we have

a ∈ FPi, b ∈ FPj ⇒ a+ b ∈ FPi+j

96

and similarly for morphisms. Thus, we can think of FP as a commutative monoidal category

‘graded’ by N[C]. But note we are free to reinterpret any process as using a greater amount

of various catalysts, by tensoring it with identity morphism on this additional amount of

catalysts. That is, given any morphism in FPi, we can always tensor it with the identity

on j to get a morphism in FPi+j .

Since N[C] is a commutative monoid we can think of it as a commutative monoidal

category with only identity morphisms, and we freely do this in what follows. Network

models rely on a similar but less trivial way of constructing a symmetric monoidal category

from a set C. Namely, for any set C there is a category S(C) for which:

• Objects are formal expressions of the form

c1 ⊗ · · · ⊗ cn

for n ∈ N and c1, . . . , cn ∈ C. When n = 0 we write this expression as I.

• There exist morphisms

f : c1 ⊗ · · · ⊗ cm → c′1 ⊗ · · · ⊗ c′n

only if m = n, and in that case a morphism is a permutation σ ∈ Sn such that

c′σ(i) = ci for all i = 1, . . . , n.

• Composition is the usual composition of permutations.

In short, an object of S(C) is a list of catalysts, possibly empty, and allowing repetitions.

A morphism is a permutation that maps one list to another list.

97

As shown in Proposition 2.16, S(C) is the free strict symmetric monoidal category

on the set C. There is thus a strict symmetric monoidal functor

p : S(C)→ N[C]

sending each object c1⊗· · ·⊗cn to the object c1+· · ·+cn, and sending every morphism to an

identity morphism. This can also be seen directly. In what follows, we use this functor p to

construct a lax symmetric monoidal functor G : S(C)→ Cat, where Cat is made symmetric

monoidal using its cartesian product.

Proposition 4.8. Given a Petri net with catalysts (P,C), there exists a unique functor

G : S(C)→ Cat sending each object x ∈ S(C) to the category FPp(x) and each morphism in

S(C) to an identity functor.

Proof. The uniqueness is clear. For existence, note that since N[C] has only identity mor-

phisms there is a functor H : N[C] → Cat sending each object x ∈ N[C] to the category

FPp(x). If we compose H with the functor p : S(C)→ N[C] described above we obtain the

functor G.

Theorem 4.9. The functor G : S(C) → Cat becomes lax symmetric monoidal with the lax

structure map

Φx,y : FPp(x) × FPp(y) → FPp(x⊗y)

given by the tensor product in FP , and the map

φ : 1→ FP0

sending the unique object of the terminal category 1 ∈ Cat to the unit for the tensor product

in FP , which is the object 0 ∈ FP0.

98

Proof. Recall that G is the composite of p : S(C)→ N[C] and H : N[C]→ Cat. The functor

p is strict symmetric monoidal. The functor p is strict symmetric monoidal. One can check

that the functor H becomes lax symmetric monoidal if we equip it with the lax structure

map

FPi × FPj → FPi+j

given by the tensor product in FP , and the map

1→ FP0

sending the unique object of 1 ∈ Cat to the unit for the tensor product in FP , namely

0 ∈ N[S] = Ob(FP). Composing the lax symmetric monoidal functor H and with the strict

symmetric monoidal functor p, we obtain the lax symmetric monoidal functor G described

in the theorem statement.

We defined C-colored network model in Chapter 2 to be a lax symmetric

monoidal functor from S(C) to Cat.

Definition 4.10. We call the C-colored network model G : S(C)→ Cat of Theorem 4.9 the

Petri network model associated to the Petri net with catalysts (P,C).

Example 4.11. The following Petri net P has species S = {a, b, c, d, e} and transitions

T = {τ1, τ2}:
a b

c d eτ1 τ2

Species a and b are catalysts, and the rest are not. We thus can take C = {a, b} and obtain

a Petri net with catalysts (P,C), which in turn gives a Petri network model G : S(C)→ Cat.

99

We outline catalyst species in red, and also draw the edges connecting them to transitions

in red.

Here is one possible interpretation of this Petri net. Tokens in c represent people

at a base on land, tokens in d are people at the shore, and tokens in e are people on a

nearby island. Tokens in a represent jeeps, each of which can carry two people at a time

from the base to the shore and then return to the base. Tokens in b represent boats that

carry one person at a time from the shore to the island and then return.

Let us examine the effect of the functor G : S(C)→ Cat on various objects of S(C).

The object a ∈ S(C) describes a situation where there is one jeep present but no boats.

The category G(a) is isomorphic to FX, where X is this Petri net:

c d eτ1

That is, people can go from the base to the shore in pairs, but they cannot go to the island.

Similarly, the object b describes a situation with one boat present but no jeeps, and the

category G(b) is isomorphic to FY , where Y is this Petri net:

c d eτ2

Now people can only go from the shore to the island, one at a time.

The object a ⊗ b ∈ S(C) describes a situation with one jeep and one boat. The

category G(a⊗ b) is isomorphic to FZ for this Petri net Z:

c d eτ1 τ2

Now people can go from the base to the shore in pairs and also go from the shore to the

island one at a time.

100

Surprisingly, an object x ∈ S(C) with additional jeeps and/or boats always pro-

duces a category G(x) that is isomorphic to one of the three just shown: G(a), G(b) and

G(a⊗ b). For example, consider the object b⊗ b ∈ S(C), where there are two boats present

but no jeeps. There is an isomorphism of categories

−+ b : G(b)→ G(b⊗ b)

defined as follows. Recall that G(b) = FPb and G(b ⊗ b) = FPb+b, where FPb and FPb+b

are subcategories of FP . The functor

−+ b : FPb → FPb+b

sends each object x ∈ FPb to the object x+ b, and sends each morphism f : x→ y in FPb

to the morphism 1b + f : b+ x→ b+ y. That this defines a functor is clear; the surprising

part is that it is an isomorphism. One might have thought that the presence of a second

boat would enable one to carry out a given task in more different ways.

Indeed, while this is true in real life, the category FP is commutative monoidal,

so tokens of the same species have no ‘individuality’: permuting them has no effect. There

is thus, for example, no difference between the following two morphisms in FPb+b:

• using one boat to transport one person from the base to shore and another boat to

transport another person, and

• using one boat to transport first one person and then another.

It is useful to draw morphisms in FP as string diagrams, since such diagrams

serve as a general notation for morphisms in monoidal categories [JS91]. For expository

101

treatments, see [BS11, Sel11]. The rough idea is that objects of a monoidal category are

drawn as labelled wires, and a morphism f : x1 ⊗ · · · ⊗ xm → y1 ⊗ · · · ⊗ yn is drawn as a

box with m wires coming in on top and n wires coming out at the bottom. Composites of

morphisms are drawn by attaching output wires of one morphism to input wires of another,

while tensor products of morphisms are drawn by setting pictures side by side. In symmetric

monoidal categories, the braiding is drawn as a crossing of wires. The rules governing string

diagrams let us manipulate them while not changing the morphisms they denote. In the case

of symmetric monoidal categories, these rules are well known [JS91, Sel11]. For commutative

monoidal categories there is one additional rule:

x y

y x

=

x y

yx

This says both that x⊗ y = y⊗ x and that the braiding σx,y : x⊗ y → y⊗ x is the identity.

Here is the string diagram notation for the equation we mentioned between two

morphisms in FP :

b b d d

τ2

=

τ2

b b e e

=

b b d d

τ2

τ2

b b e e

We draw the object b (standing for a boat) in red to emphasize that it serves as a catalyst.

At left we are first using one boat to transport one person from the base to shore, and

then using another boat to transport another person. At right we are using the same

102

boat to transport first one person and then another, while another boat stands by and

does nothing. These morphisms are equal because they differ only by the presence of the

braiding σb,b : b+ b→ b+ b in the left hand side, and this is an identity morphism.

The above example illustrates an important point: in the commutative monoidal

category FP , permuting catalyst tokens has no effect. Next we construct a symmetric

monoidal category
∫
G in which permuting such tokens has a nontrivial effect. One reason

for wanting this is that in applications, the catalyst tokens may represent agents with their

own individuality. For example, when directing a boat to transport a person from base to

shore, we need to say which boat should do this. For this we need a symmetric monoidal

category that gives the catalyst tokens a nontrivial braiding.

To create this category, we use the symmetric monoidal Grothendieck construction

of Chapter 5. Given any symmetric monoidal category X and any lax symmetric monoidal

functor F : X → Cat, this construction gives a symmetric monoidal category
∫
F equipped

with a functor (indeed an opfibration)
∫
F → X. In Chapter 2, we used this construction

to build an operad from any network model, whose operations are ways to assemble larger

networks from smaller ones. Now this construction has a new significance.

Starting from a Petri network model G : S(C) → Cat, the symmetric monoidal

Grothendieck construction gives a symmetric monoidal category
∫
G in which:

• an object is a pair (x, a) where x ∈ S(C) and a ∈ FPp(x).

• a morphism from (x, a) to (x′, a′) is a pair (σ, f) where σ : x → x′ is a morphism in

S(C) and f : a→ a′ is a morphism in FP .

• morphisms are composed componentwise.

103

• the tensor product is computed componentwise: in particular, the tensor product of

objects (x, a) and (x′, a′) is (x⊗ x′, a+ a′).

• the associators, unitors and braiding are also computed componentwise (and hence

are trivial in the second component, since FP is a commutative monoidal category).

The functor
∫
G→ S(C) simply sends each pair to its first component.

This is simpler than one typically expects from the Grothendieck construction.

There are two main reasons: first, G maps every morphism in S(C) to an identity morphism

in Cat, and second, the lax structure map forG is simply the tensor product in FP . However,

this construction still has an important effect: it makes the process of switching two tokens

of the same catalyst species into a nontrivial morphism in
∫
G. More formally, we have:

Theorem 4.12. If G : S(C) → Cat is the Petri network model associated to the Petri net

with catalysts (P,C), then
∫
G is equivalent, as a symmetric monoidal category, to the full

subcategory of S(C) × FP whose objects are those of the form (x, a) with x ∈ S(C) and

a ∈ FPp(x).

Proof. One can read this off from the description of
∫
G given above.

The difference between
∫
G and FP is that the former category keeps track of

processes where catalyst tokens are permuted, while the latter category treats them as

identity morphisms. In the terminology of Glabbeek and Plotkin,
∫
G implements the

‘individual token philosophy’ on catalysts, in which permuting tokens of the same catalyst is

regarded as having a nontrivial effect [vGP09]. By contrast, FP implements the ‘collective

token philosophy’, where all that matters is the number of tokens of each catalyst, and

104

permuting them has no effect.

There is a map from
∫
G to FP that forgets the individuality of the catalyst

tokens. A morphism in
∫
G is a pair (σ, f) where σ : x → x′ is a morphism in S(C) and

f : a→ a′ is a morphism in FP with a ∈ G(x), a′ ∈ G(x′). There is a symmetric monoidal

functor ∫
G→ FP

that discards this extra information, mapping (σ, f) to f . The symmetric monoidal Grothendieck

construction also gives a symmetric monoidal opfibration

∫
G→ S(C)

which maps (σ, f) to σ, by Chapter 5.

Example 4.13. Let (P,C) be the Petri net with catalysts in Ex. 4.11, and G : S(C)→ Cat

the resulting Petri network model. In
∫
G the following two morphisms are not equal:

b b d d

τ2

τ2

b b e e

6=

b b d d

τ2

τ2

b b e e

because the braiding of catalyst species in
∫
G is nontrivial. This says that in

∫
G we

consider these two processes as different:

• using one boat to transport one person from the base to shore and another boat to

transport another person, and

105

• using one boat to transport first one person and then another.

On the other hand, in
∫
G we have

b b d d

τ2

τ2

b b e e

=

b b d d

τ2

τ2

b b e e

because these morphisms differ only by two people on the shore switching place before they

board the boats, and the braiding of non-catalyst species is the identity. In short, the
∫
G

construction implements the individual token philosophy only for catalyst tokens; tokens of

other species are governed by the collective token philosophy.

4.4 Premonoidal Categories

We have seen that for a Petri net P , a choice of catalysts C lets us write the

category FP as a coproduct of subcategories FPi, one for each possible amount i ∈ N[C]

of the catalysts. The subcategory FPi is only a monoidal subcategory when i = 0. Indeed,

only FP0 contains the monoidal unit of FP . However, we shall see that each subcategory

FPi can be given the structure of a premonoidal category, as defined by Power and Robinson

[PR97]. We motivate our use of this structure by describing two failed attempts to make

FPi into a monoidal category.

Given two morphisms in FPi we typically cannot carry out these two processes

simultaneously, because of the limited availability of catalysts. But we can do first one and

106

then the other. For example, imagine that two people are trying to walk through a doorway,

but the door is only wide enough for one person to walk through. The door is a resource

that is not depleted by its use, and thus a catalyst. Both people can use the door, but not

at the same time: they must make an arbitrary choice of who goes first.

We can attempt to define a tensor product on FPi using this idea. Fix some

amount of catalysts i ∈ N[C]. Objects of FPi are of the form i+ a with a ∈ N[S − C]. On

objects we define

(i+ a)⊗i (i+ a′) = i+ a+ a′.

The unit object for ⊗i is therefore i+ 0, or simply i. For morphisms

f : i+ a→ i+ b

f ′ : i+ a′ → i+ b′

we define

f ⊗i f ′ = (f + 1b′) ◦ (1a + f ′).

The tensor product f ⊗i f ′ = (f + 1b′) ◦ (1a + f ′) of morphisms in FPi involves an

arbitrary choice: namely, the choice to do f ′ first. This is perhaps clearer if we draw this

morphism as a string diagram in FP .

i

a a′

f

f ′

b b′

i

107

If instead we choose to do f first, we can define a tensor product i⊗ which is the same on

objects but given on morphisms by

f i⊗ f ′ = (1b + f ′) ◦ (f + 1a′).

It looks like this:

i a a′

f

f ′

b b′ i

Unfortunately, neither of these tensor products makes FPi into a monoidal category! Each

makes the set of objects Ob(FPi) and the set of morphisms Mor(FPi) into a monoid in such

a way that the source and target maps s, t : Mor(FPi)→ Ob(FPi), as well as the identity-

assigning map i : Ob(FPi)→ Mor(FPi), are monoid homomorphisms. The problem is that

neither obeys the interchange law, so neither of these tensor products defines a functor from

FPi × FPi to FPi. For example,

(1⊗i f ′) ◦ (f ⊗i 1) 6= (f ⊗i 1) ◦ (1⊗i f ′).

The other tensor product suffers from the same problem.

What is going on here? It turns out that FPi is a ‘strict premonoidal category’.

While these structures first arose in computer science [PR97], they are also mathematically

natural, for the following reason. There are only two symmetric monoidal closed structures

on Cat, up to isomorphism [FKL80]. One is the the cartesian product. The other is

108

the ‘funny tensor product’ [Web13]. A monoid in Cat with its cartesian product is a strict

monoidal category, but a monoid in Cat with its funny tensor product is a strict premonoidal

category. The funny tensor product C�D of categories C and D is defined as the following

pushout in Cat:

C0 ×D0 C0 ×D

C ×D0 C�D

i×1

1×j

Here C0 is the subcategory of C consisting of all the objects and only identity morphisms,

i : C0 → C is the inclusion, and similarly for j : D0 → D. Thus, given morphisms f : x → y

in C and f ′ : x′ → y′ in C, the category C�D in contains a square of the form

x�x′ x�y′

x′�y x′�y′,

f�1

1�f ′

f�1

1�f ′

but in general this square does not commute, unlike the corresponding square in C × D.

Definition 4.14. A strict premonoidal category is a category C equipped with a functor

� : C�C → C that obeys the associative law and an object I ∈ C that serves as a left and

right unit for �.

Given two morphisms f : x→ y, f ′ : x′ → y′ in a strict premonoidal category C we

obtain a square

x� x′ x� y′

x′ � y x′ � y′,

f�1

1�f ′

f�1

1�f ′

but this square may not commute. There are thus two candidates for a morphism from

x � x′ to y � y′. When these always agree, we can make C monoidal by setting f � f ′

equal to either (and thus both) of these candidates. We shall give FPi a strict premonoidal

109

structure where these two candidates do not agree: one is f ⊗i f ′ while the other is f i⊗ f ′.

This explains the meaning of these two failed attempts to give FPi a monoidal structure.

Thanks to the description of C�C as a pushout, to know the tensor product � in

a strict premonoidal category C it suffices to know x � y, x � f and f � y for all objects

x, y and morphisms f of C. (Here we find it useful to write x� f for 1x � f and f � y for

f � 1y.) In the case at hand, we define

�i : FPi�FPi → FPi

on objects by setting

(i+ a)�i (i+ a′) = i+ a+ a′

for all a, a′ ∈ N[S − C], while for morphisms

f : i+ a→ i+ b

f ′ : i+ a′ → i+ b′

we set

a� f ′ = f ′ + 1a, f � a′ = f + 1a′ .

Proposition 4.15. The tensor product �i makes FPi into a strict premonoidal category.

Proof. This can be checked directly, but this is also a special case of a construction in

Power and Robinson’s paper on premonoidal categories [PR97, Ex. 3.4]. They describe a

construction, sometimes called ‘linear state passing’ [MS14], that takes any object i in any

symmetric monoidal category C and yields a premonoidal category Ci where objects are of

the form i⊗ c for c ∈ C and morphisms are morphisms in C of the form f : i⊗ c→ i⊗ c′.

110

We are considering the special case where C = FP , and because FP is commutative

monoidal the resulting premonoidal category is strict: all the coherence isomorphisms are

identities.

Finally, we show that the tensor products �i on the categories FPi let us lift our

network model G from Cat to the category of strict premonoidal categories.

Definition 4.16. Let PreMonCat be the category of strict premonoidal categories and

strict premonoidal functors, meaning functors between strict premonoidal categories

that strictly preserve the tensor product. Let U : PreMonCat → Cat denote the forgetful

functor which sends a strict premonoidal category to its underlying category.

Theorem 4.17. The network model G : S(C)→ Cat lifts to a functor Ĝ : S(C)→ PreMonCat:

PreMonCat

S(C) Cat

U

G

Ĝ

where Ĝ(x) = FPp(x) with the strict premonoidal structure described in Prop. 4.15.

Proof. Since G sends each morphism in S(C) to an identity functor, so must Ĝ.

111

Chapter 5

Monoidal Grothendieck

Construction

5.1 Introduction

The Grothendieck construction [Gro71] exhibits one of the most fundamental rela-

tions in category theory, namely the equivalence between contravariant pseudofunctors into

Cat and fibrations. In previous chapters, we have described how the to construct a total

category, denoted
∫
F , from a functor of the form F : X op → Cat. Actually, we really could

have been using pseudofunctors, since Cat is more naturally thought of as a 2-category. We

refer to pseudofunctors of the form F : X op → Cat as indexed categories. The construction

of
∫
F from a given indexed category essentially forgets the distinction between the cate-

gories Fx for x ∈ X , and incorporates the functors Ff : Fy → Fx as maps between the

objects of Fy and Fx. The distinction between these categories could be remembered via

112

a fibration, a special sort of functor P :
∫
F → X , which tells you how to take preimage

categories of the objects, P−1(x), and turn certain maps in
∫
F into functors between the

preimage categories. For a general fibration P : A → X , the category X is called the base

category and the category A is called the total category. For an object x ∈ X , the preimage

category P−1(x) is called the fibre of P over x. A fibration is precisely what is needed

to reconstruct all the data in the indexed category from its total category. Indeed, the

Grothendieck construction gives an equivalence between the 2-categories ICat of indexed

categories, and Fib of fibrations. This equivalence allows us to move between the worlds of

indexed categories and fibred categories, providing access to tools and results from both. We

recall the basic theory of fibrations, indexed categories, and the Grothendieck construction

in Appendix C.1.

Due to the importance of the Grothendieck construction, it is only natural that one

would be interested in extra structure these objects may have, and how the correspondence

extends. In particular, a version which handles monoidal structures on the various categories

in play could potentially be very useful, as monoidal categories are of central interest in

both pure and applied category theory. There are several categories to consider as equipped

with monoidal structures in this scenario: fibers P−1(x) of a fibration P : A → X , its

base category X , its total category A, the indexing category X of an indexed category

F : X op → Cat, and the categories Fx indexed by F . Of course these options are not

really all distinct. The base of the fibrations correspond to the indexing category under the

equivalence, and the fibres correspond to the individual categories selected by the indexed

category. This boils our options down to two monoidal variants: fibre-wise, and global.

113

In the first variant—the fibre-wise approach—the fibres are equipped with a monoidal

structure, and the reindexing functors are equipped with a strict monoidal structure. The

additional structure this gives to the corresponding indexed categories turns them into

pseudofunctors into MonCat, which were called indexed monoidal categories by Hofstra and

de Marchi [HM06]. In the second variant—the global approach—the total category and the

base category of the fibration are each equipped with the structure of a monoidal category,

and the fibration is equipped with a strict monoidal structure. The corresponding structure

equipped to the related indexed category is a little less obvious. The indexing category is

equipped with a monoidal structure as in the fibration side of the picture, and the pseud-

ofunctor is now equipped with the structure of a lax monoidal structure into Cat with its

cartesian structure. We call these monoidally indexed categories or just monoidal indexed

categories.

Both of these variants can be seen as special cases of a much more general phe-

nomenon. Pseudomonoids are a categorification of monoid objects internal to a monoidal

category. It would be reasonable to call it “monoidal category internal to a monoidal

2-category”. We can see both of the monoidal variants of both fibrations and indexed cat-

egories described above as examples of pseudomonoids in certain 2-categories of fibrations

or indexed categories.

The 2-category ICat(X) of indexed categories over a fixed base category has finite

products, and thus a cartesian monoidal structure. Pseudomonoids taken with respect to

this monoidal structure are precisely pseudofunctors X op → MonCat, i.e. the fibre-wise

monoidal indexed categories described above. Similarly, the 2-category Fib(X) of fibrations

114

over a fixed base category has a cartesian monoidal structure, for which pseudomonoids are

precisely the fibre-wise monoidal fibrations described above.

The 2-category ICat of indexed categories over different base categories has finite

products, and thus a cartesian monoidal structure. Pseudomonoids taken with respect to

this monoidal structure are precisely lax monoidal pseudofunctors (X op,⊗) → (Cat,×),

i.e. the global monoidal indexed categories described above. Similarly, the 2-category Fib

of fibrations over different base categories has a cartesian monoidal structure, for which

pseudomonoids are precisely the global monoidal fibrations described above.

An immediate consequence of this perspective on these objects is that the Grothendieck

construction lifts naturally into both settings. The 2-category of fibre-wise monoidal fibra-

tions is equivalent to the 2-category of fibre-wise monoidal indexed categories, c.f. The-

orem 5.8. Similarly, the 2-category of global monoidal fibrations is equivalent to the 2-

category of global monoidal indexed categories, c.f. Theorem 5.11.

When X is cartesian monoidal, a global monoidal structure can be constructed

from fibre-wise monoidal data, and vice versa, c.f. Theorem 5.13. We use our high-level

perspective to give a new proof of the result of Shulman giving an equivalence between

fibre-wise monoidal indexed categories and global monoidal fibrations over cartesian base

categories [Shu08].

The fact that the monoidal Grothendieck construction naturally arises in diverse

settings is what motivated the theoretical clarification presented here. We gather a few

examples in the last section of the chapter to exhibit the various constructions concretely,

and we are convinced that many more exist and would benefit from such a viewpoint. The

115

examples include standard (op)fibrations such as the (co)domain (op)fibration and families

classified in their monoidal contexts, as well as certain special algebraic cases of interest such

as monoid-(co)algebras as objects in monoidal Grothendieck categories. Moreover, global

categories of (co)modules for (co)monoids in any monoidal category, as well as (co)modules

for (co)monads in monoidal double categories also naturally fit in this context. Finally,

certain categorical approaches to systems theory employ algebras for monoidal categories,

namely monoidal indexed categories, as their basic compositional tool for nesting of systems;

clearly these also fall into place, giving rise to total monoidal categories of systems with

new potential to be explored.

In Section 5.2 and Section 5.3, we give the fibre-wise and global monoidal versions

of fibrations and indexed categories. In the first version, the fibers are equipped with

a monoidal structure. In the second, the base and total categories are monoidal, and the

fibration is (strict) monoidal. In Section 5.4, we lift the Grothendieck construction into these

monoidal settings as well. In Section 5.5, we give a detailed description of the monoidal

structures given by the correspondences.

5.2 Monoidal Fibres and Monoidal Fibrations

We begin by describing the two monoidal variants of fibrations. This requires

familiarity with notions such as monoidal 2-categories, pseudomonoids, and the 2-categories

Fib and Fib(X). The 2-categories Fib and OpFib of (op)fibrations over arbitrary bases,

explained in Appendix C.1, have a cartesian monoidal structure inherited from Cat2. For

116

two fibrations P and Q, their product in Cat2

P ×Q : A× B → X × Y (5.1)

is also a fibration, where a cartesian lifting is a pair consisting of a P -lifting and a Q-lifting;

similarly for opfibrations. The monoidal unit is the trivial (op)fibration 11 : 1 → 1. Since

the monoidal structure is cartesian, they are both symmetric monoidal 2-categories. We

refer to a pseudomonoid in (Fib,×, 11) as a monoidal fibration. By the following result,

this aligns with the common notion of monoidal fibration [Shu08].

Proposition 5.1. A monoidal fibration P : A → X is a fibration for which both the total

A and base category X are monoidal, P is a strict monoidal functor and the tensor product

⊗A of A preserves cartesian liftings.

Proof. The multiplication and unit are fibred 1-cells µ = (⊗A,⊗X) : P × P → P and

ε = (IA, IX) : 1→ P displayed as follows.

A×A A and 1 A

X ×X X 1 X

⊗A

P×P P

IA

11 P

⊗X IX

(5.2)

A morphism (φ1, φ2) in A × A is P × P -cartesian if and only if φ1 and φ2 are both P -

cartesian. The condition of (⊗A,⊗X) forming a fibred 1-cell tells us precisely that φ1⊗A φ2

is P -cartesian. The pieces of associativity and unitality 2-cells corresponding to A and to

X give precisely the associativity and unitality structures for each to be given the structure

of a monoidal category. The functor P is strict with respect to these monoidal structures

on A and X due to the fact that the diagrams above commute.

A monoidal fibred 1-cell between two monoidal fibrations P : A → X and

117

Q : B → Y is a (strong) morphism of pseudomonoids between them, as defined in Ap-

pendix B.

Proposition 5.2. A monoidal fibred 1-cell between two monoidal fibrations P and Q is a

fibred 1-cell (H,F) where both functors are monoidal, (H,φ, φ0) and (F,ψ, ψ0), such that

Q(φa,b) = ψPa,Pb and Qφ0 = ψ0.

Proof. A monoidal fibred 1-cell amounts to a fibred 1-cell, i.e. a commutative square

A B

X Y

H

P Q

F

(5.3)

where H preserves cartesian liftings, along with invertible 2-cells Equation (B.7) in Fib

satisfying Equation (B.8). By Equation (C.6), these are fibred 2-cells

B × B

A×A B

A

Y × Y

X × X Y

X

⊗B

Q

φ

P×P

H×H

⊗A

Q

H

⊗Y

ψ

F×F

⊗X
F

P

1 B

A

1 Y

X

IB

IA

QH

φ0

IY

IX F

P

ψ0

where φ and ψ are natural isomorphisms with components

φa,b : Ha⊗Hb ∼−→ H(a⊗ b), ψx,y : Fx⊗ Fy ∼−→ F (x⊗ y)

118

such that φ is above ψ, i.e. the following diagram commutes:

Q(Ha⊗Hb) QH(a⊗ b)

QHa⊗QHb FP (a⊗ b)

FPa⊗ FPb F (Pa⊗ Pb)

Qφa,b

Equation (5.2) Equation (5.3)

Equation (5.3) Equation (5.2)

ψPa,Pb

Similarly, φ0 and ψ0 have single components φ0 : IB
∼−→ H(IA) and ψ0 : IY

∼−→ F (IX) such

that Q(φ0) = ψ0. These two conditions in fact say that the identity transformation, a.k.a.

commutative square Equation (5.3) is a monoidal one, as expressed in [Shu08, 12.5]. The

relevant axioms dictate that (φ, φ0) and (ψ,ψ0) give H and F the structure of strong

monoidal functors.

For lax or oplax morphisms of pseudomonoids in Fib, we obtain appropriate notions

of monoidal fibred 1-cells, where the top and bottom functors of Equation (5.3) are lax or

oplax monoidal respectively.

Finally, a monoidal fibred 2-cell is a 2-cell between morphisms (H,F) and

(K,G) of pseudomonoids P , Q in Fib.

Proposition 5.3. A monoidal fibred 2-cell between two monoidal fibred 1-cells is an ordi-

nary fibred 2-cell (α, β) where both natural transformations are monoidal.

Proof. Unpacking the definition, we see that a monoidal fibred 2-cell is a fibred 2-cell as

described in Appendix C.1

A B

X Y

P

H

K

⇓ β

Q

F

G

⇓ α

119

satisfying the axioms Equation (B.9). These amount to the fact that both β and α are

monoidal natural transformations between the respective lax monoidal functors.

We denote by PsMon(Fib) = MonFib the 2-category of monoidal fibrations, monoidal

fibred 1-cells and monoidal fibred 2-cells. By changing the notion of morphisms between

pseudomonoids to lax or oplax, we obtain 2-categories MonFiblax and MonFibopl. There

are also 2-categories BrMonFib and SymMonFib of braided (resp. symmetric) monoidal

fibrations, braided (resp. symmetric) monoidal fibred 1-cells and monoidal fibred

2-cells, defined to be BrPsMon(Fib) and SymPsMon(Fib) respectively; see Proposition B.3.

Dually, we have appropriate 2-categories of monoidal opfibrations, monoidal

opfibred 1-cells and monoidal opfibred 2-cells and their braided and symmetric vari-

ations, MonOpFib, BrMonOpFib and SymMonOpFib. All the structures are constructed

dually, where a monoidal opfibration, namely a pseudomonoid in the cartesian monoidal

(OpFib,×, 11), is a strict monoidal functor such that the tensor product of the total category

preserves cocartesian liftings.

All the above 2-categories have sub-2-categories of monoidal (op)fibrations over

a fixed monoidal base (X ,⊗, I), e.g. MonFib(X) and MonOpFib(X). The morphisms are

monoidal (op)fibred functors, i.e. fibred 1-cells of the form (H, 1X) with H monoidal,

and the 2-cells are monoidal (op)fibred natural transformations, i.e. fibred 2-cells of

the form (β, 11X) with β monoidal. These 2-categories correspond to the ‘global’ monoidal

part of the story.

Moreover, the above constructions can be adjusted accordingly to the context of

split fibrations. Explicitly, the 2-category PsMon(Fibs) = MonFibs has as objects monoidal

120

split fibrations, namely split fibrations P : A → X between monoidal categories which are

strict monoidal functors and ⊗A strictly preserves cartesian liftings (compare to Proposi-

tion 5.1). Furthermore, the hom-categories MonFibs(P,Q) between monoidal split fibrations

are full subcategories of MonFib(P,Q) spanned by the monoidal fibred 1-cells which are split

as fibred 1-cells, namely (H,F) as in Proposition 5.2 where H strictly preserves cartesian

liftings.

We end this section by considering a different monoidal object in the context of

(op)fibrations, starting over from the usual 2-categories of (op)fibrations over a fixed base

X , (op)fibred functor and (op)fibred natural transformations Fib(X) and OpFib(X). Notice

that contrary to the earlier devopment, there is no monoidal structure on X . Both these

2-categories are also cartesian monoidal, but in a different manner than Fib and OpFib, due

to the cartesian monoidal structure of Cat/X ; see for example [Jac99, 1.7.4]. Explicitly, for

fibrations P : A → X and Q : B → X , their tensor product P �Q is given by any of the two

equal functors to X from the following pullback

A×X B A

B X

y
P�Q

P

Q

(5.4)

since fibrations are closed under pullbacks and of course composition. The monoidal unit

is 1X : X → X .

A pseudomonoid in (Fib(X),�, 1X) is an ordinary fibration P : A → X equipped

with two fibred functors (µ, 1X) : P � P → P and (ε, 1X) : 1X → P displayed as

A×X A A

X
P�P

µ

P

X A

X

ε

1X P
(5.5)

121

along with invertible fibred 2-cells satisfying the usual axioms. In more detail, the pullback

A ×X A consists of pairs of objects of A which are in the same fibre of P , and P � P

sends such a pair to their underlying object defining their fibre. The functor µ maps any

(a, b) ∈ Ax to some m(a, b) := a⊗x b ∈ Ax and the map ε sends an object x ∈ X to a chosen

one, Ix, in its fibre. The invertible 2-cells and the axioms guarantee that these maps define

a monoidal structure on each fibre Ax, providing the associativity, left and right unitors.

The fact that µ and ε preserve cartesian liftings translate into a strong monoidal structure

on the reindexing functors: for any f : x → y and a, b ∈ Ay, f∗a ⊗x f∗b ∼= f∗(a ⊗y b) and

Iy ∼= f∗(Ix).

A (lax) morphism between two such fibrations is a fibred functor Equation (C.4)

such that the induced functors Hx : Ax → Bx between the fibres as in Equation (C.5) are

(lax) monoidal, whereas a 2-cell between them is a fibred natural transformation β : H ⇒ K

Equation (C.7) which is monoidal when restricted to the fibers, βx|Ax : Hx ⇒ Kx. In this

way, we obtain the 2-category PsMon(Fib(X)) and dually PsMon(OpFib(X)). These 2-

categories correspond to the ‘fibrewise’ monoidal part of the story.

Finally, taking pseudomonoids in the 2-category of split fibrations over a fixed

base, we obtain the 2-category PsMon(Fibs(X)) with objects split fibrations equipped with a

fibrewise tensor product and unit as above, but now the reindexing functors strictly preserve

that monoidal structure since the top functors of Equation (5.5) strictly preserve cartesian

liftings: f∗a⊗xf∗b = f∗(a⊗yb) and Iy = f∗(Ix). Moreover, PsMon(Fibs(X))(P,Q) is the full

subcategory of PsMon(Fib(X))(P,Q) spanned by split fibred functors, namely H : A → B

which strictly preserve cartesian liftings but still Hx are monoidal functors between the

122

monoidal fibres as before.

As is evident from the above descriptions, the 2-categories MonFib(X) and PsMon(Fib(X))

are different in general. A monoidal fibration over X is a strict monoidal functor, whereas a

pseudomonoid in fixed-base fibrations is a fibration with monoidal fibres in a coherent way:

none of the base or the total category need to be monoidal.

5.3 Indexed Categories and Monoidal Structures

The 2-categories of indexed and opindexed categories ICat and OpICat, explained in

Appendix C.1, are both monoidal. Explicitly, given two indexed categories M : X op → Cat

and N : Yop → Cat, their tensor product M⊗N : (X × Y)op → Cat is the composite

(X × Y)op ∼= X op × Yop M×N−−−−→ Cat× Cat
×−→ Cat (5.6)

i.e. (M⊗ N)(x, y) = M(x) × N (y) using the cartesian monoidal structure of Cat. The

monoidal unit is the indexed category ∆1 : 1op → Cat that picks out the terminal category

1 in Cat, and similarly for opindexed categories. Notice that this monoidal 2-structure,

formed pointwise in Cat, is also cartesian.

We call a pseudomonoid in (ICat,⊗,∆1) a monoidal indexed category.

Proposition 5.4. A monoidal indexed category is a lax monoidal pseudofunctor

(M, µ, µ0) : (X op,⊗op, I)→ (Cat,×,1),

where (X ,⊗, I) is an (ordinary) monoidal category.

Proof. Unpacking the definition, we see that a monoidal indexed category is an indexed cat-

egory M : X op → Cat equipped with multiplication and unit indexed 1-cells (⊗X , µ) : M⊗

123

M→M, (η, µ0) : ∆1→M which by Equation (C.8) are as follows.

X op ×X op

Cat

X op

M⊗M

⊗op ⇓ µ

M

1op

Cat

X op

∆1

Iop ⇓ µ0

M

These come equipped with invertible indexed 2-cells as in Equation (B.6); the axioms this

data is required to satisfy, on the one hand, render X a monoidal category with ⊗ : X×X →

X its tensor product functor and I : 1→ X its unit. On the other hand, the resulting axioms

for the components

µx,y : Mx×My →M(x⊗ y), µ0 : 1→M(I) (5.7)

of the above pseudonatural transformations precisely giveM the structure of a lax monoidal

pseudofunctor, recalled in Appendix B.

We then define a monoidal indexed 1-cell to be a (strong) morphism between

pseudomonoids in (ICat,⊗,∆1).

Proposition 5.5. A monoidal indexed 1-cell between two monoidal indexed categories M

and N is an indexed 1-cell (F, τ), where the functor F is (strong) monoidal and the pseudo-

natural transformation τ is monoidal.

Proof. Unpacking the definition, we see that a monoidal indexed 1-cell is an indexed 1-cell

(F, τ) : M→N
X op

Cat

Yop

M

F op ⇓ τ

N

124

between two monoidal indexed categories (M, µ, µ0) and (N , ν, ν0) equipped with two in-

vertible indexed 2-cells (ψ,m) and (ψ0,m0) as in Equation (B.7), which explicitly consist

of natural isomorphisms ψ, ψ0 and invertible modifications

X op ×X op X op ×X op

X op Yop × Yop Cat X op Cat

Yop Yop Yop

⊗op F op×F op

M⊗M

⇓ τ×τ

M⊗M

⊗op ⇓ µ

F op ⇓ ψ

N⊗N

⊗op ⇓ ν

m
V M

F op ⇓ τ

id

N
N

1op 1op

X op Cat X op Cat

Yop Yop Yop

Iop

∆1

⇓ ν0

Iop

∆1

Iop ⇓ µ0

F op
⇓ ψ0

m0

V M

F op ⇓ τ

id
N

N

as dictated by the general form Equation (C.10) of indexed 2-cells. The natural isomor-

phisms ψ and ψ0 have components

ψx,z : Fx⊗ Fy ∼−→ F (x⊗ y), ψ0 : I
∼−→ F (I) in Yop

whereas the modifications m and m0 are given by families of invertible natural transforma-

tions

NFx×NFy N (Fx⊗ Fy)

Mx×My NF (x⊗ y)

M(x⊗ y)

νFx,Fy

Nψx,y
τx×τy

µx,y

⇓ mx,y

τx⊗y

N (I)

1 N (FI)

M(I)

Nψ0ν0

µ0

⇓ m0

τI

The appropriate coherence axioms ensure that the functor F : X → Y has a strong monoidal

structure (F,ψ, ψ0), and that the pseudonatural transformation τ : M⇒N◦F op is monoidal

with mx,y, m0 as in Equation (B.4). Notice that F op being monoidal makes F monoidal

with inverse structure isomorphisms.

125

Finally, a monoidal indexed 2-cell is a 2-cell between morphisms of pseu-

domonoids in (ICat,⊗,∆1).

Proposition 5.6. A monoidal indexed 2-cell between two monoidal indexed 1-cells (F, τ)

and (G, σ) is an indexed 2-cell (α,m) such that α is an ordinary monoidal natural trans-

formation and m is a monoidal modification.

Proof. Following the definition of Appendix B, an indexed 2-cell (a,m) : (F, τ)⇒ (G, σ) : M→

N as in Equation (C.10), which consists of a natural transformation α : F ⇒ G and a mod-

ification m with components

Mx NFx

NGxσx

τx

⇓ mx

Nαx

is monoidal, exactly when α : F ⇒ G is compatible with the strong monoidal structures of

F and G, and the modification m : τ V Nαop ◦ σ satisfies Equation (B.5) for the induced

monoidal structures on its domain and target pseudonatural transformations.

We write PsMon(ICat) = MonICat, the 2-category of monoidal indexed categories,

monoidal indexed 1-cells and monoidal indexed 2-cells. Moreover, their braided and sym-

metric counterparts form BrMonICat and SymMonICat respectively, as the 2-categories of

braided and symmetric pseudomonoids in (ICat,⊗,∆1) formally discussed in Appendix B.

Similarly, we have 2-categories of (braided or symmetric) monoidal opindexed cate-

gories, 1-cells and 2-cells MonOpICat, BrMonOpICat and SymMonOpICat.

All these 2-categories have sub-2-categories of monoidal (op)indexed categories

126

with a fixed monoidal domain (X ,⊗, I), and specifically

MonICat(X) = Mon2Catps(X op,Cat) (5.8)

MonOpICat(X) = Mon2Catps(X ,Cat)

the functor 2-categories of lax monoidal pseudofunctors, monoidal pseudonatural transfor-

mations and monoidal modifications.

Moreover, we can consider pseudomonoids in the strict context. Explicitly, the

2-category PsMon(ICats) = MonICats has as objects monoidal strict indexed categories

namely (2-)functors M : X op → Cat from an ordinary monoidal category X which are lax

monoidal as before, but the laxator and unitor Equation (5.7) are strictly natural rather

than pseudonatural transformations. The hom-categories PsMon(ICats)(M,N) between

monoidal strict indexed categories are full subcategories of MonICat(M,N) spanned by

strict natural transformations—which are however still lax monoidal, i.e. equipped with

isomorphisms Equation (B.4).

Similarly to the previous Section 5.2 on fibrations, we end this section with the

study of pseudomonoids in a different but related monoidal 2-category, namely ICat(X) =

2Catps(X op,Cat) of indexed categories with a fixed domain X . Working in this 2-category,

or in OpICat(X), there is no assumed monoidal structure on X . Their monoidal structure

is again cartesian: for two X -indexed categories M,N : X op → Cat, their product is

M�N : X op ∆−→ X op ×X op M×N−−−−→ Cat× Cat
×−→ Cat (5.9)

with pointwise components (M�N)(x) =M(x)×N (x) in Cat. The monoidal unit is just

X op !−→ 1
∆1−−→ Cat, which we will also call ∆1.

127

A pseudomonoid in (ICat(X),�,∆1) is a pseudofunctor M : X op → Cat equipped

with indexed functors Equation (C.9) µ : M�M→M and ε : ∆1→M namely

X op ×X op Cat× Cat 1

X op Cat X op Cat

M×M
× ∆1∆

⇓ µ

M

!

M

⇓ ε

with components µx : Mx×Mx→Mx and εx : 1→Mx which are pseudonatural via

Mx×Mx My ×My

Mx My

µx

Mf×Mf

∼= µy

Mf

1 1

Mx My

=

εx ∼= εy

Mf

(5.10)

If we denote µx = ⊗x and εx = Ix, the pseudomonoid invertible 2-cells Equation (B.6)

and the axioms these data satisfy make each Mx into a monoidal category (Mx,⊗x, Ix),

and each Mf into a strong monoidal functor: the above isomorphisms have components

Mf(a)⊗yMf(b) ∼=Mf(a⊗x b) and Iy ∼=Mf(Ix) for any a, b ∈Mx.

Such a structure, namely a pseudofunctorM : X op → MonCat into the 2-category

of monoidal categories, strong monoidal functors and monoidal natural transformations,

was directly defined as an indexed strong monoidal category in [HM06], and as indexed

monoidal category in [PS12]. We will avoid this notation in order to not create confusion

with the term monoidal indexed categories.

A strong morphism of pseudomonoids Equation (B.7) in (ICat(X),�,∆1) ends

up being a pseudonatural trasformation τ : M⇒ N : X op → Cat (indexed functor) whose

components τx : Mx → Nx are strong monoidal functors, whereas a 2-cell between strong

morphisms of pseudomonoids is an ordinary modification

X op Cat

M

N

m
Vτ σ

128

whose components mx : τx ⇒ σx are monoidal natural transformations.

We thus obtain the 2-categories PsMon(ICat(X)) as well as PsMon(OpICat(X));

from the above descriptions, it is clear that

PsMon(ICat(X)) = 2Catps(X op,MonCat) (5.11)

PsMon(OpICat(X)) = 2Catps(X ,MonCat)

which will also be rediscovered by Proposition 5.15.

Finally, taking pseudomonoids in strict X -indexed categories ICats(X) = [X op,Cat]

produces the 2-category PsMon(ICats(X)) with objects functors M : X op → MonCatst into

monoidal categories with strict monoidal functors: the isomorphisms Equation (5.10) are

now equalities due to strict naturality of the multiplication and unit. Then the hom-

categories PsMon(ICats(X))(M,N) are full subcategories of PsMon(ICat(X))(M,N) spanned

by strictly natural transformations τ : M⇒ N , still with strong monoidal components τx.

For example, it would not be correct to write PsMon(ICats(X)) = [X op,MonCat(st)].

It is evident that MonICat(X) and PsMon(ICat(X)) are in principle different. A

monoidal indexed category with base X is a lax monoidal pseudofunctor into Cat (and X

is required to be monoidal already), whereas a pseudomonoid in X -indexed categories is a

pseudofunctor from an ordinary category X into MonCat.

5.4 Two Monoidal Grothendieck Constructions

In Appendix C.1, we recalled the standard equivalence between fibrations and

indexed categories via the Grothendieck construction. We will now lift this correspondence

129

to their monoidal versions studied in Sections 5.2 and 5.3, using general results about

pseudomonoids in arbitrary monoidal 2-categories described in Appendix B.

Since both Fib and ICat are cartesian monoidal 2-categories, via Equation (5.1) and

Equation (5.6) respectively, our first task is to ensure that they are monoidally equivalent.

Lemma 5.7. The 2-equivalence Fib ' ICat between the cartesian monoidal 2-categories of

fibrations and indexed categories is (symmetric) monoidal.

Proof. Since they form an equivalence, both 2-functors from Theorem C.1 preserve limits,

therefore are monoidal 2-functors. Moreover, it can be verified that the natural isomor-

phisms with components F ∼= FPF and P ∼= PFP are monoidal with respect to the cartesian

structure, due to universal properties of products.

Theorem 5.8. There are 2-equivalences

MonFib ' MonICat

BrMonFib ' BrMonICat

SymMonFib ' SymMonICat

between the 2-categories of monoidal fibrations and monoidal indexed categories, as well

as their braided and symmetric versions. Dually, there is a 2-equivalence MonOpFib '

MonOpICat between the 2-categories of monoidal opfibrations and monoidal opindexed cat-

egories, as well as their braided and symmetric versions.

Proof. Since MonFib = PsMon(Fib) and MonICat = PsMon(ICat), we obtain the equivalence

as a special case of Proposition B.5; similar for OpFib ' OpICat.

130

Corollary 5.9. The above 2-equivalences restrict to the sub-2-categories of fixed bases or

domains, which by Equation (5.8) are

MonFib(X) ' Mon2Catps(X op,Cat)

MonOpFib(X) ' Mon2Catps(X op,Cat)

These results correspond to the global monoidal structure of fibrations and indexed

categories. Even though they were directly derived via abstract reasoning, for exposition

purposes we briefly describe this equivalence on the level of objects; some relevant details

can also be found in [BFMP20, Sec 6]. Independently and much earlier, in his thesis [Shu09]

Shulman explores such a fixed-base equivalence on the level of double categories (of monoidal

fibrations and monoidal pseudofunctors over the same base).

Suppose that (M, µ, µ0) : (X op,⊗, I) → (Cat,×,1) is a monoidal indexed cate-

gory, i.e. a lax monoidal pseudofunctor with structure maps Equation (5.7). The induced

monoidal product ⊗µ :
∫
M ×

∫
M →

∫
M on the Grothendieck category is defined on

objects by

(x, a)⊗µ (y, b) = (x⊗ y, µx,y(a, b)) (5.12)

and Iµ = (I, µ0(∗)) is the unit object. Clearly, the induced fibration
∫
M→ X which maps

each pair to the underlying X -object strictly preserves the monoidal structure. Moreover,

pseudonaturality of µ implies that ⊗µ preserves cartesian liftings, so all clauses of Proposi-

tion 5.1 are satisfied. For a more detailed exposition of the structure, as well as the braided

and symmetric version, we refer the reader to the Section 5.5.1.

We can also restrict to the context of split fibrations and strict indexed categories.

131

Theorem 5.10. There are 2-equivalences

MonFibs ' MonICats

MonOpFibs ' MonOpICats

between monoidal split (op)fibrations and monoidal strict (op)indexed categories, as well as

for the fixed-base case.

Proof. Again by applying PsMon(-) to the 2-equivalence ICats ' Fibs, we obtain equivalences

between the respective structures discussed in Sections 5.2 and 5.3, as the strict counter-

parts of Theorem 5.8 and Corollary 5.9. Recall that a monoidal strict indexed category

is a lax monoidal 2-functor X op → Cat whose structure maps (φ, φ0) are strictly natural

transformations, and corresponds to a split fibration which is monoidal like before, only the

tensor product of the total category strictly preserves cartesian liftings.

We close this section in a similar manner to Sections 5.2 and 5.3, namely by working

in the cartesian monoidal 2-categories (Fib(X),�, 1X) and (ICat(X),�,∆1) of fibrations and

indexed categories with a fixed base category.

Theorem 5.11. There are 2-equivalences between (op)fibrations with monoidal fibres and

strong monoidal reindexing functors, and pseudofunctors into MonCat

PsMon(Fib(X)) ' 2Catps(X op,MonCat)

PsMon(OpFib(X)) ' 2Catps(X op,MonCat)

Moreover, these restrict to 2-equivalences between split (op)fibrations with monoidal fibres

and strict monoidal reindexing functors, and ordinary functors into MonCatst.

132

Proof. Since Fib(X) ' ICat(X) is also a monoidal 2-equivalence, Proposition B.5 applies

once more – recall Equation (5.11).

These equivalences correspond to the fibrewise monoidal structure on fibrations

and indexed categories. In more detail, a pseudofunctor M : X op → MonCat maps every

object x to a monoidal category Mx and every morphism f : x → y to a strong monoidal

functor Mf : My → Mx; under the usual Grothendieck construction, these are precisely

the fibre categories and the reindexing functors between them for the induced fibration, as

described at the end of Section 5.2. Notice how, in particular, X is not a monoidal category,

as was the case in Corollary 5.9.

A very similar, relaxed version of the fibrewise monoidal correspondence seems to

connect the concepts of an indexed monoidal category, defined in [HM06] as a pseudofunctor

M : X op → MonCatlax, and that of of a lax monoidal fibration, defined in [Zaw11]. Notice

that these terms are misleading with respect to ours: an indexed monoidal category is not

a monoidal indexed category, and also a lax monoidal fibration is not a functor with a lax

monoidal stucture.

Briefly, there is a full sub-2-category Fibopl(X) ⊆ Cat/X of fibrations, namely fi-

bred 1-cells Equation (C.3) which are not required to have a cartesian functor on top. As

discussed in [Shu08, Prop.3.6], this is 2-equivalent to 2Catps,opl(X op,Cat), the 2-category of

pseudofunctors, oplax natural transformations and modifications. Describing pseudomonoids

therein appears to give rise to a fibration with monoidal fibres and lax monoidal reindexing

functors between them, or equivalently a pseudofunctor into MonCatlax. We omit the details

so as to not digress from our main development.

133

5.5 Summary of Structures

The bulk of this chapter is dedicated to proving various monoidal variations of the

equivalence between fibrations and indexed categories, using general results in monoidal

2-category theory. In this section, we detail the descriptions of the (braided/symmetric)

monoidal structures on the total category of the Grothendieck construction, assuming the

appropriate data is present. We also provide a hands-on correspondence that underlies the

proof of Theorem 5.13 regarding the transfer of monoidal structure from a functor to its

target and vice versa. We hope this section can serve as a quick and clear reference on some

fundamental constructions of this chapter.

5.5.1 Monoidal Structures

As sketched under Corollary 5.9, let (X ,⊗, I) be a monoidal category, and

(M, µ, µ0) : (X op,⊗op, I)→ (Cat,×,1)

a monoidal indexed category, a.k.a. lax monoidal pseudofunctor. Recall that µ is pseudo-

natural transformation consisting of functors µx,y : Mx×My →M(x⊗ y) for any objects

x and y of X , and natural isomorphisms

Mz ×Mw Mx×My

M(z ⊗ w) M(x⊗ y)

Mf×Mg

µz,w µx,y
µf,g∼=

M(f⊗g)

for any arrows f : x → z and g : y → w in X . Also the unique component of µ0 is the

functor µ0 : 1→M(I).

The induced tensor product functor on the total category, denoted as ⊗µ :
∫
M×

134

∫
M→

∫
M, is given on objects by

(x, a)⊗µ (y, b) = (x⊗ y, µx,y(a, b))

On morphisms (f : x→ z, k : a→ (Mf)c) and (g : y → w, ` : b→ (Mg)d), we get

(f, k)⊗µ (g, `) = (x⊗ y f⊗g−−→ z ⊗ w, µf,g(µx,y(k, `)))

where the latter is the composite morphism

µx,y(a, b)
µx,y(k,`)−−−−−→ µx,y ((Mf)(c), (Mg)(d))

∼−→M(f ⊗ g)(µz.w(c, d)) in M(x⊗ y).

The monoidal unit is Iµ = (I, µ0).

If ax,y,z : (x⊗ y)⊗ z → x⊗ (y ⊗ z) denotes the associator in X , the associator for

(
∫
M,⊗µ, Iµ) is given by

α(x,b),(y,c),(z,d) = (αx,y,z, ωx,y,z(b, c, d))

where ω is the invertible modification Equation (B.2).

If lx : I ⊗ x→ x and rx : x⊗ I → x are the left and right unitors in X , the unitors

in
∫
M are defined as

λx = (lx, ξ
-1
x (a)) : (I, µ0)⊗µ (x, a)→ (x, a)

ρx = (rx, ζx(a)) : (x, a)⊗µ (I, µ0)→ (x, a)

where ζ and ξ are invertible modifications as in Equation (B.2).

We now turn to the correspondence between 1-cells of Theorem 5.8: given a

135

monoidal indexed 1-cell
(X ,⊗, I)op

(Cat,×,1)

(Y,⊗, I)op

(M,µ,µ0)

(F,ψ,ψ0)op ⇓ τ

(N ,ν,ν0)

where M and N are lax monoidal pseudofunctors and F is a monoidal functor, as in

Proposition 5.5, we first of all obtain an ordinary fibred 1-cell (Pτ , F) : PM → PN as

explained above Equation (C.12) ∫
M

∫
N

X Y

Pτ

PM PN

F

with Pτ (x, a) = (Fx, τx(a)). The functor F is already monoidal, and Pτ obtains a monoidal

structure too: for example, there are isomorphisms

Pτ (x, a)⊗ν Pτ (y, b)
∼−→ Pτ ((x, a)⊗µ (y, b)) in

∫
N

between the objects

Pτ (x, a)⊗ν Pτ (y, b) = (Fx, τx(a))⊗ν (Fy, τy(b) = (Fx⊗ Fy, νFx,Fy(τx(a), τy(b))

Pτ ((x, a)⊗µ (y, b)) = Pτ (x⊗ y, µx,y(a, b)) = (F (x⊗ y), τx⊗y(µx,y(a, b)))

given by ψx,y : Fx⊗ Fy ∼−→ F (x⊗ y) and by

νFx,Fy(τx(a), τy(b)) ∼= N (ψx,y)(τx⊗y(µx,y(a, b)))

essentially given by the monoidal pseudonatural isomorphism Equation (B.4) for τ : M⇒

NF op. As a result, (Pτ , F) is indeed a monoidal fibred 1-cell as in Proposition 5.2.

136

Finally, it can be verified that starting with a monoidal indexed 2-cell as in Proposi-

tion 5.6, the induced fibred 2-cell Equation (C.13) is monoidal, i.e. Pm satisfies the conditions

of a monoidal natural transformation.

Regarding the induced braided and symmetric monoidal structures, suppose that

(X ,⊗, I) is a braided monoidal category, with braiding b with components

βx,y : x⊗ y ∼−→ y ⊗ x;

then X op is braided monoidal with the inverse braiding, namely (X op,⊗op, I, β−1). Now

if (M, µ, µ0) : X op → Cat is a braided lax monoidal pseudofunctor, i.e. a braided monoidal

indexed category, by Theorem 5.8 we have an induced braided monoidal structure on

(
∫
M,⊗µ, Iµ), namely

B(x,a),(y,b) : (x, a)⊗µ (y, b) = (x⊗ y, µx,y(a, b))→ (y, b)⊗µ (x, a) = (y ⊗ x, µy,x(b, a))

are given by βx,y : x⊗ y ∼= y⊗x in X and (vx,y)(a,b) : µx,y(a, b) ∼=M(β−1
x,y)(µy,x(b, a)), where

v is as in Equation (B.11).

If M is a symmetric lax monoidal pseudofunctor, it can be verified that

B(y,b),(x,a) ◦B(x,a),(y,b) = 1(x,a)⊗µ(y,b)

therefore
∫
M is also symmetric monoidal, as is the monoidal fibration PM :

∫
M→ X .

5.5.2 Monoidal Indexed Categories as Ordinary Pseudofunctors

Here we detail the correspondence between monoidal opindexed categories and a

pseudofunctors into MonCat when the domain is a cocartesian monoidal category, as estab-

lished by Theorem 5.13; the one for indexed categories is of course similar. We denote by

137

∇x : x+x→ x the induced natural components due to the universal property of coproduct,

and ιx : x→ x+ y the inclusion into a coproduct.

Start with a lax monoidal pseudofunctorM : (X ,+, 0)→ (Cat,×,1) equipped with

µx,y : M(x)×M(y)→M(x+y) and µ0 : 1→M(0), which gives the global monoidal struc-

ture Equation (5.12) of the corresponding opfibration. There exists an induced monoidal

structure on each fibre M(x) as follows:

⊗x : M(x)×M(x)
µx,x−−→M(x+ x)

M(∇)−−−−→M(x) (5.13)

Ix : 1
µ0−→M(0)

M(!)−−−→M(x)

Moreover, each Mf : Mx → My is a strong monoidal functor, with φa,b : (Mf)(a) ⊗y

(Mf)(b)
∼−→Mf(a ⊗x b) and φ0 : Iy

∼−→ (Mf)Ix essentially given by the following isomor-

phisms

Mx×Mx My ×My

M(x+ x) M(y + y)

Mx My

Mf×Mf

µx,x µf,f∼=
µy,y

M(∇x)

M(f+f)

∼= M(∇y)

Mf

1 M(0)

M(0)

Mx My

µ0

µ0

∼= M(!)

M(!)

Mf

(5.14)

since ∇ and ! are natural and M is a pseudofunctor.

In the opposite direction, take an ordinary pseudofunctor M : X → MonCat into

the 2-category of monoidal categories, strong monoidal functors and monoidal natural trans-

formations, with ⊗x : M(x) ×M(x) →M(x) and Ix the fibrewise monoidal structures in

every Mx. We can use those to endow M with a lax monoidal structure via

µx,y : M(x)×M(y)
M(ιx)×M(ιy)−−−−−−−−−→M(x+ y)×M(x+ y)

⊗x+y−−−→M(x+ y)

µ0 : 1
I0−→M(0)

138

The fact that all Mf are strong monoidal imply that the above components form pseudo-

natural transformations, and all appropriate conditions are satisfied.

In the strict context, a lax monoidal 2-functor M : (X ,+, 0) → (Cat,×,1) with

natural laxator and unitor bijectively corresponds to a functor X → MonCatst since Equa-

tion (5.14) are in fact strictly commutative, by naturality of µ, µ0 and functoriality of M.

In the even more special case of an ordinary lax monoidal functorM : (X ,+, 0)→

(Cat,×,1), the fibresM(x) turn out to be strict monoidal. For example, strict associativity

of the tensor is established by

Mx×Mx×Mx Mx×Mx

Mx×M(x+ x) M(x+ x)

M(x+ x+ x) Mx

M(x+ x)×Mx M(x+ x)

Mx×Mx×Mx Mx×Mx

1×⊗x

1×µx,x
⊗xµx,x

(∗)

1×M(∇)

µx,x+x M∇M(1+∇)

M(∇+1)µx+x,x

M(∇)×1

M∇

µx,x×1

⊗x×1

µx ⊗x

where the three diamond-shaped diagrams on the right commute due to naturality of µ as

well as associativity of ∇ and functoriality of M already in the monoidal strict opindexed

case, whereas (∗) is in general ω from Equation (B.2) which in this case is an identity, and

the four triangular diagrams commute due to Equation (5.13).

5.5.3 Comparison with Higher-Dimensional Grothendieck Constructions

Monoidal categories are precisely bicategories with one object. As recalled in

Appendix C.1, there is a theory of fibred bicategories and indexed bicategories, and a

139

corresponding Grothendieck construction. It is natural to consider the possibility that the

monoidal Grothendieck constructions presented here are special cases of this bicategorical

version. However, it is easy to see that this cannot be the case. When one restricts their view

to just the objects, the bicategorical Grothendieck construction is just taking the disjoint

union of the object sets of the fibres. If you consider an indexed monoidal category as a

special case of an indexed bicategory, where each fibre has one object, then generally you

would not expect the total bicategory to have one object. It would have as many objects

as the base category. Thus, the result would not be a monoidal category. The construction

given here always produces a monoidal category.

5.6 The (Co)cartesian Case

In the previous section, we obtain two different equivalences between fixed-base

fibrations and fixed-domain indexed categories of monoidal flavor: Corollary 5.9 where

both total and base categories are monoidal, and Theorem 5.11 where only the fibres are

monoidal. Clearly, neither of these two cases implies the other in general. The global

monoidal structure as defined in Equation (5.12) sends two objects in arbitrary fibres to a

new object lying in the fibre of the tensor of their underlying objects in the base, whereas

having a fibre-wise tensor products does not give a way of multiplying objects in different

fibres of the total category.

In [Shu08], Shulman introduces monoidal fibrations (Proposition 5.1) as a building

block for fibrant double categories. Due to the nature of the examples, the results restrict

to the case where the base of the monoidal fibration P : A → X is equipped with specif-

140

ically a cartesian or cocartesian monoidal structure; the main idea is that these fibrations

form a “parameterized family of monoidal categories”. Formally, a central result therein

lifts the Grothendieck construction to the monoidal setting, by showing an equivalence be-

tween monoidal fibrations over a fixed (co)cartesian base and ordinary pseudofunctors into

MonCat.

Theorem 5.12 ([Shu08]). If X is cartesian monoidal,

MonFib(X) ' 2Catps(X op,MonCat) (5.15)

Dually, if X is cocartesian monoidal, MonOpFib(X) ' 2Catps(X ,MonCat).

Bringing all these structures together, we obtain the following.

Theorem 5.13. If X is a cartesian monoidal category,

MonFib(X) Mon2Catps(X op,Cat)

PsMon(Fib(X)) 2Catps(X op,MonCat)

'

'

'

'

Dually, if X is a cocartesian monoidal category,

MonOpFib(X) Mon2Catps(X ,Cat)

PsMon(OpFib(X)) 2Catps(X ,MonCat)

'

'

'

'

In the strict context, the restricted equivalences give a correspondence between monoidal split

fibrations over X and functors X op → MonCatst, and between monoidal split opfibrations

over X and functors X → MonCatst.

The original proof of Theorem 5.12 is an explicit, piece-by-piece construction of

an equivalence, and employs the reindexing functors ∆∗ and π∗ induced by the diagonal

141

and projections in order to move between the appropriate fibres and build the required

structures. The global monoidal structure is therein called external and the fibre-wise

internal.

Here we present a different argument that does not focus on the fibrations side. The

equivalence between lax monoidal pseudofunctors X op → Cat and ordinary pseudofunctors

X op → MonCat, which essentially provides a way of transferring the monoidal structure

from the target category to the functor itself and vice versa, brings a new perspective on

the behavior of such objects.

Lemma 5.14. For any two monoidal 2-categories K and L, the following are true.

1. For an arbitrary 2-category A,

2Catps(A,Mon2Catps(K,L)) ' Mon2Catps(K, 2Catps(A,L)) (5.16)

2. For a cocartesian 2-category A,

2Catps(A,Mon2Catps(K,L)) ' Mon2Catps(A×K,L) (5.17)

Proof. First of all, recall [Str80, 1.34] that there are equivalences

2Catps(A, 2Catps(K,L)) ' 2Catps(A×K,L) ' 2Catps(K, 2Catps(A,L))

which underlie Equation (5.16) and Equation (5.17) for the respective pseudofunctors; so

the only part needed is the correspondence between the respective monoidal structures.

Notice that A×K is a monoidal 2-category since both A and K are, and also 2Catps(A,L)

is monoidal since L is: define ⊗[] and I[] by (F ⊗[] G)(a) = Fa ⊗L Ga (similarly to Equa-

tion (5.9)) and I[] : A
!−→ 1

IL−→ L.

142

First, we prove 1. Take a pseudofunctor F : A → Mon2Catps(K,L). For every

a ∈ A, its image pseudofunctor Fa is lax monoidal, i.e. comes equipped with maps in L:

φax,y : (Fa)(x)⊗L (Fa)(y)→ (Fa)(x⊗K y), φa0 : IL → (Fa)IK (5.18)

for every x, y ∈ K, satisfying coherence axioms.

Now define the pseudofunctor F : K → 2Catps(A,L), with (Fx)(a) := (Fa)(x). It

has a lax monoidal structure, given by pseudonatural transformations

Fx⊗[] Fy ⇒ F(x⊗K y), I[] ⇒ F(IK)

whose components evaluated on some a ∈ A are defined to be Equation (5.18). Pseudonat-

urality and lax monoidal axioms follow, and in a similar way we can establish the opposite

direction and verify the equivalence.

Now, we prove 2. If A is a cocartesian monoidal 2-category, a lax monoidal

pseudofunctor F : A → Mon2Catps(K,L) induces a pseudofunctor F̃ : A × K → L by

F̃(a, x) := (Fa)(x). Its lax monoidal structure is given by the composite

F̃(a, x)⊗L F̃(b, y) F̃(a+ b, x⊗K y)

(Fa)(x)⊗L (Fb)(y) (F(a+ b))(x⊗K y)

(F(a+ b))(x)⊗L (F(a+ b))(y)

ψ(a,x),(b,y)

(Fιa)x⊗(Fιb)y φa+bx,y

where a
ιa−→ a + b

ιb←− b are the inclusions, and ψ0 : IL
φ00−→ F̃(0, IK); the respective axioms

follow.

In the opposite direction, starting with some pseudofunctor G : A×K → L equipped

with a lax monoidal structure ψ(a,x),(b,y) and ψ0, we can build Ĝ : A → Mon2Catps(K,L) for

143

which every Ĝa is a lax monoidal pseudofunctor, via

(Ĝa)(x)⊗L (Ĝb)(y) (Ĝa)(x⊗K y)

G(a, x)⊗L G(a, y) G(a+ a, x⊗K y) G(a, x⊗K y)

φa
(x,y)

ψ(a,x),(a,y) G(∇,1)

φa0 : IL
ψ0−→ G(0, IK)

G(!,1)−−−→ G(a, IK)

The equivalence follows, using the universal properties of coproducts and initial object.

Proof of Theorem 5.13. The top and bottom right 2-categories of the first square are equiv-

alent as follows, where X op is cocartesian.

2Catps(X op,MonCat) ' 2Catps(X op,PsMon(Cat)) Equation (B.10)

' 2Catps(X op,Mon2Catps(1,Cat)) Equation (5.17)

' Mon2Catps(X op × 1,Cat)

' Mon2Catps(X op,Cat)

The strict context equivalence can be explicitly verified as a special case of the above, where

the corresponding 1-cells and 2-cells are as described in Section 5.2 and Section 5.3.

The decisive step in the above proof is the much broader Lemma 5.14; for a

grounded explanation of the correspondence of the relevant structures, see Section 5.5.2.

In simpler words, a lax monoidal structure of a pseudofunctor F : (A,+, 0) → (Cat,×,1)

gives a pseudofunctor F : A → MonCat and vice versa: in a sense, ‘monoidality’ can move

between the functor and its target.

As another corollary of Lemma 5.14, we can formally deduce that pseudomonoids

in (ICat(X),�,∆1) are functors into MonCat, as described at the end of Section 5.3.

144

Proposition 5.15. For any X , PsMon(ICat(X)) ' 2Catps(X op,MonCat).

Proof. There are equivalences

PsMon(ICat(X)) = PsMon(2Catps(X op,Cat))

' Mon2Catps(1, 2Catps(X op,Cat)) Equation (5.16)

' 2Catps(X op,Mon2Catps(1,Cat)) Equation (B.10)

' 2Catps(X op,PsMon(Cat))

' 2Catps(X op,MonCat)

as desired.

As a first and meaningful example of Theorem 5.13, recall that the categories

Fib and ICat are themselves fibred over Cat, with fibres Fib(X) and ICat(X) respectively.

The base category in both cases is the cartesian monoidal category (Cat,×, 1), therefore

Theorem 5.13 applies. The following proposition shows that the monoidal structures of

Fib, ICat and Fib(X), ICat(X), instrumental for the study of global and fibre-wise monoidal

structures, follow the very same abstract pattern.

Proposition 5.16. The fibrations Fib → Cat and ICat → Cat are monoidal, and more-

over their fibres Fib(X) and ICat(X) are monoidal and the reindexing functors are strong

monoidal.

Proof. The pseudofunctors inducing Fib→ Cat and ICat→ Cat are

Catop CAT Catop CAT

X Fib(X) X ICat(X)

Y Fib(Y) Y ICat(Y)

F FF ∗ −◦F op

145

where CAT is the 2-category of possibly large categories, F ∗ takes pullbacks along F and

− ◦ F op precomposes with the opposite of F . These are both lax monoidal, with the

respective structures essentially being Equation (5.1) and Equation (5.6) giving the global

monoidal structure on the fibrations.

Since the base of both monoidal fibrations is cartesian, the global monoidal struc-

ture is equivalent to a fibre-wise monoidal structure, as per the theme of this whole section.

The induced monoidal structure on each Fib(X) is given by Equation (5.4) and on each

ICat(X) by Equation (5.9), and F ∗, − ◦ F op are strong monoidal functors accordingly.

The above essentially lifts the global and fibre-wise monoidal structure develop-

ment one level up, exhibiting fibrations and indexed categories as examples of the monoidal

Grothendieck construction themselves.

Concluding this investigation on monoidal structures of fibrations and indexed cat-

egories, we consider the (co)cartesian monoidal (op)fibration case; for example, a monoidal

fibration P : (A,×, 1) → (X ,×, 1) as in Proposition 5.1 where P preserves products (or

coproducts for opfibrations) on the nose. As remarked in [Shu08, 12.9], the equivalence

Equation (5.15) restricts to one between pseudofunctors which land to cartesian monoidal

categories, and monoidal fibrations where the total category is cartesian monoidal. With

the appropriate 1-cells and 2-cells that preserve the structure, we can write the respective

equivalences as

2Catps(X op,Cart) ' cMonFib(X) for cartesian X (5.19)

2Catps(X ,Cocart) ' cocMonOpFib(X) for cocartesian X

where the prefixes c and coc correspond to the respective (co)cartesian structures. Explic-

146

itly, in order for the total category to specifically be endowed with (co)cartesian monoidal

structure, it is required not only that the base category is but also the fibres are and the

reindexing functors preserve finite (co)products.

This special case of the monoidal Grothendieck construction that connects the

existence of (co)products and initial/terminal object in the fibres and in the total category,

is reminiscent (and also an example of) the general theory of fibred limits originated from

[Gra66]. Explicitly, [Her99, Cor. 4.9] deduces that if the base of a fibration P : A → X

has J -limits for any small category J , then the fibres have and the reindexing functors

preserve J -limits if and only if A has J -limits and P strictly preserves them, and dually

for opfibrations and colimits. Hence for finite (co)products in (op)fibrations, Equation (5.19)

re-discovers that result using the monoidal Grothendieck correspondence.

Moreover, since the squares of Theorem 5.13 reduce to their (co)cartesian variants,

we would like to identify the conditions that the corresponding lax monoidal pseudofunctor

into Cat needs to satisfy in order to give rise to a (co)cartesian monoidal (op)fibration.

We employ Proposition A.17 to tackle the opfibration case: if, in a symmetric monoidal

category X , there exist monoidal natural transformations with components

∇x : x⊗ x→ x, ux : I → x

satisfying the commutativity of

I ⊗ x x⊗ x x⊗ I x⊗ x

x x

ux⊗1

∼
`x

∇x ∼
rx

1⊗ux

∇x (5.20)

then X is cocartesian monoidal. In fact, it is the case that a symmetric monoidal category

is cocartesian if and only if Mon(X) ∼= X .

147

Suppose (M, µ, µ0) : X → Cat is a (symmetric) lax monoidal pseudofunctor, such

that the corresponding Grothendieck category (
∫
M,⊗µ, Iµ) described in Section 5.4 is

cocartesian monoidal. This means there are monoidal natural transformations with com-

ponents

∇(x,a) : (x, a)⊗µ (x, a)→ (x, a) and u(x,a) : (I, µ0(∗))→ (x, a)

making the diagrams Equation (5.20) commute. Explicitly, by Equation (5.12), ∇(x,a)

consists of morphisms fx : x⊗ x→ x in X and κa : (Mfx)(µx,x(a, a))→ a in Mx, whereas

u(x,a) consists of ix : I → x in X and λa : (Mix)µ0 → a in Mx.

The conditions Equation (5.20) say that the composites

(I, µ0)⊗µ (x, a)
u(x,a)⊗µ1(x,a)−−−−−−−−−→ (x, a)⊗µ (x, a)

∇(x,a)−−−−→ (x, a)

(x, a)⊗µ (I, µ0)
1(x,a)⊗µu(x,a)−−−−−−−−−→ (x, a)⊗µ (x, a)

∇(x,a)−−−−→ (x, a)

are equal to the left and right unitor on x, where all respective structures are detailed

in Section 5.5.1. Using the composition inside
∫
M analogously to Equation (C.11), these

conditions translate, on the one hand, to the base being cocartesian monoidal (X ,+, 0) with

fx = ∇x and ix = ux. On the other hand, κa and λa form natural transformations

Mx×Mx M(x+ x)

Mx Mx

µx,x

M(∇x)∆

1

⇓ κx

1 M(0)

Mx Mx

µ0

M(ux)!

1

⇓ λx

(5.21)

148

satisfying the commutativity of

M(∇x ◦ (ux + 1))(µ0,x(µ0(∗), a)) (M(∇x) ◦M(ux + 1))((µ0,x(µ0(∗), a))

M(∇x)(µx,x(M(ux)(µ0(∗), a)))

M(∇x)(µx,x(a, a))

M(`x)(µ0,x(µ0(∗), a)) a

id

∼
δ

∼ M(∇x)(µux,1)

M(∇x)(µx,x(λxa,γ))

κxa
ξ
∼

and a similar one with µ0 on second arguments. The above greatly simplifies if M is just

a lax monoidal functor: the first condition becomes 1a ∼= κxa ◦M(∇x)(µx,x(λxa, 1)), and the

second one 1a ∼= κxa ◦M(∇x)(µx,x(1a, λ
x
a)).

Corollary 5.17. A lax monoidal pseudofunctor M : (X ,+, 0) → (Cat,×,1) equipped with

natural transformations κ and λ as in Equation (5.21) corresponds to an ordinary pseud-

ofunctor M : X → Cocart, or equivalently Equation (5.19) to a cocartesian monoidal opfi-

bration.

5.7 Examples

In this section, we explore certain settings where the equivalence between monoidal

fibrations and monoidal indexed categories naturally arises. Instead of going into details that

would result in a much longer text, we mostly sketch the appropriate example cases up to

the point of exhibition of the monoidal Grothendieck correspondence, providing indications

of further work and references for the interested reader.

149

5.7.1 Fundamental Bifibration

For any category X , the codomain or fundamental opfibration is the usual functor

from its arrow category

cod: X 2 −→ X

mapping every morphism to its codomain and every commutative square to its right-hand

side leg. It uniquely corresponds to the strict opindexed category, i.e. mere functor

X Cat

x X/x

y X/y
f f!

(5.22)

that maps an object to the slice category over it and a morphism to the post-composition

functor f! = f ◦ − induced by it.

If the category has a monoidal structure (X ,⊗, I), this (2-)functor naturally be-

comes lax monoidal with structure maps

X/x×X/y ⊗−→ X/(x⊗ y), 1
1I−→ X/I. (5.23)

These components form strictly natural transformations, and for example the invertible

modification ω Equation (B.2) has components the evident isomorphisms, for (f, g, h) ∈

X/x×X/y ×X/z, between

a⊗ (b⊗ c) f⊗(g⊗h)−−−−−→ x⊗ (y ⊗ z) ∼= (x⊗ y)⊗ z (5.24)

(a⊗ b)⊗ c (f⊗g)⊗h−−−−−→ (x⊗ y)⊗ z

By Theorem 5.10, this monoidal strict opindexed category correspondes to a monoidal split

fibration, i.e. (X 2,⊗, 1I) is monoidal and cod strict monoidal, where ⊗X2 strictly preserves

150

cartesian liftings via f!k ⊗ g!` = (f ⊗ g)!(k ⊗ `) – which can of course be independently

verified. However in general, the slice categories X/x do not inherit the monoidal structure:

there is no way to restrict the global monoidal structure to a fibrewise one.

According to Theorem 5.13, there is an induced monoidal structure on the cate-

gories X/x and a strict monoidal structure on all f! only when the monoidal structure on

X is given by binary coproducts and an initial object (i.e. cocartesian). In that case, for

each k : a→ x and ` : b→ x in the same fibre X/x, their tensor product in X/x is given by

a+ b
k+`−−−→ x+ x

∇x−−→ x

as a simple example of Equation (5.13). In fact, this is precisely the coproduct of two objects

in X/x, and 0
!−→ x the initial object, due to the way colimits in the slice categories are

constructed. Therefore this falls under the cocartesian-fibres special case Equation (5.19),

bijectively corresponding to the cocartesian structure on X 2 inherited from X .

Now suppose an ordinary category X has pullbacks. This endows the codomain

functor also with a fibration structure, corresponding to the indexed category

X op Cat

x X/x

y X/y
f f∗

with the same mapping on objects as Equation (5.22) but by taking pullbacks rather than

post-composing along morphisms, a pseudofunctorial assignment. This gives cod: X 2 → X

a bifibration structure, also by that classic fact that f! a f∗.

In this case, if X has a general monoidal structure, there is no naturally induced

lax monoidal structure of that pseudofunctor as before: there is no reason for the pullback

151

of a tensor to be isomorphic to the tensor of two pullbacks. However, if X is cartesian

monoidal (hence has all finite limits), the components

X/x×X/y ×−→ X/(x× y), 1
∆!−→ X/1

are pseudonatural since pullbacks commute with products. Moreover, this bijectively cor-

responds to monoidal fibres and strong monoidal reindexing functors, in fact also cartesian

ones: for morphisms k : a→ x and ` : b→ x in X/x, their induced product is given by

• a× b

x x× x

δ∗(k×`)

y
k×`

δ

and 1x : x→ x is the unit of each slice X/x, this indexed monoidal category also described

in [HM06]. The monoidal fibration structure on cod: (X 2,×, 11) → (X,×, 1) is the evi-

dent one, so it again falls in the special case Equation (5.19) now for cartesian fibres, by

construction of products in slice categories.

As a final remark, analogous constructions hold for the domain functor which is

again a bifibration: its fibration structure comes from pre-composing along morphisms,

whereas its opfibration structure comes from taking pushouts along morphisms.

5.7.2 Family Fibration: Zunino and Turaev Categories

Recall that for any category C, the standard family fibration is induced by the

(strict) functor

[−, C] : Setop → Cat (5.25)

which maps every discrete category X to the functor category [X, C] and every function

f : X → Y to the functor f∗ = [f, 1], i.e. pre-composition with f . The total category of the

152

induced fibration Fam(C) → C has as objects pairs (X,M : X → C) essentially given by a

family of X-indexed objects in C, written {Mx}x∈X , whereas the morphisms are

X

C

Y

M

f ⇓ α

N

namely a function f : X → Y together with families of morphisms αx : Mx → Nfx in C.

Notice the similarity of this description with Equation (C.8), which for the strict indexed

categories case looks like a non-discrete version of the family fibration, for C = Cat. More-

over, it is a folklore fact that Fam(C) is the free coproduct cocompletion on the category

C.

On the other hand, we could consider the opfibration induced by the very same

functor Equation (5.25), denoted by Maf(C)→ Setop. The objects of Maf(C) are the same as

Fam(C), but morphisms {Mx}x∈X → {Ny}y∈Y between them are functions g : Y → X (i.e.

X → Y in Setop) together with families of arrows βy : Mgy → Ny in C. Notice that these are

now indexed over the set Y rather than X like before, and in fact Maf(X) = Fam(X op)op.

In the case that the category is monoidal (C,⊗, I), the (2-)functor [−, C] has a

canonical lax monoidal structure. Explicitly, by taking its domain Setop to be cocartesian

by the usual cartesian monoidal structure (Set,×, 1), the structure maps are

φX,Y : [X, C]× [Y, C]→ [X × Y, C], φ0 : 1
IC−→ [1, C] ∼= C

where φX,Y corresponds, under the tensor-hom adjunction in Cat, to

[X, C]× [Y, C]×X × Y ∼−→ [X, C]×X × [Y, C]× Y evX×evY−−−−−−→ C × C ⊗−→ C.

153

These are again natural components, and for example Equation (B.2) has components

the natural isomorphisms between the assignments Mx ⊗ (Ny ⊗ Uz) and (Mx ⊗ Ny) ⊗

Uz. By Theorem 5.10, this monoidal strict indexed category endows the corresponding

split fibration Fam(X) → Set with a monoidal structure via {Mx} ⊗ {Ny} := {Mx ⊗

Ny}X×Y . On the other hand, we could use the dual part of the same theorem, and instead

consider the induced monoidal split opfibration Maf(X)→ Setop corresponding to the same

([−, C], φ, φ0).

Moreover, since Set is cartesian, Theorem 5.13 also applies in both cases, giving

a monoidal structure to the fibres as well: for M : X → C and N : X → C, their fibrewise

tensor product and unit are given by

X
∆−→ X ×X M×N−−−−→ C × C ⊗−→ C, X

!−→ 1
I−→ C

which are precisely constructed as in Equation (5.13). Once again, notice the direct similary

with Equation (5.9), the fibrewise monoidal structure on ICat(X).

As an interesting example, consider C = ModR for a commutative ring R, with

its usual tensor product ⊗R. In [CDL06], the authors introduce a category T of Tu-

raev R-modules, as well as a category Z of Zunino R-modules, which serve as symmetric

monoidal categories where group-(co)algebras and Hopf group-(co)algebras, [Tur00], live as

(co)monoids and Hopf monoids respectively.

In more detail, the objects of both T and Z are defined to be pairs (X,M) where

X is a set and {Mx}x∈X is an X-indexed family of R-modules, and their morphisms are

154

respectively

(T)

s : Mg(y) → Ny in ModR

g : Y → X in Set

(Z)

t : Mx → Nf(x) in ModR

f : X → Y in Set

There is a symmetric pointwise monoidal structure, {Mx ⊗R Ny}X×Y , and there are strict

monoidal forgetful functors T → Setop, Z → Set. It is therein shown that comonoids in

T are monoid-coalgebras and monoids in Z are monoid-algebras, i.e. families of R-modules

indexed over a monoid, together with respective families of linear maps

(T) Cg∗h → Cg ⊗ Ch (Z) Ag ⊗Ah → Ag∗h

Ce → R R→ Ae

satisfying appropriate axioms. Based on the above, it is clear that T = Maf(ModR) and

Z = Fam(ModR), which clarifies the origin of these categories and can be directly used to

further generalize the notions of Hopf group-(co)monoids in arbitrary monoidal categories.

5.7.3 Global Categories of Modules and Comodules

For any monoidal category V, there exist global categories of modules and co-

modules, denoted by Mod and Comod [Vas14, 6.2]. Their objects are all (co)modules over

(co)monoids in V, whereas a morphism between an A-module M and a B-module N is

given by a monoid map f : A → B together with a morphism k : M → N in V satisfying

the commutativity of

A⊗M M

A⊗N B ⊗N N

µ

1⊗k k

f⊗1 µ

155

where µ denotes the respective action, and dually for comodules. Both these categories

arise as the total categories induced by the Grothendieck construction on the functors

Mon(V)op Cat Comon(V) Cat

A ModV(A) C ComodV(C)

B ModV(B) D ComodV(D)

f g g!f∗

(5.26)

where f∗ and g! are (co)restriction of scalars: if M is a B-module, f∗(M) is an A-module

via the action

A⊗M f⊗1−−→ B ⊗M µ−→M.

The induced split fibration and opfibration, Mod→ Mon(V) and Comod→ Comon(V), map

a (co)module to its respective (co)monoid.

Recall that when (V,⊗, I, σ) is braided monoidal, its categories of monoids and

comonoids inherit the monoidal structure: if A and B are monoids, then A⊗B has also a

monoid structure via

A⊗B ⊗A⊗B 1⊗σ⊗1−−−−→ A⊗A⊗B ⊗B m⊗m−−−→ A⊗B, I ∼= I ⊗ I j⊗j−−→ A⊗B

where m and j give the respective monoid structures. In that case, the induced split

fibration and opfibration are both monoidal. This can be deduced by directly checking the

conditions of Proposition 5.1, as was the case in the relevant references, or in our setting by

using Theorem 5.10 since both (2-)functors Equation (5.26) are lax monoidal. For example,

for any A,B ∈ Mon(V) there are natural maps

φA,B : ModV(A)×ModV(B)→ ModV(A⊗B) φ0 : 1→ ModV(I)

with φA,B(M,N) = M ⊗N , with the A⊗B-module structure being

A⊗B ⊗M ⊗N 1⊗σ⊗1−−−−→ A⊗M ⊗B ⊗N µ⊗µ−−−→M ⊗N

156

and φ0(∗) = I, which are pseudoassociative and pseudounital in the sense that e.g. for any

M,N,P ∈ ModV(A)×ModV(B)×ModV(C), M⊗(N⊗P) is only isomorphic to (M⊗N)⊗P

as (A⊗B)⊗ C-modules.

Notice that in general, the monoidal bases Mon(V) and Comon(V) are not (co)-

cartesian, since they have the same tensor as (V,⊗, I, σ). Therefore this case does not

fall under Theorem 5.13, hence the fibre categories are not monoidal. For example in

(Vectk,⊗k, k), the k-tensor product of two A-modules for a k-algebra A is not an A-module

as well.

We remark that the induced monoidal opfibration Comod → Comon(V) in fact

serves as the monoidal base of an enriched fibration structure on Mod → Mon(V) as

explained in [Vas18], built upon an enrichment between the monoidal bases Mon(V) in

Comon(V) established in [HLFV17]. Moreover, analogous monoidal structures are induced

on the (op)fibrations of monads and comonads in any fibrant monoidal double category, see

[Vas19, Prop. 3.18].

5.7.4 Systems as Monoidal Indexed Categories

In [SSV20] as well as in earlier works e.g. [VSL15], the authors investigate a cate-

gorical framework for modeling systems of systems using algebras for a monoidal category.

In more detail, systems in a broad sense are perceived as lax monoidal pseudofunctors

WC → Cat

where WC is the monoidal category of C-labeled boxes and wiring diagrams with types in a

finite product category C. Briefly, the objects inWC are pairs X = (X in, Xout) of finite sets

157

equipped with functions to obC, thought of as boxes

X

a1

...

am

b1
...

bn

where X in = {a1, . . . , am} are the input ports, Xout = {b1, . . . , bn} the output ones and all

wires are associated to a C-object expressing the type of information that can go through

them. A morphism φ : X → Y in this category consists of a pair of functions
φin : X in → Xout + Y in

φout : Y out → Xout

that respect the C-types, which roughly express which port is ‘fed information’ by which.

Graphically, we can picture it as

Y

X
... ...

φ : X→Y

(5.27)

Composition of morphisms can be thought of a zoomed-in picture of three boxes, and the

monoidal structure amounts to parallel placement of boxes as in

X1

X2

... ...

... ...

There is a close connection between the definition of WC and that of Dialectica categories

as well as lenses; such considerations are the topic of work in progress [FHJ+20].

158

The systems-as-algebras formalism uses lax monoidal pseudofunctors from this

category WC to Cat that essentially receive a general picture such as

X1

X2

X3

X4

X5

Y

(which really takes place in the underlying operad of WC) and assign systems of a certain

kind to all inner boxes; the lax monoidal and pseudofunctorial structure of this assignment

formally produce a system of the same kind for the outer box.

Examples of such systems are discrete dynamical systems (Moore machines in the

finite case), continuous dynamical systems but also more general systems with deterministic

or total conditions; details can be found in the provided references. Since all these systems

are lax monoidal pseudofunctors from the non-cocartesian monoidal category of wiring

diagrams to Cat, i.e. monoidal indexed categories, the monoidal Grothendieck construction

Theorem 5.8 induces a corresponding monoidal fibration in each system case, and this global

structure does not reduce to a fibrewise one.

For example, the algebra for discrete dynamical systems [SSV20, Sec. 2.3]

DDS: WSet → Cat (5.28)

assigns to each boxX = (X in, Xout) the category of all discrete dynamical systems with fixed

input and output sets being
∏
x∈Xin x and

∏
y∈Xout y respectively. There exist morphisms

between systems of the same input and output set, but not between those with different ones.

To each morphism, i.e. wiring diagram as in Equation (5.27), DDS produces a functor that

maps an inner discrete dynamical system to a new outer one, with changed input and output

159

sets accordingly. (Pseudo)functoriality of this assignment allows the coherent zoom-in and

zoom-out on dynamical systems built out of smaller dynamical systems, and monoidality

allows the creation of new dynamical systems on parallel boxes.

Being a monoidal indexed category, Equation (5.28) gives rise to a monoidal op-

fibration over WSet. Its total category
∫

DDS has objects all dynamical systems with ar-

bitrary input and output sets, morphisms that can now go between systems of different

inputs/outputs, and also a natural tensor product inherited from that in WSet and the

laxator of
∫

DDS. In a sense, this category has all the required flexibility for the direct com-

munication (via morphisms in the total category) between any discrete dynamical system,

or any composite of systems or parallel placement of them, whereas the wiring diagram al-

gebra Equation (5.28) focuses on the machinery of building new discrete dynamical systems

systems from old.

This classic change of point of view also transfers over to maps of algebras, i.e.

indexed monoidal 1-cells. As an example, see [SSV20, Sec. 5.1], discrete dynamical systems

can naturally be viewed as general total and deterministic machines denoted by Mchtd, via

a monoidal pseudonatural transformation

WSet

Cat

W
ĨntN

DDS

⇓

Mchtd

which also changes the type of input and output wires from sets to discrete interval sheaves

160

ĨntN . This gives rise to a monoidal opfibred 1-cell∫
DDS

∫
Mchtd

WSet W
ĨntN

which provides a direct functorial translation between the one sort of system to the other

in a way compatible with the monoidal structure.

As a final note, this method of modeling certain objects as algebras for a monoidal

category (a.k.a. strict or general monoidal indexed categories) carries over to further con-

texts than systems and the wiring diagram category. Examples include hypergraph cate-

gories as algebras on cospans [FS19] and traced monoidal categories as algebras on cobor-

disms [SSR17]. In all these cases, the monoidal Grothendieck construction gives a poten-

tially fruitful change of perspective that should be further investigated.

5.7.5 Graphs

As we show in Appendix C.4.2, the category of (directed, multi) graphs, is bifibred

over set, where the bifibration V : Grph→ Set is given by sending a graph to its vertex set.

Since V : Grph → Set preserves products, then it can be given the structure of a

strict monoidal monoidal functor with respect to the cartesian monoidal structures on Grph

and Set. Since the cartesian morphisms are those that form pullback squares, and prod-

ucts in Grph are given pointwise, then the monoidal structure in Grph preserves cartesian

morphisms. We can then apply Corollary 5.9 to obtain a symmetric lax monoidal structure

for the pseudofunctor Grph∗ : Setop → Cat. The lax structure map γX,Y : GrphX ×GrphY →

GrphX×Y is given by taking the product of the two graphs within Grph. Notice the product

161

has vertex set given by X ×Y . Since the base category is cartesian monoidal, we can apply

Theorem 5.13, granting a symmetric monoidal structure to the fibres GrphX . The monoidal

product is given by the following composite.

GrphX × GrphX
γX,X−−−→ GrphX×X

∆∗−−→ GrphX

Simply put, this operation is given by taking the product of the two graphs on X, and then

restricting to the vertices on the diagonal. Indeed, this is the cartesian monoidal structure

on GrphX .

Since the category Set also has all finite colimits, we obtain a symmetric lax

monoidal structure for the pseudofunctor Grph∗ : Setop → Cat. The lax structure map

φX,Y : GrphX × GrphY → GrphX+Y is given by taking the disjoint union of the two graphs.

Notice the disjoint union has vertex set given by X + Y . Since the base category is co-

cartesian monoidal, we can apply Theorem 5.13, granting a symmetric monoidal structure

to the fibres GrphX . The monoidal product is given by the following composite.

GrphX × GrphX
φX,X−−−→ GrphX+X

∆∗−−→ GrphX

Simply put, this operation is given by taking the disjoint union of the edges. Indeed, this

is the cocartesian monoidal structure on GrphX . This is also the overlay operation for the

network model of directed multi graphs.

162

Appendix A

Monoidal Categories

Monoidal categories lie at the center of applied category theory. This section is

included mainly to establish notation and terminology used throughout this thesis. Some

standard references are [ML98] and [EGNO15].

A.1 Definitions

A.1.1 Monoidal, Braided, and Symmetric Categories

Definition A.1. A monoidal category (C,⊗, I, α, λ, ρ) consists of

• a category C

• a functor ⊗ : C × C → C called the tensor

• a functor I : 1→ C called the unit

• a natural transformation α with components of the form αx,y,z : (x⊗y)⊗z → x⊗(y⊗z)

called the associator

163

• a natural transformation λ with components of the form λx : I⊗x→ x called the left

unitor

• a natural transformation ρ with components of the form ρx : x ⊗ I → x called the

right unitor

such that the following diagrams commute.

Pentagon identity:

(w ⊗ x)⊗ (y ⊗ z)

((w ⊗ x)⊗ y)⊗ z

w ⊗ (x⊗ (y ⊗ z))

(w ⊗ (x⊗ y))⊗ z

w ⊗ ((x⊗ y)⊗ z)

αw,x,y⊗z

αw⊗x,y,z

αw,x,y⊗1z

αw,x⊗y,z

1w⊗αx,y,z

(A.1)

Triangle identity:

(x⊗ I)⊗ y x⊗ (I ⊗ y)

x⊗ y

αx,I,y

ρx⊗1y 1x⊗λy
(A.2)

A strict monoidal category is one where the associator, left unitor, and right unitor are

all identity.

A braided monoidal category [JS93] is a monoidal category equipped with a

natural transformation β called the braiding with components βx,y : x ⊗ y → y ⊗ x, such

164

that the following diagrams commute.

(x⊗ y)⊗ z x⊗ (y ⊗ z)

(y ⊗ x)⊗ z (y ⊗ z)⊗ x

y ⊗ (x⊗ z) y ⊗ (z ⊗ x)

αx,y,z

βx,y⊗1z βx,y⊗z

αy,x,z αy,z,x

1y⊗βx,z

x⊗ (y ⊗ z) (x⊗ y)⊗ z

x⊗ (z ⊗ y) z ⊗ (x⊗ y)

(x⊗ z)⊗ y (z ⊗ x)⊗ y

α−1
x,y,z

1x⊗βy,z βx⊗y,z

α−1
x,z,y α−1

z,x,y

βx,z⊗1y

(A.3)

A symmetric monoidal category is a braided monoidal category where the braiding

satisfies the equation βy,x ◦βx,y = 1x⊗y for all objects x, y ∈ C. A commutative monoidal

category is a symmetric monoidal category where the braiding is identity.

For general (braided/symmetric) monoidal categories, we write C, D, or E .

A.1.2 Monoidal, Braided, and Symmetric Functors

Definition A.2. Let (C,⊗C , IC , αC , λC , ρC) and (D,⊗D, ID, αD, λD, ρD) be monoidal cate-

gories. A lax monoidal functor from C to D consists of

• a functor F : C → D

• a natural transformation with components φx,y : Fx ⊗D Fy → F (x ⊗C y) called the

laxator

• a natural transformation with unique component φ0 : ID → FIC called the unit lax-

ator

165

such that the following diagrams commute.

(Fx⊗D Fy)⊗D Fz Fx⊗D (Fy ⊗D Fz)

F (x⊗C y)⊗D Fz Fx⊗D F (y ⊗C z)

F ((x⊗C y)⊗C z) F (x⊗C (y ⊗C z))

αDFx,Fy,Fz

φx,y⊗D1Fz 1Fx⊗Dφy,z

φx⊗Cy,z φx,y⊗Cz

F (αCx,y,z)

(A.4)

ID ⊗D Fx Fx

FIC ⊗D Fx F (IC ⊗C x)

λDFx

φ0⊗D1Fx

φIC ,x

F (λCx)

Fx⊗D ID Fx

Fx⊗D FIC F (x⊗C IC)

ρDx

1Fx⊗Dφ0

φx,IC

F (ρCx) (A.5)

We say that F is simply a monoidal functor when φ and φ0 are natural isomorphisms. It

is worth noting that there exists a notion of “oplax” monoidal functors, where the structure

map is reversed: φx,y : F (x ⊗ y) → Fx ⊗ Fy. However, oplax monoidal functors do not

appear in this thesis, so we spend no further time on them.

A lax braided monoidal functor is a lax monoidal functor (F, φ, φ0) : (C,⊗C , IC)→

(D,⊗D, ID) where C and D are braided monoidal categories, with βC and βD being the re-

spective braidings, such that the following diagram commutes.

Fx⊗D Fy Fy ⊗D Fx

F (x⊗C y) F (y ⊗C x)

βDFx,Fy

φx,y φy,x

FβCx,y

(A.6)

A (lax) braided monoidal functor between symmetric monoidal categories is called a (lax)

symmetric monoidal functor with no further requirements.

Lemma A.3. Composition of lax monoidal functors is strictly associative.

We get categories MonCat`, MonCat, BrMonCat`, BrMonCat, SymMonCat`, and

SymMonCat where the objects are monoidal categories, the functors are monoidal categories,

166

the prefix Br (resp. Sym) indicates the objects and morphisms are braided (resp. symmetric),

and the subscript ` indicated the morphisms are lax monoidal.

A.1.3 Monoidal Natural Transformations

Definition A.4. Let (F, φ, φ0) and (G, γ, γ0) be lax monoidal functors. A monoidal

natural transformation is a natural transformation θ : F ⇒ G such that the following

diagrams commute.

Fx⊗D Fy Gx⊗D Gy

F (x⊗C y) G(x⊗C y)

θx⊗Dθy

φx,y γx,y

θx⊗Cy

ID

FIC GIC

φ0γ0

θIC

(A.7)

There are no new laws which can be imposed on a monoidal natural transformation between

braided or symmetric monoidal functors. So we do not specialize this concept any further.

A.2 Examples

Example A.5. Let (M, ·, e) be a monoid. If we can consider M as a discrete category,

then it can be given a strict monoidal structure where the tensor is given by · and the unit

is e. The functor Mon ↪→ MonCat which realizes a monoid as a discrete monoidal category

is full and faithful. If we think of this as “forgetting discreteness”, then discreteness is a

property.

Example A.6. Given a monoidal category (C,⊗, I), we can define ⊗rev : C × C → C by

C × C C

C × C

⊗rev

βCat
C,C

⊗

This defines an idempotent automorphism on MonCat.

167

Example A.7. Given a monoidal category (C,⊗, I), the category C can be equipped with

a monoidal structure given by ⊗op : Cop×Cop → Cop and the same unit object. This defines

an idempotent automorphism on MonCat.

Example A.8. Any category C with finite products can be equipped with a symmetric

monoidal structure as follows. For every pair of objects c, d, choose some object satisfying

the universal property of the product of c and d, call it c × d. Given a pair of morphisms

f : a → b and g : c → d, the universal property gives a morphism f × g : a × b → c × d as

follows.
a× b

a b

c× d

c d

πa πb

∃!

f g

πc πd

We claim that this defines a functor × : C × C → C. Consider a pair of morphisms

(f1, f2) : (a1, a2) → (b1, b2) and (g1, g2) : (b1, b2) → (c1, c2). Since (g1 ◦ f1) × (g2 ◦ g2) and

(g1 × g2) ◦ (f1 × f2) both make the following diagram commute, they must be equal.

a1 × a2

a1 a2

b1 c1 × c2 b2

c1 c2

f1 f2

g1 g2

Identity maps are preserved because the identity map on a × b makes the diagram below

commute.
a× b

a b

a× b

a b

πa πb

1a 1b

πa πb

168

We define the unit object to be some chosen terminal object, call it 1. The asso-

ciator, unitors, pentagon, hexagon, braiding, hexagon law, and symmetric law can all be

derived from the universal property of products. This gives C the structure of a symmetric

monoidal category. This is called the cartesian monoidal structure, and (C,×, 1) is

called a cartesian monoidal category.

Example A.9. Any category with finite coproducts can be equipped with a symmetric

monoidal structure by Example A.8 and Example A.7.

Example A.10. If C is monoidal and D is a category, the functor category CD can be

given a pointwise monoidal structure as follows. Define ⊗pt : CD × CD → CD by ⊗pt =

⊗(F ×G)◦∆. The unit object 1→ CD is given by currying the composite D
!−→ 1

I−→ C. The

rest of the structures and the necessary properties all carry over from their counterparts

in C. Similarly, if C is braided or symmetric, then CD can be given a pointwise braided or

symmetric monoidal structure respectively.

Example A.11. Let C be a small monoidal category. Then the Day convolution tensor

product [Day70]

⊗Day : SetC
op × SetC

op → SetC
op

is the following left Kan extension.

Cop × Cop Set

Cop

(X,Y)

⊗
X⊗DayY

This can be given by the following coend formula [Lor19].

X ⊗Day Y : c 7→
∫ c1,c2∈C

C(c1 ⊗ c2, c)×X(c1)× Y (c2)

169

Similarly, we can define the unit via left Kan extension.

1 Set

Cop

∆1

I
IDay

Day convolution gives the functor category SetC
op

a monoidal structure. Many nice proper-

ties of this structure can be found in the literature, e.g. [Lor19]. However, these properties

are not heavily used in this thesis, so we choose to leave them out.

A.3 Monoid Objects

A monoidal structure is exactly what a category needs to have if we want to define

monoid objects in this category.

Definition A.12. Let (C,⊗, I) be a monoidal category. A monoid object internal to C

consist of

• an object x ∈ C

• a morphism µ : x⊗ x→ x

• a morphism ε : I → x

such that the following diagrams commute.

(x⊗ x)⊗ x x⊗ (x⊗ x)

x⊗ x x⊗ x

x

αx,x,x

µ⊗1x 1x⊗µ

µ µ

(A.8)

I ⊗ x x⊗ x x⊗ I

x

ε⊗x

λx
µ

x⊗ε

ρx
(A.9)

170

Alternatively, we can express these structures with string diagrams as follows.

• multiplication

• neutral element

such that

=

(A.10)

= =

(A.11)

Let (x, µ, ε) and (y, ν, δ) be monoids in C. A morphism f : x → y is called a

monoid homomorphism if the following diagrams commute.

x⊗ x y ⊗ y

x y

f⊗f

µ ν

f

1

x y

ε δ

f

In strings, these equations are depicted as follows.

f f =

f f
=

Let Mon(C,⊗) denote the category of monoid objects in C and their homomorphisms. If C

is Set with its cartesian monoidal structure, we simply denote the category of monoids by

Mon.

171

Definition A.13. Let (C,⊗, I) be a braided monoidal category. A commutative monoid

in C is a monoid object in C where the following equation holds.

=
(A.12)

Let CMon(C,⊗) denote the category of commutative monoid objects in C and their homo-

morphisms. If C is Set with its cartesian monoidal structure, we simply denote the category

of commutative monoids by CMon.

A.4 The Eckmann–Hilton Argument

Theorem A.14. Let C be a braided monoidal category, and let x be an object equipped

with two distinct monoid structures (x, µ, ε) and (x, ν, η) such that µ and ν are related by

the following equation.

µ ◦ (ν ⊗ ν) = ν(µ⊗ µ) ◦ (1⊗ β ⊗ 1) (A.13)

Then ε = η, µ = ν, and (x, µ, ε) is commutative.

It is important to note that if C is Set or some other concrete category, and the

operations are instead denoted by ◦ and ?, Equation (A.13) becomes (a ◦ b) ? (c ◦ d) =

(a?c)◦ (b?d). Due to this formulation, this relation as it appears in many contexts is called

the middle-four interchange law.

Proof. We prove it using string diagrams, just for fun. Let the following string diagram

components represent ε, µ, η, and ν, respectively.

, , ,

172

Then we can draw Equation (A.13) as follows.

=

First, we show that the units coincide.

= = = = =

Since they are equal, we denote the unit with a black circle in the remainder of the proof.

Next, we show in one calculation that the two operations are equal and commutative.

= = = = = =

Corollary A.15. We have the following equivalences of categories.

Mon(Mon,×) ∼= Mon(CMon,×) ∼= CMon(Mon,×) ∼= CMon(CMon,×) ∼= CMon

A.5 Characterizing (co)cartesian monoidal categories

In the previous section, we saw that a category with finite products can be equipped

with a canonical symmetric monoidal structure, and dually so can a category with finite

coproducts. In this section, we give conditions under which a symmetric monoidal category

is monoidally equivalent to one given by a (co)cartesian structure [Fox76].

Example A.16. Let C be a category with finite coproducts. By Example A.9, C can be

equipped with a cocartesian monoidal structure, with tensor denoted by +, and the unit

173

(which is an initial object) denoted by 0. Let x be any object in C. Universal property of

coproducts gives a map ∇ : x+ x→ x

x x

x+ x

x

i1

1x

i2

1x∇x

We draw string diagrams with respect to the cocartesian monoidal structure on C. Then

the map ∇x is depicted as follows.

Also, the universal property of an initial object gives a map !x : 0→ x, depicted as follows.

We show that this gives x the structure of a commutative monoid. We begin by

finding a formula for the left unitor of the cocartesian monoidal structure on C. Notice that

the left unitor makes the following diagram commute (by definition)

x 0

x+ 0

x

ix

1

!

!∃!

and thus does so uniquely. Compare this to the diagram

x 0

x x+ 0 x

x+ x

x

ix
1

!
!

1

1+!

1∇x

174

whose frame is equal to that of the previous. Thus we get ∇x ◦ (1x+!x) ◦ ix = 1x and

similarly ∇x ◦ (!x + 1x) ◦ i′x = 1x, which we draw as follows.

= =

To show ∇x is associative, we want to show that the following equation holds.

=

We have three inclusion maps i0, i1, i2 : x→ x+ x+ x, which are given in strings below.

, ,

The universal property of coproducts says that if the composites of the morphisms on the left

and right side of the associativity equation above with any of the three inclusions is always

the identity morphism on x, then those two morphisms must be equal. So we compute:

= = = =

= =

= = = =

= =

175

Thus we have that ∇x is associative.

Recall that the braiding in C is derived from the universal property in the following

way.
x x

x+ x

x+ x

i1

i2

i2

i1
σ

Then the commutative diagram

x x

x x+ x x

x+ x

x

i1
1

i2
1

i1

1

σ
i1

1∇

has precisely the frame for the universal construction of ∇x. Thus ∇x ◦ σ = ∇x, displayed

as follows.

=

Proposition A.17. A symmetric monoidal category is cocartesian if and only if each object

has a natural commutative monoid structure.

Proof. Given an object x in a cocartesian monoidal category C, we constructed a commu-

tative monoid structure on x in Example A.16.

We have to show that the multiplication maps

∇x : x+ x→ x

176

form the components of a natural transformation

∇ : + ◦∆⇒ 1C .

For a given morphism f : x→ y, the naturality square is

x+ x y + y

x y

f+f

∇x ∇y

f

Recall that the map f + f is derived from the universal property of coproducts by the

following diagram.
x x

y x+ x y

y + y

f
i1 i2

f

i′1
f+f

i′2

We want to show that ∇y ◦ (f + f) = f ◦ ∇x.

x x

y x+ x y

y + y

y

f
i1 i2

f

i′1

1y

f+f
i′2

1′y∇y

x x

x x+ x x

x

y

1x
i1 i2

1x

1x

f

∇x 1x

ff

The frames of the above diagrams are identical, and they are equal to the frame which

produces 〈f, f〉, the copairing of f with itself. So by universal property, they are equal.

The naturality square of the units collapses into the triangle below.

0

x y

!x !y

f

which commutes by initiality of 0.

177

We have shown one direction: that if C is cocartesian monoidal, then each object

has a natural commutative monoid structure. Now we must show the converse. Assume that

(C,⊗, I) is a symmetric monoidal category such that each object has a natural commutative

monoid structure m : ⊗ ◦∆ ⇒ 1C and ε : ∆I ⇒ 1C . We represent the components of these

structures with string diagrams as follows.

,

The unit object is initial by naturality of ε.

I I

x y

εx

1I

εy

f

Now we must show that the monoidal structure on C is cocartesian, i.e. that the

unit object is initial and tensor is coproduct. To show that x⊗ y is actually the coproduct

of x and y, we first must provide inclusions, and then show that this cone satisfies the

appropriate universal property. We propose that the inclusion maps ix : x → x ⊗ y and

iy : y → x⊗ y are given in string diagrams as follows.

,

Let q be an object of C, and f : x → q and g : y → q be maps in C. Define the map

h : x⊗ y → q to be the following composite.

f g

178

Then we show the diagram
x y

x⊗ y

q

ix

f

iy

g
h

commutes by the following calculations.

f g
=

f
= f

f g
=

g
= g

Let k : x⊗ y → q be a map which makes that diagram commute. Then

h = f g = k k =

k

= k

Thus h is the unique such map. This demonstrates x⊗ y as the coproduct of x and y.

There is a dual statement which characterizes cartesian monoidal categories, but

in order to state it, we must first define comonoid.

Definition A.18. A comonoid object in a monoidal category C is monoid in Cop. Equiv-

alently, a comonoid is an object x ∈ C equipped with a comultiplication map µ : x→ x⊗x

and a counit map ε : x→ I, which we express as

,

179

satisfying the following equations.

=

= =

Let Comon(C,⊗) denote the category of comonoid objects in C and their homomorphisms.

Definition A.19. A cocommutative comonoid is a comonoid for which the following

equation holds.

=

Let CoComon(C,⊗) denote the category of cocommutative comonoids in C and their homo-

morphisms.

Proposition A.20. A symmetric monoidal category is cartesian if and only if each object

has a natural cocommutative comonoid structure.

Proof. This is dual to Proposition A.17.

Corollary A.21. Let (C,⊗, I) be a symmetric monoidal category. Then CMon(C,⊗) has

a cocartesian monoidal structure given by ⊗, and CoComon(C,⊗) has a cartesian monoidal

structure given by ⊗.

180

Appendix B

Monoidal 2-Categories and

Pseudomonoids

There are many sources for the basic theory of 2-categories and bicategories [Bén67,

KS74, Lac10, JY21]. Below we sketch some basic definitions and constructions regarding

monoidal 2-categories, necessary for what follows; relevant references where explicit axioms

can be found are [Car95, GPS95, DS97, McC00].

B.1 Monoidal 2-Categories

A monoidal 2-category K is a 2-category equipped with a pseudofunctor ⊗ : K×

K → K and a unit object I : 1 → K which are associative and unital up to coherent

equivalence. A lax monoidal pseudofunctor F : K → L between monoidal 2-categories

181

is a pseudofunctor equipped with pseudonatural transformations

K ×K L× L

K L

F×F

⊗K ⊗L

F

µ

1

K L

IK

IL

F

µ0 (B.1)

with components µa,b : Fa⊗Fb→ F(a⊗ b), µ0 : I → FI, and invertible modifications

L3 L2 L3 L2

K3 K2 L K3 L2 L

K2 K K2 K

⇓ µ×1

⊗L×1

⇓ µ

⊗L

⇓ 1×µ

⊗L×1

1×⊗L ∼= ⊗LF×F×F

⊗K×1

1×⊗K

F×F

⊗K

ω
V

F×F×F

1×⊗K
⇓ µ

⊗L

∼=

⊗K

F
F×F

⊗K

F

(B.2)

K L× L L

K ×K K
1×I

F×I

1

∼=

F

∼=

⊗L
1×µ0

⊗K

F×F ⇓ µ
F

ζ
V K L

F

F

⇓ 1

ξ
V
K L× L L

K ×K K
I×1

I×F

1

∼=

F

∼=

⊗L
µ0×1

⊗K

F×F ⇓ µ
F

subject to coherence conditions which can be found in Definition 2 in [DS97]. A monoidal

pseudonatural transformation τ : F ⇒ G between two lax monoidal pseudofunctors

(F , µ, µ0) and (G, ν, ν0) is a pseudonatural transformation equipped with two invertible

modifications

K ×K L× L K ×K L× L

u
V

K L K L

F×F

G×G
⊗ ⇓ ν

⇓ τ×τ

⊗

F×F

⊗ ⇓ µ ⊗

G

F

G

⇓ τ

(B.3)

1 L 1 L

u0
V

K K

⇓ ν0

IL

1K
⇓ µ0

IL

IK

G

F

G

⇓ τ

182

that consist of natural isomorphisms with components

ua,b : νa,b ◦ (τa ⊗ τb)
∼−→ τa⊗b ◦ µa,b, u0 : ν0

∼−→ τI ◦ µ0 (B.4)

satisfying coherence conditions which can be found in [GPS95, Section 3.3].

The above notions of course generalize those of an ordinary monoidal category, lax

monoidal functor and monoidal natural transformation. However, in our higher dimensional

setting, there is now room for a structure not present for monoidal 1-categories.

A monoidal modification between two monoidal pseudonatural transformations

(τ, u, u0) and (σ, v, v0) is a modification

K L

F

G

m
Vτ σ

which consists of pseudonatural transformations ma : τa ⇒ σa compatible with the monoidal

structures, in the sense that

Ga⊗ Gb Ga⊗ Gb

Fa⊗Fb G(x⊗ y) Fa⊗Fb G(a⊗ b)

F(a⊗ b) F(a⊗ b)

νa,b νa,bσa⊗σb

µa,b

⇓ va,b =

µa,b

σa⊗σb ⇓ ua,b

τa⊗τb

⇓ mx⊗my

τa⊗b

σa⊗b

⇓ ma⊗b

τa⊗b

(B.5)

I G(I) I G(I)

F(I) F(I)
µ0

ν0

⇓ v0 = ⇓ u0

µ0

ν0

τI

σI

⇓ mI

τI

For any monoidal 2-categories K,L there are 2-categories Mon2Catps(K,L) de-

noted by WMonHom(K,L) in [DS97] for bicategories. If we take lax monoidal 2-functors and

monoidal 2-transformations, the corresponding sub-2-category is denoted by Mon2Cat(K,L).

183

B.2 Pseudomonoids

A pseudomonoid in a monoidal 2-category (K,⊗, I) is an object a equipped with

multiplication m : a⊗ a→ a, unit j : I → a, and invertible 2-cells

a⊗ a⊗ a a⊗ a a⊗ I a⊗ a I ⊗ a

a⊗ a a a

1⊗m

m⊗1 α∼= mm

1⊗j

∼ m
λ∼=

ρ∼=

j⊗1

∼

m

(B.6)

expressing associativity and unitality up to isomorphism, that satisfy appropriate coherence

conditions. A lax morphism between pseudomonoids a, b is a 1-cell f : a → b equipped

with 2-cells

a⊗ a b⊗ b

a b

m

f⊗f

m

f

φ

I

a b

j

j

f

φ0 (B.7)

such that the following conditions hold:

b⊗ b⊗ b b⊗ b⊗ a

a⊗ a⊗ a a⊗ a b

a⊗ a a

m⊗1

⇓ φ⊗1f
m

m⊗1

1⊗m

f⊗f⊗f

m

f⊗f
⇓ φ

α∼=
m

f

=

b⊗ b⊗ b b⊗ b

a⊗ a⊗ a b⊗ b b

a⊗ a b⊗ b

m⊗1

1⊗m
⇓ 1f⊗φ

mα∼=
f⊗f⊗f

1⊗m

m

⇓ φ
f⊗f

m

f

(B.8)

a ∼= a⊗ I b⊗ b b

a⊗ a a
1⊗j

f⊗j

1a

λ∼=

f

1f⊗λ∼=

m
1f⊗φ0

m

f⊗f ⇓ φ
f

= a b

f

f

⇓ 1f
=

a ∼= I ⊗ a b⊗ b b

a⊗ a a
j⊗1

j⊗1

1a

ρ∼=

f

ρ⊗1f∼=

m
φ0⊗1f

m

f⊗f ⇓ φ
f

If (f, φ, φ0) and (g, ψ, ψ0) are two lax morphisms between pseudomonoids a and b,

a 2-cell between them σ : f ⇒ g in K which is compatible with multiplications and units,

184

in the sense that

b⊗ b

a⊗ a b

a

m
f⊗f

g⊗g

m

⇓ σ⊗σ

ψ ⇓

g

=

b⊗ b

a⊗ a b

a

mf⊗f

m

φ ⇓
⇓ σ

f

g

(B.9)

I b

a

j

j

φ0 ⇓ f

g

⇓ σ =
I b

aj

j

⇓ ψ0

g

We obtain a 2-category PsMonlax(K) for any monoidal 2-category K, which is

sometimes denoted by Mon(K) [CLS10]. By changing the direction of the 2-cells in Equa-

tion (B.7) and the rest of the axioms appropriately, or asking for them to be invertible, we

have 2-categories PsMonopl(K) and PsMon(K) of pseudomonoids with oplax or (strong)

morphisms between them.

Example B.1. The prototypical example is that of the monoidal 2-category K = (Cat,×,1)

of categories, functors, and natural transformations with the cartesian product of categories

and the unit category with a unique object and arrow. A pseudomonoid in (Cat,×,1) is a

monoidal category, a lax (resp. oplax, strong) morphism between two of these is precisely a

lax (resp. oplax, strong) monoidal functor, and a 2-cell is a monoidal natural transformation.

Therefore we obtain the well-known 2-categories MonCatlax, MonCatopl and MonCat.

There is an evident similarity between the structures defined above, e.g. Equa-

tion (B.1) and Equation (B.7), or Equation (B.3) and Equation (B.9). This is due to the

fact that monoidal 2-categories, lax monoidal pseudofunctors and monoidal pseudonatural

transformations are themselves appropriate pseudomonoid-related notions in a higher level;

we do not get into such details, as they are not pertinent to the present work.

185

For our purposes, we are interested in a different observation: any pseudomonoid a

in a monoidal 2-category K can in fact be expressed as a lax monoidal normal pseudofunc-

tor A : 1→ K with A(∗) = a, namely one where A(1∗) is equal to 1a. Moreover, a monoidal

pseudonatural transformation τ : A ⇒ B : 1 → K bijectively corresponds to a strong mor-

phism between the pseudomonoids a and b, and similarly for monoidal modifications and

2-cells. Since every pseudofunctor is equivalent to a normal one, the 2-category of pseu-

domonoids PsMon(K) can be equivalently viewed as Mon2Catps(1,K), the 2-category of lax

monoidal pseudofunctors 1 → K, monoidal pseudonatural transformations and monoidal

modifications.

As was already shown in [DS97, Prop. 5], any lax monoidal 2-functor F : K → L

takes pseudomonoids to pseudomonoids, and in fact [McC00] there is a functor PsMon(F)

that commutes with the respective forgetful functors

PsMon(K) PsMon(L)

K L.

PsMon(F)

F

Based on the above, and since every pseudofunctor from 1 into a 2-category trivially pre-

serves composition on the nose and every pseudonatural transformation is really 2-natural,

we can define a hom-2-functor that clarifies these assignments.

Proposition B.2. There is a 2-functor

PsMon(−) ' Mon2Catps(1,−) : Mon2Cat→ 2Cat (B.10)

which maps a monoidal 2-category to its 2-category of pseudomonoids, strong morphisms

and 2-cells between them.

186

The theory in [DS97, McC00] extends the above definitions to the case of braided

and symmetric pseudomonoids in braided and symmetric monoidal 2-categories. Briefly

recall that a braiding for (K,⊗, I) is a pseudonatural equivalence with components βa,b : a⊗

b→ b⊗ a and invertible modifications, whereas a syllepsis is an invertible modification

a⊗ b 1−→ a⊗ bV a⊗ b
βa,b−−→ b⊗ a

βb,a−−→ a⊗ b

which is called symmetry if it satisfies extra axioms. With the appropriate notions of

braided and symmetric lax monoidal pseudofunctors and monoidal pseudonatural trans-

formations (and usual monoidal modifications), we have 3-categories BrMon2Catps and

SymMon2Catps. Indicatively, a lax monoidal pseudofunctor comes equipped an invertible

modification with components

Fa⊗Fb Fb⊗Fa

Fb×Fa F(b⊗ a)

µa,b

βFa,Fb ⇓ va,b F(βa,b)

µb,a

(B.11)

As earlier, there exist 2-categories of braided and symmetric pseudomonoids with strong

morphisms between them, expressed as

BrPsMon(K) = BrMon2Cat(ps)(1,K)

and

SymPsMon(K) = SymMon2Cat(ps)(1,K).

Proposition B.3. There are 2-functors

BrPsMon : BrMon2Cat→ 2Cat, SymPsMon : SymMon2Cat→ 2Cat

which map a braided or symmetric monoidal 2-category to its 2-category of braided or sym-

metric pseudomonoids.

187

Finally, recall the notion of a monoidal 2-equivalence arising as the equivalence

internal to the 2-category Mon2Cat.

Definition B.4. A monoidal 2-equivalence is a 2-equivalence F : K ' L : G where both

2-functors are lax monoidal, and the 2-natural isomorphisms 1K ∼= FG, GF ∼= 1L are

monoidal. Similarly for braided and symmetric monoidal 2-equivalences.

As is the case for any 2-functor between 2-categories, PsMon as well as BrPsMon

and SymPsMon map equivalences to equivalences.

Proposition B.5. Any monoidal 2-equivalence K ' L induces a 2-equivalence between the

respective 2-categories of pseudomonoids PsMon(K) ' PsMon(L). Similarly any braided or

symmetric monoidal 2-equivalence induces BrPsMon(K) ' BrPsMon(L) or SymPsMon(K) '

SymPsMon(L).

188

Appendix C

Fibrations and Indexed Categories

We recall some basic facts and constructions from the theory of fibrations and

indexed categories, as well as the equivalence between them via the Grothendieck construc-

tion. Several indicative references for the general theory are [Gra66, Bén85, Her94, Bor94,

Jac99, Joh02, Vis05, JY21, Str20].

C.1 Fibrations

Consider a functor P : A → X . A morphism φ : a → b in A over a morphism

f = P (φ) : x → y in X is called cartesian if and only if, for all g : x′ → x in X and

θ : a′ → b in A with Pθ = f ◦ g, there exists a unique arrow ψ : a′ → a such that Pψ = g

189

and θ = φ ◦ ψ:

a′

a b in A

x′

x y in X

θ

∃!ψ

φ

f◦g=Pθ
g

f=Pφ

(C.1)

For x ∈ ObX , the fibre of P over x written Ax, is the subcategory of A which consists of

objects a such that P (a) = x and morphisms φ with P (φ) = 1x, called vertical morphisms.

The functor P : A → X is called a fibration if and only if, for all f : x → y in X and

b ∈ AY , there is a cartesian morphism φ with codomain b above f ; it is called a cartesian

lifting of f to b. The category X is then called the base of the fibration, and A its total

category.

Dually, the functor U : C → X is an opfibration if Uop is a fibration, i.e. for every

c ∈ Cx and h : x → y in X , there is a cocartesian morphism with domain c above h, the

cocartesian lifting of h to c with the dual universal property:

d′

c d in C

y′

x y in X

γ

β

∃!δ

k◦h=Uγ

h=Uβ

k

A bifibration is a functor which is both a fibration and opfibration.

If P : A → X is a fibration, assuming the axiom of choice we may select a cartesian

arrow over each f : x→ y in X and b ∈ Ay, denoted by Cart(f, b) : f∗(b)→ b. Such a choice

190

of cartesian liftings is called a cleavage for P , which is then called a cloven fibration; any

fibration is henceforth assumed to be cloven. Dually, if U is an opfibration, for any c ∈ Cx

and h : x→ y in X we can choose a cocartesian lifting of h to c, Cocart(h, c) : c→ h!(c). The

choice of (co)cartesian liftings in an (op)fibration induces a so-called reindexing functor

between the fibre categories

f∗ : Ay → Ax and h! : Cx → Cy (C.2)

respectively, for each morphism f : x → y and h : x → y in the base category. It can be

verified by the (co)cartesian universal property that 1Ax
∼= (1x)∗ and that for composable

morphism in the base category, g∗ ◦f∗ ∼= (g ◦f)∗, as well as (1x)!
∼= 1Cx and (k ◦h)!

∼= k! ◦h!.

If these isomorphisms are equalities, we have the notion of a split (op)fibration.

A fibred 1-cell (H,F) : P → Q between fibrations P : A → X and Q : B → Y is

given by a commutative square of functors and categories

A B

X Y

H

P Q

F

(C.3)

where the top H preserves cartesian liftings, meaning that if φ is P -cartesian, then Hφ is

Q-cartesian. In particular, when P and Q are fibrations over the same base category, we

may consider fibred 1-cells of the form (H, 1X) displayed as

A B

X

H

P Q
(C.4)

and H is then called a fibred functor. Dually, we have the notion of an opfibred 1-cell

and opfibred functor. Notice that any such (op)fibred 1-cell induces functors between the

191

fibres, by commutativity of Equation (C.3):

Hx : Ax −→ BFx (C.5)

A fibred 2-cell between fibred 1-cells (H,F) and (K,G) is a pair of natural

transformations (β : H ⇒ K,α : F ⇒ G) with β above α, i.e. Q(βa) = αPa for all a ∈ A,

displayed as

A B

X Y

H

⇓ β
K

P Q

F

⇓ α
G

(C.6)

A fibred natural transformation is of the form (β, 11X) : (H, 1X)⇒ (K, 1X)

A B

X

H

⇓ β

K

P Q
(C.7)

Dually, we have the notion of an opfibred 2-cell and opfibred natural transformation

between opfibred 1-cells and functors respectively.

We thus obtain a 2-category Fib of fibrations over arbitrary base categories, fibred

1-cells and fibred 2-cells. There is also a 2-category Fib(X) of fibrations over a fixed base

category X , fibred functors and fibred natural transformations. Dually, we have the 2-

categories OpFib and OpFib(X). Moreover, we also have 2-categories Fibsp and OpFibsp of

split (op)fibrations, and (op)fibred 1-cells that preserve the cartesian liftings ‘on the nose’.

Notice that Fib and OpFib are both sub-2-categories of Cat2 = [2,Cat], the arrow

2-category of Cat. Similarly, Fib(X) and OpFib(X) are sub-2-categories of Cat/X , the

192

slice 2-category of functors into X . Due to that, both these (1-)categories form fibrations

themselves. Explicitly, the functor cod: Fib → Cat which maps a fibration to its base is a

fibration, with fibres Fib(X) and cartesian liftings pullbacks along fibrations. In fact, it is

a 2-fibration [Her99, Buc14].

C.2 Indexed Categories

We now turn to the world of indexed categories. Given an ordinary category X ,

an X -indexed category is a pseudofunctor

M : X op → Cat

where X is viewed as a 2-category with trivial 2-cells; it comes with natural isomorphisms

δg,f : (Mg) ◦ (Mf)
∼−→M(g ◦ f) and γx : 1Mx

∼−→M(1x) for every x ∈ X and composable

morphisms f and g, satisfying coherence axioms. Dually, an X -opindexed category is an

X op-indexed category, i.e. a pseudofunctor X → Cat. If an (op)indexed category strictly

preserves composition, i.e. is a (2-)functor, then it is called strict.

An indexed 1-cell (F, τ) : M → N between indexed categories M : X op → Cat

and N : Yop → Cat consists of an ordinary functor F : X → Y along with a pseudonatural

transformation τ : M⇒N ◦ F op

X op

Cat

Yop

M

F op ⇓ τ

N

(C.8)

with components functors τx : Mx→ NFx, equipped with coherent natural isomorphisms

τf : (NFf) ◦ τx
∼−→ τy ◦ (Mf) for any f : x→ y in X . For indexed categories with the same

193

base, we may consider indexed 1-cells of the form (1X , τ)

X op Cat

M

N

⇓τ (C.9)

which are called indexed functors. Dually, we have the notion of an opindexed 1-cell

and opindexed functor.

An indexed 2-cell (α,m) between indexed 1-cells (F, τ) and (G, σ), pictured as

X op

Cat

Yop

M

F op Gopαop⇐

N

σ
τ m

V

consists of an ordinary natural transformation α : F ⇒ G and a modification m

X op Cat X op Cat

Yop Yop

M

F op

⇓ τ
m
V

M

Gop

F op

⇓ σ

⇓ αop

N
N

(C.10)

given by a family of natural transformations mx : τx ⇒ Nαx ◦ σx. Notice that taking

opposites is a 2-functor (−)op : Cat→ Catco, on which the above diagrams rely. An indexed

natural transformation between two indexed functors is an indexed 2-cell of the form

(11X ,m). Dually, we have the notion of an opindexed 2-cell and opindexed natural

transformation between opindexed 1-cells and functors respectively.

Notice that an indexed 2-cell (α,m) is invertible if and only if both α is a natural

isomorphism and the modification m is invertible, due to the way vertical composition is

formed.

We obtain a 2-category ICat of indexed categories over arbitrary bases, indexed

1-cells and indexed 2-cells. In particular, there is a 2-category ICat(X) of indexed categories

194

with fixed domain X , indexed functors and indexed natural transformations, which coincides

with the functor 2-category 2Catps(X op,Cat).

Dually, we have the 2-categories OpICat and OpICat(X) = 2Catps(X ,Cat). Notice

that due to the absence of opposites in the world of opindexed categories, opindexed 2-cells

have a different form than Equation (C.10), namely

X Cat X Cat

Y Y

M

F

G

⇓ τ

⇓ α

m
V

M

G

⇓ σ

N
N

Moreover, we have 2-categories of strict (op)indexed categories and (op)indexed 1-cells that

consist of strict natural transformations τ Equation (C.8), i.e. ICat(X) = [X op,Cat] and

OpICatsp(X) = [X ,Cat] the usual functor 2-categories.

Notice that these categories also form fibrations over Cat, this time essentially

using the family fibration also seen in Section 5.7.2. The functor ICat → Cat sends an

indexed category to its domain and an indexed 1-cell to its first component. It is a split

fibration, with fibres ICat(X) and cartesian liftings pre-composition with functors. In fact,

it is also a 2-fibration as explained in [Buc14, 2.3.2].

C.3 The Grothendieck Construction

In the first volume of the Séminaire de Géométrie Algébrique du Bois Marie

[Gro71], Grothendieck introduced a construction for a fibration PM :
∫
M → X from a

given indexed category M : X op → Cat as follows. If δ and γ are the structure pseudonat-

ural transformations of the pseudofunctor M, the total category
∫
M has

• objects (x, a) with x ∈ X and a ∈Mx;

195

• morphisms (f, k) : (x, a) → (y, b) with f : x → y a morphism in X , and k : a →

(Mf)(b) a morphism in Mx;

• composition (g, `) ◦ (f, k) : (x, a) → (y, b) → (z, c) is given by g ◦ f : a → b → c in X

and

a
k−→ (Mf)(b)

(Mg)(`)−−−−−→ (Mg ◦Mf)(c)
(δf,g)c−−−−→M(g ◦ f)(c) in Mx; (C.11)

• unit 1(x,a) : (x, a)→ (x, a) is given by 1x : x→ x in X and

a = 1Mxa
(γx)a−−−→ (M1x)(a) in Mx.

The fibration PM :
∫
M→ X is given by (x, a) 7→ x on objects and (f, k) 7→ f on

morphisms, and the cartesian lifting of any (y, b) in
∫
M along f : x → y in X is precisely

(f, 1(Mf)b). Its fibres are preciselyMx and the reindexing functors between them areMf .

In the other direction, given a (cloven) fibration P : A → X , we can define an

indexed category MP : X op → Cat that sends each object x of X to its fibre category Ax,

and each morphism f : x → y to the corresponding reindexing functor f∗ : Ay → Ax as in

Equation (C.2). The isomorphisms of cartesian liftings f∗ ◦ g∗ ∼= (g ◦ f)∗ and 1Ax
∼= 1∗x

render this assignment pseudofunctorial.

Details of the above, as well as the correspondence between 1-cells and 2-cells,

can be found in the provided references. Briefly, given a pseudonatural transformation

τ : M → N ◦ F op Equation (C.8) with components τx : Mx → NFx, define a functor

Pτ :
∫
M →

∫
N mapping (x ∈ X , a ∈ Mx) to the pair (Fx ∈ Y, τx(a) ∈ NFx) and

196

accordingly for arrows. This makes the square∫
M

∫
N

X Y

Pτ

PM PN

F

(C.12)

commute, and moreover Pτ preserves cartesian liftings due to pseudonaturality of τ . More-

over, given an indexed 2-cell (α,m) : (F, τ)⇒ (G, σ) as in Equation (C.10), we can form a

fibred 2-cell

∫
M

∫
N

X Y

Pτ

Pσ

⇓ Pm

PM PN
F

G

⇓ α

(C.13)

where α : F ⇒ G is piece of the given structure, whereas Pm is given by components

(Pm)(x,a) : Pτ (x, a) = (Fx, τxa)→ Pσ(x, a) = (Gx, σxa) in
∫
N

explicitly formed by αx : Fx→ Gx in Y and (mx)a : τxa→ (Nαx)σxa in NFx.

The following theorem summarizes these standard results.

Theorem C.1.

1. Every fibration P : A → X gives rise to a pseudofunctor MP : X op→Cat.

2. Every indexed category M : X op → Cat gives rise to a fibration PM :
∫
M→ X .

3. The above correspondences yield an equivalence of 2-categories

ICat(X) ' Fib(X)

so that MPM 'M and PMP
' P .

197

4. The above 2-equivalence extends to one between 2-categories of arbitrary-base fibrations

and arbitrary-domain indexed categories

ICat ' Fib (C.14)

If we combine the above with the fact that the 2-categories Fib and ICat are fibred

over Cat with fibres Fib(X) and ICat(X) respectively, we obtain the following Cat-fibred

equivalence

ICat Fib

Cat

'

(C.15)

There is an analogous story for opindexed categories and opfibrations that results into a

2-equivalences OpICat(X) ' OpFib(X) and OpICat ' OpFib, as well as for the split versions

of (op)indexed and (op)fibred categories.

C.4 Examples

C.4.1 Fundamental Fibration

Let 2 denote the category with two objects, and one non-identity morphism ?→ •.

For a category X , the functor category X 2 then consists of the arrows of X as objects, and

commuting squares between them as the morphisms.

For any category X , the codomain or fundamental opfibration is the usual functor

from its arrow category

cod: X 2 −→ X

mapping every morphism to its codomain and every commutative square to its right-hand

198

side leg. It uniquely corresponds to the strict opindexed category, i.e. functor

X Cat

x X/x

y X/y
f f!

(C.16)

that maps an object to the slice category over it and a morphism to the post-composition

functor f! = f ◦ − induced by it.

C.4.2 Graphs

Consider (directed, multi) graphs, i.e. presheaves on the categoryG = V E
t

s
.

For a presheaf g : Gop → Set, the set gV is the set of vertices of the graph, the set gE is the

set of edges of the graph, and the maps gs, gt : gE → gV assign to an edge its starting and

terminating vertex respectively. Let Grph denoted the category of graphs, SetG
op

. Some-

times it is helpful to think of a graph as a single map of the form (gs, gT) : gE → gV × gV .

When convenient, we will abuse notation by simply referring to this map as g : gE → g2
V .

Consider the inclusion of a terminal category 1 into G which selects the object V .

This induces a functor V : Grph→ Set by precomposing, which sends a graph g to its vertex

set gV . As we show below, this functor is in fact a bifibration. The idea here is that if you

have a function f : x → y, you can pull a graph on y back to a graph on x, and you can

also push a graph on x forward to a graph on y.

Proposition C.2. A morphism φ : g → h in Grph is V-cartesian if and only if the square

gE hE

g2
V h2

V

(gs,gt)

φE

(hs,ht)

φ2V

is a pullback in Set.

199

Proof. A simple manipulation shows that the universal property of φ forming a pullback

square is the same as the universal property for it to be V-cartesian.

Proposition C.3. The functor V : Grph→ Set is a fibration.

Proof. Let f : x→ y be a function, and g ∈ Grph with gV = y. Then we can take a pullback

of the following diagram.

x2 f2−→ y2 = h2
V

(hs,ht)←−−−− hE

By Proposition C.2, this map is a cartesian lift of f .

By the Grothendieck correspondence, there is a indexed category Setop → Cat.This

pseudofunctor assigns to a set X the category GrphX of graphs which have vertex set X, and

graph morphisms which fix the vertices. Given a function f : X → Y , this pseudofunctor

gives a functor f∗ : GrphY → GrphX which sends a graph g over Y to the pullback, as in the

proof of Proposition C.3. Since there is also an opindexed category with the same fibres,

we denote this by Grph∗, referring to the action on morphisms.

To show that V is also an opfibration, it is actually easier to construct an explicit

splitting. We can derive a characterization of the cocartesian maps from there.

Proposition C.4. The functor V : Grph→ Set is an opfibration.

Proof. Let g ∈ Grph, y ∈ Set, and f : gV → y a function. Then we can obtain a graph with

vertex set y by taking the following composite.

gE
g−→ g2

V = g2
V

f2−→ y2

200

We claim the induced map of graphs displayed below is in fact a cocartesian lift of f .

gE gE

g2
V y2

1

g f2◦g

f2

Let h be a graph, φ : g → h a map of graphs, and φ : y → hV .

hE

h2
V

gE gE

g2
V y2

h

φ2V

φE

1

g f2◦g

f2

1

The only map which may take the place of the dashed arrow is φE .

Corollary C.5. A morphism φ : g → h in Grph is V-cocartesian if and only if it is bijective

on edges.

By the Grothendieck correspondence, there is a corresponding opindexed category

Grph∗ : Set → Cat, again referring to the action on morphisms. This must have the same

fibres GrphX as the indexed category Grph∗ above. Given a function f : X → Y , this

pseudofunctor gives a functor f∗ : GrphX → GrphY which sends a graph g over X to the

composite, as in the proof of Corollary C.5.

Corollary C.6. The functor V : Grph→ Set is a bifibration.

C.4.3 Ring Modules

For a ring R, denote by ModR the category of R-modules and their homomor-

phisms. Given a ring homomorphism f : R → S, and an S-module N , we can give the

201

underlying abelian group of N the structure of an R-module, denoted f∗N , by the formula

r.x := f(r).x

where r ∈ R and x ∈ N . This pullback construction is functorial:

f∗ : ModS → ModR

and preserves ring homomorphism composition.

(f ◦ g)∗ = g∗f∗

Indeed, the above defines a functor Mod− : Ringop → Cat, a (strict) indexed category. Note,

one could choose to be persnickety about size here, but we do not. We can then apply the

Grothendieck construction, resulting in a category Mod :=
∫
Mod− where

• an object is a pair (R ∈ Ring,M ∈ ModR)

• a morphism is a pair (f, φ) where f : R → S is a ring homomorphism, and φ : M →

f∗N is an S-module homomorphism.

The category Mod admits a fibration Mod→ Ring which forgets the module in a ring-module

pair.

202

Appendix D

Species and Operads

D.1 Combinatorial Species

Combinatorial species were introduced by Joyal [Joy81]. A standard reference

for the combinatorial perspective is [BLL98]. In the previous section, we noted that the

category Set can be given both a cartesian and cocartesian monoidal structure. Moreover,

these satisfy a distributive law reminiscent of rings.

A× (B + C) ∼= A×B +A× C

Consider the subcategory FinBij consisting of finite sets and bijections. This subcategory

is closed under both finite sums and products, and thus inherits both monoidal structures.

However, FinBij lacks the maps that would be the projections and inclusions necessary for

these structures to be cartesian or cocartesian themselves. By abuse of notation, we will

continue to denote them by + and ×.

Definition D.1. A combinatorial species or simply species is a functor F : FinBij→ Set.

203

The category of species is the functor category SetFinBij.

There are several operations which have been defined on species. These operations

make up the building blocks of a calculus for counting families of combinatorial gadgets.

Definition D.2. Being a presheaf category, SetFinBij has colimits given pointwise, thus

giving it a cocartesian structure. We refer to this operation simply as addition. On

objects, this operation is given by (F +G)(U) = F (U) +G(U).

Definition D.3. If we apply Day convolution as in Example A.11 to the + monoidal

structure on FinBij, we get the operation which we refer to as multiplication of species.

On objects, this operation is given by the following formula.

(F ·G)(U) =
∑
V⊆U

F (V)×G(U \ V)

Definition D.4. Being a presheaf category, SetFinBij has products which are given pointwise,

thus giving a cartesian monoidal structure. This is called the Hadamard product. On

objects, it is given by (F × G)(U) = F (U) × G(U). This tends to be less useful than

multiplication, but it certainly has its purposes.

Definition D.5. We define the Dirichlet product on species to be the Day convolution

(as in Example A.11) of the × monoidal structure on FinBij.

To define differentiation of species, we will need to make use of the shift operator,

denoted +1, on FinBij, which is defined as the composite

FinBij FinBij

FinBij× 1 FinBij× FinBij

+1

∼

1FinBij×∆1

+

where the map ∆1: 1→ FinBij is the monoidal unit with respect to ×.

204

Definition D.6. The differentiation operator on species is given byD = +1∗ : SetFinBij →

SetFinBij. In other words, for a given species F , the derivative of F is given by F ′ = F ◦+1,

or F ′(U) = F (U + 1) on objects. The motivation for calling this operation differentiation

is that it actually corresponds to taking the formal derivative of its generation series.

Definition D.7. The composition product or substitution product is given by the

following formula.

(F ◦G)(U) =
∑

π partition of U

(
F (π)×

∏
p∈π

G(p)

)

The species which acts as unit for this product is the singleton indicator functor, i.e. I◦(U)

is a singleton is U is, and is empty otherwise. This monoidal structure is not symmetric.

D.2 Operads

An operad is a generalization of category which incorporates the notion of an arrow

having multiple inputs. A category is an arrow-like compositional system, consisting of a

collection of directed arrows, a collection of labels for the endpoints called objects, and a

rule for turning a path of such arrows into a single arrow which is associative and unital. An

operad is also a compositional system, but now tree-like. An operad consists of a collection

of directed “short” trees . . .

205

a collection of labels for the endpoints called objects, and a rule for turning a big tree of

short trees

into a single short tree

which is associative and unital. There are several good references for the theory of operads

[MSS02, Yau16, Mén15, BD98, Kel05, Lei04]. Here, we follow the treatment given by Yau

in [Yau20].

D.2.1 Definition of Operad

Let C be a non-empty set, whose elements we call colors. Recall that we denote

the free symmetric monoidal category on C by S(C). Below, we define operads to be

monoids in the presheaf category SetS(C)×C with respect to a certain monoidal structure.

First we must define this monoidal structure, which is somewhat involved.

For this section, we denote objects of S(C) by either c or (c1, . . . , cn) depending on

context. We denote the monoidal structure on S(C) by +. For an object X ∈ SetS(C)op×C ,

we denote the set assigned to (c, d) ∈ S(C)op × C by X(c; d).

Definition D.8. Let X,Y ∈ SetS(C)×C . For each c ∈ S(C), define Y c by the following

206

coend formula.

Y c(b) =

∫ {aj}∈∏m
j=1 S(C)op

S(C)op(a1 + · · ·+ am, b)×

 m∏
j=1

Y (aj ; cj)

The C-colored circle product of X and Y is given by

X ◦ Y (b; d) =

∫ c∈S(C)

X(c; d)⊗ Y c(b)

Define the unit object I as follows.

I(c; d) =

1 if c = d

∅ otherwise

This reduces to the composition monoidal product of species in the case where

C ∼= 1.

Proposition D.9. (SetS(C)×C , ◦, I) is a monoidal category.

Definition D.10. Let C be a set. Define the category of operads by

OpdC = Mon(SetS(C)×C , ◦, I).

We refer to an object of OpdC as a C-colored operad, and a morphism as a color-fixing

C-operad functor. Let f : C → D be a function. Let f(c) denote (f(c1), . . . , f(cn)) for

c ∈ S(C). For a D-operad P , we can pullback along f to get a C-operad given by f∗P (c; d) =

P (f(c); f(d)). For a color-fixing D-operad functor φ : P → Q, we get a color-fixing C-

operad functor f∗φ : f∗P → f∗Q which sends an operation θ ∈ f∗P (c; d) = P (f(c); d) to

φθ ∈ Q(f(c); d). These assignments give a functor f∗ : OpdD → OpdD, and we get an

indexed category Opd− : Setop → Cat. Define Opd =
∫
Opd−. We refer to an object of Opd

as an operad, and to a morphism as an operad functor.

207

D.2.2 Operads from symmetric monoidal categories

There is a standard method of constructing an single-colored operad from an object

x in a strict symmetric monoidal category C. Namely, we define the set of n-ary operations

to be homC(x
⊗n, x), and compose these operations using composition in C. This gives the

so-called endomorphism operad of x. Here we give the generalization of this idea to the

multi-color case, using all the objects of C as the objects of the operad. In what follows we

let Ob(C) be the set of objects of a small category C.

Proposition D.11. If C is a small strict symmetric monoidal category then there is an

Ob(C)-colored operad Op(C) for which:

• the set of operations Op(C)(c1, . . . , ck; c) is defined to be homC(c1 ⊗ · · · ⊗ ck, c),

• given operations

f ∈ homC(c1 ⊗ · · · ⊗ ck; c)

and

gi ∈ homC(cij1 ⊗ · · · ⊗ ciji , ci)

for 1 ≤ i ≤ k, their composite is defined by

f ◦ (g1, . . . , gk) = f ◦ (g1 ⊗ · · · ⊗ gk). (D.1)

• identity operations are identity morphisms in C, and

• the action of Sk on k-ary operations is defined using the braiding in C.

Proof. The various axioms of a colored operad can be checked for Op(C) using the corre-

sponding laws in the definition of a strict symmetric monoidal category. The associativity

208

axiom for Op(C) follows from associativity of composition and the functoriality of the ten-

sor product in C. The left and right unit axioms for Op(C) follow from the unit laws for

composition and the functoriality of the tensor product in C. The two equivariance axioms

for Op(C) follow from the laws governing the braiding in C.

Proposition D.12. The assignment Op : SymMonCats → Opd defined on objects as in

Proposition D.11 and sending any strict symmetric monoidal functor F : C → C′ to the

operad morphism Op(F) : Op(C)→ Op(C′) that acts by F on types and also on operations:

Op(F) = F : homC(c1 ⊗ · · · ⊗ cn, c)→ homC′(F (c1)⊗ · · · ⊗ F (cn), F (c))

is a functor.

Proof. This is a straightforward verification.

D.2.3 Operad Algebras

As a sort of monoid, operads exist to act. The elements of O(c; d) for some operad

O are meant to be thought of as “abstract operations” with c as the input types, and d as

the output type. When O acts on something, it is meant to be thought of as realizing these

abstract operations as real operations on some family of sets indexed by the elements of C.

Definition D.13. Let C be a set. A C-colored set is a functor C → Set, where C is

thought of as a discrete category. This is of course the same as a function C → obSet.

For c = (c1, . . . , cn) ∈ S(C), let Xc denote the set
∏n
j=1Xcj . A map of C-colored sets

f : X → Y is a natural transformation f : X ⇒ Y . This is the same as a family of functions

{fc : Xc → Yc}c∈C with no further conditions. For c = (c1, . . . , cn) ∈ S(C), let fc : Xc → Yc

denote the function
∏n
j=1 fcj :

∏n
j=1Xcj →

∏n
j=1 Ycj .

209

Definition D.14. Let O be a C-colored operad, with operad composition denoted by γ,

and unit operation denoted by I. An O-algebra consists of

• a C-colored set X : C → Set, also denoted {Xc}c∈C

• for c ∈ S(C) and d ∈ C, a map θ : O(c; d)×Xc → Xd

which makes the following diagrams commute for c, d, cj ∈ C, c, bj ∈ S(C), b =
∑n bj , and

σ ∈ Sn.

• associativity:

O(c, d)×
∏n
j=1O(bj , cj)×Xb O(b; d)×Xb

O(c; d)×
∏n
j=1[O(bj , cj)×Xbj

]

O(c; d)×Xc Xd

∼=permute

γ×1

θ

1×
∏
j θ

θ

• unity:

1×Xc

O(c; c)×Xc Xc

I×1 ∼=

θ

• equivariance:

O(c; d)×Xc O(cσ; d)×Xcσ

Xd

θ

σ×σ−1

θ

Definition D.15. A map of O-algebras (X, θ) → (Y, ξ) consists of a map of C-colored

sets α : X → Y such that the following diagram commutes.

O(c; d)×Xc O(c; d)× Yc

Xd Yd

1×fc

θ ξ

f

Let Alg(O) denote the category of O-algebras and maps of O-algebras.

210

Bibliography

[ALR03] Jǐŕı Adámek, F. William Lawvere, and Jǐŕı Rosický. On the duality between va-
rieties and algebraic theories. Algebra Universalis, 49(1):35–49, 2003. (Referred
to on page 73.)

[BB18] John C. Baez and Jacob Biamonte. Quantum Techniques in Stochastic Mechan-
ics. World Scientific, 2018. Available as arXiv:1209.3632. (Referred to on page
10, 95.)

[BD98] John C. Baez and James Dolan. Higher dimensional algebra III: n-categories
and the algebra of opetopes. Advances in Mathematics, 135(2):145–206, 1998.
(Referred to on page 206.)

[Bén67] Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category
Seminar, pages 1–77. Springer, 1967. (Referred to on page 181.)

[Bén85] Jean Bénabou. Fibered categories and the foundations of naive category theory.
The Journal of Symbolic Logic, 50(1):10–37, 1985. (Referred to on page 189.)

[BFM19] John C. Baez, John Foley, and Joe Moeller. Network models from Petri nets
with catalysts. Compositionality, 1(4), 2019. (Referred to on page iv, 10.)

[BFMP16] John C. Baez, John Foley, Joe Moeller, and B.S. Pollard. Operads for communi-
cation networks. Technical report, DARPA CASCADE project, 2016. 37 pages.
(Referred to on page 13.)

[BFMP17] John C. Baez, John Foley, Joe Moeller, and Blake S. Pollard. Compositional
tasking. Technical report, DARPA CASCADE project, 2017. 27 pages. (Re-
ferred to on page 13.)

[BFMP20] John C. Baez, John Foley, Joe Moeller, and Blake S. Pollard. Network mod-
els. Theory and Applications of Categories, 35(20):700–744, 2020. Available
at http://www.tac.mta.ca/tac/volumes/35/20/35-20abs.html. (Referred to on
page iv, 2, 5, 57, 131.)

[BLL98] François Bergeron, Gilbert Labelle, and Pierre Leroux. Combinatorial Species
and Tree-like Structures. Cambridge University Press, 1998. (Referred to on
page 15, 203.)

211

https://arxiv.org/abs/1209.3632
http://www.tac.mta.ca/tac/volumes/35/20/35-20abs.html

[BM20] John C. Baez and Jade Master. Open Petri nets. Mathematical Structures in
Computer Science, 30(3):314–341, 2020. (Referred to on page 91.)

[Bor94] Francis Borceux. Handbook of Categorical Algebra. 2, volume 51 of Encyclo-
pedia of Mathematics and its Applications. Cambridge University Press, 1994.
(Referred to on page 189.)

[BP17] John C. Baez and B.S. Pollard. A compositional framework for reaction net-
works. Reviews in Mathematical Physics, 29, 2017. arXiv:1704.02051. (Referred
to on page 34, 95.)

[BS81] Stanley Burris and Hanamantagouda P. Sankappanavar. A Course in Universal
Algebra, volume 78 of Graduate Texts in Mathematics. Springer, 1981). (Re-
ferred to on page 73.)

[BS11] John C. Baez and Mike Stay. Physics, topology, logic and computation: A
rosetta stone. In Bob Coecke, editor, New Structures for Physics, volume 813
of Lecture Notes in Physics, pages 95–172. Springer, 2011. arXiv:0903.0340.
(Referred to on page 102.)

[Buc14] Mitchell Buckley. Fibred 2-categories and bicategories. Journal of Pure and
Applied Algebra, 218(6):1034–1074, 2014. (Referred to on page 193, 195.)

[BV73] Michael Boardman and Rainer Vogt. Homotopy Invariant Algebraic Structures
on Topological Spaces, volume 347 of Lecture Notes in Mathematics. Springer,
1973. (Referred to on page 2.)

[Car95] Sean Carmody. Cobordism Categories. PhD thesis, University of Cambridge,
1995. (Referred to on page 181.)

[CDL06] Stefaan Caenepeel and Marieke De Lombaerde. A categorical approach to Tu-
raev’s Hopf group-coalgebras. Communications in Algebra, 34(7):2631–2657,
2006. (Referred to on page 154.)

[CLS10] Dimitri Chikhladze, Stephen Lack, and Ross Street. Hopf monoidal comon-
ads. Theory and Applications of Categories, 24(19):554–563, 2010. Available
as http://www.tac.mta.ca/tac/volumes/24/19/24-19abs.html. (Referred to on
page 185.)

[Day70] Brian Day. On closed categories of functors. In Reports of the Midwest Category
Seminar IV, volume 137 of Lecture Notes in Mathematics, pages 1–38. Springer,
1970. (Referred to on page 169.)

[DMM89] Pierpaolo Degano, José Meseguer, and Ugo Montanari. Ax-
iomatizing net computations and processes. In Logic in Com-
puter Science, pages 175–185. IEEE, 1989. Available at
https://www.computer.org/csdl/proceedings/lics/1989/1954/00/00039172.pdf.
(Referred to on page 91.)

212

https://arxiv.org/abs/1704.02051
https://arxiv.org/abs/0903.0340
http://www.tac.mta.ca/tac/volumes/24/19/24-19abs.html
https://www.computer.org/csdl/proceedings/lics/1989/1954/00/00039172.pdf

[DS97] Brian Day and Ross Street. Monoidal bicategories and Hopf algebroids. Ad-
vances in Mathematics, 129(1):99–157, 1997. (Referred to on page 181, 182,
183, 186, 187.)

[EGNO15] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor
Categories, volume 205 of Mathematical Surveys and Monographs. American
Mathematical Society, 2015. (Referred to on page 163.)

[EW90] Uffe Engberg and Glynn Winskel. Petri nets as models of linear logic. In
Colloquium on Trees in Algebra and Programming, pages 147–161. Springer,
1990. (Referred to on page 91.)

[FHJ+20] Brendan Fong, Jules Hedges, Michael Johnson, David Spivak, and Christina
Vasilakopoulou. The ubiquity of dialectics: wiring diagrams, lenses and related
structures. In preparation, 2020. (Referred to on page 158.)

[FK09] John Fountain and Mark Kambites. Graph products of right cancellative
monoids. Journal of the Australian Mathematical Society, 87(2):227–252, 2009.
(Referred to on page 62, 63.)

[FKL80] François Foltz, G. Maxwell Kelly, and Christian Lair. Algebraic categories with
few monoidal biclosed structures or none. Journal of Pure and Applied Algebra,
17:171–177, 1980. (Referred to on page 108.)

[Fox76] Thomas Fox. Coalgebras and cartesian categories. Communications in Algebra,
4(7):665–667, 1976. (Referred to on page 173.)

[FS19] Brendan Fong and David Spivak. Hypergraph categories. Journal of Pure
and Applied Algebra, 223(11):4746–477, 2019. Available as arXiv:1806.08304.
(Referred to on page 161.)

[GJ17] Nicola Gambino and André Joyal. On operads, bimodules and analytic func-
tors, volume 249. American Mathematical Society, 2017. Available as
arXiv:1405.7270. (Referred to on page 32.)

[GPS95] Robert Gordon, A. John Power, and Ross Street. Coherence for tricategories.
Memoirs of the American Mathematical Society, 117(558):vi+81, 1995. (Re-
ferred to on page 181, 183.)

[Gra66] John W. Gray. Fibred and cofibred categories. In S. Eilenberg et al., editor,
Proceedings of the Conference on Categorical Algebra, pages 21–83. Springer,
1966. (Referred to on page 147, 189.)

[Gre90] Elisabeth R. Green. Graph Products of Groups. PhD thesis, University of Leeds,
1990. (Referred to on page 8, 55, 59, 62.)

[Gro71] Alexander Grothendieck. Categories fibrees et descente. In Revêtements Etales
et Groupe Fondamental, pages 145–194. Springer, 1971. (Referred to on page 4,
112, 195.)

213

https://arxiv.org/abs/1806.08304
https://arxiv.org/abs/1405.7270

[GV13] Claude Girault and Rüdiger Valk. Petri Nets for Systems Engineering: a Guide
to Modeling, Verification, and Applications. Springer, 2013. (Referred to on
page 87.)

[Her94] Claudio Hermida. On fibred adjunctions and completeness for fibred categories.
In Fernando Orejas Hartmut Ehrig, editor, Recent Trends in Data Type Speci-
fication (Caldes de Malavella, 1992), volume 785 of Lecture Notes in Computer
Science, pages 235–251. Springer, 1994. (Referred to on page 189.)

[Her99] Claudio Hermida. Some properties of Fib as a fibred 2-category. Journal of
Pure and Applied Algebra, 134(1):83–109, 1999. (Referred to on page 147, 193.)

[HLFV17] Martin Hyland, Ignacio Lopez Franco, and Christina Vasilakopoulou. Hopf
measuring comonoids and enrichment. Proceedings of the London Mathematical
Society, 115(3):1118–1148, 2017. (Referred to on page 157.)

[HM06] Pieter Hofstra and Federico De Marchi. Descent for monads. The-
ory and Applications of Categories, 16(24):668–699, 2006. Available as
http://www.tac.mta.ca/tac/volumes/16/24/16-24abs.html. (Referred to on
page 114, 128, 133, 152.)

[HP02] Martin Hyland and A. John Power. Pseudo-commutative monads and pseudo-
closed 2-categories. Journal of Pure and Applied Algebra, 175(1–3):141–185,
2002. (Referred to on page 38.)

[Hun74] Thomas W. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics.
Springer, 1974. (Referred to on page 76.)

[Jac99] Bart Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic
and the Foundations of Mathematics. North-Holland, 1999. (Referred to on
page 121, 189.)

[Joh02] Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium.
Vol. 1, volume 43 of Oxford Logic Guides. Oxford University Press, 2002. (Re-
ferred to on page 189.)

[Joy81] André Joyal. Une théorie combinatoire des séries formelles. Advances in Math-
ematics, 42(1):1–82, 1981. (Referred to on page 6, 15, 203.)

[Joy86] André Joyal. Foncteurs analytiques et espèces de structures. In Gilbert Labelle
and Pierre Leroux, editors, Combinatoire Énumérative, pages 126–159. Springer,
1986. (Referred to on page 15.)

[JS91] André Joyal and Ross Street. The geometry of tensor calculus I. Advances in
Mathematics, 88(1):55–112, 1991. (Referred to on page 101, 102.)

[JS93] André Joyal and Ross Street. Braided tensor categories. Advances in Mathe-
matics, 102(1):20–78, 1993. (Referred to on page 164.)

214

http://www.tac.mta.ca/tac/volumes/16/24/16-24abs.html

[JY21] Niles Johnson and Donald Yau. 2-Dimensional Categories. Oxford University
Press, 2021. Available as arXiv:2002.06055. (Referred to on page 181, 189.)

[Kel05] G. Maxwell Kelly. On the operads of J.P. May. Reprints in
Theory and Applications of Categories, 13:1–13, 2005. Available as
http://www.tac.mta.ca/tac/reprints/articles/13/tr13abs.html. (Referred to on
page 206.)

[KS74] G. Maxwell Kelly and Ross Street. Review of the elements of 2-categories. In
G.M. Kelly, editor, Category Seminar, volume 420 of Lecture Notes in Mathe-
matics, pages 75–103. Springer, 1974. (Referred to on page 181.)

[Lac10] Stephen Lack. A 2-categories companion. In Peter May John Baez, editor,
Towards Higher Categories, volume 152 of IMA Volumes in Mathematics and
its Applications, pages 105–191. Springer, 2010. (Referred to on page 181.)

[Law63] F. William Lawvere. Functorial Semantics of Algebraic Theories. PhD thesis,
Columbia University, 1963. (Referred to on page 73.)

[Law89a] F. William Lawvere. Display of graphics and their applications, as exemplified
by 2-categories and the Hegelian “taco”. Proceedings of the First International
Conference on Algebraic Methodology and Software Technology, University of
Iowa, pages 51–74, 1989. (Referred to on page 74.)

[Law89b] F. William Lawvere. Qualitative distinctions between some toposes of gener-
alized graphs. In Categories in computer science and logic (1987), volume 92,
pages 261–299. American Mathematical Society, 1989. (Referred to on page 54.)

[Lei04] Tom Leinster. Higher Operads, Higher Categories. Number 298 in London Math-
ematical Society Lecture Note Series. Cambridge University Press, Cambridge,
2004. (Referred to on page 206.)

[Lor19] Fosco Loregian. Coend Calculus. 2019. Available as arXiv:1501.02503. (Referred
to on page 169, 170.)

[Lov78] László Lovász. Kneser’s conjecture, chromatic number, and homotopy. Journal
of Combinatorial Theory, Series A, 25(3):319–324, 1978. (Referred to on page
69.)

[Mas20] Jade Master. Petri nets based on Lawvere theories. Mathematical Structures in
Computer Science, 30(7):833–864, 2020. Available as . (Referred to on page 91,
95.)

[May72] J. Peter May. The Geometry of Iterated Loop Spaces, volume 271 of Lectures
Notes in Mathematics. Springer, 1972. (Referred to on page 2.)

[McC00] Paddy McCrudden. Balanced coalgebroids. Theory and Ap-
plications of Categories, 7(6):71–147, 2000. Available as
http://www.tac.mta.ca/tac/volumes/7/n6/7-06abs.html. (Referred to on
page 181, 186, 187.)

215

https://arxiv.org/abs/2002.06055
http://www.tac.mta.ca/tac/reprints/articles/13/tr13abs.html
https://arxiv.org/abs/1501.02503
http://www.tac.mta.ca/tac/volumes/7/n6/7-06abs.html

[Mén15] Miguel A. Méndez. Set Operads in Combinatorics and Computer Science.
Springer Briefs in Mathematics. Springer, 2015. (Referred to on page 2, 206.)

[ML98] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of
Graduate Texts in Mathematics. Springer, second edition, 1998. (Referred to
on page 66, 163.)

[MM90] José Meseguer and Ugo Montanari. Petri nets are monoids. Information and
Computation, 88(2):105–155, 1990. (Referred to on page 91.)

[Moe20] Joe Moeller. Noncommutative network models. Mathematical Structures in
Computer Science, 30(1):14–32, 2020. (Referred to on page iv, 8.)

[MS14] Rasmus Ejlers Møgelberg and Sam Staton. Linear usage of state. Logical Meth-
ods in Computer Science, 10(1):1–52, 2014. Also available as arXiv:1403.1477.
(Referred to on page 110.)

[MSS02] Martin Markl, Steve Shnider, and Jim Stasheff. Operads in Algebra, Topology
and Physics, volume 96 of Mathematical Surveys and Monographs. American
Mathematical Society, 2002. (Referred to on page 2, 206.)

[MSS20] Stuart Margolis, Franco Saliola, and Benjamin Steinberg. Cell complexes, poset
topology and the representation theory of algebras arising in algebraic combi-
natorics and discrete geometry. Available as arXiv:1508.05446. To appear in
Memoirs of the American Mathematical Society, 2020. (Referred to on page
74.)

[MV20] Joe Moeller and Christina Vasilakopoulou. Monoidal Grothendieck construc-
tion. Theory and Applications of Categories, 35(31):1159–1207, 2020. Available
at http://www.tac.mta.ca/tac/volumes/35/31/35-31abs.html. (Referred to on
page v, 5.)

[Pet81] James L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice–
Hall, 1981. (Referred to on page 87.)

[PR97] A. John Power and Edmund Robinson. Premonoidal categories and notions
of computation. Mathematical Structures in Computer Science, 7(5):453–468,
1997. (Referred to on page 106, 108, 110.)

[PS12] Kate Ponto and Michael Shulman. Duality and traces for indexed monoidal cat-
egories. Theory and Applications of Categories, 26(23):582–659, 2012. Available
as http://www.tac.mta.ca/tac/volumes/26/23/26-23abs.html. (Referred to on
page 128.)

[Qui67] Daniel Quillen. Homotopical Algebra, volume 43 of Lecture Notes in Mathemat-
ics. Springer, 1967. (Referred to on page 63.)

[Sas94] Vladimiro Sassone. Strong concatenable processes: An approach to the category
of Petri net computations. BRICS Report Series, 1(33), 1994. (Referred to on
page 32, 91.)

216

https://arxiv.org/abs/1403.1477
https://arxiv.org/abs/1508.05446
http://www.tac.mta.ca/tac/volumes/35/31/35-31abs.html
http://www.tac.mta.ca/tac/volumes/26/23/26-23abs.html

[Sas95] Vladimiro Sassone. On the category of Petri net computations. In Collo-
quium on Trees in Algebra and Programming. Springer, 1995. Available at
https://eprints.soton.ac.uk/261951/1/strong-conf.pdf. (Referred to on page 91.)

[Sas96] Vladimiro Sassone. An axiomatization of the algebra of Petri net concatenable
processes. Theoretical Computer Science, 170(1–2):277–296, 1996. Available at
https://eprints.soton.ac.uk/261820/1/P-of-N-Off.pdf. (Referred to on page 91.)

[Sel11] Peter Selinger. A survey of graphical languages for monoidal categories. In
Bob Coecke, editor, New Structures for Physics, pages 289–355. Springer, 2011.
(Referred to on page 79, 102.)

[Shu08] Michael Shulman. Framed bicategories and monoidal fibrations. The-
ory and Applications of Categories, 20(18):650–738, 2008. Available as
http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html. (Referred to on
page 115, 117, 119, 133, 140, 141, 146.)

[Shu09] Michael Shulman. Double Categories and Base Change in Homotopy Theory.
PhD thesis, University of Chicago, 2009. (Referred to on page 131.)

[SS05] Vladimiro Sassone and Pawel Sobocinski. A congruence for Petri nets. Elec-
tronic Notes in Theoretical Computer Science, 127:107–120, 2005. Available at
https://eprints.soton.ac.uk/262302/1/petriCongPNGToff.pdf. (Referred to on
page 91.)

[SSR17] David I. Spivak, Patrick Schultz, and Dylan Rupel. String diagrams for traced
and compact categories are oriented 1-cobordisms. Journal of Pure and Applied
Algebra, 221(8):2064–2110, 2017. (Referred to on page 161.)

[SSV20] Patrick Schultz, David I. Spivak, and Christina Vasilakopoulou. Dynami-
cal systems and sheaves. Applied Categorical Structures, 28(1):1–57, 2020.
arXiv:1609.08086. (Referred to on page 157, 159, 160.)

[Str80] Ross Street. Fibrations in bicategories. Cahiers de Topologie et Géométrie
Différentielle Catégoriques, 21(2):111–160, 1980. (Referred to on page 142.)

[Str20] Thomas Streicher. Fibred categories à la Jean Bénabou. Available as
arXiv:1801.02927, 2020. (Referred to on page 189.)

[Tur00] Vladimir Turaev. Homotopy field theory in dimension 3 and crossed group-
categories. Available as arXiv:0005291, 2000. (Referred to on page 154.)

[Vas14] Christina Vasilakopoulou. Generalization of Algebraic Operations via Enrich-
ment. PhD thesis, University of Cambridge, 2014. Available as arXiv:1411.3038.
(Referred to on page 155.)

[Vas18] Christina Vasilakopoulou. On enriched fibrations. Cahiers de Topologie et
Géométrie Différentielle Catégoriques, 59(4):354–387, 2018. arXiv:1801.01386.
(Referred to on page 157.)

217

https://eprints.soton.ac.uk/261951/1/strong-conf.pdf
https://eprints.soton.ac.uk/261820/1/P-of-N-Off.pdf
http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html
https://eprints.soton.ac.uk/262302/1/petriCongPNGToff.pdf
http://arxiv.org/abs/1609.08086
https://arxiv.org/abs/1801.02927
https://arxiv.org/abs/math/0005291
https://arxiv.org/abs/1411.3038
https://arxiv.org/abs/1801.01386

[Vas19] Christina Vasilakopoulou. Enriched duality in double categories: V-categories
and V-cocategories. Journal of Pure and Applied Algebra, 223(7), 2019. Avail-
able as arXiv:1704.00329. (Referred to on page 157.)

[Vel01] Antonio Veloso da Costa. Graph products of monoids. Semigroup Forum,
63:247–277, 2001. (Referred to on page 62.)

[vGP09] Rob van Glabbeek and Gordon D. Plotkin. Configuration structures, event
structures and Petri nets. Theoretical Computer Science, 410(41):4111–4159,
2009. arXiv:0912.4023. (Referred to on page 104.)

[Vis05] Angelo Vistoli. Grothendieck topologies, fibered categories and descent theory.
In Fundamental Algebraic Geometry, volume 123 of Mathematical Surveys and
Monographs, pages 1–104. American Mathematical Society, 2005. Available as
arXiv:0412512. (Referred to on page 189.)

[VSL15] Dmitry Vagner, David I. Spivak, and Eugene Lerman. Algebras of
open dynamical systems on the operad of wiring diagrams. Theory
and Applications of Categories, 30(51):1793–1822, 2015. Available as
http://www.tac.mta.ca/tac/volumes/30/51/30-51abs.html. (Referred to on
page 157.)

[Web13] Mark Weber. Free products of higher operad algebras. The-
ory and Applications of Categories, 28(2):24–65, 2013. Available as
http://www.tac.mta.ca/tac/volumes/28/2/28-02abs.html. (Referred to on page
109.)

[Yau16] Donald Yau. Colored Operads. American Mathematical Society, 2016. (Referred
to on page 17, 18, 46, 206.)

[Yau20] Donald Yau. Homotopical Quantum Field Theory. World Scientific, 2020. Avail-
able as arXiv:1802.08101. (Referred to on page 206.)

[Zaw11] Marek Zawadowski. Lax monoidal fibrations. In Models, Logics, and Higher-
Dimensional Categories, volume 53 of CRM Proceedings & Lecture Notes, pages
341–426. American Mathematical Society, 2011. (Referred to on page 133.)

218

https://arxiv.org/abs/1704.00329
https://arxiv.org/abs/0912.4023
https://arxiv.org/abs/math/0412512v4
http://www.tac.mta.ca/tac/volumes/30/51/30-51abs.html
http://www.tac.mta.ca/tac/volumes/28/2/28-02abs.html
https://arxiv.org/abs/1802.08101

	Introduction
	Network Models
	Introduction
	One-Colored Network Models
	General Network Models
	Operads from Network Models

	Noncommutative Network Models
	Introduction
	Graph Products
	Free Network Models
	Commitment Networks

	Petri Nets
	Introduction
	Petri Nets
	Catalysts
	Premonoidal Categories

	Monoidal Grothendieck Construction
	Introduction
	Monoidal Fibres and Monoidal Fibrations
	Indexed Categories and Monoidal Structures
	Two Monoidal Grothendieck Constructions
	Summary of Structures
	The (Co)cartesian Case
	Examples

	Monoidal Categories
	Definitions
	Examples
	Monoid Objects
	The Eckmann–Hilton Argument
	Characterizing (co)cartesian monoidal categories

	Monoidal 2-Categories and Pseudomonoids
	Monoidal 2-Categories
	Pseudomonoids

	Fibrations and Indexed Categories
	Fibrations
	Indexed Categories
	The Grothendieck Construction
	Examples

	Species and Operads
	Combinatorial Species
	Operads

	Bibliography

