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ABSTRACT OF THE DISSERTATION 

 

 

Characterization of Medication Related Osteonecrosis of the Jaws Pathophysiology and Local 

RANKL Delivery as an Experimental Intervention 

 

by 

 

Akrivoula Soundia 

Doctor of Philosophy in Oral Biology 

University of California, Los Angeles, 2020 

Professor Sotirios Tetradis, Chair 

 

 

Medication related osteonecrosis of the jaws (MRONJ) is a severe adverse effect of 

antiresorptive and angiogenic medication prescribed to patients with osteoporosis or bone 

malignancies. Our laboratory has been working on the elucidation of the mechanisms of this 

disease for the past decade. In this dissertation, we further characterized pathogenesis in rodents 

and humans and explored the delivery of RANKL as a therapeutic approach.  

Tooth extraction was performed on diseased or healthy teeth in mice treated with saline, 

OPG-Fc (the equivalent of denosumab in rodents) or bisphosphonates. Extraction of healthy teeth 
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did not suffice to induce MRONJ in mice treated with antiresorptives.  In contrast, extraction of 

diseased teeth induced mucosal defects, absence of radiographic healing, periosteal reaction, 

significant osteonecrosis and bone exposure in mice treated with antiresorptives. Extraction of 

periodontally diseased teeth in zoledronate (ZA) treated rats resulted in altered socket healing with 

a significant amount of osteonecrosis. An increased signal of collagen type III, MMP-9, MMP-13 

and α-SMA was seen in the sockets of these rats compared to saline treated rats or zoledronate 

treated rats with extraction of healthy teeth.   

We also took advantage of our patient database to investigate the radiographic appearance 

of stage 0 MRONJ patients. We concluded that sclerosis, cortical erosion, periosteal reaction, 

sequestration and crater-like defect are more commonly present in stage 0 MRONJ patients as 

opposed to dental disease patients. Additionally, if a stage 0 MRONJ patient presents with 

radiographic sequestration at initial visit, they are at a higher risk to progress to frank bone 

exposure in less than a year. 

Next, we explored local RANKL delivery as a potential therapy for MRONJ. RANKL was 

delivered in the sockets of ZA or saline treated rats in a collagen tape. In the extraction sockets of 

ZA treated rats with RANKL treatment, there was an improvement in mucosal and radiographic 

healing, a decrease in osteonecrosis and bone exposure and a simultaneous increase in osteoclast 

numbers compared to the ZA treated rats that had not received local RANKL treatment.   

We also investigated the role of macrophages in MRONJ development. In a model of 

periodontitis, zoledronate treated mice demonstrated a predominance of M1 macrophages (macs) 

and an absence of M2 macs compared to the saline treated mice. The above M1 macrophages also 

expressed MMP-13. Rosiglitazone treatment reversed the M1/M2 ratio in ZA treated mice 2 weeks 

after periodontal disease was induced and reduced epithelium to crest distance in ZA mice. 
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However, a difference was not detected in the bone exposure incidence, the epithelium to crest 

distance or the osteonecrotic areas between ZA mice with or without rosiglitazone treatment. Our 

data provide insight to the pathogenesis of MRONJ, describe the radiographic profile of stage 0 

MRONJ patients and suggest that local RANKL delivery may be efficient in minimizing MRONJ 

incidence and improving socket healing. 
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CHAPTER 1 

INTRODUCTION 

MRONJ definition 

Medication related osteonecrosis of the jaws (MRONJ) is a severe complication of 

antiresorptive and antiangiogenic medications. These medications are prescribed to patients to 

combat osteoporosis, bone malignancies, Paget’s disease, hypercalcemia of malignancy among 

other conditions. MRONJ is defined as exposed bone or bone that can be probed through a fistula 

that persists for more than eight weeks in a patient with history of antiresorptive or antiangiogenic 

medications and no history of radiation in the head and neck area1, 2. 

Staging and treatment 

The American Association of Oral and Maxillofacial Surgeons (AAOMS) identifies four 

stages of MRONJ (stage 0-3). Stage 0 describes patients that do not demonstrate frank bone 

exposure but present with abnormal symptoms and/or clinical and radiographic findings. These 

radiographic findings may include sclerosis or unhealed extraction sockets. However, the 

radiographic appearance is not taken into account when staging is defined according to the latest 

position papers of AAOMS and the American Society of Bone and Mineral Research (ASBMR) 

task force. Moreover, stage 0 is not recognized by the ASBMR Task Force altogether mainly due 

to a danger of MRONJ overdiagnosis. According to the Task Force, if patients with common dental 

disease get diagnosed with stage 0 MRONJ detrimental effects to their skeletal health may occur 

if their physicians elect the discontinuation of their antiresorptive treatment2. On the other hand, 

several studies in the literature validate the existence of a non-exposed variant of MRONJ. In fact, 
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a multicenter study from Fedele et al reports that approximately 50% of stage 0 patients will 

develop frank bone exposure within 4-5 months.3 4 

 Stage 1 patients are the patients that show clinically exposed bone without pain or evidence 

of inflammation/infection. Additionally, these patients may present with a variety of radiographic 

findings including sclerosis, sequestration, periosteal reaction, lytic changes. Interestingly, a study 

by Walton et al showed that patients receiving oncologic doses of antiresorptive medications 

present more often with stage 1 MRONJ5. The reason for this is not clear. However, the authors 

hypothesize that oncologic patients are possibly under more meticulous dental care and perform 

more active oral hygiene.  Treatment methods include antibacterial mouth rinse, clinical follow-

up on a quarterly basis and patient education and review of indications for continued 

bisphosphonate therapy1. 

Stage 2 patients present with bone exposure and have pain and/or clinical findings of 

infection/inflammation. In the above study by Walton et al, patients receiving antiresorptives for 

osteoporosis presented more often with stage 2 MRONJ5. Treatment is overall more aggressive for 

these patients including pain control medications, oral antibiotics, oral antibacterial solutions and 

debridement to relive soft tissue infection1.  

Lastly, stage 3 patients demonstrate pain and/or infection and may present with oronasal 

communication, extraoral fistula or even a pathologic fracture. Additionally, the affected area of 

the jaws extends beyond the confines of the alveolar bone to the maxillary sinus, zygoma, inferior 

border of the mandible or the mandibular ramus. Patients with stage 3 MRONJ show radiographic 

features like periosteal reaction more often than stage 1 or 2 patients. Additionally, their 

cumulative frequency of radiographic markers such as sclerosis, lytic changes, sequestration and 

periosteal reaction is more severe and extensive compared to stage 1 or 2 patients. These patients 
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are often surgically treated with debridement. Antibacterial oral rinses and antibiotics are also 

employed5.  

Prevention of the disease is crucial and endodontic treatments, atraumatic surgical 

procedures and periodontal treatment are recommended dental practices before the onset and 

during antiresorptive therapy. In fact, preventive dental measures such as adjustment of ill-fitting 

dentures, identification and treatment of existing dental infections and referral to oral surgeons for 

necessary extractions before antiresorptive treatment onset was found to decrease MRONJ 

incidence in patients with multiple myeloma treated with zoledronic acid 6. Adjuvant techniques 

including laser treatment, platelet rich plasma and hyperbaric oxygen have shown encouraging 

results in patients with established MRONJ. 7. Other alternatives include the discontinuation or 

modification of the antiresorptive/antiangiogenic treatment regimen. However, at the moment, 

there is lack of conclusive evidence to support that discontinuation of the systemic medications 

has a beneficial effect on MRONJ lesions. In fact, animal studies show that discontinuation of 

bisphosphonates does not improve MRONJ incidence and severity8. Case reports also show a 

beneficial effect of teriparatide in patients undergoing surgical treatment of MRONJ possibly due 

to its anabolic effect and its favorable effects on osseous healing9.  

Recently, a thorough study by Hadaya et al has described a conservative way of managing 

MRONJ patients utilizing vigorous local wound care with a chlorhexidine solution. 71% of 

patients following this protocol showed resolution of the mucosal wound and another 22% showed 

improvement of wound healing10. This is an encouraging alternative method of treating MRONJ 

which requires no surgical treatment. 

Medications associated with MRONJ 
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The main classes of antiresorptive medications implicated in MRONJ pathophysiology are 

bisphosphonates and denosumab. Bisphosphonates have a high binding affinity to hydroxyapatite 

and become endocytosed by osteoclasts after bone resorption occurs. Aledronate, ibandronate and 

pamidronate have been widely used for the treatment of post-menopausal osteoporosis. 

Zoledronate is a very potent bisphosphonate which is used mainly to treat bone malignancies. 

Bisphosphonate intestinal retention is low and the side effects of oral bisphosphonates include 

gastric ulcers, nausea, heartburn, esophagus irritation and MRONJ. Intravenous bisphosphonates 

present with rare side effects such as atrial fibrillation, renal insufficiency, atypical femoral 

fractures and MRONJ. Acute phase reaction has been observed and manifests with fever, myalgia 

and arthralgia. Hypocalcemia has also been described and may cause secondary 

hyperparathyroidism and is more commonly seen in patients with renal malfunction and limited 

calcium intake. 11  

Bisphosphonates alter the mevalonate pathway by inhibiting the enzyme farnesyl 

pyrophosphate synthase. The mevalonate pathway is a biosynthetic pathway which leads to 

production of cholesterol, other sterols and isoprenoid lipids. Farnesyl pyrophosphate and geranyl-

pyrophosphosphate are necessary for the prenylation and activation of small GTPases such as Ras 

and Rho. The above small GTPases are essential in maintaining osteoclast morphology, 

cytoskeleton arrangement, membrane ruffling, trafficking, and cell survival. After osteoclasts 

endocytose bisphosphonates, their resorptive ability is compromised and they are led to apoptosis 

12 13.  

Denosumab, on the other hand, is a monoclonal antibody to RANKL that is used to treat 

osteoporosis, multiple myeloma and bone metastases from solid tumors. Denosumab binds to 

RANKL and does not allow it to bind to RANK-Fc, a receptor that is found on the surface of pre-
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osteoclastic populations. Therefore, it eliminates osteoclastogenesis and results in apoptosis of 

existing osteoclasts. Denosumab has been shown to be superior in increasing bone mineral density 

of the hip and lumbar spine compared to bisphosphonates. Its side effects include back pain, joint 

pain, common cold, hypocalcemia. 14. Clinical and animal studies have shown that osteoclastic 

activity is restored after denosumab discontinuation. In fact, spontaneous vertebral fractures have 

been reported in patients after discontinuing denosumab within 8-20 months. 8 15 16 

MRONJ has been reported with a similar incidence and severity in patients treated with 

bisphosphonates and denosumab. The risk of patients receiving osteoporotic doses is estimated to 

be approximately 1 in 10,000 whereas the risk increases to approximately 1-6% in patients 

receiving oncologic doses. Some studies reveal higher incidence of MRONJ which may reach up 

to 15%.17. 

Antiangiogenic medications, such as VEGF inhibitors and tyrosine kinase inhibitors, have 

also been associated with MRONJ. The most common drugs implicated in MRONJ pathogenesis 

are bevacizumab and sunitinib. The risk of MRONJ incidence is approximately 0.2% in patients 

receiving antiangiogenic medications and it increases to approximately 0.9% in patients receiving 

the above medications concomitantly with bisphosphonates, according to clinical studies1. 

However, animal studies have not been able to reproduce clinical MRONJ with exposed bone in 

rats treated only with VEGF inhibitors. 18 

Recently, case reports have linked new classes of medications, such as anti-rheumatic 

drugs (etanercept, adalimumab), chemotherapeutics (methotrexate), steroids (prednisone) to 

MRONJ development. As MRONJ becomes more and more documented, it is possible that new 

pharmacologic agents will become implicated in its pathogenesis19.20, 21 
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Pathophysiology 

 Significant progress has been made in an effort to understand the underlying mechanism 

of MRONJ development. Numerous animal studies replicating clinical, radiographic and 

histologic features of MRONJ in small or larger animals have been contributed to the literature 22-

26. Additionally, thorough reports of clinical data have helped describe the disease and elucidate 

its pathophysiologic cues4, 27, 28. 

Bone remodeling inhibition 

Bisphosphonates have been proven very effective in reducing bone resorption and thus 

reducing risk fracture in post-menopausal osteoporotic patients. Bone remodeling is, therefore, 

altered due to the lack of osteoclastic activity. Osteoblastic activity is not directly affected by 

bisphosphonate treatment resulting in uniformly mineralized bone. 29.  

Bisphosphonates have been shown to deposit in higher quantities in areas of active bone 

turnover. Studies in dogs have shown that the rate of bone remodeling in the mandible is 

approximately double compared to the maxilla  and six times faster than the femur 30. Additionally, 

intracortical remodeling was more significantly impaired in the alveolar bone of the maxilla and 

mandible compared to the ribs or the long bones in dogs treated with oncologic doses of 

bisphosphonates31. Another study by Cheong et al showed an increased uptake of fluorescent 

bisphosphonates around areas of tooth extraction or dental disease compared to healthy sites of the 

maxillary alveolar bone32.  The above data point to a predisposition of uptake of bisphosphonates 

in the highly active bone of the maxillary and mandibular alveoli, particularly around areas of 

trauma or inflammation, which may explain the specificity of the disease to the jaws. 
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Importantly, denosumab and bisphosphonates act on osteoclasts through completely 

different pharmacologic mechanisms. In fact, denosumab completely eliminates osteoclasts and 

prevents osteoclastogenesis 33. Bisphosphonates, contrary, render osteoclasts unable to carry out 

bone resorption and eventually induce apoptosis 13. However, both these pharmacologic agents 

cause MRONJ in similar incidence and severity both in animal studies and in humans 34 1, 26. It 

appears, therefore, that osteoclast impairment and, thus, bone remodeling inhibition is central in 

MRONJ pathogenesis regardless of the pharmacologic agent in use.  

Angiogenesis inhibition 

Zoledronic acid has been shown to decrease circulating levels of VEGF and decreases 

angiogenesis in vitro. Additionally, zoledronic acid is thought to prevent tumor invasion and 

metastases by inhibiting endothelial cell adhesion and migration in humans. 35 36 37. However, no 

similar findings have been reported in patients treated with denosumab. 

Anti-angiogenic medications, such as bevacizumab and sunitinib, have been linked with 

MRONJ development. Moreover, a study by Gkouveris et al showed that immunohistochemical 

markers of vasculature such as α-SMA (an arterial marker) were decreased around osteonecrotic 

lesions in ZA and OPG-Fc treated mice compared to veh-treated animals. Additionally, VEGF-a 

and V-CAM (a marker of activated endothelial cells) were found increased the first 1 week but 

plummeted by week 4 in mice treated with ZA and OPG-Fc compared to veh-treated mice. 38. 

Infection and inflammation 

Tooth extraction is the most common risk factor for the initiation of MRONJ. However, in 

adults, almost all extractions occur due to periapical or periodontal inflammation/infection. Many 

animal models have been developed and have shown that a combination of antiresorptive treatment 
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and induction of dental disease are sufficient to cause MRONJ even in the absence of tooth 

extraction24-26, 39. Moreover, preventive dental measures reduce MRONJ incidence in patients 

treated with oncologic doses of bisphosphonates and aggressive local wound care with an 

antibacterial solution was reported to result in wound resolution6, 10. Lastly, animal studies have 

shown that removal of periodontal disease before tooth extraction improves MRONJ lesions in 

mice treated with bisphosphonates40. 

Soft tissue toxicity 

Early, mostly in vitro studies showed that nitrogen-containing bisphosphonates may induce 

apoptosis not only in osteoclasts but also other cell populations, such as oral, cervical and prostate 

epithelial cells. Moreover, oral bisphosphonates have been reported to cause esophageal damage 

and irritation1, 41. Similar findings have not been reported for denosumab, thus disfavoring this 

hypothesis42. 

Immunity dysfunction 

Many MRONJ patients report receiving steroids and chemotherapeutic agents known for 

their immunosuppressant role in combination with antiresorptive medications43.  In animal models, 

infusion of mesenchymal stem cells or T-reg cells improved MRONJ severity44. Additionally, an 

altered phenotype of macrophages has been reported with an M1 predilection around osteonecrotic 

lesions45, 46. The above data point to a significant role of immunity impairment/alteration in 

MRONJ development.  

Risk factors 

It has been well established that MRONJ risk increases with antiresorptive/antiangiogenic 

treatment duration and dose. Studies have shown that a significant increase of MRONJ incidence 
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is noted 3-4 years after onset of bisphosphonate treatment 47. Denosumab patients showed a plateau 

of MRONJ incidence in years 2-3 after treatment onset 48. 

Dentoalveolar trauma, usually in the form of tooth extraction, is the most common 

instigating factor and increases MRONJ risk by a 16-fold margin49-53. Other local factors may 

include trauma from dentures and concomitant periapical/periodontal inflammation54, 55. 

Moreover, the fact that dental inflammation is the leading cause of tooth extraction in adults may 

be a confounding factor causing additive risk to the already established risk from tooth extraction. 

Treatment with agents such as corticosteroids and antiangiogenic medications have been 

reported to contribute to MRONJ risk56, 57. Additionally, other conditions, such as anemia, diabetes 

have been shown to increase MRONJ incidence48. 

A genetic predisposition related to single nucleotide polymorphisms in genes related to 

collagen formation and bone metabolism has been reported in clinical studies. These genes include  

the RBMS3 gene, a gene associated with bone density and collagen formation and the gene 

responsible for farnesyl diphosphate synthase activity (the enzyme specifically inhibited by BPs) 

58 59. A recent study form Yang et al identified SNPs in the locus SIRT/HERC (a gene related to 

cellular regulation, response to stress and longevity) to be associated with iv BP induced MRONJ 

60.  
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RATIONALE  

Medication related osteonecrosis of the jaws is a rare but severe adverse effect of 

antiresorptive and antiangiogenic medications, prescribed to patients with osteoporosis and bone 

malignancies 1, 2, 61. Although MRONJ was described in the literature in 2003 27, 62 its pathogenetic 

mechanism is still elusive. Dental inflammation/infection and bone remodeling inhibition are 

predominant hypotheses in MRONJ development.  

Dental inflammation/infection appears to play a crucial role in MRONJ development and 

severity. Tooth extraction is the most common instigating factor of MRONJ 1. However, most 

teeth in adults are extracted due to pre-existing dental infection 63, 64. Additionally, pre-existing 

dental inflammation triggers an immune response around teeth which may be altered in the 

presence of antiresorptive treatment 45, 46. Therefore, we elected to investigate the radiographic and 

histologic phenotype of the jaws of antiresorptive treated rodents with extraction of teeth with pre-

existing dental inflammation.  

During our studies, the radiographic appearance of the jaws has been proven important in 

better evaluating the extent of the underlying bony changes in animals and humans 5 65 66, 67. In 

stage 0 MRONJ, where the mucosal appearance is non-specific, radiographic assessment can be 

an informative indicator for the future behavior of the disease. We hypothesized that the 

radiographic appearance of stage 0 MRONJ patients can be a predictor of future bone exposure.  

The disease has been reported in patients receiving different types of medications, such as 

bisphosphonates or denosumab (a RANKL inhibitor) 27,68,69. The risk for MRONJ among cancer 

patients exposed to denosumab or bisphosphonates is comparable and usually ranges from 0.7-

1.9% 1. Bisphosphonates act by altering the mevalonate pathway via inhibiting farnesyl 
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pyrophosphate synthase and cause disruption of resorption activity 70. In contrast, denosumab 

binds RANKL and inhibits the bond between RANK and RANKL, preventing osteoclastogenesis 

and osteoclast survival 33. Despite the distinct pharmacologic mechanisms of these medications, 

both BPs and denosumab are associated with MRONJ. This implies a central role of osteoclast 

inhibition and imbalanced bone remodeling in MRONJ pathogenesis. RANKL is a molecule which 

plays an instrumental role in osteoclastic activity 71,72. Although inhibition of bone resorption 

appears to play a central role in MRONJ development, RANKL therapy has not yet been explored 

as a possible treatment of MRONJ. We hypothesize that local RANKL delivery can ameliorate 

MRONJ lesions in an antiresorptive setting by increasing bone resorption and removal of necrotic 

bone.  

We also, specifically, investigated the role of macrophages in MRONJ pathogenesis given 

their significant role in bone homeostasis and their monocytic lineage from which osteoclasts 

originate. Given the ability of rosiglitazone to reverse the M1/M2 macrophages ratio which has 

been implicated in MRONJ pathogenesis we hypothesized that rosiglitazone treatment may 

improve MRONJ73, 74.  

The following aims were tested: 
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SPECIFIC AIMS 

1. To evaluate MRONJ development after extraction of teeth with severe periradicular 

disease in mice treated with OPG-Fc or bisphosphonates. MRONJ features were 

assessed by visual inspection of the extraction sockets, μCT and histological analysis. 

2. To investigate wound healing in extraction sockets of periodontally inflamed teeth in 

rats treated with bisphosphonates. Assessment was performed utilizing μCT, 

histological and immunohistochemical analysis 

3. To characterize the radiographic appearance of stage 0 MRONJ patients and explore 

possible radiographic markers which may serve as predictors for disease 

advancement. A retrospective analysis of the radiographic appearance of stage 0 MRONJ 

patients was performed and a correlation between initial radiographic appearance and 

progression to bone exposure was made. 

4. To investigate the local delivery of RANKL as therapeutic approach in extraction 

sockets of bisphosphonate treated rats. RANKL delivery was performed with a collagen 

sponge sutured in the rat extraction sockets and bone exposure, osteonecrosis extent and 

osteoclast numbers were measured in two different timepoints. 

5. To investigate the role of macrophage polarization in MRONJ development. 

Macrophages polarization (M1/M2) was studied via immunohistochemistry and the 

enhancement of the M2 phenotype in MRONJ lesions was investigated through 

rosiglitazone treatment. 
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CHAPTER 2 

OSTEONECROSIS OF THE JAWS (ONJ) IN MICE AFTER EXTRACTION OF 

TEETH WITH PERIRADICULAR DISEASE 

Abstract 

Osteonecrosis of the jaws (ONJ) is a complication of antiresorptive medications, such as 

denosumab or bisphosphonates, prescribed to patients with bone malignancy or osteoporosis. The 

most common instigating local factor in ONJ pathogenesis is tooth extraction. However, in adults 

the great majority of teeth are extracted due to dental disease. Here, we have investigated alveolar 

bone healing after extraction of healthy teeth or teeth with naturally occurring periradicular disease 

in mice treated with high dose zoledronic acid (ZA), a potent bisphosphonate, or OPG-Fc, a 

RANKL inhibitor. C57BL/6 mice were treated for eight weeks and in vivo micro-CT was 

performed to identify spontaneously occurring periradicular lesions around the roots of maxillary 

molars. Then, extractions of molars with and without dental disease were performed in all groups. 

Four weeks later, animals were euthanized and maxillae were dissected and analyzed. Clinically, 

all veh animals with extraction of healthy or diseased teeth, and most OPG-Fc or ZA animals with 

extraction of healthy teeth showed normal mucosal healing. On the contrary, most animals with 

OPG-Fc or ZA treatment and extraction of diseased teeth demonstrated impaired healing with 

visible mucosal defects. Radiographically, bone socket healing was significantly compromised in 

OPG-Fc and ZA-treated mice with periradicular disease in comparison to other groups. 

Histologically, all veh animals showed normal mucosal healing and socket remodeling. OPG-Fc 

and ZA animals with extraction of healthy teeth showed normal mucosal healing, woven bone 

formation in the socket, and decreased remodeling of the original socket confines. OPG-Fc and 

ZA animals with extraction of diseased teeth showed mucosal defects, persistent prominent 
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inflammatory infiltrate, bone exposure and areas of osteonecrosis. These findings support a central 

role of dental disease in the pathogenesis of ONJ, not only as the instigating cause for tooth 

extraction, but also as a compounding factor in ONJ development and pathophysiology.   

 

Introduction 

Medication related osteonecrosis of the jaws (ONJ) is defined as necrotic, exposed bone in 

the maxillofacial region for at least 8 weeks, in patients on antiresorptive treatment 2 or 

antiangiogenic medications 2, but without a history of head and neck radiation. Patients with 

primary bone cancer or metastatic disease on high dose bisphosphonates (BPs), notably zoledronic 

acid (ZA), or denosumab most commonly suffer from this condition. Patients with osteoporosis or 

Paget’s disease receiving either oral or parenteral antiresorptive medications are at much lower 

risk 1, 2.  

Dentoalveolar surgery is a major local risk factor associated with ONJ incidence, with 52-

61% of patients reporting tooth extraction as the precipitating event for clinical manifestation of 

the disease 48, 50, 55. Based on these clinical observations, ONJ animal models have been developed 

that combine antiresorptive treatment and extraction of maxillary or mandibular teeth in order to 

recapitulate clinical, radiographic, and histologic features of the disease 22, 23, 75-79. 

The vast majority of teeth in adult patients are extracted due to dental disease 63, 80, which 

is also true for patients with ONJ.  Periodontal or periapical disease, even in the absence of tooth 

extraction is associated with ONJ occurrence 81 and is considered a local risk factor for the disease 

1, 2. Moreover, improved oral hygiene measures significantly reduce ONJ incidence in patients with 

multiple myeloma and metastatic cancer 6, 82. Indeed, we and others have described ONJ models 
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in rodents treated with antiresorptive medications and induced experimental dental disease, 

without extractions, that capture several attributes of ONJ in patients 8, 24-26, 34, 83, 84 

During these studies, we identified an unexpected model of ONJ in animals with naturally 

occurring periradicular lesions around the maxillary molar teeth, when they were treated with high 

doses of ZA or with the RANKL inhibitors RANK-Fc or OPG-Fc. It is noteworthy that no 

experimental intervention was performed in these animals and the ONJ-like lesions, characterized 

by periosteal bone apposition, osteonecrosis, severe inflammation and bone exposure, developed 

spontaneously 26. Here, taking advantage of this ONJ model, we have combined the two 

methodologies of local risk factors (extraction and dental disease), in association with systemic 

treatment with two different types of antiresorptives, a BP or a RANKL inhibitor, to more closely 

replicate the clinical setting and investigate ONJ pathogenesis. We have extracted healthy teeth or 

teeth with natural periradicular lesions in animals treated with vehicle (veh), ZA, or OPG-Fc and 

have assessed the animals clinically, radiographically, and histologically. Our data indicate that 

extraction of diseased, but not healthy, teeth is associated with high incidence of ONJ in this mouse 

model. 

  

Materials and Methods 

Animal care 

Animals were kept and treated according to guidelines of the UCLA Chancellor’s Animal 

Research Committee. Throughout the experimental period, mice were housed in corn-bedding 

plastic cages (4 mice per cage) in pathogen-free conditions with a light/ dark cycle of 12 hours, 

fed a standard laboratory diet, and given water ad libitum. Fifty seven nine-week-old C57BL/6J 
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male mice (Jackson Laboratory, Bar Harbor, ME, USA), weighing 25g on average(range from 23-

28g), were randomly assigned to receive intraperitoneal injections of endotoxin free saline (veh), 

10 mg/kg OPG-Fc (composed of the RANKL-binding domain of osteoprotegerin linked to the Fc 

portion of IgG, kindly provided by Amgen Inc, Thousand Oaks, CA), or 200 µg/kg zoledronic acid 

(ZA) twice a week in morning hours. There were 19 veh, 18 OPG-Fc, and 20 ZA treated animals. 

The antiresorptive doses were chosen in order to induce ONJ in the presence of dental disease, 

based on our previous studies 8, 25, 26, 34. The protocol followed all recommendations of the 

ARRIVE (Animal Research: Reporting in Vivo Experiments) guidelines for execution and 

submission of studies in animals. 

Animals were treated for eight weeks with veh, OPG-Fc or ZA, and then in vivo µCT was 

performed to assess the presence of spontaneous periradicular disease. The study included 6 

experimental groups: veh, OPG-Fc and ZA treated animals with either extraction of healthy or 

diseased teeth. Two days after imaging, mice were anesthetized utilizing isoflurane, maxillary 

molars from both sides were extracted. For all groups, sites with a fractured buccal cortical plate 

or fractured teeth during extraction were excluded from subsequent analysis. Four weeks after 

extractions animals were sacrificed, maxillae were dissected and photographs of the specimens 

were obtained utilizing a digital optical microscope (Keyence VHX-1000, Osaka, Japan). Then 

specimens underwent radiographic and histologic assessment, as described below. During ex vivo 

radiographic evaluation, sites with remaining roots were also excluded from subsequent analysis. 

The final study groups consisted of 28, 24 and 25 maxillary sites for veh, OPG-Fc or ZA animals 

respectively.  

In vivo µCT scanning  
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In vivo imaging was performed utilizing the Skyscan 1176 in vivo µCT scanner (Bruker 

Corporation, Belgium) at 18 µm resolution, 50 kVp and 500 µA. Volumetric image data were 

converted to DICOM format and imported in the Dolphin Imaging software (Chatsworth, CA, 

USA) to generate 3D and multiplanar reconstructed images. Altered alveolar bone morphology 

with widening of the periodontal space around the maxillary molar roots and/or presence of 

periosteal bone apposition at the alveolar ridge outline were a priori considered an indication of 

periradicular disease. 

All scans were de-identified. The presence of periradicular disease was recorded. The 

distance from the cemento-enamel junction (CEJ) to the alveolar crest (AC) was measured at the 

distal surface of the second molar, as previously described 8, 26.  Buccal cortical thickness was 

measured on axial slices oriented parallel to the occlusal plane, in the area of the 2nd molar at the 

level of the apical third of the roots 8, 26.   

ex vivo µCT scanning 

Dissected maxillae were imaged by high-resolution ex vivo µCT utilizing the SkyScan 1172 μCT 

scanner (SkyScan, Kontich, Belgium), as described 8, 26. Volumetric image data were converted to 

DICOM format and imported in the Dolphin Imaging software to generate 3D and multiplanar 

reconstructed images, as above.  

All scans were de-identified. Healing of extraction sockets was rated as complete (healing 

of more than 75% of the socket), partial (healing of 25% - 75% of the socket) or absent (healing 

of less than 25% of the socket). Also, the bone volume (BV), tissue volume (TV), and BV/TV of 

the alveolar bone excluding the extraction socket were measured, as described 8, 26. 

Histology and TRAP staining 
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Maxillae were fixed for 48 h in 4% paraformaldehyde and then decalcified in 14% EDTA 

for 3 weeks. Samples were paraffin embedded and 5 μm-thick cross sections were made 

perpendicular to the long axis of the alveolar ridge at the area of maximum radiographic and 

clinical changes, as assessed by μCT analysis and clinical photographs. H&E stained slides were 

digitally scanned utilizing the Aperio AT automated slide scanner and automated image analysis 

was performed using the Aperio Image Scope software (Aperio Technologies, Inc., Vista, CA, 

USA). The area of the alveolar bone, from the alveolar crest to the floor of the nasal cavity was 

defined as the region of interest (ROI). The total number of osteocytic lacunae, the number of 

empty lacunae, and the surface of osteonecrotic area(s) were quantified. An area of osteonecrosis 

was defined as a loss of more than five osteocytes with confluent areas of empty lacunae 8, 24, 26. 

Lacunae housing necrotic, karyolitic osteocytes, indicated by eosinophilic stained nuclei, were 

counted as empty osteocytes. The shortest distance from the inferior part of the epithelium to the 

alveolar crest was measured. If the bone was extruding above the epithelium the distance was 

recorded as negative. The Aperio Image Scope software was used to quantify the total bone area, 

the surface area of osteonecrosis and to make all linear measurements. All histology and digital 

imaging was performed at the Translational Pathology Core Laboratory (TPCL) at the David 

Geffen School of Medicine at UCLA.  

For enumeration of osteoclasts, tartrate-resistant acid phosphatase (TRAP) staining was 

performed utilizing the leukocyte acid phosphatase kit (387A-IKT Sigma Aldrich, St. Louis, MO, 

USA). Positive cells were identified as multinucleated (≥2) TRAP-positive cells in contact with or 

very close proximity to the bone surface, in the ROI and were counted manually (AS). 

Statistics 
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Raw data were analyzed using the GraphPad Prism Software (GraphPad Software, Inc. La 

Jolla, CA). Descriptive statistics were used to calculate the mean and the standard error of the 

mean (SEM). Data were analyzed by a two-way ANOVA and post-hoc Tukey’s test for multiple 

comparisons among the various groups, with a statistical significance of p<0.05. The presence or 

absence of mucosal defect after tooth extraction and the degree of socket healing (complete, partial 

or absent) were analyzed using the Fisher's exact test.   

Results 

Radiographic assessment of spontaneous periradicular bone loss around maxillary molars 

In vivo microCT revealed the presence of periradicular bone loss in 12/28, 10/24 and 8/25 

maxillary sites of all vehicle, OPG-Fc or ZA animals respectively, with no statistical difference 

among vehicle, OPG-Fc and ZA groups (p>0.05). µCT imaging showed a normal PDL space and 

alveolar bone in vehicle, OPG-Fc and ZA animals with healthy teeth (Fig 1A, A1, B, B1, C and 

C1).  In contrast, significant alveolar bone loss (white arrows) and increased bone thickness (white 

arrowheads) were seen around the molar roots of animals with periradicular disease (Fig 1D, D1, 

E, E1, F, F1). Quantification of radiographic features showed statistically increased bone loss in 

diseased vs. healthy teeth in all groups (Fig 1G). A common radiographic finding in patients with 

ONJ is periosteal bone deposition causing alveolar expansion 85.  To quantify potential bone 

deposition along the buccal maxillary cortex, we measured the thickness of the buccal bone in all 

six groups. Indeed, buccal cortical thickness increased in the diseased vs. healthy site of ZA and 

OPG-Fc groups, as well as in the diseased site of the ZA and OPG-Fc groups vs. the diseased site 

of the vehicle group (Fig 1H). 

 

Clinical assessment of mucosal healing after tooth extraction  
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Visual inspection showed that four weeks after extraction, the alveolar mucosa healed 

normally in all vehicle treated animals (Fig 2A and D).  Normal soft tissue healing was also present 

in the majority of mice treated with antiresorptives with extraction of healthy teeth, with only 1 of 

14 (7.1%) and 2 of 17 (11.7%) OPG-Fc or ZA animals, respectively, demonstrating soft tissue 

defects (Fig 2B, C, G). In contrast, 7 of 10 (70 %) of OPG-Fc and 6 of 8 (75%) of ZA animals that 

had undergone extraction of teeth with periradicular disease showed mucosal defects and the 

presence of exposed bone in the area of the extraction (Fig 2E and F, blue arrows and 2G).  

 

Radiographic assessment of socket healing after tooth extraction  

High-resolution ex vivo micro-CT was performed to assess bone architecture of the alveolar 

ridge after tooth extraction. Vehicle animals, irrespective of extraction of healthy or diseased teeth, 

demonstrated remodeling of the socket outline and, in the great majority of cases, near complete 

healing of the extraction socket (Fig 3 A, A1, D, D1, D2, G). OPG-Fc and ZA animals that had 

undergone extraction of healthy teeth, also displayed some extraction socket healing in nearly all 

sites (12/13 and 14/15 respectively), with the majority of sockets (9/14 and 14/15 respectively) 

showing complete healing (Fig 3 B, B1, C, C1, G). Interestingly, in the antiresorptive but not 

vehicle treated animals, the original outline of the extraction socket was easily identifiable and the 

socket healed with a granular, woven-like bone that lacked normal trabecular architecture. In 

contrast, in OPG-Fc and ZA animals, extraction sockets of diseased teeth showed overall decreased 

healing compared to socket of extracted healthy teeth (Fig 3 G), with several animals showing 

absence (5/10 and 5/8 respectively) of intra-socket bone formation as seen by multiplanar views 

(Fig 3 E, E2, F, F2) and 3D rendering (Fig 3 E1, F1, black arrows). Occasional bony spicules were 
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also noted within the empty extraction sockets (Fig 3 F, F2, white arrows). As expected, OPG-Fc 

and ZA animals demonstrated increased BV/TV values of the alveolar ridge, compared to vehicle 

animals, without any difference between sites of healthy vs. diseased teeth (Fig 3H). 

 

Histologic assessment of socket healing after tooth extraction 

 

After µCT assessment, histologic evaluation of the maxillae was performed (Fig 4). 

Vehicle animals with extraction of healthy teeth showed normal healed epithelium (Fig 4A, white 

arrow) with presence of rete pegs, fibrous connective tissue with no significant inflammatory 

infiltrate, and remodeled extraction sockets (Fig 4A, A1). Animals treated with either OPG-Fc or 

ZA and with extraction of healthy teeth also showed normal soft tissue healing, including a regular 

epithelial lining with the presence of rete pegs (Fig 4B, C, white arrows) and fibrous connective 

tissue without a significant inflammatory infiltrate. Dense woven bone occupied most of the 

extraction socket, while the boundaries of the original extraction socket could be easily recognized 

(Fig 4, B, B1, C, C1).  

 

Vehicle animals with extraction of diseased teeth also showed mostly normal epithelial 

lining (Fig 4D, white arrow). The underlying connective tissue contained a mild inflammatory 

infiltrate. In the healing extraction socket, woven bone with multiple reversal lines, and marrow 

fibrosis were noted (Fig 4D, D1, D2, D3). In OPG-Fc or ZA animals with extraction of diseased 

teeth (Fig 4E, E1, E2, E3, F, F1, F2, F3), epithelial migration (black arrows) and abundant 

inflammatory infiltrate (green arrows) in both the epithelial and connective tissue compartments 

were noted. In several specimens, the extraction socket had not healed with any bone and was not 
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covered by epithelium or connective tissue, but was exposed to the oral cavity (blue arrows). In 

other specimens, an epithelial defect was present, and thin fragmented connective tissue, and 

foreign material debris covered the extraction sockets (orange arrows). Osteonecrosis (Fig 4 E, E1, 

E2, E3, F, F1, F2, F3 yellow arrows) of the alveolar bone and occasional small sequestra (light 

blue arrows) were noted.  

 

Quantification of the histologic findings revealed a statistically significant increase in the 

number of empty osteocytic lacunae and in the osteonecrotic area in OPG-Fc and ZA animals with 

extraction of diseased teeth compared to extraction of healthy teeth in the same treatment group or 

compared to extraction of diseased teeth in vehicle animals (Fig 5 A and B). Also, OPG-Fc vs. ZA 

animals with extraction of diseased teeth showed a higher number of empty osteocytic lacunae and 

osteonecrotic area (Fig 5 A and B).  

 

Epithelium to alveolar bone crest distance was similar in vehicle animals with extraction 

of healthy or diseased teeth and in OPG-Fc and ZA animals with extraction of healthy teeth. 

However, in some OPG-Fc and ZA animals with extraction of diseased teeth, the epithelial to 

alveolar bone crest distance decreased and in animals with bone exposure it assumed a negative 

value. This was presumably due to the epithelial migration in combination with inhibition of 

alveolar bone crest resorption (Fig 5C).  

 

TRAP staining was performed to evaluate osteoclast numbers (Fig 5D). As expected, high 

numbers of osteoclasts were present in vehicle animals with extraction of healthy teeth, and 

statistically higher numbers in vehicle animals with extraction of diseased teeth. OPG-Fc treatment 
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inhibited formation of osteoclasts in all animals. As previously observed 8, 26, 34, TRAP+ cells in 

ZA treated animals were atypical, with a round shape and pyknotic nuclear morphology that were 

detached from the bone surface (not shown). Significantly increased numbers of these atypical 

TRAP+ cells were seen in animals with extraction of diseased vs. healthy teeth. 

 

Discussion 

Major progress has been made in the understanding of ONJ pathophysiologic mechanisms 

since the disease was first reported more than a decade ago 27, 62. However, significant gaps in our 

knowledge still exist 2. A strategy towards bridging these gaps is the concerted effort of research 

groups in developing animal models that closely mimic ONJ presentation in humans 61. For these 

models, animals are treated systemically with high-dose antiresorptives in combination with a local 

intervention.  

Two approaches to induce changes to the local oral environment and precipitate ONJ 

development have been utilized 2, 42, 61. One approach involves tooth extraction 22, 23, 75-79, prompted 

by well-established observations in clinical studies that clearly associate ONJ with tooth 

extractions 48, 50, 55. These models employ extraction of healthy teeth in combination with 

antiresorptives. However, in adult patients, more than 90% of teeth are extracted due to severe 

dental disease, including periodontitis, extensive caries, periapical disease, root fracture, or failed 

endodontic treatment 63, 80. Severe dental disease, as the precipitating factor leading to extraction, 

also occurs in patients on antiresorptives who eventually develop ONJ. Patients with bone cancer 

or osteoporosis would not be candidates for elective extraction of healthy teeth. This raises the 

concern that animal models of ONJ with extraction of healthy teeth might not fully capture the 
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clinical setting of patients with extraction of teeth so severely affected by dental disease that they 

cannot be managed through conservative interventions. 

A second approach in introducing local risk factors for ONJ development in animals 

utilizes induction of severe dental disease 8, 24-26, 34, 84. This approach was prompted by the 

association of periodontal or periapical disease with ONJ in patients in the absence of tooth 

extraction 1, 2, 81, 86. An additional revealing observation was the 1981 publication by Gotcher and 

Jee, reporting the presence of exposed alveolar bone trabeculae protruding into the oral cavity or 

well into the oral epithelium of rice rats with periodontitis treated with dichloromethylene 

diphosphonate (Cl2MDP) 83. Thus, the authors effectively reported the development of 

experimental ONJ nearly 22 years before the disease was reported in patients 27, 62.  However, these 

dental disease models do not reflect the most common presentation of ONJ in patients, which is a 

non-healing socket after tooth extraction 1, 2 

The need to more accurately reflect the clinical reality has led researchers to continue 

developing and improving animal models 2, 42, 61. In this effort, here we have combined the two 

approaches of altering the local oral environment to favor ONJ development along with extraction 

of both healthy and diseased teeth. Furthermore, animals were treated with two different classes 

of antiresorptives: ZA, a potent BP, or OPG-Fc, a RANKL inhibitor. We confirmed the presence 

of dental disease prior to tooth extractions by performing in vivo microCT and radiographically 

assessing the architecture of the periodontal bone and the alveolar ridge. As expected, the incidence 

of dental disease was similar in all groups.  

Mucosa healed normally after extraction of healthy or diseased teeth in veh animals, and 

following extraction of healthy teeth in animals treated with antiresorptives. In contrast, extraction 

of diseased teeth in animals treated with antiresorptives resulted in mucosal defects resembling 
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clinical ONJ in 70-75% of the sites. Radiographic assessment of the extraction socket revealed 

normal healing of all the sockets in veh animals with extraction of healthy or diseased teeth. In 

OPG-Fc or ZA animals with extraction of healthy teeth, the extraction sockets healed mostly with 

woven bone that was distinct from the remaining alveolar bone. However, in the same animal 

groups, but with extraction of diseased teeth, 50-60% of the animals showed defective socket 

healing. Histologic assessment confirmed the clinical and radiographic findings revealing 

increased osteonecrosis, mucosal defects, bone exposure, and occasional sequestration in animals 

with extraction of diseased teeth that were treated with antiresorptives.  

Our findings closely parallel the clinical, radiographic, and histologic features of ONJ in 

patients with exposed and necrotic bone, without (Stage 1) or with (Stage 2) evidence of infection 

1, 2. Interestingly, we did not observe any animals with extensive changes of the alveolar bone 

structure, pathologic fractures, extraoral fistulae, or oronasal communication that would be 

classified as Stage 3 ONJ. The absence of such severely affected animals is possibly due to the 

short duration of our experiments, the lower incidence of Stage 3 ONJ compared to other stages 

43, 87, 88, or the lack of a concomitant systemic factor that would compound healing of the oral 

tissues 1, 2.  

Surprisingly, very few animals with extraction of healthy teeth and treated with 

antiresorptives presented with mucosal defects or radiographic and histologic features resembling 

ONJ. This finding appears in agreement with some, but not all, published studies that have utilized 

extraction of healthy teeth in animals on BP or other antiresorptive treatment. Indeed, the reported 

outcomes of disease incidence and severity in ONJ rodent extraction models vary considerably 61. 

This variability has been hypothesized to be due to the type, route of administration, and dose 

regimen of BP delivery, in combination with the lack of well-defined outcome measures that define 
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the presence of ONJ in rodents 61. It is noteworthy, that studies consistently reporting ONJ-like 

features in mice or rat extraction models include in their experimental design systemic risk factors 

such as steroid or chemotherapy treatment, vitamin D deficiency, or diabetes all of which alter soft 

tissue and/or bone homeostasis and compound wound healing 22, 23, 44, 75, 76, 78. 

Our results here point to an additional factor contributing to the variability of ONJ 

incidence and severity in animal model studies that lack a concomitant systemic risk factor 77, 79, 

89-94. In our experience, occurrence of spontaneous periradicular lesions around maxillary teeth in 

C57Bl/6J or DBA1/J male mice ranges from 35-50% 26, varies among vendor shipment of animals, 

and is unavoidable.  The only way to predictably affirm the presence or absence of changes in 

alveolar bone is to perform in vivo microCT prior to tooth extraction, as performed in our present 

studies. Thus, it is plausible that in some studies, extractions could have involved diseased teeth 

that might have inadvertently escaped detection. Based on our data presented herein, such 

extractions in animals under antiresorptive treatment would likely present with clinical, 

radiographic, and histologic features of ONJ-like lesions. 

In our studies, OPG-Fc vs. ZA animals showed a significantly larger number of empty 

osteocytic lacunae and osteonecrotic area, suggesting that the extent of osteonecrosis might be 

slightly greater after OPG-Fc treatment. We had made a similar observation of higher number of 

empty osteocytic lacunae with OPG-Fc vs. ZA treatment previously 26. This finding could be 

within expected experimental variation. However, it could also reflect diverse residual osteoclastic 

activity after treatment with the two antiresorptives. Indeed, OPG-Fc abolished formation of 

osteoclastic cells, suggesting complete inhibition of bone resorption. On the other hand, TRAP 

positive cells were present in the ZA animals, but demonstrated an altered morphology. Thus, 

some degree of bone resorption must have occurred that caused ZA release from the bone matrix 
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and subsequent intracellular translocation to induced alterations in osteoclast function and 

morphology. Nevertheless, it is important to note that both OPG-Fc and ZA animals presented 

similar incidence of mucosal defects and extraction socket healing deficits.  

From a clinical point of view, our studies demonstrate the importance of detailed 

radiographic assessment of bone changes prior to tooth extraction in patients on antiresorptive 

treatment. Indeed, the most recent International Consensus paper 2 recommends that in patients for 

whom ONJ is a clinical concern and teeth extractions are considered, small field of view (FOV), 

high resolution Cone Beam Computed Tomography (CBCT) or multi-detector CT scans are 

recommended, if available. These imaging modalities provide valuable information on changes in 

cortical and trabecular architecture, periosteal reaction, osteolysis, or sequestration.  

In conclusion, we have created an approach that refines existing ONJ mouse models to 

more closely parallel the clinical setting. We report that extraction of diseased, but not of healthy 

teeth in mice treated with high-dose antiresorptives led to mucosal defects, and radiographic and 

histologic features of ONJ. Our data, in association with previous published reports, strongly 

suggest a central role for dental disease in pathogenesis of ONJ, not only as the instigating cause 

for tooth extraction, but also as a compounding factor in ONJ development.  
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Figure 1. In-vivo μCT assessment of the maxillary molars prior to tooth extraction 

 

Figure 1: In-vivo μCT assessment of the maxillary molars prior to tooth extraction. (A, B, C) 

Sagittal and (A1, B1, C1) coronal sections of sites with healthy molars in vehicle, OPG-Fc, and 

ZA groups, respectively. (D-F) Sagittal and (D1-F1) coronal sections of sites with diseased molars 

in vehicle, OPG-Fc, and ZA groups, respectively. Quantification of (G) interproximal bone loss 

and (H) buccal cortex thickness. + Statistically significantly different, p < 0.0001. *Statistically 
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significant difference among compared groups, p < 0.05. Differences among groups were 

calculated by two-way ANOVA and post-hoc Tukey’s test for multiple comparisons. Data 

represent the mean ± SEM. 

Figure 2. Visual assessment of mucosal healing of maxillary alveolar ridge after tooth 

extraction. 

 

Figure 2: Visual assessment of mucosal healing of maxillary alveolar ridge after tooth 

extraction.  (A-C) Maxillae in veh, OPG-Fc, and ZA groups after extraction of healthy teeth, 

respectively. (D-F) Maxillae in veh, OPG-Fc, and ZA groups after extraction of diseased teeth, 

respectively. Blue arrows point to areas of exposed bone. (G) Qualitative assessment of mucosal 

healing after healthy or diseased teeth in various treatment groups. *** Statistically significantly 

different, p < 0.001. ** Statistically significantly different, p < 0.01. Differences between groups 

were calculated by Fisher exact probability test. 
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Figure 3. μCT assessment of the edentulous maxillary alveolar ridge and quantification of μCT 

findings. 
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Figure 3: μCT assessment of the edentulous maxillary alveolar ridge and quantification of 

μCT findings. (A-F) Sagittal, (A1, B1, C1, D2, E2, F2) coronal views and (D1, E1, F1) 3D 

renderings of edentulous alveoli after extraction of healthy (A, B, C, and A1, B1, C1) or diseased 

(D, E, F, D1, E1, F1, D2, E2, F2) teeth in vehicle, OPG-Fc, or ZA groups. (G) Qualitative 

assessment of socket healing after extraction of healthy or diseased teeth in various treatment 

groups (H). Quantification of bone volume / tissue volume. + Statistically significantly different, 

p < 0.0001.  ***Statistically significantly difference, p < 0.001. **Statistically significantly 

different, p < 0.01. *Statistically significantly different, p < 0.05. Differences between groups for 

(G) were calculated by Fisher exact probability test. Differences among groups for (H) were 

calculated by two-way ANOVA and post-hoc Tukey’s test for multiple comparisons. Data 

represent the mean ± SEM. 
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Figure 4. Representative H&E-stained images from maxillae of all groups 
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Figure 4. Representative H&E-stained images from maxillae of all groups.  Alveolar ridge 

after extraction of (A, A1, B, B1, C, C1) healthy or (D, D1, D2, D3, E, E1, E2, E3, F, F1, F2, F3) 

diseased teeth of vehicle, OPG-Fc, and ZA groups, respectively, viewed at 4 x (A, B, C, D, E, F), 

10 x (A1, B1, C1, D1, E1, F1), 20 x (D2, E2, F2), or 40x (D3, E3, F3) magnification. White 

arrows point to normal epithelia lining, green arrows to inflammatory infiltrate, black arrows to 

epithelial migration, blue arrows to bone exposure, orange arrows to fragmented connective 

tissue, yellow arrows to areas of osteonecrosis, light blue arrows to sequestra. 

Figure 5. Quantification of the histologic findings 

 

Figure 5: Quantification of the histologic findings. (A) percent empty osteolytic lacunae, (B) 

percentage of osteonecrotic area, (C) distance from lower point of epithelium to alveolar bone 

crest (D) number of TRAP+ cells per area + Statistically significantly different, p < 0.0001.  

***Statistically significantly different, p < 0.001. **Statistically significantly different, p < 0.01. 

*Statistically significant different, p < 0.05. Differences among groups were calculated by two-
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way ANOVA and post-hoc Tukey’s test for multiple comparisons. Data represent the mean ± 

SEM. 
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CHAPTER 3 

ZOLEDRONATE IMPAIRS SOCKET HEALING AFTER EXTRACTION OF 

TEETH WITH EXPERIMENTAL PERIODONTITIS 

Abstract 

Osteonecrosis of the jaws (ONJ) is a rare but severe complication of antiresorptive medications, 

such as bisphosphonates, used in the treatment of bone malignancy or osteoporosis. Tooth 

extraction and dental disease have been strongly associated with ONJ development. Here, we 

have investigated molecular and cellular markers of socket healing after extraction of healthy or 

teeth with experimental periodontitis in Wistar-Han rats treated with zoledronic acid (ZA). We 

included four experimental groups: Groups 1 and 2 with extraction of healthy or teeth with 

ligature-induced experimental periodontitis (EP) in vehicle treated animals, and Groups 3 and 4 

with extraction of healthy or teeth with EP in ZA treated animals, respectively. Animals were 

pretreated with vehicle or ZA for a week and EP was induced. Four weeks later, the second 

maxillary molars were extracted, sockets were allowed to heal for four weeks, animals were 

euthanized and maxillae were isolated. Radiographically, extraction sockets in Groups 1, 2 and 3 

demonstrated normal healing. Contrary, incomplete socket healing was noted after extraction of 

teeth with EP in ZA-treated rats of Group 4. Histologically, persistent inflammation and 

extensive osteonecrosis were seen in Group 4. Disorganization of the collagen network, collagen 

type III predominance and lack of collagen fiber insertion in the necrotic bone were associated 

with impaired socket healing. Cells positive for MMP-9, MMP-13 and α-SMA expression were 

present at the areas of epithelial invagination and adjacent to osteonecrotic bone. Importantly, 

human biopsies from ONJ patients showed similar findings. Our data emphasize the importance 
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of dental disease and tooth extraction in ONJ pathogenesis and help delineate an altered profile 

in wound healing markers during ONJ development. 

Introduction 

Osteonecrosis of the jaws (ONJ) is a rare but severe complication of antiresorptive 

medications, specifically bisphosphonates (BPs) and RANKL inhibitors, or antiangiogenic 

medications 1, 61. Duration, dose and potency of antiresorptives, concomitant diseases or additional 

medications are known to increase incidence and severity of ONJ. However, the ONJ detailed 

pathophysiologic mechanisms remain poorly understood, largely due to the low ONJ incidence, 

and the proposed conservative treatment protocols that do not allow extensive sampling. Animal 

models, provide significant insight but need to be critically considered, since bone homeostasis of 

experimental animals and interventional approaches do not always parallel clinical scenarios 2. 

Altered inflammatory response, infection, defective angiogenesis, bisphosphonate toxicity to soft 

tissues, increased turnover of alveolar bone, oversuppression of bone remodeling and genetic 

predisposition might contribute to ONJ pathophysiology 95. 

ONJ may occur spontaneously, underneath a denture or at areas with periodontal or 

periapical infection. However, the most common local instigating factor for ONJ development, is 

trauma and particularly, tooth extraction 27, 96. Teeth in adults are mainly extracted due to 

periodontal or pulpal disease 63. Clinical studies support an association between dental disease 

with ONJ occurrence 97, while dental preventive measures reduce ONJ incidence 6.  

Extraction socket healing involves several cellular processes and the interplay of soft and 

osseous tissue healing. The wound/socket-healing process is divided into inflammatory; 

proliferative; and modeling/remodeling phases 98, 99. Early events include hemostasis, formation 
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of a provisional wound matrix, and neutrophil and monocyte infiltration. In the proliferation phase, 

granulation tissue forms and the vascular network is restored. Layers of woven bone are deposited 

adjacent to the socket borders. Finally, in the modeling/remodeling phase changes occur in the 

connective tissue and bone architecture, including replacement of woven with lamellar bone and 

bone marrow 100. 

Animal models reproduce clinical, radiographic and histologic features of ONJ 25, 79, 84. 

Zoledronic acid (ZA), a potent BP, or RANKL inhibitors and periapical or periodontal disease 

cause osteonecrosis of alveolar bone in rats and mice 24, 26, 34. These findings led us to hypothesize 

that in antiresorptives treated animals, extraction of teeth with experimental periodontitis (EP), 

and thus with pre-existing osteonecrosis, would result in compromised socket healing and 

progression of ONJ like findings. Indeed, extraction of teeth with spontaneous periradicular 

disease, but not healthy teeth, in mice treated with ZA or a RANKL inhibitor induced clinical bone 

exposure and osteonecrosis. 101.  

Though socket healing is delayed in tooth extraction sites of most human patients receiving 

strong anti-resorptives, ONJ occurs in only a small fraction of such tooth extractions 1. An 

improved understanding of this topic, especially concerning preexisting circumstances that 

increase the risk that a specific tooth extraction will lead to ONJ is of great clinical importance. 

The focus of our studies herein is to investigate changes in socket and wound healing markers 

(type III collagen, matrix metalloproteinases MMP-9, MMP-13 and presence of α–SMA positive 

cells) after extraction of healthy teeth or of teeth with preexisting EP in rats treated with vehicle 

or ZA.  
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Materials and Methods 

Animal care 

Forty-five rats were randomly assigned to receive saline (vehicle) or 200μg/kg ZA (LKT 

Laboratories, St Paul, MN) intraperitoneally, 2x/week in am. At time of injection body weight was 

recorded for all animals.  

Rats received veh or ZA for a week, and 4.0 silk ligatures were placed around the left 

maxillary second molar to induce experimental periodontitis (EP). Ten (10/22) veh-treated rats 

received molar ligation and 12 (12/22) did not. 11 (11/23) ZA treated animals received molar 

ligation and 12 (12/23) did not. Four weeks later, in vivo μCT was performed and the following 

day the first and second maxillary molars were extracted. Thus, our study included groups veh-H 

and veh-EP with extraction of healthy teeth or teeth with EP in veh treated animals, and ZA-H and 

ZA-EP groups with extraction of healthy teeth or teeth with EP in ZA treated animals. Four weeks 

after tooth extraction, without discontinuation of veh and ZA treatment, rats were euthanized 

utilizing CO2.  

Specimen scanning 

Deidentified maxillae were imaged, as described. 26 

Radiographic assessment of socket healing 

Details of qualitative and quantitative radiographic assessment are provided in the 

supplemental material. Examples of normal, partial and limited socket healing are seen in 

Supplemental Figure 1. 

Histology and TRAP staining  
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Details about histology and TRAP are provided in the supplemental material. All 

specimens were stained with picrosirius red (PSR) stain kit (Polysciences Inc, Warminster, PA, 

USA) and visualized under bright field and polarized light.  

 Immunohistochemistry 

Anti-Collagen I (ab34710), anti-Collagen III (ab7778), anti-MMP-9 (ab38898), anti-

MMP-13 (ab39012), and anti-α–SMA (ab5694) antibodies (ABCAM, Cambridge, MA, USA) 

were used. 

Human specimens 

Anonymous unstained slides and associated non-identifiable clinical information from two 

cases with histological diagnosis of ONJ were received from the UCLA School of Dentistry 

records. The first patient was a 70 yo female with a history of Fosamax treatment and recent 

extractions, and pain and drainage of the upper left maxilla. The second patient was a 68 yo female 

with IV ZA history and chronic bone exposure in the right posterior mandible. H&E and 

immunohistochemistry staining were performed, as above, for both patients. 

Statistics  

Experimental unit was a single animal. Data were analyzed using GraphPad Prism 

(GraphPad Software, Inc. La Jolla, CA). Descriptive statistics (mean and SEM), a two-way 

ANOVA for multiple comparisons, and Fischer’s exact test for socket healing were used.  

 

Results 

Radiographic findings 
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In vivo µCT scanning revealed similar bone appearance around the 2nd molar of veh or 

ZA animals without ligature. In veh rats, ligature caused periodontal bone loss (Supplemental 

Figure 2A, white arrows). In ZA rats, bone loss around molars with ligature, was statistically 

significantly greater compared to non-ligated molars, but attenuated compared to veh animals 

(Supplemental Figure 2A, white arrows, B)  

To assess the ZA effect on jaw bone morphology, BV/TV of the mandibular trabecular 

alveolar bone was measured, and showed a statistically significant increase in ZA animals 

(Supplemental Figure 3A). In the maxillae of these animals, woven bone filled the sockets of veh-

H and veh-EP animals (Figure 6A, white arrows). In ZA-H animals, woven bone occupied the 

socket, while the socket outline was clearly visualized. In ZA-EP animals, impaired socket healing 

was noted (Figure 6A, white arrowheads). Qualitative (Figure 6B) and quantitative (Figure 6C) 

assessment demonstrated statistically significantly compromised socket healing of ZA-EP 

animals. These animals also demonstrated decreased BV/TV in the area of the extracted second 

molar (Supplemental Figure 3B).  

Histologic findings 

Histologically, veh-H and veh-EP animals showed socket filling with woven bone (Figure 

6D, blue arrows), presence of prominent reversal lines and a pronounced periosteum at the alveolar 

crest (Figure 6D, green arrows). The mucosa consisted of keratinized epithelium, a lamina propria 

with dense connective tissue, and lack of marked inflammatory infiltrate (Figure 6D, yellow 

arrows). ZA-H animals demonstrated filling with woven bone (Figure 6E, blue arrows) and 

prominent reversal lines. The original socket borders were easily discernible (Figure 6E, white 

arrows). The mucosa consisted of keratinized epithelium and a lamina propria with a dense 

connective tissue lacking a marked inflammatory infiltrate (Figure 6E). In contrast, ZA-EP animals 
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showed impaired bone healing, epithelial invagination, and osteonecrotic areas with empty 

osteocyte lacunae (Figure 6E, black arrows). A marked inflammatory infiltrate was noted in the 

non-healing socket adjacent to osteonecrotic areas, extending into the submucosa and the basal 

epithelial layer (Figure 6E, aqua arrows). The % empty osteocyte lacunae (Figure 6F) and the 

absolute number of empty osteocyte lacunae in the alveolar bone (Supplemental Figure 3C), and 

the area of osteonecrosis (Figure 6G) were statistically significantly increased. 

Osteoclast number was statistically significantly increased in the EP versus H groups, in 

both veh and ZA rats. As previously reported 8, the number of osteoclasts normalized to bone area 

(Figure 6H) and the absolute osteoclast number in the alveolar ridge (Supplemental Figure 3D) 

was statistically significantly elevated in the ZA vs. veh groups. However, the osteoclasts in the 

ZA groups demonstrated an altered morphology, appearing round, detached from the bone surface, 

and with pyknotic nuclei 101.  

PSR staining revealed differences in collagen network organization among the groups. In 

veh-H and veh-EP animals, collagen fibers extended from the lamina propria, just below the 

epithelium into the alveolar bone, forming a dense, well-organized network (Figure 7A, 7A1, A2, 

B, B1, B2, aqua arrows). Collagen fiber birefringence had a yellow signal, suggestive of collagen 

type I prevalence 102. In ZA-H animals, collagen fibers were markedly dense, maintained their 

ability to insert in the alveolar bone and demonstrated a yellow signal (Figure 7C, C1, C2, aqua 

arrows). In contrast, ZA-EP animals revealed collagen fibers with an overall green birefringence 

suggesting collagen type III predominance 102 (Figure 2D, D1, D2, green arrows). These collagen 

bundles did not extend into the alveolar bone (Figure 7D2, magenta arrows). Regions of signal 

absence (Figure 7D2, yellow arrows) were noted bordering the areas of osteonecrosis. 

Immunohistochemical findings in rats 
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Collagen type I immunostaining was evident in all groups. As expected, no staining was 

present in regions of marked inflammatory infiltrate adjacent to areas of osteonecrosis 

(Supplemental Figure 4).  

For veh-H, veh-EP and ZA-H animals, collagen type III immunoreactivity was more 

noticeable just underneath the epithelium (Figure 7E, F, and G, white arrows) and faint and diffuse 

in the remaining submucosal to the bone level (Figure 7E1, F1, G1). However, in the ZA-EP 

animals, a pronounced collagen type III signal was noted (Figure 7H, H1). The signal was 

especially prominent below the epithelium (Figure 7H, white arrow) adjacent to osteonecrotic bone 

(Figure 7H1, blue arrow), and adjacent to inflammation (Figure 7H1, green arrows) and epithelial 

invagination (Figure 7H1, red arrows).  

MMP-8, MMP-9 and MMP-13 are molecules that can modify the matrix structure. No 

expression of MMP-8 was detected (not shown). MMP-9 positive cells were mostly observed in 

ZA-EP rats (Figure 8D, D1a, D1b, D2a, D2b arrows, I). Statistically significantly more positively 

immunoreactive cells were noted within the epithelium at areas of epithelial invagination (Figure 

8D1a and D2a, magenta arrows), and around areas of osteonecrosis (Figure 8D1b and D2b, green 

arrows). 

Few weakly immunostained MMP-13 cells were seen in the periosteum at the extraction 

site, but not in the submucosal area of veh-H, veh-EP and ZA- animals (Figure 8E, E1, E2, F, F1, 

F2, G, G1, G2). In socket healing areas, MMP-13 immunoreactivity was noted along the reversal 

lines and the bone- bone marrow interface (Figure 8E, F, G blue arrows). However, in ZA-EP rats 

MMP-13 immunostain was statistically significantly increased (Figure 8J). Positive cells were 

localized within and around epithelium in areas of epithelial invagination (Figure 8H, H1a and 

H2a, magenta arrows). Exuberant MMP-13 staining was noted at areas of inflammation and 
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peripheral to the necrotic alveolar ridge (Figure 8H, H1b, H2b, green arrows). Select MMP-13 

positive osteocytes were seen adjacent to osteonecrotic areas (Figure 8H1b, black arrows).  

We finally tested α-SMA, a cytoskeletal scaffold protein expressed in myofibroblasts 103. 

Veh animals demonstrated low α-SMA signal, mainly confined to blood vessel walls (Figure 9A, 

A1, A2, B, B1, B2, white arrows). In ZA-H animals, α-SMA signal was also present on vessel 

walls (Figure 9C, C1 and C2, white arrows). Few, scattered positive cells were dispersed in the 

submucosa (Figure 9C1 and C2, yellow arrows), or in marrow spaces. However, no statistical 

difference from the veh treated groups was detected (Figure 9E). Interestingly, statistically 

significantly increased numbers of α-SMA positive cells were noted in the submucosa of ZA-EP 

animals localized not only around blood vessels but also adjacent to necrotic bone (Figure 9D, D1 

and D2, green arrows, E).  

Immunohistochemical findings in patient specimens 

To investigate whether the same markers were relevant in a patient setting, we explored 

collagen type III, MMP-13 and α-SMA presence in specimens from ONJ patients (Figure 10). 

Adjacent to osteonecrotic areas (Figure 10, blue arrows) high levels of collagen type III in the 

extracellular matrix (Figure 10, red arrows), as well as cells positive for expression of MMP-13 

(Figure 10, yellow arrows) and α-SMA were noted (Figure 10, magenta arrows). Blood vessel 

walls also demonstrated α-SMA immunoreactivity (Figure 10, white arrows). 

Discussion 

In rodents treated with antiresorptives, dental disease can induce radiographic and 

histologic ONJ-like lesions 24-26, while subsequent extraction of diseased, but not healthy teeth, 

results in clinically exposed bone in  mice 101. Here, we investigated healing of the alveolar ridge 
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in veh or ZA treated animals after extraction of healthy or EP teeth in a larger animal, the rat. First, 

we established that ligature placement induced experimental periodontal bone loss, by in vivo 

µCT. This important step confirmed the effectiveness of the ligature placement to induce 

periodontal bone loss. Radiographic assessment revealed that extraction of teeth with EP in ZA 

animals, but not in other groups resulted in impaired osseous healing of extraction sockets after 

four weeks. Histology confirmed these findings, and established extensive alveolar bone 

osteonecrosis and presence of inflammatory infiltrate adjacent to necrotic areas pointing to a 

temporal association between the inflammatory environment and osteocyte death.  

Consequently, the main focus of our studies was to investigate potential changes in socket 

and wound healing markers among the four treatment groups. We explored extracellular matrix 

changes that might be associated with the observed structural differences around necrotic areas. 

Collagen, the major extracellular matrix component 104, acts as a structural scaffold in tissues, 

while during wound healing modulates cell proliferation and migration 105. Type III collagen is an 

important ECM component, and the predominant collagen during the early repair phase of wound 

healing, synthesized by fibroblasts in the granulation tissue 99. With the maturation and wound 

closure, type III collagen undergoes degradation, while type I collagen synthesis increases 99. 

Chronic inflammatory processes, like dermatitis or myocardial inflammation, are associated with 

increased type III expression 106, 107. Persistence of type III collagen paralleled presence of 

inflammation and osteonecrosis in the ZA-EP animals. Interestingly, areas where type I collagen 

immunostaining decreased and type III collagen increased coincided with weak birefringence in 

PSR staining.  

During wound remodeling and maturation, extracellular matrix undergoes continuous 

modifications. MMPs have the ability of degrading ECM components, growth factors and 
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cytokines 108. MMP-9 and MMP-13 in particular play key roles in the homeostasis of the 

periodontium and alveolar bone during health and disease 109, 110. MMP-9 and MMP-13 positive 

cells were abundantly present in ZA-EP rats at inflamed sites adjacent to necrotic bone and within 

the epithelium. Importantly, select MMP-13 positive osteocytes were noted adjacent to 

osteonecrotic areas, probably as a result of osteocyte activation. 

Progressive wound healing depends on the co-ordinated function of several cell 

populations. Among them, myofibroblasts, characterized by the presence of  α-SMA-positive 

stress fibers play a central role in wound tissue closure, through their capacity to produce a strong 

contractile force in later wound healing stages 103. As healing progresses, the myofibroblastic 

population decreases 111. Persistent presence of myofibroblasts is associated with pathologic 

conditions, like hypertrophic scarring and cardiac or lung fibrosis 112-114. In our studies, the marked 

increase of α-SMA positive cells in close proximity to the inflammatory infiltrate and to the 

necrotic bone in ZA-EP animals suggests prolonged presence of the myofibroblastic population.  

In these experiments, we did not observe consistent exposure of necrotic bone. Although 

there were many animals with clinically apparent mucosal defects in the ZA-EP group, an 

epithelial layer was present. Presence of epithelial invagination towards the necrotic area was 

noted, suggesting that a longer time period might have allowed for epithelial migration to the bone 

surface. Alternatively, other parameters such as infection by specific microbes, genetic 

predisposition, systemic disease or concomitant treatment interventions that might compromise 

soft tissue responses might be necessary. Our findings resemble Stage 0 ONJ in patients, where 

the necrotic bone is not clinically exposed 1. Interestingly, in our previous study of extraction of 

teeth with periradicular disease in mice we did observe bone exposure in ZA animals 101. 
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Differences of animal species (mice vs. rats), duration of ZA treatment (12 v. 8 weeks), 

spontaneous periradicular vs. EP lesions might account for this discrepancy. 

The tissue formation phase of wound healing, follows the inflammatory phase, and is 

characterized by the development of granulation tissue. Subsequently, at the maturation phase, 

granulation tissue develops into fibrotic tissue, marked by replacement of the provisional matrix 

with collagen 115. Our findings suggest excessive retention of granulation tissue in the ZA-EP 

animals, while resolution of granulation tissue and healing occurred in all other groups. Failure of 

granulation tissue resolution reflects a defective wound healing process. In the ZA-EP animals 

presence of inflammatory infiltrate around large areas of osteonecrosis, lack of an organized 

collagen network without fiber insertion in the necrotic bone, and epithelial invagination suggest 

a compromise of socket healing beyond granulation tissue retention. Whether the composition of 

the granulation tissue around the osteonecrotic areas is unique to the ZA animals or similar to the 

granulation tissue during normal socket healing warrants further investigation. 

Some limitations need to be considered in translating our findings towards the human 

disease. We only used male rats to parallel our previous observations 24. However, gender 

differences might affect socket healing. Although rodents provide useful animal models to study 

bone diseases, including ONJ, they demonstrate differences in their skeletal homeostasis compared 

to humans 116. In our studies, we used a ZA dose of 200 µg/kg, which is three times greater than 

the dose for a patient with bone malignancy 1. We elected to utilize this higher dose to increase the 

prevalence of the disease and generate more prominent tissue responses. It should be noted, that 

ONJ incidence in cancer patients appears to plateau between 2-3 years of treatment 1 or 24-36 ZA 

infusions. The animals in our study received 18 ZA injections, which is within the clinically 

relevant treatment regimen. Finally, our studies included a single observational time point. It 
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would be important to expand these studies for multiple points and longer periods, such that 

sockets healing in ZA animals could be characterized in more detail.  

Importantly, our observations in rats were replicated in biopsy specimens from patients 

with clinically, radiographically and histologically diagnosed ONJ, thus supporting the potential 

significance of our findings. Clinical studies with larger numbers of human samples focusing on 

markers of socket healing could begin delineating the process of ONJ pathogenesis in patients.  

Collectively, our data point to the disruption of the physiologic process of wound healing 

during the extraction of teeth with periodontitis in the presence of BPs. The prolonged presence of 

inflammatory cells in the healing alveolar ridge, predominance of a type III collagen rich matrix, 

increased MMP-9 and MMP-13 expression in resident and inflammatory cells, and persistence of 

a prominent myofibroblastic population were key observations that could underlie ONJ 

pathophysiology.  
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Figure 6. Radiographic and histologic assessment of extraction sockets 
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Figure 6. (A, B) In vivo assessment of periodontal bone loss and in vitro assessment of the 

edentulous maxillary alveolar ridge (C, D). Sagittal sections of sockets after extraction of healthy 

teeth in vehicle or ZA treatment groups. White arrows point to complete socket healing and white 

arrowheads point to impaired socket healing. Representative H&E-stained images from maxillae 

of all groups. Alveolar ridges of vehicle (E) or ZA treated (F) animals after extraction of healthy 

or diseased teeth, viewed at 4x and 20x magnification. Yellow arrows point to absence of 

inflammation in the connective tissue, green arrows point to the periosteum, blue arrows to the 

healing of the original extraction socket, white arrows to the original socket outline, aqua arrows 

to inflammatory infiltrate and black arrows to osteonecrotic areas. (G, H, I) Quantification of 

osteonecrotic area, empty osteocyte lacunae and number of TRAP+ cells per bone area 

respectively. For all statistical comparisons ** statistically significantly different, p<0.01, *** 

statistically significantly different, p<0.001, **** statistically significantly different, p<0.0001. 

Differences among groups were calculated by two-way ANOVA for multiple comparisons. Data 

represent the mean value +- SEM. For qualitative socket healing, differences among groups were 

calculated by Fischer’s exact test.  
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Figure 7. Picrosirius red staining and Type III collagen immunostain 

 

 

Figure 7. Picrosirius red staining of maxillary sockets of vehicle (A-A2, B-B2) or ZA (C-C2, D-

D2) treated animals after extraction of healthy (A-A2, C-C2) or diseased (B-B2, D-D2) teeth, 
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visualized under bright field (A, B, C, D) or polarized light filter (A1, A2, B, B2, C1, C2, D1, D2), 

viewed at 4x (A, B, C, D, A1, B1, C1, D1), 10x (A2, B2, C2, D2) magnification. Aqua arrows 

point to yellow birefringence signal, green arrows to green birefringence signal, yellow arrows to 

absence of signal, magenta arrows to lack of signal extension into the alveolar bone.  Collagen 

type III immunohistochemistry of maxillary sockets in vehicle (E, E1, F, F1) or ZA (G, G1, H, 

H1) treated animals after extraction of healthy (E, E1, G, G1) or diseased (F, F1, H, H1) teeth, 

viewed in 10x (E, F, G, H) or 20x (E1, F1, G1, H1). White arrows point to positive signal 

underneath the epithelum, blue arrows to signal adjacent to osteonecrotic bone, green arrows 

positive signal near inflammation, red arrows to positive signal adjacent to epithelial invagination. 
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Figure 8. MMP-9 and MMP-13 immunohistochemistry 

 

Figure 8. MMP-9 immunohistochemistry of edentulous alveoli in vehicle (A-A2, B-B2) or ZA (C-

C2, D, D1a, D1b, D2a, D2b) treated animals after extraction of healthy (A, A1, A2, C, C1, C2) or 
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diseased (B, B1, B2, D, D1a, D1b, D2a, D2b) teeth, viewed at 4x (A, B, C, D), 20x (A1, B1, C1, 

D1a, D1b) and 40x (A2, B2, C2, D2a, D2b) magnification. Magenta arrows point to positive cells 

around epithelial invagination and green arrows to positive cells at inflammatory areas and 

adjacent to necrotic bone. MMP-13 immunohistochemistry of maxillary alveolar sockets in vehicle 

(E-E2, F-F2) or ZA (G-G2, H, H1a, H1b, H2a, H2b) treated animals after extraction of healthy (E, 

E1, E2, G, G1, G2) or diseased (F, F1, F2, H, H1a, H1b, H2a, H2b) teeth, viewed at 10x (E, F, G, 

H), 20x (E1, F1, G1, H1a, H1b) or 40x (E2, F2, G2, H2a, H2b) magnification. Blue arrows point 

to positive signal in areas of reversal lines, magenta arrows to positive cells around epithelial 

invagination, green arrows to positive cells at inflammatory areas and adjacent to necrotic bone. 

(I) Quantification of MMP-9 and (J) MMP-13 positively immunostained cells. * statistically 

significantly different, p<0.05, **** statistically significantly different, p<0.0001. Differences 

among groups were calculated by two-way ANOVA for multiple comparisons. Data represent the 

mean value +- SEM.  
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Figure 9. a-SMA immunohistochemistry 

 

Figure 9. α-SMA immunohistochemistry of maxillary edentulous alveoli in vehicle (A-A2, B-B2) 

or ZA (C-C2, D-D2) treated animals after extraction of healthy (A, A1, A2, C, C1, C2) or diseased 

(B, B1, B2, D, D1, D2) teeth, viewed in 10x (A, B, C, D), 20x (A1, B1, C1, D1) or 40x (A2, B2, 

C2, D2) magnification. White arrows point to positive signal at the walls of blood vessels, yellow 

arrows to positive cells in the connective tissue, green arrows to positive cells around necrotic 

bone. (E) Quantification of α-SMA positively immunostained cells. **** statistically significantly 
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different, p<0.0001. Differences among groups were calculated by two-way ANOVA for multiple 

comparisons. Data represent the mean value +- SEM.  

Figure 10. Human biopsies stained for Type III collagen, MMP-13 and α-SMA 
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Figure 10.  

Representative Collagen type III, MMP-13 and α-SMA immunohistochemistry of human biopsies 

in two female patients (68 and 70 years old) with history of ONJ after Fosamax or IV Zoledronic 

Acid treatment. Blue arrows point to necrotic bone, red arrows to positive collagen type III signal 

in the matrix around the areas of osteonecrosis, yellow arrows to cells with positive signal for 

MMP-13 immunostain adjacent to osteonecrotic areas, magenta arrows to cells with positive signal 

for α-SMA immunostain in the proximity of necrotic bone and white arrows to positive signal at 

the walls of blood vessels. 
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CHAPTER 4 

RADIOGRAPHIC PREDICTORS OF BONE EXPOSURE IN STAGE 0 MRONJ 

PATIENTS 

 

Abstract 

Objective: To explore the radiographic appearance of stage 0 MRONJ and examine 5 radiographic 

parameters (trabecular sclerosis, cortical erosion, periosteal reaction, sequestration, crater-like 

defect) as predictors of progression to bone exposure.  

Study design: 23 patients with history of antiresorptive therapy, no bone exposure and non-specific 

signs and symptoms were included. Intraoral photographs, panoramic and CBCT images at initial 

visit and follow-up intraoral photographs were reviewed. 3 patients had dental disease (D.D.), 10 

stage 0 MRONJ patients did not progress to bone exposure (N.B.E.), and 10 patients progressed 

to bone exposure (B.E.). Radiographic parameters were scored as absent (0), localized (1) or 

extensive (2), and their sum formed the composite radiographic index (CRI).  

Results: D.D. patients demonstrated minimal radiographic findings and their CRI was significantly 

lower than that of N.B.E. and B.E. patients. Additionally, B.E. patients demonstrated a higher 

radiographic index than N.B.E. patients. Intriguingly, sequestration was observed in the initial 

CBCT of 90% (9/10) of B.E. patients. Contrary, 80% of N.B.E. patients showed absence of 

sequestration at initial CBCT examination. 

Conclusion: CBCT imaging can aid stage 0 vs dental disease diagnosis. Radiographic 

sequestration at initial presentation can serve as a predictor of future bone exposure in stage 0 

MRONJ patients. 



59 

Introduction 

Medication-related osteonecrosis of the jaws (MRONJ) is a significant adverse effect of 

antiresorptive and antiangiogenic medications prescribed to patients with osteoporosis or bone 

malignancies 2, 61. Various pharmacological agents, such as bisphosphonates, denosumab (a 

RANKL inhibitor) or bevacizumab (a monoclonal antibody to VEGF) have been associated with 

the development of the disease 27, 69, 117, 118 

MRONJ is defined as exposed bone in the oral cavity or bone that can be probed through 

an intraoral or extraoral fistula which does not heal for 8 weeks in a patient with a history of 

antiresorptive/antiangiogenic medication and no history of radiation therapy in the head and neck 

area. The most recent position paper by the American Association of Oral and Maxillofacial 

Surgeons (AAOMS) describes 4 stages of MRONJ (0-3), with stage 0 representing a non-exposed 

variant of the disease. Specifically, stage 0 refers to patients with no clinical evidence of exposed 

bone, but with presence of non-specific symptoms or clinical and radiographic abnormal findings 

1. Indeed, stage 0 MRONJ patients present with an intact mucosa and variable symptoms and signs, 

which poses a critical diagnostic dilemma. 

A stage 0 MRONJ diagnosis may be reached after all other possible conditions that could 

account for the patient’s symptoms have been ruled out. This diagnosis by exclusion approach 

increases the risk for over-diagnosis or under-diagnosis of patients with MRONJ 119-121. 

Interestingly, 50% of patients with stage 0 MRONJ proceed to clinical bone exposure within 4-5 

months after initial diagnosis 4. However, prognostic markers to allow identification of patients 

that will progress to bone exposure vs. patients that can be maintained with subclinical disease 

have not been established. Correct and early diagnosis of patients with stage 0 MRONJ and 
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identification of parameters associated with development of bone exposure are of paramount 

importance in the management of these patients. 

Given the absence of characteristic clinical features, thorough radiographic assessment can 

play a pivotal role in prompt diagnosis and correct clinical management. Cone beam computed 

tomography is a valuable tool, which can provide precise evaluation of osseous abnormalities 66, 

122-125. However, a detailed assessment of the radiographic appearance of stage 0 patients has not 

been reported. Additionally, radiographic markers of stage 0 MRONJ cases that can serve as 

predictors for future progression to clinical bone exposure are currently absent. 

In this study, we have retrospectively assessed the CBCT scans of 23 patients with an initial 

clinical diagnosis of stage 0 MRONJ and have correlated their radiographic parameters with 

subsequent bone exposure. 
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Materials and Methods 

Twenty-three patients with a history of exposure to bisphosphonates (BP), denosumab 

(Dmab) or both were included in the study. Antiresorptive therapy had been administered to the 

patients to treat osteoporosis or several types of bone malignancy including multiple myeloma, 

metastatic breast, lung or prostate cancer (Table 1). All patients had been referred to the Oral and 

Maxillofacial Surgery Clinic at the UCLA School of Dentistry from general dentists. Approval of 

the study by the UCLA Institutional Review Board (IRB) was obtained. All procedures followed 

the guidelines of the WMA Declaration of Helsinki - Ethical Principles for Medical Research 

Involving Human Subjects. 

None of the patients presented with bone exposure or fistula formation probing to bone at 

initial visit. Patient signs and symptomatology were non-specific including dull bone pain, altered 

neurosensory function, mucosal erythema or edema.  

All cases included intraoral photographs, panoramic radiographs and CBCT scans at initial 

presentation and at least one follow-up clinical examination including intraoral photographs. 

Several patients had multiple follow-up visits, which included intraoral photographs. Follow-up 

periods ranged from 1 month to three years with an average of 10 months. All cases meeting the 

inclusion criteria were included in the study. For all patients, the 3D Accuitomo 170 scanner (J 

Morita USA, Irvine, CA) was used. The exposure factors were 90 kVp and 6 mA with a 17.5-sec 

exposure time, during 360o rotation (standard exposure settings). The field of view (FOV) was 6x6 

cm with a 0.125 mm isometric voxel or 10x14 cm with a 0.25 mm isometric voxel. 

Clinical examination was performed by an Oral and Maxillofacial Surgeon (TA) with 

experience in MRONJ cases. CBCT scans were evaluated by a senior Oral and Maxillofacial 
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Radiology resident (AS) and a Board Certified Oral and Maxillofacial Radiologist with experience 

in MRONJ cases (ST). When consensus on the radiographic assessment was not reached, the 

opinion of ST was used.  

Five radiographic parameters in the area of interest were evaluated in all cases at initial 

presentation: trabecular sclerosis, cortical erosion, periosteal reaction, sequestration, crater-like 

defect. The radiographic findings were classified as absent (value of 0) localized (involving the 

area of one tooth, value of 1) or extensive (exceeding the area of one tooth, value of 2). A 

composite radiographic index (CRI), which was the sum of the values for each of the five 

radiographic parameters was also used. 

All patients were managed conservatively and were given emphasis on oral hygiene 

measures. No surgical intervention was performed in the oral region. Upon clinical follow-up, 

cases were evaluated for progression to clinical bone exposure (stage 1-3 MRONJ). All cases in 

which patients reported no symptomatology after dental retreatment were attributed to dental 

disease (D.D.).  Cases in which patients reported persistent pain but no bone exposure were 

classified as stage 0 (N.B.E.). Cases with bone exposure (B.E.) were classified as stage 1, 2 or 3. 

Statistics were performed with GraphPad Prism Software, (Inc. La Jolla, CA). Fischer’s 

exact test was used for qualitative data comparison. One-way ANOVA was used for quantitative 

data comparison. P values <0.05 were considered statistically significant. 
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Results 

The majority of the patients included in our study were female (18/23). Antiresorptive 

therapy duration varied, with osteoporosis patients having the most prolonged treatment (mean of 

6 years). Details about patient systemic disease, sex, age, type of antiresorptive medication and 

treatment duration are shown in Table 1. 

Radiographic evaluation (Figure 11A, B) revealed extensive trabecular sclerosis in 57% 

(13/23) of the patients and localized in 30% of the patients (7/23). Extensive cortical erosion was 

noted in 13% (3/23) and localized was seen in 57% (13/23) of patients. Periosteal reaction was 

visualized in 5 patients, with 9% (2/23) demonstrating extensive periosteal reaction and 13% 

(3/23) localized. 35% (8/23) and 13% (3/23) of scans demonstrated extensive or localized 

sequestrum formation respectively. Lastly, an extensive crater-like defect was visualized in 13% 

(3/23) CBCT scans, whereas a localized crater was noted in 57% (13/23).  

We then explored how many of these patients progressed to stage 1-3 MRONJ consulting 

our follow-up database. In 3/23 cases, patient symptomatology and clinical abnormalities ceased 

after dental treatment and were therefore, attributed to common dental disease (D.D.) instead of 

stage 0 MRONJ. Indeed, after endodontic retreatment and caries removal, erythema and swelling 

subsided and pain symptomatology was significantly reduced.  (Table 2, Figure 12A, A1, A2).  

In 10/23 cases, patients presented with persistent pain, abnormal clinical findings and no 

evidence of bone exposure on their follow-up sessions (Table 2, Figure 12B, B1, B2). These 

patients were classified as stage 0 MRONJ with no bone exposure (N.B.E.) and continued to be 

followed-up.  

In 10/23 cases, patients presented with clinical bone exposure (B.E.) and various degrees 

of inflammation/infection of the surrounding soft tissue upon first revisit. Three patients 
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progressed to stage 1 MRONJ, 5 patients to stage 2 MRONJ, whereas 2 patients demonstrated 

extra-oral fistula formation and were classified as stage 3 (Table 2, Figure 12C, C1, C2). Three of 

these patients had been treated for osteoporosis and 7 had been treated for bone malignancies (3 

male and 7 female). The time interval between first presentation and progression to bone exposure 

was on average 3.9 months with a standard deviation of 2.6 months. The individual time interval 

between initial visit and bone exposure for all patients is reported in Supplemental Table 1. 

Patients who were categorized as dental disease (D.D.) cases, demonstrated minimal 

radiographic findings upon initial presentation and their CRI was strongly statistically significantly 

lower than N.B.E. and B. E. patients (p<0.05 and p<0.001 respectively). Additionally, B.E. 

patients had a statistically significantly higher composite radiographic index in comparison to 

N.B.E. patients (p<0.05, Table 2). 

Next, we tested whether any of the radiographic parameters could serve as predictors for 

future progression to bone exposure in stage 0 patients. Trabecular sclerosis was seen in all B.E. 

and N.B.E. patients and the extent of sclerotic changes was very similar between the two groups. 

No statistical significance of the presence of cortical erosion, periosteal reaction or crater-like 

defect was noted between the two groups (Figure 13).  

Of note, 90% (9/10) of patients who progressed to bone exposure presented with 

radiographic signs of sequestration (6/10 extensive and 3/10 localized) in their initial CBCT scan. 

Only one patient who progressed to clinical bone exposure did not present with radiographic 

sequestration in the initial CBCT scan. In the stage 0 MRONJ group with N.B.E, 80% (8/10) 

showed absence of sequestrum formation in their initial radiographic examination. The incidence 

of radiographic sequestration between the B.E. and N.B.E. groups was statistically significant 

(p<0.01, Figure 3).  
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Discussion 

Stage 0 is characterized as a non-exposed variant of MRONJ and presents with non-specific 

clinical signs, symptoms and radiographic features. The absence of specific clinical traits often 

creates a diagnostic challenge for clinicians 67. In these cases, radiographic evaluation is a valuable 

tool towards a correct diagnosis as well as the estimation of the extent of osseous changes.  

In a recent study, which included a few patients from the population of the current 

manuscript, we reported that CBCT offers a more thorough diagnostic assessment in comparison 

to panoramic radiographs in cases of suspected stage 0 MRONJ and alters the diagnostic thinking 

efficacy and management of patients with suspected stage 0 MRONJ 67. Indeed, diagnosticians can 

more readily appreciate cortical and trabecular variations as well as osseous changes in the 

buccolingual dimension utilizing a three-dimensional scan 126-129. In our current study, we only 

included patients that underwent both panoramic and CBCT scanning at the time of the initial visit.  

Even though the importance of radiographic assessment in the diagnosis of stage 0 MRONJ 

has been emphasized 1, the radiographic findings that might be present in these patients have not 

been described in detail. For example, periosteal reaction and sequestrum formation are not 

reported as abnormal findings in stage 0 MRONJ patients in the AAOMS position paper 1. Here, 

we assessed the radiographic appearance of stage 0 patients by assessing the presence and the 

extent of 5 radiographic parameters (trabecular sclerosis, cortical erosion, periosteal reaction, 

sequestration, crater-like defect). These radiographic parameters have previously been described 

in MRONJ patients with clinical bone exposure. Lamina dura thickening is another radiographic 

feature reported in MRONJ cases 85, 130. In our experience, thickened lamina dura is not a common 

radiographic finding and can affect areas of the dentition not associated with symptomatology or 
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bone exposure. Importantly, in the current study, a considerable proportion of our patients were 

edentulous at the site of interest, making it impossible to discern lamina dura boundaries.   

A strong female predilection was noted among the patients. This is mainly attributed to the 

all-female osteoporotic patients, who comprised almost half of the patient population (11/23). 

Nearly all patients included were in the 6th to 8th decade of age with an average of 70 years. This 

was due to the manifestation of systemic diseases treated with antiresorptives (osteoporosis, 

metastatic cancer, multiple myeloma) in a later stage of life 131-134. An exception was a 30-year old 

male patient with sacrum sarcoma that was treated with denosumab. No patients were under 

antiangiogenic medication, probably due to the lower incidence of MRONJ in this group of 

patients when compared to bisphosphonate and denosumab-treated patients and the small number 

of patients in our study 1, 57, 135. 

Over- or under-diagnosis of stage 0 MRONJ may have severe adverse effects on the 

patients’ oral and skeletal health. Indeed, over-diagnosis of MRONJ may lead to detrimental 

outcomes, if discontinuation of antiresorptive treatment is elected 2, 136, 137. Alternatively, under-

diagnosing a patient with stage 0 MRONJ, as having common dental disease or other conditions, 

such as referred neuropathic pain, might lead to inappropriate and delayed treatment and might 

increase the possibility of developing clinical bone exposure. Proper diagnosis of stage 0 MRONJ 

can allow for management of local instigating factors, possible antibiotic treatment and more 

frequent follow-up visits 1.  

Interestingly, 3 of 23 (13%) patients were initially diagnosed with stage 0 MRONJ but 

were subsequently classified as having common dental disease. The relatively low percentage of 

over-diagnosis in our study could be attributed to the accumulated considerable clinical expertise 

in managing MRONJ by the Oral and Maxillofacial Surgeons in our institution, as well as to the 
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comprehensive radiographic assessment of all MRONJ patients that includes panoramic and 

CBCT imaging. The presence of these three patients, however, allowed us to explore whether 

radiographic findings could assist in further distinguishing patients with common dental disease 

from patients with stage 0 MRONJ. We observed that an overall absence of trabecular sclerosis, 

cortical erosion, periosteal reaction, sequestration and crater-like defect disfavors the diagnosis of 

stage 0 MRONJ and supports the diagnosis of dental disease in dentate patients. Since CBCT 

examination can aid in the diagnosis of challenging cases of dental disease, where identifying the 

source of symptomatology can often be ambiguous 138, 139, a detailed radiographic assessment 

utilizing CBCT technology should be considered in symptomatic patients on antiresorptives 67. 

Half (10/20) of the stage 0 MRONJ patients progressed to frank bone exposure within 1-7 

months. The percentage of progression to clinical bone exposure and time interval from initial 

diagnosis are in agreement with the report by Fedele et al investigating bone exposure progression 

in patients initially presenting with stage 0 MRONJ 4.   

Patients who subsequently developed bone exposure had a higher composite radiographic 

index in comparison to the patients who remained in stage 0. This suggests that a detailed 

radiographic evaluation not only aids in the differential diagnosis of conditions that present with 

similar symptomatology, but could assist in the identification of patients with stage 0 MRONJ that 

might progress to clinical bone exposure. To further investigate whether a specific radiographic 

parameter(s) had a bigger contribution in the differentiation between B.E. vs. N.B.E. patients, we 

compared the presence of each radiographic parameter in these two groups. We observed that the 

discrepancy in the composite radiographic index was mostly attributed to the different incidence 

of sequestration. In fact, presence of sequestration in the initial CBCT scan was a strong predictor 

for bone exposure in 9 out of 10 patients. In contrast, sequestration was seen only in 2 out of 10 
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patients who did not develop clinical exposure. These findings indicate that radiographic 

sequestration may serve as a reliable predictor of future bone exposure in stage 0 MRONJ patients. 

Sequestration is characterized by devitalized bone separated from the surrounding bony 

tissue with inflamed granulation tissue. With time, epithelial rimming occurs around the detached 

necrotic bone, which subsequently exfoliates through the soft tissue or may lead to the formation 

of a sinus tract 24, 140. This process of necrotic bone rejection could underlie the subsequent bone 

exposure observed in stage 0 MRONJ patients who present with radiographic sequestration. It is 

likely that the bony areas which undergo sequestration as part of necrotic bone rejection represent 

the bone exposure sites later observed in these patients.  Furthermore, the high incidence of bone 

exposure development in patients with radiographic sequestration (9/11 or 82%) suggests that 

surgical removal of the sequestered bone should be considered in the management of these patients 

in an effort to decrease transition to clinical exposure. 

We should recognize some limitations to our study. First, a relatively small number of 

patients were included, due to the rare incidence of stage 0 MRONJ. In particular, there were only 

a few patients originally diagnosed as stage 0 MRONJ that subsequently were classified as having 

common dental disease. This low number could be due to the increased experience with MRONJ 

patients in our institution and might not reflect the true incidence of patients over-diagnosed with 

stage 0 disease.  Furthermore, our study did not allow for the assessment of the incidence of under-

diagnosis of stage 0 MRONJ, since all patients were referred to our institution with suspected 

disease. A prospective study focusing on patients on antiresorptive medication would be needed 

to address potential under-diagnosis. A final limitation is that the period from the development of 

the clinical symptomatology to the visit to our institution was not known.  
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In summary, we present a retrospective study exploring the radiographic profile of patients 

diagnosed with stage 0 MRONJ, based on clinical examination. We conclude that the extent of 

radiographic changes was an important determinant in the differentiation between patients with 

dental disease vs. patients with MRONJ. Furthermore, sequestrum formation was an important 

radiographic predictor of patients with stage 0 MRONJ that subsequently developed clinical bone 

exposure.  

 We propose that patients with a history of antiresorptive/antiangiogenic medications 

receive a CBCT exam when they present with abnormal signs or symptoms. Presence of sclerosis, 

cortical erosion, periosteal reaction, sequestration, crate-like defect should guide the clinician 

towards the diagnosis of stage 0 MRONJ as opposed to common dental disease. Presence of 

sequestration, in particular, favors the diagnosis of stage 0 MRONJ with a higher risk for 

development of frank bone exposure.  
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Table 1. Patient demographics 

 

Table 1: Patient demographics and antiresorptive treatment information. AR= antiresorptive, 

y=years, mo=months, BP=bisphosphonates, Dmab=denosumab, SD= standard deviation 

  

 

Disease No. of 

patients 

Sex Mean Age 

(+/- SD) 

AR treatment AR duration 

Osteoporosis 11 F (11) 78 (+/- 5) BP (10) 

Dmab (1) 

6 y (+/- 7.5y) 

Multiple 

myeloma 

3 F (3) 69 (+/- 2) BP (3) 22 mo (+/- 3 mo) 

Breast cancer 3 F (3) 59 (+/- 14) BP+Dmab (3) 38mo (+/- 8 mo) 

Prostate cancer 2 M (2) 80 (+/- 3 ) BP (1) 

BP +Dmab (1) 

60 mo (16 mo) 

Lung cancer 1 M (1) 58 Dmab 36 mo 

Chondrosarcoma 1 M (1) 74 Dmab 36 mo 

Sacrum sarcoma 1 M (1) 30 BP+Dmab 24 mo 

Giant cell tumor 1 F  (1) 63 Dmab 6 mo 

Total 23 F(18) 

   M(5) 

70 BP(15) 

Dmab(4) 

BP+Dmab (4) 

52 mo (+/-64mo) 
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Figure 11. Radiographic assessment of all patients 

  

Figure 11: Radiographic assessment. Representative examples of localized or extensive Trabecular 

Sclerosis, Cortical erosion, Periosteal reaction, Sequestration, Crater-like defect (A). Incidence 

and extent of these radiographic parameters in all patients (B) 
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Table 2. Follow-up data and composite radiographic index (CRI) 

 

Table 2: Follow-up data and composite radiographic index (CRI) of dental disease patients 

(D.D.), patients who did not progress to bone exposure (N.B.E.) and patients who progressed to 

bone exposure (B.E). #: statistically significant to N.B.E. p<0.05, &: statistically significant to 

B.E. p<0.001, +: statistically significant to B.E. p<0.05, SD= standard deviation 

  

 

Patient 

categories 

No. of  

Patients 

Mean Composite 

Radiographic Index 

(+/- SD) 

 

Dental disease 

(D.D.) 

3 0.33 +/- 0.57#,& 

No bone 

exposure 

(N.B.E.) 

10 4+/-0.51+ 

Bone exposure 

(B.E.) 

10 5.8 +/-1.68 

Total 23  
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Figure 12. Clinical and radiographic evaluation at initial presentation and clinical follow-up 

 

Figure 12: Clinical and radiographic evaluation at initial presentation and clinical follow-up. Initial 

clinical and radiographic presentation and clinical follow-up of a patient who was classified as a 

dental disease (D.D.) case (A, A1, A2), a patient with stage 0 MRONJ and no progression to bone 

exposure (N.B.E., B, B1, B2) and a patient with progression to bone exposure (B.E., C, C1, C2). 

Yellow arrowheads point to areas of sequestration. Blue arrow points to bone exposure. 
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Figure 13. Incidence and extent of radiographic markers in stage 0 patients 

 

Figure 13: Incidence and extent of Trabecular Sclerosis, Cortical erosion, Periosteal reaction, 

Sequestration and Crater-like defect in patients who progressed to bone exposure (B.E.) or 

showed no bone exposure (N.B.E.). **: statistically significant with p<0.01 
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CHAPTER 5 

LOCAL RANKL DELIVERY IMPROVES SOCKET HEALING IN BISPHOSPHONATE 

TREATED RATS 

 

Abstract 

Medication related osteonecrosis of the Jaws (MRONJ) is a severe complication of antiresorptive 

and anti-angiogenic medications prescribed to patients with osteoporosis or bone malignancies. 

Osteoclast inhibition is central in MRONJ pathogenesis. Here, we investigated if local delivery of 

RANKL (a key molecule in osteoclast activation) could enhance local osteoclast generation and 

improve MRONJ burden. Thirty Wistar-Hun rats were i.p. treated with saline or 66 μg/kg 

zoledronic acid (ZA) for a week. Then, mandibular molars were extracted bilaterally. Collagen 

tapes infused with water or RANKL were placed in the extraction sockets of 60 hemimandibles of 

veh (veh/RANKL-, veh/RANKL+) or ZA treated rats (ZA/RANKL-, ZA/RANKL+). ZA delivery 

continued for 3 or 12 days after surgery, rats were euthanized, and clinical, radiographic and 

histologic assessments were performed. 

RANKL immunostain showed increased signal in the RANKL treated sites of veh or ZA rats 

compared to the non-RANKL treated sites. Visually, at the 3-day timepoint, no sockets 

demonstrated complete healing. At the 12-day timepoint, sockets of veh/RANKL- and 

veh/RANKL+ rats showed intact mucosa, while mucosal defects were noted in ZA/RANKL- rats. 

Interestingly, ZA/RANKL+ sockets showed absence of bone exposure. Histologically, at the 3-

day timepoint, ZA/RANKL- sockets demonstrated extensive bone exposure and osteonecrosis. In 

contrast, ZA/RANKL+ rats showed soft tissue coverage and significantly reduced osteonecrosis, 
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similar to the veh groups. Importantly, in the ZA/RANKL+ group, osteoclasts attached to the bone 

surface and osteoclast numbers were higher compared to ZA/RANKL- sites. At the 12-day 

timepoint, persistent osteonecrosis and bone exposure were detected in the sockets of ZA/RANKL- 

animals. Contrary, ZA/RANKL+ rats demonstrated socket epithelialization and reduced 

osteonecrosis. Significantly more total and bony attached osteoclasts persisted in the ZA/RANKL+ 

vs the ZA/RANKL- group. A disruption was noted in the connective tissue-bone interface and the 

epithelium of the ZA/RANKL- group. In contrast, an intact collagen network and epithelium were 

seen in ZA/RANKL+ sites, resembling the veh groups. We present a novel approach towards 

improving socket healing, in the presence of ZA, by enhancing osteoclastic activity through local 

RANKL delivery. Our approach is clinically applicable and could improve treatment outcomes of 

patients on high-dose ZA therapy. 

  



77 

Introduction 

Medication related osteonecrosis of the Jaw (MRONJ) is a rare but serious side effect of 

antiresorptive medications and can cause significant morbidity to patients. MRONJ is 

characterized by areas of exposed bone in the oral cavity for a period of more than 8 weeks1, 2, 61. 

The most common instigating local factor of MRONJ is tooth extraction or other dental surgical 

procedures, such as implant placement. A classic presentation of the disease is when a tooth is 

extracted and the extraction socket does not heal. However, tooth extraction in patients undergoing 

antiresorptive treatment often is unavoidable1, 63, 141.  

The main class of medications associated with MRONJ are antiresorptive agents that 

function as inhibitors of osteoclastic function or differentiation 1, 2, 61. Antiresorptive medications 

are mainly used for the management of osteoporosis, and less frequently but at higher doses in 

patients with bone malignancy137, 142-144. Indeed, the fear of MRONJ is a main contributor for 

osteoporotic patients to not be compliant with their antiresorptive medications 145. Osteoporosis is 

the most common metabolic bone disease with 43.4 million people affected by osteoporosis or 

osteopenia in the USA, representing 44% of the people aged 50 and older146. Indeed, reports in the 

scientific and public literature express serious concern about not treating osteoporosis more 

aggressively145, 147-149. A successful intervention to minimize the MRONJ risk would be beneficial 

for millions of osteoporotic patients that need to undergo a dental surgical procedure, such as a 

tooth extraction.  

Receptor Activator of Nuclear Factor Kappa-B Ligand (RANKL) is a key molecule for the 

production of osteoclasts71, 72, 150. It is a homotrimer that binds to the RANK receptor of pre-

osteoclastic cells, mediates the fusion of neighboring osteoclast precursors causing them to become 

multinucleated under the influence of other genes, such as DC-STAMP. RANKL also mediates 
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the transcription of several osteoclast-specific genes such as TRAP, cathepsin K and calcitonin 

receptor committing the cells to an osteoclastic phenotype. Indeed, certain antiresorptive 

treatments target RANKL as a way to inhibit osteoclast formation, and thus bone resorption33, 151. 

Given the central role of RANKL in osteoclastic differentiation and function, we 

hypothesized that RANKL could be delivered locally within the extraction socket in rats 

undergoing BP treatment to enhance the local generation of osteoclasts, mitigate the local BP effect 

on resorption and improve socket healing without discontinuing the systemic antiresorptive 

treatment.  
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Materials and methods 

Animal care 

Thirty Wistar-Hun 7-week-old rats were randomly assigned to receive saline or 66 μg/kg 

of zoledronic acid (ZA), (LKT laboratories, St. Paul, MN). Rats were injected intraperitoneally 

once a week in morning hours. Animals were kept and treated according to guidelines of the UCLA 

Chancellor’s Animal Research Committee8, 24, 101, 152. 

After a week of pretreatment with saline or ZA, the first and second mandibular molars of 

both sides were extracted in all rats. After extraction, resorbable collagen tapes (ACE Surgical 

Supply, Brockton, MA) containing water or recombinant rat RANKL (Peprotech, Rocky Hill, NJ) 

were placed in the extraction sockets. 4 ul of water or aqueous RANKL solution (0.1mg/ml) were 

placed in each collagen tape. Water or RANKL loaded collagen tapes were placed in the extraction 

sockets of 30 hemi-mandibles of veh-treated rats and 30 hemimandibles of ZA-treated rats (a total 

of 60 hemimandibles were used). Each rat received a veh infused tape on one side of the mandible 

and a RANKL infused tape on the other. Sides were alternated to account for possible 

discrepancies in surgical technique.  

ZA treatment was continued and rats were euthanized 3 or 12 days after tooth extraction 

utilizing CO2. Twelve rats were euthanized 3 days after surgery (6 veh treated and 6 ZA treated) 

and 18 rats were euthanized 12 days after surgery (9 veh treated and 9 ZA treated). Mandibles 

were dissected and photographs of the specimens were obtained utilizing a digital optical 

microscope (Keyence VHX-1000, Osaka, Japan).  Areas of unhealed mucosa were measured with 

Image J (NIH, imagej.nih.gov).  
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Micro CT 

Micro CT scanning was performed, as described.  Bone volume-total volume ratio 

measurements were performed in the distal root of the first molar starting from the apex and 

including 50 axial slices towards the coronal third, as we have previously described.  24.  

 

Histology 

Mandibles were fixed for 48 h in 4% paraformaldehyde and then decalcified in 14% EDTA 

for 4 weeks. Samples were paraffin embedded and 5 μm-thick cross sections were made 

perpendicular to the long axis of the alveolar ridge at the area of the mucosal defect. If the mucosa 

was completely healed, sections were made at the area between the first and second molars, 

approximately 2mm mesial to the mesial cusp of the third molar. H&E stained slides were digitally 

scanned image analysis was performed using the Aperio Image Scope software (Aperio 

Technologies, Inc., Vista, CA, USA). The osteonecrotic area(s) and empty osteocytes over total 

bone area (s) were quantified. 25, 26 

 

TRAP assay, Picrosirius red staining, immunohistochemistry 

For enumeration of osteoclasts, tartrate-resistant acid phosphatase (TRAP) staining was 

performed (387A-IKT Sigma Aldrich, St. Louis, MO, USA). Osteoclast numbers were normalized 

over bone length. Acid phosphatase assay (ab83370, Abcam) was used to measure serum TRAP 

levels 3 days before and 3 days after surgery. Picrosirius red (Pc red) stain was used to study 

collagen organization 101. Anti-RANKL (sc-7628, Santa Cruz) and Anti-Cytokeratin 14 (ab51054, 

Abcam) were used for immunohistochemistry 38.  
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Statistics 

Raw data were analyzed using the GraphPad Prism Software (GraphPad Software, Inc. 

La Jolla, CA). Descriptive statistics were used to calculate the mean and the standard error of the 

mean (SEM). Data were analyzed by a two-way ANOVA and post-hoc Tukey’s test for multiple 

comparisons among the various groups and t-test for a single comparison with a statistical 

significance of p<0.05.  
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Results 

Specimen photographs 3 and 12 days after surgery  

Specimen photographs 3 days after tooth extraction showed mucosal defects with 

granulation tissue in all groups and ongoing mucosal healing (Figure 14A-E). Specimen 

photographs 12 days after tooth extraction revealed an intact alveolar mucosa in the mandibles of 

veh/RANKL- and veh/RANKL+ rats (Figure 14F, G). Alveolar mucosal defects, granulation tissue 

and exposed bone were noted in the alveoli of ZA/RANKL- (Figure 14H). Interestingly, intact 

mucosa was noted in most of the ZA/RANKL+ hemi-mandibles (Figure 14I). Areas of unhealed 

mucosa were significantly smaller in ZA/RANKL+ rats compared to ZA/RANKL- rats (Figure 

14J). 

 

Radiographic assessment 3 and 12 days after surgery 

BV/TV values were less than 10% in all specimens from all groups 3 days after surgery 

(data not shown). Significant healing with woven bone was observed in the veh/RANKL- and 

veh/RANKL+ sites 12 days after surgery (Figure 15A). Significantly decreased BV/TV was seen 

in the extraction sockets of the ZA/RANKL- and ZA/RANKL+ groups compared to the veh treated 

groups. Interestingly, ZA/RANKL+ sites showed increased bone healing compared to the 

ZA/RANKL- sites 12 days after surgery. (Figure 15, A, B). 

 

RANKL immunohistochemistry 

 

Three days after surgery, RANKL immunohistochemistry revealed increased signal in the 

sockets of veh/RANKL+ and ZA/RANKL+ rats compared to the non RANKL treated groups. 
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RANKL signal was noted in the soft tissue of the sockets (Figure 16A, B, C, D, E, and Figure 16B, 

D, onsets, yellow arrows) 3 days after surgery. No significant differences were seen in the RANKL 

signal in the soft tissue of the mandibles 12 days after surgery (data not shown).  

 

Serum TRAP assay 

Serum TRAP assay was performed to ensure absence of off-target effects in rats. TRAP 

levels 3 days before and 3 days after surgery were compared in veh and ZA treated animals. TRAP 

levels before and after extraction and local RANKL delivery did not show a statistically significant 

increase neither in the vehn or in the ZA treated groups (Figure 16F).  

 

Histologic assessment of extraction sockets 3 days after surgery 

Histologic evaluation 3 days after surgery showed inflammatory infiltrate and sparse 

collagen fibers overlying the sockets of veh/RANKL- or veh/RANKL+ rats (Figure 17A, B, white 

arrows). Absence of complete epithelialization of the wound was noted in both groups. In the 

ZA/RANKL- group, extensive bone exposure was revealed (Figure 17C, black arrows). There was 

absence of soft tissue overlying the alveolar bone and prominent areas of bone exposure were 

revealed. Approximately 20% of bone in the extraction sockets of this group was necrotic (Figure 

17C, C1, E). Contrary, ZA/RANKL+ sockets showed thin epithelium and soft tissue covering the 

sockets. (Figure 17D, E, white arrows). Importantly, osteonecrosis and empty osteocytes over bone 

area were significantly reduced compared to the ZA/RANKL- group (Figure 17D, D1, E). 

 

TRAP staining in extraction sockets 3 days after surgery 
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TRAP staining revealed higher numbers of osteoclasts in the sockets of veh/RANKL+ vs 

veh/RANKL- groups (Figure 17A2, B2, G). Of note, statistically significantly more osteoclasts 

were also seen in the extraction sockets of ZA/RANKL+ compared to the ZA/RANKL- group 

(Figure 17C2, D2, G). As we have previously described, many osteoclasts in ZA treated rats 

showed an altered, round morphology with pyknotic nuclei and were not in contact with the bone 

surface. Interestingly, higher numbers of osteoclasts attached to the bone surface were seen in the 

extraction sockets of ZA/RANKL+ vs ZA/RANKL- sites. (Figure 17H). 

 

Histologic assessment of extraction sockets 12 days after surgery 

Intact epithelium with rete peg formation was detected in the alveoli of veh/RANKL- and 

veh/RANKL+ rats. Connective tissue showed interval resolution of the inflammatory infiltrate 

observed in the 3 days timepoint (18A, B, orange arrows). Significant amount of woven bone was 

seen occupying the extraction sockets in both groups of veh-treated animals. Osteonecrosis and 

empty osteocytes were minimal in the mandibles of both veh treated groups. (Figure 18A, A1, B, 

B1, E, F). Histologic evaluation of ZA/RANKL- sockets showed areas of epithelial disruption, 

bone exposure (18C, black arrow) and bony sequestration (18C1, blue arrow). Significant amount 

of persistent osteonecrosis and empty osteocytes were also detected (Figure 18C, C1, E). In 

contrast, the extraction sockets of ZA/RANKL+ treatment demonstrated continuous keratinized 

epithelium with no evidence of bone exposure. Of note, statistically significantly less osteonecrosis 

and empty osteocytes were seen in the alveoli of these animals the ZA/RANKL- group (Figure 

18D, D1, E). 
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TRAP staining in extraction sockets 12 days after surgery 

Twelve days after tooth extraction, comparable numbers of osteoclasts were seen in the 

sockets of veh/RANKL- and veh/RANKL+ groups (Figure 18A2, B2, G). Importantly, abundance 

of osteoclasts was noted in the alveoli of ZA/RANKL+ rats. Statistically significant increase in 

total osteoclast numbers was detected in this group compared to the ZA/RANKL- group. Of note, 

significantly higher numbers of osteoclasts attached to the bone surface were seen in the alveoli of 

ZA-treated rats with RANKL vs ZA treated rats without RANKL treatment (Figure 18F).  

  

Picrosirius red and cytokeratin 14  

Pc red revealed an organized collagen network in the veh treated groups with strongly 

birefringent collagen fibers extending from the submucosal soft tissue and inserting within the 

vital bone (Figure 19A, B, A1, B1, blue arrows). Contrary, in ZA/RANKL- rats disruption of the 

bone-soft tissue interface was noted with absence of collagen fiber insertion in the alveolar bone 

(Figure 19C, C1, white arrow).  In the ZA/RANKL+ group, however, intact collagen network with 

strong collagen birefringence and collagen fiber insertion in the bone were noted. (Figure 19D, 

D1, blue arrows). 

 

Cytokeratin 14 showed intact epithelium in veh groups (Figure 19E, F). Contrary, epithelial 

disruption (19G, black arrow) adjacent to the necrotic bone (19G, red arrow) were noted in 

ZA/RANKL- mandibles (Fig 19G). The ZA/RANKL+ sockets showed intact, continuous 

epithelium covering the extraction socket, akin the veh treated rats (Figure 19H).   

 

Discussion 
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Medication related osteonecrosis of the jaws is a severe complication of antiresorptive and 

antiangiogenic medications that can considerably deteriorate the quality of life of already 

compromised patients. Although progress in animal and clinical research has increased our 

understanding on MRONJ development, treatment for the disease remains largely empirical. 2, 61.  

 

Several hypotheses regarding MRONJ development exist and include bone remodeling 

inhibition, angiogenesis inhibition, local infection/inflammation, soft tissue toxicity, or immunity 

disruption1, 42. Interestingly, MRONJ has been reported with a similar prevalence and severity in 

patients with a history of bisphosphonates and denosumab (a monoclonal antibody to RANKL27, 

69, 153. Even though these two groups of drugs act by entirely distinct pharmacologic mechanisms, 

they both target osteoclasts and result in reduced bone resorption and suppressed bone turnover 13.  

Our data indicate that local restoration of osteoclastic function in a setting of BP treatment can 

reduce osteonecrosis and improve mucosal healing after tooth extraction. This present study, 

therefore, provides evidence in support of the bone remodeling inhibition hypothesis.  

Our study showed that RANKL treatment enhanced bone healing in ZA treated rats 

compared to the ZA/RANKL- group 12 days after surgery. Osteoclastic resorption plays an 

essential role in socket remodeling after tooth extraction. In fact, 2 months after tooth extraction 

the alveolar crest demonstrates an abundance of osteoclasts in human biopsy specimens100. A 

longer duration of bisphosphonate treatment (more than 5 years vs less than 5 years) has also been 

associated with a prolonged wound healing period in extraction sockets of patients154. This is likely 

due to the disruption of the steps of oral wound healing, which include clot formation, formation 

of granulated tissue, establishment of connective tissue and preosseous tissue, filling of the 

extraction socket with trabecular woven bone, and remodeling of the socket to produce lamellar 
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bone155.  Our study revealed that ZA/RANKL+ sites demonstrated increased socket healing 

compared to the ZA/RANKL- sites, likely due to an improvement in bone remodeling through 

activation of osteoclast-mediated bone resorption.    

 

Our data showed no difference in TRAP serum levels before and after surgery, suggesting 

RANKL activity was mainly local and osteoclastogenesis was not stimulated in distant skeletal 

sites. Interestingly, serum TRAP levels were similar between the veh and ZA treated groups. This 

has been described before in the literature by Kuroshima et al 156. In this study, ZA was 

administered to mice in a similar regimen to ours for 13 months. Similar to our results, this paper 

reports no significant changes in serum TRAP levels between veh and ZA treated groups. 

Additionally, Kuroshima et al reported an increased number of non-attached osteoclasts around 

mucosal wounds in the hard palate away from the alveolar ridge. Our data show that non-attached 

osteoclasts can also be found in the alveolar ridge and are present in significantly earlier timepoints 

(3 and 12 days). 

 

Our study included two different time-points. We elected a timepoint of three days in order 

to capture the initial stages of wound healing (inflammatory phase) and a later timepoint of 12 

days to investigate a more mature socket healing stage (proliferative phase). Three days after 

extraction, a considerable amount of osteonecrosis was noted in the mandibles of veh-treated rats 

with or without RANKL treatment.  This is likely due to the early time-point elected after tooth 

extraction, which causes significant trauma to the soft and bony tissues. As expected, osteonecrosis 

in veh treated rats was minimal 12 days after tooth extraction, likely because of osteoclast 

activation and resorption of necrotic bone. 
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In ZA/RANKL- rats, mucosal defects, bone exposure and extensive bone necrosis were 

noted. Prominent osteonecrotic areas were seen 3 days after tooth extraction and persisted in the 

12-day time-point. Contrary, ZA treated animals with RANKL treatment consistently 

demonstrated smaller osteonecrotic areas which coincided with an increase in osteoclastic activity. 

Our data suggest that local enhancement of osteoclastic activity resulting in resorption of necrotic 

bone can improve wound healing after tooth extraction despite the presence of systemic 

antiresorptive treatment.  

 As we and others have described before, bisphosphonate treatment does not result in 

complete osteoclast elimination but rather in a change in their morphology which eventually results 

in apoptosis8, 156. Bisphosphonates alter the mevalonate pathway by inhibiting and enzyme called 

farnesyl pyrophosphate synthase. This results in the impairment of small GTPases, such as Ras 

and Rho which are essential in maintaining osteoclast morphology, migration and cell survival. 157 

Histologically, osteoclasts demonstrate a round shape contrary to the oval shape of non-

bisphosphonate treated osteoclasts. Often, they are larger in size and hypernucleated. An increased 

DC-STAMP signal has been described in osteoclasts from MRONJ patients compared to healthy 

controls or samples from osteomyelitis or osteoradionecrosis patients. Bisphosphonate treated 

osteoclasts present with pyknotic nuclei and are seen at a distance from the bone, suggesting bone 

resorption is impaired. Interestingly, in ZA/RANKL+ rats, we appreciated more osteoclasts that 

were attached to the bony surface, suggesting they maintained their resorptive ability. RANKL has 

been shown to decrease apoptosis in osteoclasts treated with bisphosphonates in vitro158. It is 

possible that the decreased osteonecrosis we observed in ZA/RANKL+ sites was due to both an 

increase in osteoclast numbers and an increased survival of the osteoclasts already exposed to 

zoledronic acid.  
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In both veh groups and in ZA/RANKL+ rats, we were able to appreciate collagen fiber 

insertion within the alveolar bone, while in ZA/RANKL- animals the collagen network was 

discontinuous around the necrotic bone areas. The disruption in the interface between soft tissue 

and bone may play an important role in the initiation of epithelial migration which can result in 

sequestration and bone exposure. In a previous study, we have described altered socket healing 

after extraction of periodontally compromised teeth in rats treated with bisphosphonates. In 

particular, we noticed a disorganized collagen network with weak collagen bundle birefringence 

and lack of insertion of collagen fibers in the necrotic bone. 65. Epithelial migration approaching 

the osteonecrotic areas had also been observed and was rimmed by immune cells expressing MMP-

9 and MMP-13. It is possible that the restoration of bone resorption and the ongoing remodeling 

of vital bone seen in ZA/RANKL+ sites might have prevented epithelial migration and helped 

accommodate the insertion of the periodontium fibers after tooth extraction.  

Importantly, our study showed improvement of MRONJ lesions without the need for 

antiresorptive treatment discontinuation. The bisphosphonate dose (66 ug/kg) we utilized parallels 

the dose of zoledronic acid prescribed to oncologic patients. Nonetheless, the therapeutic approach 

we describe may also be efficient in osteoporotic patients, given that the cumulative 

bisphosphonate dose they receive is generally lower compared to cancer patients due to the 

utilization of less severe regimens. In fact, zoledronic acid (Reclast) is prescribed to osteoporotic 

patients in 5mg once every 12 months whereas 4mg of zoledronic acid (Zometa) is used every 3-

4 weeks in oncologic patients. 159-161 We believe that achieving improved socket healing without 

discontinuing bisphosphonate treatment is crucial because ‘a drug holiday’, may potentially 

compromise the patient’s skeletal health2, 136. 
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We recognize some limitations to our study. We elected RANKL delivery through a 

collagen substrate due to its wide clinical application. This form of delivery allows for a relatively 

short contact time between RANKL and the tissues. However, this experimental duration was 

sufficient to show the differential socket healing between the ZA/RANKL- and the ZA/RANKL+ 

sites. In future studies, we aim to improve our delivery method utilizing engineered hydrogels that 

allow a slower molecule release. Moreover, we intent to expand our study to include longer 

timepoints (6-8 weeks) to better replicate the clinical scenario of MRONJ. 

Here, we present a clinically relevant application of local RANKL delivery as it is plausible 

that a collagen sponge (a very commonly used substrate during extractions) could be infused with 

RANKL and inserted within the extraction socket of patients on antiresorptives, in an effort to 

accelerate wound healing and minimize the incidence of MRONJ. The intervention we describe 

would have beneficial effects, not only for minimizing MRONJ occurrence, but also to alleviate 

the fear of osteoporotic patients and thus improve compliance with antiresorptive medications. 

Additionally, it would allow clinicians to more easily elect extraction of hopeless teeth in patients 

at risk of MRONJ and therefore, minimize complications from persistent dental infection.  
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Figure 14.  Clinical images of mandibles 3 and 12 days after surgery 

Figure 14: Clinical images of mandibles 3 and 12 days after surgery. Images of the mandibular 

mucosa of veh or ZA treated rats with or without RANKL treatment 3 days after surgery. Mucosal 

defects and ongoing mucosal healing is seen. (14A-D, red circles). Quantification of unhealed 

mucosal area over total mucosal area 3 days after surgery. Image of the mandibular mucosa of veh 

or ZA treated rats with or without RANKL treatment 12 days after surgery. Image of the 

mandibular mucosa of a veh-treated rat without RANKL treatment (14F). Complete mucosal 

healing is seen (blue circle). Image of the mandibular mucosa of a veh-treated rat with RANKL 

treatment (14G). Complete mucosal healing is seen (blue circle). Image of the mandibular mucosa 

of a ZA treated rats without RANKL treatment (14H). A large mucosal defect and bone exposure 

are noted (red circle). Image of the mandibular mucosa of a ZA-treated rat with RANKL treatment 

(14I). Complete mucosal healing is seen (blue circle). Quantification of unhealed mucosal area 

over total mucosal area 12 days after surgery (14J). *=statistically significant with a p value<0.05 

 

  



92 

Figure 15. MicroCT assessment of veh or ZA treated sites with or without RANKL treatment 

 

 

Figure 15: MicroCT assessment (axial view) of veh 

or ZA treated sites with or without RANKL 

treatment (Figure 15A). Quantification of bone 

volume over tissue volume in the distal root of the 

first molar (Figure 15, B). *= statistically significant 

with a p value <0.05 

B 

A 
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Figure 16. RANKL immunohistochemistry of veh or ZA treated rats with or without RANKL 

treatment. 

 

 

Figure 16: RANKL immunohistochemistry of veh or ZA treated rats with or without RANKL 

treatment. (16A-D). Yellow arrows in onsets point to RANKL stain on osteoclasts. Quantification 

of RANKL positive cells over soft tissue area (16E). Serum TRAP levels 3 days before and 3 days 

after surgery in veh and ZA treated rats. **= statistically significant with a p value <0.01 ,   *** = 

statistically significant with a p value <0.001 

  

D 



94 

Figure 17. Histologic sections and TRAP staining 3 days after extraction 

 

Figure 17. Histologic sections of extraction sockets of vehicle or ZA treated rats with or without 

local RANKL treatment 3 days after tooth extraction and RANKL delivery. Histologic section of 

the mandible of a veh-treated rat without RANKL treatment (17A, A1). Inflammatory cells and 

collagen fibers are seen overlying the alveolar bone (white arrow). Histologic section of the 

mandible of a veh-treated rat with RANKL treatment (17B, B1). Inflammatory cells, collagen 

fibers and epithelium are seen overlying the alveolar bone (white arrow).  Histologic section of 
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the mandible of a ZA-treated rat without RANKL treatment (17C, C1). Absence of soft tissue 

overlying the alveolar bone is seen. Significant areas of bone exposure and osteonecrosis are 

noted (black arrow). Histologic section of the mandible of a ZA-treated rat with RANKL 

treatment. Inflammatory cells, collagen fibers and epithelium are seen overlying the alveolar 

bone (17D, D1, white arrow). Small areas of necrosis are noted. TRAP staining of veh or ZA 

treated sites with or without RANKL treatment (17A2-D2). Quantification of osteonecrotic area 

over total bone area (17E), empty osteocytes over bone area (17F), TRAP positive cells over 

bone length (17G) and attached osteoclasts over bone length (17H) *= statistically significant 

with a p value <0.05.  
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Figure 18. Histologic sections and TRAP staining 12 days after extraction 

Figure 18: Histologic sections of extraction sockets of vehicle or ZA treated rats with or without 

local RANKL treatment 12 days after tooth extraction and RANKL delivery. Extraction socket 

of a veh-treated rat without RANKL treatment. Intact epithelium, absence of inflammatory 

infiltrate (orange arrow) and minimal osteonecrosis are noted (18A, A1). Extraction socket of a 

veh-treated rat with RANKL treatment (18B, B1). Intact epithelium, absence of inflammatory 

infiltrate (orange arrow) and minimal osteonecrosis are noted. Extraction socket of a ZA-treated 
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rat without RANKL treatment (18C, C1). Epithelial disruption and bone exposure (black arrow). 

Bony sequestration and osteonecrosis are noted (blue arrow). Extraction socket of a ZA-treated 

rat with RANKL treatment. Intact epithelium, absence of significant inflammation or bone 

exposure and reduced osteonecrosis are seen. (18D, D1). TRAP staining of veh or ZA treated 

rats with or without RANKL treatment (18A2-D2). Quantification of osteonecrotic area over 

total bone area (18E), empty osteocytes over bone area (18F), TRAP positive cells over bone 

length (18G) and attached osteoclasts over bone length (18H)   *** = statistically significant with 

a p value <0.001, + = statistically significant with a p value <0.0001 
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Figure 19. Picrosirius red and Cytokeratin 14 staining 12 days after extraction 

Figure 19. Picrosirius red stain of veh or ZA treated sites with or without RANKL treatment. 

(bright field-19A-D, polarized light-19A1-D1). Blue arrows point to insertion of collagen fibers 

in the bone. White arrows point to lack of collagen fiber insertion in the bone. Cytokeratin 14 

stain of veh or ZA treated sites with or without RANKL treatment (19E-H). Black arrows points 

to epithelial disruption red arrow point to necrotic bone. 
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CHAPTER 6 

M1 OVER M2 MACROPHAGES POLARIZATION IN ZOLEDRONATE TREATED 

MICE WITH PERIODONTAL DISEASE AND ROSIGLITAZONE TREATMENT AS 

THERAPY FOR MRONJ 

Abstract 

Macrophages are important regulators of bone remodeling and an M1 polarization has been 

implicated in the development of MRONJ. Here, we characterized the phenotype of macrophages 

in zoledronate treated mice with periodontal disease and explored the role of rosiglitazone, a drug 

that has been reported to invert M1/M2 macrophages ratio, in MRONJ amelioration.  Sixty-six 

mice received ZA or saline treatment and a 6.0 ligature around their second molar. Mice were 

sacrificed 1, 2 or 4 weeks after ligature. Sixty-eight mice were treated with ZA or saline and half 

mice of each group received rosiglitazone for two weeks (veh/rosi-, veh/rosi+, ZA/rosi-, 

ZA/rosi+). 6.0 ligatures were placed around their second molars and 20 mice were sacrificed after 

2 weeks. The remaining forty-eight mice were treated with ZA or saline and half mice from each 

group received rosiglitazone treatment. 6.0 ligatures were placed around their molars for 2 weeks 

and were replaced by 5.0 ligatures for 4 weeks. Micro-CT, histologic and immunohistochemical 

analyses were carried out.  

An M1 predilection was noted in ZA treated mice with periodontitis 1, 2 or 4 weeks after 

ligature. M1 cells were found positive for MMP-13 and caused disruption of the surrounding 

collagen network in ZA mice. Rosiglitazone caused a reversal in the M1/M2 ratio in ZA mice and 

a further increase in M2 macrophages in veh mice. Bone loss attenuation was seen in the veh/rosi+ 

vs the veh/rosi- group in the 2-week timepoint. Increase of the epithelium to crest distance was 
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seen in the ZA/rosi+ compared to the ZA/rosi- group 2 weeks after ligature placement. Bone 

exposure incidence, epithelium to crest distance and osteonecrosis were similar in ZA/rosi- and 

ZA/rosi+ mice 6 weeks after ligature. Our data point to an important role of M1 macrophages 

polarization with an overexpression of MMP-13 in MRONJ development and provide insight on 

the utilization of rosiglitazone as a therapeutic means. 

 

Introduction 

MRONJ is a severe complication of antiresorptive and antiangiogenic medications which 

results in significant deterioration of the affected patients’ quality of life. Although the 

pathophysiologic mechanisms underlying this disease are not clear, dental inflammation/infection 

and altered immune response are central in disease development1, 25, 40, 42, 162.   

Tooth extraction is the main inciting factor for MRONJ1. However, dental inflammation is 

by far the most common reason for tooth extraction in adults64, 163. In fact, animal studies have 

shown that extraction of diseased teeth combined with antiresorptive treatment is sufficient to 

induce MRONJ, whereas sockets undergo uneventful healing after extraction of healthy teeth101.  

Macrophages are a predominant population in periodontal disease lesions, are specialized 

in phagocytosis and can be grossly classified as pro-inflammatory (M1) or pro-resolving (M2) 73, 

164. Macrophages which are polarized towards the pro-inflammatory phenotype respond to 

cytokines, such as IL-1 or IL-6165. Exposure to cytokines such as IL-4 or IL-10 results to an M2 

polarization166. Macrophages are closely associated with bone remodeling and bone resident 

macrophages have an emerging role in bone homeostasis. M1 macrophages are commonly 
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associated with bone loss whereas, M2 macrophages have been linked to an anabolic skeletal 

effect. 73, 167, 168 

An increased M1/M2 ratio has been previously reported around osteonecrotic lesions of 

mice with multiple myeloma46. Additionally, a TLR-4 increase resulting in M1 macrophage 

polarization has been described in osteonecrotic lesions of mice treated with zoledronic acid45. 

Rosiglitazone is an anti-diabetic drug which has been used in the past to reverse the M1/M2 ratio 

and reduce bone loss in periodontal disease74. Here, we hypothesized that an M1 over M2 

predominance would be observed around osteonecrotic areas and that rosiglitazone treatment 

would reduce inflammation and improve MRONJ. 
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Materials and Methods 

Animal care 

Sixty-six mice were treated with saline or 200 μg/kg of zoledronic acid (ZA), (LKT 

laboratories, St. Paul, MN). Mice received a 6.0 ligature around their second molars and were 

sacrificed 1, 2 or 4 weeks after ligature placement.  

Experiment with rosiglitazone treatment 

  Sixty-eight mice were randomly assigned to receive saline or 200 μg/kg of zoledronic 

acid (ZA), (LKT laboratories, St. Paul, MN). Mice were injected intraperitoneally twice a week in 

morning hours. Animals were kept and treated according to guidelines of the UCLA Chancellor’s 

Animal Research Committee. Half animals from the saline or ZA treated mice received 50ug/kg 

of rosiglitazone (Selleckchem, Houston, Tx) dissolved in DMSO three times a week in morning 

hours. Non-rosiglitazone treated mice received DMSO injections.   

After a week of pretreatment with saline or ZA, 6.0 sized ligatures were placed around the 

second molars on one side. 20 mice were sacrificed 2 weeks after ligature placement. The 

remaining 48 mice were received a 5.0 ligature after removal of the 6.0 ligature that was in place. 

Four weeks later, the 48 mice were sacrificed.  

Micro CT 

Dissected maxillae were imaged by high-resolution ex vivo µCT utilizing the SkyScan 

1172 μCT scanner (SkyScan, Kontich, Belgium), as described. Volumetric image data were 

converted to DICOM format and imported in the Dolphin Imaging software to generate 3D and 

multiplanar reconstructed images. The distance from the cemento-enamel junction (CEJ) to the 

alveolar crest (AC) was measured at the mesial surface of the second molar. 
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Histology 

Maxillae were fixed for 48 h in 4% paraformaldehyde and then decalcified in 14% EDTA 

for 4 weeks. Samples were paraffin embedded and 5 μm-thick cross sections were made 

perpendicular to the long axis of the alveolar ridge at the area of ligature. H&E stained slides were 

digitally scanned image analysis was performed using the Aperio Image Scope software (Aperio 

Technologies, Inc., Vista, CA, USA). The osteonecrotic area(s) and empty osteocytes over total 

bone area (s) were quantified.  

Immunohistochemistry 

Double staining of INOS (ab 15323, Abcam), F4/80 (ab 111101, Abcam), Arg1 (M01106-

1, Boster), antibodies were performed in all combinations. MMP-13 (39012, Abcam) antibody was 

also used.  Positive cells were measure on Image J (NIH) and were normalized by the soft tissue 

area that was measured per sample.  

Statistics 

Raw data were analyzed using the GraphPad Prism Software (GraphPad Software, Inc. La 

Jolla, CA). Descriptive statistics were used to calculate the mean and the standard error of the 

mean (SEM). Data were analyzed by a two-way ANOVA and post-hoc Tukey’s test for multiple 

comparisons among the various groups and t-test for a single comparison with a statistical 

significance of p<0.05. 

 

Results 

iNOS (M1 marker) and Arg1 (M2 marker) double staining showed a significant increase 

of M1 cells and a dramatic reduction in M2 cells in ZA treated animals in three timepoints (1, 2, 
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or 4 weeks) after ligature placement. iNOS and Arg1 were also combined with F4/80 staining to 

confirm their macrophage origin (Figure 20, A). The M1 macrophages were noted on the surface 

of the alveolar bone in the ZA treated animals whereas they were seen at a distance from the bone 

in the veh treated mice. Additionally, a layer of M2 macrophages was noted in proximity to the 

alveolar bone in veh treated mice (Figure 20, B). 

Our picrosirius red data showed a disorganized collagen   fiber   network   along   the 

periodontal bone in ZA treated but not in veh treated mice. Indeed, the areas where the collagen 

network was discontinued were populated with iNOS positive cells. (Figure 21). We performed 

co-immunostain to test whether these iNOS positive M1 macs were also expressing MMP-13. An 

exuberant increase in MMP-13 signal was seen in the ZA treated animals and almost complete co-

localization of MMP-13 and iNOS signal was detected in the same animals. The MMP-13 positive 

cells were seen rimming the alveolar bone.  The co-localization of MMP-13 and iNOS signal was 

also observed in the maxillae of the veh treated mice. However, these cells were not in contact 

with the alveolar bone. (Figure 22, A). Statistically significant increase in the MMP-13 positive 

and the double positive iNOS and MMP-13 cells was seen in the ZA treated compared to the veh 

treated alveoli 1, 2 or 4 weeks after ligature placement (Figure 22, B). 

Rosiglitazone treatment 

In veh treated animals that had received rosiglitazone treatment (veh/rosi+), a significant 

increase in M2 macrophages and an M1 decrease was noted compared to the veh/rosi- animals 2 

weeks after ligature placement. Interestingly, a reversal of M1/M2 ratio was observed in ZA/rosi+ 

alveoli with a predominance of M2 macs vs the M1 dominated alveoli of ZA/rosi- animals (Figure 

23, A). Statistically significant increase in M2 numbers and decreased M1 numbers were noted in 
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the rosiglitazone treated groups of veh or ZA animals compared to the non-rosiglitazone groups. 

(Figure 23, B). 

Radiographic assessment 2 weeks after ligature placement   

Bone loss was statistically significantly attenuated in veh/rosi+ alveoli compared to the 

veh/rosi- group 2 weeks after ligature placement. In ZA treated mice, bone loss was significantly 

attenuated, as we have described before. No statistically significant differences were seen in the 

periodontal bone loss between ZA/rosi- and the ZA/rosi+ groups (Figure 24, A, B). 

Histologic assessment 2 weeks after ligature placement 

The epithelium to crest distance was increased in ZA/rosi+ vs the ZA/rosi- animals 2 weeks 

after ligature placement. A minimal amount of osteonecrosis was seen in the alveoli of ZA treated 

sites regardless of rosi treatment. No statistically significant differences were noted between 

ZA/rosi- and ZA/rosi+ sites. No frank bone exposure was seen in any of the ZA treated sites 

(Figure 25A, B, C). 

Radiographic assessment 6 weeks after ligature placement  

Micro CT revealed no statistical significant differences between the rosi treated vs the non-

rosi treated sites in veh or ZA treated animals. The bone loss was increased compared to the 2-

week timepoint in veh treated animals regardless of rosiglitazone treatments. ZA treated animals 

demonstrated attenuated bone loss compared to the veh treated animals at the 6-week timepoint. 

The bone loss levels in ZA treated animals were similar at the 2-week timepoint and the 6 weeks 

timepoint (Figure 26).  
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Histologic assessment 6 weeks after ligature placement 

No veh treated sites showed bone exposure regardless of rosiglitazone treatment. 10/12 

sites of the ZA/rosi- group showed histologic bone exposure whereas 10/11 sites of the ZA/rosi+ 

group demonstrated bone exposure 6 weeks after ligature placement. Osteonecrosis was increased 

in ZA/rosi- and ZA/rosi+ animals compared to veh treated mice. No statistical differences were 

detected in the levels of osteonecrosis between ZA/rosi- and ZA/rosi+ groups (Figure 27). 
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Discussion 

Macrophages are important regulators of inflammatory response and bone homeostasis169. 

The role of macrophages has been characterized before in periodontal disease and other systemic 

conditions, such as rheumatoid arthritis and vascular calcifications170, 171. Lately, a new population 

called osteomacs (osteal macrophages) has been identified and further highlights the role of 

macrophages in bone remodeling.  In fact, genetic macrophage depletion in the MAFIA mouse has 

been associated with delayed fracture healing, osteopenia, irresponsiveness to the anabolic effects 

of PTH and growth retardation in prenatal macrophage depletion167, 172, 173. 

A few studies have investigated the role of macrophages in MRONJ pathogenesis. In these 

studies, a clear predominance of M1 vs M2 polarization has been reported. In fact, in a study by 

Zhang et al, systemic infusion with M2 cells and blocking of IL-17 showed a reduction in MRONJ 

incidence in the extraction socket of mice burdened with multiple myeloma46. In a more recent 

publication by Zhu et al, M1 polarization in the extraction sockets of zoledronate treated mice was 

found to be TLR-4 mediated and TLR4-/- mice demonstrated ameliorated socket healing and a 

decrease in M1 population45. Our data corroborate an M1 polarization in zoledronate treated 

alveoli with periodontal disease. Interestingly, this M1 predominance was seen in the absence of 

tooth extraction suggesting that M1 macrophages may be important in initial steps of MRONJ 

development before dentoalveolar trauma has been induced.  

A strong co-localization of iNOS and MMP-13 signal was observed in the alveoli of ZA 

treated mice rimming the periodontal bone. Importantly, these cells were found in the areas of 

collagen network disruption in ZA treated mice. In a previous study, we have described the lack 

of collagen fiber insertion in the alveolar bone in the extraction sockets of periodontally 

compromised teeth under bisphosphonate treatment65. Here, we confirmed the over-expression of 
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MMP-13 in zoledronate treated mice with periodontal disease even in the absence of tooth 

extraction. MMP-13 is a matrix metalloproteinase expressed mainly by osteoblasts and 

macrophages that has been implicated in osteoarthritis, inflammatory bowel disease and 

periodontitis. In periodontitis in particular, it has been reported to be increased in the crevicular 

fluid and in the tissues around active periodontal disease174-176. Our data collectively show an 

abundance in pro-inflammatory M1 macrophages which express MMP-13 causing degradation of 

the collagen fibers around the bone. It is possible that the weakened osteo-mucosal connection and 

the persistent inflammation are responsible for the initiation of epithelial migration and bone 

exposure noted in clinical MRONJ. 

Rosiglitazone is a PPAR-g activator which has been used to increase insulin sensitivity in 

adipose tissue in patients with Type II diabetes. Rosiglitazone has been implicated in a reduction 

in osteoblast differentiation and bone mineral density in the skeleton of rodents and patients177, 178. 

However, it has been shown to exert a protective role against periodontal bone loss in the jaws of 

rodents179. The mechanisms through which rosiglitazone exerts its beneficial effects in periodontal 

lesions were elucidated by a study by Viniegra et al74. In this study, rosiglitazone increased the 

pro-resolving M2 population in the periodontal lesions enhancing the regeneration of alveolar bone 

and combating the osteolysis induced by a ligature model of periodontitis. Our data confirmed an 

M2 polarization in the rosiglitazone treated mice both in the veh and the ZA groups. Additionally, 

attenuated periodontal bone loss was visualized in veh treated animals receiving rosiglitazone 

treatment compared to the veh/rosi- group 2 weeks after ligature placement. A further reduction in 

periodontal bone loss was not seen in the ZA/rosi+ group compared to the ZA/rosi- group likely 

due to the robust inhibition of periodontal bone loss that zoledronic acid mediated. 
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Interestingly, we were able to detect an increase in the epithelium to alveolar crest distance 

in ZA/rosi+ alveoli compared to the ZA/rosi- group. Given that the levels of the periodontal bone 

were similar between the groups it is likely that epithelial migration was attenuated in the presence 

of rosiglitazone treatment. Epithelial migration has been reported to be mediated by matrix 

metalloproteinases which are overexpressed in inflamed periodontal pockets180. The anti-

inflammatory effects of rosiglitazone and the reduction of M1 macrophages replaced by the pro-

resolution M2 macrophages might have helped attenuate epithelial migration.  

Periodontal bone loss was significantly increased 6 weeks after ligature placement, as 

expected, in veh treated animals. Intriguingly, the protective role of rosiglitazone against 

radiographic periodontal bone loss was not observed in this timepoint. This is possibly due to the 

aggressive periodontitis model we employed which involved replacement of the 6.0 ligature after 

2 weeks with a thicker 5.0 ligature that stayed in place for another 4 weeks. ZA inhibition of 

periodontal bone loss was also noted in the 6 weeks timepoint, as expected. 

ZA/rosi- and ZA/rosi+ groups showed histologic bone exposure in the vast majority (10/12 

and 10/11 respectively) of the sites investigated 6 weeks after ligature placement. We attribute this 

event to the aggressive periodontitis model we elected and the high amounts of potent 

bisphosphonate treatment. We used this model in an effort to increase bone exposure incidence 

and facilitate the characterization of the disease as it appears in human patients. However, it is 

possible that this drastic periodontitis model which resulted in a significant obliteration of the 

periodontal soft tissues did not allow rosiglitazone treatment to reduce bone exposure incidence 

and improve MRONJ burden. Similarly, the levels of osteonecrosis did not improve in the 

ZA/rosi+ group compared to the ZA/rosi- group. 
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MRONJ is a severe disease which can have serious sequalae in already compromised 

patients1. Improving MRONJ burden with a drug that also has anti-diabetic effects is an attractive 

hypothesis. However, further studies need to be performed to determine the efficacy of 

rosiglitazone in MRONJ amelioration. In future studies, we intend to utilize a milder periodontitis 

stimulus (6.0 ligature for 6 weeks) to better study our hypothesis. Our data confirm an M1 

macrophage predilection in ZA treated animals with periodontal disease and prove that 

rosiglitazone can negate the M1/M2 ratio. Although a reduction in epithelium to alveolar crest 

distance was seen in ZA/rosi+ sites 2 weeks after ligature placement, more studies with longer 

experimental timepoints are needed to better replicate the clinical scenario and to investigate 

disease amelioration under rosiglitazone treatment.   

  

 

 

  

 



111 

Figure 20. iNOS and Arg1 immunohistochemistry 

 

 

Figure 20: Percentage of f4/80 positive cells stained for M1 (iNOS) or M2 (Arg1) in veh or ZA 

treated sites (Figure 20,A).  iNOS and Arg1 double staining in veh or ZA treated mice. M1 

predominance in the ZA treated mice compared veh treated mice where an M2 polarization was 

noted. * statistically significant p<0.05 
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Figure 21. Picrosirius red and iNOS staining 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Picrosirius red and iNOS staining. White arrows point to collagen fiber insertion into 

the alveolar bone. Blue arrows show collagen network disruption. Yellow arrows point to iNOS 

positive cells  
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Figure 22. iNOS and MMP-13 staining 

 

Figure 22: iNOS and MMP-13 double staining in veh or ZA treated animals 2 weeks after 

ligature placement (Figure 22, A). Double positive cells normalized for soft tissue area in mm2 in 

veh or ZA treated mice 1, 2, 4 weeks after ligature placement (Figure 22, B). *statistically 

significant p<0.05  

A. 

B. 
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Figure 23. iNOS and Arg1 staining after rosiglitazone treatment 

 

 

 

Figure 23: iNOS and Arg1 staining in veh or ZA treated animals with or without rosiglitazone 

treatment. (Figure 23). M1 or M2 cells normalized over soft tissue area in mm2, *statistically 

significant p<0.05 
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Figure 24. Radiographic assessment 2 weeks after rosiglitazone treatment onset 

 

 

 

 

 

 

 

 

Figure 24: Sagittal images of the alveoli of veh or ZA treated animals with or without rosi treatment 

(Figure 24). CEJ to crest distance in mm, * statistically significant p<0.05 

Rosi- Rosi+ 
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Figure 25. Histologic sections 2 weeks after rosiglitazone treatment 
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Figure 25: Histologic sections of veh or ZA treated animals with or without rosiglitazone treatment 

(Figure 25, A). Epithelium to alveolar crest distance in um (B), Percent osteonecrotic areas (C), 

*p<0.05   
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Figure 26. Radiographic assessment 6 weeks after rosiglitazone treatment onset 

 

 

 

 

 

 

 

 

 

 

Figure 26: Radiographic assessment of veh or ZA treated mice with or without rosiglitazone 

treatment 6 weeks after ligature placement (Figure 26, A). CEJ to crest distance in mm (B). 

*P<0.05 
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Figure 27. Histologic sections 6 weeks after rosiglitazone treatment onset 
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Figure 27: Histologic sections of veh or ZA treated mice with or without rosiglitazone 

treatment. Yellow arrows point to bone exposure (Figure 27, A), number of exposed sites in za 

animals (B), epithelium to crest distance in um (C), percent osteonecrotic area, *p<0.05 
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CHAPTER 7 

SUMMARY AND FUTURE DIRECTIONS 

MRONJ is a severe disease which affects osteoporotic and bone cancer patients. Although 

MRONJ incidence is reportedly low, it is likely that it will continue to increase as new 

pharmacologic agents are being associated with its development and antiresorptive medications 

continue to be vastly prescribed. Significant progress has been made towards the elucidation of its 

pathogenetic mechanisms and its treatment. Our data show that MRONJ is a multifactorial disease 

largely affected by changes in vascularity, local inflammation and inhibition of bone remodeling.  

In our studies, we showed that extraction of healthy teeth is not sufficient to induce MRONJ 

in antiresorptive treated rodents. Extraction of diseased teeth, in contrast, leads to significant 

radiographic and histologic changes which closely parallel the disease in humans. Radiographic 

changes include periosteal bone formation, lack of socket healing and sequestration.  Histologic 

changes involve osteonecrosis, sequestration, persistent inflammation and bone exposure.   

We also observed the overexpression of several markers via immunohistochemistry in the 

extraction sockets of inflamed teeth in the presence of antiresorptive treatment. We observed a 

delayed wound healing stage in these sockets with an increase in the immature Type III collagen 

vs Type I collagen. A disruption was seen in the bone-soft tissue interface in the rodents presenting 

with osteonecrosis. Additionally, MMP-9 was increased in these animals and MMP-9 positive 

cells were seen in the area of the epithelium, around the inflammatory areas of the soft tissue and 

rimming the osteonecrotic bone. An exuberant increase of MMP-13 was also noted in these sockets 

with MMP-13 positive cells extending from the epithelium to the surface of the osteonecrotic bone.  

In the same study, we observed an over-expression of α-SMA signal in contact with the necrotic 
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bone. It is possible that the cells expressing these matrix metallo-proteinases and α-SMA are key 

in the process of epithelial migration and initiation of bone exposure. Our data were confirmed 

with human biopsies which demonstrate increased MMP-13, COL III and α-SMA. The 

perseverance of inflammatory cells around necrotic bone demonstrates an impaired stage of socket 

healing and provides an important insight to the mechanisms of MRONJ development in patients.  

In our studies involving the role of macrophages in the development of MRONJ we noticed 

a clear predominance of M1 vs M2 macs around osteonecrotic lesions. The M1 macrophages were 

in contact with the necrotic bone and interfered with the insertion of collagen fibers in the 

underlying trabecular bone. Additionally, these M1 macrophages expressed MMP-13. Our data 

confirm a predilection in M1 macrophage polarization in an antiresorptive environment. The lack 

of pro-resolution M2 macrophages and the persistence of M1 macrophages secreting pro-

inflammatory cytokines may explain the compromised wound healing observed in MRONJ 

lesions. Although we were successful in reversing the M1/M2 ratio with our studies that employed 

rosiglitazone treatment, we were not able to detect significant difference in the incidence of bone 

exposure or the amount of osteonecrosis in the jaws of zoledronate treated mice with rosiglitazone 

treatment vs without rosiglitazone treatment 6 weeks after periodontal disease was induced. 

In our patient studies, we concluded that CBCT is instrumental in distinguishing between 

common dental disease patients and stage 0 MRONJ patients. It is important to properly diagnose 

these patients presenting with vague symptoms and signs in order to avoid patients in need of 

simple dental procedures, such as root canals, receiving excessive treatment including severe 

antibiotic regimens, surgical procedures or discontinuation of their systemic antiresorptive 

treatment. Interestingly, we found that patients with sequestration at initial presentation are highly 

likely to progress to frank bone exposure within 6 months. These patients are more likely to benefit 
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from close follow-ups and more aggressive treatment than patients presenting without sequestra 

in their initial radiographic examination.  

Lastly, we explored RANKL delivery as a therapeutic approach for MRONJ in an 

extraction model in rats under zoledronate treatment. We appreciated a significant improvement 

in mucosal healing, bone healing and a reduction in bone exposure and osteonecrosis. This 

approach is clinically relevant and could be used to minimize MRONJ incidence and help 

uneventful healing after tooth extraction in patients treated with antiresorptives.  

Future studies   

Rosiglitazone treatment 

We believe that the reason why we could not detect an improvement in MRONJ burden 6 

weeks after rosiglitazone treatment onset was the aggressive periodontitis model we employed. In 

this model, a 6.0 silk ligature is tied around the second molars of the mice and is left in place for 

two weeks. Then, the 6.0 silk ligature is removed and a larger, 5.0 size silk ligature is tied around 

the same tooth and is left in place for 4 weeks. We utilized this model in an effort to increase bone 

exposure incidence in order to better replicate the human disease. MRONJ occurs in approximately 

1% of patients receiving oncologic doses of bisphosphonates or denosumab. In osteoporotic 

patients, the incidence in even lower (approximately 1:10,000). Therefore, a strong inflammatory 

stimulus is needed in combination with high doses of potent antiresorptives to achieve a significant 

incidence of MRONJ. However, utilizing this really aggressive model resulted in considerable 

elimination of the connective tissue.  The lack of MRONJ improvement in rosiglitazone treated 

mice was largely attributed to the obliteration of the soft tissues in the presence of a 5.0 ligature. 

In future studies, we aim to repeat this experiment utilizing the milder 6.0 ligature model to allow 

for a relative restoration of the macrophage environment around the alveolar bone. 
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MMP-13 inhibition 

Throughout our studies, we have observed a substantial increase in MMP-13 signal in the 

soft tissues, on the bone surface and in osteocytes of the alveolar bone in rodents with MRONJ. 

This finding has been consistent in both mouse and rat studies. MMP-13 is mostly expressed by 

osteoblasts and immune cells, mainly macrophages. Our data suggest that MMP-13 is a key 

molecule in MRONJ development. In future studies, we intend to explore the effects of MMP-13 

inhibition. MMP-13 knockout mice are not lethal and are readily available. Monoclonal antibodies 

against MMP-13 have also been used mainly in osteoarthritis studies. We hypothesize that MMP-

13 elimination may have a protective effect against MRONJ development and may decrease 

submucosal inflammation in rodent jaws. 

RANKL delivery method improvement  

Our RANKL therapy data were proof that local increase of osteoclastic function is 

beneficial in the socket healing of zoledronate treated rats. We utilized a collagen tape due to its 

wide clinical application in extraction socket healing in clinical practice. However, we were not 

able to characterize the RANKL release in a time dependent manner. An engineered hydrogel with 

a more precise release over time would be a better method for the delivery of RANKL to the 

tissues. Such a delivery method would also allow a longer contact between the therapeutic 

molecule and the extraction socket tissues. A longer lasting treatment would also allow a longer 

experimental duration (6-8 weeks) which would more faithfully replicate the clinical scenario of 

MRONJ.   
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