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Abstract
Principled Statistical Approaches For Sampling and Inference in High Dimensions
by
Raaz Dwivedi
in Engineering—Electrical Engineering and Computer Sciences
University of California, Berkeley
Professor Martin Wainwright, Co-chair

Professor Bin Yu, Co-chair

The growth in the number of algorithms to identify patterns in modern large-scale datasets
has introduced a new dilemma for practitioners: How does one choose between the numerous
methods? In supervised machine learning, accuracy on a hold-out dataset is the flagship for
choice making. This dissertation presents research that can provide principled guidance for
making choices in three popular settings where such a flagship measure is not readily avail-
able. (I) Convergence of Markov chain Monte Carlo sampling algorithms, used commonly in
Bayesian inference, Monte Carlo integration, and stochastic simulation: We provide explicit
non-asymptotic guarantees for state-of-the-art sampling algorithms in high dimensions that
can help the user pick a sampling method and the number of iterations based on the com-
putational budget at hand. (II) Statistical-computational challenges with mixture model
estimation used commonly with heterogeneous data: We provide non-asymptotic guarantees
with Expectation-Maximization for parameter estimation when the number of components
is not known, and characterize the number of samples and iterations needed for the desired
accuracy, that can inform the user of the potential two-edged price when dealing with noisy
data in high dimensions. (III) Reliable estimation of heterogeneous treatment effects (HTE)
in causal inference, crucial for decision making in medicine and public policy: We introduce
a data-driven methodology StaDISC that is useful for validating commonly used models for
estimating HTE, and for discovering interpretable and stable subgroups with HTE using cal-
ibration. While we illustrate its usefulness in precision medicine, we believe the methodology
to be of general interest in randomized experiments.
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Chapter 1

Introduction

Recent decades have seen a surge in statistics, and machine learning research. The number of
learning algorithms available for solving various data-driven problems has grown many folds.
Such rapid advancements often present a practitioner with the choice dilemma: Which of the
many models or algorithms shall I use? A principled choice making, necessary for reliable
learning, should either have a valid theoretical backing or be guided by sufficient empirical
evidence. A poor choice might waste computational resources, lead to unsatisfactory answers,
and lack of theoretical or empirical checks might lead the scientists to draw false conclusions
from the limited data at hand.

In the case of supervised machine learning, the user is typically blessed with the notion of
accuracy on a hold-out dataset. Its simplicity and effectiveness in practice, especially when
combined with cross-validation, has made it perhaps the most popular criterion for choosing
from, and tuning various models and algorithms. However, several areas, e.g., unsupervised
learning, statistical inference, and causal inference, suffer from the lack of such a simple yet
powerful (or commonly accepted) tool for choice navigation.

In part I, we provide theoretical guarantees for various Markov chain Monte Carlo
(MCMC) algorithms. MCMC methods serve as the numerical engine of Bayesian inference,
and Monte Carlo integration, and are most commonly used for drawing random samples
from a given target probability distribution. Nevertheless, they are notorious for slow con-
vergence, and poor theoretical understanding especially in high dimensions. While there is
rich literature about asymptotic convergence, and abundant empirical wisdom, fundamen-
tal results on non-asymptotic rate of convergence can provide insight into how the different
methods compare for the same task, and under what settings, they are provably provide
reliable estimates.

Part II deals with the reverse aspect of statistical problems: learning about target dis-
tributions given draws of random samples. We study a class of challenging mixture models,
which are commonly used when the data has lot of heterogeneity, and characterize the
requirements of (a) the sample size, and (b) the computational budget, to estimate the un-
known parameters to a desired accuracy. We establish guarantees for the method of choice
in settings, Expectation-Maximization (EM). While EM is known to have favorable perfor-



Chapter 1. Introduction 2

mance with low noise in the data, we study several models with high noise, and provide
several results which provably establish the slow down of EM on both the sample size re-
quired, and the number of iterations needed for providing a reliable estimate. Our results can
provide insight on how to select the number of mixture components when doing unsupervised
learning with noisy data.

Finally, in part III, we tackle the problem of reliable estimation of heterogeneous treat-
ment effects in causal studies. Causal inference suffers from the fundamental problem of
missing data, since only some of the potential outcomes for each unit in the sample are
observed—thus validating individual-level treatment effect is impossible. We introduce a
data-driven methodology StaDISC, designed for reliable heterogeneity treatment effect dis-
covery and estimation at subgroup-level. StaDISC is immediately relevant for informing
about the performance of different from conditional average treatment effect (CATE) mod-
els as it provides calibration-based predictive checks to select. Furthermore, it automatically
discovers interpretable and stable subgroups with heterogeneous treatment effects (HTE).
We illustrate the usefulness StaDISC in the context of precision medicine via re-analysis of
two randomized clinical trials, and discovering subgroups that are disproportionately affected
by the drug under investigation.

1.1 Part I: Non-asymptotic mixing time analysis

Random sampling, i.e., drawing random samples from a probability distribution, is a crucial
computational challenge common to many disciplines, with applications in machine learn-
ing, statistics, probability, operations research, and other areas involving stochastic model-
ing [95, 28, 209, 107]. In statistics, these methods are useful for both estimation of unknown
quantities and their inference. Markov chain Monte Carlo are the method of choice for such
tasks. Given a target distribution IT*, an MCMC method broadly comprises of two steps:
First, setting up a Markov chain whose stationary distribution is the target distribution or
a good approximation of it, and second, simulating the chain for several number of steps so
that the chain has mixed to generate an approximate sample from IT*.

Many algorithms have been proposed for sampling from probability distributions with
a (general) density on a continuous state space. Generally speaking, these methods can be
categorized in two broad categories: zeroth-order methods and first-order methods. On one
hand, a zeroth-order method is based on querying the density of the distribution (up to a
proportionality constant) at a point in each iteration, and popular examples include random
walk, ball walk, hit-and-run. By contrast, a first-order method makes use of additional
gradient information about the density, and the most common examples include Langevin
algorithms, and Hamiltonian Monte Carlo. Several natural questions arise given this broad
distinction: When does a first order method outperform a zeroth-order method? Can the
gains of one method be characterized in a non-asymptotic sense?

Furthermore, there is a broad class of Markov chains that make use of a two-step simula-
tion for each iteration: First, draw a candidate state using a proposal distribution, and then
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perform an accept-reject step also known as Metropolis-Hastings correction. The latter step
ensures that the stationary distribution of the chain is the target distribution. Such a design
is clearly advantageous in the asymptotic limit, since the chain is asymptotically unbiased
and converges to the target distribution under mild conditions. But, does it really benefit
in finite number of iterations? Can we simulate an unadjusted chain and get a better finite
time performance?

Part I of this thesis answers these questions for a range of algorithms by proving rigorous
non-asymptotic mixing time guarantees. In particular, for several popular algorithms, we
derive the number of iterations needed for the algorithm. Our results are user-friendly as
they provide explicit choices of hyper-parameters, and establish the mixing time guarantee
as an explicit function of the problem dimension, target distribution’s smoothness and cur-
vature, and the desired target accuracy. We start with a background and setting up notation
for MCMC in Chapter 2, and then discuss the mixing time bounds for random walk, and
Langevin algorithms in Chapter 3, where we also show that the accept-reject step can pro-
vide significant speed-up in mixing time. In Chapter 4, we establish general machinery for
proving mixing time bounds that significantly improve mixing time guarantees for a class of
Markov chains when the starting distribution is far from the target. Chapter 5 provides a
thorough theoretical investigation of Hamiltonian Monte Carlo, the default sampling algo-
rithm in many softwares, and often termed as the state-of-the-art sampling method. Finally,
in Chapter 6, we leverage the advancements in the interior point methods to design two new
sampling algorithms, Vaidya and John walks, that achieve state-of-the-art mixing times for

uniform sampling on convex polytopes. This part is based on joint work with Yuansi Chen,
Martin Wainwright and Bin Yu [46, 47, 78, 48].

1.2 Part II: EM and over-specified Gaussian mixtures

The growth in the size and scope of modern data sets has presented the field of statistics with
a number of challenges, one of them being how to deal with various forms of heterogeneity.
Mixture models provide a principled approach to modeling heterogeneous collections of data
(that are usually assumed i.i.d.). In particular, Gaussian mixture models [201] have been
used widely to model heterogeneous data in many applications arising from physical and the
biological sciences. However, estimating the parameters of mixture models is a challenging
task, due to the non-convexity of the log likelihood function. As shown by classical work,
the maximum likelihood estimate (MLE) often has good properties for mixture models, but
its computation can be non-trivial. One of the most popular algorithms used to compute
the MLE (approximately) is the expectation maximization (EM) algorithm. Although EM
is widely used in practice, it does not always converge to the MLE, and its convergence
rate can vary as a function of the problem. Classical results provide guarantees about the
convergence rates of EM to local maxima [68, 251]. In the specific setting of Gaussian
mixtures, population EM (idealized EM with infinite samples) was shown to have a range
of behavior from super-linear convergence to slow convergence like a first-order method
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depending on the overlap between the mixtures [172, 254]. More recently, there has been
a renewed interest in providing explicit and non-asymptotic guarantees on the convergence
of EM [256, 248, 132, 253, 64, 255, 105, 35]; as a consequence, our understanding of EM in
such cases is now relatively mature.

A shared assumption common to this body of past work is that either the true distribution
of each subpopulations is known, or that the number of components is exactly known; in
practice, both of these conditions are often violated. In several scenarios, the data has a
large number of sub-populations and the mixture components in the data may not be well-
separated. In such settings, estimating the true number of components may be difficult, so
that one may end up fitting a mixture model with a number of components larger than that
present in the data. Such mixture fits, referred to as over-specified mizture distributions,
are commonly used by practitioners in order to deal with uncertainty in the number of
components in the data [222, 108]. However, a deficiency of such models is that they are
singular, meaning that their Fisher information matrices are degenerate. It is known that
such mismatch can lead to substantially slower convergence rates for the maximum likelihood
estimate (MLE) for the underlying parameters. In contrast, relatively less attention has been
paid to the computational implications of this mismatch.

Part II tries to bridge this gap by providing several fundamental results regarding the
behavior of EM when used to fit over-specified mixture models. We provide a sharp and non-
asymptotic guarantees of EM with several over-specified mixture models on both statistical
and computational fronts. Our results show that over-specification costs the user on two
ends: Compared to the well specified models, there is not only a significant degradation in
the statistical accuracy with a given number of samples, but also EM requires significantly
many more iterations to converge to its final estimate. In Chapter 7, we analyze over-specified
Gaussian mixture models with unknown mean and known covariance, while Chapter 8 deals
with models when both mean and covariance of the model is unknown. This part is based
on joint work with Nhat Ho, Koulik Khamaru, Michael Jordan, Martin Wainwright and Bin
Yu [82, 81].

1.3 Part III: Reliable subgroup discovery with HTE

Understanding heterogeneous treatment effects (HTE) is at the cutting edge of causal infer-
ence and the past decade in particular has witnessed a wave of innovation in the modeling
and estimation of them. Underlying the hot topic of precision medicine [56] is a realization
that how a patient responds to a particular drug or treatment depends on the patient’s
genetics, lifestyle and environment, and that consequently, accounting for these differences
will allow doctors to deliver better and more targeted care. Moreover, this emphasis on
understanding and exploiting heterogeneity is not unique to the biomedical sciences, and
has also arisen in economics [125], political sciences [96, 89], online advertising [180], and
many other fields [89].

HTE is often estimated using conditional average treatment effect (CATE) models,
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and the last several years have seen numerous new methods proposed for CATE estima-
tion [125, 96, 89, 34, 92, 234, 21]. With such a diverse range of estimators, most of which
come with hyperparameters, model choice becomes a primary concern, and missing poten-
tial outcomes renders empirical validation of CATE models difficult since there is no direct
analog of validation accuracy at individual-level. On the other hand, the existing theoretical
consistency results require strong hard-to-check assumptions. Furthermore, it is well-known
now that in supervised learning, no single machine learning method universally dominates
all others, but instead, the inductive bias of each algorithm lends it a competitive advantage
on certain classes of problems [198]. We expect the same to hold for CATE estimation, which
therefore calls for data-driven model selection.

This part of the dissertation tackles these challenges with CATE estimation using a data-
driven methodology. In Chapter 9 showcasing the proposed research via re-analysis of two
randomized clinical trials using 18 popular CATE models. Building on the PCS framework of
Yu and Kumbier [259], we mitigate the missing information problem by devising calibration-
based pseduo-R? scores for checking the CATE model fit on the data. We often find that
CATE models indeed have poor global fit, but can be locally well-calibrated, a conclusion
that is stable to various model and data perturbations—thereby a reliable one to draw
according to the stability principle. Overall, building on the recent CATE literature and
the PCS framework, we develop a new methodology, which we call Stable Discovery of
Interpretable Subgroups via Calibration (StaDISC) that we expect to be of general interest
for discovering subgroups with disproportionate treatment effect compared to the average.
This part is based on joint work with Yan Shuo Tan, Briton Park, Mian Wei, Kevin Horgan,
David Madigan, and Bin Yu [84].

1.4 Content not included in this thesis

We now briefly summarize few relevant papers that are not included in this thesis.

Related to Part I: Monte Carlo samples typically provide a slow rate of n='/2 for esti-
mating function integrals via sample mean of n samples. In several settings, it is desirable
to obtain a faster than Monte Carlo rate. In joint work, with Ohad Feldheim, Ori Gurel-
Gurevich, and Aaditya Ramdas [79], we design a computationally efficient algorithm that
provides a scaling of n~! up to logarithmic factors for estimating integrals with respect to
the uniform distribution on the unit cube. In another work, joint with Lester Mackey [83],
we provide similar guarantees for functions in reproducing Hilbert spaces and wide range of
distributions with support on R%.

Related to Part II: In other joint work with Nhat Ho, Koulik Khamaru, Michael Jordan,
Martin Wainwright, and Bin Yu, we characterize the performance of EM when less than true
number of components are fitted (underspecified settings) [80] that complement the analysis
of EM with overspecified settings in Part II. Furthermore, we generalize the localization
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proof technique, to develop a general theory for studying tradeoffs between stability and
convergence rate of iteration methods. We then apply the general theory to obtain a range
of statistical and computational surprises for many algorithms other than EM, e.g., gradient
descent, and Newton’s method, for several statistical settings with noisy data [111].

About COVID-19 forecasting: In other joint work with Bin Yu, and Yu Group, we
worked on curating a COVID-19 repository, and making county-level predictions about
COVID severity in the US [5]. This undertaking was a large collaboration between Yu
Group, and a non-profit organization responsedlife responsed4life.org, aimed at providing
PPE support to those who needed it the most in the hours of crisis. The paper [5] summa-
rizes some the technical contributions of this large project, ranging from how the repository
was curated and organized, and how the many forecasting models were built, and ensem-
bled. We provided a thorough validation of our models, that showed that our predictions
were fairly accurate for 7-14 days horizon, which was crucial for our end task of PPE alloca-
tion. Interactive visualization of our predictions, historical performance, and several other
features of our models were provided on a daily basis from April 2020, until March 2021, on
covidseverity.com.



Part 1

Theory of High-dimensional Random
Sampling



Chapter 2

Background on Markov Chain Monte
Carlo

Sampling procedures are the workhorse in Bayesian statistics, used for exploring posterior
distributions, obtaining credible intervals, and solving inverse problems. Under the frequen-
tist framework, samples drawn from a suitable distribution can form confidence intervals
for a point estimate, such as those obtained by maximum likelihood. Estimating the mean,
posterior mean in a Bayesian setting, expectations of desired quantities, probabilities of
rare events and volumes of particular sets are settings in which Monte Carlo estimates are
commonly used. Let us motivate via a concrete example.

Consider a distribution IT* which admits a density 7* : X — R, , specified explicitly up
to a normalization constant as follows

7 (x) o< e @), (2.1)

A standard computational task is to estimate the expectation of some function g : X —
R—that is, to approximate I1*(9) = Ex [9(X)] = [, g(@)7*(x)dz. In general, analytical
computation of this integral is infeasible. In high dimensions, numerical integration is not
feasible either, due to the well-known curse of dimensionality.

A Monte Carlo approximation to II*(g) is based on access to a sampling algorithm that
can generate i.i.d. random variables Z; ~ 7* for « = 1,..., N. Given such samples, the
random variable II*(g) = + ZZN:1 9(Z;) is an unbiased estimate of the quantity I1*(g), and
has its variance proportional to 1/N. The challenge of implementing such a method is
drawing the i.i.d. samples Z;. If 7* has a complicated form and the dimension d is large, it
is difficult to generate i.i.d. samples from 7*. For example, rejection sampling [98], which
works well in low dimensions, fails due to the curse of dimensionality. In such settings and
more generally, one turns to the class of Markov Chain Monte Carlo (MCMC) methods.

The origin of MCMC methods can be dated back as early as the seminal work of Metropo-
lis et al. [177], and recent decades have seen tremendous empirical success with these meth-
ods, including more recent applications in simulation-based methods for reinforcement learn-

ing, and in image synthesis in computer vision, among other areas; for instance, see the



Chapter 2. Background on Markov Chain Monte Carlo 9

handbook [30] and references therein. In a broad sense, these methods involve two steps.
First, we construct a Markov chain, that is relatively easy to simulate, whose stationary dis-
tribution is either equal to the target distribution or close to it in a suitable metric. Given
this chain, the second step is to draw samples by simulating the chain for a certain number of
steps. An advantage of MCMC algorithms is that they only require knowledge of the target
density up to a proportionality constant. Two natural questions that arise are: (i) how do
we design an easy to simulate Markov chain; and (ii) how many steps will the Markov chain
take to converge close enough to the stationary distribution? Over the years, these questions
have been the subject of considerable research; for instance, see the reviews [235, 227, 213]
and references therein. Nevertheless, a thorough theoretical understanding of MCMC algo-
rithms used in practice is far from complete, and the last several years have seen a renewed
interest in the non-asymptotic mizing time analysis of these methods, meaning that deriving
the number of iterations—as a function of the error tolerance 9, problem dimension d and
other parameters—for a given MCMC algorithm to arrive at a distribution within distance
0 of the target.

We now provide a brief background on some terminologies about Markov chains in Sec-
tion 2.1, and the general recipe of constructing MCMC algorithms in Section 2.2.

2.1 Basics of Markov Chain and Mixing

Here we consider the task of drawing random samples from a target distribution II* with its
density denoted by II*, via setting up of an irreducible and aperiodic discrete-time Markov
chain whose stationary distribution is equal to or close to the target distribution II* in certain
metric, e.g., total variation (TV) norm. To obtain a d-accurate sample, one simulates the
Markov chain for a certain number of steps k& which is determined by a mixing time analysis.
Going forward, we assume familiarity of the reader with a basic background in Markov
chains, and refer them to the book [179] for a formal introduction or sections 1 and 2 of the
papers [167, 242] for a quick and gentle introduction to the basics of Markov chains. Here
we collect some basic definitions related to Markov chains.

In this work, we work with time-homogeneousMarkov chains defined on a measurable
state space (X,B(X)) with a transition kernel © : X x B(X) — R, by definition, the
transition kernel satisfies the following properties:

O(z,dy) >0, foralxze X, and / O(z,dy)dy =1 forall z € X. (2.2)
yeX

The k-step transition kernel ©F is defined recursively as O (x, dy) = fzeX OF(z,dz)O(z, dy)dz.
The Markov chain is irreducible means that for all z,y € X, there is a natural number £ > 0
such that ©F(x, dy) > 0. We say that a Markov chain satisfies the detailed balance condition

if

7 (2)0(z, dy)dx = 7 (y)O(y,dz)dy for all x,y € X. (2.3)
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Such a Markov chain is also called reversible. Finally, we say that a probability measure II*
with density 7% on X' is stationary (or invariant) for a Markov chain with the transition
kernel O if

/ (2)O(y,dr) = 1*(y) forally € X.
zeX

Transition operator: We use T to denote the transition operator of the Markov chain on
the space of probability measures with state space X. In simple words, given a distribution
fto on the current state of the Markov chain, 7 (1) denotes the distribution of the next state
of the chain. Mathematically, we have

T (10)(A) :/X@(Q:,A)ug(x)dx, (2.4)

for any A € B(X). In an analogous fashion, 7% stands for the k-step transition operator.
We use 7, as the shorthand for 7(d,), the transition distribution at x; here J, denotes the
Dirac delta distribution at # € X'. Note that by definition 7, = O(z, -).

In order to quantify the convergence of the Markov chain, we study the mixing time for
a class of distances denoted by L, for p > 1. Letting II be a distribution with density , its
L,-divergence with respect to the distribution II* with positive density 7* is defined as

4, (IT, TT*) = ( /X

Note that for p = 2, we recover the y*-divergence. For p = 1, the distance d,(II, IT*)
represents two times the total variation (TV) distance drvy (H, H*) between II and II*:

n@) [

()

7r*(3:)dx> % . (2.52)

1
(1) = sup 1(S) = 1(S)] = 5 [ () sl de

For clarity, we continue to use drv (H, H*) to denote the total variation distance.

Definition 2.1 (Mixing time of a Markov chain). For an error tolerance 6 > 0, and a
Markov chain with initial distribution pg, transition operator T and a target distribution I1*
with density 7, its L, and TV mizing time with respect to II* are defined as follows:

To(0; (po, I1%)) = inf {k € N | d, (T"(1o), 1I*) <6}, and (2.5b)
v (83 (1o, I1%)) = inf {k € N | drv (T"(1o), II*) < 6} . (2.5¢)

In simple words, the -£, (TV) mixing time denotes the minimum number of steps that
the chain takes to reach within 0-£, (TV) distance to the target distribution, given that it
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starts with distribution ug. Going forward, when IT* is clear from the context (generally the
stationary distribution of the Markov chain), we often use the simplified notations:

7o (05 o) = 7(0; (10, 11%)), and 71y (6; po) = 7rv(6; (1o, IT7)).

We note that since distance d,(Q, II*) increases as p increases, we have the following useful
relation between mixing times:

70(0; (g0, IT%)) < 7/ (95 (p10, I1*))  for any p’' >p > 1. (2.5d)

Furthermore, the relation (2.5d) also implies that 7rv(; (p0, II%)) = 71(Z; (1o, IT¥)).

To quantify mixing time, it is convenient to have a rough measure of the distance between
the initial distribution o and the stationary distribution. As in several past work, we adopt
the following notion of warmness:

Definition 2.2 (Warm start). For a Markov chain with state space X and stationary dis-
tribution IT* has a B-warm start if its initial distribution pg satisfies , the initial distribution
Lo 1S said to be B-warm with respect to the stationary distribution 11* if

110(S)
S:g&) T (5) < B, (2.6)

for a finite scalar 8 > 0, where B(X) denotes the Borel o-algebra of the state space X .

For simplicity, we say that o is a warm start if the warmness parameter [ is a small
constant (e.g., # does not scale with dimension d). We are interested in establishing the
results that provide a precise scaling of the mixing time bounds as a function of the problem
parameters. In particular, the results to follow establish bounds on the quantity

sup Tp<5; (:u07 H*))a
po€Pp(I1*)

as a function of dimension d, parameters (3,9, and other parameters related to the target
distribution; here P4(II*) denotes the set of all distributions that are S-warm with respect
to IT*. Naturally, as the value of 5 decreases, the task of generating samples from the target
distribution becomes easier.! However, access to a good “warm” distribution (small j3)
may not be feasible for many applications, and thus deriving bounds on mixing time of the
Markov chain from non-warm starts is also desirable. Several of our results directly tackle
this challenge by provide practical initialization methods and polynomial-time mixing time
guarantees from such starts.

'For instance, 8 = 1 implies that the chain starts at the stationary distribution and has already mixed.
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Lazy chain: We say that the Markov chain is (-lazy if at each iteration the chain is forced
to stay at the previous iterate with probability (. Unless otherwise specified, we study %—lazy
chains in this thesis. In practice, one is not likely to use a lazy chain (since the lazy steps slow
down the convergence rate by a constant factor); rather, it is a convenient assumption for
theoretical analysis of the mixing rate up to constant factors since any lazy (time-reversible)
chain is always aperiodic and admits a unique stationary distribution. For more details, see
the survey [242] and references therein.

2.2 Metropolis-Hastings Algorithms

We now describe, arguably the most popular class of MCMC algorithms (also the focus
of this thesis), known as Metropolis-Hastings algorithms—mamed after the authors of the
earliest works on MCMC [177, 107]. Our discussion here aims to only provide a refresher on
the topic on subsets of Euclidean spaces, and we refer the reader to the books [210, 30] and
references therein for further background.

Starting at a given initial positive density s over X C R? any such Markov chain is
simulated in two steps: (1) proposal step, and (2) accept-reject step. For the proposal step,
we make use of a proposal function p: X x X € Ry, where p(z,-) is a density function for
each x € X. At each iteration, given a current state x € X of the chain, the algorithm
proposes a new vector z € X by sampling from the proposal density p(z,-). In the second
step, the algorithm accepts z € R? as the new state of the Markov chain with probability

I*(2)p(z, z) }
C I (z)p(a, 2) )

Otherwise, with probability equal to 1 — a(z, z), the chain stays at . Thus, the overall
transition kernel ¢ for the Markov chain is defined by the function

a(z, z) = min {1 (2.7)

q(z,2) = p(z, 2)a(x, z) for z # x,

and a probability mass at « with weight 1— [, ¢(z, z)dz. The step (2.7) is commonly known
as the Metropolis-Hastings correction/adjustment or the accept-reject step as it ensures that
the target density II* is stationary for the Markov chain associated with the overall transi-
tion kernel for the following reason: The overall transition kernel satisfies detailed balance
condition with the target distribution, meaning that

q(y, )7 (x) = q(x,y)m*(y)for allx,y € X, (2.8)

under mild conditions on IT*, and p, e.g., 7* and p(x, ) being positive on X, for all z € X. It
is straightforward to verify that the detailed balance condition (2.8) implies that the target
density IT* is stationary for the Markov chain.

Overall, this set-up defines the transition operator 7, as a function of p and II*, on
the space of probability distributions: given the distribution g, of the chain at time k, the
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distribution at time k + 1 is given by 7,(u). In fact, with the starting distribution g, the
distribution of the chain at kth step is given by TF (o). Given the detailed balance (2.8),
, it is known that the chain converges to target distribution, asymptotically, i.e., in the
limit of infinite steps: limy_, oo 7;’“ (o) = ITI*. However, the focus of this part of our thesis
is non-asymptotic analysis, namely, the number of the chain sufficient to ensure that the
distribution of the chain is d-close to the target II* in appropriate metric.

From the set-up above, one can easily note that given p, the user only requires the
knowledge of target density up to proportionality to run the algorithm. In terms of the
notation (2.1), we only need to know the function f. Given this knowledge, there are several
generic schemes—described completely by specifying just the proposal function p—used to
construct wide variety of sampling algorithms. Let P, denote the proposal distribution at x
corresponding to the proposal density p(x,-). Some illustrative examples of the commonly
used algorithms are as follows:

e Independence sampler: the proposal function does not depend on the current state
of the chain, e.g., rejection sampling or when P, = N(0,X), where X is a hyper-
parameter;

e Symmetric Metropolis algorithm: the proposal function satisfies p(z,y) = p(y, x)
(independence sampler is a special case); for example, Ball Walk [93] with P, =
UB(z,r)) (uniform distribution), where r is a hyper-parameter;

e Random walk: the proposal function satisfies p(z,y) = ¢(y — x) for some probability
density ¢, e.g., Metropolis random walk with P, = N (z,2nl,), where 1 is a hyper-
parameter;

e Langevin algorithm: the proposal distribution is shaped according to the target
distribution and is given by P, = N (x —nV f(x), 2nl,), where 7 is a hyper-parameter
(random walk is a special case with f is a constant function). This class of algorithm
requires additional knowledge about the target density since it assumes access to the
gradient V f information.

Naturally the convergence rate of these algorithms would depend on the properties of the
target density II* and how well suited are the proposal function p for the task at hand. In
the chapters to follow, we provide additional examples, and further details on the known
results about the algorithms in relevant sections .
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Chapter 3

Mixing Times for Random Walk and
Langevin Algorithms

In this chapter, we study sampling algorithms for sampling from a log-concave distribution
IT* equipped with a density 7*. A log-concave density takes the form

Rd

where f is a convex function on R%. Up to an additive constant, the function — f corresponds
to the log-likelihood defined by the density. Standard examples of log-concave distributions
include the normal distribution, exponential distribution and Laplace distribution.

This chapter deals with both zeroth-order and first-order sampling methods, and focus on
the Metropolis random walk, and Langevin algorithms. Our goal is to derive non-asymptotic
mixing time for these methods. We start with background material in Sections 3.1 and 3.2
to provide some more context before summarizing our contributions in Section 3.2.4, and
the organization of the remainder of the chapter in Section 3.2.5.

™ (x) = for all z € RY, (3.1)

3.1 Metropolis Random Walk

Perhaps, one of the easiest algorithm to implement is the Metropolis random walk with
Gaussian proposals. (This algorithm appears with several names in the literature including
Random walk Metropolized and Random walk Metropolis-Hastings.) When the chain is at
state x, a proposal is drawn as follows

21 = T + /20 &y, (3.2)

where the noise term &1 ~ N(0,1;) is independent of all past iterates. The chain then
makes the transition according to an accept-reject step with respect to II*. Since the proposal
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distribution is symmetric, this step can be described as

)

Zg+1 Wwith probability min < 1,
™ (k)

Th+1 =
Ty otherwise.

This sampling algorithm is an instance of a zeroth-order method, since it makes use of only
the function values of the density 7*. We refer to this algorithm as MRW in the sequel. It
is easy to see that the chain has positive density of jumping from any state x to y in RY
and hence is strongly IT*-irreducible and aperiodic. Consequently, Theorem 1 by Diaconis et
al. [69] implies that the chain has a unique stationary distribution II* and converges to in
the limit of infinite steps. Roberts and Tweedie [217] established sufficient conditions on
the proposal function p and the target distribution II* for the geometric convergence of
several random walk Metropolis-Hastings algorithms, including MRW. Other related work
with results on ergodicity, optimal scaling of asymptotic variance and central limit theorems
include [217, 130, 212, 214], the survey [213] and the references therein. Such results are
crucial for gaining helpful insight into the convergence properties of the MRW algorithm,
but still they do not easily provide a user-friendly rate of convergence. In other words, from
these results, it is not easy to determine the computational complexity of MRW (or other
MCMC algorithms) as a function of the problem dimension d and desired accuracy 6. With
this context, one of the key results in this chapter establishes explicit non-asymptotic mixing
time guarantee for MRW (see Theorem 3.2).

Algorithm 1: Metropolized Random Walk (MRW)

Input: Step size n > 0 and a sample zy from a starting distribution pg
Output: Sequence z1,x3,. ..

1 fori=0,1,... do
2 Proposal step: Draw z;11 ~ N (x;,2nl,)
3 Accept-reject step:
4 compute ;41 ¢ min {1, eXp(_ﬂZ’“”}
exp (—f (i)
5 With probability a;11 accept the proposal: z;11 < z;41
6 With probability 1 — «;41 reject the proposal: x;41 +— x;
7 end

Other instances of zeroth-order algorithms include the ball walk [166, 85, 167] and the hit-
and-run algorithm [16, 137, 163, 169, 171]. While there are several mixing time guarantees
for Ball Walk and Hit-and-run results, these methods are designed specifically for compactly
supported distributions and do not immediately apply to distributions with support R?
which is the focus of this chapter (equation (2.1)). We defer further discussion about them
to Chapter 6.
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3.2 Langevin Algorithms

A number of first-order methods are based on the Langevin diffusion, a stochastic process
whose evolution is characterized by the stochastic differential equation (SDE):

dX, = =V f(X,)dt + V2 dW,, (3.3)

where {W; |t > 0} is the standard Brownian motion on R?. Under fairly mild conditions
on f, it is known that the diffusion (3.3) has a unique strong solution {X;,¢ > 0} that is
a Markov process [216, 179]. Furthermore, it can be shown that the distribution of X,
converges as t — —+o0o to the invariant distribution IT* with density 7* o exp(—f) given as in
equation (2.1). See Roberts and Tweedie [216] or Meyn and Tweedie [179] for further details
on such an asymptotic guarantee. In practice, one can neither simulate the diffusion (3.3)
exactly, nor can one run the algorithm for infinite horizon—and one can resort to some
discrete-time time algorithm that approximates the diffusion.

3.2.1 Unadjusted Langevin Algorithm

A natural way to simulate the Langevin diffusion (3.3) is to consider its forward Euler
discretization, given by

The1 = xx — NV f(2r) + /208841, (3.4)

where the driving noise &1 ~ N (0,1;) is drawn independently at each time step. Note that
while the algorithm (3.4) is an MCMC algorithm since the updates do form a Markov chain,
it is not of Metropolis-Hastings type due to the lack of accept-reject step (2.7). Nonetheless,
given the nice asymptotic convergence property of the diffusion (3.3), usage of such an
unadjusted algorithm can be traced back at least to Parisi in 1981 [200] for computing
correlations as noted by Besag in his commentary on the paper by Grenander and Miller [100].

However, even when the Langevin diffusion (3.3) is well behaved, the iterates defined by
the discretization (3.4) can have mixed behavior. When step size 7 is large, the distribution
of the iterates defined by equation (3.4) converges to a stationary distribution that is no
longer equal to II*. In fact, Roberts and Tweedie [216] showed that if one does not choose
the step size 7 carefully, the Markov chain defined by equation (3.4) can become transient and
have no stationary distribution. Nevertheless, a series of recent work [61, 74, 51] establish
that with a careful choice of step-size n and iteration count K, running the chain (3.4) for
exactly K steps yields an iterate xx whose distribution is close to IT*. This more recent body
of work provides non-asymptotic bounds that explicitly quantify the rate of convergence for
this chain. The lack of the Metropolis-Hastings correction (adjustment) yields it the name
of unadjusted Langevin algorithm, or ULA for short. Some works also refer to it as the
Langevin Monte Carlo.

Durmus and Moulines [74] show that for an appropriate decaying step size schedule, the
distribution of the iterates from the ULA algorithm does converge to II*, when IT* is strongly
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log-concave target. However, their results, albeit non-asymptotic, are hard to quantify. In
the sequel, we limit our discussion to Metropolis random walk and Langevin algorithms
based on constant step sizes, for which there are a number of explicit quantitative bounds
on the mixing time.

3.2.2 Metropolis Adjusted Langevin Algorithm

An alternative approach to handling the discretization error is to use the iterates on the
RHS of equation (3.4) as the proposals in a Metropolis-Hastings type algorithm. In other
words, one can use the distribution N (2 — nV f(xy),2n];) as the proposal distribution,
and perform the Metropolis-Hastings accept-reject step, thereby yielding the Metropolis-
adjusted Langevin algorithm, or MALA for short. Consequently, this algorithm has been the
focus of several work in the past [216, 215, 25]. We describe the different steps of MALA
in Algorithm 2. As mentioned in Section 2.2, the Metropolis-Hastings correction ensures
that the distribution of the MALA iterates {zy} converges to the correct distribution IT*
as k — oo. Indeed, since at each step the chain can reach any state z € R?, it is strongly
[T*-irreducible and thereby ergodic [179, 69].

Both MALA and ULA are instances of first order sampling methods since they make
use of the function and the gradient values of f.!' While MALA is clearly superior to
ULA asymptotically due to the lack of the bias, the main question of practical relevance is
whether employing the accept-reject step for the discretization (3.4) provides any gain in the
convergence rate—Which of the two converge take lesser number of iterations (computational
budget) to converge to a desired accuracy? Our analysis to follow provides a precise answer to
this question under certain assumptions on the target distribution, establishing that MALA
has a superior finite time convergence guarantees compared to ULA.

Related work on MALA: Several works [233, 178, 215, 205] characterize asymptotic lim-
iting behaviors (in time or dimension) of the Langevin diffusion or provide non-explicit dis-
cretization error guarantees, that do not immediately yield a user-friendly mixing-time guar-
antee. Roberts and Tweedie [216] derived sufficient conditions for exponential convergence
of the Langevin diffusion and its discretizations, with and without Metropolis-adjustment.
However, they considered the distributions with f(z) = ||«||5 and proved geometric conver-
gence of ULA and MALA under some specific conditions; however they did not provide a
precise quantification of the asymptotic bias of ULA. In a more general setting, Bou-Rabee
and Hairer [25] derived non-asymptotic mixing time bounds for MALA, which can poten-
tially be compared to the recent works on ULA. However, these bounds are non-explicit,
and so makes it difficult to extract an explicit dependence in terms of the dimension d and
error tolerance 0. A precise characterization of this dependence is needed if one wants to

"While ULA only uses gradient information, the computational complexity per step for MALA and ULA
are still typically of the same order, since computing the function is often a cheaper operation, and/or a
pre-requisite to computing the gradients.
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make quantitative comparisons with ULA or any other sampling algorithm. Along this note,
Eberle [86] derived mixing time bounds for MALA albeit in a more restricted setting com-
pared to the one considered in this chapter. In particular, Eberle’s convergence guarantees
are in terms of a modified Wasserstein distance, truncated so as to be upper bounded by
a constant, for a subset of strongly concave measures which are four-times continuously
differentiable and satisfy certain bounds on the derivatives up to order four. With this con-
text, one of the main contributions of this chapter is to provide an explicit upper bound
on the mixing time bounds in total variation distance of the MALA algorithm for general
log-concave distributions.

Algorithm 2: Metropolis adjusted Langevin algorithm (MALA)
Input: Step size n and a sample z( from a starting distribution zg
Output: Sequence xq, 2o, ...
fori=0,1,... do
2 Zit1 N(:C@ — T]Vf(a:i), 277]Id) % propose a new state
. exp (= f(zi11) = @i — zis1 + 0V f(zi00) ][5 /4n)

3 Qipp =min < 1, 5

exp (—f(@:) = [lzixa — i + 0V f(2)5 /4n)

=

4 | Uy ~U|0,]1]

5 if U1 < a;yq then 2,01 < 2,41 % accept the proposal
6 else z;,1 < x; % reject the proposal

7 end

3.2.3 Other Langevin-type Algorithms

Over the years, numerous practical algorithms related to the Langevin diffusion have been
proposed besides ULA and MALA. These algorithms include the underdamped Langevin
MCMC [52] also called as kinetic Langevin Monte Carlo [63], second-order Langevin Monte
Carlo [61], Riemannian MALA [252], Proximal-MALA [204, 75], Metropolis adjusted Langevin
truncated algorithm [216], and Projected ULA [31]. Some of these work establish non-
asymptotic mixing time bounds for sampling from a log-concave density; e.g., it is now well-
known that both the ULA updates [61, 74, 51] as well as underdamped Langevin MCMC [52]
have mixing times that scale polynomially in the dimension d, as well the inverse of the error
tolerance 1/4 for strongly log-concave distributions. There is now a rich body of work on
these methods, and we do not attempt to provide a comprehensive summary here; see the
aforementioned references, and the survey [213] for related details.

3.2.4 Overview of our contributions

This chapter provides two main results, both having to do with the upper bounds on mixing
times of MCMC methods for sampling. As described above, our first and primary contri-
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bution is an explicit analysis of the mixing time of Metropolis adjusted Langevin Algorithm
(MALA). A second contribution is to use similar techniques to analyze a zeroth-order method
called Metropolized random walk (MRW) and derive an explicit non-asymptotic mixing time
bound for it. Unlike the ULA, these methods make use of the Metropolis-Hastings accept-
reject step and consequently converge to the target distributions in the limit of infinite steps.
Here we provide explicit non-asymptotic mixing time bounds for MALA and MRW, thereby
showing that MALA converges significantly faster than ULA, at least in terms of the best
known upper bounds on their respective mixing times.? In particular, we show that if the
density is strongly log-concave and smooth, the -mixing time for MALA scales as kdlog(1/6)
which is significantly faster than ULA’s convergence rate of order x*d/§2. On the other hand,
we also show that MRW mixes O (k) slower when compared to MALA. Furthermore, if the
density is weakly log-concave, we show that (a modified version of) MALA converges in
O (d*/§'?) time in comparison to the O (d*/§*) mixing time for ULA. As alluded to earlier,
such a speed-up for MALA is possible since we can choose a large step size for it which in
turn is possible due to its unbiasedness in the limit of infinite steps. In contrast, for ULA the
step-size has to be small enough to control the bias of the distribution of the ULA iterates
in the limit of infinite steps, leading to a relative slow down when compared to MALA.

3.2.5 Organization

The remainder of the chapter is organized as follows. Section 3.3 is devoted to the state-
ment of our mixing time bounds for MALA and MRW, along with a discussion of some
consequences of these results. Section 3.4 is devoted to numerical experiments that further
illustrate our guarantees. We provide the proofs of our main results in Section 3.5, with
certain more technical arguments deferred to the appendices. We conclude with a discussion
in Section 3.6.

3.3 Main results

In this section, we state our main results on the non-asymptotic mixing time guarantees for
MALA and MRW, and compare it to ULA. Before stating these results, we first state the
regularity conditions assumed on the target distribution II* for deriving our results.

3.3.1 Assumptions on the target distribution

We now describe the regularity conditions on the target distributions that our results in the
next section rely on. We analyze MALA and MRW and contrast their performance with
existing algorithms for log-concave targets, i.e., for the case when the negative log density

2Throughout the chapter, we make comparisons between sampling algorithms based on known upper
bounds on respective mixing times; obtaining matching lower bounds is also of interest.
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f(z) = —log m*(z)+c is smooth and convex. We collect some standard definitions assuming
f: R — R is a differentiable function.
A function f is said to be L-smooth if

F)~ f@) = V@ g -2) < Sl -yl forallzyeR. (35

In the other direction, a convex and differentiable function f is said to be m-strongly convex
if

f@) = f@) = Vi@ (y—2) = F e -yl forallzyeRL  (35b)

In Appendix A.5, we state some well-known properties of smooth and strongly convex func-
tions, that we later use for our results.

The rates derived in this chapter apply to two different settings of log-concave target
distributions (defined via (3.1)).

(3A) We say that the target distribution IT* is (£, m)-strongly log-concave distribution if the
negative log density function f is both £-smooth (3.5a) and m-strongly convex (3.5b).
For this case, we also use the notation x := £/m, and call it the condition number of
the target I1*. Moreover, we use z* to denote the unique mode of II* whenever f is
strongly convex.

(3B) We say that the target distribution IT* is L-weakly log-concave distribution when the
negative log density function We assume that the function f is £-smooth, and convex
(but not necessarily strongly convex, i.e., m = 0).

Common examples of strongly log-concave targets include multivariate Gaussian distribu-
tion®, f(x) = 2" Bz + g(z) for any convex g and any positive definite matrix B, or posterior
distributions in Bayesian logistic regression with Gaussian prior. Examples of weakly log-
concave target include f(z) = ||z3, or f(z) = log(1 + e?'*) which would arise, e.g., in
Bayesian logistic regression with flat prior.

Organization of results: We discuss the guarantees for strongly log-concave target from
a warm start in Section 3.3.2, and from certain feasible starting distributions in Section 3.3.3,
and then we consider the case of weakly log-concave target in Section 3.3.4. An overview
of results is summarized in Tables 3.1 and 3.2, as a function of the dimension d, the error-
tolerance 6, the condition number « (for the strongly log-concave target), and the smoothness
parameter £ (for the weakly log-concave target). In Table 3.1, we state the results when
the chain has a warm-start (i.e., 5 a fixed constant, c.f. Definition 2.2). On the other hand,
Table 3.2 summarizes mixing time bounds from a particular distribution p, for the strongly
log-concave target.

3For the Gaussian target N (z,Y), the condition number of the target is equal to the condition number
of the covariance matrix ¥, i.e., x can be bounded by the ratio of maximum and minimum eigenvalues of X.
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Random walk Strongly log-concave Weakly log-concave
dr?log((1 4] dL?
ULA [51] o ( " Og(gfg B/ )) o )

d3L2

S

; ()
(15705 (5) ) (5)
MRW [Thm. 3.2, Cor. 3.2] O | dk’log | = O
5 2

Table 3.1: Scalings of upper bounds on d-mixing time for different random walks in R?
with target 7* o< e=/. In the second column, we consider smooth and strongly log-concave
target (Assumption (3A)), and report the bounds from a S-warm start for densities such that
mly < V2f(z) < LI for any z € R? and use k := £/m to denote the condition number of
the density. The big-O notation hides universal constants. In the last column, we summarize
the scaling for weakly log-concave smooth densities: 0 < V2f(x) < LI for all z € R?. For

this case, the O notation is used to track scaling only with respect to d,d and £ and ignore
dependence on the starting distribution and a few other parameters.

ULA [61] 0 (M)

MALA [Thm. 3.1,Cor. 3.2] O (max {dﬁa, d0'5m1'5} log (§)> O (

Remark: We note that our techniques yield sharper guarantees under more idealized as-
sumptions, e.g., when f is Lipschitz, i.e., has bounded gradients, and the target distribution
satisfies certain isoperimetry inequality. For such settings, the target need not even be log-
concave, i.e., f need not be convex. Nonetheless, we restrict our attention in this chapter
to log-concave target distributions, and refer the interested readers for further discussion for
mixing times for such class of distributions to Chapter 5.

3.3.2 Mixing time for strongly log-concave target: Warm start

Given the parameters m and £, our results involve the functions a and t given by

1 1 1 1
a(s):2+2~max{ﬁlog 5<> d05log (5)}’ and (3.6a)

— min L i or S 1
t(s) = {a(s)-L\/E’ Ld} for s € (0,3). (3.6D)

Let Tymara(y) denote the transition operator (2.4) on probability distributions induced by one
step of MALA. The next result our first guarantee for MALA.
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Random walk Ly tmix( 5 ,UO)
2
ULA 5] N@,m™L) O (%W)
3 2 2
ULA [61] N 7)) O <(d +d105g2 (1/6))k >

MRW N £7'L) O (dw log!® <§))

MALA N (z*, £71,) O (d%log (g))

Table 3.2: Scalings of upper bounds on d-mixing time, from the starting distribution .,
given in column two, for different random walks in R? with target 7* o e~/ such that
mly < V2f(x) < LI, for any 2 € R? and x := £/m. Here 2* denotes the unique mode of
the target density 7*.

Theorem 3.1. For an (£, m)-strongly log-concave target distribution IT* (Assumption (3A4)),
giwen any [-warm initial distribution uo, and any error tolerance § € (0, 1], the Metropolis
adjusted Langevin algorithm with step size n = ct(6/(23)) satisfies

2
drv (Tl\ﬁALA(n)(uo),H*) <4§ forall €= log (Fﬁ) max{dm, d0'5m1'5a<%> }, (3.7)

where k = L/m, and ¢, denote universal constants.

See Section 3.5.3 for the proof.

Noting that a(s) < 4 for s > e~ we can treat a(§/23) as a small constant for most
interesting values of 4 assuming 3 is not too large (hence the name warm start). Treating
the term corresponding to a as a constant, we obtain that if k = o(d), the mixing time of
MALA scales as O (drlog(1/6)) which is exponentially better in the tolerance-0 compared
to O (dx*log®(1/6)/6%) mixing time of ULA, and has better dependence on r while still
maintaining linear dependence on d. In fact, for any setting of k,d and o, MALA always
has a better mixing time bound compared to ULA. A limitation of our analysis is that the
constant ¢ is not small. However, we demonstrate in Section 3.4 that in practice small
constants provide performance that match the scalings suggested by our theoretical bounds.

Let Turw(y) denote the transition operator (2.4) on the space of probability distributions
induced by one step of MRW. We now state our first mixing time bound for Metropolized
random walk.
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Theorem 3.2. For an (£, m)-strongly log-concave target distribution IT* (Assumption (3A)),
given any B-warm initial distribution pg, and any error tolerance § € (0, 1], the Metropolized

random walk with step size n = WW/L(?B)) satisfies

dry (Tl\fmw(n)(,uo),ﬂ*) <é& forall ¢>cdr a(;;) log (25) (3.8)

where ¢, ¢ denote universal constants.

See Section 3.5.4 for the proof.

Again treating a(d/25) as a small constant, we find that the mixing time of MRW scales

s O (dk?1og(1/d)) which has an exponential factor in § better than ULA. Compared to

the mixing time bound for MALA, the bound in Theorem 3.2 has an extra factor of O(k).

While such a factor is conceivable given that MALA’s proposal distribution uses first order

information about the target distribution, and MRW uses only the function values, it would
be interesting to determine if this gap can be improved.

3.3.3 Mixing time for strongly log-concave target: Feasible start

In many cases, a good warm start may not be readily known, and thus it would be useful to
derive mixing time guarantees from an initial distribution that can be implemented easily.
The next lemma (with proof in Appendix A.1) provides a bound on the warmness of a
feasible distribution.

Lemma 3.1. The distribution p, = N(x*,L7'1,) is B, = &¥?-warm with respect to an
(L,m) target distribution, where x* denotes the unique mode of the target distribution I1*.

When the gradient Vf is available, finding z* comes at nominal additional cost: in
particular, standard optimization algorithms such as gradient descent be used to compute
a d-approximation of z* in O (klog(1/d)) steps (e.g., see the monograph [32]). where the
function t was previously defined in equation (3.6b). The next result provides the mixing
time guarantees when MALA and MRW are initialized with the feasible distribution .

/

Corollary 3.1. For any threshold 6 € (0,1], define ni = c't(6/(25.)), and n2 = g 57@my

where B, = k2. Then with p, = N (z*, £L7,) as the starting distribution, we have

drv (Thirw (n2) (Hs ) M) <6 forall £ > ¢ d’*log"? ( K o

)

drv (TI\IZALA(m)(M*) ) <6 forallt > c d*klog (51/d> max {1, g log (%) } ‘
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Remark: The proof of Corollary 3.1 follows by plugging the warmness bound from Lemma 3.1
in Theorem 3.1 and 3.2 and is thereby omitted. We note that compared to the mixing time
from a warm-start with constant /3, the bounds in Corollary 3.1 are roughly O (d) worse
since the warmness parameter of u, is exponential in d. Such a worsening is caused by the
log 3 scaling of the mixing time bound in Theorems 3.1 and 3.2. In the next chapter, we
sharpen the results of this corollary by a factor of O (d/logd) for different choices of step
sizes using a more refined analysis. See Section 4.3 and Corollary 4.2 for further discussion.

Inexact parameters: Our techniques can also establish mixing time guarantees when
the mode x* and the smoothness parameter £ are only approximately known—a situation
occurring quite often in practice. See section 3.2.1 of the full paper [78] for further details,
where we show that the mixing time bounds are not severely affected if the parameters x*
and £ are known to a reasonable perturbation error from the exact parameters.

3.3.4 Mixing time for weakly log-concave target

In this section, we show that MRW and MALA can also be used for approximate sampling
from a density which is £-smooth but not necessarily strongly log-concave (also referred
to as weakly log-concave [61]). In simple words, the negative log-density f satisfies the
condition (3.5a) with parameter £ and satisfies the condition (3.5b) with parameter m = 0.
Equivalently, we have LI; = V2f(z) = 0 for all x € R? (see Appendix A.5).

In order to make use of our previous machinery for such a case, we approximate the
given log-concave density II* with a strongly log-concave den51ty ITI* such that drv (H* H*)

is small. Next, we use MRW or MALA to sample from II* and consequently obtain an
approximate sample from IT*. In order to construct IT*, we use a scheme previously suggested
by Dalalyan [61]. With A as a tuning parameter, consider the distribution II* given by the
density

1

/ e’f(y)dy
]Rd

Dalalyan (Lemma 3 in the paper [61]) showed that that the total variation distance between
IT* and II* is bounded as follows:

™(x) = e T®) where flx) = f(z) + % |z — 2*||3. (3.10)

/2

(1) < 0T Sl <3 ([ e wlima) e

Suppose that the original distribution IT* has its fourth moment bounded as

. . d2w2
/ o — o (@) < T (3.12)
Rd
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We now set A := 2L4/(dw) to obtain drv (ﬁ*,H*) < §/2. Since f is A/2-strongly convex
and £ + A/2-smooth, the condition number of IT* is given by kK = 1 4 dw/6. We substitute
K = dw/d to obtain simplified expressions for mixing time bounds in the results that follow.
Since now the target distribution is ﬁ*, we suitably modify the step size for MALA as follows:

‘qc(s):&mim{ Vs 1}, (3.13)

where the function a was previously defined in equation (3.6a). We refer to this new set-up
with a modified target distribution IT* as the modified MALA method. Similarly, we call the
algorithm MRW with target IT* as modified MRW. To keep our results simple to state, we
assume that we have a warm start with respect to II*.

Corollary 3.2. For an L-weakly log-concave I1* (Assumption (3B)) that satisfies (3.12),
and any fized error-tolerance 6 € (0,1), any starting distribution py that is S-warm with
respect to I1* (3.10), the modified MRW with step size m = and the modified
MALA method with step size ny = cot1.(6/(25)) (3.13) satisfy

c10
PLwa(5/(28))7

4 3, ,2
drv (ThﬁRw( y(110), ") <& forall > log 45 d_w’ and
" 5 ) o
. " 443 d*w  dPwt?® (5
dTV(Tl\glALA(m)(,UO)aﬂ ) <6 forall €>c"log (7) max {T’ 515 O <@) } :

The proof follows by combining the triangle inequality, as applied to the TV norm, along
with the bounds from Theorems 3.1 and 3.2. Thus, for weakly log-concave densities, modified
MALA mixes in O (d?/§"%), which improves upon the O (d*/§*) mixing time bound for a
ULA scheme on IT*, as established by Dalalyan [61]. Moreover, the modified MRW admits
a mixing time bound of O (d?/6?) for the weakly log-concave target.

3.4 Numerical experiments

In this section, we compare MALA with ULA and MRW in various simulation settings. The
step-size choice of ULA follows from [61] in the case of warm start. The step-size choice of
MALA and MRW used in our experiments in our results are summarized in Table 3.3.

Summary of experiment set-ups and diagnostic tools: We consider four different
experiments: (i) sampling a multivariate Gaussian (Section 3.4.1), (ii) sampling a Gaussian
mixture (Section 3.4.2), (iii) estimating the MAP with credible intervals in a Bayesian lo-
gistic regression set-up (Section 3.4.3) and (iv) studying the effect of step-size on the accept
reject step (Section 3.4.4). Since TV distance for continuous measures is hard to estimate,
we use several proxy measures for convergence diagnostics: (a) errors in quantiles, (b) ¢;-
distance in histograms (which we refer to as discrete tv-error), (c) error in sample MAP
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estimate, (d) trace-plot along different coordinates and (e) autocorrelation plot. While the
first three measures (a-c) are useful for diagnosing the convergence of random walks over
several independent runs, the last two measures (d-e) are useful for diagnosing the rate of
convergence of the Markov chain in a single long run.

3.4.1 Dimension dependence for multivariate (zaussian

The goal of this simulation is to demonstrate the dimension dependence in experiments,
for mixing time of ULA, MALA and MRW when the target is non-isotropic multivariate
Gaussian. Note that Theorem 3.1 and 3.2 imply that the dimension dependency for both
MALA and MRW is d. We consider sampling from multivariate Gaussian with density 7*
defined by

x = (1) e 2v W (3.14)
where ¥ € R% the covariance matrix to be specified. For this target distribution, the
function f, its derivatives are given by

flz) = %xTZ_lx, Vfi(z) =Yz, and Vif(z)=%""

Consequently, the function f is strongly convex with parameter m = 1/A\.x(2) and smooth
with parameter £ = 1/\,in(X). For convergence diagnostics, we use the error in quantiles
along different directions. Using the exact quantile information for each direction for Gaus-
sian, we measure the error in the 75% quantile of the sample distribution and the true dis-
tribution in the least favorable direction, i.e., along the eigenvector of > corresponding to the
eigenvalue A\« (X). The approzimate mixing time l%mix(é) is defined as the smallest iteration
when this error falls below §. We use ju, as the initial distribution where p, = A (0, £7'1,).

3.4.1.1 Strongly log-concave density

The step-sizes are chosen according to Table 3.3. For ULA, the error-tolerance ¢ is chosen
to be 0.2. We set X as a diagonal matrix with the largest eigenvalue 4.0 and the smallest
eigenvalue 1.0 so that the k = 4 is fixed across different settings. For a fixed dimension d,
we simulate 10 independent runs of the three chains each with N = 10,000 samples to
determine the approximate mixing time. The final approximate mixing time for each walk
is the average of that over these 10 independent runs. Figure 3.1(a) shows the dependency
of the approximate mixing time as a function of dimension d for the three random walks
in log-log scale. To examine the dimension dependency, we perform linear regression for
approximate mixing time with respect to dimensions in the log-log scale. The computations
reveal that the dimension dependency of MALA, ULA and MRW are all close to order d
(slope 0.84, 1.01 and 0.97). Figure 3.1(b) shows the dependency of the approximate mixing
time on the inverse error 1/§ for the three random walks in log-log scale. For ULA, the
step-size is error-dependent, precisely chosen to be 10 times of . A linear regression of the
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Figure 3.1: Scaling of the approximate mixing time Fomix (refer to the discussion after equa-
tion (5.13) for the definition) for the multivariate Gaussian target (5.13) where the covariance
has condition number k = 4. (a) Dimension dependency. (b) Error-tolerance dependency.

approximate mixing time on the inverse error 1/4 yields a slope of 2.23 suggesting the error
dependency of order 1/§2 for ULA. A similar computation for MALA and MRW yields a slope
of 0.33 for both the cases which not only suggests a significantly better error dependency
for these two chains but also partly verifies their theoretical mixing time bounds of order

log(1/9).

Random walk ULA MALA MRW
Step size & LI, I 1 1

iz —— —min{ —. — —

p Al Vi d[  drt

Table 3.3: Step size used in simulations to obtain d-accuracy for different r