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Abstract
Pharmacokinetic (PK) studies in children are usually small and have ethical 
constraints due to the medical complexities of drawing blood in this special 
population. Often, population PK models for the drug(s) of interest are avail-
able in adults, and these models can be extended to incorporate the expected 
deviations seen in children. As a consequence, there is increasing interest in the 
use of optimal design methodology to design PK sampling schemes in children 
that maximize information using a small sample size and limited number of 
sampling times per dosing period. As a case study, we use the novel tuberculosis 
drug delamanid, and show how applications of optimal design methodology can 
result in highly efficient and model-robust designs in children for estimating 
PK parameters using a limited number of sampling measurements. Using de-
veloped population PK models based on available data from adults living with 
and without HIV, and limited data on children without HIV, competing designs 
for children living with HIV were derived and assessed based on robustness to 
model uncertainty.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Multidrug-resistant tuberculosis (TB) is a serious infectious disease affecting chil-
dren worldwide, with especially serious outcomes among those living with HIV. 
Pharmacokinetic (PK) studies of novel TB drugs found to be efficacious in adults 
are needed for children, and they require minimal sampling collection in this 
vulnerable population.
WHAT QUESTION DID THIS STUDY ADDRESS?
With an aim to maximize efficiency, this study seeks to apply optimal design 
methodology to determine sparse PK sampling times in the design of a PK trial 
of the novel TB drug delamanid (DLM) in children living with and without HIV.
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INTRODUCTION

Multidrug-resistant (MDR) tuberculosis (TB) is TB that 
is resistant to two drugs, isoniazid and rifampicin, which 
constitute the backbone of the first line regimen for treat-
ing drug-susceptible TB. This is a continuing global health 
emergency with an estimation of 450,000 new cases of 
MDR-TB worldwide in 2021, out of the 10 million new 
TB cases, as estimated by the World Health Organization 
(WHO).1 Pediatric TB comprised about 8% of all new TB 
case notifications but there are limited published esti-
mates on actual pediatric MDR-TB cases, with model-
based methods suggesting between 25,000 and 32,000 
estimated new cases annually.2,3 Moreover, an estimated 
22% of children who develop MDR-TB will die.4 MDR-TB 
is also a particularly challenging issue among those living 
with the human immunodeficiency virus (HIV), which 
ranks among the top five risk factors of developing TB in 
2021,1 as this is not only a highly immunocompromised 
population but most are also taking antiretrovirals that 
may significantly interact with TB medications. These are 
alarming statistics that support a critical need to pay at-
tention to children with MDR-TB, especially those living 
with HIV. MDR-TB has been known to be hard to treat, 
requiring a long duration of treatment (up to 24 months), 
and dependent on regimens that cause serious and poten-
tially permanent side effects. In recent years, novel drugs 
have been evaluated in late phase clinical trials and have 
shown significant improvements in efficacy in adults 
when they were added to the optimized background regi-
men.5,6 Moreover, these drugs have the potential to re-
place the more toxic drugs as well as dramatically shorten 
treatment duration. One such drug is delamanid (DLM).5,7

A strategy that has been adopted in pediatric TB drug 
research, including that for the novel drug DLM, is to 
conduct small pediatric pharmacokinetic (PK) stud-
ies to identify doses that achieve drug levels similar to 
adults, as well as evaluate safety at the proper dose.8 A 
pediatric age de-escalation PK trial in four age groups 
called Otsuka 232 was conducted by the drug developer 

Otsuka (Clini calTr ials. gov identifier NCT01856634) to 
determine the appropriate dosing scheme from children 
without HIV. Extension of dosing recommendations to 
children living with HIV is a critical component of the re-
search, and IMPAACT 2005 (Clini calTr ials. gov identifier 
NCT03141060) is one study that was originally designed 
for this purpose. This latter study uses sparse PK sam-
pling as this requires a minimal number of blood draws 
over a dosing interval.9 Estimated PK parameters are ob-
tained by fitting data from these sparse samples to popu-
lation PK models.10,11

Our goal in this work is to determine optimal PK sam-
pling times, under a fixed prespecified number of PK 
sampling times per dosing interval and fixed number of 
participants in each of four prespecified pediatric age 
groups in IMPAACT 2005. At the design stage, simula-
tion work will rely on an assumed pediatric population 
PK model that is extended from fitted models determined 
from all available previous studies. If available, fitted mod-
els are based only on adult data, extensions involve the use 
of allometric scaling and maturation functions to account 
for differences in age, weight, and organ function between 
children and adults.12–16 We apply optimal design meth-
odology in the determination of the optimal sampling 
times.17,18 Examples of this have recently been presented 
in the literature for PK modeling of antipsychotic drugs, 
antimalarial drugs, and a cocktail of phenotyping drugs, 
among others.19–21 This is also becoming an active area of 
investigation in the design of pediatric studies.22–28 In this 
case study, optimality will be with respect to prespecified 
precision criteria on estimation of PK parameter effects 
of interest, including that corresponding to the main ex-
posure parameter (area under the curve from 0 to 24 h 
[AUC0–24]) that will be compared to target exposure in 
adults.29,30

We use the drug DLM as a case study to show how appli-
cation of optimal design methodology31 can lead to highly 
efficient designs for estimation of PK parameters using 
a limited number of measurements or, at the minimum, 
provide a benchmark to gauge efficiency of competing 

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This study provides a few optimal designs for studying DLM exposure in children, 
particularly among those with HIV when there is uncertainty in the population 
PK model.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT 
AND/OR THERAPEUTICS?
The approach presents efficient PK sampling designs robust to model uncertainty 
when extended to pediatric populations and subgroups (such as children living 
with HIV) and can thus provide alternatives or benchmarks for competing practi-
cal designs.

http://clinicaltrials.gov
http://clinicaltrials.gov
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designs. Further, these methods can be used to assess if 
a design meets the US Food and Drug Administration 
(FDA) suggestions regarding precision of the PK param-
eter estimates, as described in Wang et al.12

METHODS

We first describe the design and PK sampling schemes used 
in the two pediatric PK trials mentioned earlier, Otsuka 
232 and IMPAACT 2005. We then describe the pediatric 
PK model that was developed based on: (1) the structural 
model derived from PK collected in adults with MDR-TB 
(with and without HIV co-infection), and (2) available PK 
data from children living without HIV who completed 
the Otsuka 232 trial plus a 6-month safety and tolerabil-
ity extension trial (Otsuka 233). In extending the model 
to include children living with HIV and on an efavirenz 
(EFV)-based regimen, we also consider the plausibility of 
a difference in clearance and relative bioavailability due to 
HIV infection status in the pediatric model, as suggested 
by PK data in adults. Next, we derive the optimal design 
for the extended model to estimate the PK parameters rel-
evant to the primary objective of the proposed pediatric 
PK trial. Finally, with the intention of augmenting the 
PK data from each of these derived designs to Otsuka 232 
PK data, we compare the derived optimal design with the 
original IMPAACT 2005 design. In addition, we evaluate 
the robustness of these designs under various model mis-
specification cases.

Otsuka 232 design

The first pediatric study29 had a target enrollment of 24 
HIV uninfected children with MDR-TB ages zero to 
less than 18 years old, with six children in each of four 
age groups, and with the following dosing/formulation 
scheme:

Children received DLM with background TB regimen 
for 10 days, at doses expected to achieve similar exposure 
(AUC0–24h) as adults. PK data were collected at five dif-
ferent occasions with the following intensive sampling 
scheme at days 1 and 11:

IMPAACT 2005 design

The second pediatric study has a target enrollment of 36 
children with MDR-TB ages zero to less than 18 years old, 
with or without HIV infection. Nine children will be en-
rolled in each of the same four age groups described in 
Section “Otsuka 232 design,” six HIV-infected and on 
EFV-based regimen and three HIV uninfected. Children 
are also receiving DLM with background TB regimen for 
24 weeks, at doses expected to achieve similar exposure 
(AUC0–24h) as adults, with the following dosing/formula-
tion scheme:

To allow for evaluation of exposure metrics while re-
ducing patient burden, a sparse PK data design was used, 
collecting samples from days 1, 11, 29 ± 3, 57 ± 3, 85 ± 7, 
113 ± 7, 169 ± 7, and 197 ± 7, with blood drawn for PK at 
only four different timepoints on day 11, three different 
time points on days 1 and 57 ± 3, and only one timepoint 
for the other days:

Pediatric model for children living without 
HIV (model 1)

A population PK model for DLM was developed by 
Sasaki et al.29 based on PK data obtained from previous 
trials, including PK data from children with MDR-TB 
but living without HIV (Otsuka 232) and a 6-month 
safety and tolerability extension trial in the same pop-
ulation (Otsuka 233). This nonlinear mixed-effect PK 
model (model 1) is a two-compartment linear model 
with a transit compartment absorption model (4 com-
partments), parameterized by clearance (CL), central 
volume of distribution (V1), peripheral volume of dis-
tribution (V2), intercompartmental clearance (Q), mean 
absorption time, and the relative bioavailability of DLM 

Age group 
(years)

12 to less 
than 18

6 to less 
than 12

3 to less 
than 6 0 to less than 3

Dose/
formulation

100 mg b.i.d. 
(2 × 50 mg 
tablets)

50 mg b.i.d.  
(1 × 50 mg 
tablets)

25 mg b.i.d. 
(DPF)

5.5–8 kg: 5 mg q.d. DPF
greater than 8–10 kg: 

5 mg b.i.d. DPF
greater than 10 kg: 

10 mg b.i.d. DPF

b.i.d., twice per day; q.d., once per day; DPF, dispersible pediatric 
formulation.

Dose day 1 11

Hours post-morning 
dose

0, 2, 4, 10, 12, 
14, 24

0, 2, 4, 10, 12, 14, 24, 
72, 120, and 192

Weight band
Greater than or 
equal to 40 kg

30 to less  
than 40 kg

15 to less  
than 30 kg

Less than 
15 kg

Dose 
(formulation)

100 mg b.i.d.  
(2 × 50 mg 
tablet)

50 mg b.i.d.  
(1 × 50 mg 
tablet)

25 mg b.i.d.  
(1 × 25 mg 
DPF)

15 mg b.i.d. 
(3 × 5 mg 
DPF)

b.i.d., twice per day; DPF, dispersible pediatric formulation.

Week 1 2 5 9 13 17 25 29

Day 1 11 29 ± 3 57 ± 3 85 ± 7 113 ± 7 169 ± 7 197 ± 7

Hours 
post-dose

0, 4, 8 0, 2, 4, 8 0 0, 4, 8 0 0 0 4
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in the patient (F). See Appendix S1 (Supplement A) for 
more details.

Extended pediatric models for children 
with HIV (and on EFV-based regimen) and 
those without HIV

With the inclusion of children with HIV, specifically 
limited to those who are on an EFV-based antiretrovi-
ral regimen, we extend the pediatric model to reflect 
that drug clearance differs between HIV uninfected and 
HIV infected children on EFV (model 2), as in the adult 
model.30 A further extension with presence of effect of 
HIV infection and/or EFV administration on CL and F 
was also investigated (model 3). Because all children liv-
ing with HIV who will be enrolled in IMPAACT 2005 
will also be on EFV-based regimen, data obtained from 
this design does not have the ability to tease out the 
effects HIV infection from the effect of EFV adminis-
tration. See Appendix S1 (Supplement A) for technical 
descriptions of these models.

Optimal designs for a pediatric population

We now investigate how the choice of PK sampling times 
in the design for IMPAACT 2005, with the intention to 
pool data from this design with data from the Otsuka 
232 trial, can potentially improve statistical inference 
by using optimal design methodology. We assume that 
doses and number of individuals in the study are fixed 
and not available for optimization. For this application, 
the main PK exposure metric of interest is the AUC0–24 
of DLM at steady-state, achieved at around week 2 from 
treatment initiation, because this is the PK exposure 
we want to compare to adult exposure. For the typical 
individual exposed to the drug, AUC0–24 can be derived 
from the computed values for the typical values of CL 
and relative F, through the formula AUC = Dose ∙ F∕CL. 
Thus, the ability to accurately determine the typical val-
ues of AUC across pediatric subgroups can be one guide 
for design optimality.

Further, a precision criterion specified by the FDA, 
states that pediatric studies should be designed to have 
sufficient statistical power (>80%) to target a 95% confi-
dence interval that is within 60% and 140% of the geomet-
ric mean estimates of CL and volume of distribution in 
each pediatric subgroup.12 In our evaluations, because we 
have relative F in our models, we compute the expected 
95% confidence intervals for the geometric mean of ap-
parent clearance, CLapp = CL

F
, and apparent volume of dis-

tribution, V1,app =
V1
F

. In the models we investigate here, 

log-normal distributions are assumed for the parameters' 
random effects, so the geometric mean of these param-
eters is just the typical value ( �⃗𝜂 i = 0) for any vector of 
covariates, whereas the confidence intervals of the geo-
metric mean can be calculated via the delta method using 
the expected uncertainty of the estimated parameters.

If one assumes that there is no HIV effect on drug ex-
posure (model 1) then, according to the above consider-
ations, a design objective could be to determine the PK 
sampling timepoints that would enable estimation of the 
subset of coefficients 

(

�CL, �V1 , and �AGE−F

)

, associated 
with the typical values of the parameters 

(

CLi,V1i, and Fi
)

 , 
with highest precision, while still estimating all parame-
ters with some precision. To achieve this using optimal de-
sign methodology, we use the Ds-optimality criterion.31–33 
See Appendix  S1, Supplement B, for details of our ap-
proach and design constraints for this paper.

Under the same distribution of participants per age 
group and design space constraints described for the 
Ds-optimal design under model 1, we also obtained Ds-
optimal designs under the following models: (1) model 2 
with �HIV−CL = 0.20 (20% increase in DLM clearance for 
children with HIV and on EFV); and (2) model 3 with 
�HIV−CL = 0.20 and �HIV−F = 0.20 (20% increase in DLM 
clearance and 20% decrease in bioavailability for children 
living with HIV and on EFV). We consider a 20% change 
in values from model 1, for the clearance and/or bioavail-
ability parameters under models 2 and 3, as this is com-
monly used as a cutoff influence of a covariate which 
may have clinical significance and in line with bioequiv-
alence criteria.34 The Ds-optimal design for model 2 esti-
mates the subset of coefficients 

(

�CL, �V1 , �AGE−F, �CL−HIV

)

,  
associated with the typical values of the parameters 
(

CLi,V1,i,Fi,ZHIV−CL,i
)

 , as “interesting” and the rest as “un-
interesting.” The Ds-optimal design for model 3 estimates 
the subset of coefficients 

(

�CL, �V1 , �AGE−F, �CL−HIV, �F−HIV

)

 , 
associated with the typical values of the parameters 
(

CLi,V1,i,Fi,ZHIV−CL,i,ZHIV−F,i
)

, as “interesting” and the 
rest as “uninteresting.” Additionally, these designs have 
the same distribution constraints on participant HIV sta-
tus in each age group as in IMPAACT 2005 with three liv-
ing without HIV and six living with HIV (and on EFV).

Evaluation of pediatric designs with full 
covariate distributions

The Ds-optimal pediatric PK designs for models 1, 2, 
and 3 are determined using the approximation that 
each cohort of patients have the same covariate val-
ues (i.e., dosing, weight, and age are the same for all 
patients in a cohort, defined in Table S2, Appendix S1, 
Supplement B). To obtain a more complete design 
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evaluation, the final, optimized designs are evaluated 
more accurately, after incorporating the additional 
variation in covariates expected in these designs. 
Specifically, (1) we simulate ages and weights for in-
dividuals in the study, within the expected ranges (see 
below), and (2) we compute the expected parameter 
uncertainty, via the FIM, given the realized covariates 
and the study design. We then repeat (1) and (2) 100 
times and report the average of the parameter uncer-
tainty calculations. The simulated ages were sampled 
randomly from a uniform distribution within the age 
cohorts that the individual is assigned (12 to <18 years, 
6 to <12 years, 3 to <6 years, and 0 to <3 years), and the 
simulated weights were random samples taken from 
an adjusted growth reference for age-weight distribu-
tion for children with pulmonary TB (based on WHO 
references for children <10 years old, and NHANES 
reference for children ≥10 years old).35 These more 
accurate assessments of expected model uncertainty 
are then used to compute the 95% confidence interval 
of the geometric mean estimates of the apparent CL 
and apparent volume of distribution in each pediat-
ric subgroup and to see if these confidence intervals 
lie within 60% and 140% of the geometric mean, as 
described above. See Appendix  S1, Supplement C for 
technical details.

RESULTS

Evaluation of the existing designs

Original design for IMPAACT 2005 and 
Otsuka 232

Table  1 shows the expected parameter relative stand-
ard error (RSE) values (in percentages) for estimating 
each parameter in the pediatric model with no HIV/
EFV effect on DLM exposure (model 1), for the original 
IMPAACT 2005 design, the original Otsuka design, and 
when data from both designs are combined (pooled data 
analysis). As expected, given that the assumed pediatric 
model was fitted to data from it, and with a more inten-
sive PK sampling collection, the Otsuka design shows 
at least as good as, or better, precision for estimating 
almost all model parameters. Although the IMPAACT 
2005 design shows better precision in estimating the 
clearance parameter, the Otsuka design has much lower 
RSE in estimating volume and intercompartmental 
clearance parameters.

For the original IMPAACT design, the FDA precision 
criterion for CLapp is met throughout the entire age range 
under models 1 and 2 (Figure 1). However, this was not 

met under model 3 throughout the entire age range. The 
precision criterion for V1 was far from being met under all 
models.

Estimation when data pooled with Otsuka 
232 trial

When data from the Otsuka trial and IMPAACT 2005 
under the original design are pooled, there is improve-
ment in precision of all model parameters in all three 
models compared to the original IMPAACT 2005 de-
sign, as expected (Table 2). The RSE for estimating �CL 
decreases by 33% and 40% under model 1, and models 2 
and 3, respectively, whereas the RSE for estimating �V1 
decreases by 91% under all models. The RSE for estimat-
ing �CL−HIV decreases by 26% and 28% under model 2 
and model 3, respectively, and the RSE for estimating 
�F−HIV is 30% lower under model 3. The FDA precision 
criteria are met for all specified parameters of interest 
under the three model scenarios when pooling the data 
(Figure 2).

Ds-optimal designs for the 
pediatric models

We use data from the Otsuka 232 trial (i.e., data from 
the optimal design and the Otsuka 232 design are 
pooled) to optimize the Ds-optimality criterion under 
the different model assumptions. For example, if HIV/
EFV has no effect on DLM exposure in children, that 
is, the population PK model described by model 1 is 

T A B L E  1  Expected RSE (in %) of parameters for the model 
with no HIV effect (model 1) for the original design for IMPAACT 
2005, the design for Otsuka 232, and when both designs are pooled.

Parameter

Original  
design 
IMPAACT 2005

Original  
design  
Otsuka 232

Pooled 
data

�CL 3 4 2

�V1 64 6 6

�Q 152 21 17

�V2 55 14 12

�MAT 30 4 4

�AGE−F 21 19 14

�CL 30 36 23

�V2
98 32 31

� 7 8 5

Abbreviations: CL, clearance; F, bioavailability; MAT, mean absorption 
time; RSE, relative standard error; V1, central volume of distribution; V2, 
peripheral volume of distribution.
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the true model, then the Ds-optimal design for the co-
efficients 

(

�CL, �V1 , �AGE−F

)

 , associated with the typi-
cal values of the parameters 

(

CLi,V1,i,Fi
)

 in model 1, 

should provide the most efficient estimates of these 
three parameters overall when combined with data 
from the Otsuka 232 trial.

F I G U R E  1  FDA criteria for apparent CL and V1 each from model 1 (first row), model 2 (second row), and model 3 (third row) using the 
original IMPAACT 2005 design. (Relative 95% CI for geometric mean estimate should be between 0.6 [bottom red line] and 1.4 [top red line] 
to pass the criteria). CI, confidence interval; CL, clearance; FDA, US Food and Drug Administration; V1, central volume of distribution.

T A B L E  2  Expected RSE (in %) of parameters for the three model scenarios when Otsuka trial data is pooled with data from the original 
design for IMPAACT 2005.

Parameter

Original IMPAACT 2005 design
Pooled data from Otsuka 232 trial and original 
IMPAACT 2005 design

Model 1 
(no HIV 
effect)

Model 2 (20% 
higher CL if 
HIV+)

Model 3 (20% higher 
CL and 20% lower F if 
HIV+)

Model 1 
(no HIV 
effect)

Model 2 (20% 
higher CL if 
HIV+)

Model 3 (20% higher 
CL and 20% lower F 
if HIV+)

�CL 3 5 5 2 3 3

�V1 68 64 64 6 6 6

�Q 165 153 154 17 17 19

�V2 56 52 53 12 12 12

�MAT 32 29 29 4 4 4

�AGE−F 36 36 36 14 14 14

�CL 30 30 30 23 23 23

�V2
99 98 98 31 31 31

� 7 7 7 5 5 5

�CL−HIV 39 66 29 47

�F−HIV 37 26

Abbreviations: CL, clearance; F, bioavailability; MAT, mean absorption time; Q, intercompartmental clearance; RSE, relative standard error; V1, central volume 
of distribution; V2, peripheral volume of distribution.
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With a target enrollment of nine children in each 
of the four age groups, with six children with HIV and 
on EFV and three children without HIV in each age  
group, and restricting the search to the design space 
described in the previous section, Table  3 provides  
the derived set of optimal sampling times that 
 optimize the Ds-optimality criterion for each model. 
For the days with multiple sample collection, the  
sampling times within each dosing period shifted 
closer to each other compared to the original IMPAACT 
2005 design. Moreover, for many of the multi-sample 
days, all samples would be collected before 8 h from 
dosing. All these features make this optimal design 
easier to perform, especially during day 1 when all 

samples would be collected within, at most, only 4 h 
after dosing.

Evaluation of the Ds-optimal designs 
(pooled with Otsuka 232 trial data)

Relative efficiency

In terms of performance, compared to the original 
IMPAACT 2005 design, the relative efficiency (RE) 
of the Ds-optimal design for model 1 is 1.05 for es-
timating the typical model parameters describing 
(

�CL, �V1 , �AGE−F

)

 of the pediatric model with no HIV 

F I G U R E  2  FDA criteria for CL and V1 based on model 1 (first row), model 2 (second row), and model 3 (third row) under the original 
IMPAACT 2005 design pooled with data from the Otsuka trial. (Relative 95% CI for geometric mean estimate should be between 0.6 [bottom 
red line] and 1.4 [top red line] to pass the criteria). CI, confidence interval; CL, clearance; FDA, US Food and Drug Administration.

T A B L E  3  Ds-optimal designs for the pediatric models (sampling times shown in hours postdose).

Week 1 2 5 9 13 17 25 29

Day 1 11 29 ± 3 57 ± 3 85 ± 7 113 ± 7 169 ± 7 197 ± 7

IMPAACT 2005 0, 4, 8 0, 2, 4, 8 0 0, 4, 8 0 0 0 4

Model 1 0, 0.17, 3 3, 4, 5, 8 0 3, 4, 8 0 0 0 4

Model 2 0, 0.17, 3 0, 4, 7, 8 0 0, 3, 4 0 0 0 4

Model 3 0, 0.17, 4 0, 3, 4, 5 0 0, 4, 5 0 0 0 4
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effect (model 1). That is, for the original IMPAACT 
2005 design to match the Ds-optimal design for model 
1 in terms of information content, we would need 5% 
more participants. Compared to the original IMPAACT 
2005 design, using the Ds-optimal for model 2 will 
result in an RE of 1.04 for model parameters describ-
ing 

(

�CL, �V1 , �AGE−F , �CL−HIV

)

 in model 2; using the Ds-
optimal for model 3 will result in a 9% improvement in 
estimation efficiency (RE = 1.09) for model parameters 
describing 

(

�CL, �V1 , �AGE−F , �CL−HIV, �F−HIV

)

 in model 3. 
Another interesting observation is that any pairwise 
comparison of the three Ds-optimal designs under each 
of the three competing models result in a relative effi-
ciency that is ~1.0, which means that any of these Ds-
optimal designs is almost Ds-optimal for estimating 
parameters of interest in any of these models.

Expected RSE

Table 4 shows the expected RSE values when estimating 
the corresponding parameters of interest of each of the 
potential models, for each of the designs. The Ds-optimal 
designs provide, roughly, the same precision under any 
of the three model scenarios. The Ds-optimal designs 
have approximately the same RSE value as the original 
IMPAACT 2005 design for estimating �CL, whereas the 
Ds-optimal designs show modest improvement in estima-
tion precision for �V1 and �AGE−F compared to the original 
IMPAACT 2005 design. Under model 3, improvements 
in estimation precision are also observed with the Ds-
optimal designs (compared to the original IMPAACT 2005 
design) for �CL−HIV and �F−HIV.

FDA criteria

Given the increased precision seen in the Ds-optimal de-
signs, these designs, naturally, also pass the FDA crite-
rion for apparent CL and volume of distribution, because 
the criterion was already passed with the non-optimized 
IMPAACT trial design pooled with data from Otsuka 232 
(not shown). For example, see Figure 3 for model 3 appar-
ent clearance and volume under the Ds-optimal design for 
model 3.

DISCUSSION

With the original IMPAACT 2005 design alone, all the 
model parameters are not well-estimated, as reflected by 
the RSE and the FDA criterion.12 Of note, the FDA crite-
rion is never passed for the V1 parameter with this design 
under any model scenario. Although this design allows for 
relatively good estimation of CL, it is not the case for esti-
mation of HIV/EFV effect on CL and F at the same time. 
The Otsuka trial was designed exclusively for children 
without HIV and, thus, can only provide information for 
model 1. This design allows for relatively better estimation 
of almost all model 1 parameters (as expected, because the 
model was developed from these data), but lower preci-
sion for estimation of �CL.

As the intent of the IMPAACT 2005 study has been 
to combine information with the Otsuka trial data, de-
sign optimization included information from the Otsuka 
design in the objective function to be optimized. Pooled 
with Otsuka data, the original IMPAACT 2005 design is, of 
course, expected to perform better than each of these two 

Model Parameter
Original 
design

Ds-optimal 
for model 1

Ds-optimal 
for model 2

Ds-optimal 
for model 3

Model 1 �CL 2.4 2.4 2.4 2.4

�V1 5.8 5.5 5.5 5.5

�AGE−F 14.2 13.4 13.6 13.5

Model 2 �CL 3.1 3.1 3.1 3.1

�V1 5.8 5.5 5.5 5.5

�AGE−F 14.2 13.4 13.6 13.5

�CL−HIV 28.9 29.2 29.0 29.0

Model 3 �CL 3.1 3.1 3.1 3.1

�V1 5.9 5.5 5.5 5.6

�AGE−F 14.2 13.4 13.6 13.5

�CL−HIV 47.0 44.8 43.7 43.6

�F−HIV 26.1 22.8 22.8 22.4

Abbreviations: CL, clearance; F, bioavailability; RSE, relative standard error; V1, central volume of 
distribution; WT, weight.

T A B L E  4  Expected RSE (in %) of 
parameters of interest for the three model 
scenarios for the different Ds-optimal 
designs (ngroup = 6 using typical covariate 
values for AGE and WT).
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designs alone, and was able to fulfill the FDA criteria for 
both CL and V1, including the corresponding HIV effects 
on these parameters (if relevant) under each of the three 
candidate models.

The Ds-optimal designs are also able to fulfill the FDA 
criteria under all scenarios. Moreover, these optimal designs 
provided the same improved precision with nearly equiva-
lent RSE values for the subset of parameters of interest under 
each of the models (their efficiencies relative to each other 
are approximately one under all three models). For the orig-
inal IMPAACT 2005 design to match the information con-
tent of these Ds-optimal designs (that is, to achieve the same 
estimation precision for �CL, �V1 , �AGE−F , �CL−HIV, �F−HIV. 
the sample size would have to increase by 4%–9%. Under 
model uncertainty, it makes sense to use any of these Ds-
optimal designs. Because the Ds-optimal design for model 
3 seems to have a slightly better practical advantage (all the 
PK samples during the multi-sampling periods are collected 
within the shortest period), this would perhaps be the best 
design to use.

A technical challenge observed in this case study is the 
long run time it takes to evaluate the designs with even a 
modest number of simulations from the covariate distribu-
tion, primarily due to the complexity of the models. This 
issue makes derivation of the Ds-optimal design prohibitive 

(for example, for model 1 it takes about 3 weeks), if it in-
corporates variability in the covariate values of participants 
within age groups. Nature-inspired meta-heuristic search 
algorithms,36,37 notably swarm-based algorithms, like par-
ticle swarm optimization (PSO) and many of its variants, 
may be potentially useful when optimizing with many 
potential realizations of the covariate values. This is be-
cause PSO, like other metaheuristic algorithms, are general 
purpose optimization algorithms that virtually require no 
technical assumptions for it to work well. They have been 
shown in the computer science and engineering literature 
to optimize hundreds or thousands of variables, work fast, 
and extricate themselves from a local optimum.

One can also expand robustness of the optimal design 
search to accommodate uncertainty in assumed model pa-
rameters, including HIV parameter effects, by considering 
distributional assumptions on these parameters and then 
derive designs based on composite criteria such as ED-
optimality. ED-optimal designs optimize a function of the ex-
pectation of the FIM over some specified prior distribution of 
these parameters.38,39 As this approach will introduce further 
computational burden, PSO can be a potential solution.

This case study shows how optimal design tools can sys-
tematize design optimization and avoid implementation of 
cumbersome trial and error simulation-based assessments. 

F I G U R E  3  FDA criteria for apparent CL and V1 based on model 3 under the Ds-optimal design pooled with Otsuka trial data. (Relative 
95% CI for geometric mean estimate should be between 0.6 [bottom red line] and 1.4 [top red line] to pass the criteria). CI, confidence 
interval; CL, clearance; FDA, US Food and Drug Administration; V1, central volume of distribution.
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We can examine many more designs and model assump-
tions, as well as allow flexibility and/or relaxations in design 
specifications, such as, for example, removal of noninfor-
mative observations, addition of more observations, etc. We 
also derived Ds-optimal designs that allowed optimization 
of accrual proportion per age group, which led to significant 
increases in proportions allocated to the oldest and young-
est age groups; however, this would not be ideal with mini-
mum safety data requirements in each age group.
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