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ABSTRACT Even high-quality collection and reporting of study metadata in micro-
biome studies can lead to various forms of inadvertently missing or mischaracterized
information that can alter the interpretation or outcome of the studies, especially
with nonmodel organisms. Metabolomic profiling of fecal microbiome samples can
provide empirical insight into unanticipated confounding factors that are not possi-
ble to obtain even from detailed care records. We illustrate this point using data
from cheetahs from the San Diego Zoo Safari Park. The metabolomic characteriza-
tion indicated that one cheetah had to be moved from the non-antibiotic-exposed
group to the antibiotic-exposed group. The detection of the antibiotic in this second
cheetah was likely due to grooming interactions with the cheetah that was adminis-
tered antibiotics. Similarly, because transit time for stool is variable, fecal samples
within the first few days of antibiotic prescription do not all contain detected antibi-
otics, and the microbiome is not yet affected. These insights significantly altered the
way the samples were grouped for analysis (antibiotic versus no antibiotic) and the
subsequent understanding of the effect of the antibiotics on the cheetah micro-
biome. Metabolomics also revealed information about numerous other medications
and provided unexpected dietary insights that in turn improved our understanding
of the molecular patterns on the impact on the community microbial structure.
These results suggest that untargeted metabolomic data provide empirical evidence
to correct records and aid in the monitoring of the health of nonmodel organisms in
captivity, although we also expect that these methods may be appropriate for other
social animals, such as cats.

IMPORTANCE Metabolome-informed analyses can enhance omics studies by en-
abling the correct partitioning of samples by identifying hidden confounders inad-
vertently misrepresented or omitted from carefully curated metadata. We demon-
strate here the utility of metabolomics in a study characterizing the microbiome
associated with liver disease in cheetahs. Metabolome-informed reinterpretation of
metagenome and metabolome profiles factored in an unexpected transfer of antibi-
otics, preventing misinterpretation of the data. Our work suggests that untargeted
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metabolomics can be used to verify, augment, and correct sample metadata to sup-
port improved grouping of sample data for microbiome analyses, here for nonmodel
organisms in captivity. However, the techniques also suggest a path forward for cor-
recting clinical information in microbiome studies more broadly to enable higher-
precision analyses.

KEYWORDS metabolome, metagenome, microbiome, cheetah, medication,
antibiotics, metadata, Acinonyx jubatus

The microbiome is accepted as a critical aspect of organismal health, with much
attention being focused on the gut microbiome. This environment is variable, in

part defined by an irregular flow of inputs, including diet and medications such as
antibiotics, that impact and shape the microbial community (1–7). Common ways to
examine this variability are to profile microbial community structure and functional
capacity, and less frequently functional activity and output, including metabolite
signatures. Correct interpretation of these profiles relies on the detailed, relevant
metadata that form the foundation for all analyses and applications of the data.

A mismatch between collected metadata and variables of interest can result from a
multitude of reasons, with reporting errors and biases, omission of categories in the
metadata based on original study design, unexpected exposures, and poorly structured
or inconsistent descriptors among the most common. The approach of some large
human cohorts, such as the American Gut Project (8), has been to capture an extensive
array of information using controlled vocabulary and values to maximize the likelihood
of having relevant metadata. However, cohorts that rely on self-reported information
and self-initiative to complete run the risk of obtaining erroneous, incomplete, and
variable amounts of metadata for each sample. Social pressures or fear of repercussions
may further prevent the disclosure of illicit or sensitive information such as drug use,
sexually transmitted diseases, poor hygiene or diet, etc., and the length of time
between a sampling event and collection of information about diet, medication use, or
health-related events can further decrease accuracy (9). For example, metabolite anal-
ysis detected the presence of antibiotics in fecal samples from individuals who reported
not having taken antibiotics in the past 6 months or more (8). Furthermore, a central
issue across microbiome studies is that it is very challenging to capture additional
participant information after a study has been completed, either due to the self-
reported nature, unresponsive subjects, or simply the passage of time.

We propose that metabolite-informed microbiome analyses, where the small-
molecule composition of a sample, readily detected using a liquid chromatography-
tandem mass spectrometry (LC-MS/MS) workflow, can be used to generate empirically
determined metadata assignments for compounds such as medications, including
antibiotics or painkillers, and personal care products, such as sunscreen. In particular,
the use of antibiotics in a clinical setting is common, impacting organisms from
livestock, domestic animals, captive wildlife, to humans of every age. Antibiotics have
a strong documented impact on the gut microbial community (1–5), often resulting in
large decreases in alpha diversity. These changes in alpha diversity have the potential
to alter microbial community structure and the gut metabolome. Antibiotics have also
been shown to influence the gut microbial communities of members of a household
where one individual is taking antibiotics (10). The route of impact was, however, not
clear, leaving open the possibility of a shift in the microbiome that is microbially or
chemically mediated, possibly through transfer of the drug itself between individuals.

Similar to how domestic animals and human patients are treated in a clinical setting,
animals in managed care such as cheetahs (Acinonyx jubatus) have interventions only
when deemed medically necessary. Based on the individual animal health history, each
animal has a unique combination of housing location, diet, medication use, and
environmental exposure. Cheetahs in captivity suffer from higher rates of veno-
occlusive disease and gastrointestinal distress than their wild counterparts (11), leading
to multiple treatment interventions, such as changes in diet and medications. However,
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unlike human subjects, zoo animals do not self-report information, and detailed records
of food consumption, medication use, health parameters, housing, and behavior are
recorded by keepers and trainers to capture these interventions. These detailed meta-
data and controlled conditions provide an ideal setting for examining the complemen-
tarity of a metabolome-informed approach to microbiome analyses.

Here, we present a workflow (Fig. 1) for generating study-specific metabolome-
informed metadata categories, using cheetahs as a case study, and highlight the value
of the approach for generating empirical metadata and reinterpreting the data. Finally,
we discuss broader applications of using empirical evidence to correct sample catego-
rization and records and provide concrete examples where this technique is anticipated
to have the greatest impact, suggesting areas where metabolomic data should be
routinely collected.

RESULTS

We collected and analyzed paired shallow shotgun metagenomic sequence data
and untargeted LC-MS/MS data from fecal samples from seven cheetahs housed at the
San Diego Zoo Safari Park in 2018 over the course of 1 month (Table 1). Shallow
shotgun metagenomic sequencing (12) provides a snapshot of the microbial commu-
nity structure at each time point and can provide insight into functional potential (e.g.,
the potential exchange and transformation of metabolites between the environment,
microbes, and host). Untargeted LC-MS/MS metabolomic analysis aims to detect all
molecules in a sample without any knowledge of the molecular constituents a priori,

FIG 1 Analysis workflow for metabolome-informed microbiome analyses. All analyses begin with the collection of samples and metadata (information about
the samples such as time of collection, subject name or number, etc.), followed by microbiome data generation, such as sequence data and untargeted
metabolomics (dark blue). A traditional, or uninformed, analysis will then identify confounders from the metadata and individually parse the data sets based
on reported metadata variables and synthesize results from the data sets in the last analysis step. In contrast, a metabolome-informed analysis, as presented
in this study, will empirically determine whether there are confounders or additional information identified by metabolomic analysis (Fig. 2), which in this study
identified antibiotics in samples where none were reported. The MS data empirically support creation of an MS-informed metadata column, which is applied
to each data set collected (metagenome and metabolome in this analysis) (Fig. 3). This cycle can be iterated multiple times based on potential confounders
and information obtained through the MS analysis. In this case study, a further iteration filtered the metabolite feature table itself, as medication-derived
metabolites, given only to ill animals, dominated the differences observed (Fig. 4). MS-informed metadata allow the data themselves to help guide the analysis
and facilitates communication between the data sets.
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thereby assessing the chemistry of individuals as well as differences between individ-
uals or populations. Broad untargeted metabolomics is able to identify compounds that
corroborate or challenge metadata assignments and can thus be inspected in a
concerted fashion for accuracy based on individual study design (Fig. 1) and therefore
provide valuable empirical evidence to enhance the accuracy of our analyses. Com-
bined, these data provide a window into the community structure as well as the inputs
that are entering the gut microbial environment, including host, diet, and medication-
related compounds.

Discovery of inconsistency between reported and detected MS data. Initial
inspection of the metabolome and metagenome identified antibiotic use as a main
driver of differences between samples, as observed by principal-coordinate analysis
(PCoA) (Fig. 2a and b), with the first principal axis (PC1) explaining 32.37% of the
variance in the metabolome and 70.23% of the variance in the microbiome. The
between sample distances from PCoA clearly differentiated the majority of the fecal
samples belonging to the male cheetah Isoka, who was treated for gastritis with
medication, including two 14-day courses of the antibiotic amoxicillin. Interestingly, a
fraction of samples reported in the metadata as “no antibiotic use” cluster together
with the “antibiotic use” samples, indicating a molecular similarity as well as microbial
similarity.

We traced the origin of these “no antibiotic use” samples to one individual, the male
cheetah Okubi (Fig. 2a and b, blue within the red oval) who did not receive any
medications during the sampling period. Okubi was cohoused with his antibiotic-
treated male sibling Isoka, while the other five cheetahs each had their own separate
enclosures at the Wildlife Discoveries facility at the San Diego Zoo Safari Park. As
cohousing presented a risk for misidentification of the source animal for fecal samples,
medications were individually orally administered and glitter was added to Isoka’s diet
(prescribed antibiotic [Rx antibiotic]), in order to verify which stool sample originated
from which animal. Unlike captive rodents and some domestic animals, cheetahs are
not coprophagic, i.e., do not eat each other’s stool. Furthermore, they cover and avoid
their feces, which are removed daily by keepers, thus limiting the potential routes of
molecular sharing. Instead, we hypothesize that grooming and other social interactions
(13) could have led to direct medication carryover.

We tested this hypothesis by examining whether any of the antibiotics Isoka
received were detected in the metabolomic data of the fecal samples from Okubi. The
hydrolyzed form of amoxicillin was detected by library identification in samples from
both Isoka (Rx antibiotic) and Okubi (no Rx) using the web-based global natural
products (GNPS) analysis platform (https://gnps.ucsd.edu) (14), which provides Metabo-
lomics Standards Initiative level II or III identifications (15). Moreover, this antibiotic was
not detected in any samples from the other cheetahs. During the month-long time
course, Isoka was on prescription antibiotics for 24 days (out of 29 total samples), and

TABLE 1 Overview of cheetah cohort and selected variables from the metadataa

Animal
name

Accession
no. Sexb DOBc Age

Liver
health

Antibiotic
use

Amara 609025 F 18-Feb-09 9 yr 5 mo Mild disease No
Bahati 614426 F 1-Sep-14 3 yr 11 mo Normal No
Johari 609201 F 9 yr 1 mo Severe disease No
Isoka 615391 M 1-Sep-14 3 yr 11 mo Normal Yes
Kiburi 610376 M 15-Nov-10 7 yr 8 mo Normal No
Okubi 615390 M 1-Sep-14 3 yr 11 mo Normal No
Ruuxa 614198 M 3-May-14 4 yr 2 mo Normal No
aThe analyses focus on seven cheetahs at Wildlife Discoveries at the San Diego Zoo Safari Park. Shotgun
metagenomic and metabolomic data are available under Qiita ID 11872 and GNPS ID MSV000082969.
Cheetahs maintained the same diet during the 30-day sampling time course.

bF, female; M, male.
cDOB, date of birth given in the form day-month-yr (months [February, September, and November] and
years [2009, 2010, and 2014] are abbreviated).
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the amoxicillin derivative was detected in 23 samples from Isoka and intermittently in
10 samples from Okubi, which also group together based on PCoA (squares; Fig. 2f).

Using a multiomic microbe-metabolite cooccurrence analysis, we observed a strong
trend with antibiotic use across both data sets, with highly correlated microbes and
metabolites also cooccurring (Fig. 2b). Untargeted metabolomics identified members of
the molecular family of plant products, soyasaponins, and their degradation products
(such as that in Fig. 2c) in the stools of cheetahs consuming Nebraska Brand Special
Beef Feline Diet. These ingredients, not initially part of the metadata collection, were
confirmed by the manufacturer ingredient list of the dietary product (http://www
.nebraskabrand.com/docs/beefsheet2019pdf.pdf).

FIG 2 Antibiotics are a major driver of metabolome and metagenome beta diversity, and metabolome analysis reveals unexpected antibiotic transfer,
corroborated by differential microbially mediated food metabolism. (a) Principal-coordinate analysis (weighted UniFrac) for MS feature abundance (left) and
shotgun sequence data (right) for fecal samples from seven cheetahs housed at Wildlife Discoveries. Data points are colored by reported antibiotic use based
on initial metadata (blue for no; red for yes). The shape of the symbol designates the diagnosed disease state, with regard to cheetah liver necrosis syndrome
(CLNS). The metabolome is shown on the left, and the metagenome is shown on the right. The distance metric is weighted UniFrac. The red ovals highlight
the region containing the samples from animals with antibiotic use. (b) Microbe-metabolite cooccurrence analysis. The large cone represents soyasapogenol
C, and the large sphere represents soyasaponin I. In the biplot of cheetah data points, spheres are metabolites, and arrows are microbes. Both metabolites and
microbes are colored by the same scale based on differential abundance analysis: yellow is associated with antibiotics; purple is not associated with antibiotics.
The top 100 species from differential abundance analysis are displayed in the plot; all metabolites are shown. Web of Life genome ID: G000425865; NCBI
taxonomy: k__Bacteria; p__Firmicutes; c_Bacilli; o_Lactobacillales; f__Carnobacteriaceae; g__Lacticigenium; s__Lacticigenium naphtae. (c) Microbially mediated
conversion of soyasaponin I to soyasapogenol C. (d) Soyasaponin I abundance over time for Isoka (black), Okubi (gray) and the range of values for the five
cheetahs (Amara, Bahati, Johari, Kiburi, and Ruuxa) with no detected amoxicillin (shaded gray). (e) Soyasapogenol C abundance over time, as plotted in panel
d. Soyasapogenol C is consistently more abundant in feces than soyasaponin I. (f) Reported amoxicillin administration for Isoka by sampling day (reported),
compared with detection of amoxicillin in fecal samples from Isoka and Okubi (detected). Antibiotic prescription or detection are highlighted in red. Days line
up with the plots of feature abundance for soyasaponin I and soyasapogenol C. Feature data: soyasaponin I (m/z 441.3731, RT 7.3547 min, row ID 209,
annotation network number n/z, correlation group ID 79); soyasapogenol C (m/z 943.5270, RT 5.3381 min, row ID 578, annotation network number 60
correlation group ID 58).
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One class of correlated molecules includes the soyasaponins, where we identified
both precursor (soyasaponin I) and metabolite (soyasapogenol C). Previously, microbial
fermentation has been implicated with the conversion of these compounds to their
aglycone metabolites (16). These results support our findings, as the microbially derived
metabolite soyasapogenol C is correlated with no antibiotic use, while the precursor is
correlated with antibiotic use (Fig. 2b). In addition to these observed changes in the
metabolome following antibiotic exposure, the presence of soyasapogenol C has a high
cooccurrence probability with Firmicutes and Proteobacteria, with G000425865 among
the most differential microbes in the analysis (see Table S1 in the supplemental
material), indicating that changes in microbiota due to transfer of metabolites between
individuals may be driving differences in metabolic function within the gastrointestinal
tract.

Metabolome-informed metadata grouping supported by altered microbial me-
tabolism of diet components. Further longitudinal assessment of soyasaponin I and
soyasapogenol C (Fig. 2d and e) show differential metabolism of soy carbohydrates and
mirror the medication schedule for Isoka (Rx antibiotic; Fig. 2f), and this empirical
evidence supports restructuring of the metadata from antibiotic reported to detected.
Antibiotic annotation based on metadata revealed a correlation between antibiotic
detection and microbial food metabolism. We observed the breakdown of soyasaponin
across animals (Fig. 2d, ranges of other animals indicated by light gray shading) and a
stark absence of the aglycone, soyasapogenol C, when antibiotics were empirically
detected in the feces by MS (Fig. 2d to f).

Fecal samples from Isoka (Rx antibiotic) have a predominance of soyasaponin I
(Fig. 2d). A longitudinal representation of the relative abundance of these two features
for Isoka (Fig. 2d and e, black and dark blue) showed an initial ability to metabolize
soyasaponin I to soyasapogenol C, which virtually disappeared upon commencing
antibiotic treatment. In agreement with the MS-based detection of antibiotics in
multiple fecal samples from Okubi (Fig. 2f), we also observed a diminished ability to
metabolize soyasaponin, which has a stochastic nature, similar to the intermittent
observation of antibiotics (Fig. 2d and e, light gray and light blue shading). The
remaining cheetahs have higher relative concentrations of soyasapogenol C (Fig. 2e,
ranges indicated by light blue shading), indicating active microbial deglycosylation.

Empirically derived metadata categorization avoids misinterpretation. Due to
the empirical evidence, a new metadata variable was created to delineate the differ-
ence between reported and detected antibiotic use, enabling metabolome-informed
analyses.

(i) Metabolome-informed metabolome analysis. Antibiotics imparted a strong
signature to the differences between samples, both in terms of the medication itself,
metabolism of soy carbohydrates, as discussed above, as well as changes in host and
host-microbial metabolism. The hydrolyzed amoxicillin detected by MS was positively
correlated with antibiotic use and highly ranked (Fig. 3a), based on differential abun-
dance analysis. Furthermore, antibiotic use had a profound influence on bile acid
metabolism. Conjugated bile acids correlate with antibiotic use (Fig. 3b), whereas
primary bile acids are less likely to be observed after antibiotic exposure. The natural
log ratios of conjugated (primary and secondary) bile acids divided by primary bile
acids were elevated for Isoka and Okubi (Fig. 3d), and the difference between the
MS-metadata informed categories can be clearly seen in Fig. 3c, left and right, respec-
tively. In both cases, the difference between antibiotic use and not is statistically
significant (Welch’s t test, P values of 4.5e�49 [MS_reported] and 1.3e�31 [MS_
detected]). In particular, several apparent outliers in the “no antibiotic use reported”
group are no longer outliers, as they are positioned within the newly corrected
metadata category “antibiotic-detected.”

Furthermore, application of this informed metadata variable to the metabolite data
still showed that the main driver in separation of cheetah fecal material was antibiotic
detection, with PC1 representing 32.37% of the variance in the data set and effectively
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separating Isoka and some of Okubi’s samples from the remaining animals (see Fig. S1a
in the supplemental material). Based on a permutational multivariate analysis of
variance (PERMANOVA) analysis of the weighted UniFrac distance matrix, categoriza-
tion based on metabolite data resulted in a larger effect size (F statistic for the two
different metadata categories, antibiotic use [reported] � 28.2433 compared with
antibiotic_presence_WD [detected] � 47.4572.).

Thus, one loop of application of the MS-informed metadata has been completed,
applying a new categorization of antibiotic use that reflects the mass spectral data.
Recategorization will impact data interpretation: removal of these samples from further
analysis reduces the chances of data misinterpretation due to the outliers originally
present. Furthermore, the same changes applied based on the MS-informed metadata
can be applied to any additional paired data set.

(ii) Metabolome-informed metagenome analysis. The metagenome results also
have a larger effect size for the metadata assigned due to metabolite analysis (de-
tected) compared with the original metadata (reported) (PERMANOVA F statistic cal-
culated from the weighted UniFrac distance matrix, 41.7599 for antibiotic_use [re-

FIG 3 Metabolome data-informed groupings reveal impacts on the metabolome and microbiome profiles. (a and b) Differential
abundance analysis of MS features (association with antibiotic_yes compared to antibiotic_no as the reference) visualized with Qurro.
Positive values in the rank plot correspond to a positive association with antibiotic use. (a) Antibiotic features highlighted in red. (b)
Impact of antibiotics on bile acid metabolism. Conjugated bile acids are shown in red, and primary bile acids are shown in blue. (c
and d) Natural log ratio of conjugated bile acid features by primary bile acid features for reported versus detected antibiotic metadata
categorization (c) and plotted by animal (d). (e) Differential abundance analysis of MS features (association with antibiotic_yes
compared to antibiotic_no as the reference) visualized with Qurro. Positive values in the rank plot correspond to a positive association
with antibiotic use. Numerator: Klebsiella genome IDs (red); Denominator: Clostridium genome IDs (blue). (f) Natural log ratio of
Klebsiella to Clostridium for reported versus detected antibiotic metadata sorting, respectively. Note the removal of outliers in
“reported – no” and “detected – no”. The difference between antibiotic use and no antibiotic use for reported and detected in panels
c and f are statistically significant (P � 1e�31 for all), based on a Welch’s t test.
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ported] compared with 75.9906 for antibiotic_presence_WD [detected]) (Fig. 1b versus
Fig. S1b). The same trend held true for the unweighted distance matrix (Fig. S2): F
statistic of 79.4844 for antibiotic_use (reported) compared with 139.961 for antibiotic_
presence_WD (detected). Removal of the antibiotic use samples prior to PCoA results in
removal of the strong antibiotic signature and reveals a new distribution of samples
(Fig. S3). Many of Johari’s samples (severe cheetah liver necrosis syndrome [CLNS])
group together in the upper left corner, and samples for Amara, with mild CLNS, do not
have distinct clustering from the remainder of the healthy fecal samples.

The representation of taxa within metagenomic samples from antibiotic-treated
animals is likely to be different than that from healthy controls. We assessed the
difference in the taxonomic composition of samples without antibiotic use reported
initially (reported) and then with the addition of samples in which antibiotics were
detected (detected) (as determined by mass spectral data). There is a stark impact of
antibiotic use on the microbial composition of the cheetah fecal samples on antibiotic
use (Fig. S4, top versus bottom), which is further differentiated when applying the
MS-detected antibiotic grouping (Fig. S4, right-hand side). Notably, Klebsiella is no
longer observed among the top 10 most abundant genera when the samples are
grouped by antibiotic detection rather than by reporting. Klebsiella is also positively
associated with antibiotic use, while genera such as Clostridium are negatively corre-
lated with antibiotic use (Fig. 3e). The natural log ratio of Klebsiella to Clostridium for
antibiotic use is higher for antibiotic use in both reported and detected metadata
categories (Welch’s t test, P value 7.7e�61 [detected] and 6.5e�80 [reported]); how-
ever, notable outliers with a high ratio in antibiotic reported samples in the “no”
category are correctly categorized with the application of the metabolome-informed
metadata categorization (Fig. 3f).

MS-informed refinement of feature table. Cases of metadata inaccuracy due to
subjective reporting, missing metadata, or unexplained observations have been noted
in the literature (8), as well as in this article. Regardless of the origin of such observa-
tions, it is important to develop strategies to mitigate their impact on the conclusions
drawn with regard to the question of interest, and empirically derived information
allows us to gain insights beyond the information initially collected. MS analysis
revealed the presence of S-adenosyl methionine metabolites (from the supplement
denamarin) present in the samples from the diseased cheetahs, Amara and Johari, the
only ones given the supplement. These features are differentially abundant (Fig. 4a) and
are positively correlated with disease compared with the healthy reference samples.
These features, compared with a natural log ratio of a general class of all annotated
lipids in the metabolite data set, spread broadly across the rankings (Fig. 4a, bottom),
are more abundant in samples from Amara and Johari, compared to the remaining
cheetahs, including those on antibiotics (Fig. 4b).

Metabolome data-informed grouping, which was empirically validated, could be
used to stratify individuals, to identify criteria of interest, or to flag samples for exclusion
from further analysis. In this case, removal of samples from animals exposed to
antibiotics, Isoka and Okubi, and recomputation of the PCoA of metabolite data
revealed new trends (Fig. 4c). Exclusion of samples from Isoka and Okubi (Fig. 4c)
resulted in no per individual differences along PC1; however, there was a clear
separation of Johari (severe disease) and Amara (mild disease) from the remaining
healthy individuals along PC2, representing 22.52% of the variance.

We hypothesized that the strong signature from denamarin metabolites was driving
this difference in beta diversity, and a further iteration of MS-informed analysis was
performed (Fig. 1). The untargeted metabolomic feature table was filtered to remove
metabolite signatures for S-adenosyl methionine, as well as its breakdown products,
from the metabolite feature table (red in Fig. 4a). Analysis of the modified set of
features resulted in decreased separation of metabolite signatures from the cheetahs
Johari and Amara (Fig. 4d). We observed that along PC1, Johari, with severe CLNS (data
points displayed as green stars), was most disparate, while Amara, with a diagnosed
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mild case (red squares) and improving clinical readouts (Table S2), was not clearly
distinguishable from the healthy individuals, as seen in the metagenomic analysis as
well.

Although the sample size is small, as is common with studies of captive wildlife, a
comparison of clinical data for Amara and Johari (Table S2) support the groupings
observed in the final metabolome-informed analyses (Fig. 4). Johari had the most
severe case of CLNS and had liver enzyme levels of alanine aminotransferase (ALT) of
451 �mol/liter and aspartate aminotransferase (AST) of 414 �mol/liter on 23 January
2018 (critically elevated above the mean reported healthy values ALT of 47 �mol/liter
for ALT and of 93 �mol/liter for AST). Amara, who is not clearly distinguished from
healthy individuals, had elevated ALT and AST levels of 273 and 108 �mol/liter in 2017,
at the time of diagnosis by liver biopsy; however, on 20 March 2018, just after sampling
for this study, her levels were within healthy limits at 61 and 13 �mol/liter for ALT and
AST, respectively. Peripheral bile acid levels were similarly elevated for Johari as well as
Amara in 2017 but within normal limits for Amara in 2018 (Table S2). The metabolome

FIG 4 Metabolome-informed filtering of metabolite feature table to remove medication metabolites. Differential
abundance analysis of MS features (association with severe liver disease compared to healthy as the reference)
visualized with Qurro. Positive values in the rank plots correspond to a positive association with liver disease. (a,
top) Denamarin features highlighted in red; (bottom) denamarin features in red and lipid features in blue as a
reference. (b) Natural log ratio of denamarin features by the general category lipids plotted by animal. Amara and
Johari, both diseased animals, have increased levels of denamarin compared to the other animals. (c and d) A PCoA
analysis (weighted UniFrac) of 103 samples from WD (five animals, all with no antibiotic exposure), with all features
(c) show a distinct separation for Amara (red) and Johari (green), while a PCoA analysis (weighted UniFrac) with the
features from the metabolism of the supplement denamarin removed (d) shows this difference along PC2 was due
to this confounder. (Denamarin is defined as the following metabolites: adenine, 5=-methylthioadenosine, S-(5=-
adenosyl)-L-methionine cation). In panel d, Johari separates along PC1 from healthy animals, but with some overlap
from Kiburi and Amara. The shape of the symbol designates the disease state, with regard to cheetah liver necrosis
syndrome (CLNS). All values are colored by the source (individual cheetahs).
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profile and presence of Amara’s samples with other healthy individuals is supported by
the lower ALT, AST, and bile acid levels measured shortly after the sampling time
period, indicating a possible recovery back to a healthier phenotype within this case
study.

DISCUSSION

There are confounders in clinical data sets that cannot be predicted based on
available information. Broad untargeted metabolomics gives insights into specific
molecules that can reveal unexpected factors that, if not understood, might lead to
misinterpretation of the data. In this study, we observed an individual animal reported
not to have been administered antibiotics during the study period but detected
antibiotics in their stool. Taking this information into account to generate an MS-
informed metadata category for antibiotic use allowed a more informative analysis of
the samples. Similarly, upon observation of denamarin metabolites, their signatures
could be removed as a result of treatment for liver disease, rather than attributing them
as drivers of the condition.

In the current study, to explore the signatures of liver disease, the observation of
unexpected antibiotics across numerous samples was very valuable; otherwise Okubi’s
samples (no Rx) that contained antibiotics would continue to be included as “healthy,”
which is true with respect to liver disease, but there is a substantial and clear shift in
this cheetah’s microbiome due to antibiotic exposure. As antibiotics are a stronger
driver of difference than the disease state, it was appropriate in this case to remove the
samples from both animals from the analysis, as they would otherwise be classified as
“healthy” because neither suffers from CLNS. We have thus demonstrated that MS-
informed analyses driven by empirically detected information can reveal elusive infor-
mation and go beyond even the best (and most intrusive) study information.

The applicability of our approach is most powerful in the case of restricted popu-
lations, as the detection of antibiotics in the stool of an “untreated” animal may have
been facilitated by the contained environment in which these cheetahs live. Our
approach has the potential to impact how the health of animals in captivity is
monitored, across different social structures, as our method easily extends to uncov-
ering and tracking intragroup metabolite transfer in other captive animal populations
that engage in social grooming or shared living spaces, including domestic cats and
dogs.

We observe that when two animals are housed in the same enclosure and one is
treated with antibiotics, the effect of the antibiotic on the metabolome and metag-
enome is also seen in the cohoused individual. While this has not been observed in
captive wildlife previously, it has been observed in humans in the case of the metag-
enome (e.g., reference 10). Uniquely, the antibiotic was also detected in the stool of the
“untreated”’ animal. We cannot say for certain whether cohousing, grooming, or other
social activities occurred in this instance; however, these results provide a testable
hypothesis for managing antibiotic usage in captive wildlife.

Metabolomics generates a verifiable readout that allows us to reinterpret the study
results in the context of the data or information that were actually collected and can be
done as an iterative process. Regardless of the origin of such observations, whether it
is metadata omission, misreporting, errors in sample collection, or other causes, the fact
remains that something is detected where it was not expected. The power of using
metabolomic data to reinterpret metadata categorization, impacting all facets of gut
microbiome data interpretation, has a critical place in microbiome analyses going
forward, and virtually any study with samples amenable to MS data collection could
potentially benefit from this approach.

MATERIALS AND METHODS
Study design. Between 2015 and 2018, multiple cheetahs from the San Diego Zoo Safari Park

collection were diagnosed with cheetah liver necrosis syndrome (CLNS) via liver biopsy or postmortem
exam. A working group, including clinical veterinarians, pathologists, nutritionists, and husbandry staff,
met regularly to develop plans for earlier detection, treatment, and disease characterization and to
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elucidate the cause of the condition. Fecal samples were obtained from both sick and healthy cheetahs
housed at Wildlife Discoveries (WD). Cheetahs included in this study are ambassador animals at the San
Diego Zoo Safari Park, which means that they leave their enclosures regularly, and travel within the Park,
where they interface with fomites in human and other wildlife spaces, and often leave the grounds. The
project was exempt from IACUC review, as samples were collected noninvasively as part of a planned,
potentially corrective, diet change. Fecal samples were shared between San Diego Zoo Safari Park and
University of California, San Diego (UCSD) researchers following completion of an External Biomaterials
Request in order to explore whether metabolomic and metagenomic data offered a more detailed
biochemical picture of ingested materials, both dietary and environmental, beyond the limited nutri-
tional analyses already available.

Sample handling. Fecal samples were collected each morning daily by trainers at WD for 4 weeks
from mid-January 2018 to mid-February 2018. Fecal material was collected on location by animal care
staff or transported to the clinical lab at Harter Veterinary Medical Center (HVMC) and sampled by a
senior nutrition research associate. Samples were not subjected to extremes of heat or cold (i.e., direct
sunlight, vehicle cab, or refrigerator/freezer) during transport. A fecal score was assigned to each
fecal sample as follows: 1 for liquid/watery (runny), 2 for soft (loose, overly moist), 3 for formed (maintains
shape), and 4 for hard/dry (firm, lacking moisture). Each sample was assigned a unique barcode identifier
(ID), and a label was affixed to the swab tube and a small printed label was affixed to the 2-ml tube,
making sure both samples had matching numbers for the same sample and animal.

Two separate samples were collected per individual cheetah, a swab of the fecal surface and a small
amount of whole feces in a 2-ml microcentrifuge tube. The interior of the feces was swabbed with a
sterile barcoded cotton swab (BD SWUBE applicator) when possible, or the exterior for smaller samples
for sequence analysis. An aliquot of bulk stool was transferred to an empty 2-ml round bottom
microcentrifuge tube for mass spectrometric analysis (Qiagen, Hilden, Germany). Samples were frozen at
– 80°C within 24 h of deposition at the San Diego Zoo Institute for Conservation Research (ICR). All
samples were transported on dry ice and stored at – 80°C until analysis.

All information regarding fecal samples for each animal were recorded into an Excel spreadsheet
(Microsoft, Seattle, WA). Information included sample ID, location, date, animal name, institution ID, time
feces deposited (if known), time feces collected, time feces sampled, fecal score, any medical/chronic
problems (i.e., fecal quality, medications), and day and progression of diet transition.

Metabolomic sample extraction. All fecal samples were dried, weighed, and extracted to the same
final concentration. Frozen cheetah fecal samples were placed on ice. The lid and rim of each sample
tube were cleaned with a Kimwipes (Kimberly-Clark) moistened with 70% ethanol (EtOH) to remove
spurious fecal material. Samples were dried overnight using a Labconco CentriVac and either placed at
– 80°C for storage or immediately processed as follows. A clean spatula and tweezers were used to
transfer 50 to 100 mg of dried stool into a new, labeled tube. Exact weights were recorded, and a 10-fold
volume of cold 50% methanol (MeOH) in water was added to each tube (for example, 50 mg of
stool plus 500 �l of 50% MeOH) (liquid chromatography-mass spectrometry [LC-MS]-grade solvents;
Fisher Chemical). The samples were homogenized for 5 min at 25 Hz on a tissue homogenizer (Qiagen
TissueLyzer II; Qiagen, Hilden, Germany) and subsequently placed at –20°C for 15 min for methanol
extraction. The samples were then centrifuged at maximum speed (14,000 � g) for 15 min (Eppendorf US
centrifuge 5418; USA). Without disrupting the pellet, 300 �l of the supernatant was transferred into a
96-deep-well plate. Samples were sealed and stored at – 80°C.

Metabolomic data acquisition and processing. Metabolomic data were collected using a modifi-
cation of the data-dependent acquisition method outlined in reference 17. Briefly, extracts were dried
down, resuspended in 50% MeOH�50% water (Optima LC-MS grade; Fisher Scientific, Fair Lawn, NJ,
USA). Untargeted metabolomics was conducted using an ultrahigh-performance liquid chromatography
system (UltiMate 3000; Thermo Fisher Scientific, Waltham, MA) coupled to a Maxis quadruple time of
flight (Q-TOF) mass spectrometer (Bruker Daltonics, Bremen, Germany) with a Kinetex C18 column
(Phenomenex, Torrance, CA, USA). A linear gradient was applied as follows: 0 to 0.5 min, isocratic at 5%
mobile phase (MP) B; 0.5 to 8.5 min, 100% MP B; 8.5 to 11 min, isocratic at 100% MP B; 11 to 11.5 min,
5% MP B; 11.5 to 12 min, 5% MP B, where mobile phase A is water with 0.1% formic acid (vol/vol) and
mobile phase B is acetonitrile�0.1% formic acid (vol/vol) (LC-MS grade solvents; Fisher Chemical).
Electrospray ionization in the positive mode was used.

MS1 feature finding and data processing. qToF files (.d) were exported using DataAnalysis (Bruker)
as .mzXML files after lock mass correction using hexakis (1H, 1H, 2H-difluoroethoxy) phosphazene
(Synquest Laboratories, Alachua, FL), with m/z 622.029509. Data quality was assessed by qualitatively
evaluating the m/z error and retention time of the LC-MS standard solution (i.e., mixture of six
compounds), which was analyzed at least once in every 96-well plate.

MS1 feature finding was performed on the .mzXML files in MZmine2 (version MZmine-2.37.corr16.4)
(18). The code for this version of mzMINE has been archived with the raw data files available on MassIVE
under MSV000082969. The mzMINE parameters used for feature finding are as follows: mass detection
(centroid; MS1, 1.5E3; MS2, 90); ADAP Chromatogram builder (minimum group size in number of scans,
4; group intensity threshold, 5E3; minimum highest intensity, 2E3; m/z tolerance, 0.001 m/z to 20 ppm);
chromatogram deconvolution (local minimum search [LMS], chromatographic threshold of 96%, search
minimum in retention time [RT] range [minutes] of 0.03, minimum relative height of 5%, minimum
absolute height of 2E3, minimum ratio of peak top/edge of 1 and peak duration range [minutes] of 0 to
2; m/z center calculation set to auto; m/z range for MS2 scan pairing (daltons) of 0.02 and RT range for
MS2 scan pairing (minutes) of 0.15); isotope peaks grouper (m/z tolerance set to 0.0015 m/z or 10 ppm;
retention time tolerance of 0.05, maximum charge of 3; and representative isotope set to most intense);
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order peak lists; join aligner (m/z tolerance set at 0.0015 m/z or 15 ppm; weight for m/z of 2; retention
time tolerance of 0.2 min; weight for RT of 1. A filter was used such that only features present in at least
two samples were included. The output was a data matrix of variables (i.e., MS1 features that triggered
MS2 scans) by samples, exported for global natural products (GNPS) (.mgf and .csv quant table) and for
SIRIUS (.mgf). The MS1 data matrix (MS1 features from quant table) was processed by concatenating the
m/z and retention time columns from the original MZmine output.

Feature-based molecular networking was performed, and library IDs were generated using GNPS (14).
The quant table, SIRIUS export, and library identifications from feature-based molecular networking were
used as inputs for the Qiime2 plug-in Qemistree (https://github.com/biocore/q2-qemistree) to perform
hierarchical ordering of the untargeted mass spectrometry data. The resultant Qemistree-based feature
table can be linked to the original feature number from feature finding (which also links to the GNPS
library IDs) and presents fingerprints that act to merge spectra assigned the same identity. Qemistree
also generates a fingerprint-based tree, allowing for tree-based approaches such as UniFrac (19, 20).

Applicability of weighted UniFrac for Qemistree abundance analysis. Mass spectrometry feature
data represent relative abundances of compounds, not exact counts. Due to this difference, the use of
unweighted methods, which look only for presence/absence, are not suitable. Unweighted UniFrac (20)
would exaggerate differences between samples if even a small number of new molecules appears in one
batch and not in another batch as frequently occurs due to instrument performance changes during
sample processing. Parameters such as gap filling and feature finding parameter settings can further
compound these issues. Therefore, weighted UniFrac (19) is used for all comparisons between mass
spectral data which were processed using the QIIME 2 plug-in q2-qemistree.

QIIME 2 (21) was used within a jupyter notebook environment for principal-coordinate analysis.
Differential abundance analysis was performed in command line using Songbird (https://github.com/
biocore/songbird) (22) and visualized using Qurro (https://github.com/biocore/qurro).

Sample preparation and sequencing data generation. Shallow shotgun sequencing was per-
formed as previously described (23). In brief, DNA extraction was performed using the Qiagen PowerSoil
DNA extraction kit following the Earth Microbiome Project (EMP) standard protocol (24). The Qubit
double-stranded DNA (dsDNA) high-sensitivity (HS) assay (Thermo Fisher Scientific) was used to deter-
mine concentration, and libraries were prepared from 1 ng of input DNA in a miniaturized Kapa
HyperPlus protocol. Libraries were quantified using the Kapa Illumina library quantification kit, pooled,
and size selected (300 to 800 bp) using the Sage Science PippinHT. The pooled library was sequenced as
a paired-end 150-cycle run on an Illumina HiSeq 4000 system at the UCSD Institute for Genomic Medicine
(IGM) Genomics Center. Demultiplexed sequences were trimmed and quality filtered using Atropos v
1.1.5, a fork of Cutadapt (25).

Sequence data processing. Significant host contamination was expected from the horse-, beef-, and
rabbit-based diet of the cheetahs, as well as host DNA present in the samples. Therefore, we identified
reads in the quality-filtered reads using Bowtie 2 v2.3.0 (26) with the “very-sensitive” parameter setting
against the genomes of Acinonyx jubatus (cheetah, isolate AJU 981 Chewbacca, GCF_001443585.1), Bos
taurus (cattle, Hereford breed, GCF_000003055.6), Equus caballus (horse, thoroughbred, isolate Twilight,
GCF_002863925.1), and Oryctolagus cuniculus (rabbit, Thorbecke inbred, GCF_000003625.3) sequentially.

Taxonomy generation and statistical analyses. Host-filtered reads were mapped to the 10,575
genomes selected for phylogenetic reconstruction in the Web of Life project (https://biocore.github.io/
wol/data/genomes/) (27) using Bowtie 2 within the alignment pipeline SHOGUN (12) using standard
parameters. Bowtie 2 mappings were normalized to distribute reads to individual genomes, and the
resulting output matrix was filtered to remove reads present at less than 0.01% relative abundance per
sample. This filtered matrix was used for weighted UniFrac (19) and unweighted UniFrac (20) beta
diversity analysis as well as taxonomic summarization using the Web of Life tree (https://biocore.github
.io/wol/data/trees) with QIIME 2 (21). Visualizations were prepared using Emperor (28) and matplotlib
(29). Permutational multivariate analysis of variance (PERMANOVA) (30) analysis was performed in QIIME
2 v. 2018.11 on metabolite and metagenomic distance matrices. The F statistic was reported as a measure
of effect size. Jupyter notebooks of the analyses are available at http://github.com/knightlab-analyses.

Differential abundance of microbes and metabolites, individually, with regard to different metadata
variables were calculated using Songbird (22).

The following formula was used to learn the differentials for the microbes

ymicrobes,k � �0 � �1xlocation,k � �2xliver,k

where ymicrobes,k is the vector of microbe abundances for a given sample k and xlocation,k is the location
from which the sample was collected from. �1 is a vector corresponding to the microbe differentials with
respect to the sampling location. This represents the log fold differential for each microbe between the
sampling locations. xliver,k is an ordinal variable with four possible values for CLNS: severe, CLNS, mild, and
healthy. �2 is a vector corresponding to the microbe differentials with respect to the liver health. �0

represents the intercept of the multinomial regression.
The same regression formula was used to learn the differentials for the metabolites.

ymetabolites � �0 � �1xlocation � �2xliver

Differentials were visualized in rank plots using Qurro (https://github.com/biocore/qurro), while microbe-
metabolite cooccurrence probabilities were computed using mmvec (https://github.com/biocore/
mmvec). These cooccurrence probabilities represent the probability of observing a metabolite given the
microbe is observed. These conditional probabilities are estimated through a low-rank approximation
with three principal axes.
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Data and code availability. All data in this study are publicly available. Raw and processed shotgun
sequencing data are available in Qiita (31) study 11872 (https://qiita.ucsd.edu/study/description/11872)
and GNPS (14) using MassIVE (https://massive.ucsd.edu/) ID MSV000082969. The GNPS Networking job
is available at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task�093798dffe2448239410c3d465ef9fea.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, TIF file, 1.9 MB.
FIG S2, TIF file, 1.5 MB.
FIG S3, TIF file, 1.4 MB.
FIG S4, TIF file, 1 MB.
TABLE S1, CSV file, 0.01 MB.
TABLE S2, CSV file, 0.01 MB.
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