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Abstract

Principled Statistical Approaches For Sampling and Inference in High Dimensions

by

Raaz Dwivedi

in Engineering—Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Martin Wainwright, Co-chair

Professor Bin Yu, Co-chair

The growth in the number of algorithms to identify patterns in modern large-scale datasets
has introduced a new dilemma for practitioners: How does one choose between the numerous
methods? In supervised machine learning, accuracy on a hold-out dataset is the flagship for
choice making. This dissertation presents research that can provide principled guidance for
making choices in three popular settings where such a flagship measure is not readily avail-
able. (I) Convergence of Markov chain Monte Carlo sampling algorithms, used commonly in
Bayesian inference, Monte Carlo integration, and stochastic simulation: We provide explicit
non-asymptotic guarantees for state-of-the-art sampling algorithms in high dimensions that
can help the user pick a sampling method and the number of iterations based on the com-
putational budget at hand. (II) Statistical-computational challenges with mixture model
estimation used commonly with heterogeneous data: We provide non-asymptotic guarantees
with Expectation-Maximization for parameter estimation when the number of components
is not known, and characterize the number of samples and iterations needed for the desired
accuracy, that can inform the user of the potential two-edged price when dealing with noisy
data in high dimensions. (III) Reliable estimation of heterogeneous treatment effects (HTE)
in causal inference, crucial for decision making in medicine and public policy: We introduce
a data-driven methodology StaDISC that is useful for validating commonly used models for
estimating HTE, and for discovering interpretable and stable subgroups with HTE using cal-
ibration. While we illustrate its usefulness in precision medicine, we believe the methodology
to be of general interest in randomized experiments.
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Chapter 1

Introduction

Recent decades have seen a surge in statistics, and machine learning research. The number of
learning algorithms available for solving various data-driven problems has grown many folds.
Such rapid advancements often present a practitioner with the choice dilemma: Which of the
many models or algorithms shall I use? A principled choice making, necessary for reliable
learning, should either have a valid theoretical backing or be guided by sufficient empirical
evidence. A poor choice might waste computational resources, lead to unsatisfactory answers,
and lack of theoretical or empirical checks might lead the scientists to draw false conclusions
from the limited data at hand.

In the case of supervised machine learning, the user is typically blessed with the notion of
accuracy on a hold-out dataset. Its simplicity and effectiveness in practice, especially when
combined with cross-validation, has made it perhaps the most popular criterion for choosing
from, and tuning various models and algorithms. However, several areas, e.g., unsupervised
learning, statistical inference, and causal inference, suffer from the lack of such a simple yet
powerful (or commonly accepted) tool for choice navigation.

In part I, we provide theoretical guarantees for various Markov chain Monte Carlo
(MCMC) algorithms. MCMC methods serve as the numerical engine of Bayesian inference,
and Monte Carlo integration, and are most commonly used for drawing random samples
from a given target probability distribution. Nevertheless, they are notorious for slow con-
vergence, and poor theoretical understanding especially in high dimensions. While there is
rich literature about asymptotic convergence, and abundant empirical wisdom, fundamen-
tal results on non-asymptotic rate of convergence can provide insight into how the different
methods compare for the same task, and under what settings, they are provably provide
reliable estimates.

Part II deals with the reverse aspect of statistical problems: learning about target dis-
tributions given draws of random samples. We study a class of challenging mixture models,
which are commonly used when the data has lot of heterogeneity, and characterize the
requirements of (a) the sample size, and (b) the computational budget, to estimate the un-
known parameters to a desired accuracy. We establish guarantees for the method of choice
in settings, Expectation-Maximization (EM). While EM is known to have favorable perfor-
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mance with low noise in the data, we study several models with high noise, and provide
several results which provably establish the slow down of EM on both the sample size re-
quired, and the number of iterations needed for providing a reliable estimate. Our results can
provide insight on how to select the number of mixture components when doing unsupervised
learning with noisy data.

Finally, in part III, we tackle the problem of reliable estimation of heterogeneous treat-
ment effects in causal studies. Causal inference suffers from the fundamental problem of
missing data, since only some of the potential outcomes for each unit in the sample are
observed—thus validating individual-level treatment effect is impossible. We introduce a
data-driven methodology StaDISC, designed for reliable heterogeneity treatment effect dis-
covery and estimation at subgroup-level. StaDISC is immediately relevant for informing
about the performance of different from conditional average treatment effect (CATE) mod-
els as it provides calibration-based predictive checks to select. Furthermore, it automatically
discovers interpretable and stable subgroups with heterogeneous treatment effects (HTE).
We illustrate the usefulness StaDISC in the context of precision medicine via re-analysis of
two randomized clinical trials, and discovering subgroups that are disproportionately affected
by the drug under investigation.

1.1 Part I: Non-asymptotic mixing time analysis

Random sampling, i.e., drawing random samples from a probability distribution, is a crucial
computational challenge common to many disciplines, with applications in machine learn-
ing, statistics, probability, operations research, and other areas involving stochastic model-
ing [95, 28, 209, 107]. In statistics, these methods are useful for both estimation of unknown
quantities and their inference. Markov chain Monte Carlo are the method of choice for such
tasks. Given a target distribution Π?, an MCMC method broadly comprises of two steps:
First, setting up a Markov chain whose stationary distribution is the target distribution or
a good approximation of it, and second, simulating the chain for several number of steps so
that the chain has mixed to generate an approximate sample from Π?.

Many algorithms have been proposed for sampling from probability distributions with
a (general) density on a continuous state space. Generally speaking, these methods can be
categorized in two broad categories: zeroth-order methods and first-order methods. On one
hand, a zeroth-order method is based on querying the density of the distribution (up to a
proportionality constant) at a point in each iteration, and popular examples include random
walk, ball walk, hit-and-run. By contrast, a first-order method makes use of additional
gradient information about the density, and the most common examples include Langevin
algorithms, and Hamiltonian Monte Carlo. Several natural questions arise given this broad
distinction: When does a first order method outperform a zeroth-order method? Can the
gains of one method be characterized in a non-asymptotic sense?

Furthermore, there is a broad class of Markov chains that make use of a two-step simula-
tion for each iteration: First, draw a candidate state using a proposal distribution, and then
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perform an accept-reject step also known as Metropolis-Hastings correction. The latter step
ensures that the stationary distribution of the chain is the target distribution. Such a design
is clearly advantageous in the asymptotic limit, since the chain is asymptotically unbiased
and converges to the target distribution under mild conditions. But, does it really benefit
in finite number of iterations? Can we simulate an unadjusted chain and get a better finite
time performance?

Part I of this thesis answers these questions for a range of algorithms by proving rigorous
non-asymptotic mixing time guarantees. In particular, for several popular algorithms, we
derive the number of iterations needed for the algorithm. Our results are user-friendly as
they provide explicit choices of hyper-parameters, and establish the mixing time guarantee
as an explicit function of the problem dimension, target distribution’s smoothness and cur-
vature, and the desired target accuracy. We start with a background and setting up notation
for MCMC in Chapter 2, and then discuss the mixing time bounds for random walk, and
Langevin algorithms in Chapter 3, where we also show that the accept-reject step can pro-
vide significant speed-up in mixing time. In Chapter 4, we establish general machinery for
proving mixing time bounds that significantly improve mixing time guarantees for a class of
Markov chains when the starting distribution is far from the target. Chapter 5 provides a
thorough theoretical investigation of Hamiltonian Monte Carlo, the default sampling algo-
rithm in many softwares, and often termed as the state-of-the-art sampling method. Finally,
in Chapter 6, we leverage the advancements in the interior point methods to design two new
sampling algorithms, Vaidya and John walks, that achieve state-of-the-art mixing times for
uniform sampling on convex polytopes. This part is based on joint work with Yuansi Chen,
Martin Wainwright and Bin Yu [46, 47, 78, 48].

1.2 Part II: EM and over-specified Gaussian mixtures

The growth in the size and scope of modern data sets has presented the field of statistics with
a number of challenges, one of them being how to deal with various forms of heterogeneity.
Mixture models provide a principled approach to modeling heterogeneous collections of data
(that are usually assumed i.i.d.). In particular, Gaussian mixture models [201] have been
used widely to model heterogeneous data in many applications arising from physical and the
biological sciences. However, estimating the parameters of mixture models is a challenging
task, due to the non-convexity of the log likelihood function. As shown by classical work,
the maximum likelihood estimate (MLE) often has good properties for mixture models, but
its computation can be non-trivial. One of the most popular algorithms used to compute
the MLE (approximately) is the expectation maximization (EM) algorithm. Although EM
is widely used in practice, it does not always converge to the MLE, and its convergence
rate can vary as a function of the problem. Classical results provide guarantees about the
convergence rates of EM to local maxima [68, 251]. In the specific setting of Gaussian
mixtures, population EM (idealized EM with infinite samples) was shown to have a range
of behavior from super-linear convergence to slow convergence like a first-order method
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depending on the overlap between the mixtures [172, 254]. More recently, there has been
a renewed interest in providing explicit and non-asymptotic guarantees on the convergence
of EM [256, 248, 132, 253, 64, 255, 105, 35]; as a consequence, our understanding of EM in
such cases is now relatively mature.

A shared assumption common to this body of past work is that either the true distribution
of each subpopulations is known, or that the number of components is exactly known; in
practice, both of these conditions are often violated. In several scenarios, the data has a
large number of sub-populations and the mixture components in the data may not be well-
separated. In such settings, estimating the true number of components may be difficult, so
that one may end up fitting a mixture model with a number of components larger than that
present in the data. Such mixture fits, referred to as over-specified mixture distributions,
are commonly used by practitioners in order to deal with uncertainty in the number of
components in the data [222, 108]. However, a deficiency of such models is that they are
singular, meaning that their Fisher information matrices are degenerate. It is known that
such mismatch can lead to substantially slower convergence rates for the maximum likelihood
estimate (MLE) for the underlying parameters. In contrast, relatively less attention has been
paid to the computational implications of this mismatch.

Part II tries to bridge this gap by providing several fundamental results regarding the
behavior of EM when used to fit over-specified mixture models. We provide a sharp and non-
asymptotic guarantees of EM with several over-specified mixture models on both statistical
and computational fronts. Our results show that over-specification costs the user on two
ends: Compared to the well specified models, there is not only a significant degradation in
the statistical accuracy with a given number of samples, but also EM requires significantly
many more iterations to converge to its final estimate. In Chapter 7, we analyze over-specified
Gaussian mixture models with unknown mean and known covariance, while Chapter 8 deals
with models when both mean and covariance of the model is unknown. This part is based
on joint work with Nhat Ho, Koulik Khamaru, Michael Jordan, Martin Wainwright and Bin
Yu [82, 81].

1.3 Part III: Reliable subgroup discovery with HTE

Understanding heterogeneous treatment effects (HTE) is at the cutting edge of causal infer-
ence and the past decade in particular has witnessed a wave of innovation in the modeling
and estimation of them. Underlying the hot topic of precision medicine [56] is a realization
that how a patient responds to a particular drug or treatment depends on the patient’s
genetics, lifestyle and environment, and that consequently, accounting for these differences
will allow doctors to deliver better and more targeted care. Moreover, this emphasis on
understanding and exploiting heterogeneity is not unique to the biomedical sciences, and
has also arisen in economics [125], political sciences [96, 89], online advertising [180], and
many other fields [89].

HTE is often estimated using conditional average treatment effect (CATE) models,
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and the last several years have seen numerous new methods proposed for CATE estima-
tion [125, 96, 89, 34, 92, 234, 21]. With such a diverse range of estimators, most of which
come with hyperparameters, model choice becomes a primary concern, and missing poten-
tial outcomes renders empirical validation of CATE models difficult since there is no direct
analog of validation accuracy at individual-level. On the other hand, the existing theoretical
consistency results require strong hard-to-check assumptions. Furthermore, it is well-known
now that in supervised learning, no single machine learning method universally dominates
all others, but instead, the inductive bias of each algorithm lends it a competitive advantage
on certain classes of problems [198]. We expect the same to hold for CATE estimation, which
therefore calls for data-driven model selection.

This part of the dissertation tackles these challenges with CATE estimation using a data-
driven methodology. In Chapter 9 showcasing the proposed research via re-analysis of two
randomized clinical trials using 18 popular CATE models. Building on the PCS framework of
Yu and Kumbier [259], we mitigate the missing information problem by devising calibration-
based pseduo-R2 scores for checking the CATE model fit on the data. We often find that
CATE models indeed have poor global fit, but can be locally well-calibrated, a conclusion
that is stable to various model and data perturbations—thereby a reliable one to draw
according to the stability principle. Overall, building on the recent CATE literature and
the PCS framework, we develop a new methodology, which we call Stable Discovery of
Interpretable Subgroups via Calibration (StaDISC) that we expect to be of general interest
for discovering subgroups with disproportionate treatment effect compared to the average.
This part is based on joint work with Yan Shuo Tan, Briton Park, Mian Wei, Kevin Horgan,
David Madigan, and Bin Yu [84].

1.4 Content not included in this thesis

We now briefly summarize few relevant papers that are not included in this thesis.

Related to Part I: Monte Carlo samples typically provide a slow rate of n−1/2 for esti-
mating function integrals via sample mean of n samples. In several settings, it is desirable
to obtain a faster than Monte Carlo rate. In joint work, with Ohad Feldheim, Ori Gurel-
Gurevich, and Aaditya Ramdas [79], we design a computationally efficient algorithm that
provides a scaling of n−1 up to logarithmic factors for estimating integrals with respect to
the uniform distribution on the unit cube. In another work, joint with Lester Mackey [83],
we provide similar guarantees for functions in reproducing Hilbert spaces and wide range of
distributions with support on Rd.

Related to Part II: In other joint work with Nhat Ho, Koulik Khamaru, Michael Jordan,
Martin Wainwright, and Bin Yu, we characterize the performance of EM when less than true
number of components are fitted (underspecified settings) [80] that complement the analysis
of EM with overspecified settings in Part II. Furthermore, we generalize the localization
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proof technique, to develop a general theory for studying tradeoffs between stability and
convergence rate of iteration methods. We then apply the general theory to obtain a range
of statistical and computational surprises for many algorithms other than EM, e.g., gradient
descent, and Newton’s method, for several statistical settings with noisy data [111].

About COVID-19 forecasting: In other joint work with Bin Yu, and Yu Group, we
worked on curating a COVID-19 repository, and making county-level predictions about
COVID severity in the US [5]. This undertaking was a large collaboration between Yu
Group, and a non-profit organization response4life response4life.org, aimed at providing
PPE support to those who needed it the most in the hours of crisis. The paper [5] summa-
rizes some the technical contributions of this large project, ranging from how the repository
was curated and organized, and how the many forecasting models were built, and ensem-
bled. We provided a thorough validation of our models, that showed that our predictions
were fairly accurate for 7-14 days horizon, which was crucial for our end task of PPE alloca-
tion. Interactive visualization of our predictions, historical performance, and several other
features of our models were provided on a daily basis from April 2020, until March 2021, on
covidseverity.com.
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Part I

Theory of High-dimensional Random
Sampling
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Chapter 2

Background on Markov Chain Monte
Carlo

Sampling procedures are the workhorse in Bayesian statistics, used for exploring posterior
distributions, obtaining credible intervals, and solving inverse problems. Under the frequen-
tist framework, samples drawn from a suitable distribution can form confidence intervals
for a point estimate, such as those obtained by maximum likelihood. Estimating the mean,
posterior mean in a Bayesian setting, expectations of desired quantities, probabilities of
rare events and volumes of particular sets are settings in which Monte Carlo estimates are
commonly used. Let us motivate via a concrete example.

Consider a distribution Π? which admits a density π? : X → R+, specified explicitly up
to a normalization constant as follows

π?(x) ∝ e−f(x). (2.1)

A standard computational task is to estimate the expectation of some function g : X →
R—that is, to approximate Π?(g) = Eπ? [g(X)] =

∫
X g(x)π?(x)dx. In general, analytical

computation of this integral is infeasible. In high dimensions, numerical integration is not
feasible either, due to the well-known curse of dimensionality.

A Monte Carlo approximation to Π?(g) is based on access to a sampling algorithm that
can generate i.i.d. random variables Zi ∼ π? for i = 1, . . . , N . Given such samples, the
random variable Π̂?(g) := 1

N

∑N
i=1 g(Zi) is an unbiased estimate of the quantity Π?(g), and

has its variance proportional to 1/N . The challenge of implementing such a method is
drawing the i.i.d. samples Zi. If π? has a complicated form and the dimension d is large, it
is difficult to generate i.i.d. samples from π?. For example, rejection sampling [98], which
works well in low dimensions, fails due to the curse of dimensionality. In such settings and
more generally, one turns to the class of Markov Chain Monte Carlo (MCMC) methods.

The origin of MCMC methods can be dated back as early as the seminal work of Metropo-
lis et al. [177], and recent decades have seen tremendous empirical success with these meth-
ods, including more recent applications in simulation-based methods for reinforcement learn-
ing, and in image synthesis in computer vision, among other areas; for instance, see the
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handbook [30] and references therein. In a broad sense, these methods involve two steps.
First, we construct a Markov chain, that is relatively easy to simulate, whose stationary dis-
tribution is either equal to the target distribution or close to it in a suitable metric. Given
this chain, the second step is to draw samples by simulating the chain for a certain number of
steps. An advantage of MCMC algorithms is that they only require knowledge of the target
density up to a proportionality constant. Two natural questions that arise are: (i) how do
we design an easy to simulate Markov chain; and (ii) how many steps will the Markov chain
take to converge close enough to the stationary distribution? Over the years, these questions
have been the subject of considerable research; for instance, see the reviews [235, 227, 213]
and references therein. Nevertheless, a thorough theoretical understanding of MCMC algo-
rithms used in practice is far from complete, and the last several years have seen a renewed
interest in the non-asymptotic mixing time analysis of these methods, meaning that deriving
the number of iterations—as a function of the error tolerance δ, problem dimension d and
other parameters—for a given MCMC algorithm to arrive at a distribution within distance
δ of the target.

We now provide a brief background on some terminologies about Markov chains in Sec-
tion 2.1, and the general recipe of constructing MCMC algorithms in Section 2.2.

2.1 Basics of Markov Chain and Mixing

Here we consider the task of drawing random samples from a target distribution Π? with its
density denoted by Π?, via setting up of an irreducible and aperiodic discrete-time Markov
chain whose stationary distribution is equal to or close to the target distribution Π? in certain
metric, e.g., total variation (TV) norm. To obtain a δ-accurate sample, one simulates the
Markov chain for a certain number of steps k which is determined by a mixing time analysis.
Going forward, we assume familiarity of the reader with a basic background in Markov
chains, and refer them to the book [179] for a formal introduction or sections 1 and 2 of the
papers [167, 242] for a quick and gentle introduction to the basics of Markov chains. Here
we collect some basic definitions related to Markov chains.

In this work, we work with time-homogeneousMarkov chains defined on a measurable
state space (X ,B(X )) with a transition kernel Θ : X × B(X ) → R+, by definition, the
transition kernel satisfies the following properties:

Θ(x, dy) ≥ 0, for all x ∈ X , and

∫

y∈X
Θ(x, dy)dy = 1 for all x ∈ X . (2.2)

The k-step transition kernel Θk is defined recursively as Θk+1(x, dy) =
∫
z∈X Θk(x, dz)Θ(z, dy)dz.

The Markov chain is irreducible means that for all x, y ∈ X , there is a natural number k > 0
such that Θk(x, dy) > 0. We say that a Markov chain satisfies the detailed balance condition
if

π?(x)Θ(x, dy)dx = π?(y)Θ(y, dx)dy for all x, y ∈ X . (2.3)
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Such a Markov chain is also called reversible. Finally, we say that a probability measure Π?

with density π? on X is stationary (or invariant) for a Markov chain with the transition
kernel Θ if

∫

x∈X
π?(x)Θ(y, dx) = π?(y) for all y ∈ X .

Transition operator: We use T to denote the transition operator of the Markov chain on
the space of probability measures with state space X . In simple words, given a distribution
µ0 on the current state of the Markov chain, T (µ0) denotes the distribution of the next state
of the chain. Mathematically, we have

T (µ0)(A) =

∫

X
Θ(x,A)µ0(x)dx, (2.4)

for any A ∈ B(X ). In an analogous fashion, T k stands for the k-step transition operator.
We use Tx as the shorthand for T (δx), the transition distribution at x; here δx denotes the
Dirac delta distribution at x ∈ X . Note that by definition Tx = Θ(x, ·).

In order to quantify the convergence of the Markov chain, we study the mixing time for
a class of distances denoted by Lp for p ≥ 1. Letting Π be a distribution with density π, its
Lp-divergence with respect to the distribution Π? with positive density π? is defined as

dp(Π,Π
?) :=

(∫

X

∣∣∣∣
π(x)

π?(x)
− 1

∣∣∣∣
p

π?(x)dx

) 1
p

. (2.5a)

Note that for p = 2, we recover the χ2-divergence. For p = 1, the distance d1(Π,Π?)
represents two times the total variation (TV) distance dTV

(
Π,Π?

)
between Π and Π?:

dTV

(
Π,Π?

)
:= sup

S∈B(X )

|Π(S)− Π?(S)| = 1

2

∫

X
|π(x)− π?x| dx.

For clarity, we continue to use dTV

(
Π,Π?

)
to denote the total variation distance.

Definition 2.1 (Mixing time of a Markov chain). For an error tolerance δ > 0, and a
Markov chain with initial distribution µ0, transition operator T and a target distribution Π?

with density π?, its Lp and TV mixing time with respect to Π? are defined as follows:

τp(δ; (µ0,Π
?)) := inf

{
k ∈ N | dp

(
T k(µ0),Π?

)
≤ δ
}
, and (2.5b)

τTV(δ; (µ0,Π
?)) := inf

{
k ∈ N | dTV

(
T k(µ0),Π?

)
≤ δ
}
. (2.5c)

In simple words, the δ-Lp (TV) mixing time denotes the minimum number of steps that
the chain takes to reach within δ-Lp (TV) distance to the target distribution, given that it
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starts with distribution µ0. Going forward, when Π? is clear from the context (generally the
stationary distribution of the Markov chain), we often use the simplified notations:

τp(δ;µ0) := τp(δ; (µ0,Π
?)), and τTV(δ;µ0) := τTV(δ; (µ0,Π

?)).

We note that since distance dp(Q,Π
?) increases as p increases, we have the following useful

relation between mixing times:

τp(δ; (µ0,Π
?)) ≤ τp′(δ; (µ0,Π

?)) for any p′ ≥ p ≥ 1. (2.5d)

Furthermore, the relation (2.5d) also implies that τTV(δ; (µ0,Π
?)) = τ1( δ

2
; (µ0,Π

?)).
To quantify mixing time, it is convenient to have a rough measure of the distance between

the initial distribution µ0 and the stationary distribution. As in several past work, we adopt
the following notion of warmness :

Definition 2.2 (Warm start). For a Markov chain with state space X and stationary dis-
tribution Π? has a β-warm start if its initial distribution µ0 satisfies , the initial distribution
µ0 is said to be β-warm with respect to the stationary distribution Π? if

sup
S∈B(X )

µ0(S)

Π?(S)
≤ β, (2.6)

for a finite scalar β > 0, where B(X ) denotes the Borel σ-algebra of the state space X .

For simplicity, we say that µ0 is a warm start if the warmness parameter β is a small
constant (e.g., β does not scale with dimension d). We are interested in establishing the
results that provide a precise scaling of the mixing time bounds as a function of the problem
parameters. In particular, the results to follow establish bounds on the quantity

sup
µ0∈Pβ(Π?)

τp(δ; (µ0,Π
?)),

as a function of dimension d, parameters β, δ, and other parameters related to the target
distribution; here Pβ(Π?) denotes the set of all distributions that are β-warm with respect
to Π?. Naturally, as the value of β decreases, the task of generating samples from the target
distribution becomes easier.1 However, access to a good “warm” distribution (small β)
may not be feasible for many applications, and thus deriving bounds on mixing time of the
Markov chain from non-warm starts is also desirable. Several of our results directly tackle
this challenge by provide practical initialization methods and polynomial-time mixing time
guarantees from such starts.

1For instance, β = 1 implies that the chain starts at the stationary distribution and has already mixed.
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Lazy chain: We say that the Markov chain is ζ-lazy if at each iteration the chain is forced
to stay at the previous iterate with probability ζ. Unless otherwise specified, we study 1

2
-lazy

chains in this thesis. In practice, one is not likely to use a lazy chain (since the lazy steps slow
down the convergence rate by a constant factor); rather, it is a convenient assumption for
theoretical analysis of the mixing rate up to constant factors since any lazy (time-reversible)
chain is always aperiodic and admits a unique stationary distribution. For more details, see
the survey [242] and references therein.

2.2 Metropolis-Hastings Algorithms

We now describe, arguably the most popular class of MCMC algorithms (also the focus
of this thesis), known as Metropolis-Hastings algorithms—named after the authors of the
earliest works on MCMC [177, 107]. Our discussion here aims to only provide a refresher on
the topic on subsets of Euclidean spaces, and we refer the reader to the books [210, 30] and
references therein for further background.

Starting at a given initial positive density µ0 over X ⊂ Rd, any such Markov chain is
simulated in two steps: (1) proposal step, and (2) accept-reject step. For the proposal step,
we make use of a proposal function p : X × X ∈ R+, where p(x, ·) is a density function for
each x ∈ X . At each iteration, given a current state x ∈ X of the chain, the algorithm
proposes a new vector z ∈ X by sampling from the proposal density p(x, ·). In the second
step, the algorithm accepts z ∈ Rd as the new state of the Markov chain with probability

α(x, z) := min

{
1,

Π?(z)p(z, x)

Π?(x)p(x, z)

}
. (2.7)

Otherwise, with probability equal to 1 − α(x, z), the chain stays at x. Thus, the overall
transition kernel q for the Markov chain is defined by the function

q(x, z) := p(x, z)α(x, z) for z 6= x,

and a probability mass at x with weight 1−
∫
X q(x, z)dz. The step (2.7) is commonly known

as the Metropolis-Hastings correction/adjustment or the accept-reject step as it ensures that
the target density Π? is stationary for the Markov chain associated with the overall transi-
tion kernel for the following reason: The overall transition kernel satisfies detailed balance
condition with the target distribution, meaning that

q(y, x)π?(x) = q(x, y)π?(y)for allx, y ∈ X , (2.8)

under mild conditions on Π?, and p, e.g., π? and p(x, ·) being positive on X , for all x ∈ X . It
is straightforward to verify that the detailed balance condition (2.8) implies that the target
density Π? is stationary for the Markov chain.

Overall, this set-up defines the transition operator Tp as a function of p and Π?, on
the space of probability distributions: given the distribution µk of the chain at time k, the
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distribution at time k + 1 is given by Tp(µk). In fact, with the starting distribution µ0, the
distribution of the chain at kth step is given by T kp (µ0). Given the detailed balance (2.8),
, it is known that the chain converges to target distribution, asymptotically, i.e., in the
limit of infinite steps: limk→∞ T kp (µ0) = Π?. However, the focus of this part of our thesis
is non-asymptotic analysis, namely, the number of the chain sufficient to ensure that the
distribution of the chain is δ-close to the target Π? in appropriate metric.

From the set-up above, one can easily note that given p, the user only requires the
knowledge of target density up to proportionality to run the algorithm. In terms of the
notation (2.1), we only need to know the function f . Given this knowledge, there are several
generic schemes—described completely by specifying just the proposal function p—used to
construct wide variety of sampling algorithms. Let Px denote the proposal distribution at x
corresponding to the proposal density p(x, ·). Some illustrative examples of the commonly
used algorithms are as follows:

• Independence sampler: the proposal function does not depend on the current state
of the chain, e.g., rejection sampling or when Px = N (0,Σ), where Σ is a hyper-
parameter;

• Symmetric Metropolis algorithm: the proposal function satisfies p(x, y) = p(y, x)
(independence sampler is a special case); for example, Ball Walk [93] with Px =
U(B(x, r)) (uniform distribution), where r is a hyper-parameter;

• Random walk: the proposal function satisfies p(x, y) = q(y−x) for some probability
density q, e.g., Metropolis random walk with Px = N (x, 2ηId), where η is a hyper-
parameter;

• Langevin algorithm: the proposal distribution is shaped according to the target
distribution and is given by Px = N (x− η∇f(x), 2ηId), where η is a hyper-parameter
(random walk is a special case with f is a constant function). This class of algorithm
requires additional knowledge about the target density since it assumes access to the
gradient ∇f information.

Naturally the convergence rate of these algorithms would depend on the properties of the
target density Π? and how well suited are the proposal function p for the task at hand. In
the chapters to follow, we provide additional examples, and further details on the known
results about the algorithms in relevant sections .
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Chapter 3

Mixing Times for Random Walk and
Langevin Algorithms

In this chapter, we study sampling algorithms for sampling from a log-concave distribution
Π? equipped with a density π?. A log-concave density takes the form

π?(x) =
e−f(x)

∫

Rd
e−f(y)dy

for all x ∈ Rd, (3.1)

where f is a convex function on Rd. Up to an additive constant, the function −f corresponds
to the log-likelihood defined by the density. Standard examples of log-concave distributions
include the normal distribution, exponential distribution and Laplace distribution.

This chapter deals with both zeroth-order and first-order sampling methods, and focus on
the Metropolis random walk, and Langevin algorithms. Our goal is to derive non-asymptotic
mixing time for these methods. We start with background material in Sections 3.1 and 3.2
to provide some more context before summarizing our contributions in Section 3.2.4, and
the organization of the remainder of the chapter in Section 3.2.5.

3.1 Metropolis Random Walk

Perhaps, one of the easiest algorithm to implement is the Metropolis random walk with
Gaussian proposals. (This algorithm appears with several names in the literature including
Random walk Metropolized and Random walk Metropolis-Hastings.) When the chain is at
state xk, a proposal is drawn as follows

zk+1 = xk +
√

2η ξk+1, (3.2)

where the noise term ξk+1 ∼ N (0, Id) is independent of all past iterates. The chain then
makes the transition according to an accept-reject step with respect to Π?. Since the proposal
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distribution is symmetric, this step can be described as

xk+1 =




zk+1 with probability min

{
1,
π?(zk+1)

π?(xk)

}

xk otherwise.

This sampling algorithm is an instance of a zeroth-order method, since it makes use of only
the function values of the density π?. We refer to this algorithm as MRW in the sequel. It
is easy to see that the chain has positive density of jumping from any state x to y in Rd

and hence is strongly Π?-irreducible and aperiodic. Consequently, Theorem 1 by Diaconis et
al. [69] implies that the chain has a unique stationary distribution Π? and converges to in
the limit of infinite steps. Roberts and Tweedie [217] established sufficient conditions on
the proposal function p and the target distribution Π? for the geometric convergence of
several random walk Metropolis-Hastings algorithms, including MRW. Other related work
with results on ergodicity, optimal scaling of asymptotic variance and central limit theorems
include [217, 130, 212, 214], the survey [213] and the references therein. Such results are
crucial for gaining helpful insight into the convergence properties of the MRW algorithm,
but still they do not easily provide a user-friendly rate of convergence. In other words, from
these results, it is not easy to determine the computational complexity of MRW (or other
MCMC algorithms) as a function of the problem dimension d and desired accuracy δ. With
this context, one of the key results in this chapter establishes explicit non-asymptotic mixing
time guarantee for MRW (see Theorem 3.2).

Algorithm 1: Metropolized Random Walk (MRW)
Input: Step size η > 0 and a sample x0 from a starting distribution µ0

Output: Sequence x1, x2, . . .
1 for i = 0, 1, . . . do
2 Proposal step: Draw zi+1 ∼ N (xi, 2ηId)
3 Accept-reject step:

4 compute αi+1 ← min

{
1,

exp (−f(zi+1))

exp (−f(xi))

}

5 With probability αi+1 accept the proposal: xi+1 ← zi+1

6 With probability 1− αi+1 reject the proposal: xi+1 ← xi
7 end

Other instances of zeroth-order algorithms include the ball walk [166, 85, 167] and the hit-
and-run algorithm [16, 137, 163, 169, 171]. While there are several mixing time guarantees
for Ball Walk and Hit-and-run results, these methods are designed specifically for compactly
supported distributions and do not immediately apply to distributions with support Rd

which is the focus of this chapter (equation (2.1)). We defer further discussion about them
to Chapter 6.
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3.2 Langevin Algorithms

A number of first-order methods are based on the Langevin diffusion, a stochastic process
whose evolution is characterized by the stochastic differential equation (SDE):

dXt = −∇f(Xt)dt+
√

2 dWt, (3.3)

where {Wt | t ≥ 0} is the standard Brownian motion on Rd. Under fairly mild conditions
on f , it is known that the diffusion (3.3) has a unique strong solution {Xt, t ≥ 0} that is
a Markov process [216, 179]. Furthermore, it can be shown that the distribution of Xt

converges as t→ +∞ to the invariant distribution Π? with density π? ∝ exp(−f) given as in
equation (2.1). See Roberts and Tweedie [216] or Meyn and Tweedie [179] for further details
on such an asymptotic guarantee. In practice, one can neither simulate the diffusion (3.3)
exactly, nor can one run the algorithm for infinite horizon—and one can resort to some
discrete-time time algorithm that approximates the diffusion.

3.2.1 Unadjusted Langevin Algorithm

A natural way to simulate the Langevin diffusion (3.3) is to consider its forward Euler
discretization, given by

xk+1 = xk − η∇f(xk) +
√

2ηξk+1, (3.4)

where the driving noise ξk+1 ∼ N (0, Id) is drawn independently at each time step. Note that
while the algorithm (3.4) is an MCMC algorithm since the updates do form a Markov chain,
it is not of Metropolis-Hastings type due to the lack of accept-reject step (2.7). Nonetheless,
given the nice asymptotic convergence property of the diffusion (3.3), usage of such an
unadjusted algorithm can be traced back at least to Parisi in 1981 [200] for computing
correlations as noted by Besag in his commentary on the paper by Grenander and Miller [100].

However, even when the Langevin diffusion (3.3) is well behaved, the iterates defined by
the discretization (3.4) can have mixed behavior. When step size η is large, the distribution
of the iterates defined by equation (3.4) converges to a stationary distribution that is no
longer equal to Π?. In fact, Roberts and Tweedie [216] showed that if one does not choose
the step size η carefully, the Markov chain defined by equation (3.4) can become transient and
have no stationary distribution. Nevertheless, a series of recent work [61, 74, 51] establish
that with a careful choice of step-size η and iteration count K, running the chain (3.4) for
exactly K steps yields an iterate xK whose distribution is close to Π?. This more recent body
of work provides non-asymptotic bounds that explicitly quantify the rate of convergence for
this chain. The lack of the Metropolis-Hastings correction (adjustment) yields it the name
of unadjusted Langevin algorithm, or ULA for short. Some works also refer to it as the
Langevin Monte Carlo.

Durmus and Moulines [74] show that for an appropriate decaying step size schedule, the
distribution of the iterates from the ULA algorithm does converge to Π?, when Π? is strongly
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log-concave target. However, their results, albeit non-asymptotic, are hard to quantify. In
the sequel, we limit our discussion to Metropolis random walk and Langevin algorithms
based on constant step sizes, for which there are a number of explicit quantitative bounds
on the mixing time.

3.2.2 Metropolis Adjusted Langevin Algorithm

An alternative approach to handling the discretization error is to use the iterates on the
RHS of equation (3.4) as the proposals in a Metropolis-Hastings type algorithm. In other
words, one can use the distribution N (xk − η∇f(xk), 2ηId) as the proposal distribution,
and perform the Metropolis-Hastings accept-reject step, thereby yielding the Metropolis-
adjusted Langevin algorithm, or MALA for short. Consequently, this algorithm has been the
focus of several work in the past [216, 215, 25]. We describe the different steps of MALA
in Algorithm 2. As mentioned in Section 2.2, the Metropolis-Hastings correction ensures
that the distribution of the MALA iterates {xk} converges to the correct distribution Π?

as k → ∞. Indeed, since at each step the chain can reach any state x ∈ Rd, it is strongly
Π?-irreducible and thereby ergodic [179, 69].

Both MALA and ULA are instances of first order sampling methods since they make
use of the function and the gradient values of f .1 While MALA is clearly superior to
ULA asymptotically due to the lack of the bias, the main question of practical relevance is
whether employing the accept-reject step for the discretization (3.4) provides any gain in the
convergence rate—Which of the two converge take lesser number of iterations (computational
budget) to converge to a desired accuracy? Our analysis to follow provides a precise answer to
this question under certain assumptions on the target distribution, establishing that MALA
has a superior finite time convergence guarantees compared to ULA.

Related work on MALA: Several works [233, 178, 215, 205] characterize asymptotic lim-
iting behaviors (in time or dimension) of the Langevin diffusion or provide non-explicit dis-
cretization error guarantees, that do not immediately yield a user-friendly mixing-time guar-
antee. Roberts and Tweedie [216] derived sufficient conditions for exponential convergence
of the Langevin diffusion and its discretizations, with and without Metropolis-adjustment.
However, they considered the distributions with f(x) = ‖x‖α2 and proved geometric conver-
gence of ULA and MALA under some specific conditions; however they did not provide a
precise quantification of the asymptotic bias of ULA. In a more general setting, Bou-Rabee
and Hairer [25] derived non-asymptotic mixing time bounds for MALA, which can poten-
tially be compared to the recent works on ULA. However, these bounds are non-explicit,
and so makes it difficult to extract an explicit dependence in terms of the dimension d and
error tolerance δ. A precise characterization of this dependence is needed if one wants to

1While ULA only uses gradient information, the computational complexity per step for MALA and ULA
are still typically of the same order, since computing the function is often a cheaper operation, and/or a
pre-requisite to computing the gradients.
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make quantitative comparisons with ULA or any other sampling algorithm. Along this note,
Eberle [86] derived mixing time bounds for MALA albeit in a more restricted setting com-
pared to the one considered in this chapter. In particular, Eberle’s convergence guarantees
are in terms of a modified Wasserstein distance, truncated so as to be upper bounded by
a constant, for a subset of strongly concave measures which are four-times continuously
differentiable and satisfy certain bounds on the derivatives up to order four. With this con-
text, one of the main contributions of this chapter is to provide an explicit upper bound
on the mixing time bounds in total variation distance of the MALA algorithm for general
log-concave distributions.

Algorithm 2: Metropolis adjusted Langevin algorithm (MALA)

Input: Step size η and a sample x0 from a starting distribution µ0

Output: Sequence x1, x2, . . .
1 for i = 0, 1, . . . do
2 zi+1 ∼ N (xi − η∇f(xi), 2ηId) % propose a new state

3 αi+1 = min

{
1,

exp
(
−f(zi+1)− ‖xi − zi+1 + η∇f(zi+1)‖2

2 /4η
)

exp
(
−f(xi)− ‖zi+1 − xi + η∇f(xi)‖2

2 /4η
)
}

4 Ui+1 ∼ U [0, 1]
5 if Ui+1 ≤ αi+1 then xi+1 ← zi+1 % accept the proposal

6 else xi+1 ← xi % reject the proposal

7 end

3.2.3 Other Langevin-type Algorithms

Over the years, numerous practical algorithms related to the Langevin diffusion have been
proposed besides ULA and MALA. These algorithms include the underdamped Langevin
MCMC [52] also called as kinetic Langevin Monte Carlo [63], second-order Langevin Monte
Carlo [61], Riemannian MALA [252], Proximal-MALA [204, 75], Metropolis adjusted Langevin
truncated algorithm [216], and Projected ULA [31]. Some of these work establish non-
asymptotic mixing time bounds for sampling from a log-concave density; e.g., it is now well-
known that both the ULA updates [61, 74, 51] as well as underdamped Langevin MCMC [52]
have mixing times that scale polynomially in the dimension d, as well the inverse of the error
tolerance 1/δ for strongly log-concave distributions. There is now a rich body of work on
these methods, and we do not attempt to provide a comprehensive summary here; see the
aforementioned references, and the survey [213] for related details.

3.2.4 Overview of our contributions

This chapter provides two main results, both having to do with the upper bounds on mixing
times of MCMC methods for sampling. As described above, our first and primary contri-
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bution is an explicit analysis of the mixing time of Metropolis adjusted Langevin Algorithm
(MALA). A second contribution is to use similar techniques to analyze a zeroth-order method
called Metropolized random walk (MRW) and derive an explicit non-asymptotic mixing time
bound for it. Unlike the ULA, these methods make use of the Metropolis-Hastings accept-
reject step and consequently converge to the target distributions in the limit of infinite steps.
Here we provide explicit non-asymptotic mixing time bounds for MALA and MRW, thereby
showing that MALA converges significantly faster than ULA, at least in terms of the best
known upper bounds on their respective mixing times.2 In particular, we show that if the
density is strongly log-concave and smooth, the δ-mixing time for MALA scales as κd log(1/δ)
which is significantly faster than ULA’s convergence rate of order κ2d/δ2. On the other hand,
we also show that MRW mixes O (κ) slower when compared to MALA. Furthermore, if the
density is weakly log-concave, we show that (a modified version of) MALA converges in
O (d2/δ1.5) time in comparison to the O (d3/δ4) mixing time for ULA. As alluded to earlier,
such a speed-up for MALA is possible since we can choose a large step size for it which in
turn is possible due to its unbiasedness in the limit of infinite steps. In contrast, for ULA the
step-size has to be small enough to control the bias of the distribution of the ULA iterates
in the limit of infinite steps, leading to a relative slow down when compared to MALA.

3.2.5 Organization

The remainder of the chapter is organized as follows. Section 3.3 is devoted to the state-
ment of our mixing time bounds for MALA and MRW, along with a discussion of some
consequences of these results. Section 3.4 is devoted to numerical experiments that further
illustrate our guarantees. We provide the proofs of our main results in Section 3.5, with
certain more technical arguments deferred to the appendices. We conclude with a discussion
in Section 3.6.

3.3 Main results

In this section, we state our main results on the non-asymptotic mixing time guarantees for
MALA and MRW, and compare it to ULA. Before stating these results, we first state the
regularity conditions assumed on the target distribution Π? for deriving our results.

3.3.1 Assumptions on the target distribution

We now describe the regularity conditions on the target distributions that our results in the
next section rely on. We analyze MALA and MRW and contrast their performance with
existing algorithms for log-concave targets, i.e., for the case when the negative log density

2Throughout the chapter, we make comparisons between sampling algorithms based on known upper
bounds on respective mixing times; obtaining matching lower bounds is also of interest.
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f(x) := − log π?(x)+c is smooth and convex. We collect some standard definitions assuming
f : Rd → R is a differentiable function.

A function f is said to be L-smooth if

f(y)− f(x)−∇f(x)>(y − x) ≤ L

2
‖x− y‖2

2 for all x, y ∈ Rd. (3.5a)

In the other direction, a convex and differentiable function f is said to be m-strongly convex
if

f(y)− f(x)−∇f(x)>(y − x) ≥ m

2
‖x− y‖2

2 for all x, y ∈ Rd. (3.5b)

In Appendix A.5, we state some well-known properties of smooth and strongly convex func-
tions, that we later use for our results.

The rates derived in this chapter apply to two different settings of log-concave target
distributions (defined via (3.1)).

(3A) We say that the target distribution Π? is (L,m)-strongly log-concave distribution if the
negative log density function f is both L-smooth (3.5a) and m-strongly convex (3.5b).
For this case, we also use the notation κ := L/m, and call it the condition number of
the target Π?. Moreover, we use x? to denote the unique mode of Π? whenever f is
strongly convex.

(3B) We say that the target distribution Π? is L-weakly log-concave distribution when the
negative log density function We assume that the function f is L-smooth, and convex
(but not necessarily strongly convex, i.e., m = 0).

Common examples of strongly log-concave targets include multivariate Gaussian distribu-
tion3, f(x) = x>Bx+ g(x) for any convex g and any positive definite matrix B, or posterior
distributions in Bayesian logistic regression with Gaussian prior. Examples of weakly log-
concave target include f(x) = ‖x‖4

2, or f(x) = log(1 + e−θ
>x) which would arise, e.g., in

Bayesian logistic regression with flat prior.

Organization of results: We discuss the guarantees for strongly log-concave target from
a warm start in Section 3.3.2, and from certain feasible starting distributions in Section 3.3.3,
and then we consider the case of weakly log-concave target in Section 3.3.4. An overview
of results is summarized in Tables 3.1 and 3.2, as a function of the dimension d, the error-
tolerance δ, the condition number κ (for the strongly log-concave target), and the smoothness
parameter L (for the weakly log-concave target). In Table 3.1, we state the results when
the chain has a warm-start (i.e., β a fixed constant, c.f. Definition 2.2). On the other hand,
Table 3.2 summarizes mixing time bounds from a particular distribution µ? for the strongly
log-concave target.

3For the Gaussian target N (z,Σ), the condition number of the target is equal to the condition number
of the covariance matrix Σ, i.e., κ can be bounded by the ratio of maximum and minimum eigenvalues of Σ.
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Random walk Strongly log-concave Weakly log-concave

ULA [51] O
(
dκ2 log((log β)/δ)

δ2

)
Õ
(
dL2

δ6

)

ULA [61] O
(
dκ2 log2(β/δ)

δ2

)
Õ
(
d3L2

δ4

)

MRW [Thm. 3.2, Cor. 3.2] O
(
dκ2 log

(
β

δ

))
Õ
(
d3 L2

δ2

)

MALA [Thm. 3.1, Cor. 3.2] O
(

max
{
dκ, d0.5κ1.5

}
log

(
β

δ

))
Õ
(
d2 L1.5

δ1.5

)

Table 3.1: Scalings of upper bounds on δ-mixing time for different random walks in Rd

with target π? ∝ e−f . In the second column, we consider smooth and strongly log-concave
target (Assumption (3A)), and report the bounds from a β-warm start for densities such that
mId � ∇2f(x) � LId for any x ∈ Rd and use κ := L/m to denote the condition number of
the density. The big-O notation hides universal constants. In the last column, we summarize
the scaling for weakly log-concave smooth densities: 0 � ∇2f(x) � LId for all x ∈ Rd. For

this case, the Õ notation is used to track scaling only with respect to d, δ and L and ignore
dependence on the starting distribution and a few other parameters.

Remark: We note that our techniques yield sharper guarantees under more idealized as-
sumptions, e.g., when f is Lipschitz, i.e., has bounded gradients, and the target distribution
satisfies certain isoperimetry inequality. For such settings, the target need not even be log-
concave, i.e., f need not be convex. Nonetheless, we restrict our attention in this chapter
to log-concave target distributions, and refer the interested readers for further discussion for
mixing times for such class of distributions to Chapter 5.

3.3.2 Mixing time for strongly log-concave target: Warm start

Given the parameters m and L, our results involve the functions a and t given by

a(s) = 2 + 2 ·max

{
1

d0.25
log0.25

(
1

s

)
,

1

d0.5
log0.5

(
1

s

)}
, and (3.6a)

t(s) = min

{ √
m

a(s) · L
√
dL

,
1

Ld

}
for s ∈

(
0, 1

2

)
. (3.6b)

Let TMALA(η) denote the transition operator (2.4) on probability distributions induced by one
step of MALA. The next result our first guarantee for MALA.
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Random walk µ? tmix(δ;µ0)

ULA [51] N (x?,m−1Id) O
(
dκ2 log(dκ/δ)

δ2

)

ULA [61] N (x?,L−1Id) O
(

(d3 + d log2(1/δ))κ2

δ2

)

MRW N (x?,L−1Id) O
(
d2κ2 log1.5

(κ
δ

))

MALA N (x?,L−1Id) O
(
d2κ log

(κ
δ

))

Table 3.2: Scalings of upper bounds on δ-mixing time, from the starting distribution µ?
given in column two, for different random walks in Rd with target π? ∝ e−f such that
mId � ∇2f(x) � LId for any x ∈ Rd and κ := L/m. Here x? denotes the unique mode of
the target density π?.

Theorem 3.1. For an (L,m)-strongly log-concave target distribution Π? (Assumption (3A)),
given any β-warm initial distribution µ0, and any error tolerance δ ∈ (0, 1], the Metropolis
adjusted Langevin algorithm with step size η = c t(δ/(2β)) satisfies

dTV

(
T `MALA(η)(µ0),Π?

)
≤ δ for all ` ≥ c′ log

(
2β

δ

)
max

{
dκ, d0.5κ1.5a

(
δ

2β

)}
, (3.7)

where κ = L/m, and c, c′ denote universal constants.

See Section 3.5.3 for the proof.

Noting that a(s) ≤ 4 for s ≥ e−d, we can treat a(δ/2β) as a small constant for most
interesting values of δ assuming β is not too large (hence the name warm start). Treating
the term corresponding to a as a constant, we obtain that if κ = o(d), the mixing time of
MALA scales as O (dκ log(1/δ)) which is exponentially better in the tolerance-δ compared
to O

(
dκ2 log2(1/δ)/δ2

)
mixing time of ULA, and has better dependence on κ while still

maintaining linear dependence on d. In fact, for any setting of κ, d and δ, MALA always
has a better mixing time bound compared to ULA. A limitation of our analysis is that the
constant c′ is not small. However, we demonstrate in Section 3.4 that in practice small
constants provide performance that match the scalings suggested by our theoretical bounds.

Let TMRW(η) denote the transition operator (2.4) on the space of probability distributions
induced by one step of MRW. We now state our first mixing time bound for Metropolized
random walk.



Chapter 3. Mixing Times for Random Walk and Langevin Algorithms 23

Theorem 3.2. For an (L,m)-strongly log-concave target distribution Π? (Assumption (3A)),
given any β-warm initial distribution µ0, and any error tolerance δ ∈ (0, 1], the Metropolized
random walk with step size η = cm

dL2a(δ/(2β))
satisfies

dTV

(
T `MRW(η)(µ0),Π?

)
≤ δ for all ` ≥ c′ dκ2a

(
δ

2β

)
log

(
2β

δ

)
, (3.8)

where c, c′ denote universal constants.

See Section 3.5.4 for the proof.

Again treating a(δ/2β) as a small constant, we find that the mixing time of MRW scales
as O (dκ2 log(1/δ)) which has an exponential factor in δ better than ULA. Compared to
the mixing time bound for MALA, the bound in Theorem 3.2 has an extra factor of O(κ).
While such a factor is conceivable given that MALA’s proposal distribution uses first order
information about the target distribution, and MRW uses only the function values, it would
be interesting to determine if this gap can be improved.

3.3.3 Mixing time for strongly log-concave target: Feasible start

In many cases, a good warm start may not be readily known, and thus it would be useful to
derive mixing time guarantees from an initial distribution that can be implemented easily.
The next lemma (with proof in Appendix A.1) provides a bound on the warmness of a
feasible distribution.

Lemma 3.1. The distribution µ? = N (x?,L−1Id) is β? = κd/2-warm with respect to an
(L,m) target distribution, where x? denotes the unique mode of the target distribution Π?.

When the gradient ∇f is available, finding x? comes at nominal additional cost: in
particular, standard optimization algorithms such as gradient descent be used to compute
a δ-approximation of x? in O (κ log(1/δ)) steps (e.g., see the monograph [32]). where the
function t was previously defined in equation (3.6b). The next result provides the mixing
time guarantees when MALA and MRW are initialized with the feasible distribution µ?.

Corollary 3.1. For any threshold δ ∈ (0, 1], define η1 = c′t(δ/(2β?)), and η2 = c′m
dL2·a(δ/(2β?))

,

where β? = κd/2. Then with µ? = N (x?,L−1Id) as the starting distribution, we have

dTV

(
T `MRW(η2)(µ?),Π

?
)
≤ δ for all ` ≥ c d2κ2 log1.5

( κ

δ1/d

)
, and

dTV

(
T kMALA(η1)(µ?),Π

?
)
≤ δ for all ` ≥ c d2κ log

( κ

δ1/d

)
max

{
1,

√
κ

d
log
( κ

δ1/d

)}
.



Chapter 3. Mixing Times for Random Walk and Langevin Algorithms 24

Remark: The proof of Corollary 3.1 follows by plugging the warmness bound from Lemma 3.1
in Theorem 3.1 and 3.2 and is thereby omitted. We note that compared to the mixing time
from a warm-start with constant β, the bounds in Corollary 3.1 are roughly O (d) worse
since the warmness parameter of µ? is exponential in d. Such a worsening is caused by the
log β scaling of the mixing time bound in Theorems 3.1 and 3.2. In the next chapter, we
sharpen the results of this corollary by a factor of O (d/ log d) for different choices of step
sizes using a more refined analysis. See Section 4.3 and Corollary 4.2 for further discussion.

Inexact parameters: Our techniques can also establish mixing time guarantees when
the mode x? and the smoothness parameter L are only approximately known—a situation
occurring quite often in practice. See section 3.2.1 of the full paper [78] for further details,
where we show that the mixing time bounds are not severely affected if the parameters x?

and L are known to a reasonable perturbation error from the exact parameters.

3.3.4 Mixing time for weakly log-concave target

In this section, we show that MRW and MALA can also be used for approximate sampling
from a density which is L-smooth but not necessarily strongly log-concave (also referred
to as weakly log-concave [61]). In simple words, the negative log-density f satisfies the
condition (3.5a) with parameter L and satisfies the condition (3.5b) with parameter m = 0.
Equivalently, we have LId � ∇2f(x) � 0 for all x ∈ Rd (see Appendix A.5).

In order to make use of our previous machinery for such a case, we approximate the
given log-concave density Π? with a strongly log-concave density Π̃? such that dTV

(
Π̃?,Π?

)

is small. Next, we use MRW or MALA to sample from Π̃? and consequently obtain an
approximate sample from Π?. In order to construct Π̃?, we use a scheme previously suggested
by Dalalyan [61]. With λ as a tuning parameter, consider the distribution Π̃? given by the
density

π̃?(x) =
1∫

Rd
e−f̃(y)dy

e−f̃(x) where f̃(x) = f(x) +
λ

2
‖x− x?‖2

2 . (3.10)

Dalalyan (Lemma 3 in the paper [61]) showed that that the total variation distance between

Π? and Π̃? is bounded as follows:

dTV

(
Π̃?,Π?

)
≤ 1

2
‖f̃ − f‖L2(π?) ≤

λ

4

(∫

Rd
‖x− x?‖4

2 π
?(x)dx

)1/2

. (3.11)

Suppose that the original distribution Π? has its fourth moment bounded as

∫

Rd
‖x− x?‖4

2 π
?(x)dx ≤ d2ω2

L2
. (3.12)
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We now set λ := 2Lδ/(dω) to obtain dTV

(
Π̃?,Π?

)
≤ δ/2. Since f̃ is λ/2-strongly convex

and L + λ/2-smooth, the condition number of Π̃? is given by κ̃ = 1 + dω/δ. We substitute
κ̃ = dω/δ to obtain simplified expressions for mixing time bounds in the results that follow.

Since now the target distribution is Π̃?, we suitably modify the step size for MALA as follows:

tlc(s) =
1

Ld
min

{ √
s

a(s)
√
ω
, 1

}
, (3.13)

where the function a was previously defined in equation (3.6a). We refer to this new set-up

with a modified target distribution Π̃? as the modified MALA method. Similarly, we call the
algorithm MRW with target Π̃? as modified MRW. To keep our results simple to state, we
assume that we have a warm start with respect to Π̃?.

Corollary 3.2. For an L-weakly log-concave Π? (Assumption (3B)) that satisfies (3.12),
and any fixed error-tolerance δ ∈ (0, 1), any starting distribution µ0 that is β-warm with

respect to Π̃? (3.10), the modified MRW with step size η1 = c1δ
d2Lωa(δ/(2β))

, and the modified

MALA method with step size η2 = c2tlc(δ/(2β)) (3.13) satisfy

dTV

(
T `MRW(η2)(µ0),Π?

)
≤ δ for all ` ≥ c′ log

(
4β

δ

)
d3ω2

δ2
, and

dTV

(
T `MALA(η1)(µ0),Π?

)
≤ δ for all ` ≥ c′′ log

(
4β

δ

)
max

{
d2ω

δ
,
d2ω1.5

δ1.5
a

(
δ

4β

)}
.

The proof follows by combining the triangle inequality, as applied to the TV norm, along
with the bounds from Theorems 3.1 and 3.2. Thus, for weakly log-concave densities, modified
MALA mixes in O (d2/δ1.5), which improves upon the O (d3/δ4) mixing time bound for a

ULA scheme on Π̃?, as established by Dalalyan [61]. Moreover, the modified MRW admits
a mixing time bound of O (d3/δ2) for the weakly log-concave target.

3.4 Numerical experiments

In this section, we compare MALA with ULA and MRW in various simulation settings. The
step-size choice of ULA follows from [61] in the case of warm start. The step-size choice of
MALA and MRW used in our experiments in our results are summarized in Table 3.3.

Summary of experiment set-ups and diagnostic tools: We consider four different
experiments: (i) sampling a multivariate Gaussian (Section 3.4.1), (ii) sampling a Gaussian
mixture (Section 3.4.2), (iii) estimating the MAP with credible intervals in a Bayesian lo-
gistic regression set-up (Section 3.4.3) and (iv) studying the effect of step-size on the accept
reject step (Section 3.4.4). Since TV distance for continuous measures is hard to estimate,
we use several proxy measures for convergence diagnostics: (a) errors in quantiles, (b) `1-
distance in histograms (which we refer to as discrete tv-error), (c) error in sample MAP
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estimate, (d) trace-plot along different coordinates and (e) autocorrelation plot. While the
first three measures (a-c) are useful for diagnosing the convergence of random walks over
several independent runs, the last two measures (d-e) are useful for diagnosing the rate of
convergence of the Markov chain in a single long run.

3.4.1 Dimension dependence for multivariate Gaussian

The goal of this simulation is to demonstrate the dimension dependence in experiments,
for mixing time of ULA, MALA and MRW when the target is non-isotropic multivariate
Gaussian. Note that Theorem 3.1 and 3.2 imply that the dimension dependency for both
MALA and MRW is d. We consider sampling from multivariate Gaussian with density π?

defined by

x 7→ π?(x) ∝ e−
1
2
x>Σ−1x, (3.14)

where Σ ∈ Rd×d the covariance matrix to be specified. For this target distribution, the
function f , its derivatives are given by

f(x) =
1

2
x>Σ−1x, ∇f(x) = Σ−1x, and ∇2f(x) = Σ−1.

Consequently, the function f is strongly convex with parameter m = 1/λmax(Σ) and smooth
with parameter L = 1/λmin(Σ). For convergence diagnostics, we use the error in quantiles
along different directions. Using the exact quantile information for each direction for Gaus-
sian, we measure the error in the 75% quantile of the sample distribution and the true dis-
tribution in the least favorable direction, i.e., along the eigenvector of Σ corresponding to the
eigenvalue λmax(Σ). The approximate mixing time k̂mix(δ) is defined as the smallest iteration
when this error falls below δ. We use µ? as the initial distribution where µ? = N (0,L−1Id).

3.4.1.1 Strongly log-concave density

The step-sizes are chosen according to Table 3.3. For ULA, the error-tolerance δ is chosen
to be 0.2. We set Σ as a diagonal matrix with the largest eigenvalue 4.0 and the smallest
eigenvalue 1.0 so that the κ = 4 is fixed across different settings. For a fixed dimension d,
we simulate 10 independent runs of the three chains each with N = 10, 000 samples to
determine the approximate mixing time. The final approximate mixing time for each walk
is the average of that over these 10 independent runs. Figure 3.1(a) shows the dependency
of the approximate mixing time as a function of dimension d for the three random walks
in log-log scale. To examine the dimension dependency, we perform linear regression for
approximate mixing time with respect to dimensions in the log-log scale. The computations
reveal that the dimension dependency of MALA, ULA and MRW are all close to order d
(slope 0.84, 1.01 and 0.97). Figure 3.1(b) shows the dependency of the approximate mixing
time on the inverse error 1/δ for the three random walks in log-log scale. For ULA, the
step-size is error-dependent, precisely chosen to be 10 times of δ. A linear regression of the
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Figure 3.1: Scaling of the approximate mixing time k̂mix (refer to the discussion after equa-
tion (5.13) for the definition) for the multivariate Gaussian target (5.13) where the covariance
has condition number κ = 4. (a) Dimension dependency. (b) Error-tolerance dependency.

approximate mixing time on the inverse error 1/δ yields a slope of 2.23 suggesting the error
dependency of order 1/δ2 for ULA. A similar computation for MALA and MRW yields a slope
of 0.33 for both the cases which not only suggests a significantly better error dependency
for these two chains but also partly verifies their theoretical mixing time bounds of order
log(1/δ).

Random walk ULA MALA MRW

Step size
δ2

dκL

1

L
min

{
1√
dκ
,

1

d

}
1

dκL

Table 3.3: Step size used in simulations to obtain δ-accuracy for different random walks in
Rd with target π? ∝ e−f such that mId � ∇2f(x) � LId for any x ∈ Rd and κ := L/m.

3.4.1.2 Weakly log-concave density

We now discuss the convergence of the random walks when the Gaussian is flat along a
direction. In particular, we consider the Gaussian distribution such that λmax(Σ) = 1000 and
λmin(Σ) = 1. Such a setting implies that the strong convexity parameter m = 0.001 ≈ 0 and
hence our target density mimics a weakly log-concave density. For convergence diagnostics,
we use the error in quantiles along one direction other than the ones which correspond to
λmax(Σ) and λmin(Σ). Using the exact quantile information for each direction for Gaussian,
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Figure 3.2: Scaling of the approximate mixing time k̂mix (refer to the discussion after equa-
tion (5.13) for the definition) for a close to weakly log-concave Gaussian density. (a) Dimen-
sion dependency. (b) Error-tolerance dependency for fixed dimension .

we measure the error between the 75% quantile of the sample distribution and the true
distribution in that direction. The approximate mixing time is defined as the smallest
iteration when this error falls below δ. We use µ? as the initial distribution where µ? =
N (0,L−1Id). The step-sizes are chosen according to Table 3.3 where m is chosen to be
δ/(dL). For dimension dependence experiments, we fix the error-tolerance δ as 0.2. For a
fixed dimension d, we simulate 10 independent runs of the three chains each with N = 10, 000
samples to determine the approximate mixing time. The final approximate mixing time for
each walk is the average of that over these 10 independent runs. Figure 3.2(a) and 3.2(b)
show the dependency of the approximate mixing time as a function of dimension d and the
inverse error 1/δ respectively, for the three random walks on this weakly log-concave density
(log-log scale). Linear fits on the log-log scale reveal that the dimension dependence of mixing
time for MALA is close to d2 (slope 1.61), and that for ULA is close to d3 (slope 2.78) and
for MRW it is approximately of order d3 (slope 2.73). Linear fits of the approximate mixing
time on the inverse error 1/δ yield a slope of 3.92 for ULA thereby suggesting an error
dependence of order 1/δ4, while for MALA and MRW this dependence is of order 1/δ1.5

(slope 1.56) and of order 1/δ2 (slope 2.01), respectively. These scalings partly verify the
rates derived in Corollary 3.2 and demonstrate the gains of MALA over ULA for the weakly
log-concave densities.

3.4.1.3 Warmness in simulations

Strictly speaking, for both the cases considered above, the starting distribution was not
warm, since we used µ? as the starting distribution and the corresponding warmness β =
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O(ed) scales exponentially with dimension d. However, the mixing time observed in the
simulations, albeit with a heuristic measure, are d times faster than those stated with µ? as
the starting distribution in Corollary 3.1, and are in fact consistent with the results for the
warm-start which are stated in Theorems 3.1 and 3.2. We believe that the results stated in
Corollary 3.1, with µ? as the starting distribution, can be improved by a factor of d. However,
our current proof techniques do not close this gap and we leave further investigation of this
question for future work.

3.4.2 Behavior for Gaussian mixture distribution

We now consider the task of sampling from a two component Gaussian mixture distribution,
as previously considered by Dalalyan [61] for illustrating the behavior of ULA. Here compare
the behavior of MALA to ULA for this case. The target density is given by

x 7→ π?(x) =
1

2 (2π)d/2

(
e−‖x−a‖

2
2/2 + e−‖x+a‖22/2

)
,

where a ∈ Rd is a fixed vector. This density corresponds to the two-mixture of equal weighted
Gaussian N (a, Id) and N (−a, Id). In our notation, the function f and its derivatives are
given by: f(x) = 1

2
‖x− a‖2

2 − log(1 + e−2x>a),

∇f(x) = x− a+ 2a(1 + e2x>a)−1, and ,∇2f(x) = Id − 4aa>
e2x>a

(
1 + e2x>a

)2 .

From examination of the Hessian, we see that the function f is smooth with parameter
L = 1, and whenever ‖a‖2 < 1, it is also strongly convex with parameter m = 1− ‖a‖2

2.
For dimension d = 2, setting a =

(
1
2
, 1

2

)
yields the parameters m = 1

2
and L = 1.

Figure 3.3 shows the level sets of the density of this 2D-Gaussian mixture. The initial distri-
bution is chosen as µ? = N (0,L−1Id) and the step-sizes are chosen according to Table 3.1,
where for ULA, we set three different choices of δ = 0.2 (ULA), δ = 0.1 (small-step ULA)
and δ = 1.0 (large-step ULA). Note that choosing a smaller threshold δ implies that the
ULA has a smaller step size and consequently the chain takes larger to converge. However,
the asymptotic TV error with respect to the target distribution Π? for ULA also decreases
with decrease in step size. These different choices of step sizes are made to demonstrate the
fundamental trade-off between the rate of convergence and asymptotic error for ULA and
its inability to mix faster than MALA for different settings.

Note that one can sample directly from the mixture of Gaussian in consideration by
drawing independently a Bernoulli(1/2) random variable y and a standard normal variable
z ∼ N (0, Id), and by computing

x = y · (z − a) + (1− y) · (z + a)

This observation makes it easy to diagnose the convergence of our Markov chains with
target π?. In order to estimate the total variation distance, we discretize the distribution
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Figure 3.3: Level set of the density of the two-dimensional Gaussian mixture target. The
red dots are the location of the means a and −a, where a is chosen such that ‖a‖2

2 = 1
2
. The

arrows indicate the two principal directions u1 and u2 along which the TV error is measured.

of N = 250, 000 samples from π? over a set of bins, and consider the total variation of this
discrete distribution from the empirical distribution of the Markov chain over these bins. We
refer to this measure as the discretized TV error. We measure the sum of two discrete TV
errors of 250, 000 samples from π? with the empirical distribution obtained by simulating
the chains ULA, MALA or MRW, projected on two principal directions (u1 and u2), over a
discrete grid of size B = 100. Figure 3.4 shows the sum of the discretized TV errors along u1

and u2, as a function of iterations. The true total variation distance between the distribution
of the iterate and the target distribution is upper bounded by the sum of (A) the discretized
TV error and (B) the error caused by discretization. To obtain an idea of how large is the
error (B) due to discretization, we simulate 100 runs of the discrete TV error between two
independent drawings from the true distribution π?. The two black lines in Figure 3.4 are
the maximum and minimum of these 100 values. The sample distribution at convergence is
expected to lie between the two black lines.

Figure 3.4(a) shows that ULA converges significantly slower than MALA to the right
distribution. Figure 3.4(b) illustrates this point further and shows that when compared to
the ULA, the small-step ULA (δ = 0.1) converges at a much slower rate and large-step ULA
(δ = 1.0) has a larger approximation error (asymptotic bias).

We accompany the study based on exact TV error computation with two classical con-
vergence diagnostic plots for general MCMC algorithms. Figure 3.5 shows the traceplots of
the three sampling algorithms in 10 runs. Comparing the three plots (Figure 3.5 (a), (b),
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Figure 3.4: Discrete TV error on a two component Gaussian mixture target. (a) Behavior
of three different random walks. (b) Behavior of ULA with different choices of step sizes.

(c)), we observe that the traceplot of MALA stabilizes much faster than that of ULA and
MRW. Furthermore, to compare the efficiency of the chains in stationarity, Figure 3.6 shows
the autocorrelation function of the three chains. To make sure that the computation is done
in stationarity, we set in practice the burn-in period to be 300 iterations. Again, we observe
that MALA is clearly significantly more efficient than ULA and MRW.
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Figure 3.5: Trace-plot of the first coordinate on a two component Gaussian mixture target.
(a) Trace-plot of ULA. (b) Trace-plot of MALA. (c) Trace-plot of MRW.

3.4.3 Bayesian Logistic Regression

We now consider the problem of logistic regression in a frequentist-Bayesian setting, similar
to that considered by Dalalyan [61]. Once again, we establish that MALA has superior
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Figure 3.6: Markov chain autocorrelation function plot for two mixture of Gaussian target.
The burn-in time for the plot is set to 300 iterations.

performance relative to ULA. Given a binary variable y ∈ {0, 1} and a covariate x ∈ Rd, the
logistic model for the conditional distribution of y given x takes the form

P(y = 1|x; θ) =
eθ
>x

1 + eθ>x
, (3.15)

for some parameter θ ∈ Rd.
In a Bayesian framework, we model the parameter θ in the logistic equation as a random

variable with a prior distribution π?0. Suppose that we observe a set of independent samples
{(xi, yi)}ni=1 with (xi, yi) ∈ Rd × {0, 1}, with each yi conditioned on xi drawn from a logistic
distribution with some unknown parameter θ∗. Using Bayes’ rule, we can then compute the
posterior distribution of the parameter θ given the data. Drawing samples from this posterior
distribution allows us to estimate and draw inferences about the unknown parameter. Under
mild conditions, the Bernstein-von-Mises theorem guarantees that the posterior distribution
will concentrate around the true parameter θ∗, in which case we expect that the credible
intervals formed by sampling from the posterior should contain θ∗ with high probability.
This fact provides a lens for us to assess the accuracy of our sampling procedure.

Define the vector Y = (y1, . . . , yn)> ∈ {0, 1}n and let X be the n × d matrix with xi as
ith-row. We choose the prior π0 to be a Gaussian distribution with zero mean and covariance
matrix proportional to the inverse of the sample covariance matrix ΣX = 1

n
X>X. Plugging

in the formulas for the prior and likelihood, we find that the the posterior density is given
by

π?(θ) = π?(θ|X, Y ) ∝ exp

{
Y >Xθ −

n∑

i=1

log
(

1 + eθ
>xi
)
− α

∥∥∥Σ
1/2
X θ

∥∥∥
2

2

}
,
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where α > 0 is a user-specified parameter. Writing π? ∝ e−f , we observe that the function
f and its derivatives are given by

f(θ) = −Y >Xθ +
n∑

i=1

log
(

1 + eθ
>xi
)

+ α
∥∥∥Σ

1/2
X θ

∥∥∥
2

2
,

∇f(θ) = −X>Y +
n∑

i=1

xi
1 + e−θ>xi

+ αΣXθ, and,

∇2f(θ) =
n∑

i=1

e−θ
>xi

(
1 + e−θ>xi

)2xix
>
i + αΣX .

With some algebra, we can deduce that the eigenvalues of the Hessian ∇2f are bounded
between L := (0.25n+ α) λmax(ΣX) and m := αλmin(ΣX) where λmax(ΣX) and λmin(ΣX)
denote the largest and smallest eigenvalues of the matrix ΣX . We make use of these bounds
in our experiments.

As in the paper [61], we also consider a preconditioned version of the method; more

precisely, we first sample from π?g ∝ e−g where g(θ) = f(Σ
−1/2
X θ), and then transform the

obtained random samples θi 7→ Σ
1/2
X θi to obtain samples from π?. Sampling based on the

preconditioned distribution improves the condition number of the problem. After the pre-
conditioning, we have the bounds Lg ≤ 0.25n + α and mg ≥ α, so that the new condition
number is now independent of the eigenvalues of ΣX .

We randomly draw i.i.d. samples (xi, yi) as follows. Each vector xi ∈ Rd is sampled
i.i.d. Rademacher components, and then renormalized to Euclidean norm. given xi, the
response yi is drawn from the logistic model (3.15) with θ = θ∗ = 1d = (1, . . . , 1)>. We fix
d = 2, n = 50 and perform N = 1000 experiments. To sample from the posterior, we start
with the initial distribution as µ0 = N (0,L−1Id). As the first error metric, we measure the
`1 distance between the true parameter θ∗ and the sample mean θ̂k of the random samples
obtained from simulating the Markov chains for k iterations:

ek =
1

d
‖θ̂k − θ∗‖1.

Figure 3.7 shows this error as a function of iteration number in logarithmic scale. Since
there is always an approximation error caused by the prior distribution, ULA with large
step-size (δ = 1.0) can be used. However, our simulation shows that it is still slower than
MALA. Also, the condition number κ has a significant effect on the mixing time of ULA and
MRW. Their convergence in the preconditioned case is significantly better. Furthermore,
the autocorrelation plots in Figure 3.8 and the plots in Figure 3.9 of the sample (across
experiments) mean and 25% and 75% quantiles, with θ∗ subtracted, as a function of iterations
suggest a similar story: MALA converges faster than ULA and is less affected by conditioning
of the problem.
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Figure 3.7: Mean error for Bayesian logistic regression as a function of iteration number. (a)
Without preconditioning. (b) With preconditioning.
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Figure 3.8: Markov chain autocorrelation plot of the first coordinate of the Bayesian logistic
regression parameter estimate as a function of lag. The burn-in time for the plot is set to
300 iterations. (a) Without preconditioning. (b) With preconditioning.
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Figure 3.9: Visualizing the mean (solid lines) and 25% and 75% quantiles (as error bars) for
the first coordinate of the Bayesian logistic regression parameter estimate, with θ∗ subtracted,
as a function of iteration number. (a) Without preconditioning. (b) With preconditioning.

3.4.4 Step size vs accept-reject rate

In this section, we provide a few simulations that highlight the effect of step size for MALA
and MRW. Note that our bounds from Theorem 3.1 and 3.2 suggest a step size choice of
order d−1 for both MALA and MRW, which in turn led to the mixing time bounds of O (d).
These choices of step sizes arise when we try to provide a worst-case control on the accept-
reject step of these algorithms. In particular, these choices ensure that the Markov chains
do not get stuck at a given state x, or equivalently, that the proposals at any given state are
accepted with constant probability. If instead, one chooses a very large step size, the (worst-
case) probability of acceptance may decay exponentially with dimensions. Nonetheless, these
worst case bounds may not hold, which would imply a faster mixing time for these chains if
a larger step size were to be used.

To check the validity of larger step sizes, we repeated a few experiments discussed above,
albeit with a larger step size. In particular, we simulated the random walks for a wide-
range of step sizes d−γ for γ ∈ {0.2, 0.33, 0.5, 0.67} for MALA, and γ ∈ {0.4, 0.67, 1, 1.33} for
MRW. We ran these chains for two different cases: (a) Sampling from non-isotropic Gaussian
density, discussed in Section 3.4.1, and, (b) Posterior sampling in Bayesian logistic regression,
discussed in Section 3.4.3). In Figure 3.10, we plot the average acceptance probability for
different step sizes d−γ as the dimension d increases. These probabilities were computed as
the average number of proposals accepted over 100 iterations after a manually tuned burn-in
period, and further averaged across 50 independent runs.

We now remark on the observations from Figure 3.10. We see that for MALA the
acceptance probability for the step size choice of d−0.2 vanishes as d increases. Indeed, the
choice of d−0.5 appears to be a safe choice for both cases. In contrast, for MRW, we need a
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(a) MALA: Non-isotropic Gaussian (b) MALA: Bayesian logistic regression
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Figure 3.10: Effect of large step size for accept-reject ratio for MALA and MRW. From
panels (a) and (b), we see that for MALA the step size choice of d−0.5 has a non-vanishing
acceptance probability rate for both cases. On the other hand, panels (c) and (d) show that
for MRW d−1 is a good choice for the step size.

smaller step size. From panels (c) and (d), we see that d−1 appears to be the correct choice
to ensure that the proposal are accepted with a constant probability when the dimension d
is large.

Informally, if a step size choice of d−γ were to guarantee a non-vanishing acceptance
probability for MALA or MRW, our proof techniques imply a mixing time bound of O (dγ).
Combining this argument with the observations above, we suspect that the bounds for MALA
from Theorem 3.1 may not be tight, and a

√
d-scaling is plausible, while for MRW the bounds

from Theorem 3.2 are very likely to be tight. Deriving a faster mixing time for MALA or
establishing that the current dimension dependency for MRW is tight, are interesting research
directions; see [54] for a very recent work showing that

√
d mixing time for MALA may be
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tight for certain class of distributions.

3.5 Proofs

We now turn to the proofs of our main results—which is based on conductance-based proof
techniques for establishing mixing time bounds. In Section 3.5.1, we provide a brief back-
ground on conductance based proof techniques, followed by several auxiliary lemmas in
Section 3.5.2 which then enable us to easily prove Theorems 3.1 and 3.2 in Sections 3.5.3
and 3.5.4. Proofs of the auxiliary results is deferred to Appendix A.

3.5.1 Conductance-based mixing time bounds

Our proofs exploit standard conductance-based arguments for controlling mixing times. Con-
sider an ergodic Markov chain defined by a transition operator T , and let Π? be its stationary
distribution. For each scalar s ∈ (0, 1/2), we define the s-conductance

Φs := inf
Π?(S)∈(s,1−s)

∫
S Tu(Sc)π?(u)du

min {Π?(S)− s,Π?(Sc)− s} . (3.16)

In this formula, the notation Tu is shorthand for the distribution T (δu) obtained by applying
the transition operator to a dirac distribution concentrated on u. In words, the s-conductance
measures how much probability mass flows across disjoint sets relative to their stationary
mass. By a continuity argument, it can be seen that limiting conductance of the chain is
equal to the limiting value of s-conductance—that is, Φ = lims→0 Φs.

Lemma 3.2 (Lovász [137, 163]). A reversible lazy Markov chain with stationary distribu-
tion Π? and a β-start µ0 satisfies

dTV

(
T `(µ0),Π?

)
≤ βs+ β

(
1− Φ2

s

2

)`
≤ βs+ βe−`Φ

2
s/2 for any s ∈

(
0,

1

2

)
, (3.17)

where Φs denotes the s-conductance (3.16) of the chain.

Thus, it suffices to lower bound the s-conductance Φs, and then substitute a suitable
parameter s so as to optimize the tradeoff between the two terms in the bound. In particular,
Lemma 3.2 implies that the δ-TV mixing time of a chain is bounded above from

2 log(2β/δ)

Φ2
s

with s =
δ

2β
. (3.18)
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3.5.2 Auxiliary results for MALA and MRW

We now state some intermediate lemmas that are useful to establish on Φs for MALA and
MRW. For the remainder of this section, we assert the assumption (3A) on the target, namely
that Π? denotes an (L,m)-strongly log-concave distribution.

We start with a result that shows that the probability mass of any strongly log-concave
distributions is concentrated in a Euclidean ball around the mode. For each s ∈ (0, 1), we
introduce the Euclidean ball

Rs = B

(
x?, a(s)

√
d

m

)
(3.19)

where the function a was previously defined in equation (3.6a), and x? := arg max
x∈Rd

π?(x)

denotes the unique mode.

Lemma 3.3. For any s ∈
(
0, 1

2

)
, we have Π?(Rs) ≥ 1− s.

See Section A.2 for the proof of this claim.
In order to establish the conductance bounds inside this ball, we prove an extension of

a result by Lovász [163]. In particular, the next result provides a lower bound on the flow
of Markov chain with transition distribution Tx and strongly log-concave target distribu-
tions Π?. Similar results have been used in several prior works to establish fast mixing of
several random walks like ball walk, Hit and run [163, 169, 171], Dikin walk [187], and later
in Chapter 6 for the analysis of Vaidya and John walks.

Lemma 3.4. Let S be a convex set such that dTV

(
Tx, Ty

)
≤ 1 − ρ whenever x, y ∈ S and

‖x− y‖2 ≤ ∆. Then for any measurable partition S1 and S2 of Rd, we have
∫

S1

Tu(S2)π?(u)du ≥ ρ

4
min

{
1,

log 2 ·∆ · (Π?(S))2 · √m
8

}
min {Π?(S1 ∩ S),Π?(S2 ∩ S)} .

(3.20)

See Section A.3 for the proof of this lemma.
Define the function t̃ : (0, 1)× (0, 1)→ R+ as follows:

t̃(s, ε) := min

{ √
ε

8
√

2a(s)

√
m

L
√
dL

,
ε

64αε

1

Ld
,

ε2/3

26(αεa2(s))1/3

1

L

( m

Ld2

)1/3
}
, (3.21a)

where αε := 1 + 2
√

log(16/ε) + 2 log(16/ε). (3.21b)

The next lemma shows two important properties for MALA: (1) the proposal distributions
at two different points are close if the two points are close, and (2) the accept-reject step
is well behaved inside the ball Rs provided the step size is chosen carefully. Note that for
MALA, the proposal distribution of the chain at x is given by

PMALA(η)
x := N (µx, 2ηId), where µx = x− η∇f(x). (3.22)
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We use T MALA(η)
x to denote the transition distribution of MALA (obtained after performing

the accept-reject step (2.7)).

Lemma 3.5. For any step size η ∈
(
0, 2

L

]
, the MALA proposal distribution satisfies

dTV

(
PMALA(η)
x ,PMALA(η)

y

)
≤ ‖x− y‖2√

2η
, for all x, y ∈ Rd. (3.23a)

Furthermore, for any s ∈ (0, 1/2) and ε ∈ (0, 1), the MALA proposal and transition distri-
butions satisfy

sup
η∈[0,̃t(s,ε)]

sup
x∈Rs

dTV

(
PMALA(η)
x , T MALA(η)

x

)
≤ ε

8
, (3.23b)

where the truncated ball Rs was defined in equation (3.19).

See Section A.4 for the proof.
With these results in hand, we now prove the mixing time bound for MALA.

3.5.3 Proof of Theorem 3.1

At a high level, the proof involves three key steps. Our first step is to use Lemma 3.5 to
establish that for an appropriate choice of step size, the MALA update has nice properties
inside the region Rs, which admits a high probability under Π? thanks to Lemma 3.3. The
second step is to apply Lemma 3.4 to obtain a lower bound on the s-conductance Φs for
the MALA update. Finally, by choosing s as in equation (3.18), we establish the claimed
convergence rate.

We drop the superscripts MALA(η) from our notation—that is, we use Tx and Px, re-
spectively, to denote the transition and proposal distributions at x for MALA, each with
step size η. By applying the triangle inequality, we obtain the upper bound

dTV

(
Tx, Ty

)
≤ dTV

(
Px, Tx

)
+ dTV

(
Px,Py

)
+ dTV

(
Py, Ty

)
. (3.24)

Now applying claim (3.23a) from Lemma 3.5 guarantees that

dTV

(
Px,Py

)
≤ ε/

√
2 for all x, y ∈ Rd such that ‖x− y‖2 ≤ ε

√
η.

Furthermore, for any η ≤ t̃(s, ε), the bound (3.23b) from Lemma 3.5 implies that dTV

(
Px, Tx

)
≤ ε/8

for any x ∈ Rs. Plugging in these bounds in the inequality (3.24), we find that

dTV

(
Tx, Ty

)
≤ 1− (1− ε) ∀ x, y ∈ Rs such that ‖x− y‖2 ≤ ε

√
η.

Thus, the transition distribution Tx satisfies the assumptions of Lemma 3.4 for

S = Rs, ρ = (1− ε) and ∆ = ε
√
η. (3.25)
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We now derive a lower bound on the s-conductance of MALA. Choosing a measurable
set S such that Π?(S) > s and substituting the terms from equation (3.25) in the inequal-
ity (3.20), we find that

∫

S
Tu(Sc)π?(u)du ≥ (1− ε)

4
min

{
1,

log 2 · ε√η · (Π?(Rs))
2 · √m

8

}
·

·min {Π?(S ∩Rs),Π
?(Sc ∩Rs)}

(i)

≥ (1− ε)ε√η · (Π?(Rs))
2 · √m

64
min {Π?(S)− s,Π?(Sc)− s} .

In this argument, inequality (i) follows from the facts that log 2 ≥ 1/2 and Π?(S),Π?(Sc) > s.
Moreover, we have applied Lemma 3.3 to find that Π?(Rs) ≥ 1− s and hence

Π?(X ∩Rs) = Π?(X )− Π?(X ∩Rc
s) ≥ Π?(X )− s for X ∈ {S,Sc}.

We have also assumed that the second argument of the minimum is less than 1. Applying
the definition (3.16) of Φs for MALA, we find that

ΦMALA(η)
s ≥ (1− ε)ε · (Π?(Rs))

2 · √ηm
64

, for any η ≤ t̃(s, ε). (3.26)

Finally, Using Lemma 3.3, we have that Π?(Rδ/2) ≥ 1 − δ/2 ≥ 1/2 for any δ ∈ (0, 1).
Applying the definition (3.21b) of αε, we obtain that α1/2 ≤ 12. Using this fact and the

definitions (3.6b) and (3.21a) for the functions t(·) and t̃(·, ·), it is straightforward to verify
that ct(δ/(2β)) ≤ t̃(δ/(2β), 1/2), for an appropriate choice of universal constant c. Substi-
tuting in s = δ/(2β), ε = 1/2, and η = ct(δ/(2β)), and also making use of the lower bound

Π?(Rδ/2β) ≥ 1/2 in the bound (3.26), we find that Φ
MALA(η)
δ/2β ≥ c′

√
mη for some universal

constant c′. Substituting the pieces together in the bound (3.18) yields the claim.

3.5.4 Proof of Theorem 3.2

The proof of this theorem is similar to the proof of Theorem 3.1. We begin by claiming that

dTV

(
PMRW(η)
x ,PMRW(η)

y

)
=

ε√
2

for all x, y such that ‖x− y‖2 ≤ ε
√
η, (3.27a)

dTV

(
PMRW(η)
x , T MRW(η)

x

)
=
ε

8
for all x ∈ Rs, (3.27b)

for any η ≤ cε2m/(αεdL
2a(s)) for some universal constant c. Plugging s = δ/(2β), ε = 1/2

and arguing as in Section 3.5.3, we find that Φ
MRW(η)
δ/2β ≥ c′

√
mη for some universal constant

c′. Using the bound (3.18) yields the claimed bound on the mixing time of MRW.
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Next, we prove claims (3.27a) and (3.27b). Note that PMRW(η)
x = N (x, 2ηId). For brevity,

we drop the superscripts from our notations. Using the expression (A.13) for the KL-
divergence and applying Pinsker’s inequality leads to the upper bound

dTV

(
Px,Py

)
≤
√

2 KL(Px‖Py) =
‖x− y‖2√

2η
,

which implies the claim (3.27a).
For the other bound (3.27b), letting px to denote the density of the proposal distribution

Px and using the bounds (A.16) and (E.16), it suffices to prove that

Pz∼Px
[
π?(z)

π?(x)
≥ exp

(
− ε

16

)]
(i)
= Pz∼Px

[
f(x)− f(z) ≥ − ε

16

]
≥ (1− ε/16), (3.28)

where step (i) follows from the fact that π?(x) ∝ e−f(x). We have

f(x)− f(z)
(i)

≥ ∇f(z)>(x− z) = (∇f(z)−∇f(x))> (x− z) +∇f(x)>(x− z)

(ii)

≥ −L ‖x− z‖2
2 +∇f(x)>(x− z)

= −2Lη ‖ξ‖2
2 +

√
2η∇f(x)>ξ, (3.29)

where the step (i) follows from the convexity of the function f , step (ii) the smoothness of the
function f (Lemma A.2(e)). Note that the random variable χ := ∇f(x)>ξ ∼ N (0, ‖∇f(x)‖2

2)

and that ‖∇f(x)‖2 ≤ Ds for any x ∈ Rs. Consequently, we have χ ≥ −Ds ·2
√

log(32/ε) with
probability at least 1 − ε/32. On the other hand, using the standard tail bound for a Chi-
squared random variable, we obtain that P

[
‖ξ‖2

2 ≥ dαε
]
≤ ε/32 for αε = 1 + 2

√
log(32/ε) +

2 log(32/ε). Recalling that Ds = L
√

d
m
a(s) and doing straightforward calculation reveals

that for η ≤ ε2

(8192αεd
L2

m
a(s))

, we have

2Lηdαε ≤
ε

64
, and

√
2ηDs2

√
log(32/ε) ≤ 3ε

64
.

Combining these bounds with the high probability statements above and plugging in the
inequality (3.29), we find that f(x)− f(z) ≥ −ε/16 with probability at least 1−ε/16, which
yields the claim (3.28).

3.6 Conclusion and future directions

In this chapter, we derived non-asymptotic bounds on the mixing time of the Metropolis
adjusted Langevin algorithm and Metropolized random walk for log-concave distributions.
These algorithms are based on a two-phase scheme: (1) a proposal step followed by (2) an
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accept-reject step. Our results show that the accept-reject step while leading to significant
complications in the analysis is practically very useful: algorithms applying this step mix
significantly faster than the ones without it. In particular, we showed that for a strongly
log-concave distribution in Rd with condition number κ, the δ-mixing time for MALA is
of O (dκ log(1/δ)). This guarantee significantly better than the O (dκ2/δ2) mixing time for
ULA established in the literature. We also proposed a modified version of MALA to sample
from non-strongly log-concave distributions and showed that it mixes in O (d2/δ1.5); thus,
this algorithm dependency on the desired accuracy δ when compared to the O (d3/δ4) mixing
time for ULA for the same task. Furthermore, we established O (dκ2 log(1/δ)) mixing time
bound for the Metropolized random walk for log-concave sampling.

Several fundamental questions arise from our work. All of our results are upper bounds on
mixing time, and our simulation results suggest that they are tight for the choice of step size
used in the Theorem statements. Simulations from ?? suggest that MALA might mix faster
with a larger step size, so as to admit a

√
d scaling of mixing time under certain settings;

some very recent work [54] show that the
√
d scaling observed from these experiments is

tight for a class of distributions.
Simulations from ?? suggest that the warmness parameter β does not affect the choice

of step size too much and hence potentially larger choices of step sizes (and thereby faster
mixing) are possible. To this end, the theory developed in the next chapter provides sig-
nificant improvements (Corollary 4.2), primarily by showing that for certain class of target
distributions the mixing time dependence on the warmness parameter can be improved from
log β to log log β. Moreover, for a deterministic start, one may consider running ULA for a
few steps run to obtain moderate accuracy, and then run MALA initialized with the ULA
iterates (thereby providing a warm start to MALA). In practice, we find that this hybrid
procedure can generate highly accurate samples in reasonably few number of iterations. A
formal analysis of such a method

Another open question is to sharply delineate the fundamental gap between the mixing
times of first-order sampling methods and that of zeroth-order sampling methods. Noting
that MALA is a first-order method while MRW is a zeroth-order method, from our work, we
obtain that two class of methods differ in a factor of the condition number κ of the target
distribution. It is an interesting question to determine whether this represents a sharp gap
between these two classes of sampling methods.
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Chapter 4

Proof Techniques for Improving
Mixing Time Guarantees

The analysis in Chapter 3 made use of a fairly standard approach to controlling mixing times,
namely, via worst-case conductance bounds. This method was introduced by Jerrum and
Sinclair [131] for discrete space chains and then extended to the continuous space settings
by Lovász and Simonovits [167], and has been thoroughly studied. Interested readers can
refer to the survey [242] and the references therein for a detailed discussion of conductance
based methods for continuous space Markov chains.

Indeed, many mixing time proof techniques for the convergence of continuous-state
Markov chains are inspired by the large body of work on discrete-state Markov chains; for
instance, see the surveys [164, 4] and references therein. Historically, much work has been de-
voted to improving the mixing time dependency on the initial distribution. For discrete-state
Markov chains, Diaconis and Saloff-Coste [70] were the first to show that the logarithmic
dependency of the mixing time of a Markov chain on the warmness parameter β (2.6) of
the starting distribution can be improved to double-logarithmic. This improvement—from
logarithmic to doubly logarithmic—allows for a good bound on the mixing time even when
starting distribution is not available. The innovation underlying this improvement is the use
of log-Sobolev inequalities in place of the usual isoperimetric inequality. Later, closely re-
lated ideas such as average conductance [165, 136], evolving sets [183] and spectral profile [99]
were shown to be effective for reducing dependence on initial conditions for discrete space
chains. Thus far, only the notion of average conductance [165, 136] has been adapted to
continuous-state Markov chains so as to sharpen mixing time analysis of the Ball walk [166].

The goal of this chapter to build on the discrete state space Markov chain literature,
and establish refined conductance based results for continuous state space Markov chains,
which in turn can then provide mixing time guarantees that scale doubly logarithmic in
the warmness parameter β (2.6). In particular, we extend one of the conductance profile
techniques from the paper [99] from discrete state to continuous state chains, albeit with
several appropriate modifications suited for the general setting.
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Our contributions and organization: In this chapter, we derive three main results.
First, in Proposition 4.1, we establish a general mixing time bound in terms of the con-
ductance profile—a more refined quantity than the worst-case conductance (3.16). see Sec-
tion 4.1). Then, we state Proposition 4.2 that lower bounds the conductance profile for an
isoperimetric target (D.46) in terms of the transition overlaps for a Markov chain in Sec-
tion 4.2. Doing so involves non-trivial extensions of ideas from discrete state Markov chains
to those in continuous state spaces. Our results enable us to obtain simultaneous improve-
ments on mixing time bounds of several Markov chains (for general continuous-state space)
when the starting distribution is far from the stationary distribution. Consequentially, we
improve upon the previous mixing time bounds for MRW and MALA from Chapter 3, when
the starting distribution is not warm with respect to the target distribution in Section 4.3;
e.g., compare Corollary 3.1 and Corollary 4.2. The machinery developed in this chapter is
later used in Chapter 5 to establish fast mixing time bounds for the Hamiltonian Monte
Carlo for a range of target distributions.

4.1 Mixing Time Via Conductance Profile

We start by setting up some notation, and a brief background on conductance profile.
Given a Markov chain with transition probability Θ : X ×B (X )→ R, its stationary flow

φ : B(X )→ R is defined as

φ(S) =

∫

x∈S
Θ(x, Sc)π?(x)dx for any S ∈ B(X ). (4.1)

Given a set Ω ⊂ X , the Ω-restricted conductance profile is given by

ΦΩ(v) = inf
Π?(S∩Ω)∈(0,v]

φ(S)

Π?(S ∩ Ω)
for any v ∈

(
0, Π?(Ω)/2

]
. (4.2)

The classical conductance constant Φ (also defined as Φ = Φ0 in the notation from equa-
tion (3.16)) is a special case; it can be expressed as Φ = ΦX (1

2
). In fact, we can see conduc-

tance profile as a size-wise conductance for varying sizes in terms of the target measure of
the set.

Next, we define the truncated extension Φ̃Ω of the function ΦΩ to the positive real line as

Φ̃Ω(v) =





ΦΩ(v), v ∈
(

0, Π?(Ω)
2

]

ΦΩ(Π?(Ω)/2), v ∈
[

Π?(Ω)
2
,∞
)
.

(4.3)

The set Ω is chosen suitably in the discussion to follow.

Smooth chain assumption: We say that the Markov chain satisfies the smooth chain
assumption if its transition probability function Θ : X × B(X ) → R+ can be expressed in
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the form

Θ(x, dy) = θ(x, y)dy + αxδx(dy) for all x, y ∈ X , (4.4)

where θ is the transition kernel satisfying θ(x, y) ≥ 0 for all x, y ∈ X . Here δx denotes
the Dirac-delta function at x and consequently, αx denotes the one-step probability of the
chain to stay at its current state x. Note that the three algorithms discussed in this chapter
(MRW, MALA and HMC) all satisfy the smooth chain assumption (4.4). Throughout this
chapter, when dealing with a general Markov chain, we assume that it satisfies the smooth
chain assumption.

We now state our first main result that provides a control on the mixing time of a Markov
chain with continuous-state space in terms of its restricted conductance profile. We show
that this control (based on conductance profile) allows us to have a better initialization
dependency than the usual conductance based control (see [166, 167, 78]). This method for
sharpening the dependence is known for discrete-state Markov chains; to the best of our
knowledge, the following lemma is the first statement and proof of an analogous sharpening
for continuous state space chains:

Proposition 4.1. Consider a reversible, irreducible, ζ-lazy and smooth Markov chain (4.4)
with stationary distribution Π?. Then for any error tolerance δ, and a β-warm distribution
µ0, given a set Ω such that Π?(Ω) ≥ 1− δ2

3β2 , the δ-L2 mixing time of the chain is bounded as

τ2(δ;µ0) ≤
∫ 8/δ2

4/β

8 dv

ζ · vΦ̃2
Ω(v)

, (4.5)

where Φ̃Ω denotes the truncated Ω-restricted conductance profile (4.3).

See Appendix B.1 for the proof, which is based on an appropriate generalization of the ideas
used by [99] for discrete state chains.

The standard conductance based analysis makes use of the worst-case conductance bound
for the chain. In contrast, Proposition 4.1 relates the mixing time to the conductance profile,
which can be seen as size-wise conductance. We use the Ω-restricted conductance profile to
state our bounds, because often a Markov chain has poor conductance only in regions that
have very small probability under the target distribution. Such a behavior is not disastrous
as it does not really affect the mixing of the chain up to a suitable tolerance. Given the
bound (4.5), we can derive mixing time bound for a Markov chain readily if we have a bound
on the Ω-restricted conductance profile ΦΩ for a suitable Ω.

Corollary 4.1. For a ζ-lazy Markov chain with a β-warm start µ0, if the Ω-restricted con-
ductance profile ΦΩ satisfies,

ΦΩ(v) ≥
√
B log

(
1

v

)
for v ∈

[
4

β
,
1

2

]
, (4.6)
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then the mixing time of the Markov chain satisfies

τ2(δ;µ0) ≤ 64

ζB
log

(
log β

2δ

)
. (4.7)

The proof follows immediately by substituting the bound (4.6) on the RHS of equation (4.5),
and integrating.

Prior work on conductance profile: We now situate Proposition 4.1 in the context
prior work based on conductance profile. For discrete state chains, a result similar to Propo-
sition 4.1 was already proposed by Lovász and Kannan (Theorem 2.3 in the paper [165]).
Later on, Morris and Perres [183] and Goel et al. [99] used the notion of evolving sets and
spectral profile respectively to sharpen the mixing time bounds based on average conduc-
tance for discrete-state space chains. In the context of continuous state space chains, Lovász
and Kannan claimed in their original paper [165] that a similar result should hold for gen-
eral state space chain as well, although we were unable to find any proof of such a general
result in that or any subsequent work. Nonetheless, in a later work an average conductance
based bound was used by Kannan et al. to derive faster mixing time guarantees for uniform
sampling on bounded convex sets for ball walk (see Section 4.3 in the paper [136]). Their
proof technique is not easily extendable to more general distributions including the general
log-concave distributions in Rd. Instead, our proof of Proposition 4.1 for general state space
chains proceeds by an appropriate generalization of the ideas based on the spectral profile
by Goel et al. [99] (for discrete state chains).

4.2 Lower Bound on Conductance Profile

To invoke guarantee Corollary 4.1, one needs to derive a lower bound on the conductance
profile ΦΩ of the Markov chain with a suitable choice of the set Ω. We now state a lower bound
for the restricted-conductance profile of a general state space Markov chain whose target
distribution satisfies isoperimetry conditions. We note that a closely related logarithmic-
Cheeger inequality was used for sampling from uniform distribution of a convex body [136]
and for sampling from log-concave distributions [158] without explicit constants. Since we
would like to derive a non-asymptotic mixing rate, we re-derive an explicit form of their
result.

Isoperimetry conditions: A distribution Π with support X ⊂ Rd is said to satisfy the
isoperimetric inequality (e = 0) or the log-isoperimetric inequality (e = 1

2
) with constant ψe

if given any partition S1,S2,S3 of X , we have

Π(S3) ≥ 1

2ψe

· d(S1,S2) ·min {Π(S1),Π(S2)} · loge

(
1 +

1

min {Π(S1),Π(S2}

)
, (4.8)
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where the distance between two sets S1,S2 is defined as d(S1,S2) = infx∈S1,y∈S2 {‖x− y‖2}.
For a distribution Π with density π and a given set Ω, its restriction to Ω is the distribution
ΠΩ with the density πΩ(x) = π(x)1Ω(x)

Π(Ω)
.

Let scalars s ∈ (0, 1/2], ρ ∈ (0, 1) and ∆ > 0 be given and let Tx denote the one-step
transition distribution of the Markov chain at point x. Suppose that that chain satisfies

dTV

(
Tx, Ty

)
≤ 1− ρ whenever x, y ∈ Ω and ‖x− y‖2 ≤ ∆. (4.9)

Proposition 4.2. Consider a Markov chain with stationary distribution Π?, and let Ω be
a convex measurable set such that Π?

Ω satisfies the isoperimetry (or log-isoperimetry) condi-
tion (4.8) with e = 0 (or e = 1

2
respectively). When the Markov chain satisfies the condi-

tion (4.9), then we have

ΦΩ(v) ≥ ρ

4
·min

{
1,

∆

16ψe

· loge

(
1 +

1

v

)}
, for any v ∈

[
0,

Π?(Ω)

2

]
. (4.10)

See Appendix B.2 for the proof. We note that compared to the typical bounds on conduc-
tance, we gain an extra logarithmic term for target satisfying the logarithmic isoperimetric
inequality (e = 1

2
). For any target distribution satisfying a logarithmic isoperimetric in-

equality (including the case of a strongly log-concave distribution), Proposition 4.2 is a
strict improvement of the conductance bounds derived in previous works [163, 78].

4.3 Improved Mixing Time Guarantees

Suppose that we can find a convex set Ω such that Π?(Ω) ≈ 1 and the conditions of Propo-
sition 4.2 are met, then with a β-warm start µ0, a direct application of Corollary 4.1 along
with Proposition 4.2 implies the following bound:

τ2(δ;µ0) ≤ O
(

1

ρ2∆2
log

log β

δ

)
. (4.11)

Mixing time bounds from previous work for continuous state Markov chains (including our

earlier guarantees in Theorems 3.1 and 3.2) scale like log(β/δ)
ρ2∆2 ; for instance, see Proposition 6.1.

In contrast, the bound (4.11) provides an additional logarithmic factor improvement in the
factor β when the target satisfies log-isoperimetry. Lemma C.5 shows that an m-strongly
log-concave target also satisfies log-isoperimetric inequality (D.46) with ψ 1

2
= 1/

√
m. Such

an improvement allows us to derive a sharper dependency on dimension d for the mixing
time from non-warm starting distributions. As examples, we illustrate these improvements
for MALA and MRW.

Improved Guarantees for MALA and MRW: For an (L,m)-strongly log-concave tar-
get Π? with x? as the mode, Lemma 3.1 shows that µ? = N (x∗, 1

L
Id) is κd/2-warm with respect
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to Π?. The discussion above immediately implies that when β = O(ed), the bound equa-
tion (4.11) implies an improvement of O( d

log d
) in mixing time bounds from Theorems 3.1

and 3.2. Thus, we readily obtain the following corollary which improves upon the mixing
time bounds from Corollary 3.1:

Corollary 4.2. Given an (L,m)-strongly log-concave target Π? (Assumption (3A)), an error
threshold δ ∈ (0, 1], and the initial distribution µ? = N (x∗, 1

L
Id), the 1

2
-lazy versions of MRW

and MALA (Algorithms 1 and 2) with step sizes

ηMRW = c1 ·
1

Ldκ
, and ηMALA = c2 ·

1

Ld ·max
{

1,
√
κ/d
} , (4.12)

respectively, satisfy the mixing time bounds

τMRW
2 (δ;µ0) = O

(
dκ2 log

d

δ

)
, and (4.13a)

τMALA
2 (δ;µ0) = O

(
dκ log

d

δ
·max

{
1,

√
κ

d

})
. (4.13b)

The proof is omitted as it directly follows from the conductance profile based mixing time
bound in Proposition 4.1, Proposition 4.2 and the overlap bounds for MALA (Lemma 3.5)
and MRW (proof of Theorem 3.2) from Section 3.5. Corollary 4.2 states that the mixing
time bounds for MALA and MRW with the feasible distribution µ? as the initial distribution
scale as Õ(dκ log (1/δ)) and Õ(dκ2 log (1/δ)). In light of the inequality (2.5d), we obtain the
same bounds for the number of steps taken by these algorithms to mix within δ total-
variation distance of the target distribution Π?. Consequently, our results improve upon
the previously guarantees (Corollary 3.1) mixing time bounds for MALA and MRW [78] for
strongly log-concave distributions.

4.4 Conclusion and future directions

In this chapter, we provided refined results for establishing mixing time bounds on continuous
state space chains using conductance profile. In particular, we studied the mixing time
bounds of target that satisfy the isoperimetry or log-isoperimetry condition (D.46). We
also applied these results to sharpen the mixing time bounds for MALA and MRW with a
non-warm start for a strongly log-concave target.

With this machinery, one can potentially establish fast mixing time bounds for a wide
range of target distributions; identifying some interesting such classes, and establishing the
isoperimetry condition can be an interesting future direction. One possibility is the weakly
log-concave distributions for which the KLS conjecture implies that the isoperimetry constant
is bounded by the operator norm of the inverse covariance matrix. Given that the KLS
conjecture has been almost proven [45] (upto poly-logartihmic factors in dimensions), our
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theory already provides an easily accessible mixing time bound for wide range of Markov
chains for which one establish the condition (4.9).

Another interesting direction is to determine if one can further refine the conductance
based proof techniques to obtain even sharper mixing time bounds for existing sampling
algorithms, like MALA, and HMC (analyzed in the next chapter).
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Chapter 5

Non-Asymptotic Analysis of
Hamiltonian Monte Carlo

As noted earlier, there are a variety of MCMC methods for sampling from target distribu-
tions with smooth densities [211, 213, 215, 30]. One method often stands out in practice and
is often considered state-of-the-art: Hamiltonian Monte Carlo (HMC). It is the default sam-
pler for sampling from complex distributions in many popular software packages, including
Stan [37], Mamba [228], and Tensorflow [1].

This chapter provides a thorough discussion and some new results on the non-asymptotic
analysis of Hamiltonian Monte Carlo. We start by providing some historical context on
HMC, followed by an introduction to the algorithm in Section 5.1, and past related work
in Section 5.2. With the basic context in place, we then summarize our contributions in
Section 5.2.1, and provide the organization of the remainder of the chapter in Section 5.2.2.

Origins of HMC: The idea of using Hamiltonian dynamics in simulation can be traced
back to Alder and Wainwright [3] in the physics literature. The method is inspired by
Hamiltonian dynamics, which describe the evolution of a state vector q(t) ∈ Rd and its
momentum p(t) ∈ Rd over time t based on a Hamiltonian function H : Rd × Rd → R via
Hamilton’s equations:

dq

dt
(t) =

∂H
∂p

(p(t),q(t)), and
dp

dt
(t) = −∂H

∂q
(p(t),q(t)). (5.1)

A straightforward calculation using the chain rule shows that the Hamiltonian remains in-
variant under these dynamics—that is, H(p(t),q(t)) = C for all t ∈ R. A typical choice of
the Hamiltonian H : Rd × Rd → R is given by

H(p,q) = f(q) +
1

2
‖p‖2

2 . (5.2)

Duane et al. [73] introduced MCMC with Hamiltonian dynamics, and referred to it as the
hybrid Monte Carlo. The algorithm was further refined by Neal [189], and later re-christened
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in the statistics community as Hamiltonian Monte Carlo. We refer the reader to Neal [190]
for an illuminating overview of the history of HMC and a discussion of contemporary work.

5.1 Introduction to the HMC Algorithm

The ideal HMC algorithm for sampling is based on the continuous Hamiltonian dynam-
ics (5.1), and as such, it is not implementable in practice, but instead a useful algorithm for
understanding. For a given time T > 0 and vectors u, v ∈ Rd, let qT (u, v) denote the q-
solution to Hamilton’s equations at time T and with initial conditions (p(0),q(0)) = (u, v).
At iteration k, given the current iterate Xk, the ideal HMC algorithm generates the next
iterate Xk+1 via the update rule Xk+1 = qT (pk, Xk) where pk ∼ N(0, Id) is a standard nor-
mal random vector, independent of Xk and all past iterates. It can be shown that with an
appropriately chosen T , the ideal HMC algorithm converges to the stationary distribution π?

without a Metropolis-Hastings adjustment (see [190, 176] for the existence of such solution
and its convergence).

However, in practice, it is impossible to compute an exact solution to Hamilton’s equa-
tions. Rather, one must approximate the solution qT (pk, Xk) via some discrete process.
There are many ways to discretize Hamilton’s equations other than the simple Euler dis-
cretization; see Neal [190] for a discussion. In particular, using the leapfrog or Störmer-Verlet
method for integrating Hamilton’s equations leads to the Hamiltonian Monte Carlo (HMC)
algorithm. It simulates the Hamiltonian dynamics for K steps via the leapfrog integrator. At
each iteration, given previous state q0 and fresh p0 ∼ N (0, Id), it runs the following updates
for K times, for 0 ≤ k ≤ K− 1,

pk+ 1
2

= pk −
η

2
∇f(qk) (5.3a)

qk+1 = qk + ηpk+ 1
2

(5.3b)

pk+1 = pk+ 1
2
− η

2
∇f(qk+1). (5.3c)

Since discretizing the dynamics generates discretization error at each iteration, it is fol-
lowed by a Metropolis-Hastings adjustment where the proposal (pK,qK) is accepted with
probability

min

{
1,

exp (−H(pK,qK))

exp (−H(p0,q0))

}
. (5.4)

See Algorithm 3 for a detailed description of the HMC algorithm with leapfrog integrator.
In practice, one also uses the HMC algorithm with a modified Hamiltonian, in which the
quadratic term ‖p‖2

2 is replaced by a more general quadratic form pTΣp, for a symmetric
positive definite matrix Σ chosen by the user; see ?? C.3.1.1 for further discussion. Here, we
restrict our analysis to the case Σ = I.
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Algorithm 3: Metropolized HMC with leapfrog integrator
Input: Step size η, number of internal leapfrog updates K,
and a sample x0 from a starting distribution µ0

Output: Sequence x1, x2, . . .
1 for i = 0, 1, . . . do
2 Proposal step:
3 q0 ← xi
4 Draw p0 ∼ N (0, Id)
5 for k = 1, . . . ,K do
6 (pk,qk)← Leapfrog(pk−1,qk−1, η)
7 end
8 % qK is now the new proposed state
9 Accept-reject step:

10 compute αi+1 ← min

{
1,

exp (−H(pK ,qK))

exp (−H(p0,q0))

}

11 With probability αi+1 accept the proposal: xi+1 ← qK
12 With probability 1− αi+1 reject the proposal: xi+1 ← xi
13 end
14 Program Leapfrog(p, q, η):
15 p̃← p− η

2∇f(q)
16 q̃← q + ηp̃
17 p̃← p̃− η

2∇f(q̃)

18 return (p̃, q̃)

We refer the reader to the papers [190, 115, 76] for further examples and discussion of the
HMC method. There are a number of variants of HMC, but the most popular choice involves
a combination of the leapfrog integrator with Metropolis-Hastings correction. Throughout
this chapter, we reserve the terminology HMC to refer to this particular Metropolized algo-
rithm.

Connection with MALA: The HMC with leapfrog integrator can be seen as a multi-step
version of Langevin algorithm. In fact, running the HMC algorithm with K=1 is equivalent
to the MALA (Algorithm 2) after a re-parametrization of the step-size η.

5.2 Past work on HMC

While HMC enjoys fast convergence in practice, a theoretical understanding of this behavior
remains incomplete. Some intuitive explanations are based on its ability to maintain a
constant asymptotic accept-reject rate with large step-size [60]. Others [190] suggest, based
on intuition from the continuous-time limit of the Hamiltonian dynamics, that HMC can
suppress random walk behavior using momentum. However, these intuitive arguments do
not provide rigorous or quantitative justification for the fast convergence of the discrete-time
HMC used in practice.



Chapter 5. Non-Asymptotic Analysis of Hamiltonian Monte Carlo 53

More recently, general asymptotic conditions under which HMC will or will not be ge-
ometrically ergodic have been established in some recent papers [76, 162]. Other work
has yielded some insight into the mixing properties of different variants of HMC, but it
has focused mainly on unadjusted versions of the algorithm. Mangoubi et al. [175, 176]
study versions of unadjusted HMC based on Euler discretization or leapfrog integrator (but
omitting the Metropolis-Hastings step), and provide explicit bounds on the mixing time as
a function of dimension d, condition number κ and error tolerance δ > 0. Lee and Vem-
pala [153] studied an extended version of HMC that involves applying an ordinary differential
equation (ODE) solver; they established bounds with sublinear dimension dependence, and
even polylogarithmic for certain densities (e.g., those arising in Bayesian logistic regression).
The mixing time for the same algorithm is further refined in the recent work by Chen and
Vempala [50]. In a similar spirit, Lee and Vempala [156] studied the Riemannian variant
of HMC (RHMC) with an ODE solver focusing on sampling uniformly from a polytope.
While their result could be extended to log-concave sampling, the practical implementation
for log-concave sampling of their ODE solver is unclear, and moreover requires a regularity
condition on all the derivatives of density. It should be noted that such unadjusted HMC
methods behave differently from the Metropolized version most commonly used in practice.
In the absence of the Metropolis-Hastings correction, the resulting Markov chain no longer
converges to the correct target distribution, but instead exhibits a persistent bias, even in
the limit of infinite iterations. Consequently, the analysis of such sampling methods requires
controlling this bias; doing so leads to mixing times that scale polynomially in 1/δ, in sharp
contrast with the log(1/δ) that is typical for Metropolis-Hastings corrected methods.

Most closely related to the guarantees in this chapter is the recent work by Bou-Rabee
et al. [24], which studies the same Metropolized HMC algorithm that we analyze in this
chapter. They use coupling methods to analyze HMC for a class of distributions that are
strongly log-concave outside of a compact set. In the strongly log-concave case, they prove
a mixing time bound that scales at least as d3/2 in the dimension d. It should be noted that
with a “warm” initialization, this dimension dependence grows more quickly than known
bounds for the MALA algorithm [78, 86], and so does not explain the superiority of HMC
in practice.

Tradeoff between hyperparameters: In practice, it is known that Metropolized HMC is
fairly sensitive to the choice of its parameters, namely the step-size η used in the discretization
scheme, and the number of leapfrog steps K. At one extreme, taking a single leapfrog step
K = 1, the algorithm reduces to the Metropolis adjusted Langevin algorithm (MALA).
More generally, if too few leapfrog steps are taken, that of HMC is likely to exhibit a
random walk behavior similar to MALA. At the other extreme, if K is too large, the leapfrog
steps tend to wander back to a neighborhood of the initial state, which leads to wasted
computation as well as slower mixing [19]. In terms of the step size η, choosing an overly
large step size makes the discretization diverge from the underlying continuous dynamics,
and causes the Metropolis acceptance probability to drop, hence slowing down the algorithm.
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On the other hand, an overly small choice of η does not allow the algorithm to explore the
state space rapidly enough. While it is difficult to characterize the necessary and sufficient
conditions on K and η to ensure fast convergence, many work suggest the choice of K and
η based on the necessary conditions such as maintaining a constant acceptance rate [44].
For instance, Beskos et al. [18] showed that in the simplified scenario of target density
with independent, identically distributed components, the number of leapfrog steps should
scale as d1/4 to achieve a constant acceptance rate. Besides, instead of setting the two
parameters explicitly, various automatic strategies for tuning these two parameters have
been proposed [249, 115, 250]. Despite being introduced via heuristic arguments and with
additional computational cost, these methods, such as the No-U-Turn (NUTS) sampler [115],
have shown promising empirical evidence of its effectiveness on a wide range of simple target
distributions.

5.2.1 Overview of our contributions

We provide a non-asymptotic upper bound on the mixing time of the Metropolized HMC
algorithm for smooth densities (see Theorem 5.1). This theorem applies to the form of
Metropolized HMC (based on the leapfrog integrator) that is most widely used in prac-
tice. To the best of our knowledge, Theorem 5.1 is the first rigorous confirmation of the
faster non-asymptotic convergence of the Metropolized HMC as compared to MALA and
other simpler Metropolized algorithms.1 Other related works on HMC consider either its
unadjusted version (without accept-reject step) with different integrators [175, 176] or the
HMC based on an ODE solver [153, 156]. While the dimension dependency for these algo-
rithms is usually better than MALA, they have polynomial dependence on the inverse error
tolerance 1/δ while MALA’s mixing time scales as log(1/δ). Moreover, our direct analysis
of the Metropolized HMC with a leapfrog integrator provides explicit choices of the hyper-
parameters for the sampler, namely, the step-size and the number of leapfrog updates in each
step. Our theoretical choices of the hyper-parameters could potentially provide guidelines
for parameter tuning in practical HMC implementations.

The proof makes use of the refined conductance profiles based techniques from Chapter 4.
A number of technical challenges arise en route in particular in controlling the conductance
profile of HMC: The use of multiple gradient steps in each iteration of HMC helps it mix
faster but also complicates the analysis. In fact, a key step is to control the overlap between
the transition distributions of HMC chain at two nearby points; doing so requires a delicate
argument (see Lemma 5.1 and Appendix C.1 for further details).

Table 5.1 provides an informal summary of our mixing time bounds of HMC and how they
compare with known bounds for MALA when applied to log-concave target distributions.
From the table, we see that Metropolized HMC takes fewer gradient evaluations than MALA
to mix to the same accuracy for log-concave distributions. Note that our current analysis

1As noted earlier, previous results by Bou-Rabee et al. [24] on Metropolized HMC do not establish that
it mixes more rapidly than MALA.
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establishes logarithmic dependence on the target error δ for strongly-log-concave as well as
for a sub-class of weakly log-concave distributions. For a comparison with previous results
on unadjusted HMC or ODE based HMC refer to the discussion after Corollary 5.1, and
Table C.4 in Appendix C.3.2.

Strongly log-concave Weakly log-concave

Sampling algorithm Assumption (5B) (κ� d) Assumption (5C) Assumption (5D)

MALA
dκ log

1

δ
[Corollary 4.2]

d2

δ
3
2

log
1

δ
[Corollary 3.2]

d
3
2 log

1

δ
[?]

Metropolized HMC
d

11
12κ log

1

δ
[Corollary 5.1]

d
11
6

δ
log

1

δ
[Corollary 5.1]

d
4
3 log

1

δ
[Corollary 5.2]

Table 5.1: Comparisons of the number of gradient evaluations needed by MALA and
Metropolized HMC with leapfrog integrator from a warm start to obtain an δ-accurate
sample in TV distance from a log-concave target distribution on Rd. The second column
corresponds to strongly log-concave densities with condition number κ, and the third and
fourth column correspond to weakly log-concave densities satisfying certain regularity con-
ditions.

5.2.2 Organization

The remainder of the chapter is organized as follows. Section 5.3 contains our main results
on mixing time of HMC in Section 5.3.2 (with overview in Tables 5.1 and 5.2). In Section 5.4,
we describe some numerical experiments that we performed to explore the sharpness of our
theoretical predictions in some simple scenarios. In Section 5.5, we prove our main result,
Theorem 5.1, and defer the proofs of technical lemmas and other results to the appendices.
We conclude in Section 5.6 with a discussion of our results and future directions.

5.3 Main results

We now turn to the statement of our main results. We remind the readers that HMC refers
to Metropolized HMC with leapfrog integrator, unless otherwise specified. We collect the set
of assumptions for the target distribution in Section 5.3.1, followed by general mixing time
result as Theorem 5.1 in Section 5.3.2. Then we apply Theorem 5.1 to derive guarantees
for strongly log-concave target as Corollary 5.1 in Section 5.3.3, and weakly log-concave and
non log-concave distributions in Section 5.3.4.
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5.3.1 Assumptions on the target distribution

In this section, we introduce some regularity notions and state the assumptions on the target
distribution that our results in the next section rely on.

A function f is said to be LH-Hessian Lipschitz if

|||∇2f(x)−∇2f(y)|||op ≤ LH ‖x− y‖2 , for all x, y ∈ Rd, (5.5)

where |||B|||op denotes the operator-norm of the matrix B.
We introduce two sets of assumptions for the target distribution:

(5A) We say that the target distribution Π? is (L,LH , s, ψe,M)-regular if the negative log
density f is L-smooth (3.5a) and has LH-Lipschitz Hessian (5.5), and there exists a
convex measurable set Ω such that the distribution Π?

Ω is ψe-isoperimetric (4.8), and
the following conditions hold:

Π?(Ω) ≥ 1− s and ‖∇f(x)‖2 ≤M, for all x ∈ Ω. (5.6)

(5B) We say that the target distribution Π? is (L,LH ,m)-strongly log-concave if the negative
log density is L-smooth (3.5a), m-strongly convex (3.5b), and LH-Hessian-Lipschitz (5.5).
Moreover, we use x? to denote the unique mode of Π? whenever f is strongly convex.

Assumption (5B) has appeared in several past papers on Langevin algorithms [61, 78, 51]
and the Lipschitz-Hessian condition (5.5) has been used in analyzing Langevin algorithms
with inaccurate gradients [62] as well as the unadjusted HMC algorithm [176]. It is worth not-
ing Assumption (5A) is strictly weaker than Assumption (5B), since it allows for distributions
that are not log-concave. In Appendix C.2 (see Lemma C.5), we show how Assumption (5B)
implies a version of Assumption (5A).

5.3.2 Mixing time bounds for HMC

We start with the mixing time bound for HMC applied to any target distribution Π? satisfy-
ing Assumption (5A). Let HMC-(K, η) denote the 1

2
-lazy Metropolized HMC (Algorithm 3)

with η step size and K leapfrog steps in each iteration. Let τHMC
2 (δ;µ0) denote the L2-mixing

time (2.5b) for this chain with the starting distribution µ0.

Theorem 5.1 (General bound on HMC mixing time). Consider an (L,LH , s, ψe,M)-
regular target Π? (Assumption (5A)) and a β-warm start µ0. Then for any fixed target
error δ ∈ (0, 1) such that δ2 ≥ 2βs, there exist choices of the parameters (K, η) such that
HMC-(K, η)chain with µ0 start satisfies

τHMC
2 (δ;µ0) ≤





c ·max

{
log β,

ψ2
e

K2η2
log

(
log β

δ

)}
if e = 1

2
(log-isoperimetric target),

c · ψ2
e

K2η2
log

(
β

δ

)
if e = 0 (isoperimetric target).
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See Section 5.5.2 for the proof, where we also provide explicit conditions on η and K in terms
of the other parameters (cf. equation (5.15b)).

Theorem 5.1 covers mixing time bounds for distributions that satisfy isoperimetric or
log-isoperimetric inequality provided that: (a) both the gradient and Hessian of the negative
log-density are Lipschitz; and (b) there is a convex set that contains a large mass (1− s) of
the distribution. The mixing time only depends on two quantities: the log-isoperimetric (or
isoperimetric) constant of the target distribution and the effective step-size K2η2. As shown
in the sequel, these conditions hold for log-concave distributions as well as certain pertur-
bations of them. If the distribution satisfies a log-isoperimetric inequality, then the mixing
time dependency on the initialization warmness parameter β is relatively weak O(log log β).
On the other hand, when only an isoperimetric inequality (but not log-isoperimetric) is avail-
able, the dependency is relatively larger O(log β). In our current analysis, we can establish
the δ-mixing time bounds up-to an error δ such that δ2 ≥ 2βs. If mixing time bounds up to
an arbitrary accuracy are desired, then the distribution needs to satisfy (5.6) for arbitrary
small s. For example, as we later show in Lemma C.5, arbitary small s can be imposed for
strongly log-concave densities (i.e., satisfying Assumption (5B)).

Let us now derive several corollaries of Theorem 5.1. We begin with non-asymptotic mix-
ing time bounds for HMC-(K, η) chain for strongly-log-concave target distributions. Then
we also discuss the corollaries for weakly log-concave target and non-log-concave target dis-
tributions. These results also provide a basis for comparison of our results with prior work.

5.3.3 Mixing time for strongly log-concave target

We now state an explicit mixing time bound of HMC for a strongly log-concave distribu-
tion. We consider an (L,LH ,m)-strongly log-concave distribution (assumption (5B)). We
use κ = L/m to denote the condition number of the distribution. Our result makes use of
the function a defined earlier in (3.6a) and reproduced here, and two choices of step-sizes

a(s) = 2 + 2 max

{(
log(1/s)

d

) 1
4

,

(
log(1/s)

d

) 1
2

}
, for s > 0, and (5.7a)

ηwarm =

√
1

cL · a( δ
2

2β
)d

7
6

, and ηfeas =

√
1

cL · a( δ2

2κd
)

min

{
1

dκ
1
2

,
1

d
2
3κ

5
6

,
1

d
1
2κ

3
2

}
. (5.7b)

With these definitions, we have the following:

Corollary 5.1 (HMC mixing for strongly-log-concave target). Consider an (L,LH ,m)-

strongly log-concave target distribution Π? (Assumption (5B)) such that L
2/3
H = O(L), and

any error tolerance δ ∈ (0, 1).
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(c) Suppose that κ = O(d
2
3 ) and β = O(exp(d

2
3 )). Then with any β-warm initial distribu-

tion µ0, hyper-parameters K = d
1
4 and η = ηwarm, the HMC-(K, η) chain satisfies

τHMC
2 (δ;µ0) ≤ c d

2
3 κ a

(
δ2

2β

)
log

(
log β

δ

)
. (5.8a)

(d) With the initial distribution µ? = N (x?, 1
L
Id), hyper-parameters K = κ

3
4 and η = ηfeas,

the HMC-(K, η) chain satisfies

τHMC
2 (δ;µ?) ≤ c a

(
δ2

2κd

)
max

{
d log κ,max

[
d, d

2
3κ

1
3 , d

1
2κ
]

log

(
d log κ

δ

)}
. (5.8b)

See Appendix C.2 for the proof, which proceeds by showing that an (L,LH ,m)-strongly log-
concave distribution is in fact an (L,LH , s, ψ1/2,Ms)-regular distribution for any s ∈ (0, 1).

Here ψ1/2 = 1/
√
m is fixed and the bound on the gradient Ms = a(s)

√
d/m depends on

the choice of s. In the same appendix, we also provide a more refined mixing time of the
HMC chain for a more general choice of hyper-parameters (see Corollary C.1). In fact, as

shown in the proof, the assumption L
2/3
H = O(L) is not necessary in order to control mix-

ing; rather, we adopted it above to simplify the statement of our bounds. Moreover, for a
refined and detailed discussion on the optimal choice for step size η, we refer the reader to ??.

Metropolized HMC vs Unadjusted HMC: There are many recent results on the 1-
Wasserstein distance mixing of unadjusted versions of HMC (for instance, see the papers [176,
153]). A direct comparisons of these different results is tricky for two reasons: (a) The 1-
Wasserstein distance and the total variation distance are not strictly comparable, and, (b)
the unadjusted HMC results always have a polynomial dependence on the error parameter
δ while our results for Metropolized HMC have a superior logarithmic dependence on δ. For
a thorough discussion, we refer the readers to Table C.4 in Appendix C.3.2. A key take
away from that discussion is that the unadjusted chains have better mixing time in terms
of scaling with d, if we fix δ or view it as independent of d. On the other hand, when such
chains are used to estimate certain higher-order moments, the polynomial dependence on δ
might become the bottleneck and Metropolis-adjusted chains would become the method of
choice. We now focus on a direct comparison of the guarantees for HMC with MALA.

MALA vs HMC—Warm start: Corollary 5.1 provides mixing time bounds for two
cases. The first result (5.8a) implies that given a warm start for a well-conditioned strongly
log-concave distribution, i.e., with constant β and κ � d, the δ-L2-mixing time2 of HMC
scales Õ(d

2
3 log(1/δ)). It is interesting to compare this guarantee with known bounds for

2Note that a(δ2) ≤ 6 for δ ≥ 2
ed/2

and thus we can treat a as a small constant for a large range of δ.

Otherwise, if δ needs to be extremely small, the results still hold with an extra log
1
2
(
1
δ

)
dependency.
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the MALA algorithm. However since each iteration of MALA uses only a single gradi-
ent evaluation, a fair comparison would require us to track the total number of gradient
evaluations required by the HMC-(K, η) chain to mix. For HMC to achieve accuracy δ,
the total number of gradient evaluations is given by K · τHMC

2 (δ;µ0), which in the above

setting, scales as Õ(d
11
12κ log(1/δ)). This rate was also summarized in Table 5.1. On the

other hand, Theorem 3.1 shows that the corresponding number of gradient evaluations for
MALA is Õ(dκ log(1/δ)). As a result, we conclude that the upper bound for HMC is d

1
12

better than the known upper bound for MALA with a warm start for a well-conditioned
strongly log-concave target distribution. We summarize these rates in Table 5.2. Note that
MRW is a zeroth order algorithm, which makes use of function evaluations but not gradient
information.

Sampling algorithm Mixing time #Gradient evaluations

MRW [Theorem 3.2] dκ2 · log 1
δ

NA

MALA [Theorem 3.1] dκ · log 1
δ

dκ · log 1
δ

HMC-(K, η)[Corollary 5.1] d
2
3κ · log 1

δ
d

11
12κ · log 1

δ

Table 5.2: Summary of the δ-TV mixing time τTV(δ;µ0) (2.5b)and the corresponding number
of gradient evaluations for MRW, MALA and HMC from a warm start with an (L,LH ,m)-

strongly-log-concave target. These statements hold under the assumption L
2/3
H = O(L),

κ = L
m
� d, and omit logarithmic terms in dimension.

MALA vs HMC—Feasible start: In the second result (5.8b), we cover the case when
a warm start is not available. In particular, we analyze the HMC chain with the feasible
initial distribution µ? = N (x?, 1

L
Id), which was also used in Corollary 4.2. Once again, it is

of interest to determine whether HMC takes fewer gradient steps when compared to MALA
to obtain an δ-accurate sample. We summarize the results in Table 5.3, with log factors
hidden, and note that HMC with K = κ3/4 is faster than MALA for as long as κ is not too
large. From the last column, we find that when κ � d

1
2 , HMC is faster than MALA by a

factor of κ
1
4 in terms of number of gradient evaluations.

Ill-conditioned target distributions: In order to keep the statement of Corollary 5.1
simple, we stated the mixing time bounds of HMC-(K, η)-chain only for a particular choice
of (K, η). In our analysis, this choice ensures that HMC is better than MALA only when
condition number κ is small. For Ill-conditioned distributions, i.e., when κ is large, finer
tuning of HMC-(K, η)-chain is required. For further discussion, we refer the reader to the
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Sampling algorithm Mixing time # Gradient Evaluations

τTV(δ;µ0) general κ κ� d
1
2

MRW [Corollary 4.2] dκ2 NA NA

MALA [Corollary 4.2] max
{
dκ, d

1
2κ

3
2

}
max

{
dκ, d

1
2κ

3
2

}
dκ

HMC-(K, η) [Corollary 5.1] max
{
d, d

2
3κ

1
3 , d

1
2κ
}

max
{
dκ

3
4 , d

2
3κ

13
12 , d

1
2κ

7
4

}
dκ

3
4

Table 5.3: Summary of the δ-TV mixing time and the corresponding number of gradi-
ent evaluations for MRW, MALA and HMC from the feasible start µ? = N (x?, 1

L
Id) for

an (L,LH ,m)-strongly-log-concave target. Here x? denotes the unique mode of the target

distribution. These statements hold uner the assumption LH = O(L
3
2 ), and hide the loga-

rithmic factors in δ, d and κ = L/m.

Appendices C.2 (see Table C.1), where we we show that HMC is strictly better than MALA
as long as κ ≤ d and as good as MALA when κ ≥ d.

5.3.4 Beyond strongly log-concave target distributions

We now discuss the mixing time bounds for Metropolized HMC when the target is not
strongly log-concave. In the next two sections, we discuss the case when the target is weakly
log-concave distribution or a perturbation of log-concave distribution, respectively.

5.3.4.1 Weakly log-concave target

The mixing rate in the weakly log-concave case differs depends on further structural assump-
tions on the density. We now consider two different scenarios where either a bound on fourth
moment is known or the covariance of the distribution is well-behaved:

(5C) The negative log density of the target distribution is L-smooth (3.5a) and has LH-
Lipschitz Hessian (5.5). Additionally for some point x?, its fourth moment satisfies the
bound ∫

Rd
‖x− x?‖4

2 π
?(x)dx ≤ d2ω2

L2
. (5.9)

(This condition is identical to the condition (3.12).)

(5D) The negative log density of the target distribution is L-smooth (3.5a) and has LH-
Lipschitz Hessian (5.5). Additionally, its covariance matrix satisfies

|||
∫

x∈Rd
(x− E[x])(x− E[x])>π?(x)dx|||op ≤ 1, (5.10)
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and the norm of the gradient of the negative log density f is bounded by a constant
in the ball B

(
E [x] , log

(
1
s

)
d3/4

)
for small enough s ≥ s0.

When the distribution satisfies assumption (5C) we consider HMC chain with slightly
modified target and assume that the µ0 is β-warm with respect to this modified target
distribution (see the discussion after Corollary 5.2 for details). Moreover, in order to simplify

the bounds in the next result, we assume that L
2/3
H = O(L). (A more general result without

this condition can be derived in a similar fashion.)

Corollary 5.2 (HMC mixing for weakly log-concave). Let µ0 be a β-warm start,

δ ∈ (0, 1) be fixed and consider 1
2
-lazy HMC chain with leapfrog steps K = d

1
2 and step size

η2 = 1

cLd
4
3

.

(a) If the distribution satisfies assumption (5C), then we have

τHMC
TV (δ;µ0) ≤ c ·max

{
log β,

d
4
3ω

δ
log

(
log β

δ

)}
. (5.11)

(b) If the distribution satisfies assumption (5D) such that s0 ≤ δ2

2β
, then we have

τHMC
2 (δ;µ0) ≤ c · d 5

6 log

(
log β

δ

)
. (5.12)

As an immediate consequence, we obtain that the number of gradient evaluations in the
two cases is bounded as

B1 = max

{
d

1
2 log β,

d
11
6 ω

δ
log

(
log β

δ

)}
and B2 = d

4
3 log

(
log β

δ

)
.

We remark that the bound B1 for HMC chain improves upon the bound for number of
gradient evaluations required by MALA to mix in a similar set-up. In the previous chapter,
we showed in Corollary 3.2 that under assumption (5C) (without the Lipschitz-Hessian
condition), MALA takes O(d

2ω
δ

log β
δ
) steps to mix. Since each step of MALA uses one

gradient evaluation, our result shows that HMC takes O(d
1
6 ) fewer gradient evaluations. On

the other hand, when the target satisfies assumption (5D), Mangoubi et al. [?] showed that

MALA takes O(d
3
2 log β

δ
) steps.3 Thus even for this case, our result shows that HMC takes

O(d
1
6 ) fewer gradient evaluations when compared to MALA.

3Note that the authors of the paper [?] assume an infinity-norm third order smoothness which is a
stronger assumption than the LH -Lipschitz Hessian assumption that we made here. Under our setting, the
infinity norm third order smoothness is upper bounded by

√
dLH and plugging in this bound changes their

rate of MALA from d7/6 to d3/2.
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Proof sketch with Assumption (5C): When the target distribution has a bounded
fourth moment (assumption (5C)), proceeding as in the discussion in Section 3.3.4, we can

approximate the target distribution Π? by a strongly log-concave distribution Π̃ with density
given by

π̃(x) =
1∫

Rd e
−f̃(y)dy

e−f̃(x) where f̃(x) = f(x) +
λ

2
‖x− x?‖2

2 .

Setting λ := 2Lδ
dω

yields that f̃ is λ/2-strongly convex, L + λ/2 smooth and LH-Hessian

Lipschitz and that the TV distance dTV

(
Π?, Π̃

)
≤ δ/2 is small. The new condition number

becomes κ̃ := 1 + dω/δ. The new logarithmic-isoperimetric constant is ψ̃1/2 =
√

2/λ =
(dω/(Lδ))1/2 (Lemma C.5). Thus, in order to obtain an δ-accurate sample with respect to

Π?, it is sufficient to run HMC chain on the new strongly log-concave distribution Π̃ upto
δ/2-accuracy. Invoking Corollary 5.1 for Π̃ and doing some algebra yields the bound (5.11).

Proof sketch with Assumption (5D): Lee et al. [155] showed that when the covariance
of Π? has a bounded operator norm, it satisfies isoperimetry inequality (4.8) with ψ0 ≤
O(d

1
4 ). Moreover, using the Lipschitz concentration [101], we have

Px∼Π?

(
‖x− EΠ? [x]‖2 ≥ tψ0 ·

√
d
)
≤ e−ct,

which implies that for Ωs = B
(
EΠ? [x] , 1

c
log
(

1
s

)
ψ0 ·
√
d
)

, we have Π?(Ωs) ≥ 1 − s. In

addition, assuming that the gradient is bounded in this ball Ωs for s = δ2

2β
enables us to

invoke Theorem 5.1 and obtain the bound (5.12) after plugging in the values of ψ0,K and
η.

5.3.4.2 Non-log-concave target

We now briefly discuss how our mixing time bounds in Theorem 5.1 can be applied for
distributions whose negative log density may be non-convex. Let Π? be a log-concave distri-
bution with negative log density as f and isoperimetric constant ψ0. Suppose that the target
distribution Π̃? is a perturbation of Π? with target density π̃? such that π̃?(x) ∝ e−f(x)−ξ(x),
where the perturbation ξ : Rd → R is uniformly lower bounded by some constant −b with
b ≥ 0. Then it can be shown that the distribution Π̃? satisfies isoperimetric inequality (4.8)

with a constant ψ̃0 ≥ e−2bψ0. For example, such type of a non-log-concave distribution
distribution arises when the target distribution is that of a Gaussian mixture model with
several components where all the means of different components are close to each other (see
e.g. the paper [173]). If a bound on the gradient is also known, Theorem 5.1 can be applied
to obtain a suitable mixing time bound. However deriving explicit bounds in such settings
is not our main focus, and thereby we omit the details here.
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5.4 Numerical experiments

In this section, we numerically compare HMC with MALA and MRW to verify that our
suggested step-size and leapfrog steps lead to faster convergence for the HMC algorithm.
We use the step-size choices for MALA and MRW given in Table 3.3, whereas the choices for
step-size and leapfrog steps for HMC are taken from Corollary 5.1 in this chapter. When the
Hessian-Lipschitz constant LH is small, our theoretical results suggest that HMC can be run
with much larger step-size and much larger number of leapfrog steps (Appendix C.3.1.1).
Since our experiments make use of multivariate Gaussian target distribution, the Hessian-
Lipschitz constant LH is always zero. Consequently we also perform experiments with a
more aggressive choice of parameters, i.e., larger step-size and number of leapfrog steps. We
denote this choice by HMCagg.

In this simulation, we check the dimension d dependency and condition number κ depen-
dency in the multivariate Gaussian case under our step-size choices. We consider sampling
from the multivariate Gaussian distribution with density

Π?(x) ∝ e−
1
2
x>Σ−1x, (5.13)

for some covariance matrix Σ ∈ Rd×d. The log density (disregarding constants) and its
deriviatives are given by

f(x) =
1

2
x>Σ−1x, ∇f(x) = Σ−1x, and ∇2f(x) = Σ−1.

Consequently, the function f is strongly convex with parameter m = 1/λmax(Σ) and smooth
with parameter L = 1/λmin(Σ). Since Lp-divergence can not be measure with finitely many
samples, we use the error in quantiles along different directions for convergence diagnostics.
Using the exact quantile information for each direction for Gaussian, we measure the error
in the 75% quantile of the relative sample distribution and the true distribution in the least
favorable direction, i.e., along the eigenvector of Σ corresponding to the eigenvalue λmax(Σ).
The quantile mixing time is defined as the smallest iteration when this relative error falls
below a constant δ = 0.04. We use µ0 = N (0,L−1Id) as the initial distribution. To make
the comparison with MRW and MALA fair, we compare the number of total function and
gradient evaluations instead of number of iterations. For HMC, the number of gradient
evaluations is K times the number of outer-loop iterations.

For every case of simulation, the parameters for HMC-(K, η) are chosen according to the
warm start case in Corollary 5.1 with K = 4 · d1/4, and for MRW and MALA are chosen
according to Table 3.3. As alluded to earlier, we also run the HMC chain a more aggressive
choice of parameters, and denote this chain by HMCagg. For HMCagg, both the step-size
and leapfrog steps are larger (Appendix C.3.1.1): K = 4 ·d1/8κ1/4 where we take into account
that LH is zero for Gaussian distribution. We simulate 100 independent runs of the four
chains, MRW, MALA, HMC, HMCagg, and for each chain at every iteration we compute the
quantile error across the 100 samples from 100 independent runs of that chain. We compute
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the minimum number of total function and gradient evaluations required for the relative
quantile error to fall below δ = 0.04. We repeat this computation 10 times and report the
averaged number of total function and gradient evaluations in Figure 5.1. To examine the
scaling of the number of evaluations with the dimension d, we vary d ∈ {2, 4, . . . , 128}. For
each chain, we also fit a least squares line for the number of total function and gradient
evaluations with respect to dimension d on the log-log scale, and report the slope in the
figure. Note that a slope of α would denote that the number of evaluations scales as dα.

(a) Dimension dependency for fixed κ: First, we consider the case of fixed condi-
tion number. We fix κ = 4 while we vary the dimensionality d of the target distribution
is varied over {2, 4, . . . , 128}. The Hessian Σ in the multivariate Gaussian distribution is
chosen to be diagonal and the square roots of its eigenvalues are linearly spaced between 1.0
to 2.0. Figure 5.1(a) shows the dependency of the number of total function and gradient
evaluations as a function of dimension d for the four Markov chains on the log-log scale.
The least-squares fits of the slopes for HMC, HMCagg, MALA and MRW are 0.80(±0.12),
0.58(±0.15), 0.93(±0.13) and 0.96(±0.10), respectively, where standard errors of the regres-
sion coefficient is reported in the parentheses. These numbers indicate close correspondence
to the theoretical slopes (reported in Table 5.2 and Appendix C.3.1.1) are 0.92, 0.63, 1.0, 1.0
respectively.

(b) Dimension dependency for κ = d2/3: Next, we consider target distributions such
that their condition number varies with d as κ = d2/3, where d is varied from 2 to 128.
To ensure such a scaling for κ, we choose the Hessian Σ for the multivariate Gaussian
distribution to be diagonal and set the square roots of its eigenvalues linearly spaced between
1.0 to d1/3. Figure 5.1(b) shows the dependency of the number of total function and gradient
evaluations as a function of dimension d for the four random walks on the log-log scale. The
least squares fits yield the slopes as 1.60(±0.09), 1.34(±0.17), 1.64(±0.11) and 2.25(±0.08)
for HMC, HMCagg, MALA and MRW, respectively, where standard errors of the regression
coefficient are reported in the parentheses. Recall that the theoretical guarantees for HMC
(Table C.2), HMCagg (Table C.3), MALA and MRW (Table 5.2) yield that these exponent
should be close to 1.58, 1.46, 1.67 and 2.33 respectively. Once again, we observe a good
agreement of the numerical results with that of our theoretical results.

Remark: We would like to caution that the aggressive parameter choices for HMCagg
are well-informed only when the Hessian-Lipschitz constant LH is small—which indeed is
the case for the Gaussian target distributions considered above. When general log-concave
distributions are considered, one may use the more general choices recommended in Corol-
lary C.1. See Appendix C.3 for an in-depth discussion on different scenarios and the optimal
parameter choices derived from our theory.
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Figure 5.1: Average number of total function and gradient evaluations as a function of
dimension for four random walks on multivariate Gaussian density (5.13) where the covari-
ance has a condition number κ that is (a) constant 4 and (b) scales with dimension d. With
suggested step-size and leapfrog steps in Corollary 5.1, the number of total function and
gradient evaluations of HMC has a smaller dimension dependency than that of MALA or
MRW. Since the target distributon is Gaussian and the Hessian-Lipschitz constant LH is
zero, larger step-size and larger number of leapfrog steps can be chosen according to Ap-
pendix C.3.1.1. The plots does show that HMCagg with larger step-size and larger number
of leapfrog steps uses smaller number of total function and gradient evaluations to achieve
the same quantile mixing.

5.5 Proofs

We establish Theorem 5.1 using conductance profile based bounds using Propositions 4.1
and 4.2. However, to lower bound the conductance profile as in Proposition 4.2, we need
to derive bound on the overlap between the transition distributions of HMC. We show that
by (i) bounding the overlap between proposal distributions of HMC at two nearby points
are close, and (ii) showing that the Metropolis-Hastings step only modifies the proposal
distribution by a relatively small amount. This control is provided by Lemma 5.1. Putting
the pieces together yields the proof of Theorem 5.1 in Section 5.5.2. However, proving
Lemma 5.1 requires fairly technical analysis and is deferred to Appendix C.

5.5.1 Overlap bounds for HMC

In this subsection, we derive two important bounds for the Metropolized HMC chain: (1)
first, we quantify the overlap between proposal distributions of the chain for nearby points,
and, (2) second, we show that the distortion in the proposal distribution introduced by the
Metropolis-Hastings accept-reject step can be controlled if an appropriate step-size is chosen.
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Putting the two pieces together enables us to invoke Proposition 4.2 to prove Theorem 5.1.
In order to do so, we begin with some notation. Let T denote the transition operator of

the HMC chain with leapfrog integrator taking step-size η and number of leapfrog updates
K. Let Px denote the proposal distribution at x ∈ X for the chain before the accept-reject
step and the lazy step. Let T before-lazy

x denote the corresponding transition distribution after
the proposal and the accept-reject step, before the lazy step. By definition, we have

Tx(A) = ζδx(A) + (1− ζ)T before-lazy
x (A) for any measurable set A ∈ B(X ). (5.14)

Our proofs make use of the Euclidean ball Rs defined in equation (5.18). At a high level,
the HMC chain has bounded gradient inside the ball Rs for a suitable choice of s, and the
gradient of the log-density gets too large outside such a ball making the chain unstable in
that region. However, since the target distribution has low mass in that region, the chain’s
visit to the region outside the ball is a rare event and thus we can focus on the chain’s
behavior inside the ball to analyze its mixing time.

In the next lemma, we state the overlap bounds for the transition distributions of the
HMC chain. For a fixed univeral constant c, we require

K2η2 ≤ 1
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d
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2L, d

2
3L
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3
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Lemma 5.1. Consider a (L,LH , s, ψe,M)-regular target distribution (cf. Assumption (5A))
with Ω the convex measurable set satisfying (5.6). Then with the parameters (K, η) satisfying
Kη ≤ 1

4L
and condition (5.15a), the HMC-(K, η) chain satisfies

sup
‖q0−q̃0‖2≤

Kη
4

dTV

(
Pq0 ,Pq̃0

)
≤ 1

2
. (5.16a)

If, in addition, condition (5.15b) holds, then we have

sup
x∈Ω

dTV

(
Px, T before-lazy

x

)
≤ 1

8
. (5.16b)

See Appendix C.1 for the proof.
Lemma 5.1 is crucial to the analysis of HMC as it enables us to apply the conductance

profile based bounds discussed in Section ??. It reveals two important properties of the
Metropolized HMC. First, from equation (5.16a), we see that proposal distributions of HMC
at two different points are close if the two points are close. This is proved by controlling
the KL-divergence of the two proposal distributions of HMC via change of variable formula.
Second, equation (5.16b) shows that the accept-reject step of HMC is well behaved inside Ω
provided the gradient is bounded by M.
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5.5.2 Proof of Theorem 5.1

We are now equipped to prove our main theorem. In order to prove Theorem 5.1, we
begin by using Proposition 4.2 and Lemma 5.1 to derive an explicit bound for on the HMC
conductance profile. Given the assumptions of Theorem 5.1, conditions (5.15a) and (5.15b)
hold, enabling us to invoke Lemma 5.1 in the proof.

Define the function ΨΩ : [0, 1] 7→ R+ as

ΨΩ(v) =





1

32
·min

{
1,

Kη

64ψe

loge

(
1

v

)}
if v ∈

[
0, 1−s

2

]
.

Kη

2048ψe

, if v ∈
(

1−s
2
, 1
]
.

(5.17)

This function acts as a lower bound on the truncated conductance profile. Define the Eu-
clidean ball

Rs = B

(
x?, a(s)

√
d

m

)
, (5.18)

and consider a pair (x, y) ∈ Rs such that ‖x− y‖2 ≤ 1
4
Kη. Invoking the decomposition (5.14)

and applying triangle inequality for ζ-lazy HMC, we have

dTV

(
Tx, Ty

)
≤ ζ + (1− ζ) dTV

(
T before-lazy
x , T before-lazy

y

)

≤ ζ + (1− ζ)
(
dTV

(
T before-lazy
x ,Py

)
+ dTV

(
Px,Py

)
+ dTV

(
Px, T before-lazy

y

))

(i)

≤ ζ + (1− ζ)

(
1

4
+

1

2
+

1

4

)

= 1− 1− ζ
4

,

where step (i) follows from the bounds (5.16a) and (5.16b) from Lemma 5.1. For ζ = 1
2
,

substituting ρ = 1
8
, ∆ = 1

4
Kη and the convex set Ω = Rs into Proposition 4.2, we obtain

that

ΦΩ(v) ≥ 1

32
·min

{
1,

Kη

64ψe

loge

(
1 +

1

v

)}
, for v ∈

[
0,

1− s
2

]
.

Here e equals to 1
2

or 0, depending on the assumption (4.8). By the definition of the truncated

conductance profile (4.3), we have that Φ̃Ω(v) ≥ Kη
2048ψe

for v ∈
[

1−s
2
, 1
]
. As a consequence,

ΨΩ is effectively a lower bound on the truncated conductance profile. Note that the assump-
tion (5A) ensures the existence of Ω such that Π?(Ω) ≥ 1 − s for s = δ2

2β2 . Putting the
pieces together and applying Proposition 4.1 with the convex set Ω concludes the proof of
the theorem.
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5.6 Conclusion and future directions

In this chapter, we derived non-asymptotic bounds on mixing time of Metropolized Hamil-
tonian Monte Carlo for log-concave distributions. By choosing appropriate step-size and
number of leapfrog steps, we obtain mixing-time bounds for HMC that are smaller than
the mixing-time bounds for MALA from Chapter 3. This improvement can be seen as the
benefit of using multi-step gradients in HMC. An interesting open problem is to determine
whether our HMC mixing-time bounds are tight for log-concave sampling under the assump-
tions made in this chapter. Even though, we focused on the problem of sampling only from
strongly and weakly log-concave distribution, our Theorem 5.1 can be applied to general
distributions including nearly log-concave distributions as mentioned in Section 5.3.4.2. It
would be interesting to determine the explicit expressions for mixing-time of HMC for more
general target distributions. Finally, defining a analysis of HMC with stochastic gradients
for large data settings can be another interesting future direction.
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Chapter 6

Novel Algorithms for Constrained
Sampling on Convex Sets

So far we discussed the problems of unconstrained sampling, meaning that the target dis-
tribution was supported on Rd. In this chapter, we turn our attention to sampling under
constraints, or, equivalently, dealing with distributions supported on a proper subset of Rd.
In particular, we study here a certain class of MCMC algorithms designed for the problem
of drawing samples from the uniform distribution over a polytope. We consider polytopes
specified as

K := {x ∈ Rd | Ax ≤ b}, (6.1)

parameterized by the known matrix-vector pair (A, b) ∈ Rn×d × Rn, where A ∈ Rn×d with
n ≥ d is assumed to be a full-rank matrix. The target distribution Π? is defined as the
uniform distribution over K:

π?(x) =
1

vol(K)
1(x ∈ K), (6.2)

where vol(K) denotes the volume of the set K. Life previous chapters, we are interested in
a thorough understanding ofnon-asymptotic mixing time for obtaining δ-accurate samples
from the target Π?, and for this set-up we are specially interested in the scaling of the mixing
time bounds as a function of the pair (n, d). We start with a basic introduction in Section 6.1,
before summarizing our contributions in Section 6.1.1, and the organization of the remainder
of the chapter in Section 6.1.2.

6.1 Introduction

The problem of sampling uniformly from a polytope is important in various applications and
methodologies. For instance, it underlies various methods for computing randomized approx-
imations to polytope volumes. There is a long line of work on sampling methods being used
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to obtain randomized approximations to the volumes of polytopes and other convex bodies
(e.g., [166, 149, 16, 163, 57]). Polytope sampling is also useful in developing fast randomized
algorithms for convex optimization [17] and sampling contingency tables [139], as well as in
randomized methods for approximately solving mixed integer convex programs [120, 121].
Sampling from polytopes is also related to simlations of the hard-disk model in statistical
physics [140], as well as to simulations of error events for linear programming in communi-
cation [88].

Many MCMC algorithms have been studied for sampling from polytopes, and more gen-
erally, from convex bodies. Some early examples include the Ball Walk [166] and the Hit-
and-Run algorithm [16, 163], which apply to sampling from general convex bodies. Although
these algorithms can be applied to polytopes, they do not exploit any special structure of
the problem. In contrast, the Dikin walk introduced by Kannan and Narayanan [139] is
specialized to polytopes, and thus can achieve faster convergence rates than generic algo-
rithms. The Dikin walk was the first sampling algorithm based on a connection to interior
point methods for solving linear programs. More specifically, as we discuss in detail below, it
constructs proposal distributions based on the standard logarithmic barrier for a polytope.
In a later paper, Narayanan [187] extended the Dikin walk to general convex sets equipped
with self-concordant barriers.

For a polytope defined by n constraints, Kannan and Narayanan [139] proved an upper
bound on the mixing time of the Dikin walk that scales linearly with n. In many applications,
the number of constraints n can be much larger than the number of variables d. It is also
possible that for a given problem, various constraints are redundant or repeated. For such
problems, linear dependence on the number of constraints is not desirable. Consequently, it
is natural to ask if it is possible to design a sampling algorithm whose mixing time scales
in a sub-linear manner with the number of constraints. Our main contribution is to investi-
gate and answer this question in affirmative—in particular, by designing and analyzing two
sampling algorithms with provably faster convergence rates than the the Dikin walk while
retaining its advantages over the ball walk and the hit-and-run methods.

6.1.1 Our contributions

We introduce and analyze a new random walk, which we refer to as the Vaidya walk since
it is based on the volumetric-logarithmic barrier introduced by [237]. We show that for
a polytope in Rd defined by n-constraints, the Vaidya walk mixes in O

(
n1/2d3/2

)
steps,

whereas the Dikin walk [139] has mixing time bounded as O (nd). So the Vaidya walk is
better in the regime n � d. We also propose the John walk, which is based on the John
ellipsoidal algorithm in optimization. We show that the John walk has a mixing time of
O
(
d2.5 · log4(n/d)

)
and conjecture that a variant of it could achieve O (d2 · poly-log(n/d))

mixing time. We show that when compared to the Dikin walk, the per-iteration computa-
tional complexities of the Vaidya walk and the John walk are within a constant factor and
a poly-logarithmic in n/d factor respectively. Thus, in the regime n� d, the overall upper
bound on the complexity of generating an approximately uniform sample follows the order
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Dikin walk � Vaidya walk � John walk.

6.1.2 Organization

The remainder of the chapter is organized as follows. In Section 6.2, we discuss many
polynomial-time random walks on convex sets and polytopes, and motivate the starting
point for the new random walks. We introduce the new random walks in Section 6.3, and
then provide the main mixing time results in Section 6.4 (with an overview of results in
Table 3.1). We discuss the computational complexity of the different random walks and
demonstrate the contrast between the random walks for several illustrative examples in
Section 6.5. We present the proof of the mixing time for the Vaidya walk in Section 6.6 and
defer the analysis of the John walk to the appendix. We conclude with possible extensions
of our work in Section 6.7.

6.2 Related Work

There are various algorithms to sample a vector from the uniform distribution over K, includ-
ing the ball walk [166] and hit-and-run algorithms [163]. To be clear, these two algorithms
apply to the more general problem of sampling from a convex set; when applied to the
polytope K, Table 6.1 shows their complexity relative to the Vaidya walk analyzed in this
chapter. Most closely related to our chapter is the Dikin walk proposed by Kannan and
Narayanan [139], and a more general random walk on a Riemannian manifold studied by
Narayanan [187]. Both of these random walks, as with the Vaidya and John walks, can be
viewed as randomized versions of the interior point methods used to solve linear programs,
and more generally convex programs equipped with suitable barrier functions.

In order to motivate the form of the Vaidya and John walks proposed in this chapter, we
begin by discussing the ball walk, and then the Dikin walk.1

Ball walk: The ball walk of [166] is simple to describe: when at a point x ∈ K, it draws a
new point u from a Euclidean ball of radius r > 0 centered at x. Here the radius r is a step
size parameter in the algorithm. If the proposed point u belongs to the polytope K, then the
walk moves to u; otherwise, the walk stays at x. On the one hand, unlike the walks analyzed
in this chapter, the ball walk applies to any convex set, but on the other, its mixing time
depends on the condition number γK of the set K, given by

γK = inf
Rin,Rout>0

{Rout

Rin

| B(x,Rin) ⊆ K ⊆ B(y,Rout) for some x, y ∈ K
}
. (6.3)

Mixing time of the ball walk has been improved greatly since it was introduced [138, 136, 158].
Nonetheless, as shown in Table 6.1, the mixing time of the ball walk gets slower when the

1For discussion of hit-and-run, please refer to the full paper [47].
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condition of the set is large; for instance, it scales2 as d6 for a set with condition number
γK = d2. One approach to tackle bad conditioning is to use rounding as a pre-processing step,
where the set is rounded to bring it in a near-isotropic position, i.e., reduce the condition γK to
near-constant before sampling from it. Nonetheless, these algorithms are themselves based on
several rounds of sampling algorithms and the current best algorithm by [170] puts a convex

body into approximately isotropic position, i.e., Õ(
√
d) rounding with a running time of

Õ(d4) where we have omitted the dependence on log-factors. If one has more information
about the structure of the convex set (and not just oracle access as required by the ball
walk), one can potentially exploit it to design fast sampling algorithms which are unaffected
by the conditioning of the set thereby reducing the need of the (expensive) pre-processing
step. One such algorithm is the Dikin walk for polytopes which we describe next.

Dikin walk: The Dikin walk [139] is similar in spirit, except that it proposes a point drawn
uniformly from a state-dependent ellipsoid known as the Dikin ellipsoid [71, 192]. It then
applies an accept-reject step to adjust for the difference in the volumes of these ellipsoids at
different states. The state-dependent choice of the ellipsoid allows the Dikin walk to adapt
to the boundary structure. A key property of the Dikin ellipsoid of unit radius—in contrast
to the Euclidean ball that underlies the ball walk—is that it is always contained within K, as
is known from classic results on interior point methods [192]. Furthermore, the Dikin walk
is affine invariant, meaning that its behavior does not change under linear transformations
of the problem. As a consequence, the Dikin mixing time does not depend on the condition
number γK. In a variant of this random walk [187], uniform proposals in the ellipsoid are
replaced by Gaussian proposals with covariance specified by the ellipsoid, and it is shown
that with high probability, the proposal falls within the polytope.

The Dikin walk is closely related to the interior point methods for solving linear programs.
In order to understand the Vaidya and John walks, it is useful to understand this connection
in more detail. Suppose that our goal is to optimize a convex function over the polytope K. A
barrier method is based on converting this constrained optimization problem to a sequence of
unconstrained ones, in particular by using a barrier to enforce the linear constraints defining
the polytope. Letting a>i denote the i-th row vector of matrix A, the logarithmic-barrier for
the polytope K given by the function

F(x) := −
n∑

i=1

log(bi − aTi x). (6.4)

For each i ∈ [n], we define the scalar sx,i := (bi − aTi x), and we refer to the vector
sx := (sx,1, . . . , sx,n)> as the slackness at x.

2Although, very recently [158] improved the mixing time of the ball walk for isotropic sets which have
γK = O(

√
d) improved from O

(
d3
)

to O
(
d2.5

)
.
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Each step of an interior point algorithm [26] involves (approximately) solving a linear
system involving the Hessian of the barrier function, which is given by

∇2F(x) :=
n∑

i=1

aia
>
i

s2
x,i

. (6.5)

In the Dikin walk [139], given a current iterate x, the algorithm chooses a point uniformly
at random from the ellipsoid

{u ∈ Rd | (u− x)>Dx(u− x) ≤ R}, (6.6)

where Dx := ∇2F(x) is the Hessian of the log barrier function, and R > 0 is a user-defined
radius. In an alternative form of the Dikin walk [224], the proposal vector u ∈ Rd is drawn
randomly from a Gaussian centered at x, and with covariance equal to a scaled copy of
(Dx)

−1. Note that in contrast to the ball walk, the proposal distribution now depends on
the current state.

6.3 Two New Random Walks

Let us now define the two walks introduced in this chapter.

6.3.1 Vaidya walk

For the Vaidya walk analyzed in this chapter, we generate proposals from the ellipsoids
defined, for each x ∈ int (K), by the positive definite matrix

Vx :=
n∑

i=1

(σx,i + βV)
aia
>
i

s2
x,i

, where (6.7a)

βV := d/n and σx :=

(
a>1 (∇2Fx)−1a1

s2
x,1

, . . . ,
a>n (∇2Fx)−1an

s2
x,n

)>
. (6.7b)

The entries of the the vector σx are known as the leverage scores assciated with the ma-
trix ∇2Fx (6.5), and are commonly used to measure the importance of rows in a linear
system [174]. The matrix Vx is related to the Hessian of the function x 7→ Vx given by

Vx := log det∇2Fx + βVFx. (6.8)

This particular combination of the volumetric barrier and the logarithmic barrier was intro-
duced by Vaidya et al. [237, 238] in the context of interior point methods, hence our name
for the resulting random walk.
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More concretely, the Vaidya walk with radius parameter r > 0, denoted by VW(r) for
short, is defined by a Gaussian proposal distribution: given a current state x ∈ int (K), it pro-

poses a new point by sampling from the multivariate Gaussian distribution N
(
x, r2
√
nd
Vx
−1
)

.

In analytic terms, the proposal density at x is given by

pV
x (z) := pVaidya(x, z) =

√
detVx

(√
nd

2πr2

)d/2

exp

(
−
√
nd

2r2
(z − x)>Vx(z − x)

)
. (6.9)

The proposal step is then followed by an accept-reject step (equation 2.7). Thus, the overall
transition distribution for the walk at state x is defined by a density given by

qVaidya(x, z) =

{
min

{
pV
x (z), pV

z (x)
}
, z ∈ K and z 6= x,

0, z /∈ K,

and a probability mass at x, given by 1 −
∫
z∈Kmin {px(z), pz(x)} dz. In Algorithm 4, we

summarize the different steps of the Vaidya walk.

Algorithm 4: Vaidya Walk with parameter r (VW(r))

Input: Parameter r and x0 ∈ int (K)
Output: Sequence x1, x2, . . .

1 for i = 0, 1, . . . do
2 Ci ∼ Fair Coin
3 if Ci = Heads then xi+1 ← xi // lazy step
4 else
5 ξi+1 ∼ N (0, Id)
6 zi+1 = xi +

r

(nd)1/4
V −1/2xi

ξi+1 // propose a new state

7 if zi+1 /∈ K then xi+1 ← xi // reject an infeasible proposal
8 else

9 αi+1 = min

{
1,
pVaidya(zi+1, xi)

pVaidya(xi, zi+1)

}

10 Ui+1 ∼ U [0, 1]
11 if Ui+1 ≥ αi+1 then xi+1 ← xi // reject even a valid proposal
12 else xi+1 ← zi+1 // accept the proposal

13 end

14 end

15 end

6.3.2 John walk

Finally, let us describe the John walk. For any vector w ∈ Rn, let W := diag(w) denote
the diagonal matrix with Wii = wi for each i ∈ [n]. Let Sx = diag(sx) denote the slackness
matrix at x. It is easy to see that Sx is positive semidefinite for all x ∈ K, and strictly
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positive definite for all x ∈ int (K). The (scaled) inverse covariance matrix underlying the
John walk is given by

Jx :=
n∑

i=1

ζx,i
aia
>
i

s2
x,i

, (6.10)

where for each x ∈ int (K), the weight vector ζx ∈ Rn is obtained by solving the convex
program

ζx := arg min
w∈Rn

{
n∑

i=1

wi −
1

αJ

log det(A>S−1
x WαJS−1

x A)− βJ

n∑

i=1

logwi

}
, (6.11)

with βJ := d/2n and αJ := 1 − 1/ log2(1/βJ). Lee et al. [152] proposed the convex pro-
gram (6.11) associated with the John weights ζx, with the aim of searching for the best
member of a family of volumetric barrier functions. They analyzed the use of the John
weights in the context of speeding up interior point methods for solving linear programs;
here we consider them for improving the mixing time of a sampling algorithm. Note that
the roots of the optimization problem (6.11) lie in the electric network inverse problem [231],
in which weights are optimized so as to obtain an electric network with minimum effective
resistance.

More precisely, the John walk is similar to the Vaidya walk except that the proposals at

state x ∈ int (K) are generated from the multivariate Gaussian distributionN
(
x, r2

d3/2·log4
2(2n/d)

Jx
−1
)

,

where the matrix Jx is defined by equation (6.10), and r > 0 is a constant. The proposal step
is then followed by an accept-reject step (equation 2.7). We use TJohn to denote the resulting
transition operator for the John walk. See Algorithm 5 for an overview of the algorithm,
where we also use the notation

pJohn(x, z) =
√

det Jx

(
d3/2 · log4

2(2n/d)

2πr2

)d/2
exp

(
−d

3/2 · log4
2(2n/d)

2r2
(z − x)>Jx(z − x)

)
.

6.3.3 Mixing time comparisons of all walks

Table 6.1 provides a summary of the mixing time bounds and per step complexity and the
effective per sample complexity for various random walks, including the Vaidya and John
walks analyzed in this chapter. In addition to the Ball Walk, Hit-and-Run, Dikin, Vaidya
and John walks, we also show scalings for the recently introduced Riemannian Hamiltonian
Monte Carlo (RHMC) on polytopes by [154] and the John’s walk based on exact John
ellipsoids studied by [103]. The details of per iteration cost for the new random walks is
discussed in Section 6.5.1. We now compare and contrast the complexities of these random
walks.

For the Dikin, Vaidya and John walks, the transition probability from a point x to y does
not change under an affine transformation B, i.e., Θ(x, dy) = Θ(Bx,Bdy) where Θ denotes
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Algorithm 5: John Walk with parameter r (JWr)

Input: Parameter r and x0 ∈ int (K)
Output: Sequence x1, x2, . . .

1 for i = 0, 1, . . . do
2 Ci ∼ Fair Coin
3 if Ci = Heads then xi+1 ← xi // lazy step
4 else
5 ξi+1 ∼ N (0, Id)
6 zi+1 = xi +

r

d3/4 · log2
2(2n/d)

J−1/2xi
ξi+1 // propose a new state

7 if zi+1 /∈ K then xi+1 ← xi // reject an infeasible proposal
8 else

9 αi+1 = min

{
1,
pJohn(zi+1, xi)

pJohn(xi, zi+1)

}

10 Ui+1 ∼ U [0, 1]
11 if Ui+1 ≥ αi+1 then xi+1 ← xi // reject even a valid proposal
12 else xi+1 ← zi+1 // accept the proposal

13 end

14 end

15 end

the transition kernel (2.2) for the random walk. Consequently, the mixing time bounds for
these random walks have no dependence on the condition number γK of the set K. Such
an affine invariance comes in handy for many polytopes for which the value of γK scales
with dimension d. We can see from Table 6.1, that compared to ball walk and hit-and-run,
Vaidya walk mixes significantly faster if the warmness parameter β (2.6) is large or n� dγ4

K.

The condition number γK of polytopes with polynomially many faces can not be O(d
1
2
−ε)

for any ε > 0 but can be arbitrarily larger, even exponential in dimension d [139]. For such
polytopes, Vaidya walk mixes faster as long as n � d3 (and even for larger n when γK is
large). It takes O(

√
n/d) fewer steps compared to Dikin walk and thus provides a practical

speed up over all range of d.
From a warm start, the geodesic random walk of Lee and Vempala [154] has O(nd3/4)

mixing time, and thus mixes faster (up to constants) compared than the Vaidya walk (re-
spectively the John walk) when the number of constraints n is is bounded as n � d3/2

(respectively n � d7/4). For larger numbers of constraints, the Vaidya and John walks ex-
hibit faster mixing. More generally, it is clear that the rate of John walk has almost the best
order across all the walks for reasonably large values of n� d2.

From a warm start, the Riemannian Hamiltonian Monte Carlo on polytopes introduced
by [154] has O

(
nd2/3

)
mixing time, and thus mixes faster (up to constants) compared than

the Vaidya walk (respectively the John walk) when the number of constraints n is is bounded
as n � d5/3 (respectively n � d11/6). For larger numbers of constraints, the Vaidya and
John walks exhibit faster mixing. More generally, it is clear that the rate of John walk has
almost the best order across all the walks for reasonably large values of n� d2.
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Let us also compare the (exact) John walk due to [103] with the (approximate) John
walk studied in this chapter. A notable feature of their random walk is that its mixing time
is independent of the number of constraints and the per iteration cost also depends linearly
on the number of constraints. Nonetheless, the dependence on d, for both the mixing time
(d7) and the per iteration cost (nd4 + d8) is quite poor. In contrast, the per iteration cost
for our John walk is nd2 and the mixing time has only a poly-logarithmic dependence on n.

Random walk τTV(δ;µ0) Iteration cost Per sample cost

Ball walk# [136] d2γ2
K nd nd3γ2

K

Hit-and-Run [169] d2γ2
K nd nd3γ2

K

Dikin walk [139] nd nd2 n2d3

RHMC walk [157] nd2/3 nd2 n2d2.67

John’s walk† [103] d7 nd4 + d8 nd11 + d15

Vaidya walk (this chapter) n1/2d3/2 nd2 n1.5d3.5

John walk (this chapter) d5/2 log4
(

2n
d

)
nd2 log2 n nd4.5

Improved John walk‡ (this chapter) d2 ωn,d nd2 log2 n nd4

Table 6.1: Upper bounds on computational complexity of random walks on the polytope
K = {x ∈ Rd|Ax ≤ b} defined by the matrix-vector pair (A, b) ∈ Rn×d × Rn with a warm-
start. For simplicity, here we ignore the logarithmic dependence on the warmness parameter
and the tolerance δ. The iteration cost terms of order nd2 arise from linear system solving,
using standard and numerically stable algorithms, for n equations in d dimensions; algorithms
with best possible theoretical complexity ndν for ν < 1.373 are not numerically stable enough
for practical use. #Mixing time of the Ball walk has been recently improved to O (d2γK)
for near isotropic convex bodies by [158]. While ball walk, Hit-and-run are affected by the
condition number γK of the set, the Dikin and RHMC walks have quadratic dependence on
the number of constraints n. †John’s walk by [103] (based on the exact John ellipsoids) has
linear dependence on n but poor dependence on d. In contrast, the Vaidya walk has sub-
quadratic dependence on n and significantly better dependence on d. Furthermore, the John
walk (based on approximate John’s ellipsoids) analyzed in this chapter has linear dependence
with reasonable dependence on the dimensions d. ‡The mixing time bound for the improved
John walk with poly-logarithmic factor ωn,d is conjectured (Section 6.4.3).
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6.3.4 Visualization of Dikin, Vaidya and John walks

In order to gain intuition about the three interior point based methods—namely, the Dikin,
Vaidya and John walks—it is helpful to discuss how their underlying proposal distributions
change as a function of the current point x. All three walks are based on Gaussian proposal
distributions with inverse covariance matrices of the general form

n∑

i=1

wx,i
aia
>
i

s2
x,i

,

where wx,i > 0 corresponds to a state-dependent weight associated with the i-th constraint.
The Dikin walk uses the weights wx,i = 1; the Vaidya walk uses the weights wx,i = σx,i + βV;
and the John walk uses the weights wx,i = ζx,i. For simplicity, we refer to these weights as
the Dikin, Vaidya and John weights. The i-th weight characterize the importance of the
i-th linear constraint in constructing the inverse covariance matrix. A larger value of the
weight wx,i relative to the total weight

∑n
i=1 wx,i signifies more importance for the i-th linear

constraint for the point x.
Figure 6.1a illustrates the difference in three weights as we move points inside the polytope

[−1, 1]2. When the point x is in the middle of the unit square formed by the four constraints,
all walks exhibit equal weight for every constraint. When the point x is closer to the bottom-
left boundary, the Vaidya and John weights assign larger weights to the bottom and the left
constraints, while the weights for top and right constraints decrease. Note that the total sum
of Vaidya weights and that of John weights remains constant independent of the position of
the point x.

In Figure 6.1b-6.2b, we demonstrate that the Vaidya walk and the John walk are better
at handling repeated constraints. Note that we can define the square [−1, 1]2 as

[−1, 1]2 =




x ∈ R2

∣∣∣∣∣Ax ≤ b, A =




1 0
0 1
−1 0
0 −1


 , b =

[
1
1

]



. (6.12)

Simply repeating the rows of the matrix A several times changes the mathematical formu-
latiton of the polytope, but does not change the shape of the polytope. We define the square
with constraints repeated n/4 times Sn/4 as

Sn/4 =




x ∈ R2

∣∣∣∣∣An/4x ≤ bn/4, An/4 =




A
...

×(n/4)


 , bn/4 =




b
...

×(n/4)


 ,





(6.13)

where A and b were defined above. We denote effective weight for each distinct constraint as
the sum of weights corresponding to the same constraint. Using this definition, the effective
Dikin weight, which is n/4, is thus affected by the repeating of constraints. Consequently,
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(a) Weights for different locations and a fixed
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(b) Effective weights for a fixed location and
different number of constraints n

Figure 6.1: Visualization of the weights on the square with repeated constraints Sn/4 for
the different random walks. The number mentioned next to the boundary lines denotes the
effective weight for the location x (denoted by diamond) for the corresponding constraint.
(a) n = 4 is common across rows and x = (0, 0) for the top row, (0.9, 0.9) for the middle and
(−0.9,−0.7) for the bottom row. The Dikin weights are independent of x, the Vaidya and
the John weights for a constraint increase if the location x is closer to it. (b) x = (0.85, 0.30)
is common across rows, and n=4 for the top row, n = 16 for the middle and n=128 for the
bottom row. The effective Dikin weight for each constraint increases linearly with n but for
the Vaidya and John walk adaptively, the weights get adjusted such that the sum of their
weights is always of the order of the dimension d.

the Dikin ellipsoid is much smaller for polytopes with repeated constraints. However, the
Vaidya and John weights do not change as observed in the Figure 6.1b. Such a property of
these two weights implies that the Vaidya and John ellipsoids are not too small even for very
large number of constraints. And we observe such a phenomenon in Figures 6.2a-6.2b where
the repetition of rows in the matrix A leads to very small Dikin ellipsoid but large Vaidya
and John ellipsoid. A few other numerical computations also suggest that the Vaidya and
John ellipsoids are moder adaptive when compared to Dikin ellipsoids when the number of
constraints is large. Nonetheless, such a claim is only based on heuristics and is presented
simply to provide an intuition that the new ellipsoids are better behaved than Dikin ellipsoids
and thereby motivated the design of the new random walks.
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Figure 6.2: Visualization of the proposal distribution on the square with repeated constraints
Sn/4 for the different random walks. (a, b) Unit ellipsoids associated with the covariances
of the random walks at different states x on the square with repeated constraints Sn/4.
Clearly, all these ellipsoids adapt to the boundary but increasing n has a profound impact
on the volume of the Dikin ellipsoids and comparatively less impact on the Vaidya and John
ellipsoids.

6.4 Main results

With the basic background in place, we now state our main results with a warm start in
Section 6.4.1, and a deterministic start in Section 6.4.2. In Section 6.4.3, we propose a
variant of the John walk, known as the improved John walk, and conjecture that it has a
better mixing time bound than that of the John walk.

6.4.1 Mixing time bounds for warm start

We use TVaidya(r) to denote the transition operator (2.4) associated with the Vaidya walk
with parameter r.

Theorem 6.1. For any δ ∈ (0, 1], the Vaidya walk with parameter r = 10−4 and a β-warm
starting distribution µ0 satisfies

dTV

(
T `Vaidya(r)(µ0),Π?

)
≤ δ for all ` ≥ cn1/2d3/2 log

(√
β

δ

)
. (6.14)
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We provide the proof of Theorem 6.1 in Section ??. Theorem 6.1 quantifies the depen-
dence of mixing time of the Vaidya walk on different aspects of the sampling problem at
hand. The specific choice r = 10−4 is for theoretical purposes; in practice, we find that
substantially larger values can be used.3

The mixing time of the Dikin walk is O(nd) and thereby the speed up for the Vaidya
walk is O(

√
n/d) number of steps. In Section 6.5.1, we show that the per iteration cost for

the two walks is of the same order. Since n ≥ d for closed polytopes in Rd, the effective cost
until convergence (iteration complexity multiplied by number of iterations required) for the
Vaidya walk is at least of the same order as of the Dikin walk, and significantly smaller when
n� d. Thus, the Vaidya walk has a clear advantage for the problems where the number of
constraints is significantly larger than the number of variables involved.

We use TJohn(r) to denote the transition operator (2.4) associated with the John walk
with parameter r. Let us now state our result for the mixing time of the John walk.

Theorem 6.2. Suppose that n ≤ exp(
√
d). Then, for any δ ∈ (0, 1], the John walk with

parameter r = 10−5 and a β-warm starting distribution µ0 satisfies

dTV

(
T `John(r)(µ0),Π?

)
≤ δ for all ` ≥ c d2.5 log4

(n
d

)
log

(√
β

δ

)
. (6.15)

We prove this theorem in Appendix E. Note that the mixing time bound for the John walk
depends only on the number of constraints n via a logarithmic factor, and so is almost
independent of n. Consequently, it has a mixing time that is polynomial in d even if the
number of constraints n scales exponentially in

√
d. Further, we show in Section 6.5.1 that

the cost to execute one step of the John walk is of the same order as of the Dikin walk up to
a poly-logarithmic factor in n. Thus, John walk is more efficient than the Dikin and Vaidya
walks when n� d2.

6.4.2 Mixing time bounds from deterministic start

The mixing time bounds in Theorem 6.1 and 6.2 depend on the warmness β of the initial
distribution. In some applications, it may not be easy to find an β-warm initial distribution.
In such cases, we can consider starting the random walk from a deterministic point x0 ∈
int (K) that is not too close to the boundary ∂K. Indeed, such a point can be found using
standard optimization methods—e.g., using a Phase-I method for Newton’s algorithm. (See
Section 11.5.4 in the book [26] for more discussion.)

Given such a deterministic initialization, our mixing time guarantees depend on the
distance of the starting point from the boundary. This dependence involves the following
notion of m-centrality:

3A larger than optimal r leads to an undesirable high rejection rate. In practice, we can fine tune r by
performing a binary search over the interval [10−4, 1] and keeping track of the rejection rate of the samples
during the run of the Markov chain for a given choice of r. A choice of r > 1 is obviously bad because then
the Vaidya ellipsoid will have poor overlap with polytopes near the boundary, causing high rejection rate
and slow down of the chain.
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Definition 6.1. A point x ∈ int (K) is called m-central if for any chord ef with end points
e, f ∈ ∂K passing through x, we have ‖e− x‖2 / ‖f − x‖2 ≤ m.

Assuming that it is started at an m-central point x0, the Dikin walk (Algorithm 1 in the
paper [139]) has polynomial mixing time. The authors showed that when the walk moves
to a new state for the first time, the distribution of the iterate is O

(
(
√
nm)d

)
-warm with

respect to the distribution Π?. Thus, for a deterministic start, we can use the Dikin walk in
the beginning to provide a warm start to the Vaidya (or John) walk. This motivates us to
define the following hybrid walk.

Given an m-central point x0, simulate the Dikin walk until we observe a new state. Note
that due to lazyness and the accept-reject step, the chain can stay at the starting point for
several steps before making the first move a new state. Let k1 denote the (random) number
of steps taken to make the first move to a new state. After k1 steps, we run the walk VW(r)
with xk1 as the initial point. We call such a walk as “m-central Dikin-start-Vaidya-walk”
with parameter r. Let TDikin denote the transition operator of the Dikin walk stated above.
Then, we have the following mixing time bound for this hybrid walk.

Corollary 6.1. Any m-central Dikin-start-Vaidya-walk with parameter r = 10−4 satisfies

dTV

(
T `Vaidya(r)

(
T `1Dikin(δx0)

)
,Π?
)
≤ δ for all ` ≥ cn1/2d5/2 log

(nm
δ

)
,

where `1 is a geometric random variable with E [`1] ≤ c′, and c, c′ > 0 are universal constants.

The mixing rate is logarithmic in nm and has an extra factor of d compared to the bounds
in Theorem 6.1. However, guaranteeing a warm start for a general polytope is hard but
obtaining a central point involves only a few steps of optimization. Consequently, the hybrid
walk and the guarantees from Corollary 6.1 come in handy for all such cases. Once again we
observe that the mixing time bounds are improved by a factor of O(

√
n/d) when compared

to Dikin walk from an m-central start [139, 187] which had a mixing time of O(nd2). The
proof follows immediately from Theorem 1 by Kannan et al. [139] and Theorem 6.1 and is
thereby omitted.

In a similar fashion, we can provide a polynomial time guarantee for a modified John
walk from a deterministic start. We can consider a hybrid random walk that starts at an
m-central point, simulates the Dikin walk until it makes the first move to a new state, and
from there onwards simulates the John walk. Such a chain would have a mixing time of
O (d3.5poly-log(n, d,m)). For brevity, we omit a formal statement of this result.

6.4.3 Conjecture on improved John walk

From our analysis, we suspect that it is possible to improve the mixing time bound of
O (d2.5poly-log(n/d)) in Theorem 6.2 by considering a variant of the John walk. In particular,

we conjecture that a random walk with proposal distribution given byN
(
x, r2

d·poly-log(n/d)
Jx
−1
)
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for a suitable choice of r has an O (d2poly-log(n/d)) mixing time from a warm start. We
refer to this random walk as the improved John walk, and denote its transition operator by
TJohn+ . Let us now give a formal statement of our conjecture on its mixing rate.

Conjecture 6.1. For any δ ∈ (0, 1], the improved John walk with parameter r0 and a β-
warm starting distribution µ0 satisfies

dTV

(
T `John+(r)(µ0),Π?

)
≤ δ for all ` ≥ c d2 logc

′

2

(
2n

d

)
log

(√
β

δ

)
. (6.16)

Note that this conjecture involves quadratic (degree two) scaling in d; this exponent of
two matches the sum of exponents for d and n in the mixing time bounds for both the Dikin
and Vaidya walks from a warm-start. Consquently, the improved John walk would have
better performance than the Dikin, Vaidya and John walks for almost all ranges of (n, d),
apart from possible poly-logarithmic factors in the ratio n/d.

6.5 Numerical experiments

In this section, we first analyze the per-iteration cost to implement of three walks. We show
that while the Dikin walk has the best per-iteration cost, the per-iteration cost of the Vaidya
walk is only twice of that of Dikin walk and the per-iteration cost of the John walk is only
of order log2(2n/d) larger. Second, we demonstrate the speed-up gained by the Vaidya walk
over the Dikin walk for a warm start on different polytopes.

6.5.1 Per iteration cost

We now show that the per iteration cost of the Dikin, Vaidya and John walks is of the same
order. The proposal step of Vaidya walk requires matrix operations like matrix inversion,
matrix multiplication and singular value decomposition (SVD). The accept-reject step re-
quires computation of matrix determinants, besides a few matrix inverses and matrix-vector
products. The complexity of all aforementioned operations is O (nd2). Thus, per iteration
computational complexity for the Vaidya walk is O (nd2). In theory, the matrix computa-
tions for the Dikin walk can be carried out in time ndν for an exponent ν < 2, but such
algorithms are not stable enough for practical use.

Both the Dikin and Vaidya walks requires an SVD computation for inverting the Hessian
of Dikin barrier ∇2Fx. In addition for the Vaidya walk, we have to invert the matrix Vx,
which leads to almost twice the computation time of the Dikin walk per step. This difference
can be observed in practice.

For the John walk we need to compute the weights ζx at each point which involves
solving the program (6.11). Lee et al. [152] argued that the convex program (6.11) for
obtaining John walk’s weights is strongly convex under appropriate norm. They proved that
solving this program requires log2 n number of gradient steps where each gradient step has
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the computational complexity of a linear system solve (O (nd2) using a numerically stable
routine). Thus, the overall cost for the John walk is of the same order as of the Dikin walk
up to a poly-logarithmic factor in the pair (n, d).

In practice, for the John walk, the combined effect of logarithmic factors in the number
of steps and the cost to implement each step is pretty significant. This extra factor becomes
a bottleneck for the overall run time for the convergence of the Markov chain. Consequently,
the John walk is not suitable for polytopes with moderate values of n and d, and its mix-
ing time bounds are computationally superior to the Dikin and Vaidya walks only for the
polytopes with n� d� 1.

6.5.2 Simulations

We now present simulation results for the random walks in Rd for d = 2, 10 and 50 with
initial distribution µ0 = N (0, σ2

d Id) and target distribution being uniform, on the following
polytopes:

Set-up 1 : The set [−1, 1]2 defined by different number of constraints.

Set-up 2 : The set [−1, 1]d for d ∈ {2, 3, 4, 5, 6, 7} for n = {2d, 2d2, 2d3} constraints.

Set-up 3 : Symmetric polytopes in R2 with n-randomly-generated-constraints.

Set-up 4 : The interior of regular n-polygons on the unit circle.

Set-up 5 : Hyper cube [−1, 1]d for d = 10 and 50.

We choose σd such that the warmness parameter β is bounded by 100. We provide imple-
mentations of the Dikin, Vaidya and John walks in python and a jupyter notebook at the
github repository https://github.com/rzrsk/vaidya-walk.

We use the following three ways to compare the convergence rate of the Dikin and the
Vaidya walks: (1) comparing the approximate mixing time of a particular subset of the
polytope—smaller value is associated with a faster mixing chain; (2) comparing the plot of
the empirical distribution of samples from multiple runs of the Markov chain after k steps—if
it appears more uniform for smaller k, the chain is deemed to be faster; and (3) contrasting
the sequential plots of one dimensional projection of samples for a single long run of the
chain—less smooth plot is associated with effective and fast exploration leading to a faster
mixing [260]. Note that MCMC convergence diagnostics is a hard problem, especially in
high dimensions, and since the methods outlined above are heuristic in nature we expect our
experiments to not fully match our theoretical results.

In Set-up 1, we consider the polytope [−1, 1]2 which can be represented by exactly 4
linear constraints (see Section 6.3.4). Suppose that we repeat the rows of the matrix A, and
then run the Dikin and Vaidya walks with the new A. Given the larger number of constraints,
our theory predicts that the random walks should mix more slowly. In Figure 6.3c and 6.3d,
we plot the empirical distribution obtained by the Dikin walk and Vaidya walk, starting
from 200 i.i.d initial samples, for n = 64 and 2048. The empirical distribution plot shows
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that having large n significantly slows the mixing rate of the Dikin walk, while the effect on
the Vaidya walk is much less. Further, we also plot the scaling of the approximate mixing
time k̂mix (defined below) for this simulation as a function of the number of constraints n in
Figure 6.3b. For Set-up 2, we plot k̂mix as a function of the dimensions d in Figures 6.3e-6.3g,
for the random walks on [−1, 1]d where the hypercube is parametrized by different number
of constraints n ∈ {2d, 2d2, 2d3}. The approximate mixing time is defined with respect to
the set Sd = {x ∈ Rd| |xi| ≥ cd ∀i ∈ [d]} where cd is chosen such that Π?(Sd) = 1/2. In
particular, for a fixed value of n, let T̂ k denote the empirical measure after k-iterations across
2000 experiments. The approximate mixing time k̂mix is defined as

k̂mix := min

{
k

∣∣∣∣Π?(Sd)− T̂ k(Sd) ≤
1

20

}
, (6.17)

We choose such a set since the set covers the regions near to the boundary of the poly-
tope which are not covered well by the chosen initial distribution. We make the following
observations:

(6F) The slopes of the best-fit lines, for k̂mix versus n in the log-log plot in Figure 6.3b,
are 0.88 and 0.45 for Dikin and Vaidya walks respectively. This observation reflects
a near-linear and sub-linear dependence on n for a fixed d for the mixing time of the
Dikin walk and the Vaidya walk respectively.

(6G) In Figures 6.3e-6.3g, once again we observe a more significant effect of increasing the
number of constraints on the approximate mixing time k̂mix. We list the slopes of
the best fit lines on these log-log plots in Table 6.2. These slopes correspond to the
exponents for d for the approximate mixing time. From the table, we can observe that
these experiments agree with the mixing time bounds of O (nd) for the Dikin walk and
O (n0.5d1.5) for the Vaidya walk.

In Set-up 3, we compare the plots of the empirical distribution of 200 runs of the Dikin
walk and the Vaidya walk for different values of k, for symmetric polytopes in R2 with n-
randomly-generated-constraints. We fix bi = 1. To generate ai, first we draw two uniform
random variables from [0, 1] and then flip the sign of both of them with probability 1/2 and
assign these values to the vector ai. The resulting polytope is always a subset of the square
K = [−1, 1]2 and contains the diagonal line connecting the points (−1, 1) and (1,−1). From
Figure 6.4a-6.4b, we observe that while there is no clear winner for the case n = 64, the
Vaidya walk mixes mixes significantly faster than the Dikin walk for the polytope defined
by 2048 constraints.

In Set-up 4, the constraint set is the regular n-polygons inscribed in the unit circle. A
similar observation as in Set-up 3 can be made from Figure 6.4c-6.4d: the Vaidya walk
mixes at least as fast as the Dikin walk and mixes significantly faster for large n.

In Set-up 5, we examine the performance of the Dikin walk and the Vaidya walk on
hyper-cube [−1, 1]d for d = 10, 50. We plot the one dimensional projections onto a random
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No. of Constraints DW Theoretical VW Theoretical DW Experiments VW Experiments

n = 2d 2.0 2.0 1.58 1.72
n = 2d2 3.0 2.5 2.80 2.48
n = 2d3 4.0 3.0 3.84 2.75

Table 6.2: Value of the exponent of dimensions d for the theoretical bounds on mixing time
and the observed approximate mixing time of the Dikin walk (DW) and the Vaidya walk
(VW) for [−1, 1]d described by n = 2d, 2d2, 2d3 constraints. The theoretical exponents are
based on the mixing time bounds of O (nd) for the Dikin walk and O (n0.5d1.5) for the Vaidya
walk. The experimental exponents are based on the results from the simulations described
in Set-up 2 in Section 6.5.2. Clearly, the exponents observed in practice are in agreement
with the theoretical rates and imply the faster convergence of the Vaidya walk compared to
the Dikin walk for large number of constraints.

normal direction of all the samples from a single run up to 10, 000 steps. The Vaidya
sequential plot looks more jagged than that of the Dikin walk for d = 10, n = 5120. For
other cases, we do not have a clear winner. Such an observation is consistent with the
O(
√
n/d) speed up of the Vaidya walk which is apparent when the ratio n/d is large.

6.6 Proofs

We start with a proof sketch for Vaidya walk in Section 6.6.1, followed by some auxiliary
results in Section 6.6.2 which we then use to prove Theorem 6.1 in Section 6.6.3. We provide
a proof sketch for John walk’s mixing time in Section 6.6.4 and defer its proof to Appendix E.
Proofs of the auxiliary results from this section are provided in Appendix D.

6.6.1 Proof sketch for the Vaidya walk

In this subsection, we provide a high-level sketch of the main ingredients of the main proof.
Like the proofs in earlier chapters, we use conductance-based mixing time bounds. Our main
proof relies on Lovász [163]’s work that characterizes the conductance of Markov chains on
a convex set using Hilbert metric. Precisely, Lovász [163] showed that a Markov chain has
good conductance if it makes jumps to regions with large overlaps from two nearby points
and the mixing time depends inversely on the maximum Hilbert metric between such nearby
points. Using this argument, it remains to make sure that the ellipsoid radius is chosen
properly such that the ellipsoids remain inside the polytope and the ellipsoids corresponding
to two different points x and y overlap a lot even if the points x and y are relatively far
apart.

The conductance-based argument has been used for analyzing the ball walk [166, 167],
Hit-and-run [163, 169] and the Dikin walk [187, 139, 224]. We refer the reader to the survey
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Figure 6.3: Comparison of the Dikin and Vaidya walks on the polytope K = [−1, 1]2. (a)
Samples from the initial distribution µ0 = N (0, 0.04 I2) and the uniform distribution on
[−1, 1]2. (b) Log-log plot of k̂mix (6.17) versus the number of constraints (n) for a fixed
dimension d = 2. (c, d) Empirical distribution of the samples for the Dikin walk (blue/top
rows) and the Vaidya walk (red/bottom rows) for different values of n at iteration k =
10, 100, 500 and 1000. (e, f, g) Log-log plot of k̂mix vs the dimension d, for n ∈ {2d, 2d2, 2d3}
for d ∈ {2, 3, 4, 5, 6, 7}. The exponents from these plots are summarized in Table 6.2. Note
that increasing the number of constraints n has more profound effect on the Dikin walk in
almost all the cases.
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Figure 6.4: Empirical distribution of the samples from 200 runs for the Dikin walk (blue/top
rows) and the Vaidya walk (red/bottom rows) at different iterations k. The 2-dimensional
polytopes considered are: (a, b) random polytopes with n-constraints, and (c, d) regular
n-polygons inscribed in the unit circle. For both sets of cases, we observe that higher n slows
down the walks, with visibly more effect on the Dikin walk compared to the Vaidya walk.

by Vempala [242] for a thorough discussion about the relation between the conductance and
mixing time for Markov chains. Our proof techniques share a few features with the recent
analyses of the Dikin walk by Kannan and Narayanan [139] and Sachdeva and Vishnoi [224].
However, new technical ideas are needed in order to handle the state-dependent weights
σx (6.7b) and ζx (6.11) that underlie the proposal distributions for the Vaidya and John
walks. Note that these techniques are not present in the analysis of the Dikin walk, which
is based on constant weights.

6.6.2 Auxiliary results

Our proof proceeds by formally establishing the following property for the Vaidya walk: if two
points are close, then their one-step transition distribution are also close. Consequently, we
need to quantify the closeness between two points and the associated transition distributions.
We measure the distance between two points in terms of the cross ratio that we define next.
For a given pair of points x, y ∈ K, let e(x), e(y) ∈ ∂K denote the intersection of the chord
joining x and y with K such that e(x), x, y, e(y) are in order (see Figure 6.6a). The cross-ratio
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Figure 6.5: Sequential plots of a one-dimensional random projection of the samples on the
hyperbox K = [−1, 1]d, defined by n constraints. Each plot corresponds to one long run of
the Dikin and Vaidya walks, and the projection is taken in a direction chosen randomly
from the sphere. (a) Plots for d = 10 and n ∈ {20, 640, 5120}. (b) Plots for d = 50 and
n ∈ {100, 400, 1600}. Relative to the Dikin walk, the Vaidya walk has a more jagged plot for
pairs (n, d) in which the ratio n/d is relatively large: for instance, see the plots corresponding
to (n, d) = (640, 10) and (5120, 10). The same claim cannot be made for pairs (n, d) for which
the ratio n/d is relatively small; e.g., the plot with (n, d) = (20, 10). These observations are
consistent with our results that the Vaidya walk mixes more quickly by a factor of order
O(
√
n/d) over the Dikin walk.

bK(x, y) is given by

bK(x, y) :=
‖e(x)− e(y)‖2 ‖x− y‖2

‖e(x)− x‖2 ‖e(y)− y‖2

. (6.18)

The ratio bK(x, y) is related to the Hilbert metric on K, which is given by log (1 + bK(x, y));
see the paper [33] for more details.

Consider a lazy reversible random walk on a bounded convex set K with transition
operator T defined via the mapping µ0 7→ µ0/2 + T̃ (µ0)/2 and stationary with respect to
the uniform distribution Π? on K. Recall that δx denote the dirac-delta distribution with
unit mass at x. The next result provides a bound on the mixing-time of the Markov chain,
when the transition operator T̃ certain smoothness condition.

Proposition 6.1 (Lovász [163]). Suppose that the transition operator T̃ admits Π? as the
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Figure 6.6: Polytope K = {x ∈ Rd|Ax ≤ b}. (a) The points e(x) and e(y) denote the
intersection points of the chord joining x and y with K such that e(x), x, y, e(y) are in order.
(b) A geometric illustration of the argument (6.23). It is straightforward to observe that
‖x− y‖2/‖e(x)− x‖2 = ‖u− y‖2/‖u− v‖2 =

∣∣a>i (y − x)
∣∣/
(
bi − a>i x

)
.

stationary distribution, and there exist scalars ρ,∆ ∈ (0, 1) such that

dTV

(
T̃ (δx), T̃ (δy)

)
≤ 1− ρ for all x, y ∈ int (K) with bK(x, y) < ∆. (6.19a)

Then the Markov chain with lazy transition operator T and a β-warm start µ0 satisfies

dTV

(
T `(µ0),Π?

)
≤
√
β exp

(
−` ∆2ρ2

4096

)
∀ ` = 1, 2, . . . . (6.19b)

Consequently, the mixing time of the chain satisfies

τTV(δ;µ0) ≤ 4096

∆2ρ2
log

(√
β

δ

)
. (6.19c)

This result is implicit in the paper of Lovázs [163], though not explicitly stated. In order to
keep the our work self-contained, we provide a proof of this result in Appendix D.4.

Our proof of Theorem 6.1 is based on applying Lovász’s Lemma; the main challenge in our
work is to establish that our random walks satisfy the condition (6.19a) with suitable choices
of ∆ and ρ. In order to proceed with the proof, we require a few additional notations. Recall
that the slackness at x was defined as sx := (b1 − a>1 x, . . . , bn − a>nx)>. For all x ∈ int (K),
define the Vaidya local norm of v at x as

‖v‖Vx :=
∥∥V 1/2

x v
∥∥

2
=

√√√√
n∑

i=1

(σx,i + βV)
(a>i v)2

s2
x,i

, (6.20a)
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and the Vaidya slack sensitivity at x as

θVx :=

(∥∥∥∥
a1

sx,1

∥∥∥∥
2

Vx

, . . . ,

∥∥∥∥
an
sx,n

∥∥∥∥
2

Vx

)>
=

(
a>1 V

−1
x a1

s2
x,1

, . . . ,
a>nV

−1
x an
s2
x,n

)>
. (6.20b)

Similarly, we define the John local norm of v at x and the John slack sensitivity at x as

‖v‖Jx :=
∥∥J1/2

x v
∥∥

2
and θJx :=

(∥∥∥∥
a1

sx,1

∥∥∥∥
2

Jx

, . . . ,

∥∥∥∥
an
sx,n

∥∥∥∥
2

Jx

)>
. (6.20c)

The following lemma provides useful properties of the leverage scores σx from equation (6.7b),
the weights ζx obtained from solving the program (6.11), and the slack sensitivities θVx and
θJx .

Lemma 6.1. For any x ∈ int (K), the following properties hold:

(h) σx,i ∈ [0, 1] for all i ∈ [n],

(i)
∑n

i=1 σx,i = d,

(j) θVx,i ∈
[
0,
√
n/d
]

for all i ∈ [n],

(k) ζx,i ∈ [βJ, 1 + βJ] for all i ∈ [n],

(l)
∑n

i=1 ζx,i = 3d/2, and

(m) θJx,i ∈ [0, 4] for all i ∈ [n].

We prove this lemma in Appendix D.1.

Since the Vaidya walk is lazy with probability 1/2, for any distribution µ0 we can write

TVaidya(µ0) = µ0/2 + T̃Vaidya(µ0)/2 for a valid (non-lazy) transition operator T̃Vaidya. Let PV
x

to denote the proposal distribution of the random walk VW(r) at state x.
Next, we state a lemma that shows that if two points x, y ∈ int (K) are close in Vaidya

local norm at x, then for a suitable choice of the parameter r, the proposal distributions PV
x

and PV
y are close. In addition, we show that the proposals are accepted with high probability

at any point x ∈ int (K). We establish this result by showing that the one-step transition

distribution T̃Vaidya(δx) is close to the proposal distribution PV
x .

Lemma 6.2. There exists a continuous non-decreasing function gV : [0, 1/4] → R+ with
f(1/15) ≥ 10−4 such that for any ε ∈ (0, 1/15], the random walk VW(r) with r ∈ [0, gV(ε)]
satisfies

dTV

(
PV
x ,PV

y

)
≤ ε ∀ x, y ∈ int (K) s.t. ‖x− y‖Vx ≤

εr

2(nd)1/4
, and (6.21a)

dTV

(
T̃Vaidya(δx),PV

x

)
≤ 5ε ∀ x ∈ int (K). (6.21b)
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See Appendix D.2 for the proof of this lemma.

With these lemmas in hand, we are now equipped to prove Theorem 6.1.

6.6.3 Proof of Theorem 6.1

To simplify notation, for the rest of this section, we adopt the shorthands Tx = T̃Vaidya(δx),
Px = PV

x and ‖·‖Vx = ‖·‖x.
In order to apply Proposition 6.1 for the random walk VW(10−4), we need to verify the

condition (6.19a) for suitable choices of ρ and ∆. Doing so involves two main steps:

(A): First, we relate the cross-ratio bK(x, y) to the local norm (6.20a) at x.

(B): Second, we use Lemma 6.2 to show that if x, y ∈ int (K) are close in local-norm, then
the transition distributions Tx and Ty are close in TV-distance.

Step (A): We claim that for all x, y ∈ int (K), the cross-ratio can be lower bounded as

bK(x, y) ≥ 1√
2d
‖x− y‖x . (6.22)

Note that we have

bK(x, y) =
‖e(x)− e(y)‖2 ‖x− y‖2

‖e(x)− x‖2 ‖e(y)− y‖2

(i)

≥ max

{ ‖x− y‖2

‖e(x)− x‖2

,
‖x− y‖2

‖e(y)− y‖2

}

(ii)

≥ max

{ ‖x− y‖2

‖e(x)− x‖2

,
‖x− y‖2

‖e(y)− x‖2

}
,

where step (i) follows from the inequality ‖e(x)− e(y)‖2 ≥ max {‖e(y)− y‖2 , ‖e(x)− x‖2};
and step (ii) follows from the inequality ‖e(x)− x‖2 ≤ ‖e(y)− x‖2. Furthermore, from
Figure 6.6b, we observe that

max

{ ‖x− y‖2

‖e(x)− x‖2

,
‖x− y‖2

‖e(y)− x‖2

}
= max

i∈[n]

∣∣∣∣
a>i (x− y)

sx,i

∣∣∣∣ . (6.23)

Note that maximum of a set of non-negative numbers is greater than the mean of the
numbers. Combining this fact with properties (h) and (i) from Lemma 6.1, we find that

bK(x, y) ≥

√√√√ 1∑n
i=1 (σx,i + βV)

n∑

i=1

(σx,i + βV)
(a>i (x− y))2

s2
x,i

=
‖x− y‖x√

2d
,

thereby proving the claim (6.22).
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Step (B): By the triangle inequality, we have

dTV

(
Tx, Ty

)
≤ dTV

(
Tx,Px

)
+ dTV

(
Px,Py

)
+ dTV

(
Py, Ty

)
.

Thus, for any (r, ε) such that ε ∈ [0, 1/15] and r ≤ gV(ε), Lemma 6.2 implies that

dTV

(
Tx, Ty

)
≤ 11ε, ∀x, y ∈ int (K) such that ‖x− y‖x ≤

rε

2(nd)1/4
.

Consequently, the walk VW(r) satisfies the assumptions of Lovász’s Lemma with

∆ :=
1√
2d
· rε

2(nd)1/4
and ρ := 1− 11ε.

Since gV(1/15) ≥ 10−4, we can set ε = 1/15 and r = 10−4, whence

∆2ρ2 =
(1− 11ε)2ε2r2

8d
√
nd

=
42

152

1

152

1

10−8
· 1

d
√
nd
≥ 10−12 1

d
√
nd
.

Observing that ∆ < 1 yields the claimed upper bound for the mixing time of Vaidya Walk.

6.6.4 Proof sketch for the John walk

Here we provide a brief outline the key steps in the analysis of John walk, leaving the details
to Section 6.6.4. The proof of Theorem 6.2 is also decomposed in two steps analogous to
the step (A) and (B) in section 6.6.3. From Lemma 6.1, we can see that while the sum of
weights ζx is within a factor of 3/2 to the sum of leverage scores σx, the John slack sensitivity
θJx,i (6.20c) is bounded by a constant as compared to the

√
n/d bound for Vaidya slack

sensitivity θVx,i (6.20b). Along the lines of step (A) in Section 6.6.3, the former property

directly establishes that bK(x, y) ≥ ‖x− y‖Jx /
√

3d/2. To complete the proof, we establish
an analog of Lemma 6.2 for the John walk which can then be used to derive a bound for its
mixing time. We believe that our analysis while deriving the Lemma 6.2 analog for the John
walk is loose and possibly a tighter analysis would allow us to prove Conjecture 6.1.

6.7 Conclusion and future directions

In this chapter, we focused on improving mixing rate of MCMC sampling algorithms for
polytopes by building on the advancements in the field of interior point methods. We pro-
posed and analyzed two different barrier based MCMC sampling algorithms for polytopes
that outperforms the existing sampling algorithms like the ball walk, the hit-and-run and the
Dikin walk for a large class of polytopes. We provably demonstrated the fast mixing of the
Vaidya walk, O (n0.5d1.5) and the John walk, O (d2.5poly-log(n/d)) from a warm start. Our
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numerical experiments, albeit simple, corroborated with our theoretical claims: the Vaidya
walk mixes at least as fast the Dikin walk and significantly faster when the number of con-
straints is quite large compared to the dimension of the underlying space. For the John walk,
the logarithmic factors were dominant in all our experiments and thereby we deemed the
result of importance only for set-ups with polytopes in very high dimensions with number
of constraints overwhelmingly larger than the dimensions. Besides, proving the mixing time
guarantees for the improved John walk (Conjecture 6.1) is still an open question.

[187] analyzed a generalized version of the Dikin walk for arbitrary convex sets equipped
with self-concordant barrier. From his results, we were able to derive mixing time bounds of
O (nd4) and O (d5poly-log(n/d)) from a warm start for the Vaidya walk and the John walk
respectively. Our proof takes advantage of the specific structure of the Vaidya and John
walk, resulting a better mixing rate upper bound the the general analysis provided by [187].

While our paper has mainly focused on sampling algorithms on polytopes, the idea of
using logarithmic barrier to guide sampling can be extended to more general convex sets.
The self-concordance property of the logarithmic barrier for polytopes is extended by [7] to
more general convex sets defined by semidefinite constraints, namely, linear matrix inequality
(LMI) constraints. Moreover, [187] showed that for a convex set in Rd defined by n LMI
constraints and equipped with the log-determinant barrier—the semidefinite analog of the
logarithmic barrier for polytopes—the mixing time of the Dikin walk from a warm start is
O (nd2). It is possible that an appropriate Vaidya walk on such sets would have a speed-up
over the Dikin walk. Another work [188] used the Dikin walk to generate samples from time
varying log-concave distributions with appropriate scaling of the radius for different class of
distributions. We believe that suitable adaptations of the Vaidya and John walks for such
cases would provide significant gains.
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Part II

Statistical-Computational Challenges
With Mixture Models
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Chapter 7

Two-Faced Slowdown of EM with
Singular Mixture Models

The focus of this part of the thesis is the intersection of statistical and computational is-
sues associated with fitting the parameters of overspecified mixture models, namely when
the number of components in the fitted model are more than that in the true model. The
algorithm of choice for fitting finite mixture models is the Expectation-Maximization (EM)
algorithm [68, 251, 207], and is arguably the most popular algorithm for computing (approx-
imate) MLEs in the mixture models. EM represents a general framework that encompasses
various types of divide-and-conquer computational strategies. It is also an instance of a
minorization-maximization algorithm, in which at each step, a suitably chosen lower bound
of the log-likelihood is maximized.

There is now a lengthy line of work on the behavior of EM when applied to regular
models. The classical papers [251, 236, 55] establish the asymptotic convergence of EM to a
local maximum of the log-likelihood function for a general class of incomplete data models.
Other papers [134, 254, 172] characterized the rate of convergence of EM for regular Gaussian
mixtures. More recent years have witnessed a flurry of work on the behavior of EM for various
kinds of regular mixture models [10, 248, 256, 253, 64, 255, 105, 35]; as a consequence, our
understanding of EM in such cases is now relatively mature. More precisely, it is known that
for Gaussian mixtures, EM converges in O(log(n/d))-steps to parameter estimates that lie
within Euclidean distance O((d/n)1/2) of the true location parameters, assuming minimal
separation between the mixture components. With this context in mind, the primary goal
of this chapter and the next is to gain a fundamental understanding of the behavior of EM
when used to fit over-specified mixture models. We start with an introduction to the common
issues associated with mixture models, and EM in Section 7.1, and discuss the related prior
work in Section 7.2. With this context, we summarize the contributions of this chapter in
Section 7.2.1, and the organization of the remainder of this chapter in Section 7.2.2.
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7.1 Introduction and prior work

While density estimation in finite mixture models is relatively well understood [239, 97],
characterizing the behavior of maximum likelhood for parameter estimation has remained
challenging. The main difficulty for analyzing the MLE in such settings arises from label
switching between the mixtures [208, 230], and lack of strong concavity in the likelihood.
Such issues do not interfere with density estimation, since the standard divergence measures
like the Kullback-Leibler and Hellinger distances remain invariant under permutations of
labels, and strong concavity is not required.

We now provide a brief flavor of the known statistical challenges that arise due to over-
specification, besides the already existing computational challenges with mixture models.
We then discuss prior work on Expectation-Maximization, and then summarize our contri-
butions.

7.1.1 Statistical issues with singularity and over-specification

An important contribution to the understanding of parameter estimation in finite mixture
models was made by Chen [42]. He considered a class of over-specified finite mixture models;
here the term “over-specified” means that the model to be fit has more mixture components
than the distribution generating the data. In an interesting contrast to the usual n−

1
2 conver-

gence rate for the MLE based on n samples, Chen showed that for estimating scalar location
parameters in a certain class of over-specified finite mixture models, the corresponding rate
slows down to n−

1
4 due to the singularity of the Fisher information matrix at the true pa-

rameter, meaning that the Fisher information matrix is degenerate (or not full rank). This
theoretical result has practical significance, since methods that over-specify the number of
mixtures are often more feasible than methods that first attempt to estimate the number
of components, and then estimate the parameters using the estimated number of compo-
nents [222]. In subsequent work, Nguyen [194] and Heinrich et al. [109] have characterized
the (minimax) convergence rates of parameter estimation rates for mixture models in both
exactly-fitted or over-specified settings in terms of the Wasserstein distance.

In the context of singular mixture models, an important distinction is between those
that are strongly versus weakly identifiable. Chen’s work [42] studies the class of strongly
identifiable models in which, while the Fisher information matrix may be degenerate at a
point, and it is not degenerate over a larger set. When the degeneracy occurs over a larger set,
we call the model weakly identifiable. In this chapter, we discuss strongly identifiable singular
models that are obtained, e.g., when fitting over-specified Gaussian mixtures models with
unknown mean and known covariance. The next chapter deals with the weakly identifiable
models, which arise, e.g., when fitting over-specified Gaussian mixtures models with both
unknown mean and covariance.
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7.1.2 Computational concerns with mixture models

While the papers discussed above address the statistical behavior of a global maximum of
the log-likelihood, they do not consider the associated computational issues of obtaining such
a maximum. In general settings, non-convexity of the log-likelihood makes it impossible to
guarantee that the iterative algorithms used in practice converge to the global optimum, or
equivalently the MLE. Perhaps the most widely used algorithm for computing the MLE is
the expectation-maximization (EM) algorithm [68]. Early work on the EM algorithm [251]
showed that its iterates converge asymptotically to a local maximum of the log-likelihood
function for a broad class of incomplete data models; this general class includes the fitting
of mixture models as a special case. The EM algorithm has also been studied in the specific
setting of Gaussian mixture models; here we find results both for the population EM algo-
rithm, which is the idealized version of EM based on an infinite sample size, as well as the
usual sample-based EM algorithm that is used in practice. For Gaussian mixture models,
the population EM algorithm is known to exhibit various convergence rates, ranging from
linear to super-linear (quasi-Newton like) convergence if the overlap between the mixture
components tends to zero [254, 172]. It has also been noted in several papers [207, 172] that
the convergence of EM can be prohibitively slow when the mixtures are not well separated.

7.2 Prior work on Expectation-Maximization

Balakrishnan et al. [10] laid out a general theoretical framework for analysis of the EM
algorithm, and in particular how to prove non-asymptotic bounds on the Euclidean distance
between sample-based EM iterates and the true parameter. When applied to the special
case of two-component Gaussian location mixtures, assumed to be well-specified and suitably
separated, their theory guarantees that (1) population EM updates enjoy a geometric rate
of convergence to the true parameter when initialized in a sufficiently small neighborhood
around the truth, and (2) sample-based EM updates converge to an estimate at Euclidean

distance of order (d/n)
1
2 , based on n i.i.d. draws from a finite mixture model in Rd. Further

work in this vein has characterized the behavior of EM in a variety of settings for two
Gaussian mixtures, including convergence analysis with additional sparsity constraints [248,
256, 105], global convergence of population EM [253], guarantees of geometric convergence
under less restrictive conditions on the two mixture components [142, 64], analysis of EM
with unknown mixture weights, means and covariances for two mixtures [35], and the analysis
of EM to more than two Gaussian components [255, 105]. Other related work has provided
optimization-theoretic guarantees for EM by viewing it in a generalized surrogate function
framework [146], and analyzed the statistical properties of confidence intervals based on an
EM estimator [49].

An assumption common to all of this previous work is that there is no misspecification in
the fitting of the Gaussian mixtures; in particular, it is assumed that the data is generated
from a mixture model with the same number of components as the fitted model. A portion
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of our recent work [80] has shown that EM retains its fast convergence behavior—albeit
to a biased estimate—in under-specified settings where the number of components in the
fitted model are less than that in the true model. However, as noted above, in practice, it
is most common to use over-specified mixture models. For these reasons, it is desirable to
understand how the EM algorithm behaves in the over-specified settings.

7.2.1 Our contributions

The goal of this chapter is to shed some light on the non-asymptotic performance of the EM
algorithm for over-specified mixtures. We provide a comprehensive study of over-specified
mixture models when fit to a particularly simple (non-mixture) data-generating mechanism;
a multivariate normal distribution N (0, σ2Id) in d dimensions with known scale parameter
σ > 0. Such a model, while being singular, is strongly identifiable [114]. This setting, despite
its simplicity, suffices to reveal some rather interesting properties of EM in the over-specified
context. In particular, we obtain the following results.

• Two-mixture unbalanced fit: For our first model class, we study a mixture of two
location-Gaussian distributions with unknown location, known variance and known
unequal weights for the two components. For this case, we establish that the population
EM updates converge at a geometric rate to the true parameter; as an immediate
consequence, the sample-based EM algorithm converges in O (log(n/d)) steps to a

ball of radius (d/n)
1
2 . The fast convergence rate of EM under the unbalanced setting

provides an antidote to the pessimistic belief that statistical estimators generically
exhibit slow convergence for over-specified mixtures.

• Two-mixture balanced fit: In the balanced version of the problem in which the mix-
ture weights are equal to 1

2
for both components, we find that the EM algorithm behaves

very differently. Beginning with the population version of the EM algorithm, we show
that it converges to the true parameter from an arbitrary initialization. However, the
rate of convergence varies as a function of the distance of the current iterate from the
true parameter value, becoming exponentially slower as the iterates approach the true
parameter. This behavior is in sharp contrast to well-specified settings [10, 64, 255],
where the population updates converge at a geometric rate. We also show that our
rates for population EM are tight. By combining the slow convergence of population
EM with a novel localization argument, one involving the empirical process restricted
to an annulus, we show that the sample-based EM iterates converge to a ball of radius
(d/n)

1
4 around the true parameter after O((n/d)

1
2 ) steps. The n−

1
4 component of the

Euclidean error matches known guarantees for the global maximum of the MLE [42].
The localization argument in our analysis is of independent interest, because such tech-
niques are not required in analyzing the EM algorithm in well-specified settings when
the population updates are globally contractive. We note that ball-based localization
methods are known to be essential in deriving sharp statistical rates for M-estimators
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(e.g., [239, 14, 143]); to the best of our knowledge, the use of an annulus-based local-
ization argument in analyzing an algorithm is novel.

Moreover, we show via extensive numerical experiments that the fast convergence of EM
for the unbalanced fit is a special case; and that the slow behavior of EM proven for the
balanced fit (in particular the rate of order n−

1
4 ) arises in several general (including more than

two components) over-specified Gaussian mixtures with known variance, known or unknown
weights, and unknown location parameters.

7.2.2 Organization

The remainder of the chapter is organized as follows. In Section 7.3 we provide illustrative
simulations of EM in different settings in order to motivate the settings analyzed later. We
then provide a thorough analysis of the convergence rates of EM when over-fitting Gaussian
data with two components in Section 7.4 and the key ideas of the novel proof techniques in
Section 7.5. We provide a thorough discussion of our results in Section 7.6, exploring their
general applicability, and presenting further simulations that substantiate the value of our
theoretical framework. Detailed proofs of our results and discussion of certain additional
technical aspects of our results are provided in the appendix.

7.2.2.1 Notation

For any two sequences an and bn, the notation an - bn or an = O (bn) means that an ≤ Cbn
for some universal constant C. Similarly, the notation an � bn or an = Θ(bn) denotes that
both the conditions, an - bn and bn - an, hold. Throughout this chapter, π denotes a
variable and π denotes the mathematical constant “pi”.

7.2.2.2 Experimental settings

We summarize a few common aspects of the numerical experiments presented in this chapter.
Population-level computations were done using numerical integration on a sufficiently fine
grid. With finite samples, the stopping criteria for the convergence of EM were: (1) the
change in the iterates was small enough (< 0.01/n), or (2) the number of iterations was too
large (greater than 100, 000). Experiments were averaged over several repetitions (ranging
from 25 to 400). In majority of the runs, for each case, criteria (1) led to convergence. In
our plots for sample EM, we report m̂e + 2ŝe on the y-axis, where m̂e, ŝe respectively denote
the mean and standard deviation across the experiments for the metric under consideration,
e.g., the parameter estimation error. Furthermore, whenever a slope is provided, it is the
slope for the least-squares fit on the log-log scale for the quantity on y-axis when fitted with
the quantity reported on the x-axis. For instance, in Figure 7.1(b), we plot |θ̂n−θ∗| on the y-
axis value versus the sample size n on the x-axis, averaged over 400 experiments, accounting
for the deviation across these experiments. Furthermore, the green dotted line with legend
π = 0.3 and the corresponding slope −0.48 denote the least-squares fit and the respective
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slope for log |θ̂n − θ∗| (green solid dots) with log n for the experiments corresponding to the
setting π = 0.3.

7.3 Motivating simulations and problem set-up

In this section, we explore a wide range of behavior demonstrated by EM for certain set-
tings of over-specified location Gaussian mixtures. We begin with several simulations that
illustrate fast and slow convergence of EM for various settings, and serve as a motivation for
the theoretical results derived later in the chapter. We provide basic background on EM in
Section 7.3.3, and describe the problems to be tackled.

7.3.1 Problem set-up

Let φ(· ;µ,Σ) denote the density of a Gaussian random vector with mean µ and covariance
Σ. Consider the two component Gaussian mixture model with density

f(x; θ∗, σ,π) := πφ(x; θ∗, σ2Id) + (1− π)φ(x;−θ∗, σ2Id). (7.1)

Given n samples from the distribution (7.1), suppose that we use the EM algorithm to fit
a two-component location Gaussian mixture with fixed weights and variance1 and special
structure on the location parameters—more precisely, we fit the model with density

f(x; θ, σ,π) := πφ(x; θ, σ2Id) + (1− π)φ(x;−θ, σ2Id) (7.2)

using the EM algorithm, and take the solution2 as an estimate of θ∗. An important aspect of
the problem at hand is the signal strength, which is measured as the separation between the
means of mixture components relative to the spread in the components. For the model (7.1),
the signal strength is given by the ratio ‖θ∗‖2 /σ. When this ratio is large, we refer to it
as the strong signal case; otherwise, it corresponds to the weak signal case. Of particular
interest to us is the behavior of EM in the limit of weak signal when there is no separation;
i.e., ‖θ∗‖2 = 0. For such cases, we call the fit (7.2) an unbalanced fit when π 6= 1

2
and a

balanced fit when π = 1
2
. Note that the setting of θ∗ = 0 corresponds to the simplest case of

over-specified fit, since the true model has just one component (standard normal distribution
irrespective of the parameter π) but the fitted model has two (one extra) component (unless
the EM estimate is also 0). We now present the empirical behavior of EM for these models
and defer the derivation of EM updates to Section 7.3.3.

1Refer to Section 7.6 for a discussion for the case of unknown weights and variances.
2Strictly speaking, different initialization of EM may converge to different estimates. For the settings

analyzed theoretically in this work, the EM always converges towards the same estimate in the limit of infinite
steps, and we use a stopping criterion to determine the final estimate. See the discussion on experimental
settings in Section ?? for more details.
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7.3.2 Numerical Experiments: Fast to slow convergence of EM

We begin with a numerical study of the effect of separation among the mixtures on the
statistical behavior of the estimates returned by EM. Our main observation is that weak or
no separation leads to relatively low accuracy estimates. Additional simulations for more
general mixtures, including more than two components, are provided in Section 7.6.3. Next,
via numerical integration on a grid with sufficiently small discretization width, we simulate
the behavior of the population EM algorithm width—an idealized version of EM in the limit
of infinite samples—in order to understand the effect of signal strength on EM’s algorithmic
rate of convergence, i.e., the number of steps needed for population EM to converge to a
desired accuracy. We observe a slow down of EM on the algorithmic front when the signal
strength approaches zero.

7.3.2.1 Effect of signal strength on sample EM

In Figure 7.1, we show simulation results for data generated from the model (7.1) in di-
mension d = 1 and noise variance σ2 = 1, and for three different values of the weight
π ∈ {0.1, 0.3, 0.5}. In all cases, we fit a two-location Gaussian mixture with fixed weights
and variance as specified by equation (7.2). The two panels show the estimation error of
the EM solution as a function of n for two distinct cases of the data-generating mechanism:
(a) in the strong signal case, we set θ∗ = 5 so that the data has two well-separated mixture
components, and (b) to obtain the limiting case of no signal, we set θ∗ = 0, so that the two
mixture components in the data-generating distribution collapse to one, and we are simply
fitting the data from a standard normal distribution.

In the strong signal case, it is well known [10, 64] that EM solutions have an estimation
error (measured by the Euclidean distance between the EM estimate and the true parameter

θ∗) that achieves the classical (parametric) rate n−
1
2 ; the empirical results in Figure 7.1(a)

are simply a confirmation of these theoretical predictions. More interesting is the case of no
signal (which is the limiting case with weak signal), where the simulation results shown in
panel (b) of Figure 7.1 reveal a different story. In this case, whereas the EM solution (with

random standard normal initialization) has an error that decays as n−
1
2 when π 6= 1/2, its

error decays at the considerably slower rate n−
1
4 when π = 1/2. We return to these cases in

further detail in Section 7.4.

7.3.2.2 Interesting behavior of population EM

The intriguing behavior of the sample EM algorithm in the “no signal” case motivated us
to examine the behavior of population EM for this case. To be clear, while sample EM
is the practical algorithm that can actually be applied, it can be insightful for theoretical
purposes to first analyze the convergence of the population EM updates, and then leverage
these findings to understand the behavior of sample EM [10]. Our analysis follows a similar
road-map. Interestingly, for the case with θ∗ = 0, the population EM algorithm behaves
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Figure 7.1: Plots of the error |θ̂n−θ∗| in the EM solution versus the sample size n, focusing on
the effect of signal strength on EM solution accuracy. The true data distribution is given by
πN (θ∗, 1) + (1− π)N (−θ∗, 1) and we use EM to fit the model πN (θ, 1) + (1− π)N (−θ, 1),

generating the EM estimate θ̂n based on n samples. (a) When the signal is strong, the

estimation rate decays at the parametric rate n−
1
2 , as revealed by the −1/2 slope in a least-

square fit of the log error based on the log sample size log n. (b) When there is no signal
(θ∗ = 0), then depending on the choice of weight π in the fitted model, we observe two

distinct scalings for the error: n−
1
2 when π 6= 0.5, and, n−

1
4 when π = 0.5, again as revealed

by least-squares fits of the log error using the log sample size log n.

significantly differently for the unbalanced fit (π 6= 1
2
) as compared to the balanced fit

(π = 1
2
) (equation (7.2)). In Figure 7.2, we plot the distance of the population EM iterate

θt to the true parameter value, θ∗ = 0, on the vertical axis, versus the iteration number t
on the horizontal axis. With the vertical axis on a log scale, a geometric convergence rate of
the algorithm shows up as a negatively sloped line (disregarding transient effects in the first
few iterations).

For the unbalanced mixtures in panel (a), we see that EM converges geometrically quickly,
although the rate of convergence (corresponding to the slope of the line) tends towards zero
as the mixture weight π tends towards 1/2 from below. For π = 1/2, we obtain a balanced
mixture, and, as shown in the plot in panel (b), the convergence rate is now sub-geometric.
In fact, the behavior of the iterates is extremely well characterized by the recursion θ 7→ θ

1+θ2 .
The theory to follow provides a precise characterization of the behavior seen in Fig-

ures 7.1(b) and 7.2. Furthermore, in Section 7.6, we provide further support for relevannce
of our theoretical results in explaining the behavior of EM for other classes of over-specified
models, including Gaussian mixture models with unknown weights as well as mixtures of
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Figure 7.2: Behavior of the (numerically computed) population EM updates (7.8) when the
underlying data distribution isN (0, 1). (a) Unbalanced mixture fits (7.2) with weights (π, 1−
π): We observe geometric convergence towards θ∗ = 0 for all π 6= 0.5 although the rate of
convergence gets slower as π → 0.5. (b) Balanced mixture fits (7.2) with weights (0.5, 0.5):
We observe two phases of convergence. First, EM quickly converges to ball of constant radius
and then it exhibits slow convergence towards θ∗ = 0. Indeed, we see that during the slow
convergence, the population EM updates track the curve given by θt+1 = θt/(1 + (θt)2) very
closely, as predicted by our theory.

linear regressions.

7.3.3 EM updates for the model fit (7.2)

In this section, we provide a quick introduction to the EM updates. Readers familiar with the
literature can skip directly to the main results in Section 7.4. Recall that the two-component
model fit is based on the density

πφ(x; θ, σ2Id) + (1− π)φ(x;−θ, σ2Id). (7.3)

From now on we assume that the data is drawn from the zero-mean Gaussian distribution
N (0, σ2Id). Note that the model fit described above contains the true model with θ∗ = 0
and it is referred to as an over-specified fit since for any non-zero θ, the fitted model has two
components.

The maximum likelihood estimate is obtained by solving the following optimization prob-



Chapter 7. Two-Faced Slowdown of EM with Singular Mixture Models 105

lem

θ̂MLE
n ∈ arg max

θ∈Θ

1

n

n∑

i=1

{
log(πφ(xi; θ, σ

2Id) + (1− π)φ(xi;−θ, σ2Id))
}
. (7.4)

In general, there is no closed-form expression for θ̂MLE
n . The EM algorithm circumvents this

problem via a minorization-maximization scheme. Indeed, population EM is a surrogate
method to compute the maximizer of the population log-likelihood

L(θ) := EX
[
log(πφ(X; θ, σ2Id) + (1− π)φ(X;−θ, σ2Id)

]
, (7.5)

where the expectation is taken over the true distribution. On the other hand, sample EM
attempts to estimate θ̂MLE

n . We now describe the expressions for both the sample and
population EM updates for the model-fit (7.3).

Given any point θ, the EM algorithm proceeds in two steps: (1) compute a surrogate
function Q(·; θ) such that Q(θ′; θ) ≤ L(θ′) and Q(θ; θ) = L(θ); and (2) compute the maxi-
mizer of Q(θ′; θ) with respect to θ′. These steps are referred to as the E-step and the M-step,
respectively. In the case of two-component location Gaussian mixtures, it is useful to de-
scribe a hidden variable representation of the mixture model. Consider a binary indicator
variable Z ∈ {0, 1} with the marginal distribution P(Z = 1) = π and P(Z = 0) = 1− π, and
define the conditional distributions

(X | Z = 0) ∼ N (−θ, σ2Id), and (X | Z = 1) ∼ N (θ, σ2Id).

These marginal and conditional distributions define a joint distribution over the pair (X,Z),
and by construction, the induced marginal distribution over X is a Gaussian mixture of the
form (7.3). For EM, we first compute the conditional probability of Z = 1 given X = x:

wθ(x) = wπ
θ (x) :=

π exp
(
−‖θ−x‖

2
2

2σ2

)

π exp
(
−‖θ−x‖

2
2

2σ2

)
+ (1− π) exp

(
−‖θ+x‖

2
2

2σ2

) . (7.6)

Then, given a vector θ, the E-step in the population EM algorithm involves computing the
minorization function θ′ 7→ Q(θ′, θ). Doing so is equivalent to computing the expectation

Q(θ′; θ) = −1

2
E
[
wθ(X) ‖X − θ′‖2

2 + (1− wθ(X)) ‖X + θ′‖2
2

]
, (7.7)

where the expectation is taken over the true distribution (here N (0, σ2Id). In the M-step,
we maximize the function θ′ 7→ Q(θ′; θ). Doing so defines a mapping M : Rd → Rd, known
as the population EM operator, given by

M(θ) = arg max
θ′∈Rd

Q(θ′, θ) = E
[
(2wθ(X)− 1)X

]
. (7.8)
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In this definition, the second equality follows by computing the gradient ∇θ′Q, and setting
it to zero. In summary, for the two-component location mixtures considered in this chapter,
the population EM algorithm is defined by the sequence θt+1 = M(θt), where the operator
M is defined in equation (7.8).

We obtain the sample EM update by simply replacing the expectation E in equations (7.7)
and (7.8) by the empirical average based on an observed set of samples. In particular, given
a set of i.i.d. samples {Xi}ni=1, the sample EM operator Mn : Rd 7→ Rd takes the form

Mn(θ) :=
1

n

n∑

i=1

(2wθ(Xi)− 1)Xi. (7.9)

Overall, the sample EM algorithm generates the sequence of iterates given by θt+1 = Mn(θt).
In the sequel, we study the convergence of EM both for the population EM algorithm in

which the updates are given by θt+1 = M(θt), and the sample-based EM sequence given by
θt+1 = Mn(θt). With this notation in place, we now turn to the main results of this chapter.

7.4 Main results

In this section, we state our main results for the convergence rates of the EM updates under
the unbalanced and balanced mixture fit. We start with the easier case of unbalanced mixture
fit in Section 7.4.1 followed by the more delicate (and interesting) case of the balanced fit in
Section 7.4.2.

7.4.1 Behavior of EM for unbalanced mixtures

We begin with a characterization of both the population and sample-based EM updates in
the setting of unbalanced mixtures. In particular, we assume that the fitted two-components
mixture model (7.3) has known weights π and 1−π, where π ∈ (0, 1/2). The following result
characterizes the behavior of the EM updates for this set-up.

Theorem 7.1. Suppose that we fit an unbalanced instance (i.e., π 6= 1
2
) of the mixture

model (7.3) to N (0, σ2Id) data. Then:

(a) The population EM operator (7.8) is globally strictly contractive, meaning that

‖M(θ)‖2 ≤
(
1− ρ2/2

)
‖θ‖2 for all θ ∈ Rd, (7.10a)

where ρ := |1− 2π| ∈ (0, 1).

(b) There are universal constants c, c′ such that given any δ ∈ (0, 1) and a sample size n ≥
cσ

2

ρ4 (d+log(1/δ)), the sample EM sequence θt+1 = Mn(θt) generated by the update (7.9)
satisfies the upper bound

∥∥θt
∥∥

2
≤
∥∥θ0
∥∥

2

(
1− ρ2

2

)t
+
c′(‖θ0‖2 σ

2 + ρσ)

ρ2

√
d+ log(1/δ)

n
, (7.10b)
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with probability at least 1− δ.

See Appendix F.1 for the proof of this theorem.

Fast convergence of population EM: The bulk of the effort in proving Theorem 7.1
lies in establishing the guarantee (7.10a) for the population EM iterates. Such a contraction
bound immediately yields the exponential fast convergence of the population EM updates
θt+1 = M(θt) to θ∗ = 0:

∥∥θT
∥∥

2
≤ ε for T ≥ 1

log 1
(1−ρ2/2)

· log

(‖θ0‖2

ε

)
. (7.11)

Since the mixture weights (π, 1−π) are bounded away from 1/2, we have that ρ = |1−2π| is
bounded away from zero, and thus population EM iterates converge in O (log(1/ε)) steps to
an ε-ball around θ∗ = 0. This result is equivalent to showing that in the unbalanced instance
(π 6= 1/2), the log-likelihood is strongly concave around the true parameter.

Statistical rate of sample EM: Once the bounds (7.10a) and (7.11)) have been estab-
lished, the proof of the statistical rate (7.10b) for sample EM utilizes the scheme laid out
by Balakrishnan et al. [10]. In particular, we prove a non-asymptotic uniform law of large
numbers (Lemma 7.1 stated in Section 7.5.1) that allows for the translation from population
to sample EM iterates. Roughly speaking, Lemma 7.1 guarantees that for any radius r > 0,
tolerance δ ∈ (0, 1), and sufficiently large n, we have

P

[
sup
‖θ‖2≤r

‖Mn(θ)−M(θ)‖2 ≤ c′σ(σr + ρ)

√
d+ log(1/δ)

n

]
≥ 1− δ. (7.12)

This bound, when combined with the contractive behavior (7.10a) or equivalently the ex-
ponentially fast convergence (7.11) of the population EM iterates allows us to establish the
stated bound (7.10b). (See, e.g., Theorem 2 in the paper [10].)

Putting the pieces together, we conclude that the sample EM updates converge to an
estimate of θ∗—that has Euclidean error of the order (d/n)

1
2 —after a relatively small number

of steps that are of the order log(n/d). Note that this theoretical prediction is verified by
the simulation study in Figure 7.1(b) for the univariate setting (d = 1) of the unbalanced
mixture-fit. In Figure 7.3, we present the scaling of the radius of the final EM iterate3 with
respect to the sample size n and the dimension d, averaged over 400 runs of sample EM for
various settings of (n, d). Linear fits on the log-log scale in these simulations suggest a rate

close to (d/n)
1
2 as claimed in Theorem 7.1.

3Refer to the discussion before Section 7.3 for details on the stopping rule for EM.
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Figure 7.3: Scaling of the Euclidean error ‖θ̂n,d− θ∗‖2 for EM estimates θ̂n,d computed using
the unbalanced (π 6= 1

2
) mixture-fit (7.3). Here the true data distribution is N (0, Id), i.e.,

θ∗ = 0, and θ̂n,d denotes the EM iterate upon convergence when we fit a two-mixture model
with mixture weights (0.3, 0.7) using n samples in d dimensions. (a) Scaling with respect to
d for n ∈ {1600, 12800}. (b) Scaling with respect to n for d ∈ {1, 128}. We ran experiments
for several other pairs of (n, d) and the conclusions were the same. The empirical results

here show that that our theoretical upper bound of the order (d/n)
1
2 on the EM solution is

sharp in terms of n and d.

Remark: We make two comments in passing. First, the value of ‖θ0‖2 in the convergence
rate of sample EM updates in Theorem 7.1 can be assumed to be of constant order; this
assumption stems from the fact the population EM operator maps any θ0 to a vector with
norm smaller than

√
2/π (cf. Lemma F.4 in Appendix F.7.1). Second, when the weight

parameter π is assumed to be unknown in the model fit (7.3), the EM algorithm exhibits
fast convergence when π is initialized sufficiently away from 1

2
; see Section 7.6.1 for more

details.

From unbalanced to balanced fit: The bound (7.11) shows that the extent of unbal-
ancedness in the mixture weights plays a crucial role in the geometric rate of convergence for
the population EM. When the mixtures become more balanced, that is, weight π approaches
1/2 or equivalently ρ approaches zero, the number of steps T required to achieve ε-accuracy
scales as O (log(‖θ0‖2 /ε)/ρ

2) and in the limit ρ → 0, this bound degenerates to ∞ for any
finite ε. Indeed, the bound (7.10a) from Theorem 7.1 simply states that the population EM
operator is non-expansive for balanced mixtures (ρ = 0), and does not provide any partic-
ular rate of convergence for this case. It turns out that the EM algorithm is worse in the
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balanced case, both in terms of the optimization speed and in terms of the statistical rate.
This slower statistical rate is in accord with existing results for the MLE in over-specified
mixture models [42]; the novel contribution here is the rigorous analysis of the analogous
behavior for the EM algorithm.

7.4.2 Behavior of EM for balanced mixtures

We start with a sharp characterization of the algorithmic rate of convergence of the popula-
tion EM update for the balanced fit in Section 7.4.2.1, followed by a sharp analysis for the
statistical rate for the sample EM updates in Section 7.4.2.2.

7.4.2.1 Slow convergence of population EM

We show that the population EM operator for the balanced fit is globally convergent, albeit
with a contraction parameter that depends on θ, and degrades towards 1 as ‖θ‖2 → 0. Our
statement involves the constant p := P(|X| ≤ 1) + 1

2
P(|X| > 1), where X ∼ N (0, 1) denotes

a standard normal variate. (Note that p < 1.)

Theorem 7.2. Suppose that we fit a balanced instance (π = 1
2
) of the mixture model (7.3)

to N (0, σ2Id) data. Then the population EM operator (7.8) θ 7→M(θ) has the following
properties:

(a) For all non-zero θ, we have

‖M(θ)‖2

‖θ‖2

≤ γup(θ) := 1− p+
p

1 +
‖θ‖22
2σ2

< 1. (7.13a)

(b) For all non-zero θ such that ‖θ‖2
2 ≤ 5σ2

8
, we have

‖M(θ)‖2

‖θ‖2

≥ γlow(θ) :=
1

1 +
2‖θ‖22
σ2

. (7.13b)

See Appendix F.2 for the proof of Theorem 7.2.

The salient feature of Theorem 7.2 is that the contraction coefficient γup(θ) is not globally
bounded away from 1 and in fact satisfies limθ→0 γup(θ) = 1. In conjunction with the lower
bound (7.13b), we see that

‖M(θ)‖2

‖θ‖2

�
(

1− ‖θ‖
2
2

σ2

)
for small ‖θ‖2. (7.14)

This precise contraction behavior of the population EM operator is in accord with that of
the simulation study in Figure 7.2(b).
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The preceding results show that the population EM updates should exhibit two phases
of behavior. In the first phase, up to a relatively coarse accuracy of the order σ, the iterates
exhibit geometric convergence. Concretely, we are guaranteed to have

∥∥θT0
∥∥

2
≤
√

2σ after

running the algorithm for T0 :=
log(‖θ0‖2

2
/(2σ2))

log(2/(2−p)) steps. In the second phase, as the error

decreases from
√

2σ to a given ε ∈
(
0,
√

2σ
)
, the convergence rate becomes sub-geometric;

concretely, we have

∥∥θT0+t
∥∥

2
≤ ε for t ≥ cσ2

ε2
log(σ/ε). (7.15)

Note that the conclusion (7.15) shows that for small enough ε, the population EM takes
Θ(log(1/ε)/ε2) steps to find ε-accurate estimate of θ∗ = 0. This rate is extremely slow com-
pared to the geometric rate O(log(1/ε)) derived for the unbalanced mixtures in Theorem 7.1.
Hence, the slow rate establishes a qualitative difference in the behavior of the EM algorithm
between the balanced and unbalanced setting.

Moreover, the sub-geometric rate of EM in the balanced case is also in stark contrast
with the favorable behavior of EM for the exact-fitted settings analyzed in past work.
Balakrishnan et al. [10] showed that when the EM algorithm is used to fit a two-component

Gaussian mixture with sufficiently large value of
‖θ?‖2
σ

(known as the high signal-to-noise
ratio, or high SNR for short), the population EM operator is contractive, and hence ge-
ometrically convergent, within a neighborhood of the true parameter θ∗. In a later work
on the two-component balanced mixture fit model, Daskalakis et al. [64] showed that the
convergence is in fact geometric for any non-zero value of the SNR. The model considered in
Theorem 7.2 can be seen as the limiting case of weak signal for a two mixture model—which
degenerates to the Gaussian distribution when the SNR becomes exactly zero. For such a
limit, we observe that the fast convergence of population EM sequence no longer holds.

7.4.2.2 Upper and lower bounds on sample EM

We now turn to the statements of upper and lower bounds on the rate of the sample EM
iterates for the balanced fit on Gaussian data. We begin with an upper bound, which involves

the previously defined function γup(θ) := 1− p+ p/
(
1 +

‖θ‖22
2σ2

)
.

Theorem 7.3. Consider the sample EM updates θt = Mn(θt−1) for the balanced instance
(π = 1

2
) of the mixture model (7.3) based on n i.i.d. N (0, σ2Id) samples. Then, there ex-

ist universal constants {c′k}4
k=1 such that for any scalars α ∈ (0, 1

4
) and δ ∈ (0, 1), any sample

size n ≥ c′1(d+ log(log(1/α)/δ)) and any iterate number t ≥ c′2 log ‖θ
0‖2n
σ2d

+ c′3
(
n
d

) 1
2
−2α

log(n
d
) log( 1

α
),

we have

‖θt‖2 ≤
[
∥∥θ0
∥∥

2
·
t−1∏

j=0

γup(θ
j)

]
+ c′4σ

(
σ2(d+ log log(4/ε)

δ
)

n

) 1
4
−α

, (7.16)

with probability at least 1− δ.
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See Section 7.5 for a discussion of the techniques employed to prove this theorem. The
detailed proof is provided in Appendix F.3, where we also provide some more details on the
definitions of these constants.

As we show in our proofs, once the iteration number t satisfies the lower bound stated in
the theorem, the second term on the right-hand side of the bound (7.16) dominates the first
term; therefore, from this point onwards, the the sample EM iterates have Euclidean norm
of the order (d/n)

1
4
−α. Note that α ∈ (0, 1

4
) can be chosen arbitrarily close to zero, so at the

expense of increasing the lower bound on the number of iterations t by a logarithmic factor
log(1/α), we can obtain rates arbitrarily close to (d/n)

1
4 .

We note that earlier studies of parameter estimation for over-specified mixtures, in both
the frequentist [42] and Bayesian settings [127, 194], have derived a rate of n−

1
4 for the

global maximum of the log likelihood. To the best of our knowledge, Theorem 7.3 is the first
non-asymptotic algorithmic result that shows that such rates apply to the fixed points and
dynamics of the EM algorithm, which need not converge to the global optima.

The preceding discussion was devoted to an upper bound on sample EM for the balanced
fit. Let us now match this upper bound, at least in the univariate case d = 1, by showing
that any non-zero fixed point of the sample EM updates has Euclidean norm of the order
n−

1
4 . In particular, we prove the following lower bound.

Theorem 7.4. There are universal positive constants c, c′ such that for any non-zero solution
θ̂n to the sample EM fixed-point equation θ = Mn(θ) for the balanced mixture fit, we have

P
[
|θ̂n| ≥ c n−

1
4

]
≥ c′. (7.17)

See Appendix F.4 for the proof of this theorem.
Since the iterative EM scheme converges only to one of its fixed points, the theorem

shows that one cannot obtain a high-probability bound for any radius smaller than n−
1
4 .

As a consequence, with constant probability, the radius of convergence n−
1
4 for sample EM

convergence in Theorem 7.3 for the univariate setting is tight.

7.5 New techniques for sharp analysis of sample EM

In this section, we highlight the new proof techniques introduced in this work that are
required to obtain the sharp characterization of the sample EM updates in the balanced case
(Theorem 7.3). We begin in Section 7.5.1 by elaborating that a direct application of the
previous frameworks leads to sub-optimal statistical rates for sample EM in the balanced fit.
This sub-optimality motivates the development of new methods for analyzing the behavior of
the sample EM iterates, based on an annulus-based localization argument over a sequence of
epochs, which we sketch out in Sections 7.5.2 and 7.5.3. We remark that our novel techniques,
introduced here for analyzing EM with the balanced fit, are likely to be of independent
interest. We believe that they can potentially be extended to derive sharp statistical rates
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in other settings when the algorithm under consideration does not exhibit an geometrically
fast convergence.

7.5.1 A sub-optimal guarantee

Let us recall the set-up for the procedure suggested by Balakrishnan et al. [10], specializing
to the case where the true parameter θ∗ = 0, as in our specific set-up. Using the triangle
inequality, the norm of the sample EM iterates θt+1 = Mn(θt) can be upper bounded by a
sum of two terms as follows:

∥∥θt+1
∥∥

2
=
∥∥Mn(θt)

∥∥
2
≤
∥∥Mn(θt)−M(θt)

∥∥
2

+
∥∥M(θt)

∥∥
2

(7.18)

for all t ≥ 0. The first term on the right-hand side corresponds to the deviations between the
sample and population EM operators, and can be controlled via empirical process theory.
The second term corresponds to the behavior of the (deterministic) population EM operator,
as applied to the sample EM iterate θt, and needs to be controlled via a result on population
EM.

Theorem 2 from Balakrishnan et al. [10] is based on imposing generic conditions on each
of these two terms, and then using them to derive a generic bound on the sample EM iterates.
In the current context, their theorem can be summarized as follows. For given tolerances
δ ∈ (0, 1), ε > 0 and starting radius r > 0, suppose that there exists a function ε(n, δ) > 0,
decreasing in terms of the sample size n, and a contraction coefficient κ ∈ (0, 1) such that

sup
‖θ‖2≥ε

‖M(θ)‖2

‖θ‖2

≤κ and P

[
sup
‖θ‖2≤r

‖Mn(θ)−M(θ)‖2≤ε(n, δ)
]
≥1−δ. (7.19a)

Then for a sample size n sufficiently large and ε sufficiently small to ensure that

ε
(i)

≤ ε(n, δ)

1− κ
(ii)

≤ r, (7.19b)

the sample EM iterates are guaranteed to converge to a ball of radius ε(n, δ)/(1− κ) around
the true parameter θ∗ = 0.

In order to apply this theorem to the current setting, we need to specify a choice of ε(n, δ)
for which the bound on the empirical process holds. The following auxiliary result provides
such control for us:

Lemma 7.1. There exists universal positive constants c1 and c2 such that for any positive
radius r, any threshold δ ∈ (0, 1), and any sample size n ≥ c2d log(1/δ), we have

P

[
sup
‖θ‖2≤r

‖Mn(θ)−M(θ)‖2 ≤ c1σ(σr + ρ)

√
d+ log(1/δ)

n

]
≥ 1− δ, (7.20)

where ρ = |1− 2π| denotes the imbalance in the mixture fit (7.3).
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The proof of this lemma is based on Rademacher complexity arguments; see Appendix B.1
for the details.

With the choice r = ‖θ0‖2, Lemma 7.1 guarantees that the second inequality in line (7.19a)

holds with ε(n, δ) . σ2 ‖θ0‖2

√
d/n. On the other hand, Theorem 7.2 implies that for any

θ such that ‖θ‖2 ≥ ε, we have that population EM is contractive with parameter bounded
above by κ(ε) � 1 − ε2. In order to satisfy inequality (i) in equation (7.19b), we solve the
equation ε(n, δ)/(1− κ(ε)) = ε. Tracking only the dependency on d and n, we obtain4

√
d/n

ε2
= ε =⇒ ε = O

(
(d/n)

1
6

)
, (7.21)

which shows that the Euclidean norm of the sample EM iterate is bounded by a term of
order (d/n)

1
6 .

While this rate is much slower than the classical (d/n)
1
2 rate that we established in the

unbalanced case, it does not coincide with the n−
1
4 rate that we obtained in Figure 7.1(b)

for balanced setting with d = 1. Thus, the proof technique based on the framework of
Balakrishnan et al. [10] appears to be non-optimal. The sub-optimality of this approach
necessitates the development of a more refined technique. Before sketching this technique,
we now quantify empirically the convergence rate of sample EM in terms of both dimension
d and sample size n for the balanced mixture fit. In Figure 7.4, we summarize the results
of these experiments. The two panels in the figure exhibit that the error in the sample EM
estimate scales as (d/n)

1
4 , thereby providing further numerical evidence that the preceding

approach indeed led to a sub-optimal result.

7.5.2 Annulus-based localization over epochs

Let us try to understand why the preceding argument led to a sub-optimal bound. In brief,
its “one-shot” nature contains two major deficiencies. First, the tolerance parameter ε is
used both (a) for measuring the contractivity of the updates, as in the first inequality in
equation (7.19a), and (b) for determining the final accuracy that we achieve. At earlier
phases of the iteration, the algorithm will converge more quickly than suggested by the
worst-case analysis based on the final accuracy. A second deficiency is that the argument
uses the radius r only once, setting it to a constant to reflect the initialization θ0 at the start
of the algorithm. This means that we failed to “localize” our bound on the empirical process
in Lemma 7.1. At later iterations of the algorithm, the norm ‖θt‖2 will be smaller, meaning
that the empirical process can be more tightly controlled. We note that ideas of localizing
the radius r for an empirical process plays a crucial role in obtaining sharp bounds on the
error of M -estimation procedures [239, 14, 143, 246].

A novel aspect of the localization argument in our setting is the use of an annulus instead
of a ball. In particular, we analyze the iterates from the EM algorithm assuming that they

4Moreover, with this choice of ε, inequality (ii) in equation (7.19b) is satisfied with a constant r, as long
as n is sufficiently large relative to d.
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Figure 7.4: Scaling of the Euclidean error ‖θ̂n,d − θ∗‖2 for EM estimates θ̂n,d computed
using the balanced (π = 1

2
) mixture-fit (7.2). Here the true data distribution is N (0, Id),

i.e., θ∗ = 0, and θ̂n,d denotes the EM iterate upon convergence when we fit a balanced
mixture with n samples in d dimensions. (a) Scaling with respect to d for n ∈ {1600, 12800}.
(b) Scaling with respect to n for d ∈ {1, 128}. We ran experiments for several other pairs of
(n, d) and the conclusions were the same. Clearly, the empirical results suggest a scaling of

order (d/n)
1
4 for the final iterate of sample-based EM.

lie within a pre-specicied annulus, defined by an inner and an outer radius. On one hand,
the outer radius of the annulus helps to provide a sharp control on the perturbation bounds
between the population and sample operators. On the other hand, the inner radius of the
annulus is used to tightly control the algorithmic rate of convergence.

We now summarize our key arguments. The entire sequence of sample EM iterations
is broken up into a sequence of different epochs. During each epoch, we localize the EM
iterates to an annulus. In more detail:

• We index epochs by the integer ` = 0, 1, 2, . . ., and associate them with a sequence
{α`}`≥0 of scalars in the interval [0, 1

4
]. The input to epoch ` is the scalar α`, and the

output from epoch ` is the scalar α`+1.

• The `-th epoch is defined to be the set of all iterations t of the sample EM algorithm
such that the sample EM iterate θt lies in the following annulus:

(
d

n

)α`+1

≤ ‖θt − θ∗‖2 ≤
(
d

n

)α`
. (7.22)



Chapter 7. Two-Faced Slowdown of EM with Singular Mixture Models 115

n−α1

n−α2

n−α3
n−α4

n−α⋆
θ⋆
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⋱
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θt ⪯ n−1/4+ϵ

(a) (b)

Figure 7.5: Illustration of the annulus-based-localization argument part (I): Defining the
epochs or equivalently the annuli. (a) Outer radius for the `-th epoch is given by n−α`

(tracking dependency only on n). (b) For any given epoch `, we analyze the behavior of the
EM sequence θt+1 = Mn(θt), when θt lies in the annulus around θ∗ with inner and outer radii
given by n−α`+1 , and n−α` , respectively. We prove that EM iterates move from one epoch to
the next epoch (e.g. epoch ` to epoch `+1) after at most

√
n iterations. Given the definition

of α`, we see that the inner and outer radii of the aforementioned annulus converges linearly
to n−

1
4 . Consequently, after at most log(1/α) epochs (or

√
n log(1/α) iterations), the EM

iterate lies in a ball of radius n−1/4+α around θ∗. We illustrate the one-step dynamics in any
given annulus in Figure 7.6.

We establish that the sample-EM operator is non-expansive so that each epoch is well-
defined (and that subsequent iterations can only correspond to subsequent epochs).

• Upon completion of epoch ` at iteration T`, the EM algorithm returns an estimate θT`

such that ‖θT`‖2 - (d/n)α`+1 , where

α`+1 =
1

3
α` +

1

6
. (7.23)

Note that the new scalar α`+1 serves as the input to epoch `+ 1.

The recursion (7.23) is crucial in our analysis: it tracks the evolution of the exponent acting
upon the ratio d/n, and the rate (d/n)α`+1 is the bound on the Euclidean norm of the sample
EM iterates achieved at the end of epoch `.

A few properties of the recursion (7.23) are worth noting. First, given our initialization
α0 = 0, we see that α1 = 1

6
, which agrees with the outcome of our one-step analysis from

above. Second, as the recursion is iterated, it converges from below to the fixed point
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∥M(θt) − Mn(θt)∥ ≤ n−αℓ

n

∥M(θt)∥
∥θt∥ ≤ 1 − n−2αℓ+1

n−αℓ+1

n−αℓ

θ⋆

θt

Mn(θt)
M(θt)

Figure 7.6: Illustration of the annulus-based-localization argument part (II): Dynamics of
EM in the `-th epoch or equivalently the annulus n−α`+1 ≤ ‖θt − θ∗‖2 ≤ n−α` . For a given
epoch `, we analyze the behavior of the EM sequence θt+1 = Mn(θt), when θt lies in the
annulus with inner and outer radii given by n−α`+1 , and n−α` , respectively. In this epoch,
the population EM operator M(θt) contracts with a contraction coefficient that depends on
n−α`+1 , which is the inner radius of the disc, while the perturbation error ‖Mn(θt)−M(θ)‖2

between the sample and population EM operators depends on n−α` , which is the outer radius
of the disc. Overall, we prove that Mn is non-expansive and after at most

√
n steps, the

sample EM updates move from epoch ` to epoch `+ 1.

α∗ = 1
4
. Thus, our argument will allow us to prove a bound arbitrarily close to (d/n)

1
4 , as

stated formally in Theorem 7.3 to follow. Refer to Figures 7.5 and 7.6 for an illustration of
the definition of these annuli, epochs and the associated conclusions.

7.5.3 How does the key recursion (7.23) arise?

Let us now sketch out how the key recursion (7.23) arises. Consider epoch ` specified by
input α` <

1
4
, and consider an iterate θt in the following annulus: ‖θt‖2 ∈ [(d/n)α`+1 , (d/n)α` ].

We begin by proving that this initial condition ensures that ‖θt‖2 is less than level (d/n)α`

for all future iterations; for details, see Lemma F.3 stated in the Appendix. Given this
guarantee, our second step is to make use of the inner radius of the considered annulus to
apply Theorem 7.2 for the population EM operator, for all iterations t such that ‖θt‖2 ≥



Chapter 7. Two-Faced Slowdown of EM with Singular Mixture Models 117

(d/n)α`+1 . Consequently, for these iterations, we have

∥∥M(θt)
∥∥

2
≤
(

1− p+
p

1 +
‖θ‖22
2σ2

)∥∥θt
∥∥

2

- (1− (d/n)2α`+1)(d/n)α` ≤ γ̃

(
d

n

)α`
, (7.24a)

where γ̃ := e−(d/n)2α`+1
. On the other hand, using the outer radii of the annulus and applying

Lemma 7.1 for this epoch, we obtain that

∥∥Mn(θt)−M(θt)
∥∥

2
-

(
d

n

)α`√d

n
=

(
d

n

)α`+1/2

, (7.24b)

for all t in the epoch. Unfolding the basic triangle inequality (7.18) for T steps, we find that
∥∥θt+T

∥∥
2
≤
∥∥Mn(θt)−M(θt)

∥∥
2

(1 + γ̃ + . . .+ γ̃T−1) + γ̃T ‖θt‖2

≤ 1

1− γ̃
∥∥Mn(θt)−M(θt)

∥∥
2

+ e−T (d/n)2α`+1
(d/n)α` .

The second term decays exponentially in T , and our analysis shows that it is dominated by
the first term in the relevant regime of analysis. Examining the first term, we find that θt+T

has Euclidean norm of the order

∥∥θt+T
∥∥

2
-

1

1− γ̃
∥∥Mn(θt)−M(θt)

∥∥
2
≈
(
d

n

)−2α`+1
(
d

n

)α`+1/2

︸ ︷︷ ︸
= : r

. (7.25)

The epoch is said to be complete once
∥∥θt+T

∥∥
2
-
(
d
n

)α`+1 . Disregarding constants, this

condition is satisfied when r =
(
d
n

)α`+1 , or equivalently when

(
d

n

)−2α`+1
(
d

n

)α`+1/2

=

(
d

n

)α`+1

.

Viewing this equation as a function of the pair (α`+1, α`) and solving for α`+1 in terms of
α` yields the recursion (7.23). Refer to Figure 7.6 for a visual illustration of the localization
argument summarized above for a given epoch.

Of course, the preceding discussion is informal, and there remain many details to be
addressed in order to obtain a formal proof. We refer the reader to Appendix F.3 for the
complete argument.

7.6 Generality of results

Thus far, we have characterized the behavior of the EM algorithm for different settings of
over-specified location Gaussian mixtures. We established rigorous statistical guarantees
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of EM under two particular but representative settings of over-specified location Gaussian
mixtures: the balanced and unbalanced mixture-fit. The log-likelihood for the unbalanced fit
remains strongly log-concave5 (due to the fixed weights and location parameters being sign

flips) and hence the Euclidean error of the final iterate of EM decays at the usual rate (d/n)
1
2

with n samples in d dimensions. However, in the balanced case, the log-likelihood is no longer
strongly log-concave and the error decays at the slower rate (d/n)

1
4 . We view our results

as the first step in understanding and possibly improving the EM algorithm in non-regular
settings. We now provide a detailed discussion that sheds light on the general applicability
of our results. In particular, we discuss the behavior of EM under the following settings:
(i) over-specified mixture models with unknown weight parameters (Section 7.6.1), (ii) over-
specified mixture of linear regression (Section 7.6.2), and (iii) more general settings with
over-specified mixture models (Section 7.6.3). We conclude the chapter with a discussion of
several future directions that arise from the previous settings in Section 7.7.

7.6.1 When the weights are unknown

Our theoretical analysis so far assumed that the weights were fixed, an assumption common
to a number of previous papers in the area [10, 64, 146]. In Appendix F.7.2, we consider
the case of unknown weights for the model fit (7.3). In this context, our main contribution
is to show that if the weights are initialized far away from 1

2
—meaning that the initial

mixture is highly unbalanced—then the EM algorithm converges quickly, and the results
from Theorem 7.1 are valid. (See Lemma F.5 in Appendix F.7.2 for the details.) On the
other hand, if the initial mixture is not heavily imbalanced, we observe the slow convergence
of EM consistent with Theorems 7.2 and 7.3.

7.6.2 Slow rates for mixture of regressions

Thus far, we have considered the behavior of the EM algorithm in application to parameter
estimation in mixture models. Our findings turn out to hold somewhat more generally, with
Theorems 7.2 and 7.3 having analogues when the EM algorithm is used to fit a mixture of
linear regressions in over-specified settings. Concretely, suppose that (Y1, X1), . . . , (Yn, Xn) ∈
R× Rd are i.i.d. samples generated from the model

Yi = X>i θ
∗ + σ

√
2ηξi, for i = 1, . . . , n, (7.26)

where {√2ηξi}ni=1 are i.i.d. standard Gaussian variates, and the covariate vectors Xi ∈ Rd

are also i.i.d. samples from the standard multivariate Gaussian N (0, Id). Of interest is to
estimate the parameter θ∗ using these samples and EM is a popular method for doing so.
When θ∗ has sufficiently large Euclidean norm, a setting referred to as the strong signal case,
Balakrishnan et al. [10] showed that the estimate returned by EM is at a distance (d/n)

1
2

5Moreover, in Appendix F.8 we differentiate the unbalanced and balanced fit based on the log-likelihood
and the Fisher matrix and provide a heuristic justification for the different rates between the two cases.
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from the true parameter θ∗ with high probability. On the other hand, our analysis shows
that when ‖θ∗‖2 decays to zero—leading to an over-specified setting—the convergence of EM
becomes slow. In particular, the EM algorithm takes significantly more steps and returns an
estimate that is statistically worse, lying at Euclidean distance of the order (d/n)

1
4 from the

true parameter. While the EM operators in this case are slightly different when compared
to the over-specified Gaussian mixture analyzed before, the proof techniques remain similar.
More concretely, we first show that the convergence of population EM is slow (similar to
Theorem 7.2) and then use the annulus-based localization argument (similar to the proof of
Theorem 7.3 from Section 7.5) to derive a sharp rate. For completeness, we present these
results formally in Lemma F.6 and Corollary F.2 in Appendix F.9.

7.6.3 Slow rates for general mixtures

We now present several experiments that provide numerical backing to the claim that the slow
rate of order n−

1
4 is not merely an artifact of the special balanced fit ((7.3) with π = 1

2
). We

demonstrate that the slow convergence of EM is very likely to arise while fitting general over-
specified location Gaussian mixtures with unknown weights (and known covariance). We
consider three settings: (A) fitting several general over-specified location Gaussian mixture
fits to Gaussian data (Figure 7.7), (B) fitting a special three-component mixture fit to a
two mixture of Gaussian (Figure 7.8), and (C) fitting mixtures with unknown weights and
location parameters when the number of components in the fitted model is over-specified by
two (Figure 7.9). We now turn to the details of these settings.

General over-specified mixture fits on Gaussian data: First, we remark that the
fast convergence in the unbalanced fit (Theorem 7.1) was a joint result of the facts that (a)
the weights were fixed and unequal, and (b) the parameters were constrained to be a sign
flip. If either of these conditions is violated, the EM algorithm exhibits slow convergence on
both algorithmic and statistical fronts. Theorems 7.2, 7.3 and 7.4 provide rigorous details
for the case of equal and fixed weights (balanced fit). When the weights are unknown, EM
can exhibit slow rate (see Section 7.6.1 and Appendix F.7.2 for further details). When the
weights are fixed and unequal, but the location parameters are estimated freely—that is,
with the model πφ(x; θ1, 1) + (1−π)φ(x; θ2, 1), as illustrated in Figure 7.7(a)—then the EM

estimates have error6 of order n−
1
4 . In such cases, the parameter estimates approximately

satisfy the relation
∑

k πkθ̂k,n ≈ 0, since the mean of the data is close to zero; moreover,
for a two-components mixture model, the location estimates become weighted sign flips of
each other. The features are the intuitive reason underlying the similarity of behavior of
EM between this fit and the balanced fit. Finally, when we fit a two mixture model with

6For more general cases, we measure the error of parameter estimation using the Wasserstein metric of
second order Ŵ2,n to account for label-switching between the components. When the true model is standard

Gaussian this metric is simply the weighted Euclidean error: (
∑

πkθ̂
2
k,n)

1
2 , where πk and θ̂k,n, respectively,

denote the mixture weight and the location parameter of the k-th component of the mixture.
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unknown weight parameter and free location parameters, the final error also has a scaling of
order n−

1
4 . Refer to Figure 7.7 for a numerical validation of these results.
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Figure 7.7: Plots of the Wasserstein error Ŵ2,n associated with EM fixed points versus the
sample size for fitting various kinds of location mixture models to standard normal N (0, 1)
data. We fit mixture models with either two or three components, with all location parame-
ters estimated in an unconstrained manner. The lines are obtained by a linear regression of
the log error on the sample size n. (a) Fitting a two-mixture model πN (θ1, 1)+(1−π)N (θ2, 1)
with three different fixed values of weights π ∈ {0.1, 0.3, 0.5} and two (unconstrained) lo-
cation parameters, along with least-squares fits to the log errors. (b) Data plotted as red
triangles is obtained by fitting a two-component model with unknown mixture weights and
two location parameters πN (θ1, 1) + (1 − π)N (θ2, 1), whereas green circles correspond to
results fitting a three-component mixture model

∑3
i=1

1
3
N (θi, 1). In all cases, the EM solu-

tions exhibit the slow n−
1
4 statistical rate for the error in parameter estimation. Also see

Figure 7.9.

Over-specified fits for mixtures of Gaussian data: Using similar reasoning as above,
let us sketch out how our theoretical results also yield usable predictions for more general
over-specified models. Roughly speaking, whenever there are extra number of components to
be estimated, parameters of some of them are likely to end up satisfying certain form of local
constraint. More concretely, suppose that we are given data generated from a k-component
mixture, and we use the EM algorithm to fit the location parameters of a mixture model
with k+ 1 components. Loosely speaking, the EM estimates corresponding to a set of k− 1
components are likely to converge quickly, leaving the two remaining components to fit a
single component in the true model. If the other components are far away, the EM updates
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for the parameters of these two components are unaffected by them and start to behave
like the balanced case. See Figure 7.8 for a numerical illustration of this intuition in an
idealized setting where we use k + 1 = 3 components to fit data generated from a k = 2
component model. In this idealized setting, the error for one of the parameter scales at the
fast rate of order n−

1
2 , and that of the parameter that is locally over-fitted exhibits a slow

rate of order n−
1
4 . Finally, we see that the statistical error of order n−

1
4 also arises when

we over-specify the number of components by more than one. In particular, we observe in
Figure 7.7(b) (green dashed dotted line with solid circles) and Figure 7.9 (both curves) that

a similar scaling of order n−
1
4 arises when we over-specify the number of components by 2

and estimate the weight and location parameters.
Besides formally analyzing EM in these general cases, several other future directions arise

from our work which we now discuss.
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Figure 7.8: Behavior of EM for an over-specified Gaussian mixture with more than two
components. True model: 1

2
N (θ∗1, 1) + 1

2
N (θ∗2, 1) where θ∗1 = 0 and θ∗2 = 10. We fit a

model 1
4
N (−θ1, 1) + 1

4
N (θ1, 1) + 1

2
N (θ2, 1), where we initialize θ0

1 close to θ∗1 and θ0
2 close to

θ∗2. (a) Population EM updates: We observe that while θt1 converges slowly to θ∗1 = 0, the
iterates θt2 converge exponentially fast to θ∗2 = 10. (b) We plot the statistical error for the two

parameters. While the strong signal component has a parametric n−
1
2 rate, for the no signal

component EM has the slower n−
1
4 rate, which is in good agreement with the theoretical

results derived in the chapter. (We remark that the error floor for θt2 in panel (a) arises from
the finite precision inherent to numerical integration.)
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Figure 7.9: Plots of Wasserstein error when both weights and location parameters are un-
known and estimated using EM and the fitted multivariate mixture model is over-specified.
(a) True model: N ([0, 0]>, I2), and fitted model

∑3
i=1wiN (θi, I2) and (b) True model:

2
5
N ([0, 0]>, I2) + 3

5
N ([4, 4]>, I2) and fitted model:

∑4
i=1 wiN (θi, I2). In both cases, once

again we see the scaling of order n−
1
4 for the final error (similar to results in Figure 7.7 and

7.8).

7.7 Conclusion and future directions

In this chapter, we assumed that only the location parameters were unknown and that
the scale parameters of the underlying model are known. Nevertheless in practice, this
assumption is rather restrictive and it is natural to ask what happens if the scale parameters
were also unknown. We note that the MLE is known to have even slower statistical rates for
the estimation error with such higher-order mixtures; therefore, apriori it is an interesting
question to determine if the EM algorithm also suffers from a similar slow down when the
scale parameters are unknown. The next chapter investigates this question in great detail.

Another important direction is to analyze the behavior of EM under different models for
generating the data. While our analysis is focused on Gaussian mixtures, the non-standard
statistical rate n−

1
4 also arises in other types of over-specified mixture models, such as those

involving mixtures with other exponential family members, or Student-t distributions, suit-
able for heavy-tailed data. We believe that the analysis of this chapter can be generalized
to a broader class of finite mixture models that includes the aforementioned models.

A final direction of interest is whether the behavior of EM—slow versus fast convergence—
can be used as a statistic in a classical testing problemma: testing the simple null of a stan-
dard multivariate Gaussian versus the compound alternative of a two-component Gaussian
mixture. This problem is known to be challenging due to the break-down of the (gener-
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alized) likelihood ratio test, due the singularity of the Fisher information matrix; see the
papers [159, 43] for some past work on the problem. The results of this chapter suggest
an alternative approach, which is based on monitoring the convergence rate of EM. If the
EM algorithm converges slowly for a balanced fit, then we may accept the null, whereas the
opposite behavior can be used as an evidence for rejecting the null. Analyzing such a testing
procedure based on the convergence rates of EM remains open.
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Chapter 8

Sharp Analysis of EM for Weakly
Identifiable Mixture Models

A more challenging class of mixture models are those that are only weakly identifiable,
meaning that the Fisher information is degenerate over some larger set. This stronger form
of singularity arises, for instance, when the scale (covariance) parameter in an over-specified
Gaussian mixture is also unknown [40, 43]. Ho et al. [112] characterized the behavior of MLE
for a class of weakly identifiable models. They showed that the convergence rates of MLE
in these models could be very slow, with the precise rates determined by algebraic relations
among the partial derivatives. However, this past work has not addressed the computational
complexity of computing the MLE in a weakly identifiable model.

We start with an introduction contrasting this chapter with the work from the previous
chapter, and discussion of the related work in Section 8.1. We then present some intriguing
simulations in Section 8.2 that motivate the problem set-up considered in this chapter. With
this context in place, we summarize the contributions of this chapter in Section 8.2.2, and
discuss the organization of the remainder of the chapter in Section 8.2.3.

8.1 Introduction

In the previous chapter 7, we studied the behavior of EM for fitting a class of non-regular
mixture models, namely those in which the Fisher information is degenerate at a point, but
the model remains strongly identifiable. One such class of models are Gaussian location
mixtures with known scale parameters that are over-specified, meaning that the number of
components in the mixture-fit exceeds the number of components in the data generating
distribution. For such non-regular but strongly identifiable mixture models, we showed that
the EM algorithm takes O((n/d)

1
2 ) steps to converge to a Euclidean ball of radius O((d/n)

1
4 )

around the true location parameter. Recall that for such models, the MLE is known to lie at
a distance O(n−

1
4 ) from the true parameter [42], so that even though its convergence rate as

an optimization algorithm is slow; the EM algorithm nonetheless produces a solution with
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Figure 8.1: Scaling of the Wasserstein error between the true parameters and the EM esti-
mates, when EM is used to fit a Gaussian mixture model with Kfit ∈ {1, 2, 3} components,
i.e., Gfit =

∑Kfit

i=1 wiN (µi,Σi) with all parameters treated as unknown and estimated by EM,
on an n sample-dataset generated from standard Gaussian distribution G∗ = N (0, Id). In
all three examples, when the fitted model is over-specified, meaning that the fitted model
has more components than the true model (Kfit ∈ {2, 3} in these examples), we observe a
significant increase in the Wasserstein error. Stated differently, the simulations suggest that
the estimation accuracy of the EM algorithm degrades dramatically when the fitted model
is over-specified.

a statistical error of the same order as the MLE.
The previous chapter does not consider the more realistic setting in which both the

location and scale parameters are unknown, and the EM algorithm is used to fit both simul-
taneously. Indeed, as mentioned earlier, such models may become weakly identifiable due
to algebraic relations among the partial derivatives [43]. Thus, analyzing EM in the case of
weakly identifiable mixtures is challenging for two reasons: (i) the weak separation between
the mixture components, and (ii) the algebraic interdependence of the partial derivatives of
the log-likelihood. The main contributions of this work are (a) to highlight the dramatic
differences in the convergence behavior of the EM algorithm, depending on the structure of
the fitted model relative to the data-generating distribution; and (b) to analyze the EM al-
gorithm under a few specific yet representative settings of weakly identifiable models, giving
a precise analytical characterization of its convergence behavior.

8.2 Illustrative examples and problem set-up

We note that the experimental settings in this chapter share same format as that in previous
chapter (see Section 7.2.2.2).

To begin with, we consider the simplest case of over-specification with Gaussian mixture
models—when the true data is generated from a zero-mean standard Gaussian distribution in
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d dimensions and EM is used to fit a general multi-component mixture model with different
number of mixtures. (We note that fitting by one mixture model is simply a Gaussian
fit.) Given the estimates for the mixture weights, location and scale parameters returned
by EM, we compute the first order Wasserstein distance1 between the true and estimated
parameters. Results for d ∈ {1, 2, 4} and for various amount of over-specification are plotted
in Figure 8.1. From these results, we notice that the decay in statistical error is n−1/2

when the fitted number of components is well-specified and equal to the true number of
components but has a much slower rate whenever the number of fitted components is two
or more. Moreover, in Section 8.5 (see Figure 8.3) we show that such a phenomenon occurs
more generally in mixture models.

While a rigorous theoretical analysis of EM under over-specification in general mixture
models is desirable, it remains beyond the scope of this chapter. Instead, here we provide a
full characterization of EM when it is used to fit the following class of models to the data
drawn from standard Gaussian N (0, Id):

Gsymm((θ, σ2))=
1

2
N (θ, σ2Id) +

1

2
N (−θ, σ2Id). (8.1)

In particular, in this symmetric fit, we fix the mixture weights to be equal to 1
2

and re-

quire that the two components have same scale parameter. Given the estimates θ̂, σ̂, the
Wasserstein error (see equation (G.40) in Appendix G.7) in this case can be simplified as

‖θ̂‖2 +
√
d
√
|σ̂2 − 1|. In our results to be stated later, we show that the two terms are of

the same order (equations (8.6), (8.9)) and hence we primarily focus on the error ‖θ̂ − θ?‖2

going forward to simplify the exposition. We consider our set-up as a simple yet first step
towards understanding the behavior of EM in over-specified mixtures when both location
and scale parameter are unknown. In the previous chapter, we studied the slow down of EM
with over-specified mixtures for estimating only the location parameter, but they assumed
that the scale parameter was known and fixed. Here a more general setting is considered.

Model (8.1) is weakly identifiable: We now elaborate the choice of our class of mod-
els (8.1) that may appear a bit restrictive at first glance. This model turns out to be the
simplest example of a weakly identifiable model in d = 1. Let φ denote the density of a
Gaussian distribution with mean θ and variance σ2, then we have

∂2φ

∂θ2
(x;µ, σ2) = 2

∂φ

∂σ2
(x;µ, σ2), (8.2)

valid for all x ∈ R, µ ∈ R and σ > 0. As alluded to earlier, models with algebraic dependence
between partial derivatives lead to weak identifiability and slow statistical estimation with
MLE. However, in the multivariate setting when the same parameter σ is shared across mul-
tiple dimensions, this algebraic relation does not hold and the model is strongly identifiable

1First-order Wasserstein distance has been used in prior works to characterize the error between the
estimated and true parameters. See section 1.1 [113].
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Figure 8.2: Behavior of the EM algorithm for the fitted model (8.1), where the data is being

generated from N (0, Id). (a) Scaling of the Euclidean error ‖θ̂n,d − θ∗‖2 with respect to the

sample size n for dimension d ∈ {1, 2, 16}. Here, θ̂n,d denotes the EM algorithm estimate of
the mean parameter θ based on n samples. Note that the simulations indicate two distinct
error scaling for d = 1 and d > 1. (b) Convergence behavior of the population-like EM
sequence θt+1 = Md(θ

t) (8.12b) in dimensions d = 1 and 2. The rate of convergence in
dimension d = 1 is significantly slower compared to the rate in dimension d = 2. Overall,
both the plots provide strong empirical evidence towards two distinct behaviors of the EM
algorithm for dimension d = 1 and dimensions d > 1. See the Theorems 8.1-8.2, and
Lemmas 8.1 and 8.2 for a theoretical justification of trends in panels (a) and (b) respectively.

(since the Fisher information matrix is singular at (θ∗, σ∗) := (0, 1)). For this reason, we
believe that analysis of EM for the special fit (8.1) may provide important insight for more
general over-specified weakly identifiable models.

Population EM: Given n samples from a d-dimensional standard Gaussian distribution,
the sample EM algorithm for location and scale parameters generates a sequence of the form
θt+1 = Mn,d(θ

t) and σt+1, which is some function of ‖θt+1‖2
2; see equation (8.3b) for a precise

definition. An abstract counterpart of the sample EM algorithm—not useful in practice but
rather for theoretical understanding—is the population EM algorithm Md, obtained in the
limit of an infinite sample size (cf. equation (8.12b)).

In practice, running the sample EM algorithm yields an estimate θ̂n,d of the unknown
location parameter θ∗. Panel (a) in Figure 8.2 shows the scaling of the statistical estimation

error ‖θ̂n,d−θ∗‖2 of this sample EM estimate versus the sample size n on a log-log scale. The
three curves correspond to dimensions d ∈ {1, 2, 16}, along with least-squares fits (on the
log-log scale) to the data. In panel (b), we plot the Euclidean norm ‖θt‖2 of the population
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EM iterate2 versus the iteration number t, with solid red line corresponding to d = 1 and
the dash-dotted green line corresponding to d = 2. Observe that the algorithm converges far
more slowly in the univariate case than the multivariate case. The theory to follow in this
chapter (see Theorems 8.1, 8.2 and Lemmas 8.1 and 8.2) provides explicit predictions for
the rate at which different quantities plotted in Figure 8.2 should decay. We now summarize
our theoretical results that are also consistent with the trends observed in Figure 8.2.

8.2.1 EM updates for symmetric fit Gsymm

The EM updates for Gaussian mixture models are standard, so we simply state them here.
In terms of the shorthand notation η := (θ, σ), the E-step in the EM algorithm involves
computing the function

Qn(η′; η) :=
1

n

n∑

i=1

[
wθ,σ(Xi) log

(
φ(Xi;µ

′, (σ′)2Id)
)

(1− wθ,σ(Xi)) log
(
φ(Xi;−µ′, (σ′)2Id)

) ]
,

where the weight function is given by wθ,σ(x) = (1 + e
−2θ>x
σ2 )−1. The M-step involves

maximizing the Qn-function over the pair (θ′, σ′) with η fixed, which yields

µ′ =
1

n

n∑

i=1

(2wµ,σ(Xi)− 1)Xi, and (σ′)2 =
1

d

(∑n
i=1 ‖Xi‖2

2

n
− ‖µ′‖2

2

)
. (8.3a)

Doing some straightforward algebra, the EM updates (θtn, σ
t
n) can be succinctly defined as

θt+1
n =

1

n

n∑

i=1

tanh

(
X>i θ

t
n∑n

i=1 ‖Xi‖2
2 /(nd)− ‖θtn‖2

2 /d

)

=: Mn,d(θ
t
n), (8.3b)

and σt+1
n =

∑n
i=1 ‖Xi‖2

2 /(nd) − ‖θt+1
n ‖

2
2 /d. For simplicity in presentation, we refer to the

operator Mn,d as the sample EM operator.

8.2.2 Our contributions

The main contribution of this chapter is to provide a precise analytical characterization of the
behavior of the EM algorithm for certain special cases of over-specified mixture models (8.1).

2In fact, our analysis makes use of two slightly different population-level operators M̃n,d and Md defined
in equations (8.16) and (8.12b) respectively. Figure 8.2(b) shows plots for the operator Md, but the results

are qualitatively similar for the operator M̃n,d.
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Univariate over-specified Gaussian mixtures: In the univariate setting (d = 1) of
Gsymm in (8.1), we prove that the EM estimate has statistical estimation error of the order

n−
1
8 and n−

1
4 after order n

3
4 steps for the location and scale parameters respectively. In

particular, Theorem 8.1 provides a theoretical justification for the slow rate observed in
Figure 8.2 (a) for d = 1 (red dotted line with star marks). Proving these rates requires a
novel analysis, and herein lies the main technical contribution of this chapter. Indeed, we
show that all the analysis techniques introduced in past work on EM, including work on
both the regular [10] and strongly identifiable cases [82], lead to sub-optimal rates. Our
novel method is a two-stage approach that makes use of two different population level EM
operators. Moreover, we also prove a matching lower bound (see Appendix G.1) which

ensures that the upper bound of order n−
1
8 for the statistical error of sample EM from

Theorem 8.1 is tight up to constant factors.

Multivariate setting with shared covariance: Given the technical challenges even in
the simple univariate case, the symmetric spherical fit Gsymm in (8.1) serves as a special
case for the multivariate setting d ≥ 2. In this case, we establish that the sharing of scale
parameter proves beneficial in the convergence of EM. Theorem 8.2 shows that sample EM
algorithm takes O((n/d)1/2) steps in order to converge to estimates, of the location and

scale parameters respectively, that lie within distances O(d/n)1/4 and O(nd)−
1
2 of the true

location and scale parameters, respectively.

General multivariate setting: We want to remind the readers that we expect the
Wasserstein error to scale much slowly than n−

1
4 (the rate mentioned in the previous para-

graph) while estimating over-specified mixtures with no shared covariance. When the fitted
variance parameters are not shared across dimensions our simulations under general multi-
component fits in Figure 8.1 demonstrate a much slower convergence of EM (for which a
rigorous justification is beyond the scope of this chapter).

8.2.3 Organization

The remainder of the chapter is organized as follows. We present our main results in Sec-
tion 8.3, with Section 8.3.1 devoted to the univariate case, Section 8.3.2 to the multivariate
case and Section 8.3.3 to the simulations with more general mixtures. Our proof ideas are
summarized in Section 8.4 and we conclude with a discussion in Section 8.5. The detailed
proofs of all our results are deferred to the Appendices.

Notation: In this chapter, the expressions an - bn or an ≤ O(bn) will be used to denote
an ≤ cbn for some positive universal constant c that does not change with n. Additionally,
we write an � bn if both an - bn and bn - an hold. Furthermore, we denote [n] as the set
{1, . . . , n} for any n ≥ 1. We define dxe as the smallest integer greater than or equal to x
for any x ∈ R. The notation ‖x‖2 stands for the `2 norm of vector x ∈ Rd. We use c, c′, c1
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etc. to denote some universal constants independent of problem parameters (which might
change in value each time they appear).

8.3 Main results

In this section, we provide our main results for the behavior of EM with the singular (sym-
metric) mixtures fit Gsymm (8.1). Theorem 8.1 discusses the result for the univariate case,
Theorem 8.2 discusses the result for multivariate case. In Section 8.3.3 we discuss some
simulated experiments for general multivariate location-scale Gaussian mixtures.

8.3.1 Results for the univariate case

As discussed before, due to the relationship between the location and scale parameter, namely
the updates (8.3b), it suffices to analyze the sample EM operator for the location parameter.
For the univariate Gaussian mixtures, given n samples {Xi, i ∈ [n]}, the sample EM operator
is given by

Mn,1(θ) :=
1

n

n∑

i=1

Xi tanh

[
Xiθ∑n

j=1X
2
j /n− θ2

]
. (8.4)

We now state our first main result that characterizes the guarantees for EM under the
univariate setting. Let I ′ε denote the interval [cn−

1
12

+ε, 1/10] where c is a positive universal
constant.

Theorem 8.1. Fix δ ∈ (0, 1), ε ∈ (0, 1/8], and let Xi
i.i.d.∼ N (0, 1) for i = 1, . . . , n such

that n % log log(1/ε)
δ

. Then for any initialization µ0
n that satisfies |µ0

n| ∈ I ′ε, the sample EM
sequence µt+1

n = Mn,1(µtn), satisfies

|µtn − θ∗| ≤ c1
1

n1/8−ε log5/4

(
10n log(8/ε)

δ

)
, (8.5)

for all t ≥ c2n
3
4
−6ε · log n log 1

ε
with probability at least 1− δ.

See Appendix G.2 for the proof.
The bound (8.5) shows that with high probability after O(n3/4) steps the sample EM

iterates converge to a ball around θ∗ whose radius is arbitrarily close to n−1/8. Moreover, as
a direct consequence of the relation (8.3a), we conclude that the EM estimate for the scale

parameter is of order n−
1
4 with high probability:

∣∣(σtn)2 − (σ∗)2
∣∣ =

∣∣∣∣
∑n

i=1 Xi
2

n
−
(
θtn − θ∗

)2 − (σ∗)2

∣∣∣∣

- n−
1
2 + n−

1
4 = O(n−

1
4 ) (8.6)

where we have used the standard chi-squared concentration for the sum
∑n

i=1 Xi
2/n.
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Matching lower bound: In Appendix G.1, we prove a matching lower bound and thereby
conclude that the upper bound of order n−

1
8 for the statistical error of sample EM from

Theorem 8.1 is tight up to constant factors. In Section 8.3.3, we provide further evidence
(cf. Figure 8.3) that the slow statistical rates of EM with location parameter that we derived
in Theorem 8.1 might appear in more general settings of location-scale Gaussian mixtures
as well.

8.3.2 Results for the multivariate case

Analyzing the general EM updates for higher dimensions turns out to be challenging. How-
ever, for the symmetric fit in higher dimensions given by

Gsymm((θ, σ2))=
1

2
N (θ, σ2Id)+

1

2
N (−θ, σ2Id), (8.7)

the sample EM operator Mn,d(θ) has a closed form as already noted in the updates (8.3a)
and (8.3b). Note that for the fit (8.7), we have assumed the same scale parameter for all
dimensions. Such a fit is over-specified for data drawn from Gaussian distribution N (0, Id).
We now show that the sharing of scale parameter in the model fit across dimensions (8.7),
leads to a faster convergence of EM in d ≥ 2—both in terms of number of steps and the final

statistical accuracy. In the following result, we denote Iε := [5
(
d
n

) 1
4

+ε
, 1

8
].

Theorem 8.2. Fix δ ∈ (0, 1), ε ∈ (0, 1/4], and let Xi
i.i.d.∼ N (0, Id) for i = 1, . . . , n such that

d ≥ 2 and n % d log
1
4ε (log 1/ε

δ
). Then with any starting point θ0

n such that ‖θ0
n‖2 ∈ Iε, the

sample EM sequence θt+1
n = Mn,d(θ

t
n) satisfies

∥∥θtn − θ∗
∥∥

2
≤ c1

(
d

n
log

log(1/ε)

δ

) 1
4
−ε

, (8.8)

for all t ≥ c2

(
n
d

) 1
2
−2ε

log n
d

log 1
ε

with probability at least 1− δ.
See Appendix 8.4.2 for the proof.
The results in Theorem 8.2 show that the that the sample EM updates converge to a

ball around θ∗ = 0 with radius arbitrarily close to (d/n)
1
4 when d ≥ 2. At first sight, the

initialization condition ‖θ0
n‖2 ≤ 1/8, assumed in Theorem 8.2, might seem pretty restrictive

but Lemma G.4 (in Appendix G.6) shows that for any θ0
n satisfying ‖θ0

n‖2 ≤
√
d, we have

M̃n,d(θ
0
n) ≤

√
2/π, with high probability. In light of this result, we may conclude that the

initialization condition is Theorem 8.2 is not overly restrictive.

Guarantees for the scale parameter σtn: Noting that (θ∗, σ∗) = (0, 1), we obtain the
following relation

∣∣(σtn)2 − (σ∗)2
∣∣ =

∣∣∣∣∣

∑n
i=1 ‖Xi‖2

2

dn
− (σ∗)2 − ‖θ

t
n − θ∗‖2

2

d

∣∣∣∣∣ .
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Using standard chi-squared bounds, we obtain that

∣∣∣∣∣

∑n
i=1 ‖Xi‖2

2

dn
− (σ∗)2

∣∣∣∣∣ - (nd)−
1
2 ,

with high probability. From the bound (8.8), we also have ‖θtn − θ∗‖2
2 /d - (nd)−

1
2 . Putting

the pieces together, we conclude that the statistical error for the scale parameter satisfies

|(σtn)2 − (σ∗)2| - (nd)−
1
2 for all t %

(
n
d

) 1
2 , (8.9)

with high probability. Consequently, in the sequel, we focus primarily on the convergence
rate for the EM estimates θtn of the location parameter, as the corresponding guarantee for
the scale parameter σtn is readily implied by it.

Comparison with Theorem 8.1: The scaling of order n−
1
4 with n from equation (8.8)

is significantly better than the univariate case (n−
1
8 ) stated in Theorem 8.1. We note that

this faster statistical rate is a consequence of the sharing of the scale parameter across
dimensions, and does not hold when the fit (8.7) has different variance parameters. Indeed,
as we demonstrated in Figure 8.1, when the fitted components have freely varying scale
parameter, the statistical rate slows down (and can be of the order n−

1
8 in higher dimensions).

8.3.3 Simulations with general cases

We now present preliminary evidence that the slow statistical rates of EM with location
parameter that we derived in Theorem 8.1 might appear in more general settings. In Fig-
ure 8.3, we plot the statistical error of estimates returned by sample EM when estimating all
the parameters (namely weights, location and scale) simultaneously, as a function of sample
size n, for the following two cases:

Gd=1
? =

1

6
N (−5, 1)+

1

2
N (1, 3)+

1

3
N (7, 2); (8.10)

Gd=2
? =

1

2
N
([0

0

]
, I
)

+
1

6
N
( [7

5

]
, 2I
)1
3
N
( [−4
−7

]
, 3I
)
. (8.11)

We plot the results for a Kfit ∈ {3, 4, 5}-mixture Gaussian model fit. When Kfit is equal to
the number of components (= 3) in the true mixture the statistical rate is n−1/2. When it
is larger, i.e., Kfit ∈ {4, 5}, the statistical rate of EM is much larger, n−0.12 in panel (a) (for
Kfit = 5) and n−0.20 in panel (b) (for Kfit = 5) of Figure 8.3. These simulations suggest that

the statistical rates slower than n−
1
4 and of order n−

1
8 may arise in more general settings,

and moreover that the rates get slower as the over-specification of the number of mixtures
increases. See Section 8.5 for possible future work in this direction.
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Figure 8.3: Scaling of the first-order Wasserstein error for EM estimates when fitting a
Gaussian mixture with Kfit ∈ {3, 4, 5}, i.e., Gfit =

∑Kfit

i=1 wiN (µi,Σi), on n i.i.d. samples
from a 3-Gaussian mixture model (equations (8.10) and (8.11)). In the case of no over-
specification, i.e., Kfit = Ktrue = 3, the error scales as n−1/2, but when the fitted model is
over-specified (Kfit ∈ {4, 5}), the scaling is much worse (and degrades further for any given
n as Kfit gets large). See Section 8.3.3 for further details.

8.4 Two-staged argument for sharp analysis of EM

Deriving a sharp rate for univariate case (Theorem 8.1) turns out be pretty challenging
and requires a thorough discussion. On the other hand, the multivariate-case considered in
this chapter (Theorem 8.2) is relatively easy due to the shared scale parameter given the
localization argument developed in Chapter 7. The proof of Theorem 8.1 is fairly technical
and is thereby deferred to Appendix G.2. We collect a high-level overview of the novel two-
staged localization argument in Section 8.4.1 required to establish the sharp guarantees of
Theorem 8.1. We provide the proof of Theorem 8.2 in Section 8.4.2. (One may want to read
the next two subsections in reverse order for a better understanding.)

8.4.1 Proof sketch for Theorem 8.1

Our proof makes use of the population-to-sample analysis framework of Balakrishnan et
al. [10] albeit with several new ideas, with the highlight being a two-staged analysis with
two different population-level EM operators.

Let Y ∼ N (0, 1), then the population-level analog of the operator (8.3b) can be defined
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in two ways:

M̃n,1(θ) :=EY

[
Y tanh

(
Y θ∑n

j=1X
2
j /n−θ2

)]
, (8.12a)

M1(θ) := EY
[
Y tanh

(
Y θ

1− θ

)]
. (8.12b)

The particular choice of the population-like operator M̃n,1 in equation (8.12a) was motivated
by the previous works [35] with the location-scale Gaussian mixtures. We refer to this
operator as the pseudo-population operator since it depends on the samples {Xi, i = 1, . . . n}
and involves an expectation. Nonetheless, as we show in the sequel, analyzing M̃n,1 is
not enough to derive sharp rates for sample EM in the over-specified setting considered in
Theorem 8.1. A careful inspection reveals that a “better” choice of the population operator
is required, which leads us to define the operator M1 in equation (8.12b). Unlike the pseudo-

population operator M̃n,1, the operator M1 is indeed a population operator as it does not
depend on samples X1, . . . , Xn. Note that, this operator is obtained when we replace the sum∑n

j=1 Xj
2/n in the definition (8.12a) of the operator M̃n,1 by its corresponding expectation

E[‖X‖2
2] = 1. For this reason, we also refer to this operator M1 as the corrected population

operator. In the next lemma, we state the properties of the operators defined above (here I ′ε
denotes the interval [cn−

1
12

+ε, 1/10]).

Lemma 8.1. The operators M̃n,1 and M1 satisfy
(

1− 3θ6

2

)
|θ| ≤

∣∣∣M̃n,1(θ)
∣∣∣ ≤

(
1− θ6

5

)
|θ| , (8.13a)

(
1− θ6

2

)
|θ| ≤

∣∣M1(θ)
∣∣ ≤

(
1− θ6

5

)
|θ| , (8.13b)

where bound (8.13a) holds for all |θ| ∈ I ′ε with high probability3 and the bound (8.13b) is
deterministic and holds for all |θ| ∈

[
0, 3

20

]
. Furthermore, for any fixed δ ∈ (0, 1) and any

fixed r ≥ O(n−
1
12 ), we have that

P

[
sup

θ∈B(0,r)

∣∣∣Mn,1(θ)− M̃n,1

∣∣∣ ≤ cr

√
log(1/δ)

n

]
≥ 1− δ. (8.13c)

On the other hand, for any fixed r ≤ O(n−
1
16 ), we have

P


 sup
θ∈B(0,r)

∣∣Mn,1(θ)−M1(θ)
∣∣ ≤ c′r3

√
log10(5n/δ)

n


 ≥ 1− δ. (8.13d)

3Since the operator M̃n,1 depends on the samples {Xj , j ∈ [n]}, only a high probability bound (and not
a deterministic one) is possible.
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See Appendix G.3 for its proof where we also numerically verify the sharpness of the
results above (see Figure G.1). Lemma 8.1 establishes that, as θ → 0, both the operators
have similar contraction coefficient γ(θ) � 1− cθ6; thereby justifying the rates observed for
d = 1 in Figure 8.2(b). However, their perturbation bounds are significantly different: while

the error supθ∈B(0,r)

∣∣∣Mn,1(θ)− M̃n,1(θ)
∣∣∣ scales linearly with the radius r, the deviation error

supθ∈B(0,r)

∣∣Mn,1(θ)−M1(θ)
∣∣ has a cubic scaling r3.

Remark: A notable difference between the two bounds (8.13c) and (8.13d) is the range
of radius r over which we prove the validity of the bounds (8.13c) and (8.13d). With our

tools, we establish that the perturbation bound (8.13c) for the operator M̃n,1 is valid for any

r % n−
1
12 . On the other hand, the corresponding bound (8.13d) for the operator M1 is valid

for any r - n−
1
16 . We now elaborate why these different ranges of radii are helpful and make

both the operators crucial to in the analysis to follow.

8.4.1.1 A sub-optimal analysis

Using the properties of the operator M̃n,1 from Lemma 8.1, we now sketch the statistical rates
for the sample EM sequence, θt+1

n = Mn,1(θtn), that can be obtained using (a) the generic
procedure outlined by Balakrishnan et al. [10] and (b) the localization argument introduced
in Chapter 7. As we show, both these arguments end up being sub-optimal as they do not
provide us the rate of order n−

1
8 stated in Theorem 8.1. We use the notation:

sup
|θ|≥ε

∣∣∣M̃n,1(θ)
∣∣∣ /|θ| - 1− ε6 =: γ(ε).

Sub-optimal rate I: The eventual radius of convergence obtained using Theorem 5(a)
from the paper [10] can be determined by (see (7.21))

r/
√
n

1− γ(ε)
= ε =⇒ ε ∼ n−1/14, (8.14a)

where r denotes the bound on the initialization radius |θ0| but we have tracked dependency
only on n. This informal computation suggests that the the sample EM iterates for location
parameter are bounded by a term of order n−1/14. This rate is clearly sub-optimal when
compared to the EM rate of order n−

1
8 from Theorem 8.1.

Sub-optimal rate II: Next we apply the more sophisticated localization argument from
Section 7.5.2 in order to obtain a sharper rate. In contrast to the computation (8.14a), this
argument leads to solving the equation

ε · r/√n
1− γ(ε)

= ε =⇒ εr/
√
n

ε6
= ε =⇒ ε ∼ n−

1
12 , (8.14b)
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where, as before, we have only tracked dependency on n. This calculation allows us to
conclude that the EM algorithm converges to an estimate which is at a distance of order
n−

1
12 from the true parameter, which is again sub-optimal compared to the n−

1
8 rate of EM

from Theorem 8.1.
Indeed both the conclusions above can be made rigorous (See Corollary G.1 for a formal

statement) to conclude that, with high probability for any ε ∈ (0, 1
12

]:

∣∣µtn − θ∗
∣∣ ≤ O(n−

1
12

+ε) for t ≥ O(n
1
2
−6ε). (8.15)

8.4.1.2 A two-staged analysis for sharp rates

In lieu of the above observations, the proof of the sharp upper bound (8.5) in Theorem 8.1
proceeds in two stages. In the first stage, invoking Corollary G.1 with ε = 1

48
, we con-

clude that with high probability the sample EM iterates converge to a ball of radius at
most r after

√
n steps, where r � n−1/16. Consequently, the sample EM iterates after

√
n

steps satisfy the assumptions required to invoke the perturbation bounds for the operator M1

from Lemma 8.1. Thereby, in the second stage of the proof, we apply the 1− cθ6 contraction
bound (8.13b) of the operator M1 in conjunction with the cubic perturbation bound (8.13d).
Using localization argument for this stage, we establish that the EM iterates obtain a sta-
tistical error of order n−1/8 in O

(
n3/4

)
steps as stated in Theorem 8.1. See Appendix G.2

for a detailed proof.

8.4.2 Proof of Theorem 8.2

This proof is based on the population-to-sample analysis and follows a similar road-map as
of the proof of Theorem 7.3.

We first analyze the population-level EM operator and then using epoch-based-localization
argument derive the statistical rates (8.8). We make use of the following d-dimensional ana-
log of the pseudo-population operator (cf. equation (8.12a)):

M̃n,d(θ) := EY∼N (0,Id)

[
Y tanh

(
Y >θ∑n

j=1 ‖Xj‖2
2 /(nd)− ‖θ‖2/d

)]
. (8.16)

The next lemma establishes the contraction properties and the perturbation bounds for M̃n,d.

Lemma 8.2. The operator M̃n,d satisfies

(
1− 3 ‖θ‖2

2

4

)
≤

∥∥∥M̃n,d(θ)
∥∥∥

2

‖θ‖2

≤
(

1− (1− 1/d) ‖θ‖2
2

4

)
, for all ‖θ‖2 ∈ Iε, (8.17a)
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with probability at least 1 − δ. Moreover, there exists a universal constant c′ such that for
any fixed δ ∈ (0, 1), ε ∈ (0, 1

4
], and r ∈ (0, 1

8
) we have

P

[
sup

θ∈B(0,r)

∥∥∥Mn,d(θ)− M̃n,d(θ)
∥∥∥

2
≤ c′r

√
d log(1/δ)

n

]
≥ 1− δ − e−(nd)4ε/8. (8.17b)

See Appendix G.4 for the proof.

Lemma 8.2 shows that the operator M̃n,d has a faster contraction (order 1−‖θ‖2
2) towards

zero, when compared to its univariate-version (order 1 − θ6 cf. (8.13a)). This difference
between the univariate and the multivariate case had already been highlighted in Section 8.2
in Figure 8.2. Indeed substituting d = 1 in the bound (8.17a) gives us a vacuous bound
for the univariate case, providing further evidence for the benefit of sharing variance among
different dimensions in multivariate setting of symmetric fit (8.1). With Lemma 8.2 at hand,
the proof of Theorem 8.2 follows by using the localization argument from Section 7.5.2.
Mimicking the arguments similar to equation (8.14b), we obtain the following statistical
rate:4

ε · r/√n
1− γ(ε)

= ε =⇒ εr/
√
n

ε2
= ε =⇒ ε ∼ n−

1
4 . (8.18)

Much of the work in the proof of Theorem 8.2 is to establish Lemma 8.2. With the
bounds (8.17a) and (8.17b) at hand, using the localization argument (in a manner simi-
lar to the proof of Theorem 7.3), easily leads to the statistical rate of order (d/n)1/4 as
claimed in Theorem 8.2. The detailed proof is thereby omitted.

8.5 Conclusion and future directions

In this chapter, we established several results characterizing the convergence behavior of EM
algorithm for over-specified location-scale Gaussian mixtures. We view our analysis of EM for
the symmetric singular Gaussian mixtures as the first step toward a rigorous understanding
of EM for a broader class of weakly identifiable mixture models. Such a study would provide
a better understanding of the singular models with weak identifiability which do arise in
practice since: (a) over-specification is a common phenomenon in fitting mixture models due
to weak separation between mixture components, and, (b) the parameters being estimated
are often inherently dependent due to the algebraic structures of the class of kernel densities
being fitted and the associated partial derivatives. We now discuss a few other directions
that can serve as a natural follow-up of our work.

4Moreover, similar to the arguments made in Section 7.5, the localization argument is necessary to
derive a sharp rate. Indeed, a direct application of the framework introduced by Balakrishnan et al. [10] for
our setting implies a sub-optimal rate of order (d/n)1/6 for the Euclidean error ‖θtn − θ∗‖ (cf. (8.14a) and
(8.14b)).
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The slow rate of order n−
1
8 for EM updates with location parameter is in a sense a worst-

case guarantee. In the univariate case, for the entire class of two mixture Gaussian fits,
MLE exhibits the slowest known statistical rate n−

1
8 for the settings that we analyzed. More

precisely, for certain asymmetric Gaussian mixture fits, the MLE convergence rate for the
location parameter is faster than that of the symmetric equal-weighted mixture considered
in this chapter E.g., for the fit 1/3N (−2θ, σ2) + 2/3N (θ, σ2) on N (0, 1) data, the MLE
converges at the rate n−1/6 and n−1/3 respectively [113]. It is interesting to understand the
effect of such a geometric structure of the global maxima on the convergence of the EM
algorithm.

Our work analyzed over-specified mixtures with a specific structure and only one extra
component. As demonstrated above, the statistical rates for EM appear to be slow for general
covariance fits and further appear to slow down as the number of over-specified components
increases. The convergence rate of the MLE for such over-specified models is known to further
deteriorate as a function of the number of extra components. It remains to understand how
the EM algorithm responds to these more severe—and practically relevant—instances of
over-specification.
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Part III

Data-Driven Methodologies For
Causal Inference



140

Chapter 9

Discovery of Interpretable and Stable
Subgroups

Since its inception, the field of statistics has aimed to produce tools to help scientists seek
scientific truth. Scientific truth, however, is not of a singular quality. While some relations in
physics like Hooke’s law are made apparent using simple linear regression, questions dealing
with complex, emergent phenomena such as the efficacy of drugs or job training programs
seem to have more contingent answers. It was the urge to formalize and investigate such
questions that begot and nurtured the field of causal inference in statistics over the past
century. One of the two most influential frameworks for causal inference, the Neyman-Rubin
causal model [116], has its roots in Fisher and Neyman’s [90, 229, 193] work on randomized
experiments for agriculture, and was later codified by Rubin [223], who was then interested
in psychometrics.1

9.1 Introduction

Historically, causal inference researchers have used traditional regression methods in their
analyses, with econometricians in particular developing a comprehensive theory of drawing
inference from linear models [6]. This is rapidly changing, however, with recent works [8,
147, 53, 182] bringing in machine learning tools to tackle causal inference problems, one
genre of which has been the investigation of heterogeneous treatment effects.

9.1.1 Heterogeneous treatment effects

In both randomized experiments as well as observational studies, apart from the treatment
and response variables, additional pre-treatment information is often known about the study
subjects. For instance, information on medical risk factors is collected in clinical trials, while

1With important extensions also by Cox [59].
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demographic and socioeconomic data is collected in social science studies. Such side informa-
tion has always been important because it allows us to adjust for confounding in observational
studies, and also to create more efficient estimators in randomized experiments [160, 124].
In addition to these uses, researchers are also increasingly interested in drawing inference
about how the effect of a treatment varies depending on an individual’s observed covariates.

Broadly speaking, methodological research on heterogeneous treatment effects can be put
into two categories: (i) conditional average treatment effect (CATE) function estimation [125,
96, 89, 34, 92, 234, 21], and (ii) subgroup analysis, [247, 202, 9, 161] with the latter having
a longer history. Here we attempt a brief review of the existing literature, and refer the
readers to referenced papers for further background.

CATE Estimation: For a binary treatment, the CATE is defined to be the expected
difference between the potential outcome under treatment and that under no treatment,
conditional on a subject’s observed covariates (see Section 9.3 for formal definitions). While
the average treatment effect (ATE) is a scalar quantity, the CATE is a function and thus far
more challenging to estimate. Because one observes only one of the two potential outcomes
for every individual—an issue referred to as the fundamental problem of missing data in
causal inference [116]—one cannot directly solve this problem using the conventional super-
vised learning techniques.

Over the past decade or so, researchers have made tremendous progress with CATE esti-
mation and proposed numerous methods for it [125, 96, 89, 34, 92, 234, 21]. A large fraction
of these [125, 89, 34, 21] fall under the framework of meta-learners. These are “meta-
algorithms [that] decompose estimating the CATE into several regression sub-problems that
can be solved with any regression or supervised learning method” [147]. Some of these
meta-algorithms are fairly obvious. For instance, the T -learner strategy [92] comprises fit-
ting models for the two response functions (the conditional expectation of each potential
outcome), and then taking their difference. Others, such as the X-learner [147] and R-
learner [196] strategies, are more sophisticated, and require more notation to explain (see
Section 9.4.1 for further details). Not all proposed algorithms follow a meta-learner strategy,
the popular causal tree and causal forest algorithms [9, 245] being prominent examples.

Concerns with model choice for CATE Estimation: With such a diverse range of
estimators, most of which come with hyperparameters, model choice becomes a primary
concern. Some researchers have used asymptotic efficiency [196, 141] to establish when
certain estimators can be definitely favored under (uncheckable) generative models. Such
arguments, however, rely on smoothness assumptions and asymptotic data regimes that are
typically hard to verify for the problems typically considered by causal inference researchers.
Meanwhile, plug-in prediction accuracy on holdout test sets is frequently used to do model
selection in supervised learning, but this is infeasible for CATE estimation due to the data
missingness we alluded to earlier. To circumvent this issue, researchers have formulated
proxy loss functions [225] for data-driven model choice, with ideas including using nearest
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neighbor matching [218], kernel-based local linear squares fit [34], and influence functions [2].
These model choice methods, however, have only been justified using simulations often in
strong signal regime, a scenario that does not hold in many if not most real data problems
(including the one considered in this work).

Concerns with model validation for CATE Estimation: Before deciding which esti-
mator to choose for a given task, we would first like to know whether there is even enough
signal in the data to fit a generalizable model. Again, data missingness means that there
is no clear answer to this problem. The proxy loss functions are not good substitutes for
quantities like R2 or ROC AUC scores because they can be noisy, and furthermore they
do not have an easily interpretable scale. This is especially concerning because randomized
experiments often have low signal strength.2

Subgroup analysis: An older approach to investigating heterogeneity is through “sub-
group analysis”. The goal here is to identify subgroups of subjects in the study over which
the treatment effect is significantly larger or smaller than that the population average. Such
a conception of heterogeneity has two advantages over CATE estimation: (a) It is less am-
bitious, and thus promises to be more tractable given the low data regime in real settings,
and (b) it is often more aligned with the downstream tasks involving decision-making (e.g.,
identifying which subgroup of individuals to treat).

Traditionally, for subgroup analysis, researchers check the treatment effect over a pre-
determined list of subgroups which are suggested by prior domain knowledge. Doing this,
however, ignores potential unforeseen heterogeneity in the data, and there has been much
recent work on how to conduct a data-driven search for subgroups. Naive searching can
quickly overfit3, so any search method has to balance aggressiveness of searching with the
need to account for multiple testing. Proposed methods include using recursive partition-
ing [232, 9], Cox modeling [191], controlled partitioning with significance checks using data
splits [161], and several variants [77, 11]. Unfortunately, systematic analyses of these meth-
ods have usually provided unsatisfactory results in real datasettings and in low-signal sim-
ulations [199, 122]. We refer the readers to the book [36] (Chapter 8), and the review
papers [199, 122] for further discussion on these methods.

Finally, we note that some researchers have proposed using CATE estimation as a step-
ping stone to finding subgroups. Such a strategy was proposed by Foster et al. [92] with their
Virtual Twins method, namely the T -learner with random forests, while Chernozhukov et
al. [53] recapitulate this idea in the context of a broader call to perform inference on features
of the CATE function rather than the function itself. In another line of work, Shahn et
al. [226] integrate (linear) CATE modeling with latent class mixture modeling in a Bayesian

2Budget constraints would dictate that they be only sufficiently powered to detect the ATE.
3More importantly, investigating subgroups in this manner is particularly sensitive to human failures.

It opens the door to p-value hacking [261], while Gelman has argued that even when researchers try to be
honest, they nonetheless have a hard time accounting for “researcher degrees of freedom” [94].
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framework to allow for treatment effect heterogeneity in discrete levels. They then use the
feature importance from the latent (logistic) model and the posteriors for the CATE, to
estimate qualitatively, subgroups with large treatment effect.

9.1.2 The PCS framework for veridical data science

As argued in the previous section, obtaining reliable conclusions with respect to heteroge-
neous treatment effects is fraught with difficulty. On the one hand, poor signal and weak
priors are prevalent, and on the other hand, missing potential outcomes means that test-set
validation is not directly feasible. Methods validated on simulation studies may not work
well for real data problems since their performance are often misleading. Furthermore, em-
pirical evidence tells us that the relative and absolute performance of estimation algorithms
is highly data and context-dependent [198].4 Given these problems, it is puzzling to see that
much new methodology is being developed that is detached from solving real data problems.

In this chapter, we re-analyzed the 1999-2000 VIGOR study (a 8076 patient randomized
clinical trial), and had to face precisely these challenges. To overcome them, we take ad-
vantage of the recent works on CATE estimation [21, 147, 9, 196, 245] and build on the
PCS framework for veridical data science recently introduced by Yu and Kumbier [259]. As
a result, we develop a methodology called Stable Discovery of Interpretable Subgroups via
Calibration (StaDISC) that is generally applicable beyond this dataset. We now briefly re-
view the PCS framework, before turning to the overview of our contributions and StaDISC
in ??.

The PCS framework bridges, unifies, and expands on ideas from machine learning and
statistics for the entire data science life cycle. The letters in PCS stand for the three core
principles of data science, namely Predictability, Computability, and Stability. In a nut-
shell, the PCS framework advocates using both predictability and stability analysis, argued
and documented in a PCS documentation, for reliable and reproducible scientific investiga-
tions, thereby providing a way for bridging Breiman’s Two Cultures [27]. More specifically,
predictability emphasizes reality checks for the modeling stage, by integrating the use of
data-driven validation such as out-of-sample testing favored by machine learning, and that
of goodness-of-fit measures that have a rich history in traditional statistics. Stability, besides
encompassing sampling variability, expands to other stability or robustness concerns of the
contingency of modeling conclusions to researcher “judgment calls”. These calls include the
choices made by the researcher at various stages of the data science life cycle, including data
cleaning in addition to the modeling decisions such as model choices and data perturbations.
Computability reflects the need to keep computational feasibility and efficiency in mind when
constructing any modern data analysis pipeline, especially those that subscribe to the first
two principles, which are usually more demanding computationally.

4In fact, different methods and research groups sometimes reach different conclusions on the same
datasets, see the paper [38] and the references therein.
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The PCS framework addresses to a certain extent Professor Efron’s concern [87] that
machine learning methods (or pure prediction algorithms) are not ready to be used on
scientific problems.5 The PCS framework adds a paramount consideration of stability to
predictability and computability that are hallmarks of machine learning. It guides researchers
in validating machine learning and statistical methods with respect to the specific task they
are to be applied and extracting data conclusions that can be relied upon. As one of us
has previously discussed [258], even though 100% truth is beyond reach, a useful goal is an
“accurate approximation for a particular domain, and relative to a particular performance
metric,” which is a more precise articulation of George Box’s belief that “all models are
wrong, but some are useful.”

9.1.3 Our contributions

This chapter makes three main contributions. First, we seek subgroups with demonstrable
heterogeneous treatment effects in the dataset from the 1999-2000 VIGOR study. Comple-
mentary analyses with the 2001-2004 APPPROVe study provides additional evidence for
the heterogeneity in treatment effect for the found subgroups. Enroute, building on the
recent CATE literature and the PCS framework, we develop a new methodology, which we
call Stable Discovery of Interpretable Subgroups via Calibration (StaDISC). We provide an
overview of this methodology toward the end of this section. Finally, this work also serves as
the first articulation of the PCS framework in the context of causal inference, with StaDISC
providing a template for more informative understanding of heterogeneous outcomes.

9.1.4 Overview of StaDISC

First of all, a given data set (deemed approximately iid) is divided into a holdout test set
STEST and a training set STRAIN (per outcome). For hyperparameter tuning, we use 4-fold
cross validation with the training data STRAIN.6 For any set of training folds, we refer to the
leftout fold as the corresponding validation fold. The test set is used only once at the final
step of checking the significance of the interpretable subgroups found by our methodology.
See Section 9.2.3 for more details on data splitting and Section 9.4.1 for the fitting of CATE
estimators. With this set-up at hand, StaDISC can be summarized in three steps: a predic-
tive reality check in Section 9.4 based on calibration, stability-driven ranking and aggregation
of CATE estimators in Section 9.5, and finally the CellSearch procedure for finding inter-
pretable subgroups in Section 9.6. In Section 9.4, we introduce a novel calibration-based

5In Professor Efron’s timely and thought-provoking revisiting [87] of the Two Cultures debate [27], it is
argued that contrasting philosophies on scientific truth is a clear line that separates traditional regression
methods from modern machine learning methods (or pure prediction algorithms). While the former aims
at an eternal scientific truth, the latter is truth-agnostic and instead content to exploit contingent and
ephemeral patterns.

6Due to the low signal in data, we decided not to split the data into training and validation sets, and
instead use 4-fold cross validation on the training data.
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pseudo-R2 score for CATE estimators denoted by R2
C, which involves placing individuals (in

both training and validation folds) into equally-sized bins based on their predicted CATE
value, with quantiles of the predicted CATE distribution on the training folds as thresholds
for the CATE estimators. Using such a binning and the R2

C-scores, we show that 18 popular
CATE estimators generalize poorly for the VIGOR data on the validation folds of the train-
ing data. However, we find that certain quantile-based bins (referred to as quantile-based top
subgroups) do generalize well in the sense of having significantly stronger subgroup CATE
on both training and validation folds. This provides the starting point of the next step. In
Section 9.5, we use the t-statistics of the treatment effect over the quantile-based top sub-
groups and its stability over 7 different appropriate data perturbations to rank, screen, and
finally average the screened CATE estimators (the ensemble CATE estimator). Section 9.6
details the last step of StaDISC, where we introduce the CellSearch procedure to find a
stable and interpretable representation of the quantile-based top subgroup of the ensemble
from the previous step, and then check its performance on the holdout test set (which was
used only for final testing).

As a final overview remark, we note that we use poor performance and good/bad gener-
alization in a slightly loose sense throughout the chapter. We only use the holdout test set
at the final stage, for verifying the CATE estimates of discovered subgroups. Nonetheless,
we use the phrase poor generalization to refer to worse-than-expected-performance, where
the performance metric varies across results, on the validation folds.

9.1.5 Organization

The rest of the chapter is organized as follows. In Section 9.2, we start with a brief history
of the VIGOR study, and then describe the dataset and data engineering, and splitting
done by us. Section 9.3 reviews the Neymann-Rubin model briefly with basic notations
introduced. The development of the StaDISC methodology (overviewed below) is carried
out in Sections 9.4 to 9.6 with the final subgroups reported in Section 9.6.3. Results for the
complementary analyses of the found subgroups with the APPROVe study are presented
in Section 9.7. We conclude in Section 9.8 with a recap of our results, a discussion of
the relevance of our discoveries in medicine, and discuss several directions for future work
with StaDISC. Most of the figures and tables are deferred to the appendix. Moreover, in
accordance with the PCS framework’s requirement for clear and careful documentation, we
provide our code, data cleaning, and statistical analyses in the form of Jupyter notebooks
on GitHub (https://github.com/Yu-Group/stadisc).

9.2 Dataset from the VIGOR study

In this chapter, we are interested in finding subgroups of patients that benefit from the treat-
ment in the dataset from the Vioxx gastro-intestinal outcomes research (VIGOR) study [23].
In the process of seeking such subgroups, we develop the new StaDISC methodology. In this
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section, we provide an overview of this study and the dataset, and also explain our data
pre-processing and feature engineering.

9.2.1 VIGOR study history and description

The VIGOR study was a randomized head-to-head trial comparing two drugs used to allevi-
ate pain and inflammation for patients with rheumatoid arthritis: a “new” cyclooxygenase-2
(COX-2) inhibitor drug Rofecoxib (Vioxx) recently approved and developed by Merck, and
Naproxen, a standard nonsteroidal anti-inflammatory drug (NSAID) already in routine clin-
ical use for many years. NSAIDs, though effective for treating pain and inflammation, cause
serious gastrointestinal side effects in a small proportion of patients with frequent use. The
rationale for the development of COX-2 inhibitors, such as Vioxx, was reduced gastrointesti-
nal toxicity as compared with traditional NSAIDs. Previously conducted short term clinical
studies were supportive of this hypothesis although concerns about potential cardiovascular
toxicity associated with Vioxx had also been raised.

Aim of the study: The VIGOR study was designed to provide more conclusive evidence of
the superior gastrointestinal safety of Vioxx. The study was conducted in the years 1999-2000
by Merck with the primary hypothesis that its drug Vioxx would have fewer gastrointestinal
side effects than Naproxen for the treatment of rheumatoid arthritis. The study population
comprised of 8076 patients “with rheumatoid arthritis who were at least 50 years old (or at
least 40 years old and receiving long-term glucocorticoid therapy) and who were expected
to require NSAIDs for at least one year”. This population was known to be at relatively
high risk of gastrointestinal side effects with NSAIDs.7 The patients in the control arm were
assigned the drug Naproxen, while the patients in the active treatment arm were assigned
Vioxx.

Details and findings of the study: Patients were followed for a median time of 9 months,
and the primary end point was time to first occurrence of a confirmed clinical upper gastroin-
testinal (GI) event defined as “gastroduodenal perforation or obstruction, upper gastroin-
testinal bleeding, and symptomatic gastroduodenal ulcers”. The original study report [23]
performed a survival analysis using a Cox proportional hazard model, and estimated the
relative risk for patients in the treatment arm compared with those in the control arm to be
0.5, with a confidence interval of 0.3 to 0.6.8

The study authors also conducted a subgroup analysis for the GI events, analyzing sub-
groups defined by gender, age, nationality, steroids, PUB history (prior history of GI events),
and presence of H. pylori antibodies. The rationale was that certain patients were known to

7However, the study was conducted with a safety monitoring board: an independent committee whose
purpose is to monitor the results of an ongoing trial to ensure the safety of trial participants).

8This estimate and the other estimates reported in this chapter are based on an intention-to-treat anal-
ysis. The study also performed per-protocol and sensitivity analyses and obtained similar results.
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be at increased risk of GI events, and they wanted to see if the benefit of Vioxx extended to
these high-risk patients. The conclusion from the subgroup analysis was that the risk ratio
for every subgroup remained significant, while differences of the ratios between subgroups
were not significant.

However, VIGOR demonstrated that Vioxx was associated with an increase risk of throm-
botic cardiovascular events (henceforth referred to as CVT events), an aspect that was not
emphasized in the original report of the study [23]. The study authors suggested that ap-
parent association of Vioxx with CVT events was actually the result of Naproxen preventing
CVT events. However, placebo controlled studies confirmed that Vioxx did indeed cause
CVT events, and this ultimately led to the withdrawal of Vioxx from the market. We refer
the reader to the articles [145, 219] for more context on the VIGOR study and its conse-
quences thereafter.

Goal of our investigation into the VIGOR dataset: In this work, we perform analysis
for both the GI and CVT events. While the GI event was an infrequent event (experienced by
around 2% patients) in the study, the less common CVT event (around 0.6% were reported
to have a confirmed CVT event) was considered to be more significant medically. Since the
earlier works already established that Vioxx led to an overall decrease in the GI risk but an
increase in the cardio risk on the overall population of the study, an important by-product
of this work is finding clinically relevant and interpretable subgroups of interest for which
Vioxx provided a significant decrease in the risk for the GI event but did not increase the
risk for the CVT event. Interpretability of the subgroup, as well as the transparency of
the search procedure is important from a clinical view point, as the doctors can then better
justify their choice to favor prescribing the drug for patients in the discovered subgroup.

We present detailed results both for the GI and CVT events throughout this chapter,
while occasionally deferring some details to the appendix. To perform our analysis, we cre-
ated a dataset with the two outcomes—GI and CVT event—as discussed above, a treatment
indicator, and 16 binary features. The data processing necessary to create this dataset is
the topic of the next section.

9.2.2 Feature selection and engineering

The VIGOR study collected an extensive range of patient data, including demographic de-
tails, prior medical history, as well as the timing and details of adverse events during the
clinical experiment. From this, we extracted sixteen clinically relevant binary features, which
we report in Table 9.1 together with covariate balance details. We now describe some of the
decisions we took with respect to feature engineering, as well as the meaning the selected
features.

The medical history risk factors and drug use information were all already binary, and
were selected by the VIGOR study designers as being medically relevant. For instance, it is
known that use of glucorticoids predisposes patients to GI events in the context of concomi-
tant NSAID administration [110]. One feature that deserves special interest is ASPFDA.
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This was an indicator for patients in the study who “met the criteria of the Food and Drug
Administration (FDA) for the use of aspirin for secondary cardiovascular prophylaxis but
were not taking low-dose aspirin therapy” [23], and was thought to be an especially strong
risk factor for cardiovascular events. Patients who were actually undergoing aspirin therapy
were excluded from the study.

On the other hand, some of the demographic and lifestyle risk factors required some
engineering. The goal of the feature engineering was to simplify the data using prior in-
formation, so as to avoid overfitting and to simplify downstream data analysis. While the
study collected more precise data on the patient’s country of residence and their race, in
both cases, a single level (“US” and “white” respectively) contained a large fraction of the
data, and we used these to binarize the two features. We also applied a similar logic to the
smoking and alcohol lifestyle risk factors. We used height and weight information to calcu-
late the body-mass-index (BMI) for every patient, and then used a threshold value of 30 to
obtain an indicator for obesity.9 Finally, we calculated the adjusted age for every patient
(by multiplying their numerical age by the ratio of the life expectancy in the US to that in
their country of residence), and then used a threshold value of 65 to define an indicator for
being elderly. Finally, there was no direct indicator for patients with a prior history of GI
event, so we made use of the medical history files to impute this. See Appendix H.2 for more
details.

The dataset was fairly complete (as is the case for most RCTs), with only a single patient
missing an entry for each lifestyle risk factor (we filled in this with a 1), while 35 patients were
missing entries for either height or weight, leading to a missing entry for the obesity indicator
(we filled this in with a 0). Furthermore, the features also have weak pairwise correlations
except for the fact that the subgroup with ASPFDA=1 (321 patients) is a subset of that
with ASCGRP=1 (454 patients).

9.2.3 Data splitting

As a known best practice included in the PCS framework, for each outcome, we created a
holdout test set comprising 20% of the individuals, which we did not touch in our further in-
vestigations until the very last stage of our analysis, i.e. when we wanted to verify our results.
Because of the rarity of events for both outcomes, we stratified the split by both the treat-
ment and the outcome simultaneously; such a stratification ensures that the outcome remains
balanced across the test-train splits. Let Y denote the binary outcome of interest (GI or
CVT event), and T denote the treatment indicator. Then such a stratification (implemented
as model selection.train test split function in the sklearn library [203]) is done by first
categorizing the study subjects in 4 categories {{T = 0, Y = 0} , {T = 1, Y = 0} , {T = 0, Y = 1} , {T = 1, Y = 1}}—
once with Y denoting the GI event, and once with Y denoting the CVT event. Then we
select a randomly sampled (without replacement) 20% of the subjects from each category
together as the test set STEST, with the remaining subjects form the training set STRAIN.

9https://www.cdc.gov/obesity/adult/defining.html, last accessed on August 11, 2020.
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Covariate (ABBRV) Control No. (%) Treatment No. (%)

Overall population 4029 (49.9) 4047 (50.1)

Demographics

Whether gender is male (MALE=1) 814 (20.2) 824 (20.4)

Whether race is white (WHITE=1) 2752 (68.3) 2764 (68.3)

Whether country is US (US=1) 1750 (43.4) 1748 (43.2)

Whether adjusted age† > 65 (ELDERLY=1) 1172 (29.1) 1136 (28.1)

Whether body-mass-index > 30 (OBESE=1) 1060 (26.3) 1106 (27.3)

Lifestyle

Whether patient smokes ≥ 1 cig./day (SMOKE=1) 1879 (46.6) 1919 (47.4)

Whether patient has ≥ 1 alcoholic drinks/week (DRINK=1) 1045 (25.9) 1053 (26.0)

Prior medical history

of GI PUB events∗ (PPH=1) 317 (7.9) 313 (7.7)

of hypertension (HYPGRP=1) 1168 (29.0) 1217 (30.1)

of hypercholesterolemia (CHLGRP=1) 293 (7.3) 343 (8.5)

of diabetes (DBTGRP=1) 254 (6.3) 240 (5.9)

of atherosclerotic cardiovascular disease (ASCGRP=1) 216 (5.4) 238 (5.9)

indicating use of aspirin under FDA guidelines (ASPFDA=1) 151 (3.7) 170 (4.2)

Prior usage of drugs

Whether used glucocorticoids/steroids (PSTRDS=1) 2253 (55.9) 2244 (55.4)

Whether used Naproxen (PNAPRXN=1) 747 (18.5) 759 (18.8)

Whether used NSAIDs (PNASIDS=1) 3341 (82.9) 3344 (82.6)

Outcomes

Whether GI event occurred (GI=1) 121 (3.0) 56 (1.4)

Whether CVT event occurred (CVT=1) 18 (0.4) 41 (1.0)

Table 9.1: Overview of the baseline covariates in the control and treatment arm of the
VIGOR study. †Adjusted age denotes age multiplied by the ratio of the life expectancy in
the US to that in the individual’s country of residence. ∗PUB stands for perforations, ulcers
and bleeding.

Also, keeping in mind the rarity of the signals, we do not create an additional validation
set, and instead we use the training data via a stratified 4-fold cross validation, where the
folds are split uniformly at random, again stratified jointly according to T and Y . For such
a split, each fold has around 35 GI events and 11 CVT events among the 1615 patients. We
note that for a given outcome (say GI event), we use the same 4-fold CV split—referred
to as the original split and denoted as cv orig—for tuning the hyperparameters for all the
CATE estimators via cross-validation. We also use two additional stratified 4-fold cross-
validation (random) splits in several results throughout the chapter, and denote them by
{cv 0, cv 1}. No hyperparameter tuning is done on these additional splits, and we simply
use the tuned parameters from the cv orig split for fitting the estimators on different sets
of training folds of these additional splits. Note that for any 4-fold CV split, there are 4
possible pairs of training-validation folds, denoted generically by STF and SVF respectively.
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Figure 9.1: A visual illustration showing the covariate balance, and the outcome imbalance
(GI and CVT) between the control and treatment population. The abbreviations are detailed
in Table 9.1, the number next to the abbreviation (ABBRV) denotes the % of the study size
taking value 1 for that ABBRV in the respective arm. Note that the study size was 8076
total patients, and treatment and control arms comprise of 4029 (49.9%) and 4047 (50.1%)
individuals respectively.

Mathematically, given disjoint folds from one 4-fold CV split, namely {Sf}4
f=1 of the training

data STRAIN such that STRAIN = ∪4
f=1Sf, the 4-pairs of training-validation folds are be

denoted by {(STF = STRAIN\Sf,SVF = Sf), f = 1, 2, 3, 4}.

9.3 Review on Neyman-Rubin model and notation

Throughout this chapter, we will assume the standard set up for a completely randomized
experiment under the Neyman-Rubin counterfactual framework. We assume that we observe
a population of size N , in which the treatment variable T is completely randomized. For
each individual i, there are two potential outcomes : Yi(0) when the individual i is assigned
to the control arm Ti = 0, and Yi(1) when they are assigned to the treatment arm, Ti = 1.
The Individual Treatment Effect (ITE) for individual i is defined as the difference of the
two potential outcomes τi = Yi(1) − Yi(0). But this quantity is unobservable since for each
individual we only observe one outcome corresponding to the arm that they are assigned to,
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i.e, Yi,obs = Yi(Ti) which we denote by Yi for brevity. For each individual i, we also observe
a vector of covariates Xi ∈ X . As is convention with other research into heterogeneous
treatment effects, we perform inference by assuming that the samples are drawn i.i.d. from
an infinite population.10

We now define the various quantities of interest studied throughout this chapter. Let G be
a measurable subset of the feature space X . The average treatment effect (ATE), conditional
average treatment effect (CATE) and the subgroup CATE are respectively defined as

ATE : τATE := E [Y (1)]− E [Y (0)] , (9.1a)

CATE : τ(x) := E [Y (1) X = x]− E [Y (0) X = x] , for any x ∈ X (9.1b)

sub-group CATE : τG := E [τ(X) X ∈ G] , for measurable subset G ⊂ X , (9.1c)

where the expectation is taken with respect to the iid draws from the infinite population.
At a high-level, the goal of this work is to provide a systematic framework to find sub-

groups G ⊂ X , which (i) include non-trivial fraction of the observed data, (ii) are relevant
and interpretable relevant for the domain problem at hand, and (iii) most importantly have
significant sub-group CATE, i.e., τG has significantly larger magnitude than τATE.

Neyman difference-in-means estimates for finite samples: We will often use the
classical Neyman difference-in-means estimator to provide plug-in estimates for the ATE
and sub-group CATE values. Formally, we denote the two study arms by

(Treatment arm) T := {i ∈ [n] : Ti = 1} and (Control arm) C := {i ∈ [n] : Ti = 0} ,
(9.2a)

Throughout this chapter, we will abuse notation: for any group G ⊂ X , we will use the
same symbol to refer the subpopulation of individuals that belong to it. This allows us to
denote the restriction of the two arms of the study to the subgroup as follows:

T ∩G := T ∩ {i ∈ [n] : Xi ∈ G} and C ∩G := C ∩ {i ∈ [n] : Xi ∈ G} . (9.2b)

For a finite set A, let absA denote the number of elements in the set. With this notation at
hand, the plug-in estimators for the average treatment effect τATE and the sub-group average
treatment effect τG are given by

τ̂ATE =
1

abs T

∑

i∈T

Yi(1)− 1

abs C

∑

i∈C

Yi(0), and (9.3a)

τ̂G =
1

abs T ∩G

∑

i∈T∩G

Yi(1)− 1

abs C ∩G

∑

i∈C∩G

Yi(0). (9.3b)

10Note that the standard variance estimates reported using this perspective can be taken as conservative
estimates of the finite-sample variances defined in Neyman’s repeated sampling framework [72].
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For randomized experiments, both estimates τ̂ATE and τ̂G are unbiased [229], and stan-
dard error estimates are available for it [124]. On the other hand, the precision of τ̂G degrades
as the size of the subgroup shrinks. For the same reason, a direct difference-in-means esti-
mator for CATE (9.1b) is almost never feasible, as for most values of x ∈ X (e.g., when X is
continuous, or combinatorially very large), there might not exist any sample with covariate
equal to x.

9.4 Calibration as a prediction (reality) check for

CATE estimators

Following the Predictability principle of the PCS framework, any statistical model must
pass a test of out-of-sample prediction accuracy before we should have any trust in it. This
principle is in line with the ethos of the scientific method, which correlates the strength of a
hypothesis with the rigor of prior attempts to falsify it [206]. As discussed in Section 9.1.1,
however, no such test currently exists for CATE models. The missing potential outcomes
mean we do not have a plug-in estimate for any risk function R(τ, τ̂) = E [l(τ(X), τ̂(X))].
Furthermore, unlike R2 and ROC AUC scores, the proxy loss functions proposed for model
choice (see Section 9.1.1 and the references therein) do not have interpretable scales.

To mitigate this problem, we develop a prediction accuracy check that can be applied to
any CATE estimator. This check makes use of the ideas from the calibration literature [65,
67, 102], and while passing the check is not a sufficient condition for a CATE estimator to
have good performance, it is at least a necessary one. Even though our StaDISC approach is
motivated by and grounded in the analysis of CATE estimators fitted to the VIGOR study
data, we believe it is a general methodology useful for other causal inference problems.

The rest of this section is organized as follows. We discuss the 18 CATE estimators used
in our analysis of the VIGOR data in Section 9.4.1. We then introduce the calibration-based
scores for prediction checks in Section 9.4.2, and apply it to the CATE estimators trained
with VIGOR data in Section 9.4.3. Finally, in Section 9.4.4 we show how despite the poor
performance on the overall data, the CATE estimators have good generalization locally,
thereby setting the stage for identifying subgroups with subgroup CATE significantly larger
than ATE in Section 9.5.

9.4.1 CATE estimators applied on the VIGOR dataset

We now describe the 18 popular CATE estimators used in this work, 14 of which follow meta-
learner strategies. Descriptions of the meta-learner strategies can be found in [147] and [196].
Here, we simply list our choices of base learners for each meta-learner. The base learners are
all drawn from a pool comprising lasso, logistic regression, random forest (RF), and gradient-
boosted trees (GB). In our statistical analyses, we used implementations of the former three
algorithms from the scikit-learn package [203] and the XGBoost implementation of the
latter [234]. Furthermore, for code cleanliness, we made use of the meta-learner interface



Chapter 9. Discovery of Interpretable and Stable Subgroups 153

provided by the causalml package [41]. In additional to estimators based on meta-learners,
we also considered two versions each of causal tree [9] and causal forest [245]. The versions
differ in terms of their hyperparameter choices. We used causalml’s implementation of the
former. For the latter, we were not able to find a well-documented python implementation
of the algorithm, so we built one around causalml’s causal tree implementation.

(9A) S-learners (2 estimators): We used RF and GB as the base learners, denoted by. These
are denoted as s rf and s xgb.

(9B) T-learners (4 estimators): We used lasso, logistic regression, RF and GB as base
learners. These are denoted as t lasso, t logistic, t rf and t xgb.

(9C) X-learners (4 estimators): We used lasso, logistic regression, RF and GB as base
learners for the first stage, and lasso as the only base learner for the second stage.
These are denoted as x lasso, x logistic, x rf and x xgb.

(9D) R-learners (4 estimators): In the case of randomized experiments, the R-learner re-
quires a choice of base learner for the conditional expectation of the response with
the treatment variable partialed out, and a choice of base learner for the treatment
effect. We use four such pairs, each member of which was chosen uniformly at random
from the base learners (with logistic regression excluded due to its similarity to lasso).
Doing this, we got {lasso, lasso}, {lasso, GB}, {RF, lassso}, and {RF, RF}. These are
denoted as r lassolasso, r lassoxgb, r rflasso and r rfrf.

(9E) Causal Tree and Causal Forest (4 estimators): We used 2 versions each of the causal
tree and causal forest algorithms, which we have denoted as causal tree 1, causal tree 2,
causal forest 1, and causal forest 2. Each pair of estimators differ in their hy-
perparameter choices. Specifically, causal tree 1 and causal forest 1 both use a
minimum of 50 samples per leaf node, whereas causal tree 2 and causal forest 2

both use a minimum of 200 samples per leaf node. All other hyperparameter choices
are standard and can be found in our documentation on GitHub.

Here, we briefly justify our choice of the 18 CATE estimators listed above. First, we chose
our pool of base learners because they are representative of the most popular supervised
learning algorithms in use today, with neural networks omitted because of the poor signal
and small size of the data set. The T -learner framework is perhaps the simplest way of
fitting a CATE model and has been used and studied by many different authors. Using
lasso as the base learners was proposed and analyzed by Bloniarz et al. [21] and Imai and
Ratkovic [123]. Meanwhile, [92] proposed using RF as the base learner. The X-learner [147]
and R-learner [196] frameworks have both been used by many recent works. The former
has demonstrated favorable performance over other estimators in data challenges organized
by the Atlantic Causal Inference Conference, while the latter has optimality guarantees
under some assumptions, and has been further supported by some follow up work [225]. We
included two S-learner estimators for completion, since all four meta-learner frameworks are
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supported by the causalml package. The causal tree [9] and causal forest [245] estimators
have similarly been used in much recent work, with the latter attaining the status of being
a benchmark of sorts for CATE estimation methods in many simulations.

All CATE estimators based on meta-learners had the hyperparameters of their component
base learners tuned via 4-fold CV using cv orig. A common hyperparameter grid was used
for each base learner type, with details deferred to our documentation on GitHub.

9.4.2 A calibration-based score for CATE estimators

To develop a reality check scheme for CATE estimators, we now build on the literature of
calibration of probability scores.

A binary classifier is said to be well-calibrated if the class probabilities that it predicts for
each sample point is close to the true class probabilities. This property is desirable in many
situations, such as weather-forecasting, where we would like it to rain on close to 40% of the
days on which a 40% chance of rain is forecast. Unfortunately, machine learning models are
often not naturally calibrated, with neural networks in particular being overconfident in their
estimated class probabilities [102]. Furthermore, because class probabilities are unobserved,
we cannot directly train a model to predict these values using supervised learning. While
researchers have proposed various solutions to this problem, the common theme is to bin the
observations by their predicted class probabilities, and then use the observed class distribution
over the bin to obtain plug-in estimates of the true class probabilities.

The concept of calibration has a long history [65, 67], and it has also been referred to as
validity [181] or reliability [185]. Starting for evaluation of weather forecasts in the 1950s [29],
calibration has been widely used as a generic scheme to compare several forecasters [67].
Related ideas have been used to calibrate a wide range of methods, including Bayesian
models [65], SVMs, boosted trees, random forests [195, 186], and more recently deep neural
networks [102].

Binning via estimated CATE values: We now begin to define our calibration-based
prediction accuracy measure for CATE estimators. While our scores—to be defined below—
are easy to interpret, defining them formally requires a bit of notation which we now describe.

Consider the training set STRAIN and let Sf, f = 1, 2, 3, 4 denote its 4-fold (random)
CV split. Fix a fold f and let STF = STRAIN\Sf denote the training folds used to fit the
CATE estimator M : X → R, and let SVF = Sf denote the left-out fold, which we also
call as validation fold, for the estimator M. Let mq denote the q-th quantiles of the CATE
estimator M on the training folds of the data:

mq = min

{
c

∣∣∣∣
#{i ∈ STF : M(xi) ≤ c}

abs STF

≥ q

}
, for any q ∈ (0, 1), (9.4)

where by convention we set m0 = −∞ and m1 =∞. Then given a grid of q-values denoted
by {q1 ≤ q2 ≤ · · · ≤ qK−1} in the interval (0, 1), we split the real line into K bins as follows:



Chapter 9. Discovery of Interpretable and Stable Subgroups 155

m0 < mq1 ≤ mq2 ≤ . . . ≤ mqK−1
< m1.

We use this binning to induce a partition of X into K quantile-based subgroups given by

Gj := Gj(M) =
{
x ∈ X

∣∣ M(x) ∈ [mqj ,mqj+1
]
}

for j = 0, 1, . . . K − 1, (9.5a)

Given a set of individuals S (say, training folds STF or validation fold SVF), let MGj∩S denote
the mean of the predicted CATE from the estimator M on the subgroups Gj ∩ S :

MGj∩S :=
1

abs Gj ∩ S

∑

i∈Gj∩S

M(Xi), where Gj ∩ S = {i ∈ S|Xi ∈ Gj} , (9.5b)

Similarly, recall that τ̂Gj∩S denotes the plug-in estimate for the subgroup CATE for the
subgroup Gj.

τ̂Gj∩S :=
1

abs T ∩Gj ∩ S

∑

i∈T∩Gj∩S

Yi(1)− 1

abs C ∩Gj ∩ S

∑

i∈C∩Gj∩S

Yi(0). (9.5c)

Score definitions: With these definitions of the sub-groups, we are now ready to define
the calibration score:

Cal-Score(S; M) :=
K∑

j=1

abs Gj ∩ S

abs S
· abs MGj∩S − τ̂Gj∩S, (9.6a)

where we use absolute difference (and not squared difference) since the scale of the quantities
{MGj∩S, τ̂Gj∩S} is pretty small for our dataset. Nonetheless, it is still hard to interpret the
absolute scale of Cal-Score(M), and hence we normalize these scores by a baseline to define a
pseudo-R2 score. More precisely, we consider a baseline calibration-score Cal-Score(S; τ̂ATE),
obtained by replacing the the CATE estimator average MGj∩S with that of the (constant)
ATE estimate τ̂ATE in equation (9.6a):

Cal-Score(S; τ̂ATE) :=
K∑

j=1

abs Gj ∩ S

abs S
· abs τ̂ATE − τ̂Gj∩S. (9.6b)

With equations (9.6a) and (9.6b) in place, we define the R2
C score as follows:

R2
C(S; M) := 1− Cal-Score(S; M)

Cal-Score(S; τ̂ATE)
. (9.6c)
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Just like the usual R2-score11, the score R2
C(S; M) can take any value between (−∞, 1],

and a model can be deemed a good fit if this score is close to 1. We interpret the score as
measuring, conditioned on the partition of the feature space into bins, the degree to which
the CATE estimator explains the variability of the CATE with respect to the partition, in
comparison to the best constant model.

Since different models induce different partitions, the scores are not necessarily compara-
ble across models. Furthermore, similar to how calibrated classification algorithms need not
have good prediction accuracy, it is possible for a CATE model to have a good R2

C score and
yet have poor overall prediction accuracy for the CATE. Nonetheless, having R2

C-scores that
are reasonably close to 1 across a range of data perturbations is necessary albeit not sufficient
for the CATE model to have good prediction performance. Moreover, the variability of the
score between the choices S = STF and S = SVF also provides a check on the overfitting of
the CATE estimator.

To conclude, the R2
C provides two predictive checks for the CATE estimators. On the

one hand, when R2
C(STF; M) is much smaller than 1, we conclude that the estimator M

has a poor fit on the training data. On the other hand, a high value (close to 1) value for
R2

C(STF; M), and a relatively lower value (close to 0 or negative) for R2
C(SVF; M) would

necessarily indicate overfitting of the estimator M.

9.4.3 Calibration-based predictive check on CATE estimators for
VIGOR dataset

We now compute the scores defined in the previous section for the 18 popular CATE es-
timators when applied to the VIGOR dataset. We use the evenly-spaced quantile grid
{0.2, 0.4, 0.6, 0.8} and compute the R2

C-scores using the K = 5 bins it induces. We also
consider a restricted R2

C-score to measure the predictive performance of the estimators for
the bottom-2 bins for the GI event, and top-2 bins for the CVT event. To compute this
restricted R2

C-score, we simply replace the sum over the index j ∈ {1, 2, . . . , 5} in equa-
tions (9.6a) and (9.6b) with j ∈ {1, 2} for the GI event and j ∈ {4, 5} for the CVT event,
and then plug this restricted sum in equation (9.6c).

In the previous section, we described how, given a CATE estimator and a fixed fold f,
we obtain two (restricted) R2

C-scores—one on the training folds STRAIN\Sf and one on the
validation fold Sf. Repeating this over 4 folds provides us with 4 pairs of such scores. And
iterating over M different types of CATE estimators yields M × 4 such pairs. Furthermore,
if we consider L different 4-folds splits, we get M × 4× L such pairs of scores.

11While R2-score was originally introduced for linear regression, several similar measures have been pro-
posed for providing an interpretable scale to measure the model fit. The R2 for linear regression takes value
in [0,1] for training data, and (−∞, 1] for test data. Close to 1 value suggests a good fit, and a smaller score
implies a poor fit. Note that unlike the R2 for linear regression, for CATE estimators, the pseudo-score R2

C

is not guaranteed to take value in [0, 1] even on the training data, i.e., R2
C(STF;M) ∈ (−∞, 1]. Nonetheless,

in Fig. 9.2, we observe that for all the CATE estimators, this score lies in [0, 1] on the training folds, i.e.,
R2

C(STF;M) ∈ [0, 1].
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We trained 18 different CATE estimators for both the outcomes, namely the GI and
CVT events. However, after fitting, the following estimators learned a zero CATE function:
R-learner with XGBoost for the GI event, and S-learner with XGBoost, Causal Tree with
a particular choice of hyperparameters, and R-learner with XGBoost for the CVT event.
Thus, going forward we report results for the remaining 17 CATE estimators for the GI
event and 15 CATE estimators for the CVT event. See Section 9.4.1 for more details on
all the estimators. We now first discuss the details of scores presented in various plots in
Fig. 9.2 and then discuss the conclusions in a separate paragraph.
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Figure 9.2: Plots with the calibation-based R2
C-scores (9.6c) for various CATE estimators.

(a) Scatter plot of R2
C-scores on the training and validation folds for 5 CATE estimators on

the original 4-fold split cv orig on which hyperparameters were tuned via cross-validation.
Refer to the text for definition of restricted R2

C-scores. (b) Histogram of the R2
C-scores on

the 12 training and validation folds, 4 each from the 3 different CV splits, namely {cv orig,
cv 0,cv 1} for 17 CATE estimators for GI event, and for 15 CATE estimators for CVT
event.

Details of Fig. 9.2: In Fig. 9.2(a), we provide a scatter plot of R2
C(STF,M) (training

score) and R2
C(SVF,M) (validation score) for 5 different estimators for each fold of original

CV split cv origon the VIGOR data both for GI and CVT events. These estimators are
T RF, S RF, X RF, R RFRF and CF 1 which denote T, S, X, R-learners with random forest
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as base learners, and (one of the two) Causal Forest respectively. In addition, in the right
two figures in Fig. 9.2(a), we also provide the scatter plot of the corresponding restricted R2

C-
scores (see the first paragraph of this section for its definition) on the training and validation
folds for the 5 estimators and both events.

Next, to check the stability of our conclusion, we compute these scores for all 17 CATE
estimators for the GI event, and all 15 CATE estimators for the CVT Eventon all 3 random
CV splits {cv orig,cv 0,cv 1}. That is, we obtain a total of 204 and 180 (training and
validation) pairs of R2

C-scores respectively for the GI and CVT events. In Fig. 9.2(b), we
plot the histogram of these scores.

Conclusions from Fig. 9.2: Inspecting the scatter plots in Fig. 9.2(a), we see clear
evidence of overfitting, as the validation fold R2

C-scores (computed as R2
C(SVF,M) in equa-

tion (9.6c)) are systematically much smaller, and often negative, than those on the training
folds (computed as R2

C(STF,M) in equation (9.6c)). Furthermore, there is substantial vari-
ability across different folds. For instance, one dot corresponding to S RF for GI events was
not even plotted because the validation fold R2

C score exceeded the lower y-limit of the plot.
These findings are supported by the histograms in Fig. 9.2(b), which show that the mean
of the validation fold R2

C-scores is in fact a negative number for both GI and CVT events.
While we presented histograms of the aggregated scores over all the CATE estimators, the
general behavior was also true when looking at individual CATE estimators. Next, we also
note that the bottom-2-restricted R2

C-score for the GI event and top-2-restricted R2
C-score

have slightly better generalization since the validation scores are generally positive albeit
with the caveat of larger variability across the training folds. (We revisit this aspect in more
detail in Section 9.4.4.)

The poor performance on average as well as the high variability of performance both lead
us to be skeptical of the conclusions from any CATE estimator on the VIGOR study data.
Here, we remark that the variability of the scores stems from both fluctuations in the trained
model as well as low SNR in the validation fold (leading to Cal-Score deviating from its
expected value). We remind the reader that in total there are 177 GI events and 59 total
CVT events, and this fact implies that for each quantile-based subgroup, we should expect
to see around 7.1 and 2.3 GI and CVT events respectively in the validation fold, under the
assumption of no heterogeneity. The poor performance is hence entirely to be expected, and
in fact could be a general theme for RCTs, as they are often sufficiently powered for only
computing the ATE.

9.4.4 Extracting data conclusions that can be relied upon

While we conclude that we cannot trust the CATE models in their entirety, it remains to
be seen if we can isolate data conclusions from them that we can rely on. To this end, we
take a closer look the relative ordering of scores MGj∩S (9.5b) and τ̂Gj∩S equation (9.5c)

across the quantile-based subgroups {Gj}5
j=1 considered in the previous section. Given the
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quantile-based definition of the groups, it is natural to test whether we have

MG1∩S ≤MG2∩S ≤ . . . ≤MG5∩S, (estimator CATEs) and (9.7a)

τ̂G1∩S ≤ τ̂G2∩S ≤ . . . ≤ τ̂G5∩S, (subgroup CATE estimates) (9.7b)

for a set of individuals S comprising either the training folds or the validation fold. In Fig. 9.3,
we plot these estimates for two estimators X RF and T RF for the GI event in panel (a)
and the CVT event in panel (b) for one set of training and validation folds from the original
split. In each plot, the blue error bars denotes the sample standard deviation estimate for the
sample mean MGj∩S computed from {M(Xi), i ∈ G2 ∩ S}, and the red error bars denote the
standard error estimate for τ̂Gj∩STF

given by equation (9.11b). We observe that generally the

model CATE estimates
{
MG1∩S

}5

j=1
are monotonic for both events on both training folds and

validation fold. However, the story with the plug-in subgroup CATE estimates
{
τ̂Gj∩S

}5

j=1

is—not unexpectedly—mixed. For the GI event, while these estimates are monotonic on
the training folds (S = STF), they are not monotonic on the validation fold (S = SVF).

For the rarer CVT event, the estimates
{
τ̂Gj∩S

}5

j=1
are not even monotonic on the training

folds. This non-monotonic behavior is far from unique to the two estimators presented here.
Instead, the plots are representative of what we observe for all other estimators as well, even
when using alternate data splits into training and validation folds.

Pairwise comparisons: To summarize this phenomenon, we do a pairwise comparison of
successive quantile-based subgroups and measure the frequency with which the ordering of
their CATE values generalizes to the validation fold, and summarize our results in Fig. 9.4(a).
More precisely, for a given estimator M, we define the boolean indicators:

Aj,j+1 = I(τ̂Gj∩SVF
≤ τ̂Gj+1∩SVF

) for j = 1, 2, 3, 4. (9.8a)

We then compute how often we have Aj,j+1 = 1 over the 12 validation folds 4 each from the
3 CV splits {cv orig,cv 0,cv 1}, and denote this value by Aj,j+1. Finally, we provide a box-
plot of the distribution of the values

{
Aj,j+1, j = 1, 2, 3, 4

}
across all 17 CATE estimators

for the GI event, and 15 CATE estimators for the CVT event in panel (a) of the Fig. 9.4.
A value close to 1 suggests good generalization, and conversely, a value close to 0 reflect
poor generalization. On the one hand, we see that the pairwise ordering does not generalize
well for most pairs of successive quantile-based subgroups as the frequency of generalization
Aj,j+1 concentrates around values ≤ 0.5 for j = 2, 3, 4 for the GI event, and j = 1, 2, 3
for the CVT event. On the other hand, we see that values of A1,2 for the GI event, and
those of A4,5 for the CVT event are pretty close to 1 (we present more precise numerical
values in Table H.1.) This observation suggests that the ordering does generalize well for the
subgroup with the strongest negative treatment effect for the GI event, and the strongest
positive treatment effect for the CVT event.
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Figure 9.3: Investigating the monotonicty trend (equation (9.7)) for two CATE estimators
X RF and S RF on one set of three training folds and one validation fold of the original 4-fold
split cv orig, for (a) the GI Event, and (b) the CVT Event. Here “Model CATE” refers to
the quantity MGj∩S, and Neyman CATE refers to the quantity τ̂Gj∩S. In our notation, for
training folds S = STF, and for validation fold S = SVF. The error bars for Model CATE
are the sample standard deviation for the estimated CATE values from the model, for each
subgroup. For the Neyman CATE, the error bar denotes the square-root of the estimated
variance (9.11b). Note that the subgroups {Gj} are defined by the CATE estimator via the
training folds.

Investigating the quantile-based “top” subgroups: We call the subgroups induced
by G1 for the GI event, and G5 for the CVT event, the quantile-based top subgroup. Note
that each subgroup is specific to a choice of estimator, a choice of training-validation split,
and a choice of quantile-grid. To further analyze the good generalization of ordering for
these top subgroups, we also compare them to the other quantile-based subgroups via two
boolean variables as follows:

for GI event: A1,min := I(τ̂G1∩SVF
= min

j
τ̂Gj∩SVF

), and (9.8b)

for CVT event: A5,max := I(τ̂G5∩SVF
= max

j
τ̂Gj∩SVF

). (9.8c)

We report the distribution of the frequency of generalization A1,min (mean computed over the
12 validation folds) across the 17 CATE estimators for the GI event, and A5,max across the
15 CATE estimators for the CVT event as the rightmost entry of the corresponding figure
in Fig. 9.4(a). The plots show that, on the validation fold, the quantile-based top subgroup
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has the strongest treatment effect 90% of the time for the GI outcome, and about 80% of
the time for the CVT outcome.

Next, to better investigate the performance of quantile-based top subgroups, we compare
these top subgroups directly against their complement, reporting the results in Fig. 9.4(b). In
this plot, we also vary the q-value threshold used to define the quantile-based top subgroup.
In particular, we consider groups of the form

G̃q = {x ∈ X |M(x) ∈ (−∞,mq]} (9.9)

where mq denotes the q-th quantile of the CATE estimator M on the training folds (see

equation (9.4) for the mathematical expression). Note that with this notation, G̃c
q =

{x ∈ X |M(x) ∈ (mq,∞}. In simple words, the subgroup G̃q is based on the quantile range

[0, q], and its complement subgroup G̃c
q is based on the quantile-range [q, 1]. Then we check

the ordering for between these subgroups via the following boolean indicators:

Bq = I
(
τ̂
G̃q ∩ SVF

≤ τ̂
G̃c

q ∩ SVF

)
, for

{
q ∈ {0.1, 0.2, . . . , 0.5} for GI event

q ∈ {0.9, 0.8, . . . , 0.5} for CVT event.

(9.10)

Note that the subgroup of interest is Gq for the GI event and Gc
q for the CVT event.

Moreover, in this new notation, the earlier subgroups (from Fig. 9.4(a)) would be represented

as G1 = G̃0.2 and G5 = G̃c
0.8. We notice that the ordering (9.10) holds much more frequently

(compared to the pairwise ordering in Fig. 9.4(a)). We also note from this figure that
q = 0.2 and q = 0.8 provide the best generalization performance for the GI and CVT events
respectively.

In summary, we have found that at least some of the CATE estimators yield quantile-
based top subgroups that have subgroup CATE that is demonstrably stronger than that
of the rest of the population. Thus, in the following sections, we use these quantile-
based top subgroups, namely the subgroups {Gq, q = 0.1, 0.2, . . . , 0.5} for the GI event, and{
Gc

q, q = 0.9, 0.8, . . . , 0.5
}

for the CVT event for further analysis.

9.5 Stability-driven ranking and aggregation of CATE

estimators

Based on the discussion at the end of the last section, we believe that we can use a sub-
collection of the CATE estimators to find subgroups with highly negative (in the case of the
GI outcome) or positive (in the case of the CVT outcome) subgroup CATE, in the form of
a quantile-based top subgroup. This observation brings us back to the question of estimator
screening and choice: We seek to define a more stringent predictive test, and furthermore,
out of all CATE estimators we considered, we would like to select those that are able to
give us the best subgroups. While the overall goal of StaDISC is to find subgroups that are
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Figure 9.4: Box plots for pairwise comparisons of the subgroup CATE estimates for the 5
quantile-based subgroups based on the quantile grid {0.2, 0.4, 0.6, 0.8}. The boxplots in panel
(a), denote the distribution for the mean fraction Aj,j+1 (9.8a) (where the mean is computed
over the 12 validation folds, 4 each from the 3 random CV splits {cv orig,cv 0,cv 1}) across
various CATE estimators, for the GI event on the left, and CVT event on the right. In
addition, we also show the boxplot of the distribution of the boolean variablesA1,min (9.8b) for
the GI event, and A5,max (9.8c) in the rightmost column of respective plot. In panel (b), we
provide boxplots for the distribution of the mean value of boolean indicators {Bq (9.10) across
all CATE estimators, for q ∈ {0.1, 0.2, . . . , 0.5} for the GI event, and q ∈ {0.9, 0.8, . . . , 0.5}
for the GI event, where the mean is computed over the and the distribution is plotted across
all the CATE estimators. Refer to Table H.1 for estimator-wise results.

both statistically significant and interpretable, we focus in this part of chapter on selecting
estimators that yield the most significant subgroups, and only address interpretability in
Section 9.6.

9.5.1 Comparing estimators using t-statistics

We compare different CATE estimators using the statistical significance of their quantile-
based top subgroup, measured via using standardized scores, namely t-statistics. Given a
subgroup G, its corresponding t-statistic is given by:

TG :=
τ̂G − τ̂ATE√

V̂ar
[
τ̂G−τ̂ATE

∣∣ F
] . (9.11a)

Here, the term in the denominator is a plug-in estimate of a conditional variance, where the
conditioning is over a σ-algebra F comprising knowledge of the group labels and treatment
labels for all individuals in the sample population. More precisely, the variance estimate is
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given by

V̂ar
[
τ̂G−τ̂ATE

∣∣ F
]

:=

(
abs Gc ∩C

abs C

)2

·
(

V̂ar
[
Y (0)

∣∣ G ∩C
]

abs G ∩C
+

V̂ar
[
Y (0)

∣∣ Gc ∩C
]

abs Gc ∩C

)

+

(
abs Gc ∩T

abs T

)2

·
(

V̂ar
[
Y (1)

∣∣ G ∩T
]

abs G ∩T
+

V̂ar
[
Y (1)

∣∣ Gc ∩T
]

abs Gc ∩T

)
,

(9.11b)

where for a given set A ⊂ S, the quantity V̂ar
[
Y (t)

∣∣ A
]

denotes the sample variance:

V̂ar
[
Y (t)

∣∣A
]

=
1

absA− 1

∑

i∈A

(
Yi(t)−

1

absA
∑

j∈A

Yj(t)

)2

for t = 0, 1. (9.11c)

We show in Appendix H.1 that the estimator (9.11b) is an unbiased estimator of the condi-
tional variance of τ̂G − τ̂ATE, and from the proof, it also easily follows that the estimator is
consistent. As such, under the null hypothesis that τG − τATE = 0, the t-statistic yields an
asymptotically valid p-value.

In this chapter, we deliberately choose not to use p-values to report the results, so as to
avoid their susceptibility to misinterpretation. For interested readers, however, we mention
the mapping between p-values and t-statistics (T). The t-statistics presented throughout
this work can be associated with one-sided p-values. In particular, a negative t-statistic with
magnitude 1.65, 1.96, and 2.33 can be mapped to a left one-sided p-value of 0.05, 0.025 and
0.01 respectively. The same mapping exists between positive t-statistics and right one-sided
p-values.

9.5.2 Defining appropriate perturbations

In order to guard against spurious and unreliable discoveries, the Stability principle of the
PCS framework requires conclusions to be stable to reasonable or appropriate perturbations
at various stages of the data science life cycle. These include modeling and data perturbations
familiar to statisticians which are appropriate under the Neyman-Rubin model assumptions,
and also “judgment call” perturbations where we reproduce or at least approximate the con-
clusions that would have been reached had various contingent choices been made differently.
Examples of these choices include those made during data cleaning and feature engineering.12

As mentioned earlier, we have used a random CV split in order to fit and analyze our
CATE models for the VIGOR data. In line with our prior discussion, we do not just evaluate
each estimator based on the 3 CV splits {cv orig,cv 0,cv 1}, but also perform concurrent
analyses of the estimator fitted and validated using four-fold splits of the data under 4

12This concern is similar to that expressed by Gelman in his influential paper on The Garden of Forking
Paths [94].
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additional perturbations. Overall, we denote the set of all 7 perturbations by {cv orig,

cv 0, cv 1, cv time, elderly 60, overweight, pert outcome}, where the 3 (random)
CV splits {cv orig,cv 0,cv 1} have already been used multiple times in the previous results
of this chapter. For completeness and to put them in context here, we revisit them while
introducing the new perturbations {cv time, elderly 60, overweight, pert outcome}
that we make use of in our subsequent analysis of the VIGOR dataset. We remind the
reader that for each perturbation, we perform the same 4-fold split for all the CATE esti-
mators. Moreover, we continue to use the tuned hyperparameters from cv orig for all other
perturbations.

Sampling perturbations (cv 0, cv 1, cv time): The additional CV (random) splits
{cv 0, cv 1}, used earlier and also in the sequel, help to account for sampling variability
and are pretty commonly used in statistics and machine learning. Nonetheless, we also share
Efron’s concern that the use of random splits [87] does not play well with possible covariate
shift, and may lead researchers to be overly optimistic about conclusions that do not have
external validity. To address this, we also split the training data into four equally-sized
folds by binning based on enrollment-time, denoted by {cv time}. This simulates possible
variability in the sample population due to human choices (i.e. the date of the RCT)13, and
can also be seen more generally as making use of an a priori irrelevant variable to create
heterogeneous folds and thus penalize ephemeral predictors.

Feature engineering perturbations (elderly 60, overweight, pert outcome): We
use alternative thresholds to create perturbed versions of the ELDERLY and OBESE fea-
tures. Instead of thresholding the adjusted age at 65, we create an ELDERLY 60 feature
by thresholding it at 60, and instead of thresholding BMI at 30, we instead threshold it
at 25 to define the feature OVERWEIGHT. In this way, we create two perturbed datasets,
denoted by {elderly 60, overweight}. Finally, for both the GI and CVT outcomes, the
VIGOR study recorded for each patient both whether an event occurred, and also whether
the occurred event was confirmed (meaning that it met the stringent criteria of an indepen-
dent panel). In the original study, and thus far in this chapter, we have used the confirmed
events as the response of interest, but we now make use of the unconfirmed events to create
a new response variable tracking all events. This increases the number of GI events from
177 to 190 and the number of CVT events from 59 to 84. Replacing the original responses
with these one creates a further perturbed dataset for each outcome, which we denote by
{pert outcome}. For the three perturbations {elderly 60, overweight, pert outcome},
we use the original 4-fold split cv orig of the patients (albeit with the perturbed features
or outcomes in the data).

13In fact, such a time-based split would be even more relevant for studies based on RCTs that are online
in nature, meaning that during the trial, results from earlier stages of the trial are used to guide whether
the trial would be continued further or concluded.
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Performing our analyses on these perturbed datasets reveals to us what would have
happened had we, or the original study authors, made different contingent decisions in
feature engineering or problem formulation. Although models fit on these datasets no longer
have exactly the same meaning as those fit on the original data, we still expect the estimators
that perform well on the original data to also perform well on these perturbed datasets.

9.5.3 Ranking and aggregation of CATE estimators

In this section, we first rank the CATE estimators based on their performance across all
data perturbations elaborated in the previous section. And, then we select the estimators
that are ranked in Top-10 estimators across all the perturbations. Finally, we build a single
“ensemble CATE estimator” by taking a simple average (equal weights) of all the selected
CATE estimators. Quantile-based top subgroups of the ensemble estimator form the starting
point of finding interpretable subgroups in Section 9.6. We now describe the details of our
ranking procedure.

Mean t-statistic per data perturbation: For a CATE estimator M, for each data per-
turbation D ∈ {cv orig, cv 0, cv 1, cv time, elderly 60, overweight, pert outcome},
we compute the mean t-statistic averaged across all quantiles across the corresponding 4 val-
idation folds. In our notation, for the GI event, this mean t-statistic is given by

TGI(D) =
1

20

∑

q∈Q

∑

SVF∈F

T
G̃q ∩ SVF

where Q = {0.1, 0.2, . . . , 0.5} ,F = {Sf, f = 1, 2, 3, 4} ,

(9.12a)

where the quantile-based top subgroup G̃q was defined in equation (9.9). Moreover, we

remind the reader that the quantiles that define the subgroup G̃q (see equations (9.4)
and (9.5a)) are computed based on the CATE estimates from the fitted M on its training
folds STF = STRAIN\SVF. On the other hand, the t-statistic on the RHS of equation (9.12a) is
computed on the validation fold SVF. For the CVT event, the corresponding mean t-statistic
is given by

TCVT(D) =
1

20

∑

q∈Q

∑

SVF∈F

T
G̃c

q ∩ SVF
where Q = {0.9, 0.8, . . . , 0.5} ,F = {Sf, f = 1, 2, 3, 4} ,

(9.12b)

We report the mean t-statistic T(D) for each CATE estimator and all 7 data perturbations
in Table 9.2(a) for the GI event, and Table 9.2(b) for the CVT event. We also provide a
visual summary of the 7 mean t-statistic for each estimator in the form of boxplot in Fig. 9.5
in panel (a) for the GI event, and panel (b) for the CVT event.
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Ranking the CATE estimators: Next, for each category D, we rank the mean t-statistic
from lowest to highest for the GI event, and highest to lowest for the CVT event. In
accordance with the Stability principle of the PCS framework, we screen for estimators that
perform well across perturbations, and thereby select all estimators that rank in Top-10
across all data perturbations D. We provide the visual illustration of these ranks also in
Fig. 9.5 for the two events. In fact, the estimators in the Fig. 9.5 are sorted based on
their worst rank across the perturbations. This criterion selects (i) 2 T-learners and 4 X-
learners {t lasso, x rf, t rf, x xgb, x lasso, x logistic} for the GI event, and (ii) 1 S-learner,
3 T-learners, and 1 X-learners {s rf, t lasso, t rf, x xgb, t logistic} for the CVT event. The
selected list can also be verified by a simple inspection of the rank plots from Fig. 9.5.

Final step before interpreting: Keeping in mind the computational aspects of the next
step (finding interpretable subgroups), and to increase stability, we decided to build an en-
semble CATE estimator by using a simple average of the selected CATE estimators. More-
over, we also investigate the performance of the quantile-based top subgroups for this ensem-
ble, and report the mean t-statistic across the 12 validation folds from {cv orig,cv 0,cv 1}
for G̃q (9.9) for the GI event, and G̃c

q for the CVT event in Table 9.3. We report the standard
deviation of the t-statistic across these folds in parentheses. In addition, we also report the
mean percentage overlap computed pairwise across the entire training set STRAIN for the 12
ensemble estimators, 4 each from the 3 CV splits {cv orig,cv 0,cv 1}. We observe that for
the GI event the subgroups corresponding to q ∈ {0.2, 0.3} have relatively higher T, and for
the CVT event q ∈ {0.9, 0.8} are the top 2 choices. The trends for overlap are as expected,
with the increase in size of the group, the overlap generally increases; and remains > 70%
across all choices. In the next section, we discuss our methodology to find an interpretable
representation of the quantile-based top subgroups using the ensemble CATE estimator. As
a final decision before that step, we choose the groups G̃0.2 and G̃0.3 for the GI event, and
G̃c

0.9 for the CVT event, based on their high t-statistic. We also include the group G̃c
0.8 for

the CVT event keeping in mind the fact that the CVT event is very rare, and thus the low
signal in the subgroup Gc

0.9 (having only 10% of the training data) may become a bottleneck
for any reasonable inference task.

9.6 Finding interpretable subgroups

The next and final step of our investigation is to make our findings interpretable. Recall
that the end goal in investigating the heterogeneous treatment effects in the VIGOR study
is to inform treating physicians which subgroup of patients are likely to benefit from the
reduced risk of GI events, without simultaneously incurring an increased risk of CVT events.
Physicians may then favor prescribing the drug for patients in this subgroup. In situations
involving high stakes decision-making such as this one, decision-makers are usually not com-
fortable with black-box decision rules, but instead ideally require rules to be transparent
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Perturbation D cv orig cv 0 cv 1 cv time elderly 60 overweight pert outcome

Estimator M TGI(D)

t lasso -1.27 -1.79 -1.52 -1.36 -1.36 -1.02 -1.24
x rf -1.24 -1.84 -1.37 -1.58 -1.40 -1.22 -1.38
t rf -1.25 -1.62 -1.39 -1.34 -1.34 -1.24 -1.43
x xgb -1.16 -1.80 -1.44 -1.45 -1.31 -1.11 -1.10
x lasso -1.23 -1.88 -1.49 -1.33 -1.28 -1.04 -1.15
x logistic -1.31 -1.86 -1.39 -1.26 -1.31 -0.96 -1.06
r lassorf -1.26 -1.34 -1.36 -1.56 -1.63 -0.95 -0.96
t logistic -1.33 -1.72 -1.56 -1.14 -1.27 -1.17 -1.19
r rfrf -1.24 -1.45 -1.33 -1.51 -1.50 -1.00 -0.84
causal forest 2 -1.00 -1.32 -1.39 -1.23 -1.22 -0.94 -0.92
t xgb -1.02 -1.73 -1.18 -1.31 -1.38 -1.01 -1.34
r lassolasso -1.10 -1.76 -1.25 -1.19 -1.19 -1.07 -0.76
causal forest 1 -0.97 -1.26 -1.25 -1.10 -1.07 -0.84 -1.32
s xgb -0.95 -1.35 -1.57 -0.99 -1.02 -0.90 -0.99
causal tree 1 -0.67 -1.22 -0.98 -0.50 -0.66 -0.80 -0.46
causal tree 2 -1.07 -0.87 -0.72 -0.96 -1.09 -0.88 -0.64
s rf -0.78 -1.44 -0.81 -1.19 -1.33 -0.59 -1.12

(a) GI Event

Perturbation D cv orig cv 0 cv 1 cv time elderly 60 overweight pert outcome

Estimator M TCVT(D)

s rf 0.96 1.29 1.17 1.42 1.29 1.05 1.26
t lasso 1.06 1.16 0.99 1.02 1.10 1.07 1.14
t rf 1.10 1.19 0.90 1.25 1.24 1.18 1.45
x xgb 1.01 1.15 0.89 1.03 1.08 1.04 1.11
t logistic 1.10 1.16 1.03 1.17 1.17 0.93 1.02
x logistic 0.97 1.11 0.87 0.94 1.14 0.92 1.01
x rf 0.90 1.11 0.88 0.91 1.09 0.99 1.02
x lasso 0.92 1.13 0.80 0.90 1.10 0.94 1.03
t xgb 0.66 1.06 0.92 1.26 0.95 0.66 1.26
r rfrf 0.86 1.12 0.70 1.01 0.88 0.96 0.97
r lassorf 0.79 1.14 0.75 0.93 0.86 1.03 0.81
r lassolasso 0.81 1.01 0.65 0.61 1.01 0.84 0.98
causal tree 2 0.67 0.88 0.84 -0.33 0.64 0.49 1.28
causal forest 1 0.93 1.14 0.96 0.74 0.58 0.64 0.71
causal forest 2 0.46 0.72 0.87 0.55 0.56 0.96 1.12

(b) CVT Event

Table 9.2: Estimator- and perturbation-wise t-statistic TGI(D) (9.12a) for the GI event in
panel (a), and TCVT(D) (9.12b) for the CVT event in panel (b). In each column the best
(lowest for GI event, highest for CVT event) t-statistic is highlighted in bold. The order of
the estimators in panel (a) and (b) is the same order as that in Fig. 9.5(a) and Fig. 9.5(b)
respectively.
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Figure 9.5: Box plots of the rank and value of mean t-statistic scores TGI(D) (9.12a),
and TCVT(D) (9.12b), where the distribution is over the 7 data perturbations D ∈
{cv orig, cv 0, cv 1, cv time, elderly 60, overweight, pert outcome}. Here rank
for the mean t-statistic score is computed per perturbation D, and all CATE estimators are
ranked lowest to highest for the GI event, and highest to lowest for the CVT event. The
estimator- and perturbation-wise numbers for both panels are reported in Table 9.2.
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Bottom quantile GI Event

based subgroup G̃q TG̃q
Overlap

q = 0.1 -1.32 (0.20) 73%
q = 0.2 -1.58 (0.19) 77%
q = 0.3 -1.47 (0.16) 82%
q = 0.4 -1.02 (0.12) 83%
q = 0.5 -0.81 (0.12) 87%

Top quantile CVT Event

based subgroup G̃c
q TG̃c

q
Overlap

q = 0.9 1.28 (0.22) 77%
q = 0.8 1.03 (0.12) 75%
q = 0.7 0.85 (0.12) 77%
q = 0.6 0.71 (0.09) 79%
q = 0.5 0.57 (0.13) 82%

Table 9.3: t-statistic for different quantile-based top subgroups of the ensemble CATE esti-
mator. “Overlap” column reports the average % pairwise overlap between the 12 quantile-
based top subgroups on the entire training data, namely G̃q ∩ STRAIN for the GI event, and

G̃c
q ∩ STRAIN for the CVT event. The 12 subgroups correspond 4 each to the 3 CV splits
{cv orig, cv 0, cv 1}.

and interpretable, so as to align them with their own knowledge base, and justify them to
patients and regulators.

9.6.1 Interpreting using “cells”

In the work by Murdoch et al. [184], one of us has argued that a key element of interpretability
is the notion of relevance. Interpretations need to provide “insight for a particular audience
into a chosen domain problem.” Since clinical decision rules usually take the form of decision
trees, a decision tree is the gold standard for our problem at hand. Each leaf of a decision tree
constitutes a subset of the feature space defined by constraining the values of the features
occuring along the root-to-leaf path. We call such a subset of a feature space a cell14, and
propose to make our quantile-based top subgroups interpretable by approximating it with a
union of a few cells, which we call a cell cover.15

Two remarks are in order. First, we find empirically that no single cell gives a good
approximation of quantile-based top subgroups, so we require the additional flexibility of a
union of multiple cells. Furthermore, reporting a union of cells is more flexible than reporting
a decision tree, because it is not always possible to construct a tree with a given collection
of cells as its leaf nodes.16 Second, by focusing on cells, we recognize the importance of
interactions, or in other words, nonlinear dependence of treatment effect on the covariates.
Chernozhukov et al. [53] proposed interpreting quantile-based top subgroups by estimating
the differences in the “observed characteristics” between the quantile-based top subgroup and
the subgroup that is defined to be least affected by the treatment, but this only considers
the marginal importance of each feature.

14This term is motivated by the geometric interpretation of such subsets as subcubes of the hypercube
that comprises the entire feature space.

15One may also think of this as a disjunction of conjunctions.
16For instance, leaf nodes will always involve the feature that splits the root node.
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9.6.2 Cell-search methodology

In this section, we demonstrate a general framework for how to search for a cell cover that
contains most of the individuals in the quantile-based top subgroup, but does not include
too many individuals from outside it.

Feature selection: We start by selecting up to 10 features from the original list of 16
features. This is both to make the subsequent steps of cell search more computationally
tractable, and also to act as a form of regularization.17 To do this, we compute feature
importance scores in two different ways. (i) Following Chernozhukov et al. [53], we make
use of the difference between the mean of the feature values over the quantile-based top
subgroup and that over its complement. We refer to this score as the “Logistic” feature
importance score. (ii) We train a logistic classifier to predict membership in the quantile-
based top subgroup, and make use of the coefficients. In either case, we normalize so that the
absolute values of the scores sum to one. We refer to this score as the “Difference” feature
importance score. We compute these two types of scores for the ensemble CATE estimators’
quantile-based top subgroups selected at the end of Section 9.5.3, namely G̃0.2 and G̃0.3

for the GI outcome, and G̃c
0.9 and G̃c

0.8, across the twelve random training-validation splits
({cv orig, cv 0, cv 1}). For each outcome, we average the feature importance scores across
the different splits as well as both choices of the quantile-based top subgroups. The final
results are shown in Fig. 9.6.

Ranking the 16 features according to the two measures of feature importance, we select
the features that rank among the top 8 under either measure. Note that we choose to
make use of both feature importance measures because they have different meanings: While
the first score measures the marginal importance of each feature, the second measures its
conditional importance. However, the choice of “top 8” was also selected keeping in mind the
fact that the top features for the two measures have a high overlap, and we end up selecting
9 and 10 features respectively for the GI and CVT events listed (alphabetically) below:

GI event: CHLGRP, HYPGRP, PNAPRXN, PNSAIDS, PSTRDS, PPH, ELDERLY, OBESE, WHITE

CVT event: ASCGRP, ASPFDA, CHLGRP, PPH, US, ELDERLY, MALE, OBESE, SMOKE, WHITE

Readers may refer to Table 9.1 to remind themselves about the definitions of all the features.

Iterative procedure: We now describe the CellSearch procedure for finding the cell
cover for a quantile-based top subgroup one cell at a time, with Fig. 9.7 also providing a
pictorial explanation. For clarity, we introduce some notation, denoting the quantile-based
top subgroup by Gtop, and the cell found at the i-th step by Ci. For GI event Gtop takes

the form G̃q, and for the CVT event G̃c
q for suitable choices of q. As before, we will abuse

notation, using these symbols to refer to the subgroups and cells as subsets of the feature

17The iterative Random Forest [15] algorithm for finding higher-order interactions in genomics data does
soft feature selection for precisely these reasons.
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Figure 9.6: Mean feature importance scores for the quantile-based top subgroups from the
ensemble CATE estimator. Best seen in color. We plot both the scores next to each other
for each feature with the order (top, bottom) = (logistic, difference), but separately for each
outcome. The blue bars and red bars respectively denote the “Logistic” and “Difference”
feature importance scores described in the text.

space, as well as the subpopulation of individuals that belong to them. At the first step, we
consider every possible cell C defined with m features or less, where m is a user-specified
tuning parameter, and compute its “true positive” (TP) and “false positive” (FP) values with
respect to Gtop as follows:

TP(C,Gtop) := absC ∩Gtop, and FP(C,Gtop) := absC ∩Gc
top, (9.13)

which we are able to compute efficiently using the FPGrowth algorithm [104]. Moreover, let
∆(C,Gtop) := TP(C,Gtop)− FP(C,Gtop) denote the difference of these values.

We rank the cells based on their difference score ∆(C,Gtop), but instead of simply picking
the cell achieving the largest positive value ∆max, we first create a candidate list of cells for
which ∆(C,Gtop) ≥ max(0,∆max− 0.05 abs Gtop), remove from cells any that are sub-cells18

of other cells on this list, and then choose one of remaining cells uniformly at random. The
returns on adding this layer of complexity are to favor simpler, more interpretable cells,
and also (by running the procedure multiple times) to discover if two or more cells have
comparable performance.19

18We say that Cell A is a sub-cell of Cell B if it is contained in Cell A when both are though as subsets
of the feature space.

19A user may wish to simply follow the greedy procedure.
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In each subsequent step of the algorithm, to find the next cell in the cell cover, we first
remove from the study population all individuals belonging to the cells already found, and
then repeat the above process. More rigorously, suppose cells C1, . . . ,Ci−1 have already been
determined. The true and false positive scores are now defined by

TP(C,Gtop;∪i−1
j=1Cj) := absC ∩Gtop\ ∪i−1

j=1 Cj, and FP(C,Gtop;∪i−1
j=1Cj) := absC ∩Gc

top\ ∪i−1
j=1 Cj,

(9.14)

while ∆max and the threshold are also modified accordingly. Finally, the procedure terminates
if ∆max at any iteration is less than or equal to 0 or if the number of iterations has reached
a pre-specified threshold (default value 3).

 quantile 
subgroup 

𝒢1

Cell 2

Cell 1
Cell 4

Cell 3

Cell 1

Cell 2

Cell 1

(a) Cover found by CellSearch (b) Illustration of one step of CellSearch

Figure 9.7: A simplified illustration of CellSearch methodology for finding a cell-based
cover for a given (quantile-based) subgroup.

Aggregating results over multiple runs: In accordance with the Stability principle,
we run CellSearch multiple times, and check whether the same cell cover is found. In our
case, we ran it five times on each top quantile subgroup arising from 12 random training-
validation splits, for a total of 60 runs. While the cell cover did not turn out to be stable, we
found that certain cells or their sub-cells frequently re-appeared within each run. We thus
turn our focus to individual cells, and aggregate the results over the multiple runs, calling
this procedure StabilizedCellSearch.

To describe how we aggregate the results, we first use B to denote the collection of all 60
runs, and for each run b ∈ B, we let Cb denote the cover returned by the procedure, while
the collection of all cells found is denoted C := ∪b∈BCb. For each cell C ∈ Cb, we define its
stability score as follows:

Stab(C) =
1

absB
∑

b∈B

∑

C′∈C

1(C′ ∈ Cb and C′ is sub-cell of C)
absC′

absC
. (9.15)
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This score measures how frequently cell C and its proper sub-cells are found across the
different runs, with each occurrence weighted by the relative size of the sub-cell.

Finally, we rank the cells according to their stability scores, and output those for which
the score exceeds a user-defined threshold. In our case, we chose the threshold to be 1/3
which results in finding 3 cells each for the GI and CVT outcomes. We discuss these cells in
the next section, while the full results obtained by running StabilizedCellSearch on the
VIGOR data with respect to both the GI and CVT outcomes is shown in Table H.2.

9.6.3 Discussion of cells found and performance on test set

In this section, we discuss the statistical significance of the cells found for both GI and CVT
outcomes. First, we list the top 3 cells found for each outcome, where detailed results for
top 20 cells (sroted by Stab-scores) are reported in Table H.2. For the GI outcome, the top
3 stable cells are:

(vi) C1: Patients with prior history of GI Event denoted as {PPH=1},
(vii) C2: patients who (self) reported a prior (to the experiment) usage of steroids, and a

history of hypertension denoted as {PSTRDS=1, HYPGRP=1}, and

(viii) C3: Elderly patients who reported a prior usage of steroid drugs denoted as
{PSTRDS=1, ELDERLY=1}.

For the CVT outcome, they are:

(ix) C̃1: Patients for which use of Aspirin has been indicated as per FDA guidelnes {ASPFDA=1},
(x) C̃2: Male elderly patients {MALE=1,ELDERLY=1}, and

(xi) C̃3: Patients that have reported prior history {ASCGRP=1}.

For further details on the features appearing above, please refer back to Section 9.2.2. In
Fig. 9.8, we plot the overlap between these cells.

Conclusions from Fig. 9.8: As can be seen in Fig. 9.8(a), there is little to moderate
overlap among the cells C1 and C3, which shows that they are meaningfully different. On
the other hand, there is significant overlap among the cells C̃1, C̃3 in Fig. 9.8(b). In particular,

C̃1 is a subset (but not a sub-cell) of C̃3. The reason we report both cells is because of the

suspected multi-scale nature of treatment effect variation for the CVT outcome, with C̃1

found more often for q = 0.9, and C̃3 found more often for q = 0.8.
We now compute and report several quantities for each of these 6 cells, finally making

use of the holdout test dataset (20% of the study size) for the very first time. For cells C1,C2

and C3, as well as the union ∪3
j=1Cj of these 3 cells, the results are reported in Table 9.4.

Similar results for the cells C̃1, C̃2, and C̃3 and their union ∪3
j=1C̃j are reported in Table 9.5.

We now discuss the results from Tables 9.4 and 9.5 one by one.
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Figure 9.8: Overlap matrix for final discovered cells on the training data STRAIN. For panel
(a) the data split is stratified on the treatment indicator and the GI outcome, and that for
(b) is stratified on on the treatment indicator and the CVT outcome. For instance, the
number 82 for the entry corresponding to C1 and C2 in panel (a) represents that the two
cells had 82 patients in common on the training data.

Results from Table 9.4: In the first three rows of Table 9.4, we examine the subgroup
treatment effect for these cells with respect to the GI outcome. In the second and third
columns, we report two versions of the Neyman estimate for the cell CATE τ̂C∩S, one com-
puted on the training set STRAIN as well as one computed on the test set STEST. Likewise,
in the next two columns, we report the t-statistic TG∩S, one computed on the training set
STRAIN, and on the test set STEST. Finally, in the last column with header †SVAL, we report
the mean (and standard deviation in parenthesis) of the t-statistics T computed on the 12
different folds of STRAIN from the 3 random CV splits {cv orig, cv 0, cv 1}. Overall, the
test set results are promising, with test set CATE estimates being much more negative than
the estimated ATE, and comparable to their training set counterparts. While we do not re-
port p-values because they can be easily misunderstood, we note that the test set t-statistic
values for the GI outcome are C3, and the union ∪3

j=1Cj, are both significant at the 0.025
level for a one-sided z-test.

The starting point of our investigation of the VIGOR dataset was the hope to identify
a subgroup for which Vioxx simultaneously has a strong negative treatment effect for GI
risk and a low positive treatment effect for CVT risk. Consequently, in the last three rows
of Table 9.4, we report the treatment effect results for the cells {Cj}3

j=1 and their union,
with respect to the CVT outcome. While C2 and C3 experience increased CVT risk, C1 =
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#evts/size CATE Est. τ̂C∩S (std) t-statistic TC∩S

Dataset S STRAIN STEST STRAIN STEST STRAIN STEST
†SVAL

Cell C

GI Event (GI-stratified split)

PPH=1 36/501 8/129 -0.057 (0.023) -0.055 (0.042) -1.89 -1.01 -0.99 (0.27)

PSTRDS=1,
HYPGRP=1

39/1008 6/238 -0.050 (0.012) -0.037 (0.021) -3.17 -1.06 -1.57 (0.22)

PSTRDS=1,
EL-
DERLY=1

46/894 9/227 -0.051 (0.015) -0.063 (0.026) -2.74 -2.00 -1.38 (0.17)

Union 79/1905 19/471 -0.038 (0.009) -0.047 (0.018) -3.15 -2.22 -1.59 (0.20)

All 142/6460 35/1616 -0.016 (0.004) -0.016 (0.007) - - -

CVT Event (entire data)

PPH=1 2/630 -0.006 (0.004) -2.66

PSTRDS=1,
HYPGRP=1

11/1246 0.008 (0.005) 0.44

PSTRDS=1,
EL-
DERLY=1

16/1121 0.015 (0.007) 1.42

Union 21/2376 0.007 (0.004) 0.55

All 59/8076 0.006 (0.002) -

Table 9.4: Results for the final cells selected after StabilizedCellSearch for the
GI event, namely C1 = {PPH=1}, C2 = {PSTRDS=1,HYPGRP=1} and C3 =
{PSTRDS=1,ELDERLY=1} from Section 9.6.3. We also report the results for the other
outcome, namely CVT event, on the entire data (all 8076 patients). In the column †SVAL,
we report the mean t-statistics and standard deviation in parentheses, across the 12 different
folds of the training data STRAIN obtained from the 3 random CV splits {cv orig, cv 0,
cv 1}.

{PPH = 1} in fact shows reduced CVT risk, which makes it especially promising for further
clinical investigation. We note that for the CVT outcome we report the CATE estimates and
the t-statistic on the entire data as this outcome had no role to play in the entire StaDISC
pipeline with the GI outcome, and hence the entire data can be treated as a “valid” test set
for estimating heterogeneous treatment effect of Vioxx with the CVT outcome.
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#evts/size CATE Est. τ̂C∩S (std) t-statistic TC∩S

Dataset S STRAIN STEST STRAIN STEST STRAIN STEST
†SVAL

Cell C

CVT Event (CVT-stratifed split)

ASPFDA=1 13/263 5/58 0.062 (0.025) 0.103 (0.074) 2.28 1.38 1.09 (0.20)

MALE=1,
EL-
DERLY=1

12/383 0/111 0.040 (0.017) 0 (0) 2.09 -1.16 0.85 (0.24)

ASCGRP=1 15/376 6/78 0.044 (0.020) 0.047 (0.060) 2.05 0.74 1.04 (0.23)

Union 24/716 6/175 0.042 (0.013) 0.024 (0.028) 3.09 0.77 1.55 (0.13)

All 47/6460 12/1616 0.006 (0.002) 0.005 (0.004) - - -

GI Event (entire data)

ASPFDA=1 6/321 -0.027 (0.016) -0.71

MALE=1,
EL-
DERLY=1

17/494 -0.045 (0.016) -1.85

ASCGRP=1 8/454 -0.028 (0.013) -0.96

Union 25/891 -0.040 (0.011) -2.27

All 177/8076 -0.016 (0.003) -

Table 9.5: Results for the final cells selected after StabilizedCellSearch for the CVT event,
namely C̃1 = {ASPFDA=1}, C̃2 = {MALE=1,ELDERLY=1} and C̃3 = {ASCGRP=1}
from Section 9.6.3. We also report the results for the other outcome, namely GI event, on
the entire data (all 8076 patients). In the column †SVAL, we report the mean t-statistics and
standard deviation in parentheses, across the 12 different folds of the training data STRAIN

obtained 4 each from the 3 random CV splits {cv orig, cv 0, cv 1}.

Results from Table 9.5: In Table 9.5, we report the analogous results for cells C̃1, C̃2,
and C̃3, and their union ∪3

j=1C̃j, first for the CVT outcome, and then the GI outcome.

For these cells, the generalization to the holdout test set is weaker, with only C̃1 and C̃3

having test set CATE values that remain substantially positive. Furthermore, the test set
t-statistic values are smaller. All these observations are unsurprising given the rarity of the
CVT outcome—in particular, only 12/1616 individuals in the test set STEST experienced an

event. Nonetheless, the test set CVT-CATE estimates for C̃1 and C̃3 support the view that
the treatment effect is stronger on these subgroups, while the GI-CATE estimates do not
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suggest that these subgroups benefit especially strongly from the treatment with Vioxx.

9.7 Complementary analysis with the APPROVe

study

It is well-documented that RCTs have problems with external validity [135, 220, 91, 144],
which is defined by Rothwell to be “whether the results can be reasonably applied to a
definable group of patients in a particular clinical setting in routine practice” [220]. This
phenomenon arises primarily because RCTs have carefully defined enrollment criteria, so
conclusions in such studies may not apply to patients who do not conform to these criteria.
In more mathematical language, the ATE, subgroup CATE, and other estimands of interest
are all defined in terms of expectations with respect to a particular distribution of patients, a
particular outcome, and a particular treatment, and hence do not directly apply when any of
these change. We refer the interested reader to the excellent articles by Rothwell [220, 221]
for a further discussion on these topics.

Despite its importance for clinical relevance, external validity has been relatively ne-
glected by researchers and institutions overseeing the conduct of RCTs) [220, 144]. One way
to argue for external validity is to attempt external validation, i.e. to reproduce the results
obtained on one data set on a different but related data set. Recent voices that urge the
community to give external validiation a higher priority across many domains [66, 144, 197]
are very much in accordance with Yu and Kumbier’s [259] call to statisticians to broaden the
scope of their concern from data-modeling to the entire data science life cycle as part of the
PCS framework. This can be seen not only as one more predictive and stability check under
the PCS framework, but also as a special case of “transfer learning” where the desiderata is
the transferability of the conclusions or findings from one dataset to other related datasets.

These reasons motivate the following complementary analysis of the APPROVe study [12],
another RCT investigating Vioxx. More precisely, we compute the subgroup CATEs with
respect to both the GI and CVT outcomes over this new data set, and show that the qual-
itative conclusions obtained by applying StaDISC to the VIGOR study also generalize to
this data set for four out of the six subgroups from Fig. 9.8; the other two subgroups were
too small in size and did not have any GI events. We now start with a background on the
APPROVe study followed by a discussion of the results on subgroup CATEs.

9.7.1 Background for the APPROVe study

In this section, we provide only a brief background for the APPROVe study and refer the
readers to the original paper [12] for additional details.

The Adenomatous Polyp Prevention on Vioxx (APPROVe) study was another random-
ized trial sponsored by Merck, but unlike VIGOR, it was placebo-controlled. Conducted in
2001-2004, it was designed to assess whether Vioxx could “reduce the risk of adenomatous
polyps in individuals with a recent history of these tumours” [12]. The study population
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comprised 2587 patients who had colon adenomatous polyps removed during a 12 week pe-
riod before being entered into the study, and who had no known polyps remaining. After
discovering that Vioxx had significant cardiovascular toxicity, the study was terminated two
months early in September 2004, but all individuals were followed-up for at least a year
afterwards off-treatment.

The data files of the APPROVe study followed a very similar format to that of the VIGOR
study albeit with two major differences: (i) GI event was not directly labeled in the dataset,
and (ii) the risk factor file was not available. As a result, outcomes related to the GI event,
and features (including but not limited to) ASPFDA, ASCGRP, HYPGRP, PSTRDS—which
were used to define the final subgroups obtained in the previous section—were not directly
available for APPROVe. However, with the data available to us, we were able to impute
the GI outcome and the missing relevant features (used for the cells reported in Tables 9.4
and 9.5). The data cleaning and imputation were done before looking at the final results.
The details for this data cleaning are provided in Appendix H.2, and the distribution of the
selected features and the two outcomes is reported in Table H.3. Once we have the features
and the outcomes, we compute the subgroup CATE (9.3b) and t-statistics (9.11a) and report
the results in Table 9.6.

9.7.2 Results with the APPROVe study

Before presenting the quantitative results, we make a few remarks. In direct analogy with
the problems with external validity mentioned earlier, there are several ways in which the
causal estimands in APPROVe differ from those in VIGOR. First, the “control” arm of both
studies were of entirely different natures: while VIGOR was a comparison between Vioxx and
Naproxen, APPROVe compared Vioxx with a placebo. Second, the lengths of both studies
were different, which is important because our estimands are defined in terms of accumulated
risk over the duration of the study. Patients in VIGOR were followed for a median time of 9
months, whereas most patients in APPROVe were tracked for at least 4 years. Furthermore,
while GI events were adjudicated in VIGOR, this was not the case for APPROVe. Lastly,
the study populations are different. As elaborated earlier in Section 9.2, the VIGOR study
comprised patients who were diagnosed with rheumatoid arthritis. On the other hand,
APPROVe comprised patients with a recent history of colon polyps. Furthermore, unlike
VIGOR, APPROVe excluded patients likely needing regular NSAID treatment, but allowed
for concomitant low-dose aspirin therapy.

Table 9.6 describes the quantitative results for the final subgroups (from Section 9.6.3) for
the APPROVe study. For the reasons explained in the previous paragraph, we do not expect
the subgroup CATE estimands to be the same across the two studies. However, comparing
the results across Tables 9.4 to 9.6, it is reassuring that the subgroups we found for the
VIGOR study continue to be meaningful for APPROVe in illustrating the heterogeneity of
treatment effects. We now discuss the results first for the CVT outcome followed by that
for the GI outcome as the interpretation of the results for the latter is a bit more subtle.
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Cell C #evts/size CATE Est. τ̂C∩S (std) t-statistic TC∩S

GI Event with S = all data

PPH=1 6/184 0.066 (0.026) 2.012

PSTRDS=1, HYPGRP=1 0/30 - -

PSTRDS=1, ELDERLY=1 0/21 - -

All 33/2587 0.016 (0.004) -

CVT Event with S = all data

ASPFDA=1 13/151 0.107 (0.043) 2.128

MALE=1, ELDERLY=1 30/416 0.069 (0.025) 2.251

ASCGRP=1 17/250 0.068 (0.031) 1.664

Union (of 3 cells above) 41/588 0.065 (0.021) 2.650

PPH=1 4/184 0.022 (0.022) 0.119

All 89/2587 0.020 (0.007) -

Table 9.6: Results for the subgroups found with StaDISC on VIGOR, for the APPROVe
dataset. Note that unlike VIGOR, the patients in the control arm for the APPROVe study
were treated with a placebo, which makes the quantitative results reported here not directly
comparable with that reported in Tables 9.4 and 9.5. Refer to the text for further discussion.
The armwise statistics of the features and outcomes for the APPROVe study are provided
in Table H.3.

Results for the CVT outcome: We note that the three subgroups {ASPFDA=1},
{MALE=1, ELDERLY=1}, {ASCGRP=1}, and the union of these 3 subgroups all had
subgroup CATEs that were much larger than the ATE, with t-statistics that were significant
at the 0.05 level for a one-sided z-test, even after accounting for multiple-testing (refer to
end of this section for further discussions related to multiple-testing.) Overall these results
provide evidence for the heterogeneous treatment effects of Vioxx for the CVT outcomes
over these subgroups, namely that Vioxx disproportionately increases the CVT event risk
for these subgroups when compared to either Naproxen or a placebo. To be consistent with
the earlier results in Table 9.4, we also computed the subgroup CATE for {PPH=1} for the
CVT outcome and (like the VIGOR study) did not find any evidence for a disproportionate
increase in the risk for the CVT event compared with the entire population.

Recall that, the found increase in risk for VIGOR was relative to Naproxen. This observa-
tion alone may suggest a possibility that Vioxx was not the cause of the observed increase in
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CVT events, and the positive ATE could have resulted due to a protective effect of Naproxen
reducing them. Merck, the manufacturer of Vioxx, interpreted the CVT signal in VIGOR
as being a consequence of a hitherto unknown protective effect of Naproxen, rather than
a deleterious consequence of Vioxx. The CVT signal in the APPROVe study associated
with Vioxx relative to placebo conclusively confirmed that Vioxx can have deleterious con-
sequences. Moreover, both VIGOR and APPROVe study suggest that Vioxx has significant
heterogeneity in how it increases the risk for CVT events for different subgroups.

Results for the GI outcome: As noted above, additional care is required to interpret
the CATE results for the GI outcome. Whereas Naproxen was known to have GI toxicity,
and was shown in VIGOR to increase the risk of GI events more than Vioxx, a placebo by
definition does not have any toxicity. As such, our finding that treatment with Vioxx had
a positive estimated ATE (1.6%) with the GI outcome in the APPROVe study does not
contradict our earlier reporting of a negative ATE with respect to the GI outcome (-1.6%) in
the VIGOR study. In fact, this discovery is surprising insofar as Vioxx was initially believed
to have minimal if any, GI toxicity whatsoever [148].

We found the subgroup {PPH=1} to have a large positive estimated subgroup CATE
(6.6%) resulting in a t-statistic score significant at the 0.025 level for a one-sided z-test
(without correcting for multiple-testing.) As discussed above, this result does not contradict
the negative CATE value of -5.7% (or -5.5% for the test set) estimated for the VIGOR study
(see Table 9.4). We furthermore note that the GI event rates over both arms in VIGOR,
and the Vioxx arm in APPROVe were all elevated compared to the entire population. The
corresponding rates for the placebo in the APPROVe study were fairly similar (0% for
{PPH=1} and 0.4% on average.)

We summarize our finding across the two studies as follows. (i) VIGOR study: Vioxx,
in comparison to Naproxen, reduced the GI Toxicity disproportionately for the subgroup
{PPH=1} when compared to the the average. (ii) APPROVe study: Vioxx, in comparison
to the placebo, increases the GI Toxicity disproportionately for the subgroup {PPH=1} when
compared to the average. Nonetheless, the conclusion that the estimated subgroup CATE
for {PPH=1} was significantly different than the estimated ATE is consistent across the two
studies.

Finally, due to the difference in the study population, two out of the three subgroups for
the GI event reported in Table 9.4, namely {PSTRDS=1, HYPGRP=1} and {PSTRDS=1,
ELDERLY=1}, were too small in size and had no GI events.20 Consequently, it does not
make sense to quantify the subgroup CATE for these subgroups.

20Indeed, comparing Tables 9.1 and H.3, we can attribute the discrepancy in these subgroups’ sizes
between the two studies to the smaller population of patients (74/2587) with a history of using glucocorticoids
(PSTRDS = 1) in the APPROVe study versus that of the much larger population of such patients (4479/8076)
in the VIGOR study.
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Multiple-testing with FWER control: Given enough data points in the APPROVe
study, we also perform corrected multiple hypothesis testing using Holm-Bonforreni pro-
cedure controlling family wise error rate (FWER) at level 0.05. Overall, we test 5 null
hypotheses, that the subgroup CATE is equal to the average treatment effect for the follow-
ing cases: (i) C1 = {PPH=1} for the GI event, (ii) C̃1 ={ASPFDA=1}, (iii) C̃2 ={MALE=1,

ELDERLY=1}, (iv) C̃3 ={ASCGRP=1}, and (v) the union ∪3
i=1C̃i—where the treatment

effect in subgroups (ii)-(v) corresponds to the CVT event. The t-statistics for these hypothe-
ses (sorted by magnitude) as reported in Table 9.6 are 2.650, 2.251, 2.128, 2.012 and 1.664,
and thereby the corresponding one-sided p-values are 0.004, 0.012, 0.0167, 0.022 and 0.048.
The corrected procedure for significance level 0.05 compares these sorted p-values with the
cut-offs 0.01, 0.0125, 0.0167, 0.025 and 0.05. On doing so we find that all five hypotheses
are rejected, and thus we conclude all the subgroups (i)-(v) have statistically significant
heterogeneous treatment effect.21

9.8 Conclusion and future directions

In this chapter, we have made three major contributions: (I) We have re-analyzed a dataset
from the 1999-2000 VIGOR study, an RCT of 8076 patients, and found three clinically
relevant subgroups each for the GI outcome (total size 29.4%), and the CVT outcome (total
size 11.0%), for which the treatment drug Vioxx has significantly large estimated treatment
effect when compared to that from the estimated ATE. We provided external evidence for the
significance of the heterogeneous treatment effects for four out of the six subgroups through
a complementary analysis of the 2001-2004 APPROVe study, another RCT of 2587 patients.
(II) Our work is an illustration of how clinical trial data can be analyzed to provide a basis
for differential treatment decisions in subgroups in order to optimize outcomes, and how the
findings can be validated with another study. We call this novel methodology StaDISC, and
develop it by building on the PCS framework [259], the calibration literature, and recent
developments in CATE estimation. (III) Our work introduces the PCS framework to the
causal inference community, and provides a template for a more informative understanding
of heterogeneous treatment effects.

An important point to note is that the notions of estimated treatment effects ATE, CATE
and subgroup CATE (defined in equation (9.1)) used in this work and more broadly in CATE
estimation, measure the difference in the adverse event risk in the treatment group to that
in the control group. However, when investigating the efficacy of medical interventions,
medical professionals are often more interested in relative risk, which measures the ratio of

21Note that, for the APPROVe study, we did not test for heterogeneity in the subgroups {PSTRDS=1,
HYPGRP=1}, and {PSTRDS=1, ELDERLY=1} due to their small size in this study. Since the size of the
subgroup can only be observed once we know the group membership of the patients, our testing procedure
and the associated discoveries can be considered as being conditional on observing the group membership,
and treatment variable for all the patients in the APPROVe study. In other words, the statistical significance
is over the randomness in the outcome, and the conditional randomness in the covariates given the group
membership indicators.
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the two risks. This alternate conception of treatment effect in terms of relative risk changes
the meaning of heterogeneity. For instance, the subgroup C1 {PPH=1} has a relative risk
of 0.43 with respect to GI events, which is barely any different than the population relative
risk of 0.46. On the other hand, because the baseline risk of individuals in this subgroup is
far higher than the rest of the population, the subgroup CATE is similarly inflated.

We do not attempt to debate which notion of heterogeneity is better since it is context-
dependent. Nevertheless, given the popularity of relative risk in the medical literature, in
our future work we plan to develop a formal framework for subgroup discovery with respect
to relative risk by adapting generic CATE estimation methods, and consequently extend
StaDISC for relative risk estimation.

There are several other extensions of StaDISC that remain interesting future directions.
First, StaDISC is currently motivated and defined for randomized experiments. We intend
to formulate a statistical framework that would also make it applicable to observational
studies. Second, the cell search step of StaDISC only works with binary features. One can
either propose to incorporate continuous features through either careful binary encoding
using quantile-thresholding, or through amending the cell search procedure. Third, we have
thus far applied StaDISC to the GI and CVT outcomes in the VIGOR study one at a time
and a joint investigation with multiple outcomes, even more generally, is an interesting future
direction.
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Appendix A

Content Deferred From Chapter 3

In this appendix, we collect the technical content deferred from the main text. Appen-
dices A.1 to A.4 respectively contain the proofs of Lemmas 3.1 and 3.3 to 3.5. Finally, we
collect some basic properties of convex and smooth functions in Appendix A.5.

A.1 Proof of Lemma 3.1

Without loss of generality, we can assume that f(x?) = 0. Such an assumption is possible
because substituting f(·) by f(·) + α for any scalar α leaves the distribution Π? unchanged.
Since f is m-strongly convex and L-smooth, applying Lemma A.1(c) and Lemma A.2(c), we
obtain that

L

2
‖x− x?‖2

2 ≥ f(x) ≥ m

2
‖x− x?‖2

2 , ∀x ∈ Rd.

Consequently, we find that
∫
Rd e

−f(x)dx ≤ (2π/m)d/2. Making note of the lower bound

π?(x) ≥ e−
L
2
‖x−x?‖22

(2πm−1)d/2
, (A.1)

and plugging in the expression for the density of µ? yields the claim.

A.2 Proof of Lemma 3.3

The proof consists of two main steps. First, we establish that the distribution Π? is sub-
Gaussian, which then guarantees concentration around the mean. Second, we show that the
mean and the mode of the distribution Π? are not far apart. Combining these two claims
yields a high probability region around the mode x?.

Let x denote the random variable with distribution Π? and mean x̄ = Ex∼Π? [x]. We
claim that x− x̄ is a sub-Gaussian random vector with parameter 1/

√
m, meaning that

Ex
[
eu
>(x−x̄)

]
≤ e‖u‖

2
2/(2m) for any vector u ∈ Rd.
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In order to prove this claim, we make use of a result due to Hargé (Theorem 1.1 [106]), which
we restate here. Let y ∼ N (µ,Σ) with density e and x be a random variable with density
function q · e where q is a log-concave function. Then for any convex function g : Rd 7→ R
we have

Ex [g(x− E[x])] ≤ Ey [g(y − E[y])] . (A.2)

From Lemma A.1(b) we have that x 7→ f(x) − m
2
‖x− x?‖2

2 is a convex function. Thus
we can express the density π? as the product of a log-concave function and the density of a
random variable with distribution N (x?, Id/m). Letting y ∼ N (x?, Id/m) and noting that
g(z) := eu

>z is a convex function for each fixed vector u, applying the Hargé bound (A.2)
yields

Ex
[
eu
>(x−x̄)

]
≤ Ey

[
eu
>(y−x∗)

] (i)

≤ e‖u‖
2
2/2m.

Here inequality (i) follows from the fact that the random vector y− x? is sub-Gaussian with
parameter 1/

√
m.

Using the standard tail bounds for quadratic forms for sub-Gaussian random vectors (e.g.,
Theorem 1 [119]), we find that

Px∼Π?

[
‖x− x̄‖2

2 >
d

m

(
1 + 2

√
t

d
+ 2

t

d

)]
≤ e−t. (A.3)

Define B1 := B
(
x̄,
√

d
m
· ã(s)

)
where ã(s) = 1 + 2 max

{(
log(1/s)

d

)0.25

,
√

log(1/s)
d

}
. Ob-

serve that ã(s)2 ≥ 1 + 2
√

log(1/s)
d

+ 2 log(1/s)
d

and consequently the bound (A.3) implies that

Π? (B1) = Px∼Π? [x ∈ B1] ≥ 1− s. Now applying triangle inequality, we obtain that

B1 ⊆ B

(
x?, ‖x̄− x?‖2 +

√
d

m
· ã(s)

)
=: B2

From Theorem 1 by Durmus et al. [74], we have that Ex∼Π? ‖x− x?‖2
2 ≤ d/m. Using Jensen

inequality twice, we find that

‖x̄− x?‖2 = ‖Ex∼Π? [x]− x?‖2 ≤ Ex∼Π? ‖x− x?‖2 ≤
√

Ex∼Π? ‖x− x?‖2
2 ≤

√
d

m
. (A.4)

Noting the relation a(s) = 1 + ã(s), we thus obtain that ‖x̄− x?‖2 +
√

d
m
· ã(s) ≤ a(s)

√
d
m

and consequently B1 ⊆ B2 ⊆ Rs. As a result, we obtain Π? (Rs) ≥ Π? (B1) ≥ 1 − s as
claimed.



Appendix A. Content Deferred From Chapter 3 207

A.3 Proof of Lemma 3.4

The proof of this lemma makes use of ideas used to establish conductance bounds, first for
Hit-and-run [163], and since then for several other walks [171, 187, 47]. See the survey [242]
for further details.

For our setting a key ingredient is the following isoperimetric inequality for log-concave
distributions. Let Rd = S1 ∪ S2 ∪ S3 be a partition. Let y ∼ N (0, σ2Id) with density e and
let Π? be a distribution with a density given by q · e where q is a log-concave function. Then
Cousins and Vempala (Theorem 4.4 [57]) proved that

Π?(S3) ≥ log 2 · d(S1,S2)

σ
Π?(S1)Π?(S2) (A.5)

where d(S1,S2) := inf
{
‖x− y‖2

∣∣x ∈ S1, y ∈ S2

}
.

We invoke this result for the truncated distribution Π?
S with the density Π?

S defined as

Π?
S(x) :=

1∫

S

π?(y)dy
π?(x)1S(x) =

1∫

S

e−f(y)dy

e−f(x)1S(x), (A.6)

where 1S(·) denotes the indicator function for the set S, i.e., we have 1S(x) = 1 if x ∈ S, and
0 otherwise. Let x? = arg maxπ?(x) = arg min f(x). Observe that m-strong-convexity of
f implies that x 7→ f(x) − m

2
‖x− x?‖2

2 is a convex function (Lemma A.1(b)). Noting that
the function 1S(·) is log-concave and that log-concavity is closed under multiplication, we
conclude that Π?

S can be expressed as a product of log-concave function and density of the
Gaussian distribution N

(
x?, 1

m
Id
)
. Consequently, we can apply the result (D.46) with Π?

replaced by Π?
S and σ = 1/

√
m.

We now prove the claim of the lemma. Define the sets

S ′1 :=
{
u ∈ S1 ∩ S | Tu(S2) <

ρ

2

}
, S ′2 :=

{
v ∈ S2 ∩ S | Tv(S1) <

ρ

2

}
, (A.7)

along with the complement S ′3 := S\(S ′1 ∪ S ′2). See Figure A.1 for an illustration. Based on
these three sets, we split our proof of the claim (3.20) into two distinct cases:

• Case 1: Π?(S ′1) ≤ Π?(S1 ∩ S)/2 or Π?(S ′2) ≤ Π?(S2 ∩ S)/2.

• Case 2: Π?(S ′i) ≥ Π?(Si ∩ S)/2 for i = 1, 2.

Note that these cases are mutually exclusive, and cover all possibilities.

Case 1 We have Π?(S1 ∩ S\S ′1) ≥ Π?(S1 ∩ S)/2, then
∫

S1

Tu(S2)π?(u)du
(i)

≥
∫

S1∩S\S′1
Tu(S2)π?(u)du

(ii)

≥ ρ

2
Π?(S1 ∩ S\S ′1)

(iii)

≥ ρ

4
Π?(S1 ∩ S),



Appendix A. Content Deferred From Chapter 3 208

K

A1

A0
1

A0
2

A2

Figure A.1: The sets S1 and S2 form a partition of Rd, and we use S to denote a compact
convex subset. The sets S ′1 and S ′2 are defined in equation (D.49).

which implies the claim (3.20). In the above sequence of inequalities, step (i) is trivially
true; step (ii) from the definition (D.49) of the set S ′1, and step (iii) from the assumption for
this case.

A similar argument with the roles of S1 and S2 switched, establishes the claim when
Π?(S ′2) ≤ Π?(S2 ∩ S)/2.

Case 2 We have Π?(S ′i) ≥ Π?(Si ∩ S)/2 for both i = 1 and 2. For any u ∈ S ′1 and v ∈ S ′2,
we have that

dTV

(
Tu, Tv

)
≥ Tu(S1)− Tv(S1)

(i)
= 1− Tu(S2)− Tv(S1) > 1− ρ,

where step (i) follows from the fact that S1 = Rd\S2 and thereby Tu(S1) = 1−Tu(S2). Since
u, v ∈ S, the assumption of the lemma implies that ‖u− v‖2 ≥ ∆ and consequently

d(S ′1,S ′2) ≥ ∆. (A.8)

We claim that
∫

S1

Tu(S2)π?(u)du =

∫

S2

Tv(S1)π?(v)dv (A.9)
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We provide the proof of this claim at the end. Assuming this claim as given, we now complete
the proof. Using equation (D.52), we have

∫

S1

Tu(S2)π?(u)du =
1

2

(∫

S1

Tu(S2)π?(u)du+

∫

S2

Tv(S1)π?(v)dv

)

≥ 1

4

(∫

S1∩S\S′1
Tu(S2)π?(u)du+

∫

S2∩S\S′2
Tv(S1)π?(v)dv

)

(i)

≥ ρ

8
Π?(S\(S ′1 ∪ S ′2)), (A.10)

where step (i) follows from the definition (D.49) of the set S ′3 = S\(S ′1 ∪ S ′2). Further, we
have

Π?(S\(S ′1 ∪ S ′2))
(i)
= Π?(S) · Π?

S(S\S ′1\S ′2)

(ii)

≥ Π?(S) · log 2 · d(S ′1,S ′2)

1/
√
m

· Π?
S(S ′1) · Π?

S(S ′2)

(iii)

≥ Π?(S) · log 2 · d(S ′1,S ′2) · √m · Π?(S ′1) · Π?(S ′2)

(iv)

≥ Π?(S) · log 2 ·∆ · √m · 1

4
· Π?(S1 ∩ S) · Π?(S2 ∩ S). (A.11)

where step (i) follows from the definition (A.6) of the truncated distribution Π?
S, step (ii)

follows from applying the isoperimetry (D.46) for the distribution Π?
S with σ = 1/

√
m, step

(iii) from the definition of Π?
S and step (iv) from inequality (A.8) and the assumption for

this case. Let α := Π?(S1 ∩ S)/Π?(S). Note that α ∈ [0, 1] and Π?(S2 ∩ S)/Π?(S) = 1 − α.
We have

Π?(S1 ∩ S) · Π?(S2 ∩ S) = (Π?(S))2 · α(1− α)

≥ (Π?(S))2 · 1

2
min {α, 1− α}

= Π?(S) · 1

2
min {Π?(S1 ∩ S),Π?(S2 ∩ S)} (A.12)

Putting the inequalities (A.10), (A.11) and (A.12) together, establishes the claim (3.20) of
the lemma for this case.

We now prove our earlier claim (D.52). Note that it suffices to prove that

∫

S1

Tu(S2)π?(u)du =

∫

S2

Tv(S1)π?(v)dv.
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We have
∫

S2

Tu(S1)π?(u)du
(i)
=

∫

Rd
Tu(S1)π?(u)du−

∫

S1

Tu(S1)π?(u)du

(ii)
= Π?(S1)−

∫

S1

Tu(S1)π?(u)du

=

∫

S1

π?(u)du−
∫

S1

Tu(S1)π?(u)du

(iii)
=

∫

S1

Tu(S2)π?(u)du,

where steps (i) and (iii) (respectively) follow from the fact that S1 = Rd\S2 and the conse-
quent fact that 1−Tu(S1) = Tu(S2), and step (ii) follows from the fact that π? is the stationary
density for the transition distribution Tx and thereby

∫
Rd Tu(S1)π?(u)du = Π?(S1).

A.4 Proof of Lemma 3.5

We prove each claim of the lemma separately. To simplify notation, we drop the superscript
from our notations of distributions T MALA(η)

x and PMALA(η)
x .

A.4.0.1 Proof of claim (3.23a)

In order to bound the total variation distance dTV

(
Px,Py

)
, we apply Pinsker’s inequal-

ity [58], which guarantees that dTV

(
Px,Py

)
≤
√

2 KL(Px‖Py). Given multivariate normal
distributions G1 = N (µ1,Σ) and G2 = N (µ2,Σ), the Kullback-Leibler divergence between
the two is given by

KL(G1‖G2) =
1

2
(µ1 − µ2)>Σ−1 (µ1 − µ2) . (A.13)

Substituting G1 = Px and G2 = Py into the above expression and applying Pinsker’s inequal-
ity, we find that

dTV

(
Px,Py

)
≤
√

2 KL(Px‖Py) =
‖µx − µy‖2√

2η

(i)
=
‖(x− η∇f(x))− (y − η∇f(y))‖2√

2η
,

where step (i) follows from the definition (3.22) of the mean µx. Consequently, in order to
establish the claim (3.23a), it suffices to show that

‖(x− η∇f(x))− (y − η∇f(y))‖2 ≤ ‖x− y‖2 .



Appendix A. Content Deferred From Chapter 3 211

Recalling that |||B|||op denotes the `2-operator norm of a matrix B (equal to the maximum
singular value), we have

‖(x− η∇f(x))− (y − η∇f(y))‖2 =

∥∥∥∥
∫ 1

0

[
I− η∇2f(x+ t(x− y))

]
(x− y)dt

∥∥∥∥
2

≤
∫ 1

0

∥∥[I− η∇2f(x+ t(x− y))
]

(x− y)
∥∥

2
dt

(i)

≤ sup
z∈Rd
|||Id − η∇2f(z)|||op ‖x− y‖2 ,

where step (i) follows from the definition of the operator norm. Lemma A.1(f) and Lemma A.2(f)
guarantee that the Hessian is sandwiched as mId � ∇2f(z) � LId for all z ∈ Rd, where Id
denotes the d-dimensional identity matrix. From this Hessian sandwich, it follows that

|||Id − η∇2f(x)|||op = max {|1− ηL| , |1− ηm|} < 1.

Putting together the pieces yields the claim.

A.4.0.2 Proof of claim (3.23b)

Let P1 be a distribution admitting a density p1 on Rd, and let P2 be a distribution which has
an atom at x and admitting a density p2 on Rd\ {x}. The total variation distance between
the distributions P1 and P2 is given by

dTV

(
P1,P2

)
=

1

2

(
P2({x}) +

∫

Rd
|p1(z)− p2(z)| dz

)
. (A.14)

The accept-reject step for MALA implies that

Tx({x}) = 1−
∫

Rd
min

{
1,
π?(z) · pz(x)

π?(x) · px(z)

}
px(z)dz, (A.15)

where px denotes the density corresponding to the proposal distribution Px = N (x −
η∇f(x), 2ηId). From this fact and the formula (A.14), we find that

dTV

(
Px, Tx

)
=

1

2

(
Tx({x}) +

∫

Rd
px(z)dz −

∫

Rd
min

{
1,
π?(z) · pz(x)

π?(x) · px(z)

}
px(z)dz

)

=
1

2

(
2− 2

∫

Rd
min

{
1,
π?(z) · pz(x)

π?(x) · px(z)

}
px(z)dz

)

= 1− Ez∼Px
[
min

{
1,
π?(z) · pz(x)

π?(x) · px(z)

}]
. (A.16)

By applying Markov’s inequality, we obtain

Ez∼Px
[
min

{
1,
π?(z) · pz(x)

π?(x) · px(z)

}]
≥ α P

[
π?(z) · pz(x)

π?(x) · px(z)
≥ α

]
for all α ∈ (0, 1]. (A.17)
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We now derive a high probability lower bound for the ratio [π?(z)pz(x)] / [π?(x)px(z)]. Noting
that π?(x) ∝ exp(−f(x)) and px(z) ∝ exp

(
−‖x− η∇f(x)− z‖2

2 /(4η)
)
, we have

π?(z) · pz(x)

π?(x) · px(z)
=

exp

(
− f(z)− ‖x−z+η∇f(z)‖22

4η

)

exp

(
− f(x)− ‖z−x+η∇f(x)‖22

4η

)

= exp

(
4η(f(x)− f(z)) + ‖z − x+ η∇f(x)‖2

2 − ‖x− z + η∇f(z)‖2
2

4η

)
.

(A.18)

Keeping track of the numerator of this exponent, we find that

4η(f(x)− f(z)) + ‖z − x+ η∇f(x)‖2
2 − ‖x− z + η∇f(z)‖2

2

= 4η(f(x)− f(z)) + ‖z − x‖2
2 + ‖η∇f(x)‖2

2 + 2η(z − x)>∇f(x)

− ‖x− z‖2
2 − ‖η∇f(z)‖2

2 − 2η(x− z)>∇f(z)

= 2η (f(x)− f(z)− (x− z)>∇f(x))︸ ︷︷ ︸
M1

+2η (f(x)− f(z)− (x− z)>∇f(z))︸ ︷︷ ︸
M2

+ η2
(
‖∇f(x)‖2

2 − ‖∇f(z)‖2
2

)
︸ ︷︷ ︸

M3

. (A.19)

Now we provide lower bounds for the terms Mi, i = 1, 2, 3 defined in the above display. Since
f is strongly convex and smooth, applying Lemma A.1(c) and Lemma A.2(c) yields

M1 ≥ −
L

2
‖x− z‖2

2 , and M2 ≥
m

2
‖x− z‖2

2 . (A.20)

In order to lower bound M3, we observe that

M3 = ‖∇f(x)‖2
2 − ‖∇f(z)‖2

2 = 〈∇f(x) +∇f(z), ∇f(x)−∇f(z)〉
(i)

≥ −‖∇f(x) +∇f(z)‖2 ‖∇f(x)−∇f(z)‖2

(ii)

≥ − (2 ‖∇f(x)‖2 + L ‖x− z‖2)L ‖x− z‖2 , (A.21)

where step (i) follows from the Cauchy-Schwarz’s inequality and step (ii) from the triangle
inequality and L-smoothness of the function f (cf. Lemma A.2(d)).

Combining the bounds (A.20) and (A.21) with equations (A.19) and (A.18), we have
established that

π?(z) · pz(x)

π?(x) · px(z)
≥ exp


−1

4
(L−m) ‖x− z‖2

2 −
η

4

(
2L ‖x− z‖2 ‖∇f(x)‖2 + L2 ‖x− z‖2

2

)
︸ ︷︷ ︸

=:T


 .

(A.22)
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Now to provide a high probability lower bound for the term T , we make use of the standard
chi-squared tail bounds and the following relation between x and z:

z
(d)
= x− η∇f(x) +

√
2ηξ,

where ξ ∼ N (0, Id) and
(d)
= denotes equality in distribution. We have

‖x− z‖2 =
∥∥∥η∇f(x) +

√
2ηξ
∥∥∥

2
≤ η ‖∇f(x)‖2 +

√
2η ‖ξ‖2 ,

which also implies

‖x− z‖2
2 ≤ 2η2 ‖∇f(x)‖2

2 + 4η ‖ξ‖2
2 .

Using these two inequalities, we find that

T ≥ −(L−m)η2

2
‖∇f(x)‖2

2 − (L−m)η ‖ξ‖2
2 −

Lη2

2
‖∇f(x)‖2

2

− Lη
√
η√

2
‖∇f(x)‖2 ‖ξ‖2 −

L2η3

2
‖∇f(x)‖2

2 − L2η2 ‖ξ‖2
2 .

Simplifying and using the fact that Lη ≤ 1, we obtain that

T ≥ −2
(
Lη2 ‖∇f(x)‖2

2 + Lη ‖ξ‖2
2 + Lη

√
η ‖∇f(x)‖2 ‖ξ‖2

)
.

Since x ∈ Rs, we have

‖∇f(x)‖2 = ‖∇f(x)−∇f(x?)‖2

(i)

≤ L ‖x− x?‖2 ≤ L

√
d

m
a(s) =: Ds, (A.23)

where inequality (i) follows from the property (d) of Lemma A.2. Thus, we have shown that

T ≥ −2
(
Lη2D2

s + Lη ‖ξ‖2
2 + Lη

√
ηDs ‖ξ‖2

)
. (A.24)

Standard tail bounds for χ2-variables guarantee that

P
[
‖ξ‖2

2 ≤ dαε
]
≥ (1− ε/16) for αε = 1 + 2

√
log(16/ε) + 2 log(16/ε).

A simple observation reveals that the function t̃ defined in equation (3.21a) was chosen such
that for any η ≤ t̃(s, ε), we have

Lη2D2
s ≤

ε

128
, Lηdαε ≤

ε

64
, and, Lη

√
ηDs

√
dαε ≤

ε

128
.

Combining this observation with the high probability bound on ‖ξ‖2 and using the inequal-
ity (A.24) we obtain that T ≥ −ε/16 with probability at least 1−ε/16. Plugging this bound
in the inequality (A.22), we find that

P
[
π?(z) · pz(x)

π?(x) · px(z)
≥ exp

(
− ε

16

)]
≥ (1− ε/16).
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Thus, we have derived a desirable high probability lower bound on the accept-reject ratio.
Substituting α = exp(−ε/16) in the inequality (E.16) and using the fact that e−ε/16 ≥ 1− ε/16
for any scalar ε > 0, we find that

Ez∼Px
[
min

{
1,
π?(z) · pz(x)

π?(x) · px(z)

}]
≥ 1− ε

8
, for any ε ∈ (0, 1) and η ≤ t̃(s, ε).

Substituting this bound in the inequality (A.16) completes the proof.

A.5 Basic properties of convex and smooth functions

In this appendix, we state a few basic properties of strongly-convex and smooth functions
that we use in our proofs. See the book [26] for more details.

Lemma A.1 (Equivalent characterizations of strong convexity). For a twice differentiable
convex function f : Rd 7→ R, the following statements are equivalent:

(a) The function f is m-strongly-convex.

(b) The function x 7→ f(x)− m

2
‖x− x?‖2

2 is convex (for any fixed point x?).

(c) For any x, y ∈ Rd, we have

f(y) ≥ f(x) +∇f(x)>(y − x) +
m

2
‖x− y‖2

2 .

(d) For any x, y ∈ Rd, we have

‖∇f(x)−∇f(y)‖2 ≥ m ‖x− y‖2 .

(e) For any x, y ∈ Rd, we have

(∇f(x)−∇f(y))> (x− y) ≥ m ‖x− y‖2
2 .

(f) For any x ∈ Rd, the Hessian is lower bounded as ∇2f(x) � mId.

Lemma A.2 (Equivalent characterizations of smoothness). For a twice differentiable convex
function f : Rd 7→ R, the following statements are equivalent:

(a) The function f is L-smooth.

(b) The function x 7→ L

2
‖x− x?‖2

2 − f(x) is convex (for any fixed point x?).
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(c) For any x, y ∈ Rd, we have

f(y) ≤ f(x) +∇f(x)>(y − x) +
L

2
‖x− y‖2

2 .

(d) For any x, y ∈ Rd, we have

‖∇f(x)−∇f(y)‖2 ≤ L ‖x− y‖2 .

(e) For any x, y ∈ Rd, we have

(∇f(x)−∇f(y))> (x− y) ≤ L ‖x− y‖2
2 .

(f) For any x ∈ Rd, the Hessian is upper bounded as ∇2f(x) � LId.
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Appendix B

Content Deferred from Chapter 4

Here we collect the proofs of Propositions 4.1 and 4.2 in Appendices B.1 and B.2 respectively.

B.1 Proof of Proposition 4.1

We begin by adapting the spectral profile technique [99] to the continuous state setting, and
next we relate conductance profile with the spectral profile.

First, we briefly recall some of the key notation. Let Θ : X × B(X ) → R+ denote
the transition probability function for the Markov chain and let T be the corresponding
transition operator, which maps a probability measure to another according to the transition
probability Θ. Note that for a Markov chain satisfying the smooth chain assumption (4.4), if
the distribution µ admits a density then the distribution T (µ) would also admits a density.
We use Tx as the shorthand for T (δx), the transition distribution of the Markov chain at x.

Let L2(π?) be the space of square integrable functions under function π?. The Dirichlet
form E : L2(π?)× L2(π?)→ R associated with the transition probability Θ is given by

E(g, h) =
1

2

∫

(x,y)∈X 2

(g(x)−H(y))2 Θ(x, dy)π?(x)dx. (B.1)

The expectation Eπ? : L2(π?)→ R and the variance Varπ? : L2(π?)→ R with respect to the
density π? are given by

Eπ?(g) =

∫

x∈X
g(x)π?(x)dx and Varπ?(g) =

∫

x∈X
(g(x)− Eπ?(g))2 π?(x)dx. (B.2a)

Furthermore, for a pair of measurable sets (S,Ω) ⊂ X 2, the Ω-restricted spectral gap for the
set S is defined as

λΩ(S) = inf
g∈c+0 (S∩Ω)

E(g, g)

Varπ?(g)
, (B.3a)

where c+
0 (S ∩ Ω) = {g ∈ L2(π?) | supp(g) ⊂ S ∩ Ω, g ≥ 0, g 6= constant} . (B.3b)
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Finally, the Ω-restricted spectral profile ΛΩ is defined as

ΛΩ(v) = inf
Π?(S∩Ω)∈[0,v]

λΩ(S ∩ Ω), for all v ∈
[
0,∞). (B.4)

Note that we restrict the spectral profile to the set Ω. Taking Ω to be X , our definition agrees
with the standard definition definitions of the restricted spectral gap and spectral profile in
the paper [99] for finite state space Markov chains to continuous state space Markov chains.
We are now ready to state a mixing time bound using spectral profile.

Lemma B.1. Consider a reversible irreducible ζ-lazy Markov chain with stationary distri-
bution Π? satifying the smooth chain assumption (4.4). Given a β-warm start µ0, an error
tolerance δ ∈ (0, 1) and a set Ω ⊂ X with Π?(Ω) ≥ 1 − δ2

3β2 , the L2-mixing time is bounded
as

τ2(δ;µ0) ≤
⌈∫ 8/δ2

4/β

dv

ζ · vΛΩ(v)

⌉
, (B.5)

where ΛΩ denotes the Ω-restricted spectral profile (B.4) of the chain.

See Appendix B.1.1 for the proof.

In the next lemma, we state the relationship between the Ω-restricted spectral pro-
file (B.4) of the Markov chain to its Ω-restricted conductance profile (4.2).

Lemma B.2. For a Markov chain with state space X and stationary distribution Π?, given
any measurable set Ω ⊂ X , its Ω-restricted spectral profile (B.4) and Ω-restricted conduc-
tance profile (4.2) are related as

ΛΩ(v) ≥





Φ2
Ω(v)

4
for all v ∈

[
0, Π?(Ω)

2

]

Φ2
Ω(Π?(Ω)/2)

8
for all v ∈

(
Π?(Ω)

2
,∞).

(B.6)

See Appendix B.1.2 for the proof.

Proposition 4.1 now follows from Lemmas B.1 and B.2 as well as the definition (4.3) of Φ̃Ω.

B.1.1 Proof of Lemma B.1

We need the following lemma, proved in for the case of finite state Markov chains in [99],
which lower bounds the Dirichlet form in terms of the spectral profile.

Lemma B.3. For any measurable set Ω ⊂ X , any function g : X → R+ such that g ∈
L2(π?), g · 1Ω is not constant and E[g2 · 1Ω] ≥ 2E[g2 · 1Ωc ], we have

E(g, g)

Varπ?(g · 1Ω)
≥ 1

2
ΛΩ

(
4 (Eπ?(g · 1Ω))2

Varπ?(g · 1Ω)

)
. (B.7)
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The proof of Lemma B.3 is a straightforward extension of Lemma 2.1 from [99], which deals
with finite state spaces, to the continuous state Markov chain. See the end of Section B.1.1.1
for the proof.
We are now equipped to prove Lemma B.1.

Proof of Lemma B.1: We begin by introducing some notations. Recall that for any
Markov chain satisfying the smooth chain assumption (4.4), given an initial distribution µ0

that admits a density, the distribution of the chain at any step n also admits a density. As
a result, we can define the ratio of the density of the Markov chain at the n-th iteration
Hµ0,n : X → R with respect to the target density π? via the following recursion

Hµ0,0(x) =
µ0(x)

π?(x)
and Hµ0,n+1(x) =

T (π? ·Hµ0,n) (x)

π?(x)
,

where we have used the notation T (µ)(x) to denote the density of the distribution T (µ) at
x. Note that

Eπ?(Hµ0,n) = 1 and Eπ?(Hµ0,n · 1Ω) ≤ 1 for all n ≥ 0, (B.8)

where Ω ⊂ X is a measurable set.
We also define the quantity J(n) := Varπ?(Hµ0,n) (we prove the existence of this variance

below in Step (1)) and also J̃(n) := Varπ?(Hµ0,n ·1Ω). Note that the L2-distance between the
distribution of the chain at step n and the target distribution is given by

d2,π?(T n(µ0),Π?) =

(∫

x∈Rd
(Hµ0,n(x)− 1)2 π?(x)dx

)1/2

= Varπ?(Hµ0,n).

Consequently, to prove the δ-L2 mixing time bound (B.5), it suffices to show that for any
measurable set Ω ⊂ X , with Π?(Ω) ≥ 1− δ2

3β2 , we have

J(n) ≤ δ2 for n ≥
⌈∫ 8/δ2

4/β

dv

ζ · vΛΩ(v)

⌉
(B.9)

We now establish the claim (B.9) via a three-step argument: (1) we prove the existence of

the variance J(n) for all n ∈ N and relate J(n) with J̃(n). (2) then we derive a recurrence
relation for the difference J(n + 1) − J(n) in terms of Dirichlet forms that shows the J is a
decreasing function, and (3) finally, using an extension of the variance J from natural indices
to real numbers, we derive an explicit upper bound on the number of steps taken by the
chain until J lies below the required threshold.
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Step (1): Using the reversibility (2.3) of the chain, we find that

Hµ0,n+1(x)dx =

∫
y∈X Θ(y, dx)Hµ0,n(y)π?(y)dy

π?(x)
=

∫
y∈X Θ(x, dy)Hµ0,n(y)π?(x)dx

π?(x)

=

∫

y∈X
Θ(x, dy)Hµ0,n(y)dx (B.10)

Applying an induction argument along with the relationship (B.10) and the initial condition
Hµ0,0(x) ≤ β, we obtain that

Hµ0,n(x) ≤ β, for all n ≥ 0. (B.11)

As a result, the variances of the functions Hµ0,0 and Hµ0,n · 1Ω under the target density π?

are well-defined and

J(n) =

∫

X
H2
µ0,n

(x)π?(x)dx− 1. (B.12)

Then we show that J can be upper bounded via J̃ as follows

J(n)− J̃(n) = Varπ?(Hµ0,n)− Varπ?(Hµ0,n · 1Ω)

=

∫

x∈X\Ω
H2
µ0,n

(x)π?(x)dx−
(∫

x∈X
Hµ0,n(x)π?(x)dx

)2

+

(∫

x∈Ω

Hµ0,n(x)π?(x)dx

)2

≤ β2 (1− Π?(Ω)) ≤ δ2

3
=: B, (B.13)

where the last inequality follows from the fact that Ω satisfies Π?(Ω) ≥ 1−δ2/(3β2). Similarly,
we have

Eπ?(H2
µ0,n

)− Eπ?(H2
µ0,n
· 1Ω) ≤ B (B.14)

Step (2): First, note the following bound on J(0):

J(0) =

∫

x∈X

µ0(x)2

π?(x)
dx− 1 ≤ β

∫

x∈X
µ0(x)dx− 1 ≤ β − 1. (B.15)

Define the two step transition kernel Θ ◦Θ as

Θ ◦Θ(y, dz) =

∫

x∈X
Θ(y, dx)Θ(x, dz).
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We have

J(n + 1) := Varπ?(Hµ0,n+1) =

∫

x∈X
H2
µ0,n+1(x)π?(x)dx− 1

(i)
=

∫

x∈X

∫

y∈X
Θ(y, dx)Hµ0,n(y)π?(y)dy

∫

z∈X
Θ(x, dz)Hµ0,n(z)− 1

=

∫

y,z∈X 2

Θ ◦Θ(y, dz)Hµ0,n(y)Hµ0,n(z)π?(y)dy − 1,

where step (i) follows from the relation (B.10). Using the above expression for J(n + 1) and
the expression from equation (B.12) for J(n), we find that

J(n + 1)− J(n) =

∫

X 2

Θ ◦Θ(y, dz)Hµ0,n(y)Hµ0,n(z)π?(y)dy −
∫

X
H2
µ0,n

(x)π?(x)dx,

(a)
= −EΘ◦Θ(Hµ0,n,Hµ0,n), (B.16)

where EΘ◦Θ is the Dirichlet form (B.1) with transition probability Θ being replaced by Θ◦Θ.
We come back to the proof of equality (a) at the end of this paragraph. Assuming it as given
at the moment, we proceed further. Since the Markov chain is ζ-lazy, we can relate the two
Dirichlet forms EΘ◦Θ and EΘ as follows: For any y, z ∈ X such that y 6= z, we have

Θ ◦Θ(y, dz) =

∫

x∈X
Θ(y, dx)Θ(x, dz) ≥ Θ(y, dy)Θ(y, dz) + Θ(y, dz)Θ(z, dz)

≥ 2ζΘ(y, dz). (B.17)

If Eπ?(H2
µ0,n
· 1Ω) < 2Eπ?(H2

µ0,n
· 1Ωc), then according to Equation (B.14), we have

J(n) ≤ E(H2
µ0,n

) ≤ E(H2
µ0,n
· 1Ω) +B ≤ 3B ≤ δ2, (B.18)

and we are done. If H2
µ0,n
· 1Ω is constant, then Varπ?(H

2
µ0,n
· 1Ω) = 0 and

J(n) ≤ Varπ?(H
2
µ0,n

) ≤ 0 +B ≤ δ2.

Otherwise, we meet the assumptions of Lemma B.3 and we have

J(n + 1)− J(n) = −EΘ◦Θ(Hµ0,n,Hµ0,n)
(i)

≤ −2ζEΘ(Hµ0,n,Hµ0,n)

(ii)

≤ −ζ Varπ?(Hµ0,n · 1Ω)ΛΩ

(
4 [Eπ?(Hµ0,n · 1Ω)]2

Varπ?(Hµ0,n · 1Ω)

)

(iii)

≤ −ζ · (J(n)−B) ΛΩ

(
4

J(n)−B

)
. (B.19)

where step (i) follows from inequality (B.17), step (ii) follows from Lemma B.3, and finally
step (iii) follows from inequality (B.13) which implies that Varπ?(Hµ0,n ·1Ω) ≥ J(n)−B, and
the fact that the spectral profile ΛΩ is a non-increasing function.
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Proof of equality (a) in equation (B.16): Since the distribution Π? is stationary with
respect to the kernel Θ, it is also stationary with respect to the two step kernel Θ◦Θ. We now
prove a more general claim: For any transition kernel K which has stationary distribution
Π? and any measurable function H, the Dirichlet form EK , defined by replacing Θ with K
in equation (B.1), we have

EK(H,H) =

∫

X
H2(x)π?(x)dx−

∫

X

∫

X
H(x)H(y)K(x, dy)π?(x)dx. (B.20)

Note that invoking this claim with K = Θ ◦ Θ and H = Hµ0,n implies step (a) in equa-
tion (B.16). We now establish the claim (B.20). Expanding the square in the definition (B.1),
we obtain that

EK(H,H) =
1

2

∫

X

∫

X
H2(x)K(x, dy)π?(x)dx+

1

2

∫

X

∫

X
H2(y)K(x, dy)π?(x)dx

−
∫

X

∫

X
H(x)H(y)K(x, dy)π?(x)dx

(i)
=

1

2

∫

X
H2(x)π?(x)dx+

1

2

∫

X
H2(x)π?(x)dx−

∫

X

∫

X
H(x)H(y)K(x, dy)π?(x)dx,

where equality (i) follows from the following facts: For the first term, we use the fact that∫
X K(x, dy) = 1 since K is a transition kernel, and, for the second term we use the fact that∫
X K(x, dy)π?(x)dx = π?(y)dy, since Π? is the stationary distribution for the kernel K. The

claim now follows.

Step (3): Consider the domain extension of the function J from N to the set of non-
negative real numbers R+ by piecewise linear interpolation. We abuse notation and denote
this extension also by J. The extended function J is continuous and is differentiable on the
set R+\N. Let n∗ ∈ R+ ∪ {∞} denote the first index such that J(n∗) ≤ 3B. Since ΛΩ is
non-increasing and J is non-increasing, we have

J′(t) ≤ −ζ · (J(t)−B) ΛΩ

(
4

J(t)−B

)
for all t ∈ R+\N such that t ≤ n∗. (B.21)

Moving the J terms on one side and integrating for t ≤ n∗, we obtain

∫ J(t)

J(0)

dJ

(J−B) · ΛΩ

(
4

J−B

) ≤ −ζt.

Using the change of variable v = 4/ (J−B), we obtain

ζt ≤
∫ 4/(J(t)−B)

4/(J(0)−B)

dv

vΛΩ(v)
(B.22)
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Furthermore, equation (B.22) implies that for T ≥ 1
ζ

∫ 8/δ2

4/β
dv

vΛΩ(v)
, we have

∫ 8/δ2

4/β

dv

vΛΩ(v)
≤
∫ 4/(J(T )−B)

4/(J(0)−B)

dv

vΛΩ(v)
.

The bound (B.15) and the fact that B = δ2/3 imply that 4/(J(0) − B) > 4/β. Using this
observation, the fact that 0 ≤ ΛΩ(v) < ∞ for v ≥ 4/β and combining with the case in
Equation (B.18), we conclude that J satisfies

J(T ) ≤ 3B = δ2 or
4

J(T )−B ≥
8

δ2
for T ≥ 1

ζ

∫ 8/δ2

4/β

dv

vΛ(v)
,

which implies the claimed bound (B.9).

Finally, we turn to the proof of Lemma B.3.

B.1.1.1 Proof of Lemma B.3:

Fix a function g : X → R+ such that g ∈ L2(π?) and g · 1Ω is not constant and E[g2 · 1Ω] ≥
2E[g2 · 1Ωc ]. Note that for any constant γ > 0, we have

E(g, g) =
1

2

∫

(x,y)∈X 2

(g(x)− g(y))2 Θ(x, dy)Π?(x)dx

=
1

2

∫

(x,y)∈X 2

((g(x)− γ)− (g(y)− γ))2 Θ(x, dy)Π?(x)dx

= E ((g − γ), (g − γ)) .

Let γ = Varπ?(g · 1Ω)/4Eπ? (g · 1Ω). We have

E(g, g) = E ((g − γ), (g − γ))
(i)

≥ E ((g − γ)+, (g − γ)+)

(ii)

≥ Varπ? ((g − γ)+ · 1Ω) inf
f∈c+0,Ω({g>γ})

E(f, f)

Varπ? (f · 1Ω)

(iii)

≥ Varπ? ((g − γ)+ · 1Ω) · ΛΩ(Π?({g > γ} ∩ Ω)). (B.23)

Here (x)+ = max {0, x} denotes the positive part of x. Inequality (i) follows from Lemma
2.3 in [99]. Inequality (iii) follows from the definition (B.4) of Ω-restricted spectral profile.
Inequality (ii) follows from the definition of infimum and we need to verify that Eπ? [(g −
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c)2
+1Ωc ] ≤ Eπ? [(g − c)2

+1Ω]. It follow because

Eπ? [(g − c)2
+1Ω]

(iv)

≥ Eπ? [(g · 1Ω)2]− 2γ · Eπ? (g · 1Ω)

=
Eπ? [(g · 1Ω)2] + (Eπ? [g · 1Ω])2

2
(v)

≥ Eπ? [(g · 1Ωc)
2]

(vi)

≥ Eπ? [((g − c)+ · 1Ωc)
2],

where inequality (iv) and (vi) follows from the fact that

(a− b)2
+ ≥ a2 − 2ab and (a− b)+ ≤ a, for scalars a, b ≥ 0, (B.24)

inequality (v) follows from the assumption in Lemma B.3 that Eπ? [g2 · 1Ω] ≥ 2Eπ? [g2 · 1Ωc ].
Additionally, we have

Varπ? ((g − γ)+ · 1Ω) = Eπ? ((g − γ)+ · 1Ω)2 − [Eπ? ((g − γ)+ · 1Ω)]2

(i)

≥ Eπ? (g · 1Ω)2 − 2γ · Eπ? (g · 1Ω)− [Eπ? (g · 1Ω)]2

≥ Varπ? (g · 1Ω)− 2γ · Eπ? (g · 1Ω) , (B.25)

where inequality (i) follows from the facts in Equation (B.24). Together the choice of γ, we
obtain from equation (B.25) that

Varπ? ((g − γ)+1Ω) ≥ 1

2
Varπ? (g · 1Ω) (B.26)

Furthermore applying Markov’s inequality for the non-negative function g · 1Ω, we also
have Π?({g > γ} ∩ Ω) = Π?({g · 1Ω > γ}) ≤ [Eπ? (g · 1Ω)] /γ. Combing equation (B.23)
and (B.26), together with the fact that ΛΩ is non-increasing, we obtain

E(g, g) ≥ 1

2
Varπ? (g · 1Ω) · ΛΩ

(
4 (Eπ?(g · 1Ω))2

Varπ? (g · 1Ω)

)
,

as claimed in the lemma.

B.1.2 Proof of Lemma B.2

The proof of the Lemma B.2 follows along the lines of Lemma 2.4 in [99], except that we
have to deal with continuous-state transition probability. This technical challenge is the main
reason for introducing the restricted conductance profile. At a high level, our argument is
based on reducing the problem on general functions to a problem on indicator functions, and
then using the definition of the conductance. Similar ideas have appeared in the proof of the
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Cheeger’s inequality [39] and the modified log-Sobolev constants [118].

We split the proof of Lemma B.2 in two cases based on whether v ∈ [ 4
β
, Π?(Ω)

2
], referred

to as Case 1, or v ≥ Π?(Ω)
2

, referred to as Case 2.

Case 1: First we consider the case when v ∈ [ 4
β
, Π?(Ω)

2
]. Define D+ : L2(π?)→ L2(π?) as

D+(h)(x) =

∫

y∈X
(H(x)−H(y))+ Θ(x, dy) andD−(h)(x) =

∫

y∈X
(H(x)−H(y))−Θ(x, dy),

where (x)+ = max {0, x} and (resp. (·)−) denote the positive and negative part of x respec-
tively. We note that D+ and D− satisfy the following co-area formula:

Eπ?D+(h) =

∫ +∞

−∞
Eπ?D+ (1h>t) dt. (B.27a)

See Lemma 1 in [118] or Lemma 2.4 in [99] for a proof of the equality (B.27a). Moreover,
given any measurable set A ⊂ X , scalar t, and function h ∈ c+

0,Ω(A), we note that the
term Eπ?D+(1h>t)(x) is equal to the flow φ (defined in equation (4.1)) of the level set
Ht = {x ∈ X | H(x) > t}:

Eπ?D+(1h>t) =

∫

x∈Ht
Θ(x,Hc

t )π
?(x)dx = φ(Ht). (B.27b)

By the definition of infimum, we have

φ(Ht) ≥ Π?(Ht ∩ Ω) · inf
0≤Π?(S∩Ω)≤Π?(A∩Ω)

φ(S)

Π?(S ∩ Ω)
. (B.27c)

Combining the previous three equations, we obtain1

Eπ?D+(h) =

∫ +∞

−∞
Eπ?D+ (1h>t) dt ≥

∫ +∞

−∞
Π?(Ht ∩ Ω)dt · inf

S⊂X
0≤Π?(S∩Ω)≤Π?(A∩Ω)

φ(S)

Π?(S ∩ Ω)

= Eπ?(h · 1Ω) · ΦΩ(Π?(A ∩ Ω)),

where the last equality follows from that h ≥ 0 and the definition of the restricted conduc-
tance. In a similar fashion, using the fact that φ(Ht) = φ(Hc

t ), we obtain that

Eπ?D−(h) ≥ Eπ?(h · 1Ω) · ΦΩ(Π?(A ∩ Ω)).

1Note that this step demonstrates that the continuous state-space treatment is different from the discrete
state-space one in Lemma 2.4 of [99].
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Combining the bounds on Eπ?D+(h) and Eπ?D−(h), we obtain

∫

X

∫

X
|H(x)−H(y)|Θ(x, dy)π?(x)dx = Eπ?D+(h) + Eπ?D−(h) ≥ 2Eπ?(h · 1Ω) · ΦΩ(Π?(A ∩ Ω)).

Given any function g ∈ c+
0,Ω(A), applying the above inequality by replacing h with g2, we

have

2Eπ?(g2 · 1Ω) · ΦΩ(Π?(A ∩ Ω))

≤
∫

X

∫

X

∣∣g2(x)− g2(y)
∣∣Θ(x, dy)π?(x)dx

(i)

≤
(∫

X

∫

X
|g(x)− g(y)|2 Θ(x, dy)π?(x)dx

)1/2

·
(∫

Ω

∫

Ω

|g(x) + g(y)|2 Θ(x, dy)π?(x)dx

)1/2

(ii)

≤ (2E(g, g))1/2 ·
(∫

X

∫

X
2
(
g(x)2 + g(y)2

)
Θ(x, dy)π?(x)dx

)1/2

= (2E(g, g))1/2 (4Eπ?(g2)
)1/2

(iii)

≤ (2E(g, g))1/2 (8Eπ?(g2 · 1Ω)
)1/2

.

Rearranging the last equation, we obtain

E(g, g)

Eπ?(g2 · 1Ω)
≥ Φ2

Ω(Π?(A ∩ Ω))

4
. (B.28)

In the above sequence of steps, inequality (i) follows from the Cauchy-Schwarz inequality, and
inequality (ii) from the definition (B.1) and the fact that (a+b)2 ≤ 2(a2 +b2). Inequality (iii)
follows from the assumption in the definition of the spectral profile (B.3a) that Eπ? [g2 ·1Ωc ] ≤
Eπ? [g2 · 1Ω]. Taking infimum over g ∈ c+

0,Ω(A) in equation (B.28), we obtain

λΩ(A) = inf
g∈c+0,Ω(A)

E(g, g)

Varπ?(g · 1Ω)
≥ inf

g∈c+0,Ω(A)

E(g, g)

Eπ?(g2 · 1Ω)
≥ Φ2

Ω(Π?(A ∩ Ω))

4
,

where the first inequality follows from the fact that Eπ?(g2 · 1Ω) ≥ Varπ?(g · 1Ω). Given

v ∈ [0, Π?(Ω)
2

], taking infimum over Π?(A ∩ Ω) ≤ v on both sides, we conclude the claimed
bound for this case:

ΛΩ(v) = inf
Π?(A∩Ω)∈[0,v]

λΩ(A) ≥ inf
Π?(A∩Ω)∈[0,v]

Φ2
Ω(Π?(A ∩ Ω))

4
=

Φ2
Ω(v)

4
,

where the last equality follows from the fact that the conductance profile ΦΩ defined in
equation (4.2) is non-increasing over its domain [0, Π?(Ω)

2
].
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Case 2: Next, we consider the case when v ≥ Π?(Ω)
2

. We claim that

ΛΩ(v)
(i)

≥ ΛΩ(Π?(Ω))
(ii)

≥ ΛΩ(Π?(Ω)/2)

2

(iii)

≥ ΦΩ(Π?(Ω)/2)2

8
, (B.29)

where step (i) follows from the fact that the spectral profile Λ is a non-increasing function,
and step (iii) from the result of Case 1. Note that the bound from Lemma B.2 for this case
follows from the bound above. It remains to establish inequality (ii), which we now prove.

Note that given the definition (B.4), it suffices to establish that

E (g, g)

Varπ?(g · 1Ω)
≥ ΛΩ(Π?(Ω)/2)

2
for all functions g ∈ L2(π?). (B.30)

Consider any g ∈ L2(π?) and let ν ∈ R be such that

Π?({g > ν} ∩ Ω) = Π?({g < ν} ∩ Ω) =
Π?(Ω)

2
.

Using the same argument as in the proof of Lemma B.3 and Lemma 2.3 in [99], we have

E (g, g) = E ((g − ν), (g − ν))

≥ E ((g − ν)+, (g − ν)+) + E ((g − ν)−, (g − ν)−) . (B.31)

For the two terms above, we have

E ((g − ν)+, (g − ν)+) ≥ Eπ?
(
(g − ν)2

+ · 1Ω

)
· inf
f∈c+0,Ω({g>ν})

E (f, f)

Eπ? (f · 1Ω)2 , (B.32)

and similarly

E ((g − ν)−, (g − ν)−) ≥ Eπ?
(
(g − ν)2

− · 1Ω

)
· inf
f∈c+0,Ω({g<ν})

E (f, f)

Eπ? (f · 1Ω)2 . (B.33)

For f ∈ c+
0,Ω({g > ν}), we have f ·1Ω ∈ c+

0,Ω({g > ν}∩Ω). Using Cauchy-Schwarz inequality,
we have

Eπ? (f · 1Ω)2 =

∫

x∈{g>ν}∩Ω

f(x)2Π?(x)dx ≥

(∫
x∈{g>ν}∩Ω

|f(x)|Π?(x)dx
)2

Π?({g > ν} ∩ Ω)
≥ (Eπ?f · 1Ω)2

Π?({g > ν} ∩ Ω)

Using this bound and noting the ν is chosen such that Π?({g > ν} ∩ Ω) = Π?(Ω)/2, for
f ∈ c+

0,Ω({g > ν}), we have

Varπ?(f · 1Ω) = Eπ? (f · 1Ω)2 − (Eπ?f · 1Ω)2 ≥ Eπ? (f · 1Ω)2 ·
(

1− Π?(Ω)

2

)
. (B.34)

Putting the equations (B.31), (B.32), (B.33) and (B.34) together, we obtain

E (g, g) ≥ Eπ?
(
(g − ν)2 · 1Ω

)
·
(

1− Π?(Ω)

2

)
· inf

Π?(S)∈[0,
Π?(Ω)

2
]

inf
f∈c+0,Ω(S)

E(f, f)

Varπ?(f · 1Ω)

≥ Varπ?(g · 1Ω) · 1

2
· ΛΩ(Π?(Ω)/2).

which implies the claim (B.30) and we conclude Case 2 of Lemma B.2.
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B.2 Proof of Proposition 4.2

The proof of this proposition is partly similar to the conductance-based proof of Lemma 3.4.
In addition to it, we have to deal with the case when target distribution satisfies the loga-
rithmic isoperimetric inequality.

For any set A1 such that Π?(A1∩Ω) ≤ Π?(Ω)
2

, with its complement denoted by A2 = X\A1,

we have Π?(A2 ∩ Ω) ≥ Π?(Ω)
2
≥ Π?(A1 ∩ Ω), since Π?(A1 ∩ Ω) + Π?(A2 ∩ Ω) = Π?(Ω). We

claim that
∫

x∈A1

Θ(x,A2)π?(x)dx ≥ Π?(A1 ∩ Ω) · ρ
4
·min

{
1,

∆

16ψe

· loge

(
1 +

1

Π?(A1 ∩ Ω)

)}
. (B.35)

Note that the claim (4.10) of Proposition 4.2 can be directly obtained from the claim (B.35),
by dividing both sides by Π?(A1 ∩Ω), taking infimum with respect to A1 such Π?(A1 ∩Ω) ∈
(0, v] and noting that inft∈(0,v] log

1
2 (1 + 1/t) = log

1
2 (1 + 1/v).

We now prove the claim (B.35).

Define the following sets,

A′1 :=
{
x ∈ A1 ∩ Ω | Θ(x,A2) <

ρ

2

}
, A′2 :=

{
x ∈ A2 ∩ Ω | Θ(x,A1) <

ρ

2

}
, (B.36)

along with the complement A′3 := Ω \ (A′1 ∪ A′2). Note that A′i ⊂ Ω for i = 1, 2, 3. We split
the proof into two distinct cases:

• Case 1: Π?(A′1) ≤ Π?(A1 ∩ Ω)/2 or Π?(A′2) ≤ Π?(A2 ∩ Ω)/2.

• Case 2: Π?(A′1) > Π?(A1 ∩ Ω)/2 and Π?(A′2) > Π?(A2 ∩ Ω)/2.

Note that these cases are mutually exclusive and exhaustive. We now consider these cases
one by one.

Case 1: If we have Π?(A′1) ≤ Π?(A1 ∩ Ω)/2, then

Π?(A1 ∩ Ω \ A′1) ≥ Π?(A1 ∩ Ω)/2. (B.37)

We have
∫

x∈A1

Θ(x,A2)π?(x)dx ≥
∫

x∈A1∩Ω\A′1
Θ(x,A2)π?(x)dx

(i)

≥ ρ

2

∫

x∈A1∩Ω\A′1
π?(x)dx

(ii)

≥ ρ

4
Π?(A1 ∩ Ω),
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where inequality (i) follows from the definition of the set A′1 in equation (B.36) and inequal-
ity (ii) follows from equation (B.37). For the case Π?(A′2) ≤ Π?(A2 ∩ Ω)/2, we use a similar
argument with the role of A1 and A2 exchanged to obtain

∫

x∈A1

Θ(x,A2)π?(x)dx =

∫

x∈A2

Θ(x,A1)π?(x)dx ≥ ρ

4
Π?(A2 ∩ Ω).

Putting the pieces together for this case, we have established that

∫

x∈A1

Θ(x,A2)π?(x)dx ≥ ρ

4
min {Π?(A1 ∩ Ω),Π?(A2 ∩ Ω)} =

ρ

4
Π?(A1 ∩ Ω). (B.38)

Case 2: We have Π?(A′1) > Π?(A1 ∩Ω)/2 and Π?(A′2) > Π?(A2 ∩Ω)/2. We first show that
in this case the sets A′1 and A′2 are far away, and then we invoke the logarithmic isoperimetry
inequality from Lemma C.6.

For any two vectors u ∈ A′1 and v ∈ A′2, we have

dTV

(
Tu, Tv

)
≥ Θ(u,A1)−Θ(v, A1) = 1−Θ(u,A2)−Θ(v,A1) > 1− ρ.

Consequently, the assumption of the lemma implies that

d(A′1, A
′
2) ≥ ∆. (B.39)

Using the fact that under the stationary distribution, the flow from A1 to A2 is equal to that
from A2 to A1, we obtain

∫

x∈A1

Θ(x,A2)π?(x)dx =
1

2

(∫

x∈A1

Θ(x,A2)π?(x)dx+

∫

x∈A2

Θ(x,A1)π?(x)dx

)

≥ 1

4

(∫

x∈A1∩Ω\A′1
Θ(x,A2)π?(x)dx+

∫

x∈x∈A2∩Ω\A′2
Θ(x,A1)π?(x)dx

)

≥ ρ

8
Π?(Ω \ (A′1 ∪ A′2)), (B.40)

where the last inequality follows from the definition of the set A′1 in equation (B.36). Note
that the sets A′1, A′2 and X \ (A′1 ∪ A′2) partition X . Using the condition (4.8) with the
Ω-restricted distribution Π?

Ω with density π?Ω defined as

π?Ω(x) =
π?(x)1Ω(x)

Π?(Ω)
,
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we obtain

Π?(Ω \ (A′1 ∩ A′2))

= Π?(Ω) · Π?
Ω(X \ (A′1 ∩ A′2))

(i)

≥ Π?(Ω) · d(A′1, A
′
2)

2ψe

·min {Π?
Ω(A′1),Π?

Ω(A′2)} · loge

(
1 +

1

min {Π?
Ω(A′1),Π?

Ω (A′2)}

)

(ii)

≥ Π?(Ω) · ∆

4ψe

min {Π?(A1 ∩ Ω),Π?(A2 ∩ Ω)} · loge

(
1 +

2

min {Π?(A1 ∩ Ω),Π?(A2 ∩ Ω)}

)

≥ 1

2
· ∆

4ψe

· Π?(A1 ∩ Ω) · loge

(
1 +

1

Π?(A1 ∩ Ω)

)
, (B.41)

where step (i) follows from the assumption (4.8), step (ii) from the bound (B.39) and the
facts that Π?

Ω(A′i) ≥ Π?(A′i) ≥ 1
2
Π?(Ai ∩ Ω) and that the map x 7→ x loge(1 + 1/x) is an

increasing function for either e = 1
2

or e = 0. Putting the pieces (B.40) and (B.41) together,
we conclude that

∫

x∈A1

Θ(x,A2)π?(x)dx ≥ ρ

16
· ∆

4ψe

· Π?(A1 ∩ Ω) · loge

(
1 +

1

Π?(A1 ∩ Ω)

)
. (B.42)

Finally, the claim (B.35) follows from combining the two bounds (B.38) and (B.42) from the
two separate cases.
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Appendix C

Content Deferred from Chapter 5

We prove Lemma 5.1 and Corollary 5.1 in Appendices C.1 and C.2 respectively, and provide
a detailed discussion about the trade-off between hyperparameter choices for HMC from our
proofs in Appendix C.3.

C.1 Proof of Lemma 5.1

We first provide several convenient properties about the HMC proposal.

C.1.1 Properties of the HMC proposal

Recall the Hamiltonian Monte Carlo (HMC) with leapfrog integrator (5.3c). Using an in-
duction argument, we find that the final states in one iteration of K steps of the HMC chain,
denoted by qK and pK satisfy

pK = p0 −
η

2
∇f(q0)−

K−1∑

j=1

∇f(qj)−
η

2
∇f(qK), (C.1a)

and qK = q0 + Kηp0 −
Kη2

2
∇f(q0)− η2

K−1∑

j=1

(K− j)∇f(qj). (C.1b)

It is easy to see that for k ∈ [K], qk can be seen as a function of the initial state q0 and p0.
We denote this function as the forward mapping F ,

qk =: Fk(p0,q0) and qK =: FK(p0,q0) =: F (p0,q0) (C.1c)

where we introduced the simpler notation F := FK for the final iterate. The forward map-
pings Fk and F are deterministic functions that only depends on the gradient∇f , the number
of leapfrog updates K and the step size η.
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Denote JxF as the Jacobian matrix of the forward mapping F with respect to the first
variable. By definition, it satisfies

[JxF (x, q0)]ij =
∂

∂xj
[F (x, q0)]i , for all i, j ∈ [d] . (C.1d)

Similarly, denote JyF as the Jacobian matrix of the forward mapping F with respect to the
second variable. The following lemma characterizes the eigenvalues of the Jacobian JxF .

Lemma C.1. Suppose the log density f is L-smooth. For the number of leapfrog steps and
step-size satisfying K2η2 ≤ 1

4L
, we have

|||KηId − JxF (x, y)|||2 ≤
1

8
Kη, for all x, y ∈ X and i ∈ [d] .

Also all eigenvalues of JxF (x, y) have absolute value greater or equal to 7
8
Kη.

See Appendix C.1.3 for the proof.

Since the Jacobian is invertible for K2η2 ≤ 1
4L

, we can define the inverse function of F
with respect to the first variable as the backward mapping G. We have

F (G(x, y), y) = x, for all x, y ∈ X . (C.2)

Moreover as a direct consequence of Lemma C.1, we obtain that the magnitude of the

eigenvalues of the Jacobian matrix JxG(x, y) lies in the interval
[

8
9Kη

, 8
7Kη

]
. In the next

lemma, we state another set of bounds on different Jacobian matrices:

Lemma C.2. Suppose the log density f is L-smooth. For the number of leapfrog steps and
step-size satisfying K2η2 ≤ 1

4L
, we have

|||JyG(x, y)|||2 ≤
4

3Kη
, for all x, y ∈ X , and (C.3a)

|||∂Fk(G(x, y), y)

∂y
|||2 ≤ 3, for all k ∈ [K] . (C.3b)

See Appendix C.1.4 for the proof.

Next, we would like to obtain a bound on the quantity ∂ log detJxG(x,q0)
∂y

. Applying the
chain rule, we find that

∂ log det JxG(x,q0)

∂y
=




trace ([JxG(x,q0)]−1Jxy1G(x,q0))
...

trace ([JxG(x, q0)]−1JxydG(x,q0))


 . (C.4)
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Here JxyG(x,q0) is a third order tensor and we use JxylG(x,q0) to denote the matrix corre-
sponding to the l-th slice of the tensor which satisfies

[JxylG(x,q0)]ij =
∂∂

∂xjyl
[F (x,q0)]i , for all i, j, l ∈ [d] .

Lemma C.3. Suppose the log density f is L-smooth and LH-Hessian Lipschitz. For the
number of leapfrog steps and step-size satisfying K2η2 ≤ 1

4L
, we have

∥∥∥∥
∂ log det JxG(x,q0)

∂y

∥∥∥∥
2

=

∥∥∥∥∥∥∥




trace ([JxG(x,q0)]−1Jxy1G(x,q0))
...

trace ([JxG(x, q0)]−1JxydG(x,q0))




∥∥∥∥∥∥∥
2

≤ 2dK2η2LH .

See Appendix C.1.5 for the proof.

As a direct consequence of the equation (C.1b) at k-th step of leapfrog updates, we obtain
the following two bounds for the difference between successive Fk terms that come in handy
later in our proofs.

Lemma C.4. Suppose that the log density f is L-smooth. For the number of leapfrog steps
and step-size satisfying K2η2 ≤ 1

4L
, we have

‖Fk(p0,q0)− q0‖2 ≤ 2kη ‖p0‖2 + 2k2η2 ‖∇f(q0)‖2 for k ∈ [K] , and (C.5a)

‖Fk+1(p0,q0)− Fk(p0,q0)‖2 ≤ 2η ‖p0‖2 + 2(k + 1)η2 ‖∇f(q0)‖2 for k ∈ [K− 1] . (C.5b)

See Appendix C.1.6 for the proof.

We now turn to the proof the two claims in Lemma 5.1. Note that the claim (5.16a)
states that the proposal distributions at two close points are close; the claim (5.16b) states
that the proposal distribution and the transition distribution are close.

C.1.1.1 Proof of claim (5.16a) in Lemma 5.1

In order to bound the distance between proposal distributions of nearby points, we prove
the following stronger claim: For a L-smooth LH-Hessian-Lipschitz target distribution, the
proposal distribution of the HMC algorithm with step size η and leapfrog steps K such that
Kη ≤ 1

4L
satisfies

dTV

(
Pq0 ,Pq̃0

)
≤
(

2 ‖q0 − q̃0‖2
2

K2η2
+ 3
√
dKηL ‖q0 − q̃0‖2 + 4dK2η2LH ‖q0 − q̃0‖2

)1/2

,

(C.6)
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for all q0, q̃0 ∈ Rd. Then for any two points q0, q̃0 such that ‖q0 − q̃0‖2 ≤ 1
4
Kη, under the

condition (5.15a), i.e., K2η2 ≤ 1

4 max

{
d

1
2 L,d

2
3 L

2
3
H

} , we have

dTV

(
Pq0 ,Pq̃0

)
≤
(

1

8
+

3

64
+

1

64

)1/2

≤ 1

2
,

and the claim (5.16a) follows.
The proof of claim (C.6) involves the following steps: (1) we make use of the update

rules (C.1b) and change of variable formula to obtain an expression for the density of qn in
terms of q0, (2) then we use Pinsker’s inequality and derive expressions for the KL-divergence
between the two proposal distributions, and (3) finally, we upper bound the KL-divergence
between the two distributions using different properties of the forward mapping F from
Appendix C.1.1.

According to the update rule (C.1b), the proposals from two initial points q0 and q̃0

satisfy respectively

qK = F (p0,q0), and q̃K = F (p̃0, q̃0),

where p0 and p̃0 are independent random variable from Gaussian distribution N (0, Id).
Denote pq0 as the density function of the proposal distribution Pq0 . For two different

initial points q0 and q̃0, the goal is to bound the total variation distance between the two
proposal distribution, which is by definition

dTV

(
Pq0 ,Pq̃0

)
=

1

2

∫

x∈X
|pq0(x)− pq̃0(x)| dx. (C.7)

Given q0 fixed, the random variable qK can be seen as a transformation of the Gaussian
random variable p0 through the function F (·,q0). When F is invertible, we can use the
change of variable formula to obtain an explicit expression of the density pq0 :

pq0(x) = ϕ (G(x,q0)) det (JxG(x,q0)) , (C.8)

where ϕ is the density of the standard Gaussian distribution N (0, Id). Note that even though
explicit, directly bounding the total variation distance (C.7) using the complicated density
expression (C.8) is difficult. We first use Pinsker’s inequality [58] to give an upper bound of
the total variance distance in terms of KL-divergence

dTV

(
Pq0 ,Pq̃0

)
≤
√

2 KL(Pq0‖Pq̃0), (C.9)
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and then upper bound the KL-divergence. Plugging the density (C.8) into the KL-divergence
formula, we obtain that

KL(Pq0‖Pq̃0) =

∫

Rd
pq0(x) log

(
pq0(x)

pq̃0(x)

)
dx

=

∫

Rd
pq0(x)

[
log

(
ϕ (G(x,q0))

ϕ (G(x, q̃0))

)
+ log det JxG(x,q0)− log det JxG(x, q̃0)

]
dx

=

∫

Rd
pq0(x)

[
1

2

(
−‖G(x,q0)‖2

2 + ‖G(x, q̃0)‖2
2

)]
dx

︸ ︷︷ ︸
T1

+

∫

Rd
pq0(x) [log det JxG(x,q0)− log det JxG(x, q̃0)] dx

︸ ︷︷ ︸
T2

(C.10)

We claim the following bounds on the terms T1 and T2:

|T1| ≤
8

9

‖q0 − q̃0‖2
2

K2η2
+

3

2

√
dKηL ‖q0 − q̃0‖2 , and (C.11a)

|T2| ≤ 2dK2η2LH ‖q0 − q̃0‖2 , (C.11b)

where the bound on T2 follows readily from Lemma C.3:

|T2| =
∣∣∣∣
∫
pq0(x) [log det JxG(x,q0)− log det JxG(x, q̃0)] dx

∣∣∣∣

≤
∥∥∥∥
∂ log det JxG(x,q0)

∂y

∥∥∥∥
2

‖q0 − q̃0‖2

≤ 2dK2η2LH ‖q0 − q̃0‖2 . (C.12)

Putting together the inequalities (C.9), (C.10), (C.11a) and (C.11b) yields the claim (C.6).

It remains to prove the bound (C.11a) on T1.

Proof of claim (C.11a): For the term T1, we observe that

1

2

(
‖G(x, q̃0)‖2

2 − ‖G(x,q0)‖2
2

)
=

1

2
‖G(x,q0)−G(x, q̃0)‖2

2 − (G(x,q0)−G(x, q̃0))>G(x,q0).

The first term on the RHS can be bounded via the Jacobian of G with respect to the second
variable. Applying the bound (C.3a) from Lemma C.2, we find that

‖G(x,q0)−G(x, q̃0)‖2 ≤ |||JyG(x, y)|||2 ‖q0 − q̃0)‖2 ≤
4

3Kη
‖q0 − q̃0)‖2 . (C.13)
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For the second part, we claim that there exists a deterministic function C of q0 and q̃0 and
independent of x, such that

‖G(x,q0)−G(x, q̃0)− C(q0, q̃0)‖2 ≤
3

2
KηL ‖q0 − q̃0‖2 . (C.14)

Assuming the claim (C.14) as given at the moment, we can further decompose the second
part of T1 into two parts:

(G(x,q0)−G(x, q̃0))>G(x,q0) = (G(x,q0)−G(x, q̃0)− C(q0, q̃0))>G(x,q0) + C(q0, q̃0)>G(x,q0)
(C.15)

Applying change of variables along with equation (C.8), we find that

∫
pq0(x)G(x,q0)dx =

∫
ϕ(x)xdx = 0.

Furthermore, we also have

∫

x∈X
pq0(x) ‖G(x,q0)‖2 dx =

∫

x∈X
ϕ(x) ‖x‖2 dx

(i)

≤
[(∫

x∈X
ϕ(x) ‖x‖2

2 dx

)(∫

x∈X
ϕ(x)dx

)]1/2

=
√
d,

where step (i) follows from Cauchy-Schwarz’s inequality. Combining the inequalities (C.13),
(C.14) and (C.15) together, we obtain the following bound on term T1:

|T1| =
∣∣∣∣
∫
pq0(x)

[
−1

2
‖G(x,q0)‖2

2 +
1

2
‖G(x, q̃0)‖2

2

]
dx

∣∣∣∣

≤ 1

2

∣∣∣∣
∫
pq0(x) ‖G(x,q0)−G(x, q̃0)‖2

2 dx

∣∣∣∣

+

∣∣∣∣
∫
pq0(x) ‖G(x,q0)−G(x, q̃0)− C(q0, q̃0)‖2 ‖G(x,q0)‖2 dx

∣∣∣∣

≤ 8

9

‖q0 − q̃0‖2
2

K2η2
+

3

2

√
dKη ‖q0 − q̃0‖2 , (C.16)

which yields the claimed bound on T1.

We now prove our earlier claim (C.14).
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Proof of claim (C.14): For any pair of states q0 and q̃0, invoking the definition (C.2) of
the map G(x, ·), we obtain the following implicit equations:

x = q0 + KηG(x,q0)−K
η2

2
∇f(q0)− η2

K−1∑

j=1

(K− j)∇f(Fj(G(x,q0),q0)), and

x = q̃0 + KηG(x, q̃0)−K
η2

2
∇f(q̃0)− η2

K−1∑

j=1

(K− j)∇f(Fj(G(x, q̃0), q̃0)).

Taking the difference between the two equations above, we obtain

G(x,q0)−G(x, q̃0)− q0 − q̃0

Kη
− η

2
(∇f(q0)−∇f(q̃0))

=
η2

Kη

K−1∑

k=1

(K− j) (∇f(Fk(G(x,q0),q0))−∇f(Fk(G(x, q̃0), q̃0))) .

Applying L-smoothness of f along with the bound (C.3b) from Lemma C.2, we find that

‖∇f(Fk(G(x,q0),q0))−∇f(Fk(G(x, q̃0), q̃0))‖2 ≤ L|||∂Fk(G(x, y), y)

∂y
|||2 ‖q0 − q̃0‖2

≤ 3L ‖q0 − q̃0‖2 .

Putting the pieces together, we find that
∥∥∥∥G(x,q0)−G(x, q̃0)− q0 − q̃0

Kη
− 1

2
(∇f(q0)−∇f(q̃0))

∥∥∥∥
2

≤ 3KηL

2
‖q0 − q̃0‖2 ,

which yields the claim (C.14).

C.1.1.2 Proof of claim (5.16b) in Lemma 5.1

We now bound the distance between the one-step proposal distribution Px at point x and the
one-step transition distribution T before-lazy

x at x obtained after performing the accept-reject
step (and no lazy step). Using equation (C.1a), we define the forward mapping E for the
variable pK as follows

pK = E(p0,q0) := p0 −
η

2
∇f(q0)− η

K−1∑

j=1

∇f(qj)−
η

2
∇f(qK).

Consequently, the probability of staying at x is given by

T before-lazy
x ({x}) = 1−

∫

X
min

{
1,

exp(−H(E(z, x), F (z, x)))

exp(−H(z, x))

}
ϕx(z)dz,
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where the Hamiltonian H(q, p) = f(q) + 1
2
‖p‖2

2 was defined in equation (5.2). As a result,
the TV-distance between the proposal and transition distribution is given by

dTV

(
Px, T before-lazy

x

)
= 1−

∫

X
min

{
1,

exp(−H(E(z, x), F (z, x)))

exp(−H(z, x))

}
ϕx(z)dz

= 1− Ez∼N (0,Id)

[
min

{
1,

exp(−H(E(z, x), F (z, x)))

exp(−H(z, x))

}]
. (C.17)

An application of Markov’s inequality yields that

Ez∼N (0,Id)

[
min

{
1,

exp(−H(E(z, x), F (z, x)))

exp(−H(z, x))

}]

≥ αPz∼N (0,Id)

[
exp(−H(E(z, x), F (z, x)))

exp(−H(z, x))
≥ α

]
, (C.18)

for any α ∈ (0, 1]. Thus, to bound the distance dTV

(
Px, T before-lazy

x

)
, it suffices to derive a

high probability lower bound on the ratio exp(−H(E(z, x), F (z, x)))/exp(−H(z, x)) when
z ∼ N (0, Id).

We now derive a lower bound on the following quantity:

exp

(
−f(F (p0,q0)) + f(q0)− 1

2
‖E(p0,q0)‖2

2 +
1

2
‖p0‖2

2

)
, when p0 ∼ N (0, Id).

We derive the bounds on the two terms −f(F (p0,q0)) + f(q0) and ‖E(p0,q0)‖2
2 separately.

Observe that

f(F (p0,q0))− f(q0) =
K−1∑

j=0

[f(Fj+1(p0,q0))− f(Fj(p0,q0))] .

The intuition is that it is better to apply Taylor expansion on closer points. Applying the
third order Taylor expansion and using the smoothness assumptions (3.5a) and (5.5) for the
function f , we obtain

f(x)− f(y) ≤ (x− y)>

2
(∇f(x) +∇f(y)) + LH ‖x− y‖3

2 .

For the indices j ∈ {0, . . . ,K− 1}, using Fj as the shorthand for Fj(p0,q0), we find that

f(Fj+1)− f(Fj) ≤
(Fj+1 − Fj)>

2
(∇f(Fj+1) +∇f(Fj)) + LH ‖Fj+1 − Fj‖3

2

=
1

2
ηp>0 (∇f(Fj+1) +∇f(Fj))

− η2

2

[
1

2
∇f(p0) +

j∑

k=1

∇f(Fk)

]>
(∇f(Fj+1) +∇f(Fj)) + LH ‖Fj+1 − Fj‖3

2 ,

(C.19)
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where the last equality follows by definition (C.1c) of the operator Fj.
Now to bound the term E(p0,q0), we observe that

‖E(p0,q0)‖2
2

2
=

∥∥∥p0 − η
2
∇f(q0)− η∑K−1

j=1 ∇f(Fj)− η
2
∇f(FK)

∥∥∥
2

2

2

=
‖p0‖2

2

2
− ηp>0

(
1

2
∇f(q0) +

K−1∑

j=1

∇f(Fj) +
1

2
∇f(FK)

)

+
η2

2

∥∥1

2
∇f(q0) +

K−1∑

j=1

∇f(Fj) +
1

2
∇f(FK)

∥∥2

2
. (C.20)

Putting the equations (C.19) and (C.20) together leads to cancellation of many gradient
terms and we obtain

− f(F (p0,q0)) + f(q0)− 1

2
‖E(p0,q0)‖2

2 +
1

2
‖p0‖2

2

≥ η2

8
(∇f(q0)−∇f(FK))> (∇f(q0) +∇f(FK))− LH

K−1∑

j=0

‖Fj+1 − Fj‖3
2

≥ −η
2L

4
‖q0 − F (p0,q0)‖2 ‖∇f(q0)‖2 −

η2L2

2
‖q0 − F (p0,q0)‖2

2 − LH

K−1∑

j=0

‖Fj+1 − Fj‖3
2

(C.21)

The last inequality uses the smoothness condition (3.5a) for the function f . Plugging the
bounds (C.5a) and (C.5b) in equation (C.21), we obtain a lower bound that only depends
on ‖p0‖2 and ‖∇f(q0)‖2:

RHS of (C.21) ≥ −2K2η4L2 ‖p0‖2
2 − 2Kη3L ‖p0‖2 ‖∇f(q0)‖2 − 2K2η4L ‖∇f(q0)‖2

2

−LH

(
32Kη3 ‖p0‖3

2 + 8K4η6 ‖∇f(q0)‖3
2

)
. (C.22)

According to assumption (5A), we have bounded gradient in the convex set Ω. For any
x ∈ Ω, we have ‖∇f(x)‖2 ≤M. Standard Chi-squared tail bounds imply that

P
[
‖p0‖2

2 ≤ dα1

]
≥ 1− 1

16
, for α1 = 1 + 2

√
log(16) + 2 log(16). (C.23)

Plugging the gradient bound and the bound (C.23) into equation (C.22), we conclude that
there exists an absolute constant c ≤ 2000 such that for η2 satisfying equation (5.15b),
namely

η2 ≤ 1

cL
min





1

K2
,

1

Kd
1
2

,
1

K
2
3d

1
3

(
M2

L

) 1
3

,
1

K M

L
1
2

,
1

K
2
3d

L

L
2
3
H

,
1

K
4
3

M

L
1
2

(
L

L
2
3
H

) 1
2



 ,
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we have

P
[
−f(F (p0,q0)) + f(q0)− 1

2
‖E(p0,q0)‖2

2 +
1

2
‖p0‖2

2 ≥ −1/16

]
≥ 1− 1

16
.

Plugging this bound in the inequality (C.18) yields that

Ez∼N (0,Id)

[
min

{
1,

exp(−H(E(z, x), F (z, x)))

exp(−H(z, x))

}]
≥ 1− 1

8
,

which when plugged in equation (C.17) implies that dTV

(
Px, T before-lazy

x

)
≤ 1/8 for any

x ∈ Rs, as claimed. The proof is now complete.

C.1.2 Notation for proofs related to Lemma 5.1

We now collect some notation for the proofs of Lemmas C.1, C.2, C.3 and C.4. For simplicity,
we adopt following the tensor notation.

Notations for tensor: Let T ∈ Rd×d×d be a third order tensor. Let U ∈ Rd×d1 ,
V ∈ Rd×d2 , and W ∈ Rd×d3 be three matrices. Then the multi-linear form applied on
(U, V,W ) is a tensor in Rd1×d2×d3 :

[T (U, V,W )]p,q,r =
∑

i,j,k∈[d]

TijkUipVjqWkr.

In particular, for the vectors u, v, w ∈ Rd, the quantity T (u, v, w) is a real number that
depends linearly on u, v, w (tensor analogue of the quantity u>Mv in the context of matrices
and vector). Moreover, the term T (u, v, Id) denotes a vector in Rd (tensor analogue of the
quantity Mv in the context of matrices and vector). Finally, the term T (u, Id, Id) represents
a matrix in Rd×d.

C.1.3 Proof of Lemma C.1

We will prove an equivalent statement: for K2η2 ≤ 1
4L

, there is a matrix Q(x, y) ∈ Rd×d with
|||Q|||2 ≤ 1

8
such that

JxF (x, y) = Kη (Id −Q(x, y)) , for all x, y ∈ X . (C.24)

Recall from equation (C.1b) that the intermediate iterate qk is defined recursively as

qk = Fk(p0,q0) = q0 + kηp0 −
kη2

2
∇f(q0)− η2

k−1∑

j=1

(k − j)∇f(qj) for 1 ≤ k ≤ K.
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Taking partial derivative with respective to the first variable, we obtain

∂

∂p0

qk = Jp0Fk(p0,q0) = kηId − η2

k−1∑

j=1

(k − j)∇2fqjJp0Fj(p0,q0), (C.25)

where ∇2fqj is the Hessian of f at qj. We claim that for 1 ≤ k ≤ K, there is a matrix
Qk ∈ Rd×d with |||Qk|||2 ≤ 1

8
such that

Jp0Fk(p0,q0) = kη (Id −Qk) . (C.26)

Note that substituting k = K in this claim yields the result of the lemma. We now prove
the claim (C.26) using strong induction.

Base case (k = 1, 2): For the base case k = 1, 2, using equation (C.25), we have

Jp0F1(p0,q0) = ηId, and

Jp0F2(p0,q0) = 2ηId − η2∇2fq1Jp0F1(p0,q0) = 2η

(
Id −

η2

2
∇2fq1

)
.

Combining the inequality |||∇2fq1|||2 ≤ L from smoothness assumption and the assumed
stepsize bound η2 ≤ 1

4L
yields

|||η
2

2
∇2fq1|||2 ≤

1

8
.

The statement in equation (C.26) is verified for k = 1, 2.

Inductive step: Assuming that the hypothesis holds for all iterations up to k, we now
establish it for iteration k + 1. We have

Jp0Fk+1(p0,q0) = (k + 1)ηId − η2

k∑

j=1

(k + 1− j)∇2fqjJp0Fj(p0,q0)

(i)
= (k + 1)ηId − η2

k∑

j=1

(k + 1− j)∇2fqj · jη (Id −Qj)

= (k + 1)η(Id −Qk+1),
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where Qk+1 = η2

k+1

∑k
j=1(k+ 1− j)j∇2fqj(Id−Qj). Equality (i) follows from the hypothesis

of the induction. Finally, we verify that the spectral norm of Qk+1 is bounded by 1
8
,

|||Qk+1|||2 ≤
1

k + 1

k∑

j=1

|||η2(k + 1− j)j∇2fqj |||2|||Id −Qj|||2

(i)

≤ 1

k + 1

k∑

j=1

|||η2K
2

4
∇2fqj |||2|||Id −Qj|||2

(ii)

≤ 1

k + 1

k∑

j=1

1

16

(
1 +

1

8

)

≤ 1

8
.

Inequality (i) follows from the inequality (k + 1 − j)j ≤
(
k+1−j+j

2

)2 ≤ K2

4
. Inequalilty (ii)

follows from the assumption K2η2 ≤ 1
4L

and the hypothesis |||Qj|||2 ≤ 1
8
. This completes the

induction.

C.1.4 Proof of Lemma C.2

Recall that the backward mapping G is defined implicitly as

x = y + KηG(x, y)− Kη2

2
∇f(y)− η2

K−1∑

k=1

(K− k)∇f (Fk(G(x, y), y)) . (C.27)

First we check the derivatives of Fk(G(x, y), y). Since Fk(G(x, y), y) satisfies

Fk(G(x, y), y) = y + kηG(x, y)− kη2

2
∇f(y)− η2

k−1∑

j=1

(k − j)∇f(Fj(G(x, y), y)),

taking derivative with respect to y, we obtain

∂

∂y
Fk(G(x, y), y) = Id + kηJyG(x, y)− kη2

2
∇2f(y)

− η2

k−1∑

j=1

(k − j)∇2f(Fj(G(x, y), y))
∂

∂y
Fj(G(x, y), y). (C.28)

Using the same proof idea as in the previous lemma, we show by induction that for 1 ≤ k ≤ K,
there exists matrices Ak, Bk ∈ Rd×d with |||Ak|||2 ≤ 1

6
and |||Bk|||2 ≤ 1

8
such that

∂

∂y
Fk(G(x, y), y) = (Id − Ak) + kη (Id −Bk) JyG(x, y). (C.29)
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Case k = 1: The case k = 1 can be easily checked according to equation (C.28), we have

∂

∂y
F1 (G(x, y), y) = Id −

η2

2
∇2f(y) + ηJyG(x, y)

It is sufficient to set A1 = η2

2
∇2f(y) and B1 = 0.

Case k to k + 1: Assume the statement is verified until k ≥ 1. For k + 1 ≤ K, according
to equation (C.28), we have

∂

∂y
Fk+1(G(x, y), y)

= Id + (k + 1)ηJyG(x, y)− (k + 1)η2

2
∇2f(y)− η2

k∑

j=1

(k + 1− j)∇2f(Fj(G(x, y), y))
∂

∂y
Fj(G(x, y), y)

= Id −
(k + 1)η2

2
∇2f(y) + (k + 1)ηJyG(x, y)

− η2

k∑

j=1

(k + 1− j)∇2f(Fj(G(x, y), y)) ((Id − Aj) + jη (Id −Bj) JyG(x, y))

= Id −
(k + 1)η2

2
∇2f(y)− η2

k∑

j=1

(k + 1− j)∇2f(Fj(G(x, y), y))(Id − Aj)

+ (k + 1)ηJyG(x, y)− η2

k∑

j=1

(k + 1− j)∇2f(Fj(G(x, y), y)) (jη (Id −Bj) JyG(x, y))

To conclude, it suffices to note the following values of Ak+1 and Bk+1:

Ak+1 =
(k + 1)η2

2
∇2f(y) + η2

k∑

j=1

(k + 1− j)∇2f(Fj(G(x, y), y))(Id − Aj), and

Bk+1 =
1

k + 1
η2

k∑

j=1

(k + 1− j)j∇2f(Fj(G(x, y), y)) (Id −Bj) .

We now have the following operator norm bounds:

|||Ak+1|||2 ≤
k + 1

2
η2L + η2

k∑

j=1

(k + 1− j)L(1 +
1

6
) ≤ 7

12
(k + 1)2η2L ≤ 1

6
, and

|||Bk+1|||2 ≤
1

k + 1
η2(1 +

1

8
)L

k∑

j=1

(k + 1− j)j =
9

8 · 6k(k − 1)η2L ≤ 1

8
.
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This concludes the proof of equation (C.29). As a particular case, for k = K, we observe
that

FK (G(x, y), y) = x.

Plugging it into equation (C.29), we obtain that

JyG(x, y) =
1

Kη
(Id −BK)−1 (Id − AK) =⇒ |||JyG(x, y)|||2 ≤

4

3Kη
.

Plugging the bound on |||JyG(x, y)|||2 back to equation (C.29) for other k, we obtain

||| ∂
∂y
Fk(G(x, y), y)|||2 ≤ 3.

This concludes the proof of Lemma C.2.

C.1.5 Proof of Lemma C.3

Recall that the backward mapping G is defined implicitly as

x = y + KηG(x, y)− Kη2

2
∇f(y)− η2

K−1∑

k=1

(K− k)∇f (Fk(G(x, y), y)) . (C.30)

First we check the derivatives of Fk(G(x, y), y). Since Fk(G(x, y), y) satisfies

Fk(G(x, y), y) = y + kηG(x, y)− kη2

2
∇f(y)− η2

k−1∑

j=1

(k − j)∇f(Fj(G(x, y), y)),

we have

∂

∂x
Fk(G(x, y), y) = kηJxG(x, y)− η2

k−1∑

j=1

(k − j)∇2f(Fj(G(x, y), y))
∂

∂x
Fj(G(x, y), y).

(C.31)

Similar to the proof of equation (C.26), we show by induction (proof omitted) that for

1 ≤ k ≤ K, there exists matrices Q̃k ∈ Rd×d with |||Q̃k|||2 ≤ 1
2

such that

∂

∂x
Fk(G(x, y), y) = kη

(
Id − Q̃k

)
JxG(x, y). (C.32)

Then, by taking another derivative with respect to yi in equation (C.31), we obtain

∂∂

∂x∂yi
Fk(G(x, y), y) = kηJxyiG(x, y)

− η2

k−1∑

j=1

(k − j)
{
∇3fFj(G(x,y),y)

(
∂Fj(G(x, y), y)

∂yi
, Id, Id

)
∂

∂x
Fj(G(x, y), y)

+∇2fFj(G(x,y),y)
∂∂

∂x∂yi
Fj(G(x, y), y)

}
(C.33)
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Now we show by induction that for 1 ≤ k ≤ K, for any α ∈ Rd, we have
∥∥∥∥∥

d∑

i=1

αi

(
∂∂

∂x∂yi
Fk(G(x, y), y)JxG(x, y)−1

)∥∥∥∥∥
2

≤ 2kη

∥∥∥∥∥
d∑

i=1

αi
(
JxyiG(x, y)JxG(x, y)−1

)
∥∥∥∥∥

2

+ 2 ‖α‖2 k
3η3LH . (C.34)

Case k = 1: We first examine the case k = 1. According to equation (C.33), we have

d∑

i=1

αi

(
∂∂

∂x∂yi
F1(G(x, y), y)JxG(x, y)−1

)
= η

d∑

i=1

αi
(
JxyiG(x, y)JxG(x, y)−1

)
.

The statement in equation (C.34) is easily verified for k = 1.

Case k to k+1: Assume the statement (C.34) is verified until k. For k+1 ≤ K, according
to equation (C.33), we have

d∑

i=1

αi

(
∂∂

∂x∂yi
Fk+1(G(x, y), y)JxG(x, y)−1

)

= (k + 1)η
d∑

i=1

αi
(
JxyiG(x, y)JxG(x, y)−1

)

− η2

k∑

j=1

(k + 1− j)
{
∇3fFj(G(x,y),y)

(
d∑

i=1

αi
∂Fj(G(x, y), y)

∂yi
, Id, Id

)
∂

∂x
Fj(G(x, y), y)JxG(x, y)−1

}

− η2

k∑

j=1

(k + 1− j)∇2fFj(G(x,y),y)

d∑

i=1

αi

(
∂∂

∂x∂yi
Fj(G(x, y), y)JxG(x, y)−1

)
.

In the last equality, we have used the fact that ∇3fFj(G(x,y),y) is a multilinear form to enter
the coefficients αi in the tensor. Let

Mα =

∥∥∥∥∥
d∑

i=1

αi
(
JxyiG(x, y)JxG(x, y)−1

)
∥∥∥∥∥

2

.

Applying the hypothesis of the induction, we obtain
∥∥∥∥∥

d∑

i=1

αi

(
∂∂

∂x∂yi
Fk+1(G(x, y), y)JxG(x, y)−1

)∥∥∥∥∥
2

(i)

≤ (k + 1)ηMα + η2

k∑

j=1

4(k + 1− j)jLH ‖α‖2 + η2

k∑

j=1

(k + 1− j)L
(
2jηM + 2 ‖α‖2 j

3η3LH

)

≤ 2(k + 1)ηMα + 2 ‖α‖2 (k + 1)3η3LH .
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The first inequality (i) used the second part of Lemma C.2 to bound |||∂
∂
Fk(G(x, y), y)|||2.

This completes the induction. As a particular case for k = K, we note that

FK(G(x, y), y) = F (G(x, y), y) = x,

and equation (C.33) for k = K gives

0 = KηJxyiG(x, y)

− η2

K−1∑

j=1

(K− j)
{
∇3fFj(G(x,y),y)

(
∂Fj(G(x, y), y)

∂yi
, Id, Id

)
∂

∂x
Fj(G(x, y), y)

+∇2fFj(G(x,y),y)
∂∂

∂x∂yi
Fj(G(x, y), y)

}
.

Using the bound in equation (C.34), we have

Kη

∥∥∥∥∥
d∑

i=1

αiJxyiG(x, y)JxG(x, y)−1

∥∥∥∥∥
2

≤ ‖α‖2 K
3η3LH +

1

2
Kη

∥∥∥∥∥
d∑

i=1

αiJxyiG(x, y)JxG(x, y)−1

∥∥∥∥∥
2

.

Hence, we obtain

trace

(
d∑

i=1

αiJxyiG(x, y)JxG(x, y)−1

)
≤ 2d ‖α‖2 K

2η2LH .

This is valid for any α ∈ Rd, as a consequence, we have
∥∥∥∥∥∥∥




trace ([JxG(x,q0)]−1Jxy1G(x,q0))
...

trace ([JxG(x, q0)]−1JxydG(x,q0))




∥∥∥∥∥∥∥
2

≤ 2dK2η2LH .

This concludes the proof of Lemma C.3.

C.1.6 Proof of Lemma C.4

We first show equation (C.5b) by induction. Then equation (C.5a) is a direct consequence
of equation (C.5b) by summing k terms together.

Case k = 0: We first examine the case k = 0. According to the definition of Fk in
equation (C.1b), we have

F1(p0,q0) = q0 + ηp0 −
η2

2
∇f(q0).

Then the case k = 0 is verified automatically via triangle inequality,

‖F1(p0,q0)− q0‖2 ≤ η ‖p0‖2 +
η2

2
‖∇f(q0)‖2 .
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Case k to k+ 1: Assume that the statement is verified until k ≥ 0. For k+ 1, using Fj as
the shorthand for Fj(p0,q0), we obtain

Fk+2 − Fk+1

=ηp0 −
η2

2
∇f(q0)− η2

k+1∑

j=1

∇f(Fj).

Taking the norm, we have

‖Fk+2 − Fk+1‖2 ≤ η ‖p0‖2 +
(2k + 3)η2

2
‖∇f(q0)‖2 + η2

k+1∑

j=1

‖∇f(Fj)−∇f(q0)‖2

(i)

≤ η ‖p0‖2 +
(2k + 3)η2

2
‖∇f(q0)‖2 + η2

k+1∑

j=1

j∑

l=0

‖∇f(Fl+1)−∇f(Fl)‖2

(ii)

≤ η ‖p0‖2 +
(2k + 3)η2

2
‖∇f(q0)‖2 + η2L

k+1∑

j=1

j∑

l=0

‖Fl+1 − Fl‖2

(iii)

≤ η ‖p0‖2 +
(2k + 3)η2

2
‖∇f(q0)‖2 + η2L

k+1∑

j=1

j∑

l=0

(
2η ‖p‖2 + 2(l + 1)η2 ‖∇f(q0)‖2

)

(iv)

≤ 2η ‖p0‖2 + (2k + 2)η2 ‖∇f(q0)‖2 .

Inequality (i) uses triangular inequality. Inequality (ii) uses L-smoothness. Inequality (iii)
applies the hypothesis of the induction and inequalities relies on the condition K2η2 ≤ 1

4L
.

This completes the induction.

C.2 Proof of Corollary 5.1

Before proving Corollary 5.1, we first state a more general corollary of Theorem 5.1 that
does not specify the explicit choice of step size η and leapfrog steps K. Then we specify two
choices of the initial distribution µ0 and hyper-parameters (K, η) to obtain part (a) and part
(b) of Corollary 5.1.

Corollary C.1. Consider an (L,LH ,m)-strongly log-concave target distribution Π? (cf.
Assumption (5B)). Fix s = δ2

2β
. Then the 1

2
-lazy HMC algorithm with initial distribution

µ? = N (x∗, 1
L
Id), step size η and leapfrog steps K chosen under the condition

η2 ≤ 1

cL
min

{
1

K2d
1
2

,
1

K2d
2
3

L

L
2
3
H

,
1

Kd
1
2

,
1

K
2
3d

2
3κ

1
3a(s)

2
3

,

1

Kd
1
2κ

1
2a(s)

,
1

K
2
3d

L

L
2
3
H

,
1

K
4
3d

1
2κ

1
2a(s)

(
L

L
2
3
H

) 1
2 }

(C.35)
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satisfies the mixing time bounds

τHMC
2 (δ;µ0) ≤ c ·max

{
log β,

1

K2η2m
log

(
d log κ

δ

)}
.

Proof of part (a) in Corollary 5.1: Taking the hyper-parameters K = d
1
4 and η = ηwarm

in equation (5.7b), we verify that η satisfies the condition (C.35). Given the warmness

parameter β = O
(

exp
(
d

2
3κ
))

, we have

1

K2η2m
≥ log(β).

Plugging in the choice of K and η into Corollary C.1, we obtain the desired result.

Proof of part (b) in Corollary 5.1: We notice that the initial distribution µ? =
N (x?, 1

L
Id) is κd/2-warm (see Corollary 1 in [78]). It is sufficient to plug in the hyper-

parameters K = κ
3
4 and η = ηfeasible into Corollary C.1 to obtain the desired result.

Now we turn back to prove Corollary C.1. In order to prove Corollary C.1, we require
the the following lemma, which relates a (L,LH ,m)-strongly-logconcave target distribution
to a regular target distribution.

Lemma C.5. An (L,LH ,m)-strongly log-concave distribution is (L,LH , s, ψ 1
2
,M)-regular

with high mass set Ω = Rs, log-isoperimetric constant ψ 1
2

= m−
1
2 and M = L

(
d
m

) 1
2 a(s),

where the radius is defined in equation (5.7a) and the convex measurable set Rs defined in
equation (5.18).

Taking Lemma C.5 as given, Corollary C.1 is a direct consequence of Theorem 5.1 by
plugging the specific values of (Ω, ψ 1

2
,M) as a function of strong convexity parameter m. We

now proceed to prove Lemma C.5.

C.2.1 Proof of Lemma C.5

First, we set Ω to Rs as defined in equation (5.18). Lemma Lemma 3.3 implies that this ball
has probability under the target distribution lower bounded as Π?(Rs) ≥ 1− s. Second, the
gradient bound is a consequence of the bounded domain. For any x ∈ Rs, we have

‖∇f(x)‖2 = ‖∇f(x)−∇f(x?)‖2 ≤ L ‖x− x?‖2 ≤ L

(
d

m

) 1
2

a(s). (C.36)

Third, we make use of a logarithmic isoperimetric inequality for log-concave distribution. We
note that the logarithmic isoperimetric inequality has been introduced in Kannan et al. [136]
for the uniform distribution on convex body and in Lee and Vempala [158] for log-concave
distribution with a diameter. We extend this inequality to strongly log-concave distribution
on Rd following a similar road-map and provide explicit constants.
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Improved logarithmic isoperimetric inequality We now state the improved logarith-
mic isoperimetric inequality for strongly log-concave distributions.

Lemma C.6. Let γ denote the density of the standard Gaussian distribution N (0, σ2Id),
and let Π? be a distribution with density π? = q · γ, where q is a log-concave function. Then
for any partition S1,S2,S3 of Rd, we have

Π?(S3) ≥ d(S1,S2)

2σ
min {Π?(S1),Π?(S2)} log

1
2

(
1 +

1

min {Π?(S1),Π?(S2)}

)
. (C.37)

See Appendix C.2.2 for the proof.

Taking Lemma C.6 as given for the moment, we turn to prove the logarithmic isoperi-
metric inequality for the Ω-restricted distribution Π?

Ω with density

π?Ω(x) =
π?(x)1Ω(x)

Π?(Ω)
.

Since f is m-strongly convex, the function x→ f(x)−m
2
‖x− x?‖2

2 is convex. Noting that the
class of log-concave function is closed under multiplication and that the indicator function
1Ω is log-concave, we conclude that the restricted density π?Ω can be expressed as a product
of a log-concave density and the density of the Gaussian distribution N (x?, 1

m
Id). Applying

Lemma C.6 with σ =
(

1
m

) 1
2 , we obtain the desired logarithmic isoperimetric inequality with

ψ 1
2

=
(

1
m

) 1
2 , which concludes the proof of Lemma C.5.

C.2.2 Proof of Lemma C.6

The main tool for proving general isoperimetric inequalities is the localization lemma in-
troduced by Lovász and Simonovits [167]. Similar result for the infinitesimal version of
equation (C.37) have appeared as Theorem 1.1 in the paper [150] and Theorem 30 in the
paper [158]. Intuitively, the localization lemma reduces a high-dimensional isoperimetric
inequality to a one-dimensional inequality which is much easier to verify directly. In a few
key steps, the proof follows a similar road map as the proof of logarithmic Cheeger inequal-
ity [136].

We first state an additional lemma that comes in handy for the proof.

Lemma C.7. Let γ be the density of the one-dimensional Gaussian distribution N (ν, σ2)
with mean ν and variance σ2. Let % be a one-dimensional distribution with density given by
% = q · γ, where q is a log-concave function supported on [0, 1]. Let J1, J2, J3 partition [0, 1],
then

%(J3) ≥ d(J1, J2)

2σ
min {%(J1), %(J2)} log

1
2

(
1 +

1

min {%(J1), %(J2)}

)
. (C.38)
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See Appendix C.2.3 for the proof.

We now turn to proving Lemma C.6 via contradiction: We assume that the claim (C.37) is
not true for some partition, and then using well known localization techniques, we construct
a one-dimensional distribution that violates Lemma C.7 resulting in a contradiction.

Suppose that there exists a partition S1,S2,S3 of Rd, such that

Π?(S3) <
d(S1,S2)

2σ
min {Π?(S1),Π?(S2)} log

1
2

(
1 +

1

min {Π?(S1),Π?(S2)}

)
. (C.39)

Let ν > 0 denote a sufficiently small number (to be specified exactly later), such that
ν < min {Π?(S1),Π?(S2)}.

We now explain the construction of the one-dimensional density that is crucial for the
rest of the argument. We define two functions g : X → R and H : X → R as follows

g(x) =
π?(x) · 1S1(x)

Π?(S1)− ν − π
?(x) and H(x) =

π?(x) · 1S2(x)

Π?(S2)− ν − π
?(x).

Clearly, we have

∫

X
g(x)dx > 0 and

∫

X
H(x)dx > 0.

By the localization lemma (Lemma 2.5 in the paper [167]; see the corrected form stated as
Lemma 2.1 in the paper [137]), there exist two points a ∈ Rd, b ∈ Rd and a linear function
l : [0, 1]→ R+, such that

∫ 1

0

l(t)d−1g ((1− t)a+ tb) dt > 0 and

∫ 1

0

l(t)d−1h ((1− t)a+ tb) dt > 0. (C.40)

Define the one-dimensional density % : [0, 1]→ R+ and the sets Ji, i ∈ {1, 2, 3} as follows:

%(t) =
l(t)d−1π? ((1− t)a+ tb)∫ 1

0
l(u)d−1π? ((1− u)a+ ub) du

, and (C.41)

Ji = {t ∈ [0, 1] | (1− t)a+ tb ∈ Si} for i ∈ {1, 2, 3} . (C.42)

We now show how the hypothesis (C.39) leads to a contradiction for the density %.
Plugging in the definiton of g and H into equation (C.40), we find that

%(J1) > Π?(S1)− ν and %(J2) > Π?(S2)− ν.

Since J1, J2, J3 partition [0, 1], it follows that

%(J3) < Π?(S3) + 2ν.
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Since the function x 7→ x log
1
2 (1 + 1/x) is monotonically increasing on [0, 1], we have

d(S1,S2)

2σ
min {%(J1), %(J2)} log

1
2

(
1 +

1

min {%(J1), %(J2)}

)
− %(J3)

≥ d(S1,S2)

2σ
min {(%(S1)− ν) , (%(S2)− ν)} ·

log
1
2

(
1 +

1

min {(%(S1)− ν) , (%(S2)− ν)}

)
− (%(S3) + 2ν)

The hypothesis (C.39) of the contradiction implies that we can find ν sufficiently small such
that the RHS in the inequality above will be strictly positive. Consequently, we obtain

d(S1,S2)

2σ
min {%(J1), %(J2)} log

1
2

(
1 +

1

min {%(J1), %(J2)}

)
> %(J3). (C.43)

Additionally, for t1 ∈ J1, t2 ∈ J2, we have (1− t1)a+ t1b ∈ S1 and (1− t2)a+ t2b ∈ S2. As a
result, we have

|t1 − t2| =
1

‖b− a‖2

‖[(1− t1)a+ t1b]− [(1− t2)a+ t2b]‖2 ≥
1

‖b− a‖2

d(S1,S2),

which implies that

d(J1, J2) ≥ 1

‖b− a‖2

d(S1,S2). (C.44)

Combining equations (C.43) and (C.44), we obtain that

‖b− a‖2 · d(J1, J2)

2σ
min {%(J1), %(J2)} log

1
2

(
1 +

1

min {%(J1), %(J2)}

)
> %(J3), (C.45)

which contradicts Lemma C.7. Indeed, this contradiction is immediate once we note that
the new density % can also be written as a product of log-concave density and a Gaussian
density with variance σ2

‖b−a‖22
.

C.2.3 Proof of Lemma C.7

We split the proof into three cases. Each one is more general than the previous one. First,
we consider the case when q is a constant function on [0, 1] and the sets J1, J2, J3 are all
intervals. In the second case, we consider a general log-concave q supported on [0, 1] while
we still assume that the sets J1, J2, J3 are all intervals. Finally, in the most general case,
we consider a general log-concave q supported on [0, 1] and J1, J2, J3 consist of an arbitrary
partition of [0, 1]. The proof idea follows roughly that of Theorem 4.6 in Kannan et al. [136].

Our proof makes use of the Gaussian isoperimetric inequality which we now state (see
e.g., equation (1.2) in [22]): Let Γ denote the standard univariate Gaussian distribution and
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let ψΓ and Ψ−1
Γ denote its density and inverse cumulative distribution function respectively.

Given a measurable set S ⊂ R, define its Γ-perimeter Γ+(S) as

Γ+(S) = lim infh→0+

Γ(S + h)− Γ(S)

h
,

where S+h = {t ∈ R | ∃a ∈ S, |t− a| < h} denotes an h-neighborhood of S. Then, we have

Γ+(S) ≥ ψΓ(Ψ−1
Γ (Γ(S))), (C.46)

where Γ(S) denotes the Gaussian measure of the set S. Furthermore, standard Gaussian
tail bounds1 estimate imply that

ψΓ(Ψ−1
Γ (t)) ≥ 1

2
t log

1
2

(
1 +

1

t

)
, for t ∈ (0,

1

2
]. (C.47)

Case 1: First, we consider the case when the function q is constant on [0, 1] and all of the
sets J1, J2, J3 are intervals. Without loss of generality, we can shift and scale the density
function by changing the domain, and assume that the density % is of the form %(t) ∝
e−

t2

2 1[a,d]. Additionally, we can assume that J1, J2, J3 are of the form

J1 = [a, b), J3 = [b, c], and J2 = (c, d], (C.48)

because the case when J3 is not in the middle is a trivial case.
Applying the inequalities (C.46) and (C.47) with A = J2 = (c, d], we obtain that

ψΓ(c) = Γ+(J2) ≥ ψΓ(Ψ−1
Γ (Γ(J2))) ≥ Γ(J2)

2
log

1
2

(
1 +

1

Γ(J2)

)
, (C.49)

Note that %(t) = ψΓ(t)
ΨΓ(d)−ΨΓ(a)

1[a,d](t) and %(J2) = Γ(J2)
ΨΓ(d)−ΨΓ(a)

. We have

%(J3) =

∫ c

b

%(t)dt ≥ (c− b) · %(c) = (c− b) ψΓ(c)

ΨΓ(d)−ΨΓ(a)
(i)

≥ (c− b)
2

Γ(J2)

ΨΓ(d)−ΨΓ(a)
log

1
2

(
1 +

1

Γ(J2)

)

(ii)

≥ c− b
2

%(J2) log
1
2

(
1 +

ΨΓ(d)−ΨΓ(a)

Γ(J2)

)

(iii)
=

c− b
2

%(J2) log
1
2

(
1 +

1

%(J2)

)

(iv)

≥ c− b
2

min {%(J1), %(J2)} log
1
2

(
1 +

1

min {%(J1), %(J2)}

)
,

1E.g., see the discussion before equation 1 in the paper [13]. The constant 1/2 was estimated by plotting
the continuous function on the left hand side via Mathematica.
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where step (i) follows from the bound (C.49) and step (ii) follows from the relationship be-
tween % and Γ and the facts that log is an increasing function and that ΨΓ(d)−ΨΓ(a) ≤ 1.
Step (iii) follows from the definition of % and finally step (iv) follows from the increasing
nature of the map t 7→ t log1/2

(
1 + 1

t

)
. This concludes the argument for Case 1.

Case 2: We now consider the case when q is a general log-concave function on [0, 1] and
J1, J2, J3 are all intervals. Again we can assume that J1, J2, J3 are of the form (C.48), i.e.,
they are given by J1 = [a, b), J3 = [b, c], and J2 = (c, d].

We consider a function h(t) = αeβt−
t2

2σ2 such that h(b) = q(b) and h(c) = q(c).2 Define
Q(t1, t2) =

∫ t2
t1
q(t)dt and H(t1, t2) =

∫ t2
t1
h(t)dt. Then since q has an extra log-concave

component compared to h, we have

H(a, b) ≥ Q(a, b), H(c, d) ≥ Q(c, d), but H(b, c) ≤ Q(b, c). (C.50)

Using the individual bounds in equation (C.50), we have

H(a, b)

H(b, c)
+
H(c, d)

H(b, c)
≥ Q(a, b)

Q(b, c)
+
Q(c, d)

Q(b, c)
.

From the equation above and the fact that H(a, b) +H(b, c) +H(c, d) = H(a, d), we obtain

H(b, c)

H(a, d)
≤ Q(b, c)

Q(a, d)
. (C.51)

To prove the inequality in Case 2, here are two subcases depending on whether H(a, d) ≥
Q(a, d) or H(a, d) < Q(a, d).

• If H(a, d) ≥ Q(a, d), then

Q(b, c)

Q(a, d)

(i)

≥ H(b, c)

Q(a, d)
(ii)

≥ c− b
2
· H(a, d)

Q(a, d)
· min(H(a, b), H(c, d))

H(a, d)
· log

1
2

(
1 +

H(a, d)

min(H(a, b), H(c, d))

)

(iii)

≥ c− b
2
· H(a, d)

Q(a, d)
· min(Q(a, b), Q(c, d))

H(a, d)
· log

1
2

(
1 +

H(a, d)

min(Q(a, b), Q(c, d))

)

(iv)

≥ c− b
2
· min(Q(a, b), Q(c, d))

Q(a, d)
· log

1
2

(
1 +

Q(a, d)

min(Q(a, b), Q(c, d))

)
.

Inequality (i) follows from equation (C.50); inequality (ii) follows from equation Case
1 because H is covered by Case 1; inequality (iii) uses the fact that the function

t 7→ t log
1
2

(
1 + 1

t

)
is increasing; inequality (iv) follows from the assumption in this

subcase H(a, d) ≥ Q(a, d).
2This idea of introducing exponential function appeared in Corollary 6.2 of Kannan et al. [136].
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• Otherwise H(a, d) < Q(a, d), then we have from equation (C.50)

H(a, b)

H(a, d)
≥ Q(a, b)

Q(a, d)
,

H(c, d)

Q(a, d)
≥ Q(c, d)

Q(a, d)
.

Q(b, c)

Q(a, d)

(i)

≥ H(b, c)

H(a, d)
(ii)

≥ c− b
2
· min(H(a, b), H(c, d))

H(a, d)
· log

1
2

(
1 +

H(a, d)

min(H(a, b), H(c, d))

)

(iii)

≥ c− b
2
· min(Q(a, b), Q(c, d))

Q(a, d)
· log

1
2

(
1 +

Q(a, d)

min(Q(a, b), Q(c, d))

)
.

Inequality (i) follows from equation (C.51); inequality (ii) follows from equation Case

1; inequality (iii) uses the fact that the function t 7→ t log
1
2

(
1 + 1

t

)
is increasing.

In both subcases above, we conclude Case 2 using the results established in Case 1.

Case 3: Finally, we deal with the general case where J1, J2, J3 each can be union of intervals
and q is a general log-concave function on [0, 1]. We show that this case can be reduced to
the case of three intervals, namely, the previous case.

Let {(bi, ci)}i∈I be all non-empty maximal intervals contained in J3. Here the intervals
can be either closed, open or half. That is, (·, ·) can be [·, ·], ]·, ·[, [·, ·[ or ]·, ·]. For an interval
(bi, ci), we define its left surround LS((bi, ci)) as

LS((bi, ci)) =





2, if ∃x2 ∈ J2, (x2 ≤ bi) and (@x1 ∈ J1, x2 < x1 ≤ bi)

1, if ∃x1 ∈ J1, (x1 ≤ bi) and (@x2 ∈ J2, x1 < x2 ≤ bi)

0, otherwise .

Similarly, we define RS((bi, ci)) as

RS((bi, ci)) =





2, if ∃x2 ∈ J2, (x2 ≥ ci) and (@x1 ∈ J1, x2 > x1 ≥ ci)

1, if ∃x1 ∈ J1, (x1 ≥ ci) and (@x2 ∈ J2, x1 > x2 ≥ ci)

0, otherwise .

We distinguish two types of intervals. Denote G2 ⊂ I the set containing the indices of all
intervals that are surrounded by either 1 or 2 but different.

G2 := {i ∈ I | (LS((bi, ci)), RS((bi, ci))) = (1, 2) or (2, 1)} .
Denote G1 := I \ G2 to be its complement. By the result settled in case 2, for i ∈ G2, we
have

%([bi, ci]) ≥
d(J1, J2)

2σ
%(Ii) log

1
2

(
1 +

1

%(Ii)

)
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where Ii is either [a, bi] or [ci, d]. Summing over all i ∈ G2, we have

%(J3) ≥
∑

i∈G2

%([bi, ci]) ≥
d(J1, J2)

2σ

∑

i∈G2

%(Ii) log
1
2

(
1 +

1

%(Ii)

)

≥ d(J1, J2)

2σ
%(∪i∈G2Ii) log

1
2

(
1 +

1

%(∪i∈G2Ii)

)
. (C.52)

The last inequality follows from the sub-additivity of the map: x 7→ x log
1
2 (1 + x), i.e., for

x > 0 and y > 0, we have

x log
1
2

(
1 +

1

x

)
+ y log

1
2

(
1 +

1

y

)
≥ (x+ y) log

1
2

(
1 +

1

x+ y

)
.

Indeed the sub-additivity follows immediately from the following observation:

x log
1
2

(
1 +

1

x

)
+ y log

1
2

(
1 +

1

y

)
− (x+ y) log

1
2

(
1 +

1

x+ y

)

= x

[
log

1
2

(
1 +

1

x

)
− log

1
2

(
1 +

1

x+ y

)]
+ y

[
log

1
2

(
1 +

1

y

)
− log

1
2

(
1 +

1

x+ y

)]

≥ 0.

Finally, we remark that either J1 or J2 is a subset of ∪i∈G2Ii. If not, there exists u ∈ J1 \
∪i∈G2Ii and v ∈ J2 \∪i∈G2Ii, such that u and v are separated by some inverval (bi∗ , ci∗) ⊂ J3

with i∗ ∈ G2. This is contradictory with the fact that either u or v must be included in Ii∗ .

Given equation (C.52), we use the fact that the function x 7→ x log
1
2

(
1 + 1

x

)
is monotonically

increasing:

%(J3) ≥ d(J1, J2)

2σ
min {%(J1), %(J2)} log

1
2

(
1 +

1

min {%(J1), %(J2)}

)

to conclude the proof.

C.3 Optimal choice for HMC hyper-parameters

In this section, we provide a detailed discussion about the optimal leapfrog steps choice for
Metropolized HMC with strongly log-concave target distribution (Corollary 5.1). We also
discuss a few improved convergence rates for Metropolized HMC under additional assump-
tions on the target distribution. Finally, we compare our results for Metropolized HMC with
other versions of HMC namely unadjusted HMC and ODE-solved based HMC in Subsec-
tion C.3.2.
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C.3.1 Optimal choices for Corollary C.1

Corollary C.1 provides an implicit condition that the step size η and leapfrog steps K should
satisfy and provides a generic mixing time upper bound that depends on the choices made.
We claim that the optimal choices of η and K according to Table C.1 lead to the following
upper bound on number of gradient evaluations required by HMC to mix to δ-tolerance:

K · τHMC
TV (δ;µ0) ≤ O

(
max

{
dκ

3
4 , d

11
12κ, d

3
4κ

5
4 , d

1
2κ

3
2

}
· log

1

δ

)
. (C.53)

This (upper) bound shows that HMC always requires fewer gradient evaluations when com-
pared to MALA for mixing in total variation distance. However, such a bound requires a
delicate choice of the leap frog steps K and η depending on the condition number κ and the
dimension d, which might be difficult to implement in practice. We summarize these optimal
choices in Table C.1.

Case K η2

κ ∈ (0, d
1
3 ) κ

3
4

1

cL
· d−1κ−

1
2

κ ∈ [d
1
3 , d

2
3 ] d

1
4

1

cL
· d− 7

6

κ ∈ (d
2
3 , d] d

3
4κ−

3
4

1

cL
· d− 3

2κ
1
2

κ ∈ (d,∞) 1
1

cL
· d− 1

2κ−
1
2

Table C.1: Optimal choices of leapfrog steps K and the step size η for the HMC algorithm
for an (m,L,LH)-regular target distribution such that LH = O(L

3
2 ) used for the mixing

time bounds in Corollary C.1. Here c denotes a universal constant.

Proof of claim (C.53): Recall that under the condition (C.35) (restated for reader’s con-
venience)

η2 ≤ 1

cL
min





1

K2d
1
2

,
1

K2d
2
3

L

L
2
3
H

,
1

Kd
1
2

,
1

K
2
3d

2
3κ

1
3a(s)

2
3

,
1

Kd
1
2κ

1
2a(s)

,
1

K
2
3d

L

L
2
3
H

,
1

K
4
3d

1
2κ

1
2a(s)

(
L

L
2
3
H

) 1
2



 ,

Corollary 5.1 guarantees that the HMC mixing time for the κ
d
2 -warm initialization µ? =

N (x?,L−1Id), is

τHMC
2 (δ;µ0) = O

(
d+

κ

K2η2L

)
,
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where we have ignored logarithmic factors. In order to compare with MALA and other
sampling methods, our goal is to optimize the number of gradient evaluations Geval taken by
HMC to mix:

Geval := K · τHMC
TV (δ;µ0) = O

(
Kd+

κ

Kη2L

)
. (C.54)

Plugging in the condition on η stated above, we obtain

Geval ≤ max

{
Kd︸︷︷︸
=:T1

, Kmax
(
d

1
2κ, d

2
3κϑ

)

︸ ︷︷ ︸
=:T2

, d
1
2κ

3
2︸ ︷︷ ︸

=:T3

, K−
1
3d

2
3κ

4
3︸ ︷︷ ︸

=:T4

, K−
1
3dκ · ϑ︸ ︷︷ ︸
=:T5

, K
1
3d

1
2κ

3
2 · ϑ 1

2︸ ︷︷ ︸
=:T6

}

(C.55)

where ϑ = L
2
3
H/L. Note that this bound depends only on the relation between d, κ and the

choice of K. We now summarize the source of all of these terms in our proofs:

• T1: This term is attributed to the warmness of the initial distribution. The distribution
µ? isO(κd)-warm. This term could be improved if we have a warmer initial distribution.

• T2: This term appears in the proposal overlap bound from equation (5.16a) of Lemma 5.1
and more precisely, it comes from equation (C.6).

• T3, T4, T5 and T6: These terms pop-out from the accept-reject bound from equa-
tion (5.16b) of Lemma 5.1. More precisely, T3 and T4 are a consequence of the first three
terms in equation (C.22), and T5 and T6 arise the last two terms in equation (C.22).

In Table C.2, we summarize how these six terms can be traded-off to derive the optimal
parameter choices for Corollary C.1. The effective bound on Geval-the number of gradient
evaluations required by HMC to mix, is given by the largest of the six terms.
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κ versus d optimal choice K T1 T2 T3 T4 T5 T6

Kd Kd
2
3κ d

1
2κ

3
2 K−

1
3d

2
3κ

4
3 K−

1
3dκ K

1
3d

1
2κ

3
2

κ ∈ [1, d
1
3 ) K = κ

3
4 dκ

3
4 d

2
3κ

7
4 d

1
2κ

3
2 d

2
3κ

13
12 dκ

3
4 d

1
2κ

7
4

κ ∈ [d
1
3 , d

2
3 ] K = d

1
4 d

5
4 d

11
12κ d

1
2κ

3
2 d

7
12κ

4
3 d

11
12κ d

7
12κ

3
2

κ ∈ (d
2
3 , d] K = d

3
4κ−

3
4 d

7
4κ−

3
4 d

19
12κ

1
4 d

1
2κ

3
2 d

5
12κ

19
12 d

3
4κ

5
4 d

3
4κ

5
4

κ ∈ (d,∞] K = 1 d d
2
3κ d

1
2κ

3
2 d

2
3κ

4
3 dκ d

1
2κ

3
2

Table C.2: Trade-off between the six terms Ti, i = 1, . . . 6, from the bound (C.55) under the

assumption ϑ = L
2/3
H /L ≤ 1. In the second column, we provide the optimal choice of K for

the condition on κ stated in first column such that the maximum of the Ti’s is smallest. For
each row the dominant (maximum) term, and equivalently the effective bound on Geval is
displayed in bold (red).

C.3.1.1 Faster mixing time bounds

We now derive several mixing time bounds under additional assumptions: (a) when a warm
start is available, and (b) the Hessian-Lipschitz constant is small.

Faster mixing time with warm start: When a better initialization with warmness

β ≤ O(ed
2
3 κ) is available, and suppose that κ is much smaller than d. In such a case, the op-

timal choice turns out to be K = d
1
4 (instead of κ

3
4 ) which implies a bound ofO

(
d

11
12κ log

(
1
δ

))

on Geval (this bound was also stated in Table 5.1).

Faster mixing time with small LH: Suppose in addition to warmness being not too

large, β ≤ O(ed
2
3 κ), the Hessian-Lipschitz constant LH is small enough L

2
3
H � L. In such

a scenario, the terms T5 and T6 become negligible because of small LH and T1 is negligible
because of small β. The terms T3 and T4 remain unchanged, and the term T2 changes

slightly. More precisely, for the case L
2
3
H ≤ L

d
1
2 κ

1
2

we obtain a slightly modified trade-off

for the terms in the (C.55) for Geval (summarized in Table C.3). If κ is small too, then

we obtain a mixing time bound of order d
5
8 . Via this artificially constructed example, we

wanted to demonstrate two things. First, faster convergence rates are possible to derive
under additional assumptions directly from our results. Suitable adaptation of our proof
techniques might provide a faster rate of mixing for Metropolized HMC under additional
assumptions like infinity semi-norm regularity condition made in other works [176] (but we
leave a detailed derivation for future work). Second, it also demonstrates the looseness of our
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proof techniques since we were unable to recover an O(1) mixing time bound for sampling
from a Gaussian target.

κ versus d K optimal choice T1 T2 T3 T4 T5 T6

- Kd
1
2κ d

1
2κ

3
2 K−

1
3d

2
3κ

4
3 - -

κ ∈ (0, d
1
2 ) K = d

1
8κ

1
4 - d

5
8κ

5
4 d

1
2κ

3
2 d

5
8κ

5
4 - -

Table C.3: Six terms in the HMC number of gradient evaluations bound under small hessian-
Lipschitz constant and very warm start. The dominant term is highlighted in red.

Linearly transformed HMC (effect of mass function): In practice, it is often bene-
ficial to apply linear transformations in HMC (cf. Section 4 [190]). At a high level, such a
transformation can improve the conditioning of the problem and help HMC mix faster. For
the target distribution Π? with density proportional to e−f , we can define a new distribution
Πh with density e−h (up to normalization) such that h(x) = f(M− 1

2x) where M ∈ Rd×d is an

invertible matrix. Then for a random sample q̃ ∼ Πh, the distribution of M
1
2 q̃ is Π?. When

the new distribution h has a better condition number κh than the condition number κ of
f , we can use HMC to draw approximate sample from Πh and then transform the samples
using the matrix M . Clearly the bound from Corollary C.1 guarantees that when κh is much
smaller than κ, HMC on the new target Πh would mix much faster than the HMC chain on
Π?. This transformation is equivalent to the HMC algorithm with modified kinetic energy

dqt
dt

= M−1pt and
dpt
dt

= −∇f(qt),

which is easier to implement in practice. For a detailed discussion of this implementation,
we refer the readers to the paper by Neal [190].

C.3.2 Comparison with guarantees for unadjusted versions of
HMC

In this appendix, we compare our results with mixing time guarantees results on unadjusted
and ODE solver based HMC chains. We summarize the number of gradient evaluations
needed for Metropolized HMC to mix and those for other existing sampling results in Ta-
ble C.4. Note that all the results summarized here are the best upper bounds in the literature
for log-concave sampling. We present the results for a (L,LH ,m)-regular target distribution.
We remark that all methods presented in Table C.4 requires the regularity assumptions (3.5a)
and (3.5b), even though some do not require assumption (5.5).
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Sampling algorithm #Gradient evaluations

‡,�Unadjusted HMC with
leapfrog integrator [176]

d
1
4κ

11
4 · 1

δ1/2

‡Underdamped Langevin [52] d
1
2κ2 · 1

δ

‡HMC with ODE solver, Thm. 1.6 in [153] d
1
2κ

7
4 · 1

δ

?MALA [Thm. 3.1] max
{
dκ, d

1
2κ

3
2

}
· log 1

δ

?Metropolized HMC with
leapfrog integrator [Cor. 5.1]

max
{
dκ

3
4 , d

11
12κ, d

3
4κ

5
4 , d

1
2κ

3
2

}
· log 1

δ

Table C.4: Summary of the number of gradient evaluations needed for the sampling algo-
rithms to converge to a (m,L,LH)-regular target distribution with LH = O(L

3
2 ) within δ

error from the target distribution (in total-variation distance? or 1-Wasserstein distance‡)
(and � certain additional regularity conditions for the result by Mangoubi et al. [176]). Note
that the unadjusted algorithms suffer from an exponentially worse dependency on δ when
compared to the Metropolis adjusted chains.

Two remarks are in order. First, the error metric for the guarantees in the works [176,
52, 153] is 1-Wasserstein distance, while our results make use of L2 or TV distance. As
a result, a direct comparison between these results is not possible although we provide an
indirect comparison below. Second, the previous guarantees have a polynomial dependence
on the inverse of error-tolerance 1/δ. In contrast, our results for MALA and Metropolized
HMC have a logarithmic dependence log(1/δ). For a well-conditioned target, i.e., when κ is
a constant, all prior results have a better dependence on d when compared to our bounds.

Logarithmic vs polynomial dependence on 1/δ: We now provide an indirect compar-
ison, between prior guarantees based on Wasserstein distance and our results based on TV-
distance, for estimating expectations of Lipschitz-functions on bounded domains. MCMC
algorithms are used to estimate expectations of certain functions of interest. Given an arbi-
trary function g and an MCMC algorithm, one of the ways to estimate Π?(g) := EX∼Π? [g(X)]

is to use the k-th iterate from N independent runs of the chain. Let X
(k)
i for i = 1, . . . , N

denote the N i.i.d. samples at the k-th iteration of the chain and let µk denote the distribu-
tion of X

(k)
i , namely the distribution of the chain after k iterations. Then for the estimate
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Π̂k(g) := 1
N

∑N
i=1 g(X

(k)
i ), the estimation error can be decomposed as

Π?(g)− Π̂k(g) =

∫

Rd
g(x)π?(x)dx− 1

N

N∑

i=1

g(X
(k)
i )

=

∫

Rd
g(x) [π?(x)− µk(x)] dx

︸ ︷︷ ︸
=:J1 (Approximation bias)

+Eµk [g(X)]− 1

N

N∑

i=1

g(X
(k)
i )

︸ ︷︷ ︸
=:J2 (Finite sample error)

. (C.56)

To compare different prior works, we assume that Varµk [g(X1)] is bounded and thereby that
the finite sample error J2 is negligible for large enough N .3 It remains to bound the error
J1 which can be done in two different ways depending on the error-metric used to provide
mixing time guarantees for the Markov chain.

If the function g is ω-Lipschitz and k is chosen such that W1(Π?, µk) ≤ δ, then we have
J1 ≤ ωδ =: JWass. On the other hand, if the function g is bounded by B, and k is chosen such
that dTV

(
Π?, µk

)
≤ δ, then we obtain the bound J1 ≤ Bδ =: JTV. We make use of these two

facts to compare the number of gradient evaluations needed by unadjusted HMC or ODE
solved based HMC and Metropolized HMC. Consider an ω-Lipschitz function g with support
on a ball of radius R. Note that this function is uniformly bounded by B = ωR. Now in
order to to ensure that J1 ≤ δ (some user-specified small threshold), the choice of δ in the
two cases (Wasserstein and TV distance) would be different leading to different number of
gradient evaluations required by the two chains. More precisely, we have

J1 ≤ JWass = ωδ ≤ δ =⇒ δwass =
δ

ω
and

J1 ≤ JTV = Bδ = ωRδ ≤ δ =⇒ δTV =
δ

ωR
.

To simplify the discussion, we consider well-conditioned (constant κ) strongly log-concave
distributions such that most of the mass is concentrated on a ball of radius O(

√
d) (cf.

Appendix C.2.1) and consider R =
√
d. Then plugging the error-tolerances from the display

above in Table C.4, we obtain that the number of gradient evaluations GMC for different
chains4 would scale as

Gunadj.-HMC ≤ O(

√
dω

δ
), GODE-HMC ≤ O(

ω
√
d

δ
), and GMetro.-HMC ≤ O(d log

ω
√
d

δ
)

Clearly, depending on ω and the threshold δ, different chains would have better guarantees.
When ω is large or δ is small, our results ensure the superiority of Metropolized-HMC

3Moreover, this error should be usually similar across different sampling algorithms since several algo-
rithms are designed in a manner agnostic to a particular function g.

4The results for other HMCs often assume (different) additional conditions so that a direct comparison
should be taken with a fine grain of salt.
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over other versions. For example, higher-order moments can be functions of interest, i.e.,
g(x) = ‖x‖1+ν for which the Lipschitz-constant ω = O(dν) scales with d. For this function,
we obtain the bounds:

Gunadj.-HMC ≤ O(
d

1+ν
2√
δ

), GODE-HMC ≤ O(
d

1
2

+ν

δ
), and GMetro.-HMC ≤ O(d(1 + ν) log

d

δ
)

and thus Metropolized HMC takes fewer gradient evaluations than ODE-based HMC for ν >
1/2 and unadjusted HMC for ν > 1 (to ensure J1 ≤ δ (C.56)). We remark that the bounds for
unadjusted-HMC require additional regularity conditions. From this informal comparison,
we demonstrate that both the dimension dependency d and error dependency δ should be
accounted for comparing unadjusted algorithms and Metropolized algorithms. Especially
for estimating high-order moments, Metropolized algorithms with log(1

δ
) dependency will be

advantageous.
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Appendix D

Content Deferred From Chapter 6 For
The Vaidya Walk

In this appendix, we collect the technical content used earlier in the proof of mixing time
bounds for the Vaidya walk. In particular, we prove Lemmas 6.1 and 6.2 in Appendices D.1
and D.2 respectively, with other auxiliary proofs in Appendix D.3. Furthermore, we provide
the proof of Proposition 6.1 in Appendix D.4.

D.1 Proof of Lemma 6.1

In order to prove part (h), observe that for any x ∈ int (K), the Hessian∇2Fx :=
∑n

i=1 aia
>
i /s

2
x,i

is a sum of rank one positive semidefinite (PSD) matrices. Also, we can write ∇2Fx = A>xAx
where

Ax :=



a>1 /sx,1

...
a>n /sx,n


 .

Since rank(Ax) = d, we conclude that the matrix ∇2Fx is invertible and thus, both the
matrices ∇2Fx and (∇2Fx)−1

are PSD. Since σx,i = a>i (∇2Fx)−1
ai/s

2
x,i, we have σx,i ≥ 0.

Further, the fact that aia
>
i /s

2
x,i � ∇2Fx implies that σx,i ≤ 1.

Turning to the proof of part (i), from the equality trace(AB) = trace(BA), we obtain

n∑

i=1

σx,i = trace

(
n∑

i=1

a>i (∇2Fx)−1
ai

s2
x,i

)
= trace

(
(
∇2Fx

)−1
n∑

i=1

aia
>
i

s2
x,i

)
= trace(Id) = d.

Now we prove part (j). Using the fact that σx,i ≥ 0, and an argument similar to part (h)
we find that that the matrices Vx and V −1

x are PSD. Since θVx,i = a>i V
−1
x ai/s

2
x,i, we have

θVx,i ≥ 0. It is straightforward to see that βV∇2Fx � Vx which implies that θVx,i ≤ σx,i/β.
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Further, we also have (σx,i + βV)
aia
>
i

s2x,i
� Vx and whence θVx,i ≤ 1/ (σx,i + βV). Combining

the two inequalities yields the claim.
The other parts of the Lemma follow from Lemma 13, 14 and 15 in the paper [152].

D.2 Proof of Lemma 6.2

We prove the lemma for the following function

gV(ε) := min

{√
1

20
(
1 +
√

2 log(4/ε)
) , ε√

18 log(2/ε)
,

√
ε

86
√

3γ2

,
ε

22
√

5/3γ3

,

√
ε

50
√

105γ4

}
,

(D.1)

where γk = (2e/k · log (4/ε))k/2 for k = 2, 3 and 4. A numerical calculation shows that
f(1/15) ≥ 10−4.

D.2.1 Proof of claim (6.21a)

In order to bound the total variation distance dTV

(
Px,Py

)
, we apply Pinsker’s inequality,

which provides an upper bound on the TV-distance in terms of the KL divergence:

dTV

(
Px,Py

)
≤
√

2 KL(Px‖Py).

For Gaussian distributions, the KL divergence has a closed form expression. In particular,
for two normal-distributions G1 = N (µ1,Σ1) and G2 = N (µ2,Σ2), the Kullback-Leibler
divergence between the two is given by

KL(G1‖G2) =
1

2

(
trace(Σ

−1/2
1 Σ2Σ

−1/2
1 )−d−log det(Σ

−1/2
1 Σ2Σ

−1/2
1 )+(µ1−µ2)>Σ−1

1 (µ1−µ2)
)
.

Substituting G1 = Px and G2 = Py into the above expression and applying Pinsker’s inequal-
ity, we find that

dTV

(
Px,Py

)2 ≤ 2 KL(Py‖Px) = trace(V −1/2
x VyV

−1/2
x )−d−log det(V −1/2

x VyV
−1/2
x ) +

√
nd

r2
‖x−y‖2

x

=

{
d∑

i=1

(
λi − 1 + log

1

λi

)}
+

√
nd

r2
‖x− y‖2

x , (D.2)

where λ1, . . . , λd > 0 denote the eigenvalues of the matrix V
−1/2
x VyV

−1/2
x , and we have used

the facts that det(V
−1/2
x VyV

−1/2
x ) =

∏d
i=1 λi and trace(V

−1/2
x VyV

−1/2
x ) =

∑d
i=1 λi. The fol-

lowing lemma is useful in bounding expression (D.2).
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Lemma D.1. For any scalar t ∈ [0, 1/12] and any pair x, y ∈ int (K) such that ‖x− y‖x ≤ t/(nd)1/4,
we have

(
1− 6t√

d
+
t2

d

)
Id � V −1/2

x VyV
−1/2
x �

(
1 +

6t√
d

+
t2

d

)
Id,

where � denotes ordering in the PSD cone, and Id is the d-dimensional identity matrix.

See Appendix D.3.3 for the proof of this claim.

For ε ∈ (0, 1/15] and r = 10−4, we have t = εr/2 ≤ 1/12, whence the eigenvalues
{λi, i ∈ [d]} can be sandwiched as

1− 3εr√
d

+
ε2r2

4d
≤ λi ≤ 1 +

3εr√
d

+
ε2r2

4d
for all i ∈ d. (D.3)

We are now ready to bound the TV distance between Px and Py. Using the bound (D.2)
and the inequality log γ ≤ γ − 1, valid for γ > 0, we obtain

dTV

(
Px,Py

)2 ≤
d∑

i=1

(
λi − 2 +

1

λi

)
+

√
nd

r2
‖x− y‖2

x .

Using the assumption that ‖x− y‖x ≤ εr/
(
2(nd)1/4

)
, and plugging in the bounds (D.3) for

the eigenvalues {λi, i ∈ [d]}, we find that

d∑

i=1

(
λi − 2 +

1

λi

)
+

√
nd

r2
‖x− y‖2

x ≤
141ε2r2

4
+
ε2

4
.

In asserting this inequality, we have used the facts that

1

1− 6γ + γ2
≤ 1 + 6γ + 70γ2, and

1

1 + 6γ + γ2
≤ 1− 6γ + 70γ2 for all γ ∈

[
0, 1

12

]
.

Note that for any r ∈ [0, 1/12] we have that 141r2/4 ≤ 1/2. Putting the pieces together
yields dTV

(
Px,Py

)
≤ ε, as claimed.

D.2.2 Proof of claim (6.21b)

Note that

Tx({x}) = Px(Kc) + 1−
∫

K
min

{
1,
pz(x)

px(z)

}
px(z)dz, (D.4)
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where Kc denotes the complement of K. Consequently, we find that

dTV

(
Px, Tx

)
=

1

2

(
Tx({x}) +

∫

Rd
px(z)dz −

∫

K
min

{
1,
pz(x)

px(z)

}
px(z)dz

)

=
1

2

(
Px(Kc) + 2− 2

∫

Rd
min

{
1,
pz(x)

px(z)

}
px(z)dz + 2

∫

Kc
min

{
1,
pz(x)

px(z)

}
px(z)dz

)

≤ 3

2
Px(Kc)
︸ ︷︷ ︸

=: S1

+ 1− Ez∼Px
[
min

{
1,
pz(x)

px(z)

}]

︸ ︷︷ ︸
=: S2

, (D.5)

Consequently, it suffices to show that both S1 and S2 are small, where the probability is
taken over the randomness in the proposal z. In particular, we show that S1 ≤ ε and S2 ≤ 4ε.

Bounding the term S1: Since z is multivariate Gaussian with mean x and covariance
r2
√
nd
V −1
x , we can write

z
d
= x+

r

(nd)1/4
V −1/2
x ξ, (D.6)

where ξ ∼ N (0, Id) and
d
= denotes equality in distribution. Using equation (E.14) and

definition (6.20b) of θVx,i, we obtain the bound

(
a>i (z − x)

)2

s2
x,i

=
r2

(nd)
1
2

[
a>i V

−1/2
x ξ

sx,i

]2
(i)

≤ r2

(nd)
1
2

θVx,i ‖ξ‖2
2

(ii)

≤ r2

d
‖ξ‖2

2 , (D.7)

where step (i) follows from Cauchy-Schwarz inequality, and step (ii) from the bound on θVx,i
from Lemma 6.1(j). Define the events

E :=

{
r2

d
‖ξ‖2

2 < 1

}
and E ′ := {z ∈ int (K)} .

Inequality (E.15) implies that E ⊆ E ′ and hence P [E ′] ≥ P [E ]. Using a standard Gaus-
sian tail bound and noting that r ≤ 1

1+
√

2/d log(2/ε)
, we obtain P [E ] ≥ 1 − ε/2 and whence

P [E ′] ≥ 1− ε/2. Thus, we have shown that P [z /∈ K] ≤ ε/2 which implies that S1 ≤ ε.

Bounding the term S2: By Markov’s inequality, we have

Ez∼Px
[
min

{
1,
pz(x)

px(z)

}]
≥ αP [pz(x) ≥ αpx(z)] for all α ∈ (0, 1]. (D.8)

By definition (E.3) of px, we obtain

pz(x)

px(z)
= exp

(
−
√
nd

2r2

(
‖z − x‖2

z − ‖z − x‖
2
x

)
+

1

2
(log detVz − log detVx)

)
.
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The following lemma provides us with useful bounds on the two terms in this expression,
valid for any x ∈ int (K).

Lemma D.2. For any ε ∈ (0, 1/15] and r ∈ (0, gV(ε)], we have

Pz∼Px
[

1

2
log detVz −

1

2
log detVx ≥ −ε

]
≥ 1− ε, and (D.9a)

Pz∼Px
[
‖z − x‖2

z − ‖z − x‖
2
x ≤ 2ε

r2

√
nd

]
≥ 1− ε. (D.9b)

See Appendix D.3.4 for the proof of this claim.

Using Lemma D.2, we now complete the proof. For r ≤ gV(ε), we obtain

pz(x)

px(z)
≥ exp (−2ε) ≥ 1− 2ε

with probability at least 1 − 2ε. Substituting α = 1 − 2ε in inequality (E.16) yields that
S2 ≤ 4ε, as claimed.

D.3 Proofs of Lemmas D.1 and D.2

To prove Lemmas D.1 and D.2, we first state some additional notation, and additional
technical results.

D.3.1 Notation

We begin with introducing some additional notation. Recall A ∈ Rn×d is a matrix with a>i as
its i-th row. For any positive integer p and any vector v = (v1, . . . , vp)

>, diag(v) = diag(v1, . . . , vp)
denotes a p×p diagonal matrix with the i-th diagonal entry equal to vi. Recall the definition
of Sx:

Sx = diag (sx,1, . . . , sx,n) where sx,i = bi − a>i x for each i ∈ [n]. (D.10)

Furthermore, define Ax = S−1
x A for all x ∈ int (K), and let Υx denote the projection matrix

for the column space of Ax, i.e.,

Υx := Ax(A
>
xAx)

−1A>x = Ax∇2F−1
x A>x . (D.11)

Note that for the scores σx (6.7b), we have σx,i = (Υx)ii for each i ∈ [n]. Let Σx be an n×n
diagonal matrix defined as

Σx = diag (σx,1, . . . , σx,n) . (D.12)
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Let σx,i,j := (Υx)ij, and let Υ
(2)
x denote the Hadamard product of Υx with itself, i.e.,

(Υ(2)
x )ij = σ2

x,i,j =

(
a>i ∇2F−1

x aj
)2

s2
x,is

2
x,j

for all i, j ∈ [n]. (D.13)

Using the shorthand θx := θVx , we define

Θx := diag (θx,1, . . . , θx,m) where θx,i =
a>i V

−1
x ai
s2
x,i

for i ∈ [n], and

Ξx := (θ2
x,i,j) where θ2

x,i,j =

(
a>i V

−1
x aj

)2

s2
x,is

2
x,j

for i, j ∈ [n].

In our new notation, we can re-write Vx = A>x (Σx + βVI)Ax.

D.3.2 Basic Properties

We begin by summarizing some key properties of various terms involved in our analysis.

Lemma D.3. For any vector x ∈ int (K), the following properties hold:

(a) σx,i =
∑n

j=1 σ
2
x,i,j =

∑n
j,k=1 σx,i,jσx,j,kσx,k,i for each i ∈ [n],

(b) Σx � Υ
(2)
x ,

(c)
∑n

i=1 θx,i (σx,i + βV) = d,

(d) ∀i ∈ [n], θx,i =
∑n

j=1 (σx,j + βV) θ2
x,i,j, for each i ∈ [n],

(e) θ>x (Σx + βVI) θx =
∑n

i=1 θ
2
x,i (σx,i + βV) ≤

√
nd, and

(f) βV∇2Fx � Vx � (1 + βV)∇2Fx.

Proof. We prove each property separately.

Part (a): Using Id = ∇2Fx (∇2Fx)−1
, we find that

σx,i =
a>i (∇2Fx)−1∇2Fx (∇2Fx)−1

ai
s2
x,i

=
a>i (∇2Fx)−1∇2

∑n
j=1

a>j aj

s2x,j
(∇2Fx)−1

ai

s2
x,i

=
n∑

i,j=1

σ2
x,i,j.

Applying a similar trick twice and performing some algebra, we obtain

σx,i =
a>i (∇2Fx)−1∇2Fx (∇2Fx)−1∇2Fx (∇2Fx)−1

ai
s2
x,i

=
n∑

i,j,k=1

σx,i,jσx,j,kσx,k,i.
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Part (b): From part (a), we have that Σx −Υ
(2)
x is a symmetric and diagonally dominant

matrix with non-negative entries on the diagonal. Applying Gershgorin’s theorem [20, 117],
we conclude that it is PSD.

Part (c): Since trace(AB) = trace(BA), we have

n∑

i=1

θx,i (σx,i + βV) = trace

(
V −1
x

n∑

i=1

(σx,i + βV)
aia
>
i

s2
x,i

)
= trace (Id) = d.

Part (d): An argument similar to part (a) implies that

θx,i =
a>i V

−1
x VxV

−1
x ai

s2
x,i

=
a>i V

−1
x

∑n
j=1 (σx,i + βV)

a>j aj

s2x,j
V −1
x ai

s2
x,i

=
n∑

i,j=1

(σx,i + βV) θ2
x,i,j.

Part (e): Using part (c) and Lemma 6.1(j) yields the claim.

Part (f): The left inequality is by the definition of Vx. The right inequality uses the fact
that Σx � Id.

We now prove an important result that relates the slackness sx and sy at two points, in
terms of ‖x− y‖x.

Lemma D.4. For all x, y ∈ int (K), we have

∣∣∣∣1−
sy,i
sx,i

∣∣∣∣ ≤
(n
d

) 1
4 ‖x− y‖x for each i ∈ [n].

Proof. For any pair x, y ∈ int (K) and index i ∈ [n], we have

(
a>i (x− y)

)2
=
(

(V
− 1

2
x ai)

>V
1
2
x (x− y)

)2 (i)

≤ ‖V −
1
2

x ai‖2
2 ‖V

1
2
x (x− y)‖2

2

= aTi V
−1
x ai ‖x− y‖2

x

= θx,is
2
x,i ‖x− y‖2

x

(ii)

≤
√
n

d
s2
x,i ‖x− y‖2

x ,

where step (i) follows from the Cauchy-Schwarz inequality, and step (ii) uses the bound θx,i
from Lemma 6.1(j). Noting the fact that a>i (x−y) = sy,i−sx,i, the claim follows after simple
algebra.
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D.3.3 Proof of Lemma D.1

As a direct consequence of Lemma D.4, we find that
∣∣∣∣1−

sy,i
sx,i

∣∣∣∣ ≤
t√
d
, for any x, y ∈ int (K) such that ‖x− y‖x ≤

t

(nd)1/4
.

The Hessian ∇2Fy is thus sandwiched in terms of the Hessian ∇2Fx as

(
1− t√

d

)2

∇2Fx � ∇2Fy �
(

1 +
t√
d

)2

∇2Fx.

By the definition of σx,i and σy,i, we have

(
1− t√

d

)2

(
1 + t√

d

)2σx,i ≤ σy,i ≤

(
1 + t√

d

)2

(
1− t√

d

)2σx,i for all i ∈ [n]. (D.14)

Consequently, we find that

(
1− t√

d

)2

(
1 + t√

d

)4Vx � Vy �

(
1 + t√

d

)2

(
1− t√

d

)4Vx.

Note that

1− 6γ + γ2 ≤ (1− γ)2

(1 + γ)4 ≤ 1 + 6γ + γ2 for any γ ∈
[
0, 1

12

]
.

Applying this sandwiching pair of inequalities with γ = t/
√
d yields the claim.

D.3.4 Proof of Lemma D.2

We begin by defining

ϕx,i :=
σx,i + βV

s2
x,i

for i ∈ [n], and Ψx :=
1

2
log detVx, for all x ∈ int (K) . (D.15)

Further, for any two points x and z, let xz denote the set of points on the line segment joining
x and z. The proof of Lemma D.2 is based on a Taylor series expansion, and so requires
careful handling of σ, ϕ,Ψ and their derivatives. At a high level, the proof involves the
following steps: (1) perform a Taylor series expansion around x and along the line segment
xz; (2) transfer the bounds of terms involving some point y ∈ xz to terms involving only x
and z; and then (3) use concentration of Gaussian polynomials to obtain high probability
bounds.
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We now introduce some auxiliary results involved in these three steps. The following
lemma provides expressions for gradients of σ, ϕ and Ψ and bounds for directional Hessian
of ϕ and Ψ. Let ei ∈ Rd denote a vector with 1 in the i-th position and 0 otherwise. For
any h ∈ Rd and x ∈ int (K), define ηx,h,i = ηx,i := a>i h/sx,i for each i ∈ [n].

Lemma D.5. The following relations hold;

(a) Gradient of σ: ∇σx,i = 2A>y (Σx − P (2)
x )ei for each i ∈ [n].

(b) Gradient of ϕ: ∇ϕx,i =
2

s2
y,i

A>x
[
2Σx + βV I− P (2)

x

]
ei for each i ∈ [n];

(c) Gradient of Ψ: ∇Ψx = A>x
(
2 Σx + βV I− P (2)

x

)
θx;

(d) Bound on ∇2ϕ: s2
x,i

∣∣1
2
h>∇2ϕx,ih

∣∣ ≤ 14 (σx,i + βV) η2
x,i + 11

∑n
j=1 σ

2
x,i,jη

2
x,j for i ∈ [n];

(e) Bound on ∇2Ψ:
∣∣1

2
h> (∇2Ψx)h

∣∣ ≤ 13
∑n

i=1 (σx,i + βV) θx,iη
2
x,i + 17

2

∑n
i,j=1 σ

2
x,i,jθx,iη

2
x,j.

See Section D.3.5 for the proof of this claim.

The following lemma that shows that for a random variable z ∼ Px, the slackness sz,i is
close to sx,i with high probability.

Lemma D.6. For any ε ∈ (0, 1/4], r ∈ (0, 1) and x ∈ int (K), we have

Pz∼Px
[
∀i ∈ [n], ∀v ∈ xz, sx,i

sv,i
∈
(

1−
√

1 + δ r, 1+
√

1 + δ r
)]
≥ 1− ε/4,

where δ =
√

2
d

log
(

4
ε

)
. Thus for any d ≥ 1 and r ≤ 1/(20(1 +

√
2 log (4/ε))1/2, we have

Pz∼Px
[
∀i ∈ [n],∀v ∈ xz, sx,i

sv,i
∈ (0.95, 1.05)

]
≥ 1− ε/4.

This result comes in handy for transferring bounds for different expressions in Taylor
expansion involving an arbitrary y on xz to bounds on terms involving simply x. The proof
follows from Lemma D.4 and a simple application of the standard Gaussian tail bounds and
is thereby omitted. For brevity, we define the shorthand

âi =
1

sx,i
V −1/2
x ai for each i ∈ [n], (D.16)

where we have omitted the dependence of âi on x. In the following lemma, we state some
tail bounds for particular Gaussian polynomials that arise in our analysis.
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Lemma D.7. For any ε ∈ (0, 1/15], define γk = (2e/k · log (4/ε))k/2 for k = 2, 3 and 4.
Then for ξ ∼ N (0, Id) and any x ∈ int (K) the following high probability bounds hold:

P

[
n∑

i=1

(σx,i + βV)
(
â>i ξ
)2 ≤ γ2

√
3d

]
≥ 1− ε

4
, (D.17a)

P

[∣∣∣∣∣
n∑

i=1

(σx,i + βV)
(
â>i ξ
)3

∣∣∣∣∣ ≤ γ3

√
15 (nd)1/4

]
≥ 1− ε

4
, (D.17b)

P

[∣∣∣∣∣
n∑

i,j=1

σ2
x,i,j

((
âi + âj

2

)>
ξ

)3
∣∣∣∣∣ ≤ γ3

√
15 (nd)1/4

]
≥ 1− ε

4
, (D.17c)

P

[
n∑

i=1

(σx,i + βV)
(
â>i ξ
)4 ≤ γ4

√
105 (nd)1/2

]
≥ 1− ε

4
. (D.17d)

See Section D.3.6 for the proof of these claims.
Now we summarize the final ingredients needed for our proofs. Recall that the Gaussian

proposal z is related to the current state x via the equation

z
d
= x+

r

(nd)1/4
V −1/2
x ξ, (D.18)

where ξ ∼ N (0, Id). We also use the following elementary inequalities:

Cauchy-Schwarz inequality: |u>v| ≤ ‖u‖2 ‖v‖2 (C-S)

AM-GM inequality: νκ ≤ 1

2
(ν2 + κ2). (AM-GM)

Sum of squares inequality:
1

2
‖a+ b‖2

2 ≤ ‖a‖
2
2 + ‖b‖2

2 , (SSI)

Note that the sum-of-squares inequality is simply a vectorized version of the AM-GM in-
equality. With these tools, we turn to the proof of Lemma D.2. We split our analysis into
parts.

D.3.4.1 Proof of claim (D.9a)

Using the second degree Taylor expansion, we have

Ψz −Ψx = (z − x)>∇Ψx +
1

2
(z − x)>∇2Ψy (z − x) , for some y ∈ xz.

We claim that for r ≤ gV(ε), we have

Pz
[
(z − x)>∇Ψx ≥ −ε/2

]
≥ 1− ε/2, and (D.19a)

Pz
[

1

2
(z − x)∇2Ψy (z − x) ≥ −ε/2

]
≥ 1− ε/2. (D.19b)

Note that the claim (D.9a) is a consequence of these two auxiliary claims, which we now
prove.
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Proof of bound (D.19a): Equation (D.18) implies that (z − x)>∇Ψx ∼ N
(

0, r2
√
nd
∇Ψ>x V

−1
x ∇Ψx

)
.

We claim that

∇Ψ>x V
−1
x ∇Ψx ≤ 9

√
nd for all x ∈ int (K) . (D.20)

We prove this inequality at the end of this subsection. Taking it as given for now, let
ξ′ ∼ N (0, 9r2). Then using inequality (D.20) and a standard Gaussian tail bound, we find
that

P
[
(z − x)>∇Ψx ≥ −γ

]
≥ P [ξ′ ≥ −γ] ≥ 1− exp(−γ2/(18r2)), valid for all γ ≥ 0.

Setting γ = ε/2 and noting that r ≤ ε√
18 log(2/ε)

completes the claim.

Proof of bound (D.19b): Let ηx,i =
a>i (z−x)

sx,i
= r

(mn)
1
4
â>i ξ. Using Lemma D.5(e), we have

∣∣∣∣
1

2
(z − x)∇2Ψy (z − x)

∣∣∣∣ ≤ 13
n∑

i=1

(σy,i + βV) θy,i
s2
x,i

s2
y,i

η2
x,i +

17

2

n∑

i,j=1

σ2
y,i,jθy,i

s2
x,j

s2
y,j

η2
x,j

≤ 43

2

√
n

d

n∑

i=1

(σx,i + βV)
(σy,i + βV)

(σx,i + βV)

s2
x,i

s2
y,i

η2
x,i. (D.21)

Setting τ = 1.05, we define the events E1 and E2 as follows:

E1 =

{
∀i ∈ [n],

sx,i
sy,i
∈ [2− τ, τ ]

}
, and (D.22a)

E2 =

{
∀i ∈ [n],

σx,i
σy,i
∈
[
0,

τ 2

(2− τ)2

]}
. (D.22b)

It is straightforward to see that E1 ⊆ E2. Since r ≤ 1

20
√

1+
√

2 log(4/ε)
, Lemma E.10 implies

that P [E1] ≥ 1− ε/4 whence P [E2] ≥ 1− ε/4. Using these high probability bounds and the
setting τ = 1.05, we obtain that with probability at least 1− ε/4
√
n

d

n∑

i=1

(σx,i + βV)
(σy,i + βV)

(σx,i + βV)

s2
x,i

s2
y,i

η2
x,i ≤ 2

√
n

d

n∑

i=1

(σx,i + βV) η2
x,i =

2r2

d

n∑

i=1

(σx,i + βV) (â>i ξ)
2.

(D.23)

Applying the high probability bound Lemma D.7 (D.17a) and the condition

r ≤
√

ε

86
√

3γ2

, (D.24)

we obtain that with probability at least 1− ε/2,
∣∣∣∣
1

2
(z − x)∇2Ψy (z − x)

∣∣∣∣ ≥ −ε/2,

as claimed.
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Proof of bound (D.20): We now return to prove our earlier inequality (D.20). Using the
expression for the gradient ∇Ψx from Lemma D.5(c), we have that for any vector u ∈ Rn

u>∇Ψx∇Ψ>x u =
〈
u,A>x

(
2Σx −Υ(2)

x + βVI
)
θx
〉2

=
〈
Axu,

(
2Σx −Υ(2)

x + βVI
)
θx
〉2

=
〈

(Σx + βVI)
1
2 Axu, (Σx + βVI)−1/2 (2Σx −Υ(2)

x + βVI
)
θx

〉2

≤ u>Vxu · θ>x
(
2Σx −Υ(2)

x + βVI
)

(Σx + βVI)−1 (2Σx −Υ(2)
x + βVI

)
θx (D.25)

where the last step follows from the Cauchy-Schwarz inequality. As a consequence of
Lemma E.5(b), the matrix Σx −Υ

(2)
x is PSD. Thus, we have

0 � 2Σx −Υ(2)
x + βVI � 3 (Σx + βVI) .

Consequently, we find that

0 � (3Σx + 3βVI)−1/2 (2Σx −Υ(2)
x + βVI

)
(3Σx + 3βVI)−1/2

︸ ︷︷ ︸
=:L

� I.

We deduce that all eigenvalues of the matrix L lie in the interval [0, 1] and hence all the
eigenvalues of the matrix L2 belong to the interval [0, 1]. As a result, we have

(
2Σx −Υ(2)

x + βVI
)

(3Σx + 3βVI)−1 (2Σx −Υ(2)
x + βVI

)
� (3Σx + 3βVI) .

Thus, we obtain

θ>x
(
2Σx −Υ(2)

x + βVI
)

(Σx + βVI)−1 (2Σx −Υ(2)
x + βVI

)
θx ≤ 9θ>x (Σx + βVI) θx. (D.26)

Finally, applying Lemma E.5 and combining bounds (D.25) and (D.26) yields the claim.

D.3.4.2 Proof of claim (D.9b)

The quantity of interest can be written as

‖z − x‖2
z − ‖z − x‖

2
x =

n∑

i=1

(
a>i (z − x)

)2
(ϕz,i − ϕx,i) .

We can write z = x+ αu, where α is a scalar and u is a unit vector in Rd. Then we have

‖z − x‖2
z − ‖z − x‖

2
x = α2

n∑

i=1

(
a>i u

)2
(ϕz,i − ϕx,i) .
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We apply a Taylor series expansion for
∑n

i=1

(
a>i u

)2
(ϕz,i − ϕx,i) around the point x, along

the line u. There exists a point y ∈ xz such that

n∑

i=1

(
a>i u

)2
(ϕz,i − ϕx,i) =

n∑

i=1

(
a>i u

)2
(

(z − x)>∇ϕx,i +
1

2
(z − x)>∇2ϕy,i (z − x)

)
.

Multiplying both sides by α2, and using the shorthand ηx,i =
a>i (z−x)

sx,i
, we obtain

‖z−x‖2
z−‖z−x‖

2
x =

n∑

i=1

η2
x,is

2
x,i (z−x)>∇ϕx,i +

n∑

i=1

η2
x,is

2
x,i

1

2
(z−x)>∇2ϕy,i (z−x) . (D.27)

Substituting the expression for ∇ϕx,i from Lemma D.5(b) in equation (D.27) and performing
some algebra, the first term on the RHS of equation (D.27) can be written as

n∑

i=1

η2
x,is

2
x,i(z − x)>∇ϕx,i = 2

n∑

i=1

(
7

3
σx,i + βV

)
η3
x,i −

1

3

n∑

i,j=1

σ2
x,i,j (ηx,i + ηx,j)

3 . (D.28)

On the other hand, using Lemma D.5 (d), we have

1

2
s2
x,i

∣∣∣(z − x)>∇2ϕy,i (z − x)
∣∣∣ ≤

s2
x,i

s2
y,i

[
14 (σy,i + βV)

s2
x,i

s2
y,i

η2
x,i + 11

(
n∑

j=1

σ2
y,i,jη

2
x,j

s2
x,j

s2
y,j

)]
.

(D.29)

Now, we use a fourth degree Gaussian polynomial to bound both the terms on the RHS of
inequality (D.29). To do so, we use high probability bound for sx,i/sy,i. In particular, we
use the high probability bounds for the events E1 and E2 defined in equations (D.22a) and
(D.22b). Multiplying both sides of inequality (D.29) by η2

x,i and summing over the index i,
we obtain that with probability at least 1− ε/4, we have

n∑

i=1

η2
x,is

2
x,i

∣∣∣∣
1

2
(z − x)>∇2ϕy,i (z − x)

∣∣∣∣ ≤
[

14
n∑

i=1

(σy,i + βV)
s4
x,i

s4
y,i

η4
x,i + 11

n∑

i,j=1

σ2
y,i,jη

2
x,iη

2
x,j

s2
x,is

2
x,j

s2
y,is

2
y,j

]

(hpb.(D.22a))

≤ τ 4

[
14

n∑

i=1

(σy,i + βV) η4
x,i + 11

n∑

i,j=1

σ2
y,i,jη

2
x,iη

2
x,j

]

(AM−GM)

≤ τ 4

[
14

n∑

i=1

(σy,i + βV) η4
x,i +

11

2

n∑

i,j=1

σ2
y,i,j(η

4
x,i + η4

x,j)

]

(Lem. E.5(a))

≤ 25τ 4

n∑

i=1

(σy,i + βV) η4
x,i

(hpb.(D.22b))

≤ 50
n∑

i=1

(σx,i + βV) η4
x,i, (D.30)
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where “hpb” stands for high probability bound for events E1 and E2. In the last step, we
have used the fact that τ 6/(2 − τ)2 ≤ 2 for τ = 1.05. Combining equations (D.27), (D.28)
and (D.30) and noting that ηx,i = râ>i ξ/(nd)1/4, we find that

∣∣‖z − x‖2
z − ‖z − x‖

2
x

∣∣ ≤ 14

3

∣∣∣∣∣
n∑

i=1

(σx,i + βV) η3
x,i

∣∣∣∣∣+
8

3

∣∣∣∣∣
n∑

i,j=1

σ2
x,i,j ((ηx,i + ηx,j) /2)3

∣∣∣∣∣+ 38
n∑

i=1

σx,iη
4
x,i

≤ 14

3

r3

(nd)3/4

∣∣∣∣∣
n∑

i=1

(σx,i + βV)
(
â>i ξ
)3

∣∣∣∣∣+
8

3

r3

(nd)3/4

∣∣∣∣∣
n∑

i,j=1

σ2
x,i,j

(
1

2
(âi + âj)

>ξ

)3
∣∣∣∣∣

+ 50
r4

nd

n∑

i=1

(σx,i + βV) (â>i ξ)
4, (D.31)

where the last step follows from the fact that 0 ≤ σx,i ≤ σx,i + βV. In order to show that∣∣‖z − x‖2
z − ‖z − x‖

2
x

∣∣ is bounded as O
(

1/
√
nd
)

with high probability, it suffices to show

that with high probability, the third and fourth degree polynomials of â>i ξ, that appear in

bound (D.31), are bounded by O
(
(nd)1/4

)
and O

(√
nd
)

respectively.

Applying the bounds (D.17b), (D.17c) and (D.17d) from Lemma D.7, we have with
probability at least 1− ε,

‖z − x‖2
z − ‖z − x‖

2
x ≤

r3

√
nd

(
22
√

15γ3

3

)
+

r4

√
nd

(
50
√

105γ4

)
.

Using the condition

r ≤ min

{
ε

22
√

5/3γ3

,

√
ε

50
√

105γ4

}
, (D.32)

completes our proof of claim (D.9b).

D.3.5 Proof of Lemma D.5

We now derive the different expressions for derivatives and prove the bounds for Hessians of
x 7→ ϕx,i, i ∈ [n] and x 7→ Ψx. In this section we use the simpler notation Hx := ∇2Fx.

D.3.5.1 Gradient of σ

Using sx+h,i = (bi − a>i (x+ h)) = sx,i − a>i h, we define the Hessian difference matrix

∆H
x,h := Hx+h −Hx =

n∑

i=1

aia
>
i

(
1

(sx,i − a>i h)2
− 1

s2
x,i

)
. (D.33)
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Up to second order terms, we have

1

s2
x+h,i

=
1

s2
x,i

[
1 +

2a>i h

sx,i
+

3(a>i h)2

s2
x,i

]
+O

(
‖h‖3

2

)
, (D.34a)

∆H
x,h =

n∑

i=1

aia
>
i

s2
x,i

[
2a>i h

sx,i
+

3(a>i h)2

s2
x,i

]
+O

(
‖h‖3

2

)
, (D.34b)

aTi H
−1
x+hai = a>i H

−1
x ai − a>i H−1

x ∆H
x,hH

−1
x ai + a>i H

−1
x ∆H

x,hH
−1
x ∆H

x,hH
−1
x ai +O

(
‖h‖3

2

)
.

(D.34c)

Collecting different first order terms in σx+h,i − σx,i, we obtain

σx+h,i − σx,i = 2
a>i H

−1
x ai

s2
x,i

a>i h

sx,i
− 2

a>i H
−1
x

(∑n
j=1

aja
>
j

s2x,j

a>j h

sx,j

)
H−1
x ai

s2
x,i

+O
(
‖h‖2

2

)

= 2

[
σx,i

a>i h

sx,i
−

n∑

j=1

σ2
x,i,j

a>j h

sx,j

]
+O

(
‖h‖2

2

)

= 2 [(Σx −Υ(2)
x )S−1

x A]i h+O
(
‖h‖2

2

)
.

Dividing both sides by h and letting h→ 0 yields the claim.

D.3.5.2 Gradient of ϕ

Using the chain rule and the fact that ∇sx,i = −ai, we find that

∇ϕx,i =
∇σx,i
s2
x,i

− 2 (σx,i + βV)
∇sx,i
s3
x,i

=
2

s2
x,i

A>S−1
x

[
2Σx + βV I−Υ(2)

x

]
ei,

as claimed.

D.3.5.3 Gradient of Ψ

For convenience, let us restate equations (D.16) and (D.44):

âi =
1

sx,i
V −1/2
x ai, and

n∑

i=1

(σx,i + βV) âiâ
>
i = Id.

For a unit vector h, we have

h>∇ log detVx = lim
δ→0

1

δ

[
trace log

(
n∑

i=1

(σx+δh,i + βV)
(
1− δa>i h/sx,i

)2 âiâ
>
i

)
− trace log

(
n∑

i=1

(σx,i + βV) âiâ
>
i

)]
.

(D.35)
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Let logL denote the logarithm of the matrix L. Keeping track of the first order terms on
RHS of equation (D.35), we find that

trace

[
log

(
n∑

i=1

(σx+δh,i + βV)
âiâ
>
i(

1− δa>i h/sx,i
)2

)]
− trace

[
log

(
n∑

i=1

(σx,i + βV) âiâ
>
i

)]

= trace

[
log

(
n∑

i=1

(
σx+δh,i + βV + δh>∇σx,i

)(
1 + 2δ

a>i h

s2
x,i

))]
− trace

[
log

(
n∑

i=1

(σx,i + βV) âiâ
>
i

)]
+O

(
δ2
)

= trace

[
n∑

i=1

δ

(
2 (σx,i + βV)

a>i h

s2
x,i

+ h>∇σx,i
)
âiâ
>
i

]
+O

(
δ2
)

= δ

(
n∑

i=1

(
2 (σx,i + βV)

a>i h

s2
x,i

+ h>∇σx,i
)
θi

)
+O

(
δ2
)
,

where we have used the fact trace(log I) = 0. Letting δ → 0 and substituting expression of
h>∇σx from part (a), we obtain

h>∇ log detVx = A>x
(
4Σx + 2βVI− 2Υ(2)

x

)
Θxh.

D.3.5.4 Bound on Hessian ∇2ϕ

In terms of the shorthand Eii = eie
>
i , we claim that for any h ∈ Rd,

h>∇2ϕx,ih =
2

s2
x,i

h>A>x

[
Eii
(
3 (Σx + βVI) + 7Σx − 8 diag(Υ(2)

x ei)
)
Eii

+ diag(Υxei)(4Υx − 3I) diag(Υxei)

]
Axh. (D.36)

Note that

ϕx+h,i − ϕx,i =

(
a>i H

−1
x+h,iai

s4
x+h,i

−
a>i H

−1
x,i ai

s4
x,i

)

︸ ︷︷ ︸
=:A1

+ βV

(
1

s2
x+h,i

− 1

s2
x,i

)

︸ ︷︷ ︸
=:A2

. (D.37)

The second order Taylor expansion of 1/s4
x,i is given by

1

s4
x+h,i

=
1

s4
x,i

[
1 +

4a>i h

sx,i
+

10(a>i h)2

s2
x,i

]
+O

(
‖h‖3

2

)
.

Let B1 and B2 denote the second order terms, i.e., the terms that are of order O
(
‖h‖2

2

)
,

in Taylor expansion of A1 and A2 around x, respectively. Borrowing terms from equa-



Appendix D. Content Deferred From Chapter 6 For The Vaidya Walk 278

tions (D.34a)-(D.34c) and simplifying we obtain

B1 = 10σx,i
(a>i h)2

s2
x,i

−8
a>i h

sx,i

n∑

j=1

σ2
x,i,j

s2
x,i

a>j h

sx,j
−3

n∑

j=1

σ2
x,i,j

s2
x,i

(a>j h)2

s2
x,j

+4
n∑

j=1

n∑

l=1

σx,i,j
sx,i

σx,j,l
σx,l,i
sx,i

a>j h

sx,j

a>l h

sx,l
,

and B2 = 3βV
(a>i h)2

s2
x,i

.

Observing that the second order term in the Taylor expansion of ϕx+h,i around x, is exactly
1
2
h>∇2ϕx,ih yields the claim (D.36). We now turn to prove the bound on the directional

Hessian. Recall ηx,i = a>i h/sx,i. We have

s2
y,i

∣∣∣∣
1

2
h>∇2ϕx,ih

∣∣∣∣

=

∣∣∣∣∣3 (σx,i+βV) η2
x,i+7σx,iη

2
x,i−8

n∑

j=1

σ2
x,i,jηx,jηx,i−3

n∑

j=1

σ2
x,i,jη

2
x,j+4

n∑

j,k=1

σx,i,jσx,j,kσx,k,iηx,jηx,k

∣∣∣∣∣
(i)

≤ 10 (σx,i + βV) η2
x,i + 8

n∑

j=1

σ2
x,i,j |ηx,iηx,j|+ 7

n∑

j=1

σ2
x,i,jη

2
x,j

(ii)

≤ 10 (σx,i + βV) η2
x,i + 4

n∑

j=1

σ2
x,i,j

(
η2
x,i + η2

x,j

)
+ 7

n∑

j=1

σ2
x,i,jη

2
x,j

(iii)

≤ 10 (σx,i + βV) η2
x,i + 4

n∑

j=1

σx,iη
2
x,i + 4

n∑

j=1

σ2
x,i,jη

2
x,j + 7

n∑

j=1

σ2
x,i,jη

2
x,j,

(iv)

≤ 14 (σx,i + βV) η2
x,i + 11

n∑

j=1

σ2
x,i,jη

2
x,j,

where step (i) follows from the fact that diag(Υyei)Υy diag(Υyei) � diag(Υyei) diag(Υyei)
since Υy is an orthogonal projection matrix; step (ii) follows from AM-GM inequality; step
(iii) follows from the symmetry of indices i and j and Lemma E.5(a), and step (iv) from the
fact that σx,i ≤ σx,i + βV.
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D.3.5.5 Bound on Hessian ∇2Ψ

We have

1

2
h>
(
∇2 log detVx

)
h =

1

2
lim
δ→0

1

δ2

[
trace log

(
n∑

i=1

(σx+δh,i + βV)
(
1− δa>i h/sx,i

)2 âiâ
>
i

)

+ trace log

(
n∑

i=1

(σx−δh,i + βV)
(
1 + δa>i h/sx,i

)2 âiâ
>
i

)

− 2 trace log

(
n∑

i=1

(σx + βV) âiâ
>
i

)]
. (D.38)

Up to second order terms, we havea

trace

[
log

(
n∑

i=1

(σx+δh,i + βV)
âiâ
>
i(

1− δa>i h/sx,i
)2

)]

= trace

[
log

(
n∑

i=1

(
σx,i + βV + δh>∇σx,i +

1

2
δ2h>∇2σx,ih

)(
1 + 2δ

a>i h

sx,i
+ 3δ2

(
a>i h

sx,i

)2
)
âiâ
>
i

)]

= trace

[
n∑

i=1

(
σx,i + βV + δh>∇σx,i +

1

2
δ2h>∇2σx,ih

)(
1 + 2δ

a>i h

sx,i
+ 3δ2

(
a>i h

sx,i

)2
)
âiâ
>
i

]

− trace


1

2

(
n∑

i=1

(
σx,i + βV + δh>∇σx,i +

1

2
δ2h>∇2σx,ih

)(
1 + 2δ

a>i h

sx,i
+ 3δ2

(
a>i h

sx,i

)2
)
âiâ
>
i

)2

 .

We can similarly obtain the second order expansion of the term trace log

(∑n
i=1

(σx−δh,i+βV)
(1+δa>i h/sx,i)

2 âiâ
>
i

)
.

Recall ηx,i =
a>i h

sx,i
. Using part (a) to substitute h>∇σx,i, we obtain

1

2
h>
(
∇2 log detVx

)
h =

n∑

i=1

(
3 (σx,i + βV) η2

x,i + 4

(
σx,iη

2
x,i −

n∑

j=1

σ2
x,i,jηx,iηx,j

)
+

1

2
h>∇2σx,ih

)
θi

− 2

[ n∑

i,j=1

(2σx,i + βV) (2σx,j + βV) ηx,iηx,jθ
2
x,i,j − 2

n∑

i,j,k=1

(2σx,i + βV)σ2
x,j,kθ

2
x,i,kηx,iηx,j

+
n∑

i,j,k,l=1

σ2
x,i,lσ

2
x,j,kθ

2
x,k,lηx,iηx,j

]
. (D.39)

We claim that the directional Hessian h>∇2σx,ih is given by

h>∇2σx,ih = 2h>A>x
[
Eii(3Σx − 4 diag(Υ(2)

x ei))Eii + diag(Υxei)(4Υx − 3I) diag(Υxei)
]
Axh.

(D.40)
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Assuming the claim at the moment we now bound
∣∣h>∇2Ψxh

∣∣. To shorten the notation,
we drop the x-dependence of the terms σx,i, σx,i,j, θx,i and ηx,i. Since Υx is an orthogonal
projection matrix, we have

diag(Υxei)Υx diag(Υxei) � diag(Υxei) diag(Υxei).

Using this fact and substituting the expression for h>∇2σx,ih from equation (D.40) in equa-
tion (D.39), we obtain

∣∣h>∇2Ψxh
∣∣

≤
n∑

i=1

[
3

(
σi + βV

)
η2
i + 4

(
σiη

2
i +

n∑

j=1

σ2
i,jηiηj

)
+ 3σiη

2
i + 4

n∑

j=1

σ2
i,jηiηj + 7

n∑

j=1

σ2
i,jη

2
j

]
θi

+

[
8

n∑

i,j=1

(σi + βV) (σj + βV) ηiηjθ
2
i,j + 8

n∑

i,j,k=1

(σi + βV)σ2
j,kθ

2
i,kηiηj + 2

n∑

i,j,k,l=1

σ2
i,lσ

2
j,kθ

2
k,lηiηj

]
.

Rearranging terms, we find that

∣∣h>∇2Ψxh
∣∣

≤
n∑

i=1

[
10 (σi + βV) η2

i + 8
n∑

j=1

σ2
i,jηiηj + 7

n∑

j=1

σ2
i,jη

2
j

]
θi

+

[
8

n∑

i,j=1

(σi + βV) (σj + βV) ηiηjθ
2
i,j + 8

n∑

i,j,k=1

(σi + βV)σ2
j,kθ

2
i,kηiηj + 2

n∑

i,j,k,l=1

σ2
i,lσ

2
j,kθ

2
k,lηiηj

]

(i)

≤
n∑

i=1

[
10 (σi + βV) η2

i + 4
n∑

j=1

σ2
i,j

(
η2
i + η2

j

)
+ 7

n∑

j=1

σ2
i,jη

2
j

]
θi

+

[
4

n∑

i,j=1

(
σi + βV

)(
σj + βV

)
θ2
i,j(η

2
i + η2

j ) + 4
n∑

i,j,k=1

(
σi + βV

)
σ2
j,kθ

2
i,k(η

2
i + η2

j ) +
n∑

i,j,k,l=1

σ2
i,lσ

2
j,kθ

2
k,l(η

2
i + η2

j )

]

where in step (i) we have used the AM-GM inequality. Simplifying further, we obtain

∣∣h>∇2Ψyh
∣∣ ≤

n∑

i=1

[
14 (σi + βV) η2

i + 11
n∑

j=1

σ2
i,jη

2
j

]
θi +

[
n∑

i=1

12 (σi + βV) θiη
2
i +

n∑

i,j=1

6σ2
i,jθiη

2
j

]

= 26
n∑

i=1

(σi + βV) θiη
2
i + 17

n∑

i,j=1

σ2
i,jθiη

2
j .

Dividing both sides by two completes the proof.
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Proof of claim (D.40): In order to compute the directional Hessian of x 7→ σx,i, we need
to track the second order terms in equations (D.34a)-(D.34c). Collecting the second order

terms (denoted by σ
(2)
h ) in the expansion of σx+h,i − σx,i, we obtain

σ
(2)
h = 3

a>i H
−1
x ai

s2
x,i

(a>i h)2

s2
x,i

− 4
a>i H

−1
x

(∑n
j=1

aja
>
j

s2x,j

a>j h

sx,j

)
H−1
x ai

s2
x,i

a>i h

sx,i

− 3
a>i H

−1
x

(∑n
j=1

aja
>
j

s2x,j

(a>j h)2

s2x,j

)
H−1
x ai

s2
x,i

+ 4
a>i H

−1
x

(∑n
j=1

aja
>
j

s2x,j

a>j h

sx,j

)
H−1
x

(∑n
l=1

ala
>
l

s2x,l

a>l h

sx,l

)
ai

s2
x,i

.

We simply each term on the RHS one by one. Simplifying the first term, we obtain

3
a>i H

−1
x ai

s2
x,i

(a>i h)2

s2
x,i

= 3σx,iη
2
x,i = h>3A>xEiiΣxEiiAx h.

For the second term, we have

4
a>i H

−1
x

(∑n
j=1

aja
>
j

s2x,j

a>j h

sx,j

)
H−1
x ai

s2
x,i

a>i h

sx,i
= 4 ηx,i

n∑

j=1

σ2
x,i,j ηx,j

= 4h>A>xEii diag
(
Υ(2)
x ei

)
EiiAxh.

The third term can be simplified as follows:

3
a>i H

−1
x

(∑n
j=1

aja
>
j

s2x,j

(a>j h)2

s2x,j

)
H−1
x ai

s2
x,i

= 3
n∑

j=1

σ2
x,i,jη

2
x,j

= 3h>A>x diag (Υxei) diag (Υxei)Axh

For the last term, we find that

4
a>i H

−1
x

(∑n
j=1

aja
>
j

s2x,j

a>j h

sx,j

)
H−1
x

(∑n
l=1

ala
>
l

s2x,l

a>l h

sx,l

)
ai

s2
x,i

= 4
n∑

j,l=1

σx,i,j σx,j,l σx,l,i ηx,j ηx,l

= 4h>A>x diag (Υxei) Υx diag (Υxei)Axh.

Putting together the pieces yields the expression (D.40).



Appendix D. Content Deferred From Chapter 6 For The Vaidya Walk 282

D.3.6 Proof of Lemma D.7

The proof relies on the classical fact that the tails of a polynomial in Gaussian random
variables decay exponentially independently of dimension. In particular, Theorem 6.7 of
Janson [129] ensures that for any integers d, k ≥ 1, any polynomial f : Rd → R of degree k,
and any scalar t ≥ (2e)k/2, we have

P
[
|f(ξ)| ≥ t

(
Ef(ξ)2) 1

2

]
≤ exp

(
− k

2e
t2/k
)
, (D.41)

where ξ ∼ N (0, In) denotes a standard Gaussian vector in n dimensions.
Also, the following observations on the behavior of the vectors âi from equation (D.16)

are useful:

‖âi‖2
2 = θx,i ≤

√
n

d
for all i ∈ [n], and (D.42a)

(â>i âj)
2 = θ2

x,i,j for all i, j ∈ [n]. (D.42b)

D.3.6.1 Proof of bound (D.17a)

We have

E

(
n∑

i=1

(σx,i + βV)
(
â>i ξ
)2

)2

=
n∑

i,j=1

(σx,i + βV) (σx,j + βV)E
(
â>i ξ
)2 (

â>j ξ
)2

=
n∑

i,j=1

(σx,i + βV) (σx,j + βV)
(
‖âi‖2

2 ‖âj‖
2
2 + 2

(
â>i âj

)2
)

=
n∑

i,j=1

(σx,i + βV) (σx,j + βV)
(
θx,iθx,j + 2θ2

x,i,j

)

(i)
= d2 + 2d

≤ 3d2,

where step (i) follows from properties (c) and (d) from Lemma E.5. Applying the bound (D.41)
with k = 2, t = e log(4

ε
) yields the claim. We verify that for ε ∈ (0, 1/15], t ≥ 2e.
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D.3.6.2 Proof of bound (D.17b)

Using Isserlis’ theorem [128] for Gaussian moments, we obtain

E

(
n∑

i=1

(σx,i + βV)
(
â>i ξ
)3

)2

=
n∑

i,j=1

(σx,i + βV) (σx,i + βV)E
(
â>i ξ
)3 (

â>j ξ
)3

= 9
n∑

i,j=1

(σx,i + βV) (σx,j + βV) ‖âi‖2
2 ‖âj‖

2
2

(
â>i âj

)

︸ ︷︷ ︸
=:N1

+ 6
n∑

i,j=1

(σx,i + βV) (σx,j + βV)
(
â>i âj

)3

︸ ︷︷ ︸
=:N2

. (D.43)

We claim that the two terms in this sum are bounded as N1 ≤
√
nd and N2 ≤

√
nd.

Assuming the claims as given, we now complete the proof. Plugging in the bounds for N1

and N2 in equation (D.43) we find that E
(∑n

i=1 (σx,i + βV)
(
â>i ξ
)3)2 ≤ 15

√
nd. Applying

the bound (D.41) with k = 3, t =
(

2e
3

log(4/ε)
)3/2

yields the claim. We also verify that for

ε ∈ (0, 1/15], t ≥ (2e)3/2. We now turn to proving the bounds on N1 and N2.

Bounding N1: Let B be an n × d matrix with its i-th row given by
√

(σx,i + βV)â>i .
Observe that

n∑

i=1

(σx,i + βV) âiâ
>
i = V −1/2

x

(
n∑

i=1

(σx,i + βV)
aia
>
i

s2
x,i

)
V −1/2
x = V −1/2

x VxV
−1/2
x = Id. (D.44)

Thus we have B>B = Id, which implies that BB> is an orthogonal projection matrix.
Letting v ∈ Rn be a vector such that vi =

√
(σx,i + βV) ‖âi‖2

2, we then have

n∑

i,j=1

(σx,i+βV)‖âi‖2
2 â
>
i (σx,j+βV)‖âj‖2

2 âj =

∥∥∥∥∥
n∑

i=1

(σx,i+βV)‖âi‖2
2 âi

∥∥∥∥∥

2

2

=
∥∥B>v

∥∥2

2

(i)

≤ ‖v‖2
2 ,

where inequality (i) follows from the fact that v>Pv ≤ ‖v‖2
2 for any orthogonal projection

matrix P . Equation (D.42a) implies that v2
i = (σx,i + βV) θ2

x,i. Using Lemma E.5(e), we find
that

‖v‖2
2 =

n∑

i=1

(σx,i + βV) θ2
x,i ≤

√
nd.



Appendix D. Content Deferred From Chapter 6 For The Vaidya Walk 284

Bounding N2: We see that

n∑

i,j=1

(σx,i + βV) (σx,j + βV)
(
â>i âj

)3 (C−S)

≤
n∑

i,j=1

(σx,i + βV) (σx,j + βV)
(
â>i âj

)2 ‖âi‖2 ‖âj‖2

(eqns.(D.42a),(D.42b))

≤
n∑

i,j=1

(σx,i + βV) (σx,j + βV) θ2
x,i,j

√
θx,iθx,j

(Lem. 6.1(j))

≤
√
n

d

n∑

i,j=1

(σx,i + βV) (σx,j + βV) θ2
x,i,j.

We now apply Lemma E.5(d) followed by Lemma E.5(c) to obtain the claimed bound on N2.

D.3.6.3 Proof of bound (D.17c)

Let ci,j =
(âi + âj)

2
for i, j ∈ [n]. Using Isserlis’ theorem for Gaussian moments, we obtain

E

(
n∑

i,j=1

σ2
x,i,j

(
c>i,jξ

)3

)2

=
n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,lE

(
c>i,jξ

)3 (
c>k,lξ

)3

= 9
n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,l‖ci,j‖2

2 ‖ck,l‖
2
2

(
c>i,jck,l

)

︸ ︷︷ ︸
=: C1

+6
n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,l

(
c>i,jck,l

)3

︸ ︷︷ ︸
=: C2

We claim that C1 ≤
√
nd and C2 ≤

√
nd. Assuming the claims as given, the result follows

using similar arguments as in the previous part. We now bound Ci, i = 1, 2, using arguments
similar to the ones used in Section D.3.6.2 to bound Ni, i = 1, 2, respectively. The following
bounds on ‖ci,j‖2

2 are used in the arguments that follow:

‖ci,j‖2
2

SSI

≤ 1

2

(
‖âi‖2

2 + ‖âj‖2
2

)
=

1

2
(θx,i + θx,j) (D.45a)

Lem. 6.1(j)

≤
√
n

d
. (D.45b)

Bounding C1: Let B be the same n × d matrix as in the proof of previous part with
its i-th row given by

√
(σx,i + βV)â>i . Define the vector u ∈ Rd with entries given by
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ui =
∑n

j=1 σ
2
x,i,j ‖ci,j‖2

2/(σx,i + βV)1/2. We have

n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,l ‖ci,j‖2

2 ‖ck,l‖
2
2

(
c>i,jck,l

)
≤
∥∥∥∥∥

n∑

i,j=1

σ2
x,i,j ‖ci,j‖2

2 ci,j

∥∥∥∥∥

2

2

(SSI)

≤ 1

2



∥∥∥∥∥

n∑

i,j=1

σ2
x,i,j ‖ci,j‖2

2 âi

∥∥∥∥∥

2

2

+

∥∥∥∥∥
n∑

i,j=1

σ2
x,i,j ‖ci,j‖2

2 âj

∥∥∥∥∥

2

2




=
∥∥B>u

∥∥2

2

(i)

≤ ‖u‖2
2 ,

where inequality (i) follows from the fact that v>Pv ≤ ‖v‖2
2 for any orthogonal projection

matrix P . It is left to bound the term u2
i . We see that

u2
i =

1

σx,i + βV

n∑

j,k=1

σ2
x,i,jσ

2
x,i,k ‖ci,j‖2

2 ‖ci,k‖
2
2

(bnd. (D.45b))

≤
√
n

d

1

σx,i + βV

n∑

j,k=1

σ2
x,i,jσ

2
x,i,k ‖ci,j‖2

2

(Lem. E.5(a))

≤
√
n

d

σx,i
σx,i + βV

n∑

j=1

σ2
x,i,j ‖ci,j‖2

2

(bnd. (D.45a))

≤
√
n

d

n∑

j=1

σ2
x,i,j

θx,i + θx,j
2

.

Now, summing over i and using symmetry of indices i, j, we find that

‖u‖2
2 ≤

√
n

d

n∑

i=1

n∑

j=1

σ2
x,i,jθx,i

(Lem. E.5(a))
=

√
n

d

n∑

i=1

σx,iθx,i
(Lem. E.5(c))

≤
√
nd,

thereby implying that C1 ≤
√
nd.

Bounding C2: Using the Cauchy-Schwarz inequality and the bound (D.45b), we find that

n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,l

(
c>i,jck,l

)3 ≤
n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,l

(
c>i,jck,l

)2 ‖ci,j‖2 ‖ck,l‖2

≤
√
n

d

n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,l

(
c>i,jck,l

)2
.

Using SSI and the symmetry of pairs of indices (i, j) and (k, l), we obtain

n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,l

(
c>i,jck,l

)2 ≤
n∑

i,j,k,l=1

σ2
x,i,jσ

2
x,k,l

(
â>i âk

)2
=

n∑

i,k=1

σx,iσx,k
(
â>i âk

)2
.
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The resulting expression can be bounded as follows:

n∑

i,k=1

σx,iσx,k
(
â>i âk

)2(eqn.(D.42b))
=

n∑

i,k=1

σx,iσx,kθ
2
x,i,k

(Lem. E.5(d))

≤
n∑

i=1

σx,iθx,i
(Lem. E.5(c))

≤ n.

Putting the pieces together yields the claimed bound on C2.

D.3.6.4 Proof of bound (D.17d)

Observe that â>i ξ ∼ N (0, θx,i) and hence E
(
â>i ξ
)8

= 105 θ4
x,i. Thus we have

E

(
n∑

i=1

σx,i
(
â>i ξ
)4

)2
C−S

≤
n∑

i,j=1

σx,iσx,j

(
E
(
â>i ξ
)8
) 1

2
(
E
(
â>j ξ
)8
) 1

2

= 105
n∑

i,j=1

σx,iσx,jθ
2
x,iθ

2
x,j

= 105

(
n∑

i=1

σx,iθ
2
x,i

)2

(Lem. E.5(e))

≤ 105nd.

Applying the bound (D.41) with k = 4, t =
(
e
2

log(4/ε)
)2

yields the result. We also verify

that for ε ∈ (0, 1/15], we have t ≥ (2e)2

D.4 Proof of Lovász’s Result: Proposition 6.1

We begin by formally defining the conductance (Φ) of a Markov chain on (K,B(K)) with
arbitrary transition operator T and stationary distribution Π?. We assume that the operator
T is lazy and thereby the stationary distribution Π? is unique. Let Tx = T (δx) denote the
transition distribution at point x, then the conductance Φ is defined as

Φ := inf
S∈B(K)

Π?(S)∈(0,1/2)

Φ(S)

Π?(S)
where Φ(S) :=

∫

S
Tu(K ∩ Sc)dΠ?(u) for any S ⊆ K.

The conductance denotes the measure of the flow from a set to its complement relative to
its own measure, when initialized in the stationary distribution. If the conductance is high,
the following result shows that the Markov chain mixes fast.

Lemma D.8. Theorem 1.4 [167] For any β-warm start µ0, the mixing time of the Markov
chain with conductance Φ is bounded as

∥∥T k(µ0)− Π?
∥∥
TV
≤
√
β

(
1− Φ2

2

)k
≤
√
β exp

(
−kΦ2

2

)
.
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Note that this result holds for a general distribution Π? although we apply for uniform
Π?. The result can be derived from Cheeger’s inequality for continuous-space discrete-time
Markov chain and elementary results in Calculus. See, e.g., Theorem 1.4 and Corollary 1.5
in the paper [167] for a proof. For ease in notation define K\S := K ∩ Sc. We now state a
key isoperimetric inequality.

Lemma D.9 (Theorem 6 [163]). For any measurable sets S1,S2 ⊆ K, we have

vol(K\S1\S2) · vol(K) ≥ bK(S1,S2) · vol(S1) · vol(S2),

where bK(S1,S2) := infx∈S1,y∈S2 bK(x, y).

Since Π? is the uniform measure on K, this lemma implies that

Π?(K\S1\S2) ≥ bK(S1,S2) · Π?(S1) · Π?(S2). (D.46)

In fact, such an inequality holds for an arbitrary log-concave distribution [168]. In words,
the inequality says that for a bounded convex set any two subsets which are far apart, can
not have a large volume. Taking these lemmas as given, we now complete the proof.

Proof of Theorem 6.1: We first bound the conductance of the Markov chain using the
assumptions of the lemma. From Lemma D.8, we see that the Markov chain mixes fast if all
the sets S have a high conductance Φ(S). We claim that

Φ ≥ ρ∆

64
, (D.47)

from which the proof follows by applying Lemma D.8. We now prove the claim (D.47) along
the lines of Theorem 11 in the paper [163]. In particular, we show that under the assumptions
in the lemma, the sets with bad conductance are far apart and thereby have a small measure
under Π?, whence the ratio Φ(S)/Π?(S) is not arbitrarily small. Consider a partition S1,S2

of the set K such that S1 and S2 are measurable. To prove claim (D.47), it suffices to show
that

1

vol(K)

∫

S1

Tu(S2)du ≥ ρ∆

64
·min {Π?(S1),Π?(S2)} , (D.48)

Define the sets

S ′1 :=

{
u ∈ S1

∣∣∣∣T̃u(S2) <
ρ

2

}
, S ′2 :=

{
v ∈ S2

∣∣∣∣T̃v(S1) <
ρ

2

}
, and S ′3 := K\S ′1\S ′2.

(D.49)



Appendix D. Content Deferred From Chapter 6 For The Vaidya Walk 288

Case 1: If we have vol(S ′1) ≤ vol(S1)/2 and consequently vol(K\S ′1) ≥ vol(S1)/2, then

∫

S1

Tu(S2)du
(i)

≥ 1

2

∫

S1\S′1
T̃u(S2)du

(ii)

≥ ρ

4
vol(S1)

(iii)

≥ ρ∆

4
·min {vol(S1), vol(S2)} ,

which implies the inequality (D.48) since Π? is the uniform measure on K. In the above
sequence of inequalities, step (i) follows from the definition of the kernel T , step (ii) follows
from the definition of the set S ′1 (D.49) and step (iii) from the fact that ∆ < 1. Dividing
both sides by vol(K) yields the inequality (D.48) and we are done.

Case 2: It remains to establish the inequality (D.48) for the case when vol(S ′i) ≥ vol(Si)/2
for each i ∈ {1, 2}. Now for any u ∈ S ′1 and v ∈ S ′2 we have

∥∥∥T̃u − T̃v
∥∥∥

TV
≥ T̃u(S1)− T̃v(S1) = 1− T̃u(S2)− T̃v(S1) > 1− ρ,

and hence by assumption we have bK(S ′1,S ′2) ≥ ∆. Applying Lemma D.9 and the definition
of S ′3 (D.49) we find that

vol(S ′3) · vol(K) ≥ ∆ · vol(S ′1) · vol(S ′2) ≥ ∆

4
· vol(S1) · vol(S2). (D.50)

Using this inequality and the fact that for any x ∈ [0, 1] we have x(1−x) ≥ min {x, (1− x)} /2
we obtain that

Π?(S ′3) ≥ ∆

4
· Π?(S1) · Π?(S2) ≥ ∆

8
min {Π?(S1),Π?(S2)} . (D.51)

We claim that
∫

S1

Tu(S2)du =

∫

S2

Tv(S1)dv. (D.52)

Assuming the claim as given, we now complete the proof. Using the equation (D.52), we
have

1

vol(K)

∫

S1

Tu(S2)du =
1

2 vol(K)

(∫

S1

Tu(S2)du+

∫

S2

Tv(S1)dv

)

(i)

≥ 1

2 vol(K)

(
1

2

∫

S1\S′1
T̃u(S2)du+

1

2

∫

S2\S′2
T̃v(S2)dv

)

(ii)

≥ ρ

8

vol(S ′3)

vol(K)
(iii)

≥ ρ∆

64
min {Π?(S1),Π?(S2)} ,
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where step (i) follows from the definition of the kernel T , step (ii) follows from the definition
of the set S ′3 (D.49) and step (iii) follows from the inequality (D.51). Putting together the
pieces yields the claim (D.47).

It remains to prove the claim (D.52). We make use of the following result

Φ(S) = Φ(K\S) for any measurable S ⊆ K. (D.53)

Using equation (D.53) and noting that S1 = K\S2, we have

1

vol(K)

∫

S1

Tu(S2)du =

∫

S1

Tu(S2)π?(u)du = Φ(S1) = Φ(K\S1) =
1

vol(K)

∫

S2

Tv(S1)dv,

which yields equation (D.52).

Proof of result (D.53): Note that
∫
K Tu(S)dΠ?(u) = Π?(S). Thus, we have

Φ(K\S) =

∫

K\S
Tu(S)dΠ?(u) =

∫

K
Tu(S)dΠ?(u)−

∫

S
Tu(S)dΠ?(u) = Π?(S)−

∫

S
Tu(S)dΠ?(u).

Using the fact that 1− Tu(S) = Tu(K\S), we obtain

Π?(S)−
∫

S
Tu(S)dΠ?(u) =

∫

S
dΠ?(u)−

∫

S
Tu(S)dΠ?(u) =

∫

S
Tu(K\S)dΠ?(u) = Φ(S),

thereby yielding the claim (D.53).
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Appendix E

Content Deferred From Chapter 6 For
The John Walk

In this chapter, we provide the technical content related to John walk from the main text.
We recap some ideas and notation in Appendix E.1, introduce some auxiliary results in
Appendix E.2, and then prove Theorem 6.2 in Appendix E.3. We provide the proofs of the
auxiliary results in Appendices E.4 and E.5.

E.1 Notation and recap

We recap the key ideas of the John walk for convenience. We have designed a new pro-
posal distribution by making use of an optimal set of weights to define the new covariance
structure for the Gaussian proposals, where optimality is defined with respect to a convex
program (E.1). The optimality condition is closely related to the problem of finding the
largest ellipsoid at any interior point of the polytope, such that the ellipsoid is contained
within the polytope. This problem of finding the largest ellipsoid was first studied by John
Fritz [133] in 1948 who showed that each convex body in Rd contains a unique ellipsoid
of maximal volume. More recently, Lee and Sidford [152] make use of approximate John
Ellipsoids to improve the convergence rate of interior point methods for linear programming.
We refer the readers to their paper for more discussion about the use of John Ellipsoids for
optimization problems. In this work, we make use of these ellipsoids for designing sampling
algorithms with better theoretical bounds on the mixing times.

Let ζx,i/(bi − a>i x)2 denote the weight multiplied with aia
>
i . Then the vector ζx =

(ζx,1, . . . , ζx,n)> is computed by solving the following optimization problemma:

ζx = arg min
w∈Rn

cx (w) :=
n∑

i=1

wi −
1

αJ

log det
(
A>S−1

x WαJS−1
x A

)
− βJ

n∑

i=1

logwi, (E.1)
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where the parameters αJ, βJ are given by

αJ = 1− 1

log2 (2n/d)
and βJ =

d

2n
,

and W denotes an n × n diagonal matrix with Wii = wi for each i ∈ [n]. In particular, for
our proposal the inverse covariance matrix is proportional to Jx, where

Jx =
n∑

i=1

ζx,i
aia
>
i

(bi − a>i x)2
. (E.2)

where κ := κn,d = log2(2n/d) = (1− αJ)−1.
Recall that for John walk with parameter r

d3/4κ2 , the proposals at state x are drawn from

the multivariate Gaussian distribution given by N
(
x, r2

d3/2κ4J
−1
x

)
, which we denote by PJ

x .

In particular, the proposal density at point x ∈ int (K) is given by

px(z) := p(x, z) =
√

det Jx

(
κ4d3/2

2πr2

)d/2
exp

(
−κ

4d3/2

2r2
(z − x)>Jx(z − x)

)
. (E.3)

E.2 Auxiliary results

We begin by proving basic properties of the weights ζx which are used throughout the
remainder of the proofs. For x ∈ int (K) , w ∈ Rn

++, define the projection matrix Υx,w as
follows

Υx,w = Wα/2Ax(A
>
xW

αAx)
−1A>xW

α/2, (E.4)

where Ax = S−1
x A and W is the n× n diagonal matrix with i-th diagonal entry given by wi.

Also, let

σx,i := (Υx,ζx)ii for x ∈ int (K) and i ∈ [n]. (E.5)

Define the John slack sensitivity θJ
x as

θx := θJ
x :=

(
a>1 J

−1
x a1

s2
x,1

, . . . ,
a>n J

−1
x an
s2
x,n

)>
for all x ∈ int (K) . (E.6)

Further, for any x ∈ int (K), define the John local norm at x as

‖·‖Jx : v 7→
∥∥J1/2

x v
∥∥

2
=

√√√√
n∑

i=1

ζx,i
(a>i v)2

s2
x,i

. (E.7)

We now list some basic properties of the weights ζx and the local sensitivity θx.
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Lemma E.1. For any x ∈ int (K), the following properties are true:

(a) (Implicit weight formula) ζx,i = σx,i + βJ for all i ∈ [n],

(b) (Uniformity) ζx,i ∈ [βJ, 1 + βJ] for all i ∈ [n],

(c) (Total size)
∑n

i=1 ζx,i = 3d/2, and

(d) (Slack sensitivity) θx,i ∈ [0, 4] for all i ∈ [n].

Lemma E.1 follows from Lemmas 14 and 15 by Lee and Sidford [152] and thereby we omit
its proof.

Next, we state a key lemma that is crucial for proving the convergence rate of John walk.
In this lemma, we provide bounds on difference in total variation norm between the proposal
distributions of two nearby points.

Lemma E.2. There exists a continuous non-decreasing function h : [0, 1/4] → R+ with
h(1/30) ≥ 10−5, such that for any ε ∈ (0, 1/30], the John walk with r ∈ [0, h(ε)] satisfies

dTV

(
PJ
x ,PJ

y

)
≤ ε, for all x, y ∈ int (K) such that ‖x− y‖Jx ≤

εr

2κ2d3/4
, and

(E.8a)

dTV

(
TJohn(δx),PJ

x

)
≤ 5ε, for all x ∈ int (K). (E.8b)

See Section E.4 for its proof.
With these lemmas in hand, we are now ready to prove Theorem 6.2.

E.3 Proof of Theorem 6.2

The proof is similar to the proof of Theorem 1, and relies on the Lovász’s Lemma. Here
onwards, we use the following simplified notation

Tx = TJohn(δx),Px = PJ
x and ‖·‖x = ‖·‖Jx .

In order to invoke Lovász’s Lemma, we need to show that for any two points x, y ∈ int (K)
with small cross-ratio bK(x, y), the TV-distance dTV

(
Tx, Ty

)
is also small.

We proceed with the proof in two steps: (A) first, we relate the cross-ratio bK(x, y)
to the John local norm of x − y at x, and (B) we then use Lemma E.2 to show that if
x, y ∈ int (K) are close in the John local-norm, then the transition kernels Tx and Ty are
close in TV-distance.
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Step (A): We claim that for all x, y ∈ int (K), the cross-ratio can be lower bounded as

bK(x, y) ≥ 1√
3d/2

‖x− y‖x . (E.9)

From the arguments in the proof of Theorem 1 (proof for the Vaidya Walk), we have

bK(x, y) ≥ max
i∈[n]

∣∣∣∣
a>i (x− y)

sx,i

∣∣∣∣ . (E.10)

Using the fact that maximum of a set of non-negative numbers is greater than the weighted
mean of the numbers and Lemma E.1, we find that

bK(x, y) ≥

√√√√ 1∑n
i=1 ζx,i

n∑

i=1

ζx,i
(a>i (x− y))2

s2
x,i

=
‖x− y‖x√

3d/2
,

thereby proving the claim (E.9).

Step (B): By the triangle inequality, we have

dTV

(
Tx, Ty

)
≤ dTV

(
Tx,Px

)
+ dTV

(
Px,Py

)
+ dTV

(
Py, Ty

)
.

Using Lemma E.2, we obtain that

dTV

(
Tx, Ty

)
≤ 11ε, ∀x, y ∈ int (K) such that ‖x− y‖x ≤

εr

2κ2d3/4
.

Consequently, the John walk satisfies the assumptions of Lovász’s Lemma with

∆ :=
1√
3d/2

· εr

2κ2d3/4
and ρ := 1− 11ε.

Plugging in ε = 1/30, r = 10−5, we obtain the claimed upper bound of O
(
κ4d5/2

)
on the

mixing time of the random walk.

E.4 Proof of Lemma E.2

We prove the lemma for the following function,

h(ε) = min





1

25
√

1 +
√

2 log(4/ε)
,

ε(
2
√

32γ1,ε

) ,
√

ε

386
√

24γ2,ε

,
ε

5
√

60γ3,ε

,

√
ε

8
√

1680γ4,ε

,

√
ε

40
(
γ2,εγ6,ε

√
24
√

15120
)1/2

,

√
ε

204800γ2,ε

√
24 log(32/ε)



 .

where γ1,ε = log(2/ε)and γk,ε = (2e/k · log (16/ε))k/2 for k = 2, 3, 4 and 6. A numerical
calculation shows that h(1/30) ≥ 10−5.

We now prove the two parts (E.8a) (E.8b) of the Lemma separately.
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E.4.1 Proof of claim (E.8a)

Applying Pinsker’s inequality, and plugging in the closed formed expression for the KL
divergence between two Gaussian distributions we find that

dTV

(
Px,Py

)2 ≤ 2 KL(Py‖Px) = trace(J−1/2
x JyJ

−1/2
x )−d−log det(J−1/2

x JyJ
−1/2
x ) +

κ4d3/2

r2
‖x−y‖2

x

=
d∑

i=1

(
λi − 1 + log

1

λi

)
+
κ4d3/2

r2
‖x− y‖2

x , (E.11)

where λ1, . . . , λd > 0 denote the eigenvalues of the matrix J
−1/2
x JyJ

−1/2
x . To bound the

expression (E.11), we make use of the following lemma:

Lemma E.3. For any scalar t ∈ [0, 1/64] and pair of points x, y ∈ int (K) such that
‖x− y‖x ≤ t/κ2, we have

(
1− 48t+ 4t2

)
Id � J−1/2

x JyJ
−1/2
x �

(
1 + 48t+ 4t2

)
,

where � denotes ordering in the PSD cone and Id denotes the d-dimensional identity matrix.

See Section E.5.3 for the proof of this lemma.
For ε ∈ (0, 1/30] and r = 10−5, we have t = εr/(2d3/4) ≤ 1/64, whence the eigenvalues

{λi, i ∈ [d]} can be sandwiched as

1− 24εr

d3/4
+
ε2r2

d3/2
≤ λi ≤ 1 +

24εr

d3/4
+
ε2r2

d3/2
for all i ∈ d. (E.12)

We are now ready to bound the TV distance between Px and Py. Using the bound (E.11)
and the inequality log γ ≤ γ − 1, valid for γ > 0, we obtain

dTV

(
Px,Py

)2 ≤
d∑

i=1

(
λi − 2 +

1

λi

)
+
κ4d3/2

r2
‖x− y‖2

x .

Using the assumption that ‖x− y‖x ≤ εr/
(
2κ2d3/4

)
, and plugging in the bounds (E.12) for

the eigenvalues {λi, i ∈ [d]}, we find that

d∑

i=1

(
λi − 2 +

1

λi

)
+
κ4d3/2

r2
‖x− y‖2

x ≤
2000ε2r2

√
d

+
ε2

4
.

In asserting this inequality, we have used the facts that

1

1− 24γ + γ2
≤ 1 + 24γ + 1000γ2, and

1

1 + 24γ + γ2
≤ 1− 24γ + 1000γ2 for all γ ∈

[
0, 1

100

]
.

Note that for any r ∈ [0, 1/100], we have that 2000r2/
√
d ≤ 1/2. Putting the pieces together

yields dTV

(
Px,Py

)
≤ ε, as claimed.
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E.4.2 Proof of claim (E.8b)

We have

dTV

(
Px, Tx

)
≤ 3

2
Px(Kc)
︸ ︷︷ ︸

=: S1

+ 1− Ez∼Px
[
min

{
1,
pz(x)

px(z)

}]

︸ ︷︷ ︸
=: S2

, (E.13)

where Kc denotes the complement of K. We now show that S1 ≤ ε and S2 ≤ 4ε, from which
the claim follows.

Bounding the term S1: Note that for z ∼ N (x, r2

κ2d3/2J
−1
x ), we can write

z
d
= x+

r

κd3/4
J−1/2
x ξ, (E.14)

where ξ ∼ N (0, Id) and
d
= denotes equality in distribution. Using equation (E.14) and

definition (E.6) of θx,i, we obtain the bound

(
a>i (z − x)

)2

s2
x,i

=
r2

κ2d3/2

[
a>i J

−1/2
x ξ

sx,i

]2
(i)

≤ r2

κ2d3/2
θx,i ‖ξ‖2

2

(ii)

≤ 4r2

d
‖ξ‖2

2 , (E.15)

where step (i) follows from Cauchy-Schwarz inequality, and step (ii) from part (d) of
Lemma E.1. Define the events

E :=

{
r2

d
‖ξ‖2

2 <
1

4

}
and E ′ := {z ∈ int (K)} .

Inequality (E.15) implies that E ⊆ E ′ and hence P [E ′] ≥ P [E ]. Using a standard Gaus-

sian tail bound and noting that r ≤ 1/2

1+
√

2/d log(2/ε)
, we obtain P [E ] ≥ 1 − ε/2 and whence

P [E ′] ≥ 1− ε/2. Thus, we have shown that P [z /∈ K] ≤ ε/2 which implies that S1 ≤ ε.

Bounding the term S2: By Markov’s inequality, we have

Ez∼Px
[
min

{
1,
pz(x)

px(z)

}]
≥ αP [pz(x) ≥ αpx(z)] for all α ∈ (0, 1]. (E.16)

By definition (E.3) of px, we obtain

pz(x)

px(z)
= exp

(
−d

3/2κ4

2r2

(
‖z − x‖2

z − ‖z − x‖
2
x

)
+

1

2
(log det Jz − log det Jx)

)
.

The following lemma provides us with useful bounds on the two terms in this expression,
valid for any x ∈ int (K).
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Lemma E.4. For any ε ∈ (0, 1
4
] and r ∈ (0, h(ε)], we have

Pz∼Px
[

1

2
log det Jz −

1

2
log det Jx ≥ −ε

]
≥ 1− ε, and (E.17a)

Pz∼Px
[
‖z − x‖2

z − ‖z − x‖
2
x ≤ 2ε

r2

κ4d3/2

]
≥ 1− ε. (E.17b)

We provide the of this lemma in Section E.5.4.
Using Lemma E.4, we now complete the proof of the Theorem 6.2. For r ≤ h(ε), we

obtain

pz(x)

px(z)
≥ exp (−2ε) ≥ 1− 2ε

with probability at least 1 − 2ε. Substituting α = 1 − 2ε in inequality (E.16) yields that
S2 ≤ 4ε, as claimed.

E.5 Proof of Lemmas E.3 and E.4

We first collect some additional notation, and state several technical lemmas in Appen-
dices E.5.1 and E.5.2 that we then use to prove Lemmas E.3 and E.4 in Appendices E.5.3
and E.5.4 respectively.

E.5.1 Deterministic expressions and bounds

We begin by summarizing a few key properties of various terms involved in our analysis. Let
Σx,w be an n× n diagonal matrix defined as

Σx,w = diag (σx,w,i, . . . , σx,w,n) where σx,ζx,w,i = (Υx,w)ii, i ∈ [n]. (E.18a)

Let Υ
(2)
x,w denote the hadamard product of Υx,w with itself. Further define

Λx,w := Σx,w −Υ(2)
x,w. (E.18b)

Lee and Sidford [152] proved that the weight vector ζx is the unique solution of the following
fixed point equation:

wi = σx,w,i + βJ, i ∈ [n]. (E.19a)

To simplify notation, we use the following shorthands:

σx = σx,ζx , Υx = Υx,ζx , Υ(2)
x = Υ

(2)
x,ζx

, Σx = Σx,ζx , Λx = Λx,ζx . (E.19b)

Thus, we have the following relation:

ζx = σx,ζx + βJ1 = σx + βJ1. (E.19c)

Next, we collect some properties of various terms defined above.
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Lemma E.5. For any x ∈ int (K), the following properties hold:

(a) σx,i =
∑n

j=1 σ
2
x,i,j =

∑n
j,k=1 σx,i,jσx,j,kσx,k,i for each i ∈ [n],

(b) Σx � Υ
(2)
x ,

(c)
∑n

i=1 ζx,iθx,i = d,

(d) θx,i =
∑n

j=1 ζx,iθ
2
x,i,j, for each i ∈ [n],

(e) θ>x Σxθx =
∑n

i=1 θ
2
x,iζx,i ≤ 4d, and

(f) βJ∇2Fx � Jx � (1 + βJ)∇2Fx.

The proof is based on the ideas similar to Lemma 5 in the proof of the Vaidya walk and
is thereby omitted.

The next lemma relates the change in slackness sx,i = bi − a>i x to the John-local norm
at x.

Lemma E.6. For all x, y ∈ int (K), we have

max
i∈[n]

∣∣∣∣1−
sy,i
sx,i

∣∣∣∣ ≤ 2 ‖x− y‖x .

Proof. For any pair x, y ∈ int (K) and index i ∈ [n], we have

(
a>i (x− y)

)2 (i)

≤ ‖J−
1
2

x ai‖2
2 ‖J

1
2
x (x− y)‖2

2 = θx,is
2
x,i ‖x− y‖2

x

(ii)

≤ 4s2
x,i ‖x− y‖2

x ,

where step (i) follows from the Cauchy-Schwarz inequality, and step (ii) uses the bound θx,i
from Lemma E.1(d). Noting the fact that a>i (x − y) = sy,i − sx,i, the claim follows after
simple algebra.

We now state various expressions and bounds for the first and second order derivatives
of the different terms. To lighten notation, we introduce some shorthand notation. For any
y ∈ int (K) and h ∈ Rd, define the following terms:

dy,i =
a>i h

sy,i
, i ∈ [n] Dy = diag(dy,1, . . . , dy,n), (E.20a)

fy,i =
∇ζ>y,ih
ζy,i

, i ∈ [n] Fy = diag(fy,1, . . . , fy,n), (E.20b)

`y,i =
1

2
h>∇2ζy,ih/ζy,i, i ∈ [n] Ly = diag(`y,1, . . . , `y,n), (E.20c)

ρy := (Gy − αΛy)



`y,1

...
`y,n


 , (E.20d)
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where for brevity in our notation we have omitted the dependence on h. The choice of h is
specified as per the context. Further, we define for each x ∈ int (K) and i ∈ [n]

ϕx,i :=
ζx,i
s2
x,i

, and Ψx :=
1

2
log det Jx, (E.21)

âx,i :=
J
−1/2
x ax,i
s2
x,i

, and b̂x,i := J−1/2
x AxΛx (Gx − αΛx)

−1 ei. (E.22)

Next, we state expressions for gradients of ζ, ϕ and Ψ and bounds for directional Hessian of
σ, ϕ and Ψ which are used in various Taylor’s series expansions and bounds in our proof.

Lemma E.7 (Calculus). For any y ∈ int (K) and h ∈ Rn, the following relations hold;

(a) Gradient of ζ: (fy,1, . . . , fy,n)> = 2 (Gy − αΛy)
−1 ΛyAyh;

(b) Hessian of ζ:

‖ρy‖1 ≤ 56κ2

n∑

i=1

ζy,id
2
y,i. (E.23)

(c) Gradient of Ψ: ∇Ψ>h = θ>y Gy

(
In + (Gy − αΛy)

−1 Λy

)
Ayh.

(d) Gradient of ϕ: ∇ϕ>y,ih = ϕy,i (2dy,i + fy,i).

(e) Bound on ∇2Ψ: 1
2

∣∣h>(∇2Ψ)h
∣∣ ≤ 1

2

[∑n
i=1 ζy,i θy,i

[
9 d2

y,i + 4f 2
y,i

]
+ |∑n

i=1 ζy,i θy,i`y,i|
]

(f) Bound on ∇2ϕ:

∣∣∣∣∣
n∑

i=1

d2
y,is

2
y,i

1

2
h>∇2ϕy,ih

∣∣∣∣∣ ≤ 3
n∑

i=1

ζy,id
4
y,i + 2

∣∣∣∣∣
n∑

i=1

ζy,id
3
y,ify,i

∣∣∣∣∣+

∣∣∣∣∣
n∑

i=1

ζy,id
2
y,i`y,i

∣∣∣∣∣ .

The proof is provided in Section E.5.5.1.
Next, we state some results that would be useful to provide explicit bounds for various

terms like fy, `y and ρy that appear in the statements of the previous lemma. Note that the
following results do not have a corresponding analog in our analysis of the Vaidya walk.

Lemma E.8. For any c1, c2 ≥ 0, y ∈ int (K), we have

(
c1In + c2Λy (Gy − αΛy)

−1)Gy

(
c1In + c2 (Gy − αΛy)

−1 Λy

)
� (c1 + c2)2 κ2Gy,

where � denotes the ordering in the PSD cone.
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Lemma E.9. Let µy denote the n×n matrix (Gy − αΛy)
−1Gy, and let µy,i,j denote its ij-th

entry. Then for each i ∈ [n] and y ∈ int (K), we have

µy,i,i ∈ [0, κ], and, (E.24a)

∑

j 6=i,j∈[n]

µ2
y,i,j

ζy,j
≤ κ3. (E.24b)

Corollary E.1. Let ei ∈ Rn denote the unit vector along i-th axis. Then for any y ∈ int (K),
we have

∥∥Gy (Gy − αΛy)
−1 ei

∥∥
1
≤ 3
√
dκ3/2, for all i ∈ [n]. (E.25)

Consequently, we also have ||| (Gy − αΛy)
−1Gy|||∞ ≤ 3

√
dκ3/2.

See Section E.5.5.2, E.5.5.3 and E.5.5.4 for the proofs of Lemma E.8, Lemma E.9 and
Corollary E.1 respectively.

E.5.2 Tail Bounds

We now collect lemmas that provide us with useful tail bounds.
We start with a result that shows that for a random variable z ∼ Px, the slackness sz,i

is close to sx,i with high probability and consequently the weights ζz,i are also close to ζx,i.
This result comes in handy for transferring the remainder terms in Taylor expansions to the
reference point (around which the series is being expanded).

Lemma E.10. For any point x ∈ int (K) and r ≤ 1

25·
√

1+
√

2 log(4/ε)
, we have

Pz∼Px
[
∀i ∈ [n],∀v ∈ xz, sx,i

sv,i
∈ [0.99, 1.01] and

ζx,i
ζv,i
∈ [0.96, 1.04]

]
≥ 1− ε/4 (E.26a)

See Section E.5.6.1 for the proof of this lemma.
Next, we state high probability results for some Gaussian polynomials. These results are

useful to bound various polynomials of the form
∑n

i=1 ζx,id
k
x,i, where dx,i = a>i (z − x)/sx,i

and z is drawn from the transition distribution for the John walk at point x.

Lemma E.11 (Gaussian moment bounds). To simplify notations, all subscripts on x are

omitted in the following statements. For any ε ∈ (0, 1/30], define γk,ε := γk = (2e/k · log (16/ε))k/2,
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for k = 2, 3, 4 and 6, then we have

P

[
n∑

i=1

ζi
(
â>i ξ
)2 ≤ γ2

√
24d

]
≥ 1− ε

16
, (E.27a)

P

[
n∑

i=1

ζi
(
â>i ξ
)3 ≤ γ3

√
60d1/2

]
≥ 1− ε

16
, (E.27b)

P

[
n∑

i=1

ζi
(
â>i ξ
)2
(
b̂>i ξ
)
≤ γ3

√
240κd1/2

]
≥ 1− ε

16
, (E.27c)

P

[
n∑

i=1

ζi
(
â>i ξ
)4 ≤ γ4

√
1680d

]
≥ 1− ε

16
, (E.27d)

P

[
n∑

i=1

ζi
(
â>i ξ
)6 ≤ γ6

√
15120d

]
≥ 1− ε

16
. (E.27e)

See Section E.5.6.2 for the proof.

E.5.3 Proof of Lemma E.3

As a direct consequence of Lemma E.6, for any x, y ∈ int (K) such that ‖x− y‖x ≤ t/κ2, we
have

max
i∈[n]

∣∣∣∣1−
sy,i
sx,i

∣∣∣∣ ≤
2t

κ2
. (E.28)

Bounding the terms in ∇2Fx one by one, we obtain
(

1− 2t

κ2

)2

∇2Fy � ∇2Fx �
(

1 +
2t

κ2

)2

∇2Fy.

We claim that

‖log ζy − log ζx‖∞ ≤ 16t. (E.29)

Assuming the claim as given at the moment, we now complete the proof. Putting the
result (E.29) in matrix form, we obtain that exp (−16t) In � G−1

x Gy � exp (16t) In, and
hence

exp (−16t) ζx,i ≤ ζy,i ≤ exp (16t) ζx,i. (E.30)

Consequently, using the definition of Jx we have,
(

1− 2t

κ2

)2

exp (−16t)

︸ ︷︷ ︸
γ`

Jx ≤ Jy ≤
(

1 +
2t

κ2

)2

exp (16t)

︸ ︷︷ ︸
γu

Jy.



Appendix E. Content Deferred From Chapter 6 For The John Walk 301

Letting γ = 2t, we obtain

γ` ≥ (1− γ)2 · exp (−8γ)
(i)

≥ 1− 24γ + γ2, and γu ≤ (1 + γ)2 · exp (8γ)
(ii)

≤ 1 + 24γ + γ2,

where inequalities (i) and (ii) hold since γ ≤ 1/24. Putting the pieces together, we find that

(
1− 48t+ 4t2

)
Jx � Jy �

(
1− 48t+ 4t2

)
Jx

for t ∈ [0, 1/48].
Now, we return to the proof of our earlier claim (E.29). We use an argument based on

the continuity of the function x 7→ log ζx. (Such an argument appeared in a similar scenario
in [152].) For λ ∈ [0, 1], define uλ = λy + (1− λ)x. Let

λmax := sup

{
λ ∈ [0, 1]

∣∣∣∣ ‖log ζuλ − log ζx‖∞ ≤ 16t

}
. (E.31)

It suffices to establish that λmax = 1. Note that λ = 0 is feasible on the RHS of equa-
tion (E.31) and hence λmax exists. Now for any λ ∈ [0, λmax] and i ∈ {1, . . . , n}, there exists
v on the segment uλx such that

|log ζuλ,i − log ζx,i| =
∣∣∣∣∣

(∇ζv,i
ζv,i

)>
(uλ − x)

∣∣∣∣∣
(i)

≤
∥∥G−1

v G′v (y − x)
∥∥
∞ = 2

∥∥(Gv − αΛv)
−1 ΛvAv (y − x)

∥∥
∞ .

where in step (i) we have used the fact that uλ− x = λ(y− x) and λ ∈ [0, 1]. We claim that

∥∥(Gv − αΛv)
−1 Λvu1

∥∥
∞ ≤ κ ‖u1‖∞ + 2κ2

∥∥G1/2
v u1

∥∥
2

for any u1 ∈ Rn. (E.32)

We prove the claim at the end of this section. We now derive bounds for the two terms on
the RHS of the equation (E.32) for u1 = Av(y − x). Note that

‖Av (y − x)‖∞ = max
i

∣∣∣∣
sy,i − sx,i

sv,i

∣∣∣∣ = max
i

∣∣∣∣
sy,i − sx,i
sx,i

∣∣∣∣
∣∣∣∣
sx,i
sv,i

∣∣∣∣
(i)

≤ 2t

κ2 (1− 2t/κ2)

(ii)

≤ 3t

κ2
.

Inequality (i) uses bound (E.28) and inequality (ii) follows by plugging in t ≤ 1/64. Next,
we have

∥∥G1/2
v Av (y − x)

∥∥2

2
=

n∑

i=1

ζx,i

(
a>i (y − x)

)2

s2
x,i

ζv,i
ζx,i

s2
v,i

s2
x,i

(i)

≤ ‖x− y‖2
x max

i∈[n]

ζv,i
ζx,i

s2
v,i

s2
x,i

(ii)

≤ t2

κ4

(
1 + (16t) + (16t)2

)(
1 +

2t

κ2

)2

(iii)

≤ 1.5t

κ4
,
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where step (i) follows from the definition of the local norm; step (ii) follows from bounds (E.28)
and (E.31) and the fact that ex ≤ 1 + x+ x2 for all x ∈ [0, 1/4]; and inequality (iii) follows
by plugging in t ≤ 1/64. Putting the pieces together, we obtain

‖log ζuλ − log ζx‖∞ ≤ 2(κ · 3t/κ2 + 2κ2 · 1.5t/κ4) ≤ 12t < 16t.

The strict inequality is valid for λ = λmax. Consequently, using the continuity of x 7→ log ζx,
we conclude that λmax = 1.

It is left to prove claim (E.32). Let v := (Gv − αΛv)
−1 Λvu1. which implies (Gv − αΛv) v =

Λvu1. Plugging the expression of Gv and Λv, we have

(
(1− α)Σv + βJIn + αΥ(2)

v

)
v =

(
Σv −Υ(2)

v

)
u1.

Writing component wise, we find that for any i ∈ [n], we have

|((1− α)σv,i + βJ) vi| ≤ α
∣∣e>i Υ(2)

v v
∣∣+ σv,i |u1,i|+

∣∣e>i Υ(2)
v u1

∣∣
(i)

≤ ασv,i
∥∥Σ1/2

v v
∥∥

2
+ σv,i ‖u1‖∞ + σv,i

∥∥Σ1/2
v u1

∥∥
2

(ii)

≤ ασv,i
∥∥G1/2

v v
∥∥

2
+ σv,i ‖u1‖∞ + σv,i

∥∥G1/2
v u1

∥∥
2

(iii)

≤ ασv,iκ
∥∥G1/2

v u1

∥∥
2

+ σv,i ‖u1‖∞ + σv,i
∥∥G1/2

v u1

∥∥
2
, (E.33)

where inequality (ii) from the fact that Σy � Gy and inequality (iii) from Lemma E.8 with
c1 = 0, c2 = 1. To assert inequality (i), observe the following

∣∣∣∣∣
n∑

j=1

σ2
y,i,jvj

∣∣∣∣∣ ≤
n∑

j=1

σ2
y,i,j |vj|

(a)

≤ σy,i

n∑

j=1

σy,j |vj|
(b)

≤ σy,i

n∑

j=1

√
σy,j |vj| = σy,i

∥∥Σ1/2
v v

∥∥
2
,

where step (a) follows from the fact that σ2
y,i,j ≤ σy,iσy,j, and step (b) from the fac that

σy,i ∈ [0, 1]. Dividing both sides of inequality (E.33) by ((1− α)σv,i + βJ) and observing
that σv,i/ ((1− α)σv,i + βJ) ≤ κ, and α ∈ [0, 1], yields the claim.

E.5.4 Proof of Lemma E.4

We prove Lemma E.4 in two parts: claim (E.17a) in Section E.5.4.1 and claim (E.17b) in
Section E.5.4.2.

E.5.4.1 Proof of claim (E.17a)

Using the second order Taylor expansion, we have

Ψz −Ψx = (z − x)>∇Ψx +
1

2
(z − x)>∇2Ψy (z − x) , for some y ∈ xz.
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We claim that for r ≤ h(ε), we have

P
[
(z − x)>∇Ψx ≥ −ε/2

]
≥ 1− ε/2, and (E.34a)

P
[

1

2
(z − x)∇2Ψy (z − x) ≥ −ε/2

]
≥ 1− ε/2. (E.34b)

Note that the claim (E.17a) follows from the above two claims.

Proof of bound (E.34a): We observe that

(z − x)>∇Ψx ∼ N
(

0,
r2

κ2n
∇Ψ>x J

−1
x ∇Ψx

)
.

Let Ex = In + (Gx − αΛx)
−1 Λx. Substituting the expression of ∇Ψx from Lemma E.7 (c)

and applying Cauchy-Schwarz inequality, we have that for any vector u ∈ Rd

u>∇Ψx∇Ψ>x u = (θ>xGxExAxu)2 ≤
(
u>A>xGxAxu

)
·
(
θ>xGxExG

−1
x ExGxθx

)
. (E.35)

Observe that

G1/2
x ExG

−1/2
x = In + (In − αG−1/2

x ΛxG
−1/2
x )−1(G−1/2

x ΛxG
−1/2
x ).

Now, using the intermediate bound (E.58) from the proof of Lemma E.8, we obtain that

In � G1/2
x ExG

−1/2
x � 2κIn,

and hence Gx � GxExG
−1
x ExGx � 4κ2Gx. Consequently, we have

θ>xGxExG
−1
x ExGxθx ≤ 4κ2θ>xGxθx = 4κ2

n∑

i=1

ζx,iθ
2
x,i ≤ 16κ2d,

where the last step follows from Lemma E.5. Putting the pieces together into equation (E.35),

we obtain ∇Ψx∇Ψ>x � 16κ2dJx whence J
−1/2
x ∇Ψx∇Ψ>x J

−1/2
x � 16κ2dId. Noting that the

matrix J
−1/2
x ∇Ψx∇Ψ>x J

−1/2
x has rank one, we have

∇Ψ>x J
−1
x ∇Ψx = trace

(
J−1/2
x ∇Ψx∇Ψ>x J

−1/2
x

)
≤ 16κ2d.

Using standard Gaussian tail bound, we have P
(

(z − x)>∇Ψx ≥ −
√

32γ1r
)
≥ 1−exp (−γ2

1) .

Choosing γ1 = log(2/ε), and observing that

r ≤ ε(
2
√

32γ1

) , (E.36)

yields the claim.



Appendix E. Content Deferred From Chapter 6 For The John Walk 304

Proof of bound (E.34b): In the following proof, we use h = z−x for definitions (E.20a)-
(E.20d). According to Lemma E.7(e), we have

∣∣∣∣
1

2
(z − x)>∇2Ψy (z − x)

∣∣∣∣ ≤
n∑

i=1

ζy,i θy,i

[
9

2
d2
y,i + 2f 2

y,i

]
+

1

2

∣∣∣∣∣
n∑

i=1

ζy,i θy,i`y,i

∣∣∣∣∣

We claim that

n∑

i=1

ζy,i θy,i

[
9

2
d2
y,i + 2f 2

y,i

]
+

1

2

∣∣∣∣∣
n∑

i=1

ζy,i θy,i`y,i

∣∣∣∣∣ ≤ 386
√
dκ4

n∑

i=1

ζy,id
2
y,i. (E.37)

Assuming the claim as given at the moment, we now complete the proof. Note that y is
some particular point on xz and its dependence on z is hard to characterize. Consequently,
we transfer all the terms with dependence on y, to terms with dependence on x only. We
have

n∑

i=1

ζy,id
2
y,i =

n∑

i=1

ζx,id
2
x,i

ζy,i
ζx,i

s2
x,i

s2
y,i︸ ︷︷ ︸

τy,i

.

We now invoke the following high probability bounds implied by Lemma E.10 and Lemma E.11 (E.27a)
respectively

P

[
sup

y∈xz,i∈[n]

τy,i ≤ 1.1

]
≥ 1− ε/4, and, P

[
n∑

i=1

ζx,i
(
â>x,iξ

)2 ≤ γ2

√
24d

]
≥ 1− ε/16.

(E.38)

Since h = z − x, we have that d2
x,i = r2

κ2d3/2

(
â>x,iξ

)2
. Consequently, for

r ≤
√

ε

386
√

24γ2

, (E.39)

with probability at least 1− ε/2, we have

∣∣∣∣
1

2
(z − x)>∇2Ψy (z − x)

∣∣∣∣
eqn. (E.37)

≤ 386
√
dκ4

n∑

i=1

ζy,id
2
y,i

hpb (E.38)

≤ ε,

which completes the proof.
We now turn to the proof of claim (E.37). First we observe the following relationship

between the terms dy,i and fy,i:

n∑

i=1

ζy,if
2
y,i

(i)
=4h>A>yΛy (Gy−αΛy)

−1Gy (Gy−αΛy)
−1ΛyAyh

(ii)

≤ 4κ2h>A>yGyAyh=4κ2

n∑

i=1

ζy,id
2
y,i,

(E.40)
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where step (i) follows by plugging in the definition of fy,i (E.20b) and step (ii) by invoking
Lemma E.8 with c1 = 0 and c2 = 1. Next, we relate the term on the LHS of equation (E.37)
involving `y,i to a polynomial in dy,i. Using Lemma E.7, we find that

∣∣∣∣∣
n∑

i=1

ζy,i θy,i`y,i

∣∣∣∣∣ =
∣∣∣
(
(Gy − αΛy)

−1Gyθy
)>

(Gy − αΛy) `y

∣∣∣ ≤

∥∥∥∥∥∥
(Gy − αΛy)

−1Gyθy︸ ︷︷ ︸
v1

∥∥∥∥∥∥
∞

∥∥∥∥∥∥∥
(Gy − αΛy) `y︸ ︷︷ ︸

ρy

∥∥∥∥∥∥∥
1

,

where the last step follows from the Holder’s inequality: for any two vectors u, v ∈ Rd, we
have that u>v ≤ ‖u‖∞ ‖v‖1. Substituting the bound for the norm ‖v1‖∞ from Corollary E.1
and the bound on ρy,i from Lemma E.7(b), we obtain that
∣∣∣∣∣
n∑

i=1

ζy,i θy,i`y,i

∣∣∣∣∣≤ 12
√
nκ3/2

n∑

i=1

[
7ζy,id

2
y,i+3ζy,if

2
y,i+

n∑

j=1

(
13d2

y,j+6f 2
y,j

)
Υ2
y,i,j

]
≤672

√
nκ4

n∑

i=1

ζy,id
2
y,i,

where the last step follows from Lemma E.5(a) and the bound (E.40). The claim now follows.

E.5.4.2 Proof of claim (E.17b)

Writing z = x+ tu, where t is a scalar and u is a unit vector in Rd, we obtain

‖z − x‖2
z − ‖z − x‖

2
x = t2

n∑

i=1

(
a>i u

)2
(ϕz,i − ϕx,i) .

Now, we use a Taylor’s series expansion for
∑n

i=1

(
a>i u

)2
(ϕz,i − ϕx,i) around the point x,

along the line u. There exists a point y ∈ xz such that
n∑

i=1

(
a>i u

)2
(ϕz,i − ϕx,i) =

n∑

i=1

(
a>i u

)2
(

(z − x)>∇ϕx,i +
1

2
(z − x)>∇2ϕy,i (z − x)

)
.

Note that the point y in this discussion is not the same as the point y used in previous
proofs, in particular in Section E.5.4.1. Multiplying both sides by t2, and using the shorthand

dx,i =
a>i (z−x)

sx,i
, we obtain

‖z−x‖2
z−‖z−x‖

2
x =

n∑

i=1

d2
x,is

2
x,i (z−x)>∇ϕx,i +

n∑

i=1

d2
x,is

2
x,i

1

2
(z−x)>∇2ϕy,i (z−x) . (E.41)

We claim that for r ≤ h(ε), we have

Pz∼T J
x

[
n∑

i=1

d2
x,is

2
x,i (z−x)>∇ϕx,i ≤ ε

r2

κ4d3/2

]
≥ 1− ε/2, and (E.42a)

Pz∼T J
x

[
sup
y∈xz

(
n∑

i=1

d2
x,is

2
x,i

1

2
(z−x)>∇2ϕy,i (z−x)

)
≤ ε

r2

κ4d3/2

]
≥ 1− ε/2. (E.42b)

We now prove each claim separately.



Appendix E. Content Deferred From Chapter 6 For The John Walk 306

Proof of bound (E.42a): Using Lemma E.7(d) and using h = z − x where z is given by
the relation (E.14), we find that

n∑

i=1

d2
x,is

2
x,i (z−x)>∇ϕx,i =

n∑

i=1

ζx,id
2
x,i (2dx,i + fx,i)

=
r3

d9/4κ6

n∑

i=1

ζx,i
(
â>x,iξ

)3
+

2r3

d9/4κ6

n∑

i=1

ζx,i
(
â>x,iξ

)2
(
b̂>x,iξ

)
(E.43)

Using high probability bounds for the two terms in equation (E.43) from Lemma E.11,
part (E.27b) and part (E.27c), we obtain that

∣∣∣∣∣
n∑

i=1

d2
x,is

2
x,i (z−x)>∇ϕx,i

∣∣∣∣∣ ≤
5
√

60γ3r
3

κ5d7/4
≤ ε

r2

κ4d3/2
,

with probability at least 1− ε/2. The last inequality uses the condition that

r ≤ ε

5
√

60γ3

. (E.44)

The claim now follows.

Proof of bound (E.42b): Note that dx,isx,i = a>i h = dy,isy,i for any h. Using this equality
for h = z − x, we find that

∣∣∣∣∣
n∑

i=1

d2
x,is

2
x,i

1

2
h>∇2ϕy,ih

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

d2
y,is

2
y,i

1

2
h>∇2ϕy,ih

∣∣∣∣∣
(i)

≤ 3
n∑

i=1

ζy,id
4
y,i

︸ ︷︷ ︸
C1

+2

∣∣∣∣∣
n∑

i=1

ζy,id
3
y,ify,i

∣∣∣∣∣
︸ ︷︷ ︸

C2

+

∣∣∣∣∣
n∑

i=1

ζy,id
2
y,i`y,i

∣∣∣∣∣
︸ ︷︷ ︸

C3

, (E.45)

where step (i) follows from Lemma E.7(f). We can write C1 as follows

n∑

i=1

ζy,id
4
y,i =

n∑

i=1

ζx,id
4
x,i

ζy,i
ζx,i

d4
y,i

d4
x,i

=
r4

n3κ8

n∑

i=1

ζx,i
(
â>x,iξ

)4 ζy,i
ζx,i

d4
y,i

d4
x,i

. (E.46)

Now, we claim the following:

C2 ≤ 2
r4

n3κ7
·

√√√√
[

n∑

i=1

ζx,i
(
â>x,iξ

)2 ζy,i
ζx,i

d2
y,i

d2
x,i

]
·
[

n∑

i=1

ζx,i
(
â>x,iξ

)6 ζy,i
ζx,i

d6
y,i

d6
x,i

]
, and, (E.47a)

C3 ≤ 56
r4

n3κ4.5

(
n∑

i=1

ζx,i
(
â>x,iξ

)2 ζy,i
ζx,i

d2
y,i

d2
x,i

)
max

i

(
â>x,iξ

)2 d
2
y,i

d2
x,i

+

√√√√
n∑

i=1

ζx,i
(
â>x,iξ

)4 ζy,i
ζx,i

d4
y,i

d4
x,i




(E.47b)
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Assuming the claims as given, we now complete the proof. Using Lemma E.10, we have

P
[
ζy,i
ζx,i

d6
y,i

d6
x,i

≤ 1.2

]
≥ 1− ε/4,

and consequently

3C1+2C2+C3 ≤
r4

d3κ4.5

[
4 ·

n∑

i=1

ζx,i(â
>
x,iξ)

4 + 10 ·
( n∑

i=1

ζx,i(â
>
x,iξ)

2 ·
n∑

i=1

ζx,i(â
>
x,iξ)

6

)1/2

+ 100 ·
n∑

i=1

ζx,i
(
â>x,iξ

)2 ·
(

max
i

(â>x,iξ)
2 +

( n∑

i=1

ζx,i(â
>
x,iξ)

4
)1/2
)]

,

(E.48)

with probability at least 1 − ε/4. Now, we observe that for all i ∈ [n] and x ∈ int (K), we
have

(
â>x,iξ

)
∼ N (0, θx,i) and θx,i ≤ 4.

Invoking the standard tail bound for maximum of Gaussian random variables, we obtain

P
[
max
i

∣∣(â>x,iξ
)∣∣ ≤ 8 ·

(√
log n+

√
log(32/ε)

)]
≥ 1− ε/16.

Using the fact that 2c1c2 ≥ c1 + c2 for all c1, c2 ≥ 1, we obtain

P
[
max
i

∣∣(â>x,iξ
)∣∣ ≤ 16 ·

√
log n ·

√
log(32/ε)

]
≥ 1− ε/16.

Combining this bound with the tail bounds for various Gaussian polynomials (E.27a),
(E.27d), (E.27e) from Lemma E.11, and substituting in inequality (E.48), we obtain that

∣∣∣∣∣
n∑

i=1

d2
x,is

2
x,i

1

2
h>∇2ϕy,ih

∣∣∣∣∣ ≤
r4

κ6.5d3

[
4 · γ4

√
1680d+ 10

(
γ2

√
24d · γ6

√
15120d

)1/2

+ 100 · γ2

√
24d ·

(
256 · log n · log(32/ε) +

(
γ4

√
1680d

)1/2
)]

with probability at least 1 − ε/2. In the above expression, the terms γi are a function of ε
as defined in Lemma E.11. In particular, γi := γi,ε = (2e/i · log(16/ε))i/2 for i ∈ {2, 3, 4, 6}.
Observing that 256 log(32/ε) ≥

(
γ4

√
1680

)1/2
, and that our choice of r satisfies

r2 ≤ min

{
ε

8
√

1680γ4

,
ε

40
(
γ2γ6

√
24
√

15120
)1/2

,
ε

204800γ2

√
24 log(32/ε)

}
, (E.49)
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we obtain ∣∣∣∣∣
n∑

i=1

d2
x,is

2
x,i

1

2
h>∇2ϕy,ih

∣∣∣∣∣ ≤
r2

κ4d3/2

[
ε

2
+
ε

4
+
ε

8

(
log n√
d

+ 1

)]
.

Asserting the additional condition
√
d ≥ log n, yields the claim.

It is now left to prove the bounds (E.47a) and (E.47b). We prove these bounds separately.

Bounding C2: Applying Cauchy-Schwarz inequality, we have
∣∣∣∣∣
n∑

i=1

ζy,id
3
y,ify,i

∣∣∣∣∣ ≤
(

n∑

i=1

ζy,if
2
y,i ·

n∑

i=1

ζy,id
6
y,i

)1/2

Using the bound (E.40), we obtain

n∑

i=1

ζy,if
2
y,i ≤ 4κ2

n∑

i=1

ζy,id
2
y,i = 4κ2

n∑

i=1

ζx,id
2
x,i

ζy,i
ζx,i

d2
y,i

d2
x,i

.

Substituting h = z − x where z is given by relation (E.14), we obtain that dx,i = r
d3/4κ

â>x,iξ,
and thereby

n∑

i=1

ζy,if
2
y,i ≤ 4κ2 r2

d3/2κ4

n∑

i=1

ζx,i(â
>
x,iξ)

2 ζy,i
ζx,i

d2
y,i

d2
x,i

.

Doing similar algebra, we obtain
∑n

i=1 ζy,id
6
y,i = r6

d9/2κ12

∑n
i=1 ζx,i

(
â>x,iξ

)6 ζy,i
ζx,i

d6
y,i

d6
x,i
. Putting the

pieces together yields the claim.

Bounding C3: Recall that ρy = (Gy − αΛy)`y (Lemma E.7) and µy = (Gy − αΛy)
−1Gy

(Lemma E.9). We have
∣∣∣∣∣
n∑

i=1

ζy,id
2
y,i`y,i

∣∣∣∣∣ = 1D2
yGy`y = 1D2

yGy(Gy − αΛy)
−1

︸ ︷︷ ︸
=:u>y

(Gy − αΛy)`y︸ ︷︷ ︸
ρy

.

Using the definition of uy and µy, we obtain

uy,i := e>i uy = e>i (Gy − αΛy)
−1GyD

2
y1 = e>i µyD

2
y1 = µy,i,id

2
y,i +

∑

j∈[n],j 6=i

µy,i,jd
2
y,j.

Consequently, we have

∣∣∣∣∣
n∑

i=1

uy,iρy,i

∣∣∣∣∣ ≤

=:C4︷ ︸︸ ︷
n∑

i=1

|ρy,i| ·
∣∣µy,i,id2

y,i

∣∣+

=:C5︷ ︸︸ ︷
n∑

i=1

|ρy,i| ·


 ∑

j∈[n],j 6=i

∣∣µy,i,jd2
y,j

∣∣
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From Lemma E.9, we have that µy,i,i ∈ [0, κ]. Hence, we have C4 ≤ ‖ρy‖1 · κ ·maxi∈[n] d
2
y,i.

To bound C5, we note that

∑

j∈[n],j 6=i

∣∣µy,i,jd2
y,j

∣∣ (i)

≤


 ∑

j∈[n],j 6=i

µ2
y,i,j

ζy,j
·

n∑

j=1

ζy,jd
4
y,j




1/2

(ii)

≤
(
κ3 ·

n∑

j=1

ζx,jd
4
x,j

ζy,j
ζx,j

d4
y,j

d4
x,j

)1/2

,

where step (i) follows from Cauchy-Schwarz inequality and step (ii) from Lemma E.9.
Putting the pieces together, we obtain that

∣∣∣∣∣
n∑

i=1

ζy,id
2
y,i`y,i

∣∣∣∣∣ ≤ ‖ρy‖1 ·


κ ·max

i∈[n]
d2
y,i + κ3/2

(
n∑

j=1

ζx,jd
4
x,j

ζy,j
ζx,j

d4
y,j

d4
x,j

)1/2

 .

Using the bound on ‖ρy‖1 from Lemma E.7, we have

∣∣∣∣∣
n∑

i=1

ζy,id
2
y,i`y,i

∣∣∣∣∣ ≤
(

56κ2

n∑

i=1

ζy,id
2
y,i

)
·


κ ·max

i∈[n]
d2
y,i + κ3/2

(
n∑

j=1

ζx,jd
4
x,j

ζy,j
ζx,j

d4
y,j

d4
x,j

)1/2

 .

Substituting the expression for dx,i = r
κ2d3/4

(
â>x,iξ

)
yields the claim.

E.5.5 Proofs of Lemmas from Section E.5.1

In this section we collect proofs of lemmas from Section E.5.1. Each lemma is proved in a
different subsection.

E.5.5.1 Proof of Lemma E.7

Up to second order terms, we have

1

s2
x+h,i

=
1

s2
x,i

[
1 +

2a>i h

sx,i
+

3(a>i h)2

s2
x,i

]
+O

(
‖h‖3

2

)
, (E.50a)

ζy+h,i = ζy,i + h>∇ζy,i +
1

2
h>∇2ζy,ih+O

(
‖h‖3

2

)
, (E.50b)

ζαy+h,i = ζαy,i + αζα−1
y,i

(
h>∇ζy,i +

1

2
h>∇2ζy,ih

)
+
α (α− 1)

2
ζα−2
y,i

(
h>∇ζy,i

)2
+O

(
‖h‖3

2

)
,

(E.50c)

Further, let

J̃y := A>y G
α
yAy =

n∑

i=1

ζαy,i
aia
>
i

s2
y,i

. (E.50d)
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Using equations (E.50a) and (E.50c), and substituting dy,i = a>i h/sy,i, fy,i = h>∇ζy,i/ζy,i
and `y,i = 1

2
h>∇2ζy,ih/ζy,i, we find that

J̃y+h =
n∑

i=1

[
1 + αfy,i + α`y,i +

α (α− 1)

2
f 2
y,i

] [
1 + 2dy,i + 3d2

y,i

]
ζαy,i

aia
>
i

s2
y,i

+O
(
‖h‖3

2

)
.

Note that dy,i and fy,i are first order terms in ‖h‖2 and `y,i is a second order term in ‖h‖2.
Thus we obtain

J̃y+h − J̃y =
n∑

i=1

(2dy,i + αfy,i) ζ
α
y,i

aia
>
i

s2
y,i︸ ︷︷ ︸

=:∆
(1)
y,h

+
n∑

i=1

[
3d2

y,i + 2αdy,ify,i + α`y,i +
α(α− 1)

2
f 2
y,i

]
ζαy,i

aia
>
i

s2
y,i︸ ︷︷ ︸

=:∆
(2)
y,h

+O
(
‖h‖3

2

)
.

Let ∆y,h := ∆
(1)
y,h + ∆

(2)
y,h. Note that ∆

(i)
y,h denotes the i-th order term in ‖h‖2. Finally, the

following expansion also comes in handy for our derivations:

aTi J̃
−1
y+hai = a>i J̃

−1
y ai − a>i J̃−1

y ∆y,hJ̃
−1
y ai + a>i J̃

−1
y ∆y,hJ̃

−1
y ∆y,hJ̃

−1
y ai +O

(
‖h‖3

2

)
. (E.50e)

Proof of part (a)—Gradient of weights: The expression for the gradient ∇ζy,i is de-
rived in Lemma 14 of the paper [152] and is thereby omitted.

Proof of part (b)—Hessian of weights: We claim that

ρy =
(
I− αΛyG

−1
y

)



1
2
h>∇2ζy,1h
· · ·

1
2
h>∇2ζy,mh


 = (2Dy + αFy)Υ

(2)
y (2Dy + αFy)1

+
(
Σy −Υ(2)

y

) [
2αDyFy + 3D2

y + ταF
2
y

]
1

+ diag (Υy(2Dy + αFy)Υy(2Dy + αFy)Υy) , (E.51)

where we have used diag(B) to denote the diagonal vector (B1,1, . . . , Bn,n) of the matrix B.
Deferring the proof of this expression for the moment, we now derive a bound on the `1 norm
of ρy. Expanding the i-th term of ρy,i from equation (E.51), we obtain

ρy,i = (2dy,i + αfy,i)
n∑

j=1

(2dy,j + αfy,j)Υ
2
y,i,j +

[
2αdy,ify,i + 3d2

y,i + ταf
2
y,i

]
σy,i

−
n∑

j=1

[
2αdy,jfy,j + 3d2

y,j + ταf
2
y,j

]
Υ2
y,i,j +

n∑

j,l=1

(2dy,j + αfy,j)(2dy,l + αfy,l)Υy,i,jΥy,j,lΥy,l,i.
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Recall that α = 1 − 1/ log2(2n/d). Since n ≥ d for polytopes, we have α ∈ [0, 1] and
consequently |τα| = |α(α − 1)/2| ∈ [0, 1]. Further note that Υx is an orthogonal projection
matrix, and hence we have

diag(Υxei)Υx diag(Υxei) � diag(Υxei) diag(Υxei).

Combining these observations with the AM-GM inequality, we have

|ρy,i| ≤ 7σy,id
2
y,i + 3σy,if

2
y,i +

n∑

j=1

(
13d2

y,j + 6f 2
y,j

)
Υ2
y,i,j.

Summing both sides over the index i, we find that

n∑

i=1

|ρy,i|
(i)

≤
n∑

i=1

20σy,id
2
y,i + 9σy,if

2
y,i

(ii)

≤
n∑

i=1

20ζy,id
2
y,i + 9ζy,if

2
y,i

(iii)

≤ 56κ2

n∑

i=1

ζy,id
2
y,i,

where step (i) follows from Lemma E.5 (a), step (ii) from Lemma E.1 (a) and step (iii) from
the bound (E.40).

We now return to the proof of expression (E.51). Using equation (E.19c), we find that

1

2
h>∇2ζy,ih =

1

2
h>∇2σy,ih for all i ∈ [n]. (E.52)

Next, we derive the Taylor series expansion of σy,i. Using the definition of J̃x (E.50d) in

equation (E.4), we find that σy,i = ζαy,i
a>i J̃

−1
y ai
s2y,i

. To compute the difference σy+h,i − σy,i, we

use the expansions (E.50a), (E.50c) and (E.50e). Letting τα = α(α− 1)/2, we have

σy+h,i = ζαy+h,i

a>i J̃
−1
y+hai

s2
y+h,i

= ζαy,i
a>i J̃

−1
y+hai

s2
y,i

[
1 + αfy,i + α`y,i + ταf

2
y,i

] [
1 + 2dy,i + 3d2

y,i

]
+O

(
‖h‖3

2

)

= σy,i + (2dy,i + αfy,i)σy,i −
n∑

j=1

(2dy,j + αfy,j)Υ
2
y,i,j + (2dy,i + αfy,i)

n∑

j=1

(2dy,j + αfy,j)Υ
2
y,i,j

+ 2αdy,ify,iσy,i +
[
α`y,i + ταf

2
y,i + 3d2

y,i

]
σy,i −

n∑

j=1

[
3d2

y,j + 2αdy,jfy,j + α`y,j + ταf
2
y,j

]
Υ2
y,i,j

+
n∑

j,l=1

(2dy,j + αfy,j)(2dy,l + αfy,l)Υy,i,jΥy,j,lΥy,l,i +O
(
‖h‖3

2

)
.

We identify the second order (in O
(
‖h‖2

2

)
) terms in the previous expression. Using the

equation (E.52), these are indeed the terms that correspond to the terms 1
2
h>∇2ζy,ih, i ∈ [n].
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Substituting `y,i = 1
2
h>∇2ζy,ih/ζy,i, we have

1

2
h>∇2ζy,ih

= (2dy,i + αfy,i)
n∑

j=1

(2dy,j + αfy,j)Υ
2
y,i,j + 2αdy,ify,iσy,i +

[
α

2

h>∇2ζy,ih

ζy,i
+ ταf

2
y,i + 3d2

y,i

]
σy,i

−
n∑

j=1

[
3d2

y,j + 2αdy,jfy,j +
α

2

h>∇2ζy,jh

ζy,j
+ ταf

2
y,j

]
Υ2
y,i,j +

n∑

j,l=1

(2dy,j + αfy,j)(2dy,l + αfy,l)Υy,i,jΥy,j,lΥy,l,i.

Collecting the different terms and doing some algebra yields the result (E.51).

Proof of part (c)—Gradient of log det: For a unit vector h ∈ Rd, we have

h> log det Jy = lim
δ→0

1

δ
(log det Jy+δh − log det Jy) = lim

δ→0

1

δ
(log det J−1/2

y Jy+δhJ
−1/2
y − log det Id)

Let ây,i := J
−1/2
y,i ai/sy,i for each i ∈ [n]. Using the property log detB = trace logB, where

logB denotes the logarithm of the matrix and that log det Id = 0, we obtain

h> log det Jy = lim
δ→0

1

δ

[
trace log

(
n∑

i=1

ζy+δh

(1− δa>i h/sy,i)
ây,iâ

>
y,i

)]
,

where we have substituted sy+δh,i = sy,i− δa>i h. Keeping track of first order terms in δ, and
noting that

∑n
i=1 ζy,iây,iâ

>
y,i = Id, we find that

trace log

(
n∑

i=1

ζy+δh,i

(1− δa>i h/sy,i)
ây,iâ

>
y,i

)
= trace log

[
n∑

i=1

(
ζy,i + δh>∇ζy,i

)(
1 +

2δa>i h

sy,i

)
ây,iâ

>
y,i

]
+O

(
δ2
)

= trace

[
n∑

i=1

δ

(
2a>i h

sy,i
+ h>∇ζy,i

)
ây,iâ

>
y,i

]
+O

(
δ2
)

=
n∑

i=1

δ

(
2a>i h

sy,i
+ h>∇ζy,i

)
θy,i +O

(
δ2
)

where in the last step we have used the fact that trace(ây,iâ
>
y,i) = â>y,iây,i = θy,i for each

i ∈ [n]. Substituting the expression for ∇ζy from part (a), and rearranging the terms yields
the claimed expression in the limit δ → 0.

Proof of part (d)—Gradient of ϕ: Using the chain rule and the fact that ∇sy,i = −ai,
yields the result.
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Proof of part (e): We claim that

1

2
h>∇2Ψyh =

1

2

[
n∑

i=1

ζy,iθy,i(3d
2
y,i + 2dy,ify,i + `y,i)−

1

2

n∑

i,j=1

ζy,iζy,jθ
2
y,i,j (2dy,i + fy,i) (2dy,j + fy,j)

]
.

The desired bound on
∣∣h>∇2Ψyh

∣∣ /2 now follows from an application of AM-GM inequality
with Lemma E.5(d).

We now derive the claimed expression for the directional Hessian of the function Ψ. We
have
1

2
h>
(
∇2 log det Jy

)
h = lim

δ→0

1

2δ2
(log det J−1/2

y Jy+δhJ
−1/2
y + log det J−1/2

y Jy−δhJ
−1/2
y − 2 log det Id)

=
1

2
lim
δ→0

1

δ2

[
trace log

(
n∑

i=1

ζy+δh

(1− δa>i h/sy,i)
ây,iâ

>
y,i

)
+ trace log

(
n∑

i=1

ζy−δh
(1 + δa>i h/sy,i)

ây,iâ
>
y,i

)]
.

Expanding the first term in the above expression, we find that

trace log

(
n∑

i=1

ζy+δh,i

(1− δa>i h/sy,i)
ây,iâ

>
y,i

)

= trace log

[
n∑

i=1

(
ζy,i + δh>∇ζy,i +

δ2

2
h>∇2ζy,ih

)(
1 + 2δ

a>i h

sy,i
+ 3δ2 (a>i h)2

s2
y,i

)
ây,iâ

>
y,i

]

︸ ︷︷ ︸
=:Id+B

+O
(
δ3
)
.

Substituting the shorthand notation from equations (E.20a), (E.20b) and (E.20c), we have

B =
n∑

i=1

ζy,i
[
δ(2dy,i + fy,i) + δ2(3d2

y,i + 2dy,ify,i + `y,i)
]
ây,iâ

>
y,i +O

(
δ3
)
.

Now we make use of the following facts: (1) trace log(Id +B) = trace
[
B − B2

2
+O

(
‖B‖3)],

(2) for each i, j ∈ [n], we have trace(ây,iâ
>
j ) = â>y,iâj = θy,i,j, and (3) for each i ∈ [n], we have

θy,i,i = θy,i. Thus we obtain

trace log

(
n∑

i=1

ζy+δh,i

(1− δa>i h/sy,i)
ây,iâ

>
y,i

)
=

n∑

i=1

ζy,iθy,i
[
δ(2dy,i + fy,i) + δ2(3d2

y,i + 2dy,ify,i + `y,i)
]

− 1

2

n∑

i,j=1

ζy,iζy,jθ
2
y,i,jδ

2(2dy,i + fy,i)(2dy,j + fy,j) +O
(
δ3
)
.

Similarly, we can obtain an expression for trace log
(∑n

i=1
ζy−δh

(1+δa>i h/sy,i)
ây,iâ

>
y,i

)
. Putting the

pieces together, we obtain

1

2
h>
(
∇2 log det Jy

)
h =

n∑

i=1

ζy,iθy,i(3d
2
y,i + 2dy,ify,i + `y,i)−

1

2

n∑

i,j=1

ζy,iζy,jθ
2
y,i,j(2dy,i + fy,i)(2dy,j + fy,j).

(E.53)
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Proof of part (f): We claim that

1

2
h>∇2ϕy,ih = ϕy,i

(
2dy,ify,i + 3d2

y,i + `y,i
)
. (E.54)

The claim follows from a straightforward application of chain rule and substitution of the
expressions for ∇ζy,i and ∇2ζy,i in terms of the shorthand notation dy,i, fy,i and `y,i. Multi-
plying both sides of equation (E.54) with d2

y,is
2
y,i and summing over index i, we find that

n∑

i=1

d2
y,is

2
y,i

1

2
h>∇ϕ2

y,ih =
n∑

i=1

d2
y,is

2
y,iϕy,i

[
`y,i + 2dy,ify,i + 3d2

y,i

]
=

n∑

i=1

d2
y,iζy,i

[
`y,i + 2dy,ify,i + 3d2

y,i

]

≤
n∑

i=1

d2
y,iζy,i

[
`y,i + f 2

y,i + 4d2
y,i

]
,

where in the last step we have used the AM-GM inequality. The claim follows.

E.5.5.2 Proof of Lemma E.8

We claim that

0 � G−1/2
y

(
c1In + c2Λy (Gy − αΛy)

−1)G1/2
y � (c1 + c2)κIn. (E.55)

The proof of the lemma is immediate from this claim, as for any PSD matrix H ≤ cIn, we
have H2 ≤ c2In.

We now prove claim (E.55). Note that

G−1/2
y Λy (Gy − αΛy)

−1G1/2
y = G−1/2

y ΛyG
−1/2
y︸ ︷︷ ︸

:=By

(In − αJG
−1/2
y ΛyG

−1/2
y )−1. (E.56)

Note that the RHS is equal to the matrix By(In−αJBy)
−1 which is symmetric. Observe the

following ordering of the matrices in the PSD cone

Σy + βJIn = Gy � Σy � Λy = Σy −Υ(2)
y � 0.

For the last step we have used the fact that Σy −Υ
(2)
y is a diagonally dominant matrix with

non negative entries on the diagonal to conclude that it is a PSD matrix. Consequently, we
have

By = G−1/2
y ΛyG

−1/2
y � In. (E.57)

Further, recall that αJ = (1− 1/κ)⇔ κ = (1− αJ)−1. As s result, we obtain

0 � (In − αJG
−1/2
y ΛyG

−1/2
y )−1 � κIn.

Multiplying both sides by B
1/2
y and using the relation (E.57), we obtain

0 � B1/2
y (In − αJG

−1/2
y ΛyG

−1/2
y )−1B1/2

y � κIn. (E.58)

Using the fact that By commutes with (In−By)
−1, we obtain By(In−αJBy)

−1 � κIn. Using
observation (E.56) now completes the proof.
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E.5.5.3 Proof of Lemma E.9

Without loss of generality, we can first prove the result for i = 1. Let ν := µ>y e1 denote the
first row of the matrix µy. Observe that

e1 = (Gy − αΛy)G
−1
y ν = ν − αΣyG

−1
y ν + αΥ(2)

y G−1
y ν (E.59)

We now prove bounds (E.24a) and (E.24b) separately.

Proof of bound (E.24a): Multiplying the equation (E.59) on the left by ν>G−1
y , we obtain

g−1
1 ν1 = ν>G−1

y ν − αν>G−1
y ΣyG

−1
y ν + αν>G−1

y Υ(2)
y G−1

y ν

≥ ν>G−1
y ν − αν>G−1

y ΣyG
−1
y ν (E.60)

≥
(
g−1

1 − ασy,1/g2
1

)
ν2

1 .

Rearranging terms, we obtain

0 ≤ ν1 ≤
ζy,1

ζy,1 − ασy,1
(i)

≤ κ, (E.61)

where inequality (i) follows from the facts that ζy,j ≥ σy,j and (1− α) = κ.

Proof of bound (E.24b): In our proof, we use the following improved lower bound for the
term µy,1,1 = ν1.

ν1 ≥
ζy,1

ζy,1 − ασy,1 + ασ2
y,1

, (E.62)

Deferring the proof of this claim at the moment, we now complete the proof.
We begin by deriving a weighted `2-norm bound for the vector ν̃ = (ν2, . . . , νn)>. Equa-

tion (E.60) implies

ζ−1
y,1ν1

(
1− ν1 + α

σy,1
ζy,1

ν1

)
≥

n∑

j=2

ν2
j

(
ζ−1
y,j − αζ−2

y,jσy,j
) (i)

≥ (1− α)
n∑

j=2

ν2
j

ζy,j
,

where step (i) follows from the fact that ζy,i ≥ σy,i. Now, we upper bound the expression on
the left hand side of the above inequality using the upper (E.61) and lower (E.62) bounds
on ν1:

ζ−1
y,1ν1

(
1− ν1 + α

σy,1
ζy,1

ν1

)
≤ ζ−1

y,1

ζy,1
ζy,1 − ασy,1

(
1−

(
1− ασy,1

ζy,1

)
ζy,1

ζy,1 − ασy,1 + ασ2
y,1

)

=
ασ2

y,1

(ζy,1 − ασy,1)
(
ζy,1 − ασy,1 + ασ2

y,1

)

≤ κ2,
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where in the last step we have used the facts that ζy,1 ≥ σy,1 and (1 − α)−1 = κ. Putting
the pieces together, we obtain

∑n
j=2 ν

2
j ζ
−1
y,j ≤ κ3, which is equivalent to our claim (E.24b) for

i = 1. Since the choice of i = 1 was arbitrary, the claim (E.24b) follows.
It remains to prove our earlier claim (E.62). Writing equation (E.59) separately for the

first coordinate and for the rest of the coordinates, we obtain

1 =
(
1− ασy,1ζ−1

y,1 + ασ2
y,1,1ζ

−1
y,j

)
ν1 + α

n∑

j=2

σ2
y,1,jζ

−1
y,j νj, and (E.63a)

0 =
(
In−1 − αΣ′yG

′−1
y

)


ν2
...
νn


+ αΥ′(2)

y G′−1
y



ν2
...
νn


+ αζ−1

y,1ν1



σ2
y,1,2
...

σ2
y,1,n


 , (E.63b)

where G′y (respectively Σ′y,Υ
′(2)
y ) denotes the principal minor of Gy (respectively Σy,Υ

(2)
y )

obtained by excluding the first column and the first row. Multiplying both sides of the
equation (E.63b) from the left by

(
ν2, · · · , νn

)
G′−1
y , we obtain

0 =
n∑

j=2

1

ζy,j

(
1− ασy,j

ζy,j

)
ν2
j

︸ ︷︷ ︸
cy,j

+α
(
ν2, · · · , νn

)
G′−1
y Υ′(2)

y G′−1
y



ν2
...
νn




︸ ︷︷ ︸
Cy.2

+α
ν1

ζy,1

n∑

j=2

σ2
y,j

ζy,j
νj. (E.64)

Observing that α ∈ [0, 1] and ζy,j ≥ σy,j for all y ∈ int (K) and j ∈ [n], we obtain cy,j ≥ 0.

Further, note that G′−1
y Υ

′(2)
y G′−1

y is a PSD matrix and hence we have that Cy,2 ≥ 0. Putting
the pieces together, we have

α
ν1

ζy,1

n∑

j=2

σ2
y,j

ζy,j
νj ≤ 0.

Combining this inequality with equation (E.63a) yields the claim.

E.5.5.4 Proof of Corollary E.1

Without loss of generality, we can prove the result for i = 1. Applying Cauchy-Schwarz
inequality, we have

‖ν‖1 = ν1 +
n∑

j=2

|νj| ≤ ν1 +

√√√√
n∑

j=2

ν2
j

ζy,j
·

n∑

j=2

ζy,j ≤ κ+ κ3/2 ·
√

1.5 d ≤ 3
√
dκ3/2,

where to assert the last inequality we have used Lemma E.9 and Lemma E.1(c). The
claim (E.25) follows. Further, noting that the infinity norm of a matrix is the `1-norm
of its transpose, we obtain ||| (Gy − αΛy)

−1Gy|||∞ ≤ 3
√
dκ3/2 as claimed.
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E.5.6 Proofs of Lemmas from Section E.5.2

In this section, we collect proofs of auxiliary lemmas from Section E.5.2.

E.5.6.1 Proof of Lemma E.10

Using Lemma E.6, and the relation (E.14) we have

(
1− sz,i

sx,i

)2

≤ 4
r2

κ4d3/2
ξ>ξ, (E.65)

where ξ ∼ N (0, Id). Define

∆s := max
i∈[n], v∈xz

∣∣∣∣1−
sv,i
sx,i

∣∣∣∣ . (E.66)

Using the standard Gaussian tail bound, we observe that Pξ∼N (0,In)

[
ξ>ξ ≥ d(1 + δ)

]
≤ 1−

ε/4 for δ =
√

2
d
. Plugging this bound in the inequality (E.65) and noting that for all v ∈ xz

we have ‖v − x‖Jx ≤ ‖z − x‖Jx , we obtain that

Pz∼Px

[
∆s ≤

2r2(1 +
√

2/d log(4/ε)

κ4
√
d

]
≥ 1− ε/4.

Setting

r ≤ 1/(25

√
1 +
√

2 log(4/ε)), (E.67)

and noting that κ4
√
d ≥ 1 implies the claim (E.26a). Hence, we obtain that ∆s < .005/κ2

and consequently maxi∈[n],v∈xz sx,i/sv,i ∈ (0.99, 1.01) with probability at least 1− ε/4.
We now claim that

max
i∈[n],v∈xz

ζx,i
ζv,i
∈
[
1− 24κ2∆s, 1 + 24κ2∆s

]
, if ∆s ≤

1

32κ2
.

The result follows immediately from this claim. To prove the claim, note that equation (E.30)
implies that if ∆s ≤ 1

32κ2 , then

ζv,i
ζx,i
∈ (e−8κ2∆s , e8κ2∆s) for all i ∈ [n] and v ∈ xz,

which implies that

max
i∈[n],v∈xz

ζx,i
ζv,i
∈ (e−8κ2∆s , e8κ2∆s).

Asserting the facts that ex ≤ 1 + 3x and e−x ≥ 1− 3x, for all x ∈ [0, 1] yields the claim.
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E.5.6.2 Proof of Lemma E.11

The proof once again makes use of the classical tail bounds for polynomials in Gaussian
random variables. We restate the classical result stated in equation (D.41) for convenience.
For any d ≥ 1, any polynomial P : Rd → R of degree k, and any t ≥ (2e)k/2, we have

P
[
|P (ξ)| ≥ t

(
EP (ξ)2) 1

2

]
≤ exp

(
− k

2e
t2/k
)
, (E.68)

where ξ ∼ N (0, Id) denotes the standard Gaussian vector in d dimensions.
Recall the notation from equation (E.22) and observe that

‖âx,i‖2
2 = θx,i, and â>x,iâx,j = θx,i,j. (E.69)

We also have

n∑

i=1

ζx,iâx,iâ
>
x,i = J−1/2

x

n∑

i=1

ζx,i
aia
>
i

s2
x,i

J−1/2
x = Id. (E.70)

Further, using Lemma E.8 we obtain

n∑

i=1

ζx,ib̂x,ib̂
>
x,i = J−1/2

x AxΛx (Gx − αΛx)
−1Gx (Gx − αΛx)

−1 ΛxA
>
x J
−1/2
x = 4κ2Id. (E.71)

Throughout this section, we consider a fixed point x ∈ int (K). For brevity in our notation,
we drop the dependence on x for terms like ζx,i, θx,i, âx,i (etc.) and denote them simply by
ζi, θi, âi respectively.

We introduce some matrices and vectors that would come in handy for our proofs.

B =




√
ζ1â
>
1

...√
ζnâ
>
n


 , Bb =




√
ζ1b̂
>
1

...√
ζnb̂
>
n


 , v =




√
ζ1 ‖â1‖2

2
...√

ζn ‖ân‖2
2


 , and vab =




√
ζ1â
>
1 b̂1

...√
ζnâ
>
n b̂n


 .

(E.72)

We claim that

BB> � In, and BbB
>
b � 4κ2In. (E.73a)

To see these claims, note that equation (E.70) implies that B>B = Id and consequently, BB>

is an orthogonal projection matrix and BB> � In. Next, note that from equation (E.71) we
have that B>b Bb � κ2Id, which implies that BbB

>
b � κ2In. In asserting both these arguments,

we have used the fact that for any matrix B, the matrices BB> and B>B are PSD and have
same set of eigenvalues.
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Next, we bound the `2 norm of the vectors v and vab:

‖v‖2
2 =

n∑

i=1

ζiθ
2
i

Lem. E.5 (e)

≤ 4d, and (E.73b)

∥∥vab
∥∥2

2
=

n∑

i=1

ζi

(
â>i b̂i

)2

≤
n∑

i=1

ζi ‖âi‖2
2

∥∥∥b̂i
∥∥∥

2

2
≤ 4

n∑

i=1

ζi

∥∥∥b̂i
∥∥∥

2

2
= 4 trace(B>b Bb)

eqn. (E.73a)

≤ 16κ2d.

(E.73c)

We now prove the five claims of the lemma separately.

Proof of bound (E.27a): Using Isserlis’ theorem [128] for fourth order Gaussian mo-
ments, we have

E

(
n∑

i=1

ζi
(
â>i ξ
)2

)2

=
n∑

i,j=1

ζiζj

(
‖âi‖2

2 ‖âj‖
2
2 + 2

(
â>i âj

)2
)

=
n∑

i,j=1

ζiζj
(
θiθj + 2θ2

i,j

)
≤ 24d2,

where the last follows from Lemma E.5. Applying the bound (E.68) with k = 2 and t =
e log(16

ε
). Note that the bound is valid since t ≥ (2e) for all ε ∈ (0, 1/30].

Proof of bound (E.27b): Applying Isserlis’ theorem for Gaussian moments, we obtain

E

(
n∑

i=1

ζi
(
â>i ξ
)3

)2

= 9
n∑

i,j=1

ζiζj ‖âi‖2
2 ‖âj‖

2
2

(
â>i âj

)

︸ ︷︷ ︸
=:N1

+6
n∑

i,j=1

ζiζj
(
â>i âj

)3

︸ ︷︷ ︸
=:N2

.

We claim that N1 ≤ 4d and N2 ≤ 4d. Assuming these claims as given at the moment, we

now complete the proof. We have E
(∑n

i=1 ζi
(
â>i ξ
)3
)2

≤ 60d. Applying the bound (E.68)

with k = 3 and t =
(

2e
3

log
(

16
ε

))3/2
, and verifying that t ≥ (2e)3/2 for ε ∈ (0, 1/30] yields the

claim.
We now turn to prove the bounds on N1 and N2. We have

N1 =
n∑

i,j=1

ζi‖âi‖2
2 â
>
i ζj ‖âj‖2

2 âj =

∥∥∥∥∥
n∑

i=1

ζi ‖âi‖2
2 âi

∥∥∥∥∥

2

2

=
∥∥B>v

∥∥2

2

eqn. (E.73a)

≤ ‖v‖2
2

eqn. (E.73b)

≤ 4d.

Next, applying Cauchy-Schwarz inequality and using equation (E.69), we obtain

N2 =
n∑

i,j=1

ζiζj
(
â>i âj

)3 ≤
n∑

i,j=1

ζiζjθ
2
i,j

√
θiθj

(Lem. E.1 (d))

≤ 4
n∑

i,j=1

ζiζjθ
2
i,j

(Lem. E.5 (d))

≤ 4
n∑

i=1

ζiθi = 4d.
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Proof of bound (E.27c): Using Isserlis’ theorem for Gaussian moments, we have

E

(
n∑

i=1

ζi
(
â>i ξ
)2
(
b̂>x,iξ

))2

=
n∑

i,j=1

ζiζj ‖âi‖2
2 ‖âj‖

2
2

(
b̂>i b̂j

)

︸ ︷︷ ︸
:=N3

+4
n∑

i,j=1

ζiζj
(
â>i âj

) (
â>i b̂i

)(
â>j b̂j

)

︸ ︷︷ ︸
:=N4

+4
n∑

i,j=1

ζiζj ‖âi‖2
2

(
b̂>i âj

)(
â>j b̂j

)

︸ ︷︷ ︸
:=N5

+2
n∑

i,j=1

ζiζj
(
â>i âj

)2
(
b̂>i b̂j

)

︸ ︷︷ ︸
:=N6

+4
n∑

i,j=1

ζiζj
(
â>i âj

) (
â>i b̂j

)(
b̂>i âj

)

︸ ︷︷ ︸
:=N7

We claim that all terms Nk ≤ 16κ2d, k ∈ {3, 4, 5, 6, 7}. Putting the pieces together, we have

E

(
n∑

i=1

ζi
(
â>i ξ
)2
(
b̂>x,iξ

))2

≤ 240κ2d.

Applying the bound (E.68) with k = 3 and t =
(

2e
3

log
(

16
ε

))3/2
yields the claim. Note that

for the given definition of t, we have t ≥ (2e)3/2 for ε ∈ (0, 1/30] so that the bound (E.68) is
valid.

It is now left to prove the bounds on Nk for k ∈ {3, 4, 5, 6, 7}. We have

N3 =
n∑

i,j=1

ζi‖âi‖2
2 b̂
>
i ζj ‖âj‖2

2 b̂j =

∥∥∥∥∥
n∑

i=1

ζi ‖âi‖2
2 b̂i

∥∥∥∥∥

2

2

=
∥∥B>b v

∥∥2

2

eqn. (E.73a)

≤ 4κ2 ‖v‖2
2 =

eqn. (E.73b)

≤ 16κ2d,

N4 =
n∑

i,j=1

ζiζj
(
â>i âj

) (
â>i b̂i

)(
â>j b̂j

)
=
∥∥B>vab

∥∥2

2

eqn. (E.73a)

≤
∥∥vab

∥∥2

2

eqn. (E.73c)

≤ 16κ2d, and

N5 =
n∑

i,j=1

ζiζj ‖âi‖2
2

(
b̂>i âj

)(
â>j b̂j

)
=
(
B>vab

)> (
B>b v

) C−S

≤
∥∥B>vab

∥∥
2

∥∥B>b v
∥∥

2
≤ 16κ2d.

For the term N6, we have

N6 =
n∑

i,j=1

ζiζj
(
â>i âj

)2
(
b̂>i b̂j

) (C−S)

≤ 1

2

n∑

i,j=1

ζiζj
(
â>i âj

)2
(∥∥∥b̂i

∥∥∥
2

2
+
∥∥∥b̂j
∥∥∥

2

2

)

(symm.in i,j)
=

n∑

i,j=1

ζiζj
(
â>i âj

)2
∥∥∥b̂i
∥∥∥

2

2

(eqn. (E.70))

≤
n∑

i=1

ζi ‖âi‖2
2

∥∥∥b̂i
∥∥∥

2

2

(Lem. E.1(d))

≤ 4
n∑

i=1

ζi

∥∥∥b̂i
∥∥∥

2

2

(eqn. (E.73c))

≤ 16κ2d.
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The bound on the term N7 can be obtained in a similar fashion.

Proof of bound (E.27d): Observe that â>i ξ ∼ N (0, θi) and hence E
(
â>i ξ
)8

= 105 θ4
i .

Thus, we have

E

(
n∑

i=1

ζi
(
â>i ξ
)4

)2
C−S

≤
n∑

i,j=1

ζiζj

(
E
(
â>i ξ
)8
) 1

2
(
E
(
â>j ξ
)8
) 1

2
= 105

n∑

i,j=1

ζiζjθ
2
i θ

2
j = 105

(
n∑

i=1

ζiθ
2
i

)2

.

Now applying Lemma E.5, we obtain that E
(∑n

i=1 ζi
(
â>i ξ
)4
)2

≤ 1680d2. Consequently,

applying the bound (E.68) with k = 4 and t =
(
e
2

log
(

16
ε

))2
and noting that t ≥ (2e)2 for

ε ∈ (0, 1/30], yields the claim.

Proof of bound (E.27e): Using the fact that E
(
â>i ξ
)12

= 945 θ6
i and an argument sim-

ilar to the previous part yields that E
(∑n

i=1 ζi
(
â>i ξ
)6
)2

≤ 15120d2. Finally, applying the

bound (E.68) with k = 6 and t =
(
e
3

log
(

16
ε

))3
, and verifying that t ≥ (2e)3 for ε ∈ (0, 1/30],

yields the claim.
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Appendix F

Content Deferred From Chapter 7

In this chapter, we present the proofs of our main results, namely Theorems 7.1 to 7.4
inAppendices F.1, F.2, F.3.2 and F.4. We prove Lemma 7.1 in Appendix F.5, and the other
intermediate results used within the proofs in Appendix F.6. We also present additional
results in Appendix F.7, visualization of log-likelihoods Appendix F.8, and extension of our
theory for mixture of regression case in Appendix F.9.

F.1 Proof of Theorem 7.1

As alluded to earlier in Section 7.4.1—given Lemma 7.1—it suffices to prove the contraction
property (7.10a) for the population operator M . Recall that θ∗ = 0 is a fixed point of the
population EM operator (i.e., M(0) = 0). This fact, combined with the definition (7.8) of
the M-update, yields

‖M(θ)‖2 = ‖M(θ)−M(θ∗)‖2 = ‖E [2(wθ(X)− w0(X))X]‖2 ,

where, in the unbalanced setting (7.3), the weight function wθ (7.6) and the gradient ∇θwθ
take the form

wθ(X) =
π

π + (1− π)e−
2θ>X
σ2

, and ∇θwθ(X) =
2π(1−π)X

σ2(
πe−

θ>X
σ2 + (1− π)e

θ>X
σ2

)2 .
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For a scalar u ∈ [0, 1], define the function h(u) = wuθ(X), and note that h′(u) = ∇wuθ(X)>θ.
Thus, using a Taylor series expansion along the line θu = uθ, u ∈ [0, 1], we find that

‖M(θ)‖2 =

∥∥∥∥E
[
2X

∫ 1

0

h′(u)du

]∥∥∥∥
2

= 4π(1− π)

∥∥∥∥∥∥∥

1∫

0

E


 XX>

σ2
(
π exp

(
− θ>uX

σ2

)
+ (1− π) exp

(
θ>uX
σ2

))2


 θdu

∥∥∥∥∥∥∥
2

≤ 4π(1− π)‖θ‖2 max
u∈[0,1]

|||E [Γθu(X)] |||op, (F.1)

where in the last equation we have defined the matrix

Γθu(X) :=
XX>

σ2
(
π exp

(
− θ>uX

σ2

)
+ (1− π) exp

(
θ>uX
σ2

))2 . (F.2)

Writing the mixture weight as π = 1
2

(1− ρ), we claim that it suffices to show that

max
u∈[0,1]

|||E [Γθu(X)] |||op ≤
1− ρ2/2

1− ρ2
. (F.3)

Indeed, taking the last bound as given and substituting it into inequality (F.1), we find that

‖M(θ)‖2 ≤ 4π (1− π)
1− ρ2/2

1− ρ2
‖θ‖2 = (1− ρ2/2) ‖θ‖2 ,

which yields the claim (7.10a) of Theorem 7.1.

F.1.1 Proof of claim (F.3):

We begin by making a convenient change of coordinates. Let R ∈ Rd×d be an orthonor-
mal matrix such that Rθu = ‖θu‖2 e1, where e1 denotes the first canonical basis vector in
dimension d. Define the random vector V := RX/σ. Since the vector X ∼ N (0, σ2Id) and
the matrix R is orthonormal, the random vector V follows a N (0, Id) distribution. Sub-
stituting X = σR>V and Rθu = ‖θu‖2 e1 in the expression (F.2) for Γθu and using the
fact that |||R>BR|||op = |||B|||op for any matrix B and any orthogonal matrix R, we find that
|||E [Γθu(X)] |||op = |||Bθu|||op, where

Bθu := EV

[
V V >

(π exp (−‖θu‖2 V1/σ) + (1− π) exp (‖θu‖2 V1/σ))2

]
.
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Here V1 := V e1 denotes the first coordinate of the random vector V . Note that the matrix
Bθu is a diagonal matrix, with non-negative entries. Thus, in order to prove the bound (F.3),
it suffices to show that

max
j∈[d]

[Bθu ]jj ≤
1− ρ2/2

1− ρ2
. (F.4)

When θu = 0, the matrix Bθu = E[V V >] = Id and the claim holds trivially. Turning to the
case θu 6= 0, we split our analysis into two cases, depending on whether j = 1 or j 6= 1.

Bounding [Bθu ]11: Denoting π = 1
2
(1− ρ), we observe that

(πe−y + (1− π)ey) ∈ [
√

(1− ρ2), 1], if ey ∈
[
1,

1 + ρ

1− ρ

]
, and

(πe−y + (1− π)ey) > 1, otherwise. (F.5)

Let Ec and I(E) respectively denote the complement and the indicator of any event E . Define
the event

Eθu :=

{
e‖θu‖2V1/σ ∈

[
1,

1 + ρ

1− ρ

]}
.

Using the observation (F.5) above and the fact that V1 ∼ N (0, 1), we obtain

[Bθu ]11 = E

[
V 2

1

(π exp (−‖θu‖2 V1/σ) + (1− π) exp (‖θu‖2 V1/σ))2

]

≤ 1

(1− ρ2)
E
[
V 2

1 I(Eθu)
]

+ E
[
V 2

1 I(Ecθu)
]

=
1− ρ2 + ρ2E [V 2

1 I(Eθu)]

(1− ρ2)
. (F.6)

Note that whenever θu 6= 0, we have that Eθu ⊆
{
V1 ≥ 0} and consequently, we obtain that

E
[
V 2

1 I(Eθu)
]
≤ E

[
V 2

1 I(V1 ≥ 0)
]

=
1

2
. (F.7)

Putting the inequalities (F.6) and (F.7) together, we conclude that
[Bθu ]11 ≤ (1− ρ2/2)/(1− ρ2).

Bounding [Bθu ]jj, j 6= 1: Using arguments similar to the previous case, and the fact that
the random variables Vi, i ∈ [d], are independent standard normal random variables, we find
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that

[Bθu ]jj = E

[
V 2
j

(π exp (−‖θu‖2 V1/σ) + (1− π) exp (‖θu‖2 V1/σ))2

]

= E

[
1

(π exp (−‖θu‖2 V1/σ) + (1− π) exp (‖θu‖2 V1/σ))2

]
.

Invoking the definition of the event Eθu , we have

[Bθu ]jj ≤
1

(1− ρ2)
E [I(Eθu)] + E

[
I(Ecθu)

]
=

1− ρ2 + ρ2E [I(Eθu)]

(1− ρ2)
.

Finally, noting that E [I(Eθu)] ≤ E [I(V1 ≥ 0)] = 1/2 whenever θu 6= 0, yields the claim.

F.2 Proof of Theorem 7.2

We split our proof into two parts, which correspond to the upper bound (7.13a) and the
lower bound (7.13b) respectively.

F.2.1 Proof of the upper bound (7.13a)

For the balanced fit, we have

wθ(X) =
1

1 + e−2θ>X/σ2 and ∇θ(wθ(X)) =
2X>/σ2

(e−θ>X/σ2 + eθ>X/σ2)2
.

Using a Taylor expansion and repeating the preliminary computations as those in the proof
of Theorem 7.1 from the unbalanced setting, we obtain that

‖M(θ)‖2 =

∥∥∥∥E
[
2X

∫ 1

0

w′θu(X)>θudu

]∥∥∥∥
2

= 4

∥∥∥∥
1∫

0

E

[
XX>

σ2
(
e−θ>uX/σ2 + eθ>uX/σ2

)2

]
θdu

∥∥∥∥
2

(F.8)

≤ 4 ‖θ‖2

1∫

0

|||E [Γθu(X)] |||opdu,

where Γθu(X) := XX>/σ2

(e−θ
>
u X/σ

2
+eθ
>
u X/σ

2
)2

. Consequently, in order to prove the upper bound (7.13a),

it suffices to show that
∫ 1

0

|||E [Γθu(X)] |||opdu ≤
1

4

(
p+

1− p
1 + ‖θ‖2

2 /2σ
2

)
=
γup(θ)

4
(F.9)
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where p := (1 + PZ∼N (0,1)(|Z| ≤ 1))/2 < 1.
We now establish the claim (F.9). Like in proof of Theorem 7.1, we perform a change

of coordinates using an orthogonal matrix R such that Rθu = ‖θu‖2 e1, where e1 is the first
canonical basis in dimension d. Define the random vector V := RX/σ. Since the vector
X ∼ N (0, σ2Id) and the matrix R is orthogonal, we have that the vector V ∼ N (0, Id).
Substituting the matrix X = σR>V and Rθu = ‖θu‖2 e1 in the expression for Γθu and using
the equality |||R>BR|||op = |||B|||op, valid for any matrix B and any orthogonal matrix R, we
obtain that |||E [Γθu(X)] |||op = |||Bθu|||op, where

Bθu := EV

[
V V >

(exp (−‖θu‖2 V1/σ) + exp (‖θu‖2 V1/σ))2

]
. (F.10)

Clearly, the matrix Bθu is a diagonal matrix with non-negative entries (note the abuse of
notation: the definitions of the matrices Γθu and Bθu is different from the unbalanced case).
Consequently, to obtain a bound for the operator norm of the matrix Bθu , it is sufficient to
provide an upper bound on the diagonal entries of the matrix Bθu . In order to do so, we
introduce an auxiliary claim:

Lemma F.1. The `2-operator norm of the matrix Bθu defined in equation (F.10), is upper-
bounded as

|||Bθu|||op = max
j∈[d]

[Bθu ]jj ≤
p2

4
+

(1− p2)

4

1

(1 + ‖θu‖2
2 /(2σ

2))2
, (F.11)

where p2 = P (|V1| ≤ 1) < 1.

See Appendix F.6.1 for the proof of Lemma F.1.

Using Lemma F.1, we now complete the proof. Integrating both sides of the inequal-
ity (F.11) with respect to u ∈ [0, 1], we find that

∫ 1

0

|||Bθu |||opdu ≤
∫ 1

0

p2

4
du+

∫ 1

0

(1− p2)

4

1

(1 + ‖θu‖2
2 /(2σ

2))2
du

=
p2

4
+

(1− p2)

4

∫ 1

0

1

(1 + u2 ‖θ‖2
2 /(2σ

2))2
du.

Direct computation of the second integral yields

1∫

0

1

(1 + u2 ‖θ‖2
2 /(2σ

2))2
du =

1

2

(
1

1 + ‖θ‖2
2σ2

+
tan−1(‖θ‖/(

√
2σ)

‖θ‖/(
√

2σ)

)

≤ 1

2

(
1

1 + ‖θ‖2
2σ2

+ 1

)
,
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where the last inequality above follows since tan−1(y) ≤ y, for all y ≥ 0. Putting together
the pieces yields

∫ 1

0

|||E [Γθu(X)] |||opdu =

∫ 1

0

|||Bθu |||opdu ≤
(1 + p2)

8
+

(1− p2)/8

1 + ‖θ‖2
2 /(2σ

2)
,

which implies the claim (F.9) with p = 1+p2

2
.

F.2.2 Proof of the lower bound (7.13b)

We now prove the lower bound (7.13b) of Theorem 7.2 on the population EM operator M .
The argument involves Jensen’s inequality and certain properties of the moment generating
function (MGF) of the Gaussian distribution.

Recalling equation (F.8), we find that

‖M(θ)‖2 = 4

∥∥∥∥
1∫

0

E
[

XX>

σ2 (exp (−θ>uX/σ2) + exp (θ>uX/σ
2))2

]
du

︸ ︷︷ ︸
=:Γθ

θ

∥∥∥∥
2

≥ 4λmin (Γθ) ‖θ‖2 , (F.12)

where λmin(Γθ) denotes the smallest eigenvalue of the square matrix Γθ. Following the change
of variable V := RX/σ used in the proof of upper bound (7.13a), we obtain that

λmin (Γθ) = λmin

(
EV
[ 1∫

0

V V >

(exp (−‖θu‖2V1/σ) + exp (‖θu‖2V1/σ))2du

]

︸ ︷︷ ︸
=:Fθ

)
. (F.13)

Clearly, the matrix Fθ is a diagonal matrix with non-negative diagonal entries and conse-
quently, we have

λmin(Fθ) = min
j∈[d]

[Fθ]jj. (F.14)

In order to provide a lower bound on the diagonal entries of the matrix Fθ, we use the
following auxiliary claim:

Lemma F.2. For all vectors θ ∈ Rd such that ‖θ‖2
2 ≤ 5σ2

8
, the matrix Fθ defined in equa-

tion (F.13), satisfies the bounds

[Fθ]jj ≥ [Fθ]11 ≥
1

4(1 + 2 ‖θ‖2
2/σ

2)
for all j ∈ [d]. (F.15)
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See Appendix F.6.2 for the proof of this claim.
Finally, combining the result of Lemma F.2 with equations (F.12) and (F.14), we conclude

that

‖M(θ)‖2

‖θ‖2

≥ 4λmin (Γθ) = 4[Fθ]11 ≥
1

(1 + 2 ‖θ‖2
2 /σ

2)
= γlow(θ),

as claimed.

F.3 Proof of Theorem 7.3

The reader should recall the framework that was laid out in Section 7.5.1, especially Lemma 7.1
which was used to bound the deviation between the sample and population EM operators,
as well the annulus-based localization argument (that breaks up the iterations of EM into
different epochs) sketched out in Section 7.5.2. The proof of Theorem 7.3 is based on making
this proof outline more precise.

F.3.1 Epochs and non-expansivity

Let us introduce the notation required to formalize the analysis that leads to the recur-
sion (7.23). Recall that the recursion (7.23) generates the sequence {α`}`≥0 given by

α0 = 0 and α`+1 =
α`
3

+
1

6
, for ` = 0, 1, 2, . . .. (F.16a)

By inspection, this sequence is increasing and satisfies lim
`→∞

α` = 1/4. Furthermore, we

have α` ≤ 1/4 − ε for ` ≥ dlog(4/ε)/ log 3e. For any given δ ∈ (0, 1), define the following
intermediate quantity

ω = σ2

(
d+ log((2`ε + 1)/δ)

n

)
where `ε := dlog(4/ε)/ log 3e+ 1. (F.16b)

Note that the lower bound on the sample size stated in the theorem ensures that ω ≤ 1. For
the proof sketch provided in Section 7.5.2, we used the rough approximation ω ≈ d/n, which
is adequate when tracking only the dependency on the pair (n, d).

For ` = 0, 1, 2, . . . , `ε − 1, define the scalars t` and T` as

t0 =

⌈
2

p
log

‖θ0‖2√
2σ
√
ω

⌉
, t` =

⌈
2

pω2α`+1
log(1/ω)

⌉
, and T` =

∑̀

j=0

tj, (F.16c)

where dye denotes the smallest integer greater than or equal to y, and the constant p ∈ (0, 1)
is given by p = P(|X| ≤ 1) + 1

2
P(|X| > 1) where X ∼ N (0, 1). For each ` = 1, 2, . . ., the
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term t` corresponds to the number of iterations for the `-th epoch, whereas the quantity T`
denotes the total number of iterations up to the completion of that epoch.

Recall that Lemma 7.1, stated in the main text, gives us a bound on sup‖θ‖2≤r ‖Mn(θ)−M(θ)‖2

for a given radius r. In the epoch-based argument, we have a sequence of such radii (cor-
responding to the outer radii of the annulus considered in each epoch), so that we need to
control this same quantity uniformly over all radii r in the set R given by

R =
{∥∥θ0

∥∥
2
,
√

2σωα0 , . . . ,
√

2σωα`ε−1 , c′
√

2σωα0 , . . . , c′
√

2σωα`ε−1

}
. (F.17)

Here c′ = (2c1σ/p+ 1) denotes a constant independent of n, d, δ and ε where c1 is the uni-
versal constant that appeared in the bound from Lemma 7.1. In order to do so, we apply a
standard union bound with Lemma 7.1 and obtain that

sup
‖θ‖2≤r

‖Mn(θ)−M(θ)‖2 ≤ c1σr
√
ω for all r ∈ R, (F.18)

with probability at least 1−δ. Let E(n, d, ε, δ) denote the event that the bound (F.18) holds.
With this notation in place, we start with our first claim. The sample-based EM operator

is non-expansive in the following sense:

Lemma F.3. Consider the sample-based EM iteration θt+1 = Mn(θt) with a sample size n ≥
(2c1σ/p)

1/(2ε)σ2(d+log((2`ε+1)/δ)). Suppose that there exists an index ` ∈ {0, 1, . . . , `ε − 1}
and an iteration number t such that ‖θt‖2 ≤

√
2σωα`. Then, conditional on the event E(n, d, ε, δ)

from equation (F.18), we have

‖θt′‖2 ≤
√

2σωα` for all t′ ≥ t. (F.19)

See Appendix F.6.3 for the proof of this claim.

F.3.2 Core of the argument

We now proceed to the core of the argument. Suppose that the sample size is lower bounded
as

n ≥ max



c2,

(
2c1σ

p
+ 1

) 4
ε

,

(√
2c1 ‖θ0‖2

p
+ 1

)2


 · σ

2(d+ log

(
3 log(4/ε)

δ

)
), (F.20)

where the constants c1 and c2 correspond to that from Lemma 7.1. Moreover, recall that the
quantity ω and the time-steps T` were defined in equations (F.16b) and (F.16c) respectively.
The core of the proof consists of the following:
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F.3.2.1 Key claim

For all ` ∈ {0, 1, . . . , `ε − 1}, we have
∥∥θt
∥∥

2
≤
√

2σωα` for all t ≥ T`, (F.21)

with probability at least 1− δ.
Taking this claim as given, let us now show how the bounds in Theorem 7.3 hold for all

t ≥ T`ε−1. Straightforward computations yield that

T`ε−1 ≤ T0 + (`ε − 1)t`ε−1

≤ 4

p

[
log

‖θ0‖2√
2σ
√
ω

+ log
4

ε
· ω1/2−2ε · log

n

σ2d

]

≤ 8

p

[
log
‖θ0‖2

2 n

σ2d
+
(n
d

) 1
2
−2ε

· log

(
4

ε

)
· log

( n

σ2d

)
· σ4ε−1

]
. (F.22)

In other words, equations (F.20) and (F.22) provide the explicit expression for the number
of samples and number of steps required by sample-based EM to converge to a ball of radius
(d/n)1/4−ε around the truth θ∗ = 0.

F.3.2.2 Proof of the key claim (F.21)

We prove this claim by an induction on the epoch index `. All of the argument are performed
conditioned on the event E(n, d, ε, δ) defined in equation (F.18); note that this event occurs
with probability at least 1 − δ. Moreover, we see that the sample size assumption (F.20)
for Theorem 7.3 is larger than required in Lemma F.3 and hence we can invoke the non-
expansiveness of the sample-based EM operator in our arguments to follow.

Proof of base case: (` = 0): We adopt the shorthand ν = ‖θ0‖2 /
√

2σ. The non-
expansiveness property of the sample-based EM-operator (Lemma F.3) ensures that it is
sufficient to consider the case that ‖θt‖2 ∈ [

√
2σ, ν

√
2σ] for all t ≤ T0. Applying the triangle

inequality yields
∥∥θt+1

∥∥
2
≤
∥∥Mn(θt)−M(θt)

∥∥
2

+
∥∥M(θt)

∥∥
2

(F.23a)

(i)

≤ c1σ · ν
√

2σ · √ω + γup(θt)
∥∥θt
∥∥

2
, (F.23b)

where step (i) follows from using r = ν
√

2σ in the event (F.18), and applying Theorem 7.2
(for the two terms respectively). Noting that ‖θt‖2 ≥

√
2σ, we also have that

γup(θt) = 1− p+
p

1 + ‖θt‖2
2 /σ

2
= 1− p ‖θt‖2

2

‖θt‖2
2 + 2σ2

≤ 1− p

2︸ ︷︷ ︸
γ0

.
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Recursing the inequalities (F.23a) and (F.23b) from t = 0 up to t = T0, and using the fact
that γup(θt) ≤ γ0, we find that

∥∥θT0
∥∥

2
≤ c1σ · ν

√
2σ · √ω(1 + γ0 + . . .+ γT0−1

0 ) + γT0
0

∥∥θ0
∥∥

2

≤ c1σ · ν
√

2σ · √ω
1− γ0

+ γT0
0 ν
√

2σ.

Substituting the expressions γ0 = 1− p/2 and T0 = d(2/p) log(ν/
√
ω)e, we obtain that

∥∥θT0
∥∥

2
≤ (2νc1σ/p+ 1)

√
ω
√

2σ ≤
√

2σ,

where the last inequality follows from the fact that for the assumed bound (F.20) on n, we
have (2νc1σ/p+ 1)

√
ω ≤ 1. The base-case now follows.

Proof of inductive step: Now we prove the inductive step. In particular, we assume that∥∥θT`
∥∥

2
≤
√

2σωα` and show that
∥∥θT`+1

∥∥
2
≤
√

2σωα`+1 . Once again, Lemma F.3 implies that
we may assume without loss of generality that ‖θt‖2 ∈ [ωα`+1 , ωα` ] for all t ∈ {T`, . . . , T`+1}.
Under this condition, we have that

γup(θt) ≤ 1− pω2α`+1

1 + ω2α`+1
≤ 1− pω2α`+1

2︸ ︷︷ ︸
=:γ`

for all t ∈ {T`, . . . , T`+1 − 1} , (F.24)

where the last step follows from the fact that ω ∈ [0, 1] and α` ≥ 0. From our earlier
definition (F.16c), we have T`+1 = T` + t`. We split the remainder of our proof in two parts,
primarily to handle the constants. First, we show that

∥∥θT`+dt`+1/2e
∥∥

2
≤ c′
√

2σωα`+1 , (F.25a)

where c′ = (2c1σ/p + 1) is a constant independent of n, d, δ and ε. Next we use this result
to show that

∥∥θT`+1
∥∥

2
=
∥∥θT`+t`+1

∥∥
2
≤
√

2σωα`+1 , (F.25b)

which completes the proof of the induction step. We now prove these two claims one by one.

Proof of claim (F.25a): Applying the triangle inequality yields

∥∥θT`+1
∥∥

2
≤
∥∥Mn(θT`)−M(θT`)

∥∥
2

+
∥∥M(θT`)

∥∥
2

(i)

≤ c1σ ·
√

2σωα` · √ω + γup(θT`)
∥∥θT`

∥∥
2
, (F.26)
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where step (i) follows from using r =
√

2σωα` in the event (F.18) and applying Theorem 7.2.
Recursing the inequality (F.26) for T ≤ dt`/2e steps, and invoking the bound (F.24), i.e.,
γup(θt) ≤ γ` for all t ∈ {T`, . . . , T` + T}, we obtain that

∥∥θT`+T
∥∥

2
≤ c1σ ·

√
2σωα` · √ω · (1 + γ` + . . .+ γT−1

` ) + γT`
∥∥θT`

∥∥
2

≤ c1σ ·
√

2σωα` · √ω
1− γ`

+
√

2σγT` ω
α`

(i)

≤ c1σ ·
√

2σ · (2/p) · ωα`+1/2−2α`+1 + e−Tpω
2α`+1/2 ·

√
2σωα`

(ii)

≤
√

2σωα`+1/2−2α`+1 · (2c1σ/p+ 1)

(iii)
= c′
√

2σωα`+1 ,

where step (i) follows from the inequality (F.24) and the consequent bound γ` ≤ e−p/(2ω
2α`+1 ).

Furthermore, in step (ii), we used the following bound

γT` ≤ e−Tpω
2α`+1/2 ≤ ω1/2−2α`+1 for T ≥ (1− 4α`+1)

pω2α`+1
log

1

ω
, (F.27)

and in step (iii) we invoked the relation (F.16a), i.e., 3α`+1 = 1/2 + α`. The claim now
follows from noting that T = dt`/2e satisfies the condition of equation (F.27).

Proof of claim (F.25b): The proof of this claim makes use of arguments similar to those
used above in the proof of claim (F.25a). Starting at time T` + dt`+1/2e, and applying the
triangle inequality, we find that

∥∥θT`+dt`+1/2e+1
∥∥

2
≤ c1σ · c′

√
2σωα`+1 · √ω + γ`

∥∥θT`+dt`+1/2e
∥∥

2
,

where we have used the bound (F.18) with r = c′
√

2σωα`+1 . Repeating this inequality for

T ≥ (1−4α`+1)

pω2α`+1
log 1

ω
steps and performing computations similar to the proof above, we find

that
∥∥θT`+dt`+1/2e+T

∥∥
2
≤
√

2σωα`+1+1/2−2α`+1 · c′ · (2c1σ/p+ 1)

= c′
2
ω1/2−2α`+1 ·

√
2σωα`+1 .

Observe that 2α`+1 − 1/2 ≤ −2ε for all ` ≤ `ε − 1 and that the sample size given by
bound (F.20) satisfies n ≥ (c′)4/εσ2(d+log(2`ε/δ)); together, these facts imply that c′2ω1/2−2α`+1 ≤
1. The claim now follows.

F.4 Proof of Theorem 7.4

We now turn to the proof of the lower bound on the accuracy of EM fixed points, as stated
in Theorem 7.4. Recalling the definition (7.9) of a sample-based EM operator Mn, the fixed
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point relation Mn(θ̂n) = θ̂n can be re-written as

θ̂n =
1

n

n∑

i=1

Xi tanh

(
θ̂nXi

σ2

)
, (F.28)

where θ̂n denotes a fixed point solution. Our proof makes use of the following elementary
bounds on the hyperbolic tangent function:

x · tanh(αx) ≥ αx2 − 1

3
α3x4, for α ≥ 0, x ∈ R and (F.29a)

x · tanh(αx) ≤ αx2 − 1

3
α3x4, for α < 0, x ∈ R. (F.29b)

In order to keep the proof self-contained, we prove these bounds at the end of this section.
Now plugging in α = θ̂n/σ

2 and using the bound (F.29a) for the case θ̂n ≥ 0 and the

bound (F.29b) for the case θ̂n < 0, we find that

|θ̂n| ≥
|θ̂n|
σ2
· 1

n

n∑

i=1

X2
i −
|θ̂n|3
3σ6

· 1

n

n∑

i=1

X4
i .

Denoting Yi = Xi/σ for i ∈ [n] and re-arranging the inequality above yields that

|θ̂n|3 ≥
3σ2

(
1
n

∑n
i=1 Y

2
i − 1

)
|θ̂n|

1
n

∑n
i=1 Y

4
i

. (F.30)

Note that the random variables Yi
i.i.d.∼ N (0, 1) and thereby the quantity on the RHS above

is a ratio of empirical moments of Gaussian random variables. In order to obtain a lower
bound for |θ̂n| from the inequality (F.30), we exploit a few standard probability bounds for
the concentration of moments of standard Gaussian distribution (refer to Theorem 5.2 in
Inglot [126] and Theorem 6.7 in Janson [129]). In particular, we have

P
[∑n

i=1 Y
2
i

n
− 1 ≥ log 17

n
+

√
log 17/4√

n

]
≥ 1

17
, and (F.31a)

P
[∑n

i=1 Y
4
i

n
≤ c

]
≥ 1− 1

34
, (F.31b)

where c = (e log(34)/2)2
√

6. Plugging these bounds in the inequality (F.30), we find that

1
n

∑n
i=1 Y

2
i − 1

1
n

∑n
i=1 Y

4
i

≥
√

log 17/4

c
· 1√

n
, (F.32)

with probability at least 1/34, where we have used the following elementary fact for two
events A1,A2:

P(A1 ∩ A2) = P(A1) + P(A2)− P(A1 ∪ A2) ≥ P(A1) + P(A2)− 1.
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Let A denote the event that “there are at least two non-zero fixed points θ̂n”. We claim
that A is contained within the event B, defined as follows

A ⊆
{

1

n

n∑

i=1

Y 2
i > 1

}

︸ ︷︷ ︸
= :B

. (F.33)

Deferring the proof of this claim to the end of this section, we now complete the proof of
our original claim. Note that the event B is implied by the event in the bound (F.31a), and
hence we have non-zero fixed points under the same event. Now, for any of these non-zero
fixed points, dividing both sides of inequality (F.30) by |θ̂n| and using the bound (F.32), we
conclude that

P
[
|θ̂n|2 ≥

√
log 17/4

c1

· 1√
n

]
≥ 1

34
,

as claimed in the theorem.
We now prove our earlier claims (F.29a)-(F.29b) and (F.33).

F.4.1 Proof of the bounds (F.29a) and (F.29b)

Note that it suffices to establish that

y tanh(y) ≥ y2 − y4/3, for all y ∈ R. (F.34)

Indeed, a change of variable y = αx and dividing both sides by α yield the desired claims.
Using the fact that tanh(y) = (ey − e−y)/(ey + e−y), it remains to verify that

y(ey − e−y) ≥ (ey + e−y) · (y2 − y4/3)

or equivalently that

∞∑

k=0

2y2k+2

(2k + 1)!
≥

∞∑

k=0

2y2k

(2k)!
· (y2 − y4/3) =

∞∑

k=0

2y2k+2

(2k)!
· (1− y2/3),

which simplifies to

∞∑

k=1

y2k+2

(2k + 1)!

(
1

(2k + 1)!
− 1

(2k)!
+

1

3(2k − 2)!

)
≥ 0.

Since only even powers of y exist on both sides in the power series, it suffices to verify that
each coefficient on the LHS is non-negative. After some algebra, we find that the condition
above reduces to

1

2k + 1
+

(2k − 1)2k

3
− 1 ≥ 0, for all k ≥ 1.

This elementary inequality is indeed true, and so the proof is complete.
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F.4.2 Proof of set-inclusion (F.33)

Consider the (random) function g : R→ R such that g(θ) := Mn(θ)− θ. Also introduce the
shorthand Z =

∑n
i=1 Y

2
i /n, and note that B = {Z > 1}. Note that any fixed point of the

operator Mn is a zero of the function g and vice-versa. It is easy to see that the function
g is twice continuously differentiable. Now for the event {Z > 1}, the function g satisfies
g(0) = 0 and g′(0) > 0 and hence there exists c > 0 such that g(c) > 0. Furthermore for
any sequence of Yi’s, we have that limθ→∞ g(θ) = −∞. Putting the two pieces together, we
obtain that under the event B, the function g has at least one strictly positive root. Since g
is an odd function, we also have that under the same event, the function g has at least one
strictly negative root. The claim now follows.

F.5 Proof of Lemma 7.1

The proof of this lemma is based on standard arguments to derive Rademacher complexity
bounds [241, 246]. First, we reduce the supremum of random variables over an uncountable
set to a finite maximum. We then symmetrize with Rademacher variables, and then apply the
Ledoux-Talagrand contraction inequality. Finally, we exploit tail bounds on sub-Gaussian
and sub-exponential random variables so as to obtain the desired claim.

Let Sd =
{
u ∈ Rd | ‖u‖2 = 1

}
denote the unit sphere in d-dimensions. Then, we have

Z := sup
θ∈B(0,r)

‖Mn(θ)−M(θ)‖2 = sup
θ∈B(0,r)

sup
u∈Sd

(Mn(θ)−M(θ))>u

= sup
u∈Sd

sup
θ∈B(0,r)

(Mn(θ)−M(θ))>u

︸ ︷︷ ︸
=:Zu

.

Note that Z is defined as the supremum over the sphere Sd. Using a standard discretization
argument, we reduce our problem to a maximum over a finite cover. In particular, we denote{
u1, . . . , uN

}
a 1/8-cover for the unit sphere Sd. It is well known that we can find such a set

with N ≤ 17d. Using the usual discretization argument (see Chapter 6, [246]), we can show
that

Z ≤ max
j∈[N ]

8Zuj

7
. (F.35)

Consequently, it is sufficient to study the behavior of the random variables Zuj for j ∈ [N ],
which we do next.

Substituting this relation into the definitions (7.8) and (7.9) of the EM operators Mn and
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M , respectively, we find that

Zuk = sup
θ∈B(0,r)

{
1

n

n∑

i=1

(2wθ(Xi)− 1)X>i u
k − E

[
(2wθ(X)− 1)X>uk

]}

=

(
1

n

n∑

i=1

X>i u
k − E[X>uk]

)
· (2π− 1)

+ sup
θ∈B(0,r)

{(
1

n

n∑

i=1

2(wθ(Xi)− π)X>i − E
[
2(wθ(X)− π) ·X>

]
)
uk
}

= Auk +Buk ,

and thereby that

Z ≤ 8

7

{
max
j∈[N ]

Auj + max
j∈[N ]

Buj

}
. (F.36)

Noting that X>i u
j i.i.d.∼ N (0, σ2) and that N ≤ 17d, standard concentration bounds yield that

P

[
max
j∈[N ]

Auj ≤ |2π− 1|σ
√
d log 17 + log(1/δ)

n

]
≥ 1− δ. (F.37a)

On the other hand, for the random variables Buj , we claim the following bound

P

[
max
j∈[N ]

Buj ≤ c′rσ2

√
d+ log(1/δ)

n

]
≥ 1− δ. (F.37b)

Putting the bounds (F.36) and (F.37) together yields the claim of the lemma.

F.5.0.1 Proof of the bound (F.37b)

Using a symmetrization bound [241, 246], we find that

E[exp(λBuk)] ≤ E

[
exp

(
sup

θ∈B(0,r)

2λ

n

n∑

i=1

εi2(wθ(Xi)− π)X>i u
k)

)]
, (F.38)

for any λ > 0 where ε1, . . . , εn denote i.i.d. Rademacher random variables which are inde-
pendent of {Xi, i ∈ [n]}. We now make use of the Ledoux-Talagrand contraction inequality
for Lipschitz functions of Rademacher processes [151]. For each fixed x, define the function
fx(θ) := 2 (wθ(x)− π). Since w0(x) = π for all x, we have fx(0) = 0, so that this function is
centered. Moreover, for any pair (θ, θ′), we have

|fx(θ)− fx(θ′)| = |2wθ(x)− 2wθ′(x)| ≤ 2
∣∣θ>x− (θ′)>x

∣∣ ,
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so that fx(θ) is 2-Lipschitz in the quantity θ>x. Consequently, applying the Ledoux-
Talagrand contraction inequality for this map, we find that

E

[
exp

(
sup

θ∈B(0,r)

2λ

n

n∑

i=1

εi(2(wθ(Xi)− π)X>i u
k)

)]

≤ E

[
exp

(
sup

θ∈B(0,r)

4λ

n

n∑

i=1

εiθ
>XiX

>
i u

k

)]
.

Furthermore, using the fact that
∥∥uk
∥∥

2
= 1 and the standard bound u>Bv ≤ ‖u‖2 |||B|||op ‖v‖2,

we obtain that

E

[
exp

(
sup

θ∈B(0,r)

4λ

n

n∑

i=1

εiθ
>XiX

>
i u

k

)]

≤ E

[
exp

(
sup

θ∈B(0,r)

4λ‖uk‖2 ‖θ‖2 |||
1

n

n∑

i=1

εiXiX
>
i |||op

)]

≤ E

[
exp

(
4λr ||| 1

n

n∑

i=1

εiXiX
>
i |||op

)]
. (F.39)

We now make two auxiliary claims:
(a) The operator norm of the matrix

∑n
i=1 εiXiX

>
i /n can be bounded as follows:

||| 1
n

n∑

i=1

εiXiX
>
i |||op ≤ 2 max

j∈[N ]

∣∣∣∣∣
1

n

n∑

i=1

εi(X
>
i u

j)2

∣∣∣∣∣ . (F.40a)

(b) For all (i, j) ∈ [n]× [N ], we have

E
[
exp(tεi(X

>
i u

j)2)
]
≤ exp(17 · t2σ4) for all |t| ≤ 1

4σ2 . (F.40b)

The claim (F.40a) follows by the same discretization argument that we used before (see
Chapter 6 in the book [246]). We return to prove the claim (F.40b) at the end of this
appendix.

Taking these claims as given for the moment, let us now complete the proof of the
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bound (F.37b). Putting together the pieces, we find that

E[exp(λBuk)]
(bnd. (F.38), (F.39))

≤ E

[
exp

(
4λr ||| 1

n

n∑

i=1

εiXiX
>
i |||op

)]

(eqn. (F.40a))

≤ E

[
exp

(
max
j∈[N ]

8λr

n

∣∣∣∣∣
n∑

i=1

εi(X
>
i u

j)2

∣∣∣∣∣

)]

≤ E

[
exp

(
max
j∈[N ]

−8λr

n

n∑

i=1

εi(X
>
i u

j)2

)]

+ E

[
exp

(
max
j∈[N ]

8λr

n

n∑

i=1

εi(X
>
i u

j)2

)]

(eqn. (F.40b))

≤ 2N ·
n∏

i=1

exp

(
17 · 64λ2r2

n2
· σ4

)

for any |λ| ≤ n/(32rσ2). Now invoking the inequality 2N ≤ 34d ≤ e4d, we find that

E[exp(λBuk)] ≤ exp
(
c · λ2r2σ4/n+ 4d

)
for any k ∈ [N ],

and sufficiently small λ. Now using the fact that N ≤ e3d, we obtain that

E[exp(λmax
j∈[N ]

Buj)] ≤ N exp(c · 4λ2r2σ4/n+ 4d) ≤ exp(c · λ2r2σ4/n+ 7d),

for some constant c. Using the standard approach for applying Chernoff bound, we have
that

max
j∈[N ]

Buj ≤ crσ2 ·
√
d+ log(1/δ)

n
, with probability at least 1− δ,

as long as n ≥ c′(d+ log(1/δ) for some suitable constants c and c′.

We now return to prove our earlier claim (F.40b).

Proof of claim (F.40b): Noting that X>i u
j i.i.d.∼ N (0, σ2), and the fact that square of a

sub-Gaussian random variable with parameter σ is a sub-exponential random variable with
parameter (4σ2, 4σ2), we obtain the following inequality [243]:

E
[
exp

(
t(X>i u

j)2 − tE(X>i u
j)2
)]
≤ e16t2σ4

for all |t| ≤ 1

4σ2
. (F.41)
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Noting that the random variable εi is independent of X>i v, we find that

E
[
exp(tεi(X

>
i u

j)2)
]

=
1

2
E
[
exp(t(X>i u

j)2)
]

+
1

2
E
[
exp(−t(X>i uj)2)

]

(i)

≤ e16t2σ4 · 1

2

[
etσ

2

+ e−tσ
2
]

(ii)

≤ e17t2σ4

,

for all |t| ≤ 1
4σ2 . In asserting the above sequence of steps, we have applied the inequal-

ity (F.41) along with the fact that E(X>i u
j)2 = σ2 to conclude step (i), and step (ii) follows

from the inequality ex + e−x ≤ 2ex
2

for all x ∈ R. The claim now follows.

F.6 Proofs of auxiliary lemmas

In this appendix, we present the proofs of the auxiliary lemmas used in the proofs of our
main results.

F.6.1 Proof of Lemma F.1

We begin with the elementary inequality exp(y) + exp(−y) ≥ 2 + y2, valid for all y ∈ R, to
find that

[Bθu ]11 = EV
[

V 2
1

(exp (−‖θu‖2V1/σ) + exp (‖θu‖2V1/σ))2

]

≤ EV1

[
V 2

1

(2 + V 2
1 ‖θu‖2

2/σ
2)

2

]
. (F.42)

Letting IA denote the indicator random variable for event A, i.e., it takes value 1 when the
event A occurs and 0 otherwise. Then we have

E
[

V 2
1

(2 + V 2
1 ‖θu‖2

2/σ
2)

2

]
= E

[
V 2

1

(2 + V 2
1 ‖θu‖2

2/σ
2)

2 I{|V1|≤1}

]

+ E
[

V 2
1

(2 + V 2
1 ‖θu‖2

2/σ
2)

2 I{|V1|>1}

]

≤ 1

4
E
[
V 2

1 I{|V1|≤1}
]

+ E
[

V 2
1

(2 + ‖θu‖2
2/σ

2)
2 I{|V1|>1}

]
. (F.43)

Here the final inequality is a consequence of the following observation:

V 2
1

(2 + V 2
1 ‖θu‖2

2/σ
2)

2 ≤





V 2
1

4
if |V1| ≤ 1,

V 2
1

(2 + ‖θu‖2
2/σ

2)2
if |V1| > 1.

(F.44)
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Putting the inequalities (F.42) and (F.43) together, we conclude that

[Bθu ]11 ≤
1

4
E
[
V 2

1 I{|V1|≤1}
]

+ E
[

V 2
1

(2 + ‖θu‖2
2/σ

2)
2 I{|V1|>1}

]
,

where V1 ∼ N (0, 1). Define p1 := E
[
V 2

1 I{|V1|≤1}
]
. Then we can directly verify that E

[
V 2

1 I{|V1|≥1}
]

=
1− p1 and consequently obtain that

[Bθu ]11 ≤
p1

4
+

(1− p1)

4

1

(1 + ‖θu‖2
2 /(2σ

2))2
. (F.45)

Now we bound the entries [Bθu ]jj, j 6= 1. Using the standard inequality exp(y) + exp(−y) ≥ 2 + y2

once again and noting that Vj
i.i.d.∼ N (0, 1), we find that

[Bθu ]jj = EV
[

V 2
j

(exp (−‖θu‖2V1/σ) + exp (‖θu‖2V1/σ))2

]

≤ EV1

[
1

(2 + V 2
1 ‖θu‖2

2/σ
2)

2

]
. (F.46)

Similar to observation (F.44), we also have that

[Bθu ]jj ≤
1

4
E
[
I{|V1|≤1}

]
+ E

[
1

(2 + ‖θu‖2
2/σ

2)
2 I{|V1|>1}

]
. (F.47)

Define p2 := P (|V1| ≤ 1). Putting together the inequalities (F.46) and (F.47), we obtain that

[Bθu ]jj ≤
p2

4
+

(1− p2)

4

1

(1 + ‖θu‖2
2 /(2σ

2))2
for j = 2, . . . , d. (F.48)

Note that

p2 = P (|V1| ≤ 1) = E
[
I{|V1|≤1}

]
> E

[
V 2

1 I{|V1|≤1}
]

= p1,

and consequently, the bound on the RHS of inequality (F.48) is larger than the RHS of
inequality (F.45). As a result, we have

|||Bθu|||op = max
j∈[d]

[Bθu ]jj ≤
p2

4
+

(1− p2)

4

1

(1 + ‖θu‖2
2 /(2σ

2))2
,

where p2 = P (|V1| ≤ 1) and the claim (F.11) follows.

F.6.2 Proof of Lemma F.2

We now prove the claim (F.15) in two steps. First, we show that [Fθ]jj ≥ [Fθ]11 for all j ∈ [d].
Then, we derive the claimed lower bound for [Fθ]11.
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Proof of [Fθ]jj ≥ [Fθ]11: For all j 6= 1, by changing the order of integration, we obtain
that

[Fθ]jj =

1∫

0

EV
[

V 2
j

(exp (−‖θu‖2V1/σ) + exp (‖θu‖2V1/σ))2

]
du

(i)
=

1∫

0

EV
[

1

(exp (−‖θu‖2V1/σ) + exp (‖θu‖2V1/σ))2

]
du

(ii)

≥
1∫

0

EV
[

V 2
1

(exp (−‖θu‖2V1/σ) + exp (‖θu‖2V1/σ))2

]
du = [Fθ]11 ,

where step (i) follows since E[V 2
j ] = 1, and from the fact that the random variables {Vj, j 6= 1}

are independent of the random variable V1. Finally, note that the map |V1| 7→ V 2
1 is increasing

in |V1|, and for any fixed value of θu the function |V1| 7→ 1
(exp(−‖θu‖2V1/σ)+exp(‖θu‖2V1/σ))2 is a

decreasing function of |V1|; consequently, step (ii) above follows from a standard application
of the Harris inequality.1

Lower bound on [Fθ]11: Substituting θu = uθ in the expression for [Fθ]11, and noting that∫ 1

0
(eau + e−au)−2du = tanh(a)/(4a), we obtain that

[Fθ]11 = EV1




1∫

0

V 2
1

(exp (−u ‖θ‖2 V1/σ) + exp (u ‖θ‖2 V1/σ))2du




= EV1

[
σV1

4 ‖θ‖2

tanh
‖θ‖2 V1

σ

]

(i)
=

1

4
EV1

[
sech2

(‖θ‖2 V1

σ

)]

= EV1

[
1

(exp (−‖θ‖2V1/σ) + exp (‖θ‖2V1/σ))2

]
,

1Harris inequality: Given any pair of functions (f, g) such that the function f : R 7→ R is increas-
ing, and the function g : R 7→ R is decreasing. Then for any real-valued random variable U we have
E (f(U)g(U)) ≤ E(f(U))E(g(U)). Here we have assumed that all three expectations exist and are finite.
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where step (i) follows from Stein’s Lemma for standard Gaussian distribution2. Expanding
the expression in the denominator, we obtain

[Fθ]11 = EV1

[
1

2 + exp (−2‖θ‖2V1/σ) + exp (2‖θ‖2V1/σ)

]

≥ 1

EV1 [2 + exp (−2‖θ‖2V1/σ) + exp (2‖θ‖2V1/σ)]
, (F.49)

where the last inequality follows from Jensen’s inequality applied with the convex function
y 7→ 1

y
on y ∈ (0,∞). Noting that V1 ∼ N (0, 1) and consequently that EV1 (exp (yV1)) = ey

2/2

for all y ∈ R, we obtain that

EV1

[
2 + exp (−2‖θ‖2V1/σ) + exp (2‖θ‖2V1/σ)

]
= 2(1 + e2‖θ‖22/σ2

)

≤ 4(1 + 2 ‖θ‖2
2 /σ

2), (F.50)

for all θ such that ‖θ‖2
2 ≤ 5σ2/8. Here the last step follows from the fact that et ≤ 1 + 2t,

for all t ∈ [0, 5/4]. Putting the bounds (F.49) and (F.50) together yields the claimed lower
bound for [Fθ]11.

F.6.3 Proof of Lemma F.3

Note that it is sufficient to show that a one-step update is non-expansive. Without loss of
generality, we can assume that ‖θt‖2 ≥

√
2σωα`+1 , else we can start with the assumption

‖θt‖2 ≥
√

2σωα`+2 and mimic the arguments that follow. Applying the triangle inequality,
we find that

∥∥θt+1
∥∥

2
=
∥∥Mn(θt)

∥∥
2
≤
∥∥Mn(θt)−M(θt)

∥∥
2

+
∥∥M(θt)

∥∥
2

(i)

≤ c1σ ·
√

2σωα` · √ω + γup(θt)
∥∥θt
∥∥

2

(ii)

≤ c1σ ·
√

2σωα` · √ω +

(
1− pω2α`+1

2

)√
2σωα`

=

(
1− pω2α`+1

2
+ c1σ

√
ω

)√
2σωα` ,

where step (i) follows from the bound (F.18) with r = ‖θt‖2 ≤
√

2σωα` , and applying The-
orem 7.2, and step (ii) follows from the condition that ‖θt‖2 ≥

√
2σωα`+1 and consequently

that γup(θt) ≤ 1− pω2α`+1/2. Note that 2α`+1 − 1/2 ≤ −2ε for all ` ≤ `ε − 1 and ω ≤ 1. As
a result, for n ≥ (2c1σ/p)

1/(2ε)σ2d log(2`ε/δ), we have that ω2α`+1−1/2 ≥ ω−2ε ≥ 2c1σ/p and
thereby that

(
1− pω2α`+1

2
+ c1σ

√
ω

)
≤ 1.

2Stein’s Lemma: For any differentiable function g : R 7→ R, we have E [Y g(Y )] = E [g′(Y )] where
Y ∼ N (0, 1) provided that expectations E [g′(Y )] and E [Y g(Y )] exist.
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Putting all the pieces together yields the result.

F.7 Additional results

In this appendix, we provide additional results to support several claims from Chapter 7.

F.7.1 Effect of initial conditions

The next lemma shows that for the mixture models analyzed in Chapter 7, the population
EM operator M maps any θ ∈ Rd to a ball of radius

√
2/π namely, the radius is independent

of the dimension d. Given the uniform bounds provided in Lemma 7.1, loosely speaking,
‖Mn(θ0)‖2 is upper bounded by

√
2/π + ‖θ0‖2

√
d/n with high probability. Consequently,

we make an implicit assumption while elaborating our results that ‖θ0‖2 is a constant and
does not scale with dimension (provided that the sample size is large enough to keep the
second term small).

Lemma F.4. For both the unbalanced or balanced model fits (7.3), when the true model is
standard Gaussian, we have

∥∥M(θ0)
∥∥

2
≤
√

2

π
for any θ0 ∈ Rd.

Proof. The proof of this lemma is a direct consequence of the change of basis ideas used
in the proofs of Theorems 7.1 and 7.2 before. Using the definition of M and applying the
transformation V = RX/σ where R ∈ Rd×d is an orthonormal matrix such that Rθ = ‖θ‖2e1,
and e1 is the first canonical basis vector in Rd, we find that

‖M(θ)‖2 =

∥∥∥∥∥∥
EX




πe−

θ>X
σ2 − (1− π)e

θ>X
σ2

πe−
θ>X
σ2 + (1− π)e

θ>X
σ2


X



∥∥∥∥∥∥

2

=

∥∥∥∥∥EV
[(

πe−
‖θ‖2V1
σ − (1− π)e

‖θ‖2V1
σ

πe−
‖θ‖2V1
σ + (1− π)e

‖θ‖2V1
σ

)
V

]∥∥∥∥∥
2

=

∣∣∣∣∣EV1

[(
πe−

‖θ‖2V1
σ − (1− π)e

‖θ‖2V1
σ

πe−
‖θ‖2V1
σ + (1− π)e

‖θ‖2V1
σ

)
V1

]∣∣∣∣∣

≤ EV1

[∣∣∣∣∣
πe−

‖θ‖2V1
σ − (1− π)e

‖θ‖2V1
σ

πe−
‖θ‖2V1
σ + (1− π)e

‖θ‖2V1
σ

∣∣∣∣∣ |V1|
]
≤ EV1 [|V1|] =

√
2

π
.

The claim now follows.
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F.7.2 Behavior of EM when the weight is unknown

We now discuss the case when the mixture weight π ∈ (0, 1/2] in the model fit (7.3) is
assumed to be unknown and is estimated jointly with the (single) location parameter µ using
EM. (The scale parameter is still assumed to be known and fixed to the true value.) For our
case, given a set of i.i.d. samples {Xi}ni=1, the sample EM operators M1,n : Rd × (0, 1/2] 7→
(0, 1/2] and M2,n : Rd × (0, 1/2] 7→ Rd for the weight and location parameters respectively
take the form

M1,n(θ,π) :=
1

n

n∑

i=1

wθ,π(Xi), and M2,n(θ,π) :=
1

n

n∑

i=1

(2wθ,π(Xi)− 1)Xi, (F.51)

where the weight function wθ,π is defined as

wθ,π(x) :=
π exp

(
−‖θ−x‖

2
2

2σ2

)

π exp
(
−‖θ−x‖

2
2

2σ2

)
+ (1− π) exp

(
−‖θ+x‖

2
2

2σ2

) . (F.52)

Taking the infinite sample limit, we can define the corresponding population EM operators
M1 and M2 for the weight and location parameters as follows:

M1(θ,π) := EX [wθ,π(X)] , and M2(θ,π) := EX [(2wθ,π(X)− 1)X] , (F.53)

where the expectation is over the true model X ∼ N (0, Id). The next results characterize
the contraction properties of these population EM operators.

Lemma F.5. For any µ ∈ Rd and π ∈ (0, 1/2], the population EM operators M1 and M2

satisfy

|M1(θ,π)− π| ≤ (1− cρ2) ‖µ‖2

2
, and ‖M2(θ,π)‖2 ≤

(
1− ρ2

2

)
‖µ‖2 (F.54)

where ρ := 1− 2π ∈ (0, 1) and c ∈ (1/2, 1) denotes a universal constant.

See the end of this appendix for the proof.
An immediate consequence of Lemma F.5 is the following. Let π < 1/2 be any fixed con-

stant. Consider the population EM sequence (πt, µt) generated as (πt+1, µt+1) = (M1(θt,πt, ),M2(µt,πt))
starting with an initialization (π0, µ0) ∈ (0, 1/2]× Rd such that

π0 +
‖µ0‖2

(1− 2π)2
≤ π. (F.55)

Then we have

πt ≤ π,
∥∥µt
∥∥

2
≤
(

1− (1− 2π)2

2

)t+1 ∥∥θ0
∥∥

2
.



Appendix F. Content Deferred From Chapter 7 345

In simple words, the weight sequence πt remains bounded above by π̄ and the sequence θt

for the location parameter converges geometrically to θ∗ = 0. On the other hand, when the
initialization does not satisfy the condition (F.55), the convergence of location parameter
can become sub-linear, especially when π0 ≈ 1/2. In simple words, if the initial mixture
is highly unbalanced, we would observe a geometric convergence and as we show in the
next corollary sample EM estimates would have a statistical error of order n−

1
2 . When the

condition (F.55) is violated, loosely speaking the initial parameters are close to those of a
balanced mixture and EM would depict the slower convergence on both algorithmic and
(consequently) statistical fronts similar to the results stated in Theorem 7.2. However, a
rigorous proof for the later case is beyond the scope of this work and we only provide some
numerical evidence in Figure F.1.

0 10 20
Iteration t

10−5

10−3

10−1

‖θ
t
−
θ∗
‖

Population EM with unknown weights
Case 1 (unbalanced): θt+1 = M(θt)

Case 2 (balanced): θt+1 = M(θt)

103

Number of samples n

10−2

10−1

100

‖θ
t
−
θ∗
‖

Unknown weights: Statistical error vs n

Case 1 (unbalanced)

slope = −0.57

Case 2 (balanced)

slope = −0.26

(a) (b)

Figure F.1: Behavior of EM for the two-mixture over-specified fit (7.2) with unknown weights
where the true model is N (0, I2). We consider two different initializations. Case 1 (unbal-
anced): When the initialization condition (F.55) is met (in particular we set π much smaller
than 1

2
). In Case 2 (balanced), we initialize the weight parameter very close to 1

2
. Panel (a)

characterizes the population EM updates and panel (b) depicts the statistical error with
sample size n for the two cases. We see that when the condition (F.55) is met, EM converges

in few steps within error n−
1
2 error and on the other hand when the initial weight is near 1

2

we observe a slow convergence of EM with a larger statistical error of order n−
1
4 .

Corollary F.1. Consider the sample EM sequences πt+1 = M1,n(πt) and θt+1 = M2,n(θt)
with an initialization that satisfies the condition (F.55) for some π < 1/2. Then for any
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fixed δ ∈ (0, 1) and n ≥ c d log(1/δ)σ
2

ρ4 , we have

πt ≤ π,
∥∥θt
∥∥

2
≤
∥∥θ0
∥∥

2

[
(
1− ρ2/2

)t
+
c′σ2

ρ2

√
d log(1/δ)

n

]
, (F.56)

with probability at least 1− δ, where c, c′ and ρ = 1− 2π ∈ (0, 1) are universal constants.

The proof is fairly straightforward given the proof of Theorem 7.1 and is thereby omitted.
However, it remains to prove Lemma F.5.

Proof of Lemma F.5: The upper bound for ‖M2(µ,π)‖2 follows directly from the proof
of Theorem 7.1. Turning to the other bound in equation (F.54), we see that

|M1(θ,π)− π| = π(1− π)

∣∣∣∣∣EX
[

exp
(
X>µ

)
− exp

(
−X>µ

)

π exp (X>µ) + (1− π) exp (−X>µ)

]∣∣∣∣∣
≤ 2π(1− π) ‖µ‖2 max

u∈[0,1]
|||E
[
Γ̄θu(X)

]
|||op,

where µu = uµ for u ∈ [0, 1] and the matrix Γ̄θu(X) is defined as

Γ̄θu(X) :=
X

σ2
(
π exp

(
− θ>uX

σ2

)
+ (1− π) exp

(
θ>uX
σ2

))2 . (F.57)

Invoking the transformation as that from the proof of Theorem 7.1 and mimicking the
arguments presented there, we can verify that

∣∣EX
[
Γ̄θu(X)

]∣∣ =

∣∣∣∣∣EV1

[
V1

σ (π exp (−‖θu‖2 V1/σ) + (1− π) exp (‖θu‖2 V1/σ))2

]∣∣∣∣∣

≤ EV1

[
|V1|

σ (π exp (−‖θu‖2 V1/σ) + (1− π) exp (‖θu‖2 V1/σ))2

]

≤ (1− ρ2) + ρ2EV1 [|V1| I(V1 ≥ 0)]

(1− ρ2)

=
1− cρ2

(1− ρ2)

where V1 ∼ N (0, 1) and c = 1 − EV1 [|V1| I(V1 ≥ 0)] ∈ (1/2, 1). Putting the above results
together yields the claimed bound.



Appendix F. Content Deferred From Chapter 7 347

F.8 Closer look at log-likelihood

In this appendix, we provide a further discussion on the difference between the unbalanced
and balanced mixtures corresponding to the model (7.2) considered throughout our work.
Recall that the expected (population) log-likelihood for the model fit (7.2) is given by

Lπ(µ) = E
[
log
(
πφ
(
X;µ, σ2Id

)
+ (1− π)φ

(
X;−µ, σ2Id

))]
,

where φ(·; θ, σ2Id) denotes the probability density of the Gaussian distribution N (θ, σ2Id).
Observe that

arg max
θ
Lπ(µ) = arg min

θ
KL(N (0, σ2Id)‖πN (θ, σ2Id) + (1− π)N (−θ, σ2Id)),

where KL(P‖Q) denotes the Kullback-Leibler divergence between the distributions P and
Q. Since the true distribution belongs to the fitted class with θ∗ = 0, finding maximizer
of the population log-likelihood would yield the true parameter θ∗. As alluded to in the
main text, in practical situations, when one has access to only n i.i.d. samples {Xi}ni=1,
the most popular choice to estimate θ∗ is the maximum likelihood estimate (MLE) given by
equation (7.4).

We now use the nature of log-likelihood to justify the difference between unbalanced and
balanced fits. Note that the Fisher information matrix Iπ(θ) := −∇2

θLπ(µ) for the fit (7.2)
with mixture weights (π, 1− π) is given by

[Iπ(θ)]ii = −4π(1− π)E
[

Y 2
i

(π exp(µ>Y ) + (1− π) exp(−µ>Y ))2

]
+ 1

for i ∈ [d] and

[Iπ(θ)]ij = −4π(1− π)E
[

YiYj
(π exp(µ>Y ) + (1− π) exp(−µ>Y ))2

]

for i, j ∈ [d] such that i 6= j. Here the expectations are taken under the true model Y =
(Y1, . . . , Yd) ∼ N (0, Id). Clearly, at θ = θ∗ = 0, we have

Iπ(θ∗) = βπId, where βπ = −4π(1− π) + 1. (F.58)

Note that βπ > 0 for any π ∈ (0, 1) such that π 6= 1/2. On the other hand, for π = 1/2,
we have βπ = 0. Consequently, we find that for any unbalanced fit with π 6= 1/2, the Fisher
matrix is positive definite at θ∗, and, for the balanced fit with π = 1/2, it is singular at θ∗.
Equivalently, the log-likelihood is strongly log-concave around θ∗ for the unbalanced fit and
weakly log-concave for the balanced fit.

We numerically computed the population log-likelihood and plotted it in Figure F.2(a)3,
where we observe that when the mixture weights are unbalanced (π < 1/2), the popu-
lation log-likelihood for the model has more curvature, and in fact is (numerically) well-
approximated as Lπ(θ) ≈ −cπθ2. On the other hand, for the balanced model with π = 1

2
, the

3Figure F.2(b), shows the sample likelihoods Lπ
n based on n = 1000 samples, and weights π ∈ {0.1, 0.5}.

We observe that while the sample-likelihood may have more critical points, its curvature resembles very
closely the curvature of the corresponding population log-likelihood.
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Figure F.2: Plots of the log-likelihood for the unbalanced and balanced fit for data generated
from N (0, 1). (a) Behavior of population log-likelihood Lπ (7.5) (computed using numerical
integration) as a function of θ for different weights π ∈ {0.1, 0.3, 0.5}. (b) Behavior of sample
log-likelihood Lπ

n (7.4) with n = 1000 samples for π ∈ {0.1, 0.3, 0.5}. The plots in these panels
portray a stark contrast in the shapes of the log-likelihood functions in the balanced and
unbalanced case, it gets flatter around θ∗ = 0 as π → 0.5. More concretely, in unbalanced
case we see a quadratic type behavior (strongly concave); whereas in balanced case, the log-
likelihood function is flatter and depicts a fourth degree polynomial type (weakly concave)
behavior.

likelihood is quite flat near origin and is (numerically) well-approximated as Lπ(θ) ≈ −c θ4.
It is a folklore that the convergence rate of optimization methods has a phase transition:
optimizing strongly concave functions is exponentially fast than weakly concave functions.
As a result, we might expect why population EM may have fundamentally different rate of
algorithmic convergence in the two model fits as observed in Figure 7.2.

Moreover, the singularity of Fisher matrix is known to lead to a slow down the statistical
rate of MLE. It is well established [240] that when the Fisher matrix is invertible in a

neighborhood of the true parameter, MLE has the parametric rate of n−
1
2 , i.e., the MLE

estimate is at a distance of order n−
1
2 from the true parameter θ∗. Moreover, as discussed

in the introduction (??), several works [42, 194] have also shown than the singularity of

the Fisher matrix may lead to a slower than n−
1
2 rate for the MLE. Since EM algorithm is

designed to estimate MLE (and converges only to local maxima), we may loosely conclude
that, for the singular case (balanced fit), a slower than parametric rate for the EM estimate
is also expected.
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F.9 Mixture of regression

In this appendix, we provide formal results for the slow convergence of EM for over-specified
mixture of linear regression (as discussed in Section 7.6.2).

Given n samples from the mixture of regressions model (7.26), we use EM to fit the
following model:

Y |X ∼ 1

2
N (θ>X, 1) +

1

2
N (−θ>X, 1), (F.59)

where we assume the knowledge of covariate design X ∼ N (0, Id). Given this joint model
on (X, Y ) the population log-likelihood for the model is given by

L(θ) = EX,Y
[
log
(
πφ
(
Y ; θ>X, σ2Id

)
+ (1− π)φ

(
Y ;−θ>X, σ2Id

))]
,

where φ(·; θ, σ2Id) denotes the probability density of the Gaussian distribution N (θ, σ2Id).
In Figure F.3, we plot this log-likelihood as a function of θ for two different values of θ∗

and observe the following. When the mixture has strong signal (θ∗ = 0.7), the Hessian of
log-likelihood is negative definite (strongly concave) but in the case of no signal θ∗ = 0 the
Hessian degenerates at θ∗ and the log-likelihood becomes weakly concave.

The behavior observed in Figure F.3 is reminiscent of the behavior of log-likelihood in
the case of over-specified Gaussian mixtures considered in the main text (see Appendix F.8
and Figure F.2). We now show that such a similarity also implies a similar behavior for EM,
which converges slowly on both algorithmic and statistical fronts (just like the over-specified
Gaussian mixture case) for the fit (F.59).

Given this model, the sample EM operator Mn : Rd 7→ Rd takes the form

Mn(θ) :=

(
n∑

i=1

XiX
>
i

)−1(
1

n

n∑

i=1

(2wθ(Xi, Yi)− 1)XiYi

)
(F.60)

where we define

wθ(x, y) :=

π exp

(
−(y−µ>x)

2

2

)

π exp

(
−(y−µ>x)

2

2

)
+ (1− π) exp

(
−(y+µ>x)

2

2

) . (F.61)

Consequently, the population EM operator M : Rd 7→ Rd is given by

M(θ) := E(Y,X) [(2wθ(X, Y )− 1)XY ] , (F.62)

where the outer expectation is taken with respect to X ∼ N (0, Id) and Y |X ∼ N ((θ∗)>X, 1)
(= N (0, Id) when θ∗ = 0). Given these notation, we now characterize the slow convergence
of the population EM operator:
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Mixture of Regression: Population log-likelihood

θ∗ = 0.00

θ∗ = 0.70

Figure F.3: Plots of the population log-likelihood for the mixture of regression model for
θ∗ ∈ {0, 0.7}. We see that while the log-likelihood is clearly locally strongly concave around
θ∗ when θ∗ = 0.7, and it is rather flat (and weakly concave) for the case of no signal
θ∗ = 0. This flatness in log-likelihood results in a slower rate of algorithmic and statistical
convergence of EM in this setting thereby providing further evidence of the usefulness of our
analysis of EM.

Lemma F.6. Given the balanced model fit (F.59) to the true model (7.26) with θ∗ = 0, the
population EM operator M (F.62) satisfies the following bounds

‖µ‖2 (1− 3 ‖µ‖2
2) ≤

∥∥M(µ)
∥∥

2
≤ ‖µ‖2 (1− 2 ‖µ‖2

2) (F.63)

for any µ ∈ Rd such that ‖µ‖2 ≤ 1/2.

Proof is deferred to the end of this appendix.

We note that the assumption ‖µ‖2 ≤ 1/2 is a convenient technical assumption and is
possibly loose in a similar manner as noted in Lemma F.4 for the Gaussian mixture case.
Applying the localization argument in conjunction with the sub-geometric convergence of
the population EM (Lemma F.6) yields the slow statistical convergence (of order (d/n)

1
4 ) of

the sample EM:
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Corollary F.2. Consider the over-specified model fit (F.59) to the true model (7.26) with
θ∗ = 0, and initialize the sample EM sequence µt+1 = Mn(µt) with a θ0 such that ‖θ0‖2 ≤ 1

2
.

Then, for any ε ∈ (0, 1/4), δ ∈ (0, 1), given a large sample size n ≥ c′1d log(log(1/ε)/δ), the
sample EM updates satisfy

∥∥µt
∥∥

2
≤
[
∥∥θ0
∥∥

2

t−1∏

j=0

(
1− 2

∥∥µj
∥∥2

2

)]
+
√

2

(
(d+ log log(4/ε)

δ
)

n

) 1
4
−ε

,

for any iterate t ≥ c′2
(
n
d

) 1
2
−2ε

log(n/d) log(1/ε), with probability at least 1− δ. Here, c′1 and
c′2 denote universal constants.

Given Lemma F.6, the proof of Corollary F.2 follows the same annulus-based localization
road-map as of the proof of Theorem 7.3; and is thereby omitted. We now prove Lemma F.6.

Proof of Lemma F.6: We provide a proof sketch for the lemma based on an application
of Taylor expansion. In particular, we define a transformation V := RX where R is an
orthonormal matrix such that Rµ = ‖µ‖2 e1 and e1 denotes the first canonical basis vector
in dimension d. After similar algebra as that of Theorem 7.2, we can verify that

∥∥M(µ)
∥∥

2
= E(Y,V1) [tanh(V1Y ‖µ‖2)V1Y ] ,

where the outer expectation is taken with respect to V1, Y ∼ N (0, 1) and V1 and Y are
independent. Using arguments similar to the bounds (F.29a) and (F.29b), we can derive
that

x2 − x4

3
≤ tanh(x) ≤ x2 − x4

3
+

2x6

15

for all x ∈ R. Given these bounds, we find that

E(Y,V1) [tanh(V1Y ‖µ‖2)V1Y ]

≤ E
[
(V1Y )2

]
‖µ‖2 −

E [(V1Y )4] ‖µ‖3
2

3
+

2E [(V1Y )6] ‖µ‖5
2

15
= ‖µ‖2 − 3 ‖µ‖3

2 + 30 ‖µ‖5
2 ≤ ‖µ‖2

(
1− 2 ‖µ‖2

2

)
,

and

E(Y,V1) [tanh(V1Y ‖µ‖2)V1Y ] ≥ E
[
(V1Y )2

]
‖µ‖2 −

E [(V1Y )4] ‖µ‖3
2

3
= ‖µ‖2 − 3 ‖µ‖3

2 = ‖µ‖2

(
1− 3 ‖µ‖2

2

)

for all µ ∈ Rd such that ‖µ‖2 ≤ 1/2. Putting the above results together yields the lemma.
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Appendix G

Content Deferred From Chapter 8

In this appendix, we state and prove a minimax bound in Appendix G.1 that establishes
the sharpness of Theorem 8.1, provide the deferred proofs from main text—Theorem 8.1
and Lemmas 8.1 and 8.2 in Appendices G.2 to G.4 respectively. Furthermore, we state and
prove a special property of the multivariate population EM operator (8.16) in Appendix G.6,
and finally provide some additional details about the Wasserstein distance in Appendix G.7.

G.1 Minimax bound for Theorem 8.1

We now show that the error of order n−
1
8 in Theorem 8.1 (up to logarithmic factors) is, in

fact, tight in the standard minimax sense. Given a compact set Ω ⊂ R × (0,∞), and a set
of true parameters (θ∗, σ∗) ∈ Ω, suppose that we draw n i.i.d. samples {Xi}ni=1 from a two-

Gaussian mixture of the form 1
2
N (θ∗, (σ∗)2) + 1

2
N (−θ∗, (σ∗)2). Let (θ̂n, σ̂n) ∈ Ω denote any

estimates—for the respective parameters—measurable with respect to the observed samples

X1, . . . , Xn
i.i.d.∼ fθ∗,σ∗ and let E(θ∗,σ∗) denote the corresponding expectation.

Proposition G.1. There exists a universal constant cΩ > 0 (depending only on Ω), such
that

inf
(θ̂n,σ̂n)

sup
(θ∗,σ∗)

E(θ∗,σ∗)

[(
|θ̂n| − |θ∗|

)2
+
∣∣(σ̂n)2 − (σ∗)2

∣∣
]
≥ cΩn

− 1
4
−δ for any δ > 0.

See Appendix G.5.1 for the proof.
Based on the connection between location parameter θtn and scale parameter σtn in the

EM updates (cf. Equation (8.3b)), the minimax lower bound in Proposition G.1 shows that
the (non-squared) error of EM location updates ||θtn| − |θ∗| | is lower bounded by a term

(arbitrarily close to) n−
1
8 .
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G.1.1 Proof of Proposition G.1

We now present the proof of the minimax bound. We introduce the shorthand v := σ2 and
η := (θ, v). First of all, we claim the following key upper bound of Hellinger distance between
mixture densities fη1 , fη2 in terms of the distances among their corresponding parameters η1

and η2:

inf
η1,η2∈Ω

h (fη1 , fη2)(
(|θ1| − |θ2|)2 + |v1 − v2|

)r = 0 for any r ∈ (1, 4). (G.1)

Moreover, for any two densities p and q, we denote the total variation distance between p and
q by V (p, q) := (1/2)

∫
|p(x)− q(x)| dx. Similarly, the squared Hellinger distance between p

and q is given as h2(p, q) = (1/2)
∫ (√

p(x)−
√
q(x)

)2

dx.

Taking the claim (G.1) as given for the moment, let us complete the proof of Proposi-
tion G.1. Our proof relies on Le Cam’s lemma for establishing minimax lower bounds. In par-
ticular, for any r ∈ (1, 4) and for any ε > 0 sufficiently small, according to the result in equa-
tion (G.1), there exist η1 = (θ1, v1) and η2 = (θ2, v2) such that (|θ1| − |θ2|)2 + |v1 − v2| = 2ε
and h (fη1 , fη2) ≤ cεr for some universal constant c. From Lemma 1 from Yu [257], we obtain
that

sup
η∈{η1,η2}

Eη
[(∣∣∣θ̂n

∣∣∣− |θ|
)2

+
∣∣(σ̂n)2 − (σ)2

∣∣
]
& ε

(
1− V (fnη1

, fnη2
)
)
,

where fnη denotes the product of mixture densities fη of the data X1, . . . , Xn. A standard
relation between total variation distance and Hellinger distance leads to

V (fnη1
, fnη2

) ≤ h(fnη1
, fnη2

) =
√

1− [1− h2(fη1 , fη2)]n ≤
√

1− [1− cεr]n.

By choosing cεr = 1/n, we can verify that

sup
η∈{η1,η2}

Eη
[(∣∣∣θ̂n

∣∣∣− |θ|
)2

+
∣∣(σ̂n)2 − (σ)2

∣∣
]
& ε � n−1/r,

which establishes the claim of Proposition G.1.

G.1.1.1 Proof of claim (G.1)

In order to prove claim (G.1), it is sufficient to construct sequences η1,n = (θ1,n, v1,n) and
η2,n = (θ2,n, v2,n) such that

h
(
fη1,n , fη2,n

) / (
(|θ1,n| − |θ2,n|)2 + |v1,n − v2,n|

)r → 0

as n → ∞. Indeed, we construct these sequences as follows: θ2,n = 2θ1,n and v1,n − v2,n =
3 (θ1,n)2 for all n ≥ 1 while θ1,n → 0 as n→∞. Direct computation leads to

fη1,n(x)− fη2,n(x) =
1

2
(φ(x;−θ1,n, v1,n)− φ(x;−θ2,n, v2,n))︸ ︷︷ ︸

T1,n

+
1

2
(φ(x; θ1,n, v1,n)− φ(x; θ2,n, v2,n))︸ ︷︷ ︸

T2,n

.



Appendix G. Content Deferred From Chapter 8 354

Invoking Taylor expansion up to the third order, we obtain that

T1,n =
∑

|α|≤3

(θ2,n − θ1,n)α1(v1,n − v2,n)α2

α1!α2!

∂|α|φ

∂θα1∂vα2
(x;−θ2,n, v2,n) +R1(x),

T2,n =
∑

|α|≤3

(θ1,n − θ2,n)α1(v1,n − v2,n)α2

α1!α2!

∂|α|φ

∂θα1∂vα2
(x; θ2,n, v2,n) +R2(x)

where |α| = α1 + α2 for α = (α1, α2). Here, R1(x) and R2(x) are Taylor remainders that
have the following explicit representations

R1(x) := 4
∑

|β|=4

(θ2,n − θ1,n)β1(v1,n − v2,n)β2

β1!β2!

×
1∫

0

(1− t)3 ∂4φ

∂θβ1∂vβ2
(x;−θ2,n + t(θ2,n − θ1,n), v2,n + t(v1,n − v2,n)) dt,

R2(x) := 4
∑

|β|=4

(θ1,n − θ2,n)β1(v1,n − v2,n)β2

β1!β2!

×
1∫

0

(1− t)3 ∂4φ

∂θβ1∂vβ2
(x; θ2,n + t(θ1,n − θ2,n), v2,n + t(v1,n − v2,n)) dt.

Recall from equation (8.2) that the univariate location-scale Gaussian distribution has the
PDE structure of the following form

∂2φ

∂θ2
(x;µ, σ2) = 2

∂φ

∂σ2
(x;µ, σ2).

Therefore, we can write the formulations of T1,n and T2,n as follows:

T1,n =
∑

|α|≤3

(θ2,n − θ1,n)α1(v1,n − v2,n)α2

2α2α1!α2!

∂α1+2α2φ

∂θα1+2α2
(x;−θ2,n, v2,n) +R1(x),

T2,n =
∑

|α|≤3

(θ1,n − θ2,n)α1(v1,n − v2,n)α2

2α2α1!α2!

∂α1+2α2φ

∂θα1+2α2
(x; θ2,n, v2,n) +R2(x).

Via a Taylor series expansion, we find that

∂α1+2α2φ

∂θα1+2α2
(x; θ2,n, v2,n) =

3−|α|∑

τ=0

(2θ2,n)τ

τ !

∂α1+2α2+τφ

∂θα1+2α2+τ
(x;−θ2,n, v2,n) +R2,α(x)
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for any α = (α1, α2) such that 1 ≤ |α| ≤ 3. Here, R2,α is Taylor remainder admitting the
following representation

R2,α(x) =
∑

τ=4−|α|

τ (2θ2,n)τ

τ !

1∫

0

(1− t)τ−1 ∂4φ

∂θα1+τ∂vα2
(x;−θ2,n + 2tθ2,n, v2,n) dt.

Governed by the above results, we can rewrite fη1,n(x)− fη2,n(x) as

fη1,n(x)− fη2,n(x) =
6∑

l=1

Al,n
∂lφ

∂θl
(x;−θ2,n, v2,n) +R(x)

where the explicit formulations of Al,n and R(x) are given by

Al,n :=
1

2

∑

α1,α2

1

2α2

(θ2,n − θ1,n)α1(v1,n − v2,n)α2

α1!α2!

+
1

2

∑

α1,α2,τ

1

2α2

2τ (θ2,n)τ (θ1,n − θ2,n)α1(v1,n − v2,n)α2

τ !α1!α2!
,

R(x) :=
1

2
R1(x) +

1

2
R2(x) +

∑

|α|≤2

1

2α2

(θ1,n − θ2,n)α1(v1,n − v2,n)α2

α1!α2!
R2,α(x)

for any l ∈ [6] and x ∈ R. Here the ranges of α1, α2 in the first sum of Al,n satisfy α1+2α2 = l
and 1 ≤ |α| ≤ 3 while the ranges of α1, α2, τ in the second sum of Al,n satisfy α1+2α2+τ = l,
0 ≤ τ ≤ 3− |α|, and 1 ≤ |α| ≤ 3.

From the conditions that θ2,n = 2θ1,n and v1,n−v2,n = 3 (θ1,n)2, we can check that Al,n = 0
for all 1 ≤ l ≤ 3. Additionally, we also have

max{|A4,n| , |A5,n| , |A6,n|} - |θ1,n|4 .

Given the above results, we claim that

h
(
fη1,n , fη2,n

)
- |θ1,n|8 . (G.2)

Assume that the claim (G.2) is given. From the formulations of sequences η1,n and η2,n, we
can verify that

(
(|θ1,n| − |θ2,n|)2 + |v1,n − v2,n|

)r � |θ1,n|2r .

Since 1 ≤ r < 4 and θ1,n → 0 as n→∞, the above results lead to

h
(
fη1,n , fη2,n

) / (
(|θ1,n| − |θ2,n|)2 + |v1,n − v2,n|

)r
- |θ1,n|8−2r → 0.

As a consequence, we achieve the conclusion of the claim (G.1).
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G.1.1.2 Proof of claim (G.2)

The definition of Hellinger distance leads to the following equations

2h2
(
fη1,n , fη2,n

)
=

∫ (
fη1,n(x)− fη2,n(x)

)2

(√
fη1,n(x) +

√
fη2,n(x)

)2dx

=

∫ (
6∑
l=4

Al,n
∂lφ

∂θl
(x;−θ2,n, v2,n) +R(x))2

(√
fη1,n(x) +

√
fη2,n(x)

)2 dx

-
∫ ∑6

l=4 (Al,n)2

(
∂lφ

∂θl
(x;−θ2,n, v2,n)

)2

+R2(x)

(√
fη1,n(x) +

√
fη2,n(x)

)2 dx, (G.3)

where the last inequality is due to Cauchy-Schwarz’s inequality. According to the structure
of location-scale Gaussian density, the following inequalities hold

∫
(
∂lφ

∂θl
(x;−θ2,n, v2,n)

)2

(√
fη1,n(x) +

√
fη2,n(x)

)2dx -
∫
(
∂lφ

∂θl
(x;−θ2,n, v2,n)

)2

φ(x;−θ2,n, v2,n)
dx <∞ (G.4)

for 4 ≤ l ≤ 6. Note that, for any β = (β1, β2) such that |β| = 4, we have

|θ2,n − θ1,n|β1 |v1,n − v2,n|β2 � |θ1,n|4+β2 - |θ1,n|4 .
With the above bounds, an application of Cauchy-Schwarz’s inequality leads to
∫

R2
1(x)

(√
fη1,n(x) +

√
fη2,n(x)

)2dx

- |θ1,n|8
∑

|β|=4

∫ sup
t∈[0,1]

(
∂4φ

∂θβ1∂vβ2
(x;−θ2,n + t(θ2,n − θ1,n), v2,n + t(v1,n − v2,n))

)2

φ(x;−θ2,n, v2,n)
dx - |θ1,n|8 .

With a similar argument, we also obtain that
∫

R2
2(x)

(√
fη1,n(x) +

√
fη2,n(x)

)2dx - |θ1,n|8 , max
1≤|α|≤4

∫
R2

2,α(x)
(√

fη1,n(x) +
√
fη2,n(x)

)2dx - |θ1,n|8 .

Governed by the above bounds, another application of Cauchy-Schwarz’s inequality implies
that ∫

R2(x)
(√

fη1,n(x) +
√
fη2,n(x)

)2dx - |θ1,n|8 . (G.5)

Combining the results from equations (G.3), (G.4), and (G.5), we achieve the conclusion of
the claim (G.2).



Appendix G. Content Deferred From Chapter 8 357

G.2 Proof of Theorem 8.1

Our result makes use of the following corollary (proven in Appendix G.5.1):

Corollary G.1. Given constants δ ∈ (0, 1) and ε ∈ (0, 1/12], suppose that we generate the
the sample-level EM sequence µt+1

n = Mn,1(µtn) starting from an initialization |µ0
n| ∈ I ′ε, and

using a sample size n lower bounded as n % log1/(12ε)(log(1/ε)/δ). Then for all iterations
t ≥ n1/2−6ε log(n) log(1/ε), we have

|µtn − θ∗| ≤ c1

(
1

n
log

log(1/ε)

δ

) 1
12
−ε

, (G.6)

with probability at least 1− δ.

Remark: We note that the sub-optimal bound (G.6) obtained from Corollary G.1 is not an
artifact of the localization argument and arises due to the definition of the operator operator
M̃n,1 (8.12a). As we have alluded to earlier, indeed a finer analysis with the population EM
operator M1 is required to prove the rate of n−1/8 stated in Theorem 8.1. However, a key
assumption in the further derivation is that the sample EM iterates θtn can converge to a ball
of radius r - n−1/16 around θ∗ in a finite number of steps, for which Corollary G.1 comes in
handy.

We now begin with a sketch the two stage-argument, and then provide a rigorous proof
for Theorem 8.1.

G.2.1 Proof sketch

As mentioned earlier, the pseudo-population operator M̃n,1 is not sufficient to achieve the
sharp rate of EM iterates under the univariate symmetric Gaussian mixture fit. Therefore,
we make use of corrected-population operator M1 to get a sharp statistical rate of EM.
Our proof for the tight convergence rate of sample EM updates relies on a novel two-stage
localization argument that we are going to sketch.

First stage argument: Plugging in ε = 1/84 in Corollary G.1, we obtain that for t %√
n log(n), with probability at least 1− δ we have that

∣∣θtn − θ∗
∣∣ ≤ cn−

1
14 log

1
14

log(1/ε)

δ
≤ n−

1
16 , (G.7)

where the second inequality follows from the large sample condition n ≥ c′ log8 log 84
δ

. All the
following claims are made conditional on the event (G.7).
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Second stage argument: In order to keep the presentation of the proof sketch simple,
we do not track constant and logarithmic factors in the arguments to follow. In epoch `, for
any iteration t the EM iterates satisfy θtn ∈ [n−a`+1 , n−a` ] where a`+1 > a` and a` ≤ 1/16.
Applying Lemma 8.1 for such iterations, we find that with high probability

∣∣M1(θtn)
∣∣ - (1− n−6a`+1)︸ ︷︷ ︸

=:γ`

∣∣θtn
∣∣ and

∣∣Mn,1(θtn)−M1(θtn)
∣∣ - n−3a`

√
n
,

where the first bound follows from the 1 − cθ6 contraction bound (8.13b) and the second
bound follows from the cubic-type Rademacher bound (8.13d). Invoking the basic triangle
inequality T times, we obtain that

∣∣θt+Tn

∣∣ (i)

- e−Tn
−6a`+1

n−a` +
1

1− γ`
· n
−3a`

√
n

(ii)

-
1

1− γ`
· n
−3a`

√
n

= n6a`+1−3a`−1/2,

where in step (ii) we have used the fact that for large enough T , the first term is dominated
by the second term in the RHS of step (i). To obtain a recursion for the sequence a`, we set
the RHS equal to n−a`+1 . Doing so yields the recursion

a`+1 =
3a`
7

+
1

14
, where a0 = 1/16. (G.8a)

Solving for the limit a`+1 = a` = a?, we find that a? = 1/8. Thus, we can conclude that
sample EM iterates in the univariate setting converge to a ball of radius n−1/8 as claimed in
the theorem statement.

G.2.2 Formal proof of sample EM convergence rate

We now turn to providing a formal proof for the preceding arguments.

Notations: To make the proof comprehensible, some additional notations are necessary
which we collect here. Let `? = dlog(8/ε)/ log(7/3)e so that a`? ≤ 1/8 − ε. We define the
following shorthand:

ω :=
n

cn,δ
, where cn,δ := log10(10n(`? + 1)/δ). (G.8b)

For ` = 0, . . . , `?, we define the time sequences t` and T` as follows:

t0 =
√
n, t` =

⌈
10ω6a` logω

⌉
, and T` =

∑̀

j=0

tj. (G.8c)
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Direct computation leads to

T`? ≤
√
n+ `?t`? - log

(
n log 1

ε

cn,δδ

)(
n

cn,δ

)3/4−6ε

- n3/4. (G.8d)

In order to facilitate the proof argument later, we define the following set

R :=
{
ω−a1 , . . . , ω−a`? , c′ω−a1 , . . . , c′ω−a`?

}
, (G.8e)

where c′ := (5c2 + 1). Here, c2 is the universal constant from Lemma 8.1.

Formal argument: We show that with probability at least 1− δ the following holds:

∣∣θtn
∣∣ ≤

(cn,δ
n

)a`
= ω−a` , for all t ≥ T`, and ` ≤ `?. (G.9)

As a consequence of this claim and the definitions (G.8a)-(G.8d) of a`? and T`? , we immedi-
ately obtain that

|µtn − θ∗| -
(cn,δ
n

)1/8−ε
-

(
1

n
log10 10n log(8/ε)

δ

)1/8−ε

,

for all number of iterates t % n3/4−6ε log(n) log(1/ε) with probability at least 1−δ as claimed
in Theorem 8.1.

We now define the high probability event that is crucial for our proof. For any r ∈ R,
define the event Er as follows

Er :=



 sup
θ∈B(0,r)

∣∣Mn,1(θ)−M1(θ)
∣∣ ≤ c2r

3

√
log10(5n |R| /δ)

n



 .

Then, for the event

E :=
⋂

r∈R

Er ∩ {Event (G.7) holds } , (G.10)

applying the union bound with Lemma 8.1 yields that P[E ] ≥ 1− δ. All the arguments that
follow are conditional on the event E and hence hold with the claimed high probability.

In order to prove the claim (G.9), we make use of the following intermediate claim:

Lemma G.1. Conditional on the event E, if |θ| ≤ ω−a`, then |Mn,1(θ)| ≤ ω−a` for any
` ≤ `?.

Deferring the proof of Appendix G.5.2, we now establish the claim (G.9) conditional on the
event E only for t = T` and when |θtn| ∈ [ω−a`+1 , ω−a` ] in which we now prove using induction.
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Proof of base case ` = 0: Note that we have a0 = 1/16 and that n−1/16 ≤ ω1/16. Also, by
the definition (G.10) we have that the event (G.7) ⊆ E . Hence, under the event E we have
that |θtn| ≤ n−1/16, for t %

√
n log(n). Putting all the pieces together, we find that under the

event E , we have |θtn| ≤ n−1/16 ≤ ω1/16 and the base case follows.

Proof of inductive step: We now establish the inductive step. Note that Lemma G.1
implies that we need to show the following: if |θtn| ≤ ω−a` for all t ∈ {T`, T` + 1, . . . , T`+1 − 1}
for any given ` ≤ `?, then |θT`+1

n | ≤ ω−a`+1 . We establish this claim in two steps:

θT`+t`/2n ≤ c′ω−a`+1 , and, (G.11a)

θT`+1
n ≤ ω−a`+1 , (G.11b)

where c′ = (5c2 + 1) ≥ 1 is a universal constant. Note that the inductive claim follows from
the bound (G.11b). It remains to establish the two claims (G.11a) and (G.11b) which we
now do one by one.

Proof of claim (G.11a): Let Θ` = {θ : |θ| ∈ [ω−a`+1 , ω−a` ]}. Now, conditional on the event
E , Lemma 8.1 implies that

sup
θ∈Θ`

∣∣Mn,1(θ)−M1(θ)
∣∣ ≤ c2ω

−3a`−1/2, and sup
θ∈Θ`

∣∣M1(θ)/θ
∣∣ ≤ (1− ω−6a`+1/5) =: γ`.

We can check that γ` ≤ e−ω
6a`+1/5. Unfolding the basic triangle inequality t`/2 times and

noting that θtn ∈ Θ` for all t ∈ {T`, . . . , T` + t`/2}, we obtain that

∣∣θT`+t`/2n

∣∣ ≤ γ
t`/2
`

∣∣θT`n
∣∣+ (1 + γ` + . . .+ γ

t`/2−1
` )c2ω

−3a`−1/2

≤ e−t`ω
−6a`+1/10ω−a` +

1

1− γ`
c2ω

−3a`−1/2

(i)

≤ (1 + 5c2)ω6a`+1−3a`−1/2

(ii)
= (5c2 + 1)ω−a`+1

where step (i) follows from plugging in the value of γ` and invoking the definition (G.8c) of
t`, which leads to

e−t`ω
6a`+1/10ω−a` ≤ ω6a`+1−3a`−1/2.

Moreover, step (ii) is a direct consequence of the definition (G.8a) of the sequence a`. There-
fore, we achieve the conclusion of claim (G.11a).
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Proof of claim (G.11b): The proof of this step is very similar to the previous step, except
that we now use the set Θ′` = {θ : |θ| ∈ [ω−a`+1 , c′ω−a`+1 ]} for our arguments. Applying
Lemma 8.1, we have

sup
θ∈Θ′`

∣∣Mn,1(θ)−M1(θ)
∣∣ ≤ c2(c′)3ω−3a`+1−1/2, and sup

θ∈Θ′`

∣∣M1(θ)/θ
∣∣ ≤ γ`.

Using the similar argument as that from the previous case, we find that

∣∣θT`+t`/2+t`/s2
n

∣∣ ≤ e−t`ω
6a`+1/10c′ω−a`+1 +

1

1− γ`
c2(c′)3ω−3a`+1−1/2

≤ (5c2 + 1)(c′)3ω4a`+1−1/2 · ω−a`+1

(i)

≤ ω−a`+1

where step (i) follows from the inequality e−t`ω
6a`+1/10 ≤ ω4a`+1−1/2 and the inequality

ω4a`+1−1/2 ≤ ω4a`?−1/2 ≤ ω−4ε ≤ 1/(c′)4,

since n ≥ (c′)1/εcn,δ. The claim now follows.

G.3 Proof of Lemma 8.1

We now prove Lemma 8.1 which provides the basis for the two-staged proof of Theorem 8.1.
The proof for the contraction property (8.13b) of the corrected population operator M1

is similar to that of the property (8.13a) pseudo-population operator M̃n,1 (albeit with a few
high probability arguments replaced by deterministic arguments). Hence, while we provide
a complete proof of the bound (8.13a) (in Section G.3.1), we only provide a proof sketch
for the bound (8.13b) at its end. Moreover the proofs of bounds (8.13c) and (8.13d) are
provided in Sections G.3.2 and G.3.3 respectively.

G.3.1 Contraction bound for population operator M̃n,1

We begin by defining some notation. For ε ∈ (0, 1/12] and α ≥ 1/2− 6ε, we define the event
Eα and the interval Iα,ε as follows

Eα =

{∣∣∣∣
n∑

j=1

X2
j /n− 1

∣∣∣∣ ≤ n−α

}
, and, (G.12)

Iα,ε = [3n−1/12+ε,
√

9/400− n−α], (G.13)

where in the above notations we have omitted the dependence on n, as it is clear from the
context. We also use the scalars a and b to denote the following:

a := 1− n−α and b := 1 + n−α.
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With the above notation in place, observe that standard chi-squared tail bounds yield that
P[Eα] ≥ 1 − e−n1−2α/8 ≥ 1 − δ. Moreover, invoking the lower bound on n in Theorem 8.1,
we have that [3n−1/12+ε, 1/10] ⊆ Iα,ε. Now conditional on the high probability event Eα,

the population EM update M̃n,1(θ), in absolute value, can be upper and lower bounded as
follows:

∣∣∣M̃n,1(θ)
∣∣∣ ≤ EY

[
Y tanh

(
Y |θ|
a− θ2

)]
= |θ|EY

[
Y

|θ| tanh

( |θ|X
a− θ2

)]

︸ ︷︷ ︸
=:γ(θ)

, and,

∣∣∣M̃n,1(θ)
∣∣∣ ≥ EY

[
Y tanh

(
X |θ|
b− θ2

)]
= |θ|EY

[
Y

|θ| tanh

( |θ|Y
b− θ2

)]

︸ ︷︷ ︸
=:γ(θ)

,

where the last two inequalities follows directly from the definition of M̃n,1(θ) in equa-
tion (8.12a), and from the fact that for any fixed y, θ ∈ R, the function w 7→ y tanh(y |θ| /(w−
θ2)) is non-increasing in w for w > θ2. Consequently, in order to complete the proof, it suf-
fices to establish the following bounds:

1− 3θ6/2 ≤ γ(θ), and γ(θ) ≤ (1− θ6/5). (G.14)

The following properties of the hyperbolic function x 7→ x tanh(x) are useful for our proofs:

Lemma G.2. For any x ∈ R, the following holds

(Lower bound): x tanh(x) ≥ x2 − x4

3
+

2x6

15
− 17x8

315
,

(Upper bound): x tanh(x) ≤ x2 − x4

3
+

2x6

15
− 17x8

315
+

62x10

2835
.

See Appendix G.5.3 for its proof.
Given the bounds in Lemma G.2, we derive the upper and lower bounds in the inequal-

ity (G.14) separately.

Upper bound for γ(θ): Invoking the upper bound on x tanh(x) from Lemma G.2, we
find that

γ(θ) ≤ a− θ2

θ2

(
θ2

(a− θ2)2
E
[
Y 2
]
− θ4

3(a− θ2)4
E
[
Y 4
]

+
2θ6

15(a− θ2)6
E
[
Y 6
]

− 17θ8

315(a− θ2)8
E
[
Y 8
]

+
62θ10

2835(a− θ2)10
E
[
Y 10
])
.
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Recall that, for Y ∼ N (0, 1), we have E
[
Y 2k
]

= (2k − 1)!! for all k ≥ 1. Therefore, the last
inequality can be simplified to

γ(θ) ≤ 1

a− θ2
− θ2

(a− θ2)3
+

2θ4

(a− θ2)5
− 17θ6

3(a− θ2)7
+

62θ8

3(a− θ2)9
. (G.15)

When n−α + θ2 ≤ 9/400, we can verify that the following inequalities hold:

1

1− n−α − θ2
≤ 1 + (n−α + θ2) + (n−α + θ2)2 + (n−α + θ2)3 + 2(n−α + θ2)4,

− θ2

(1− n−α − θ2)3
≤ −θ2

(
1 + 3(n−α + θ2) + 6(n−α + θ2)2 + 10(n−α + θ2)3

)
,

θ4

(1− n−α − θ2)5
≤ θ4

(
1 + 5(n−α + θ2) + 16(n−α + θ2)2

)
,

− θ6

(1− n−α − θ2)7
≤ −θ6

(
1 + 7(n−α + θ2)

)
,

θ8

(1− n−α − θ2)9
≤ 5θ8/4.

Substituting a = 1 − n−α into the bound (G.15) and doing some algebra with the above
inequalities and using the fact that max {θ, n−α} ≤ 1 we have that

γ(θ) ≤ 1− 2

3
θ6 +

61

6
θ8 + 100n−α ≤ 1− 2

5
θ6 + 100n−α ≤ 1− 1

5
θ6.

The second last inequality above follows since θ ≤ 3/20, and the last inequality above utilizes
the fact that if α ≥ 1/2− 6ε, then θ6/5 ≥ 100n−α for all θ ≥ 3n−1/12+ε. This completes the
proof of the upper bound of γ(θ).

Lower bound for γ(θ): We start by utilizing the lower bound of x tanh(x) in the expres-
sion for γ(θ), which yields:

γ(θ) ≥ 1

b− θ2
− θ2

(b− θ2)3
+

2θ4

(b− θ2)5
− 17θ6

3(b− θ2)7
. (G.16)

Since |θ| ∈ [3n−1/12+ε,
√

9/400− n−α] by assumption, we have the following lower bounds:

1

1 + n−α − θ2
≥ 1 + (θ2 − n−α) + (θ2 − n−α)2 + (θ2 − n−α)3 + (θ2 − n−α)4,

− θ2

(1 + n−αθ2)3
≥ −θ2 −

(
1 + 3(θ2 − n−α) + 6(θ2 − n−−α)2 + 11(θ2 − n−α)3

)
,

θ4

(1 + n−α − θ2)5
≥ θ4

(
1 + 5(θ2 − n−α) + 15(θ2 − n−α

)
,

− θ6

(1 + n−α − θ2)7
≥ −θ6

(
1 + 8(θ2 − n−α)

)
.
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Substituting b = 1 + n−α into the bound (G.16) and doing some algebra with the above
inequalities and using the fact that max {θ, n−α} ≤ 1 we have that

γ(θ) ≥ 1− 2

3
θ6 − 76

3
θ8 − 100n−α ≥ 1− 5

4
θ6 − 100n−α ≥ 1− 3

2
θ6,

The second last inequality above follows since θ ≤ 3/20, and the last inequality above utilizes
the fact that if α ≥ 1/2− 6ε, then θ6/4 ≥ 100n−α for all θ ≥ 3n−1/12+ε. This completes the
proof of the lower bound of γ(θ).

Proof of contraction bound for M1: Note that it suffices to repeat the arguments with
a = 1 and b = 1 in the RHS of the inequalities (G.15) and (G.16) respectively. Given
the other computations, the remaining steps are straightforward algebra and are thereby
omitted.

G.3.2 Proof of perturbation bound for M̃n,1

We now prove the bound (8.13c) which is based on standard arguments to derive Rademacher
complexity bounds. We first symmetrize with Rademacher variables, and apply the Ledoux-
Talagrand contraction inequality. We then invoke results on sub-Gaussian and sub-exponential
random variables, and finally perform the associated Chernoff-bound computations to obtain
the desired result.

To ease the presentation, we denote α := 1/2 − 2β and I := [1 − n−α − 1/64, 1 − n−α].
Next we fix r ∈ [0, 1/8] and define r̃ := r

1−n−α−1/64
. For sufficiently large n, we have r̃ ≤ 2r.

Recall the definition (G.12) of the event: Eα = {|∑n
j=1X

2
j /n − 1| ≤ n−α}. Conditional on

the event Eα, the following inequalities hold

∣∣∣Mn,1(θ)− M̃n,1(θ)
∣∣∣ ≤ sup

θ∈B(0,r),σ2∈I

∣∣∣∣∣
1

n

n∑

i=1

Xi tanh

(
Xiθ

σ2

)
− E

[
Y tanh

(
Y θ

σ2

)]∣∣∣∣∣

≤ sup
θ̃∈B(0,r̃)

∣∣∣M̂n(θ̃)− M̂(θ̃)
∣∣∣ ,

with all them valid for any θ ∈ B(0, r). Here Y denotes a standard normal variate N (0, 1)

whereas the operators M̂ and M̂n are defined as

M̂(θ̃) := E[Y tanh(Y θ̃)] and M̂n(θ̃) :=
1

n

n∑

i=1

Xi tanh(Xiθ̃).

To facilitate the discussion later, we define the unconditional random variable

Z := sup
θ̃∈B(0,r̃)

∣∣∣M̂n(θ̃)− M̂(θ̃)
∣∣∣ .
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Employing standard symmetrization argument from empirical process theory [241], we find
that

E[exp(λZ)] ≤ E

[
exp

(
sup

θ̃∈B(0,r̃)

2λ

n

n∑

i=1

εi tanh(Xiθ̃)Xi

)]
,

where εi, i ∈ [n] are i.i.d. Rademacher random variables independent of {Xi, i ∈ [n]}. Noting
that, the following inequality with hyperbolic function tanh(x) holds

∣∣∣tanh(xθ̃)− tanh(xθ̃′)
∣∣∣ ≤

∣∣∣(θ̃ − θ̃′)x
∣∣∣ for all x.

Consequently for any given x, the function θ̃ 7→ tanh(xθ̃) is Lipschitz. Invoking the Ledoux-
Talagrand contraction result for Lipschitz functions of Rademacher processes [151] and fol-
lowing the proof argument from Lemma 7.1, we obtain that

Z ≤ cr̃

√
log(1/δ)

n
, with probability ≥ 1− δ,

for some universal constant c. Finally, using r̃ ≤ 2r for large n, we obtain that

∣∣∣Mn,1(θ)− M̃n,1(θ)
∣∣∣ ≤ 2cr

√
log(1/δ)

n
, with probability ≥ 1− δ − e−n1−2α/8,

where we have also used the fact that P[Eα] ≥ 1 − e−n1−2α/8 from standard chi-squared tail
bounds. The bound (8.13c) follows and we are done.

G.3.3 Proof of perturbation bound for M 1

We now prove the bound (8.13d). Note that it suffices to establish the following point-wise
result:

∣∣M1(θ)−Mn,1(θ)
∣∣ - |θ|

3 log10(5n/δ)√
n

for all |θ| - n−1/16,

with probability at least 1− δ for any given δ > 0. For the reader’s convenience, let us recall
the definition of these operators

M1(θ) = E
[
X tanh(Xθ/(1− θ2))

]
, (G.17a)

Mn,1(θ) =
1

n

n∑

i=1

Xi tanh
(
Xiθ/(an − θ2)

)
, (G.17b)

where an :=
∑n

i=1X
2
i /n. We further denote µk := EX∼N (0,1)[X

k], and µ̂k := 1
n

∑n
i=1X

k
i .

From known results on Gaussian moments, we have µ2k = (2k − 1)!! for each integer k =
1, 2, . . ..
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For any given x and scalar b, consider the map θ 7→ x tanh(xθ/(b− θ2)). The 9-th order
Taylor series for this function around θ = 0 is given by

x tanh(xθ/(b− θ2)) =
θx2

b
− θ3(x4 − 3bx2)

3b3
+ θ5

(
2x6

15b5
− x4

b4
+
x2

b3

)

+ θ7

(
− 17x8

315b7
+

2x6

3b6
− 2x4

b5
+
x2

b4

)

+ θ9

(
62x10

2835b9
− 17x8

45b8
+

2x6

b7
− 10x4

3b6
+
x2

b5

)
+ ε, (G.18)

where the remainder ε satisfies ε ≤ O (θ11). Plugging in this expansion with b = 1 on RHS
of equation (G.17a) and taking expectation over X ∼ N (0, 1), we obtain

M1(θ) = θ + θ3
( 2∑

k=1

c3,kµ2k

)
+ θ5

( 3∑

k=1

c5,kµ2k

)
+ θ7

( 4∑

k=1

c7,kµ2k

)
+ θ9

( 5∑

k=1

c9,kµ2k

)
+ ε,

(G.19a)

where we have used the notation µk := EX∼N (0,1)[X
k] and cj,k denote universal constants.

Furthermore, plugging in the same expansion (G.18) with b = an on RHS of equation (G.17b),
we obtain the following expansion for the sample EM operator

Mn,1(θ) = θ + θ3
( 2∑

k=1

c3,k
µ̂2k

a1+k
n

)
+ θ5

( 3∑

k=1

c5,k
µ̂2k

a2+k
n

)
+ θ7

( 4∑

k=1

c7,k
µ̂2k

a3+k
n

)
+ θ9

( 5∑

k=1

c9,k
µ̂2k

a4+k
n

)
+ εn,

(G.19b)

where µ̂k denotes the sample mean of Xk, i.e., µ̂k := 1
n

∑n
i=1 X

k
i . In order to lighten the

notation, we introduce the following convenient shorthand:

βj =

j+1
2∑

k=1

cj,kµ2k and β̂j =

j+1
2∑

k=1

cj,k
µ̂2k

a
j−1

2
+k

n

for j ∈ {3, 5, 7, 9} =: J . (G.20)

A careful inspection reveals that β3 = β5 = 0. With the above notations in place, we find
that

∣∣M1(θ)−Mn,1(θ)
∣∣ =

∣∣∑

j∈J

θj(βj − β̂j)
∣∣+ ε

=: M1 +M2.

Therefore, it remains to establish that

M1 -
|θ|3 log5(5n/δ)√

n
and M2 -

|θ|3 log5(5n/δ)√
n

, (G.21)
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with probability at least 1− δ for any given δ > 0. Since the remainder term is of order θ11,
the assumption |θ| - n−1/16 ensures that the remainder term is bounded by a term of order
θ3/
√
n and thus the bound (G.21) on the second term M2 follows.

We now use concentration properties of Gaussian moments in order to prove the bound (G.21)
on the first term M1. Since |θ| ≤ 1, it suffices to show that

sup
j∈J

∣∣∣βj − β̂j
∣∣∣ - log5(5n/δ)√

n
(G.22)

with probability at least 1− δ. Using the relation (G.20), we find that

∣∣∣βj − β̂j
∣∣∣ =

∣∣
j+1

2∑

k=1

(
cj,kµ2k − cj,k

µ̂2k

a
j−1

2
+k

n

)
∣∣ ≤

j+1
2∑

k=1

cj,k

a
j−1

2
+k

n

∣∣µ2k − µ̂2k

∣∣+ cj,k(1− a−
j−1

2
−k

n )µ2k

≤ C

j+1
2∑

k=1

(∣∣µ2k − µ̂2k

∣∣+
µ2k√
n

)
, (G.23)

for any j ∈ J . Here in the last step we have used the following bounds:

max
j∈J ,k≤ j+1

2

cj,k ≤ C and max
j∈J ,k≤ j+1

2

(1− a−
j−1

2
−k

n ) ≤ C√
n

for some universal constant C. Thus a lemma for the 1/
√
n-concentration1 of higher moments

of Gaussian random variable is now useful:

Lemma G.3. Let X1, . . . , Xn are i.i.d. samples from N (0, 1) and let µ2k := EX∼N (0,1)[X
2k]

and µ̂2k := 1
n

∑n
i=1X

2k
i . Then, we have

P
(
|µ̂2k − µ2k| ≤

Ck logk(n/δ)√
n

)
≥ 1− δ for any k ≥ 1,

where Ck denotes a universal constant depending only on k.

See the Appendix G.5.4 for the proof.
For any δ > 0, consider the event

E :=

{∣∣µ2k − µ̂2k

∣∣ ≤ Ck logk(5n/δ)√
n

for all k ∈ {2, 4, . . . , 10}
}
. (G.24)

1The bound from Lemma G.3 is sub-optimal for k = 1 but is sharper than the standard tail bounds for
Gaussian polynomials of degree 2k for k ≥ 2. The 1/

√
n concentration of higher moments is necessary to

derive the sharp rates stated in our results.
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Straightforward application of union bound with Lemma G.3 yields that P [E ] ≥ 1 − δ.
conditional on the event E inequality (G.22) implies that

sup
j∈J

∣∣∣βj − β̂j
∣∣∣ ≤ C sup

j∈J

j+1
2∑

k=1

(∣∣µ2k − µ̂2k

∣∣+
µ2k√
n

)

≤ C sup
j∈{3,5,7,9}

j + 1

2

(∣∣µj+1 − µ̂j+1

∣∣+
(j + 1)!!√

n

)

(i)

≤ C sup
j∈{3,5,7,9}

(j − 1)

(
∣∣C j+1

2

log
j+1

2 (5n/δ)√
n

∣∣+
(j + 1)!!√

n

)

(ii)

≤ C
log5(5n/δ)√

n
, (G.25)

where step (i) follows from the definition of the event (G.24) and in step (ii) using the fact
that j ≤ 9 is bounded we absorbed all the constants into a single constant. Since the event
E has probability at least 1− δ, the claim (G.22) now follows.

G.3.4 Sharpness of bounds of Lemma 8.1

In Figure G.1, we numerically verify the linear and cubic scaling of the bounds stated in
Lemma 8.1.

G.4 Proof of Lemma 8.2

The proof of the perturbation bound (8.17b) is a standard extension of d = 1 case presented
above in Section G.3.2, and thereby is omitted.

We now present the proof of the contraction bound (8.17a), which has several similarities
with the proofs of bounds (8.13a) and (8.13b) from Lemma 8.1. In order to simplify notation,
we use the shorthand Zn,d := 1

nd

∑n
j=1 ‖Xj‖2

2. Recalling the definition (8.16) of operator

M̃n,d(θ), we have

∥∥∥M̃n,d(θ)
∥∥∥

2
=

∥∥∥∥∥EY∼N (0,1)

[
Y tanh

(
Y >θ

Zn,d − ‖θ‖2
2 /d

)]∥∥∥∥∥
2

. (G.26)

We can find an orthonormal matrix R such that Rθ = ‖θ‖2 e1, where e1 is the first canonical
basis in Rd. Define the random vector V = RY . Since Y ∼ N (0, Id), we have that V ∼
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10−1

θ →
10−6

10−5

10−4

10−3

10−2

10−1

E
rr

or

Perturbation error for EM operators

‖M̃n,1(θ)−Mn,1(θ)‖
slope = 0.93

‖M 1(θ)−Mn,1(θ)‖
slope = 2.83

Figure G.1: Plots of the perturbation errors for the pseudo-population operator M̃n,1 (8.12a)
and the corrected population operator M1 (8.12b) with respect to the sample EM operator
Mn,1 (8.4), as a function of θ. From the least-squares fit on the log-log scale, we see that the

error ‖M̃n,1(θ)−Mn,1(θ)‖ scales linearly with θ, the error ‖M1(θ)−Mn,1(θ)‖ has a cubic
dependence on θ, in accordance with Lemma 8.1.

N (0, Id). On performing the change of variables Y = R>V , we find that

∥∥∥∥∥EY
[
Y tanh

(
Y >θ

Zn,d − ‖θ‖2
2 /d

)]∥∥∥∥∥
2

=

∥∥∥∥∥EV
[
R>V tanh

(
‖θ‖2 V1

Zn,d − ‖θ‖2
2 /d

)]∥∥∥∥∥
2

=

∣∣∣∣∣EV1

[
V1 tanh

(
‖θ‖2 V1

Zn,d − ‖θ‖2
2 /d

)]∣∣∣∣∣

where the final equality follows from the fact that

E[R>V f(V1)] = R>E[V f(V1)] = R>(E[V1f(V1)], 0, . . . , 0)>.

Furthermore, the orthogonality of the matrixR implies that
∥∥E[R>V f(V1)]

∥∥2

2
= |E[V1f(V1)]|2.

In order to simplify the notation, we define the scalars a, b and the event Eα,d as follows:

a := 1− (nd)−α, b := 1 + (nd)−α, and Eα,d =
{
|Zn,d − 1| ≤ (nd)−α

}
, (G.27a)

where α is a suitable scalar to be specified later. Note that standard chi-squared tail bounds
guarantee that

P[Eα,d] ≥ 1− 2e−d
2αn1−2α/8. (G.27b)
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Now conditional on the event Eα,d, we have

∥∥∥M̃n,d(θ)
∥∥∥

2
≤
∣∣∣∣∣EV1

[
V1 tanh

(
‖θ‖2 V1

a− ‖θ‖2
2 /d

)]∣∣∣∣∣ = ‖θ‖2 EV1

[
V1

‖θ‖2

tanh

(
‖θ‖2 V1

a− ‖θ‖2
2 /d

)]

︸ ︷︷ ︸
=:ρ(θ)

, and,

∥∥∥M̃n,d(θ)
∥∥∥

2
≥
∣∣∣∣∣EV1

[
V1 tanh

(
‖θ‖2 V1

b− ‖θ‖2
2 /d

)]∣∣∣∣∣ = ‖θ‖2 EV1

[
V1

‖θ‖2

tanh

(
‖θ‖2 V1

b− ‖θ‖2
2 /d

)]

︸ ︷︷ ︸
=:ρ(θ)

,

where the above inequalities follow from the fact that for any fixed y, θ ∈ Rd, the function
w 7→ y tanh(y ‖θ‖2 /(w − ‖θ‖

2
2 /d)) is non-increasing in w for w > ‖θ‖2

2 /d.
Substituting α = 1/2 − 2ε in the bound (G.27b) and invoking the large sample size

assumption in the theorem statement, we obtain that P[Eα,d] ≥ 1− δ. Putting these obser-
vations together, it remains to prove that

ρ(θ) ≥
(

1− 3 ‖θ‖2
2

4

)
‖θ‖2

2 , and ρ(θ) ≤
(

1−
(

1− 1

d

) ‖θ‖2
2

4

)
‖θ‖2

2 , (G.28)

for all 5(d/n)−1/4+ε ≤ ‖θ‖2
2 ≤ (d− 1)/(6d− 1) conditional on the event Eα,d for α = 1/2− 6ε

to obtain the conclusion of the theorem.
The proof of the claims in equation (G.28) relies on the following bounds on the hyperbolic

function tanh(x). For any x ∈ R, the following bounds hold:

(Upper bound) x2 − x4

3
+

2x6

15
≥ x tanh(x) ≥ x2 − x4

3
(Upper bound). (G.29)

We omit the proof of these bounds, as it is very similar to that of similar results stated and
proven later in Lemma G.2. We now turn to proving the bounds stated in equation (G.28)
one-by-one.

Bounding ρ(θ): Applying the upper bound (G.29) for x tanh(x), we obtain that

ρ(θ) ≤ a− ‖θ‖2
2 /d

‖θ‖2
2

( ‖θ‖2
2

(a− ‖θ‖2
2 /d)2

E
[
V 2

1

]
− ‖θ‖4

2

3(a− ‖θ‖2
2 /d)4

E
[
V 4

1

]
+

2 ‖θ‖6
2

15(a− ‖θ‖2
2 /d)6

E
[
V 6

1

])
.

Substituting E
[
V 2k

1

]
= (2k − 1)!! for k = 1, 2, 3 in the RHS above, we find that

ρ(θ) ≤ 1

a− ‖θ‖2
2 /d
− ‖θ‖2

2

(a− ‖θ‖2
2 /d)3

+
2 ‖θ‖4

2

(a− ‖θ‖2
2 /d)5

. (G.30)
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The condition ‖θ‖2
2 + (nd)−α ≤ d−1

6d−4
< 1/6 implies the following bounds:

1

1− (nd)−α − ‖θ‖2
2 /d
≤ 1 +

(
(nd)−α + ‖θ‖2

2 /d
)

+ 3/2 ·
(
(nd)−α + ‖θ‖2

2 /d
)2
,

1

(1− (nd)−α − ‖θ‖2
2 /d)3

≥ 1 + 3
(
(nd)−α + ‖θ‖2

2 /d
)
,

1

(1− (nd)−α − ‖θ‖2
2 /d)5

≤ 3/2.

Substituting the definitions (G.27a) of a and b and plugging the previous three bounds on
the RHS of the inequality (G.30) yields that

ρ(θ) ≤ 1 +
‖θ‖2

2

d
+

3 ‖θ‖4
2

2d2
− ‖θ‖2

2

(
1 +

3 ‖θ‖2
2

d

)
+ 3 ‖θ‖4

2 +
11

2
(nd)−α

≤ 1−
(

1− 1

d

)
‖θ‖2

2 +

(
3− 2

d

)
‖θ‖4

2 +
11

2
(nd)−α

≤ 1−
(

1− 1

d

) ‖θ‖2
2

4

where the last step follows from the following observations that

(3− 2/d) ‖θ‖4
2 ≤ (1− 1/d) ‖θ‖2

2 /2, for all ‖θ‖2 ≤ (d− 1)/(6d− 4), (G.31)

11(nd)−α/2 ≤ (1− 1/d) ‖θ‖2
2 /4, for all ‖θ‖2 ≥ 5(d/n)−1/4+ε when α = 1/2− 2ε.

(G.32)

Therefore, the claim with an upper bound of ρ(θ) now follows.

Bounding ρ(θ): Using the lower bound (G.29) for x tanh(x), we find that

ρ(θ) ≥ b− ‖θ‖2
2 /d

‖θ‖2
2

( ‖θ‖2
2

(b− ‖θ‖2
2 /d)2

E
[
V 2

1

]
− ‖θ‖4

2

3(b− ‖θ‖2
2 /d)4

E
[
V 4

1

])
(G.33)

=
1

b− ‖θ‖2
2 /d
− ‖θ‖2

2

(b− ‖θ‖2
2 /d)3

. (G.34)

The condition ‖θ‖2 − (nd)−α ≥ 0 leads to

1

1 + (nd)−α − ‖θ‖2
2 /d
≥ 1 +

(
‖θ‖2

2 /d− (nd)−α
)

+
(
‖θ‖2

2 /d− (nd)−α
)2
,

1

(1 + (nd)−α − ‖θ‖2
2 /d)3

≤ 1 + 4
(
‖θ‖2

2 /d− (nd)−α
)
.
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Applying these inequalities to the bound (G.34), we obtain that

ρ(θ) ≥ 1 +
‖θ‖2

2

d
+
‖θ‖4

2

d2
− ‖θ‖2

2

(
1 +

4 ‖θ‖2
2

d

)
− 2(nd)−α

(i)

≥ 1− ‖θ‖2
2

(
1− 1

d

)
− ‖θ‖

2
2

6

(
4

d
− 1

d2

)
− ‖θ‖

2
2 (1− 1/d)

11

≥ 1− 3 ‖θ‖2
2

4

where step (i) in the above inequalities follows from the observations (G.31)-(G.32) above.
The lower bound (G.28) for ρ(θ) now follows.

G.5 Proofs of auxiliary results

In this appendix, we collect the proofs of several auxiliary results used in the earlier proofs.

G.5.1 Proof of Corollary G.1

In order to ease the presentation, we only provide the proof sketch for the localization
argument with this corollary. The detail proof argument for the corollary can be argued in
similar fashion as that of Theorem 8.1. In particular, we consider the iterations t such that
θtn ∈ [n−a` , n−ar ] where a` > ar. For all such iterations with θtn, invoking Lemma 8.1, we find
that

∣∣∣M̃n,1(θtn)
∣∣∣ . (1− n−6a`)︸ ︷︷ ︸

=:γa`

∣∣θtn
∣∣ and

∣∣∣Mn,1(θtn)− M̃n,1(θtn)
∣∣∣ . n−ar/

√
n.

Therefore, we obtain that

∣∣θt+Tn

∣∣ ≤
∣∣∣M̃n,1(θt+T−1

n )
∣∣∣+
∣∣∣M̃n,1(θt+T−1

n )−Mn,1(θt+T−1
n )

∣∣∣ ≤ γa`θ
t+T−1
n + n−ar/

√
n.

Unfolding the above inequality T times, we find that

∣∣θt+Tn

∣∣ ≤ γ2
a`

(θt+T−2
n ) + n−ar/

√
n(1 + γm) ≤ γTa`θ

t
n + (1 + γa` + . . .+ γT−1

a`
)n−ar/

√
n

≤ e−Tn
−6a`n−ar +

1

1− γa`
· n−ar/√n.

As T is sufficiently large such that the second term is the dominant term, we find that that

∣∣θt+Tn

∣∣ . 1

1− γa`
· n−ar/√n = n6a`−ar−1/2.
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Setting the RHS equal to n−a` , we obtain the recursion that

a` =
ar
7

+
1

14
. (G.35)

Solving for the limit a` = ar = a? yields that a? = 1/12. It suggests that we eventually have

θtn → B(0, n−
1
12 ). As a consequence, we achieve the conclusion of the corollary.

G.5.2 Proof of Lemma G.1

Without loss of generality, we can assume that |θ| ∈ [ω−a`+1 , ω−a` ]. Conditional on the event
E , we have that

∣∣M1(θ)
∣∣ ≤ (1− ω−6a`+1/5) |θ| and

∣∣Mn,1(θ)−M1(θ)
∣∣ ≤ c2ω

−3a`ω−
1
2 .

As a result, we have

|Mn,1(θ)| ≤
∣∣Mn,1(θ)−M1(θ)

∣∣+
∣∣M1(θ)

∣∣ ≤ (1− ω−6a`+1/5) |θ|+ c2ω
− 1

2ω−3a`

≤ (1− ω−6a`+1/5 + c2ω
− 1

2ω−2a`)ω−a`

≤ ω−a` .

Here, to establish the last inequality, we have used the following observation: for ω = n/cn,δ
and that n ≥ (c′)1/εcn,δ, we have

5c2ω
6a`+1−2a`−1/2 ≤ 5c2ω

4a`−1/2 ≤ c′ω4a`?−1/2 ≤ c′ω−4ε ≤ 1/(c′)3 ≤ 1,

which leads to −ω−6a`+1/5 + c2ω
− 1

2ω−2a` ≤ 0. As a consequence, we achieve the conclusion
of the lemma.

G.5.3 Proof of Lemma G.2

The proof of this lemma relies on an evaluation of coefficients with x2k as k ≥ 1. In particular,
we divide the proof of the lemma into two key parts:

Upper bound: From the definition of hyperbolic function tanh(x), it is sufficient to
demonstrate that

x (exp(x)− exp(−x)) ≤
(
x2 − x4

3
+

2x6

15
− 17x8

315
+

62x10

2835

)
(exp(x) + exp(−x)) .

Invoking the Taylor series of exp(x) and exp(−x), the above inequality is equivalent to

∞∑

k=0

2x2k+2

(2k + 1)!
≤
(
x2 − x4

3
+

2x6

15
− 17x8

315
+

62x10

2835

)( ∞∑

k=0

2x2k

(2k)!

)
.
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Our approach to solve the above inequality is to show that the coefficients of x2k in the LHS
is smaller than that of x2k in the RHS for all k ≥ 1. In fact, when 1 ≤ k ≤ 3, we can quickly
check that the previous observation holds. For k ≥ 4, it suffices to validate that

2

(2k)!
− 2

3(2k − 2)!
+

4

15(2k − 4)!
− 34

315(2k − 6)!
+

124

2835(2k − 8)!
− 2

(2k + 1)!
≥ 0.

Direct computation with the above inequality leads to

(k − 1)(k − 2)(k − 3)(k − 4)(496k4 − 1736k3 + 1430k2 + 446k − 381) ≥ 0

for all k ≥ 4, which is always true. As a consequence, we achieve the conclusion with the
upper bound of the lemma.

Lower bound: For the lower bound of the lemma, it is equivalent to prove that

∞∑

k=0

2x2k+2

(2k + 1)!
≥
(
x2 − x4

3
+

2x6

15
− 17x8

315

)( ∞∑

k=0

2x2k

(2k)!

)
.

Similar to the proof technique with the upper bound, we only need to verify that

2

(2k)!
− 2

3(2k − 2)!
+

4

15(2k − 4)!
− 34

315(2k − 6)!
− 2

(2k + 1)!
≤ 0

for any k ≥ 3. The above inequality is identical to

(k − 1)(k − 2)(k − 3)(4352k3 − 4352k2 − 512k + 1472) ≥ 0

for all k ≥ 3, which always holds. Therefore, we obtain the conclusion with the lower bound
of the lemma.

G.5.4 Proof of Lemma G.3

The proof of this lemma is based on appropriate truncation argument. More concretely,
given any positive scalar τ , and the random variable X ∼ N (0, 1), consider the pair of
truncated random variables (Y, Z) defined by:

Y := X2kI|X|≤τ and Z := X2kI|X|≥τ . (G.36)

With the above notation in place, for n i.i.d. samples X1, . . . , Xn from N (0, 1), we have

1

n

n∑

i=1

X2k
i =

1

n

n∑

i=1

Yi +
1

n

n∑

i=1

Zi := SY,n + SZ,n.
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where SY,n and SZ,n, denote the averages of the random variables Y ′i s and Z ′is respectively.
Observe that |Yi| ≤ τ 2k for all i ∈ [n]; consequently, by standard sub-Gaussian concentration
of bounded random variables, we have

P (|SY,n − E [Y ] | ≥ t1) ≤ 2 exp

(
− nt21

2τ 4k

)
. (G.37)

Next, applying Markov’s inequality with the non-negative random variable SZ,n, we find that

P (SZ,n ≥ t2) ≤ E [SZ,n]

t2
=

E [Z]

t2
. (G.38)

By definition of the truncated random variable Y , we have E[Y ] ≤ E[X2k]; moreover, an
application of Holder’s inequality to E [Z] yields

E [Z] = E
(
X2kI|X|≥τ

)
≤
√
E [X4k]

√
P (|X| ≥ τ) ≤

√
2E [X4k] exp(−τ 2/4).

Combining the bounds on E[Y ] and E[Z] with the inequalities (G.37) and (G.38) we deduce
that

∑n
i=1X

2k
i

n
≤ E [Y ] + t1 + t2 ≤ E

[
X2k

]
+ t1 + t2, and, (G.39a)

∑n
i=1X

2k
i

n
≥ E

[
X2k

]
− t1 − t2

√
2E [X4k] exp(−τ 2/4) (G.39b)

with probability at least 1− exp
(
− nt21

2τ4k

)
−
√

2E [X4k] exp(−τ 2/4). Finally, given any δ > 0,

choose the scalars τ, t1, t2 as follows:

τ = 2

√√√√log

(
2
√

2nE [X4k]

δ

)
, t1 = τ 2

√
1

n
log

(
2

δ

)
and t2 =

1√
n
.

Substituting the choice of t1, t2 and τ , in bounds (G.39a) and (G.39b) we conclude that with
probability at least 1− δ

∣∣∣∣
∑n

i=1X
2k
i

n
− E

[
X2k

]∣∣∣∣ ≤
Ck logk(n/δ)√

n
,

where Ck is a universal constant that depends only on k. This completes the proof of
Lemma G.3.

G.6 Special contraction of population EM in one step

We now describe a special one-step contraction property of the population operator.
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Lemma G.4. For any vector θ0 such that ‖θ0‖ ≤
√
d, we have ‖M̃n,d(θ

0)‖ ≤
√

2/π with
probability at least 1− δ.

The proof of this lemma is a straightforward application of the proof argument in
Lemma 8.2 in Appendix G.4. In order to simplify notations, we use the shorthand Zn,d =∑n

j=1 ‖Xj‖2
2 /(nd). Recalling the definition (8.16) of operator M̃n,d, we have

∥∥∥M̃n,d(θ)
∥∥∥

2
=

∥∥∥∥∥EY∼N (0,1)

[
Y tanh

(
Y >θ

Zn,d − ‖θ‖2
2 /d

)]∥∥∥∥∥
2

.

As demonstrated in the proof of Theorem 8.2, we have the equivalence

∥∥∥M̃n,d(θ)
∥∥∥

2
= E

[
V1 tanh

(
‖θ‖2 V1

Zn,d − ‖θ‖2
2 /d

)]

where V1 ∼ N (0, 1). Since the function x tanh
(
‖θ‖2x

a−‖θ‖22/d

)
is an even function in terms of x

for any given a, we find that

E

[
V1 tanh

(
‖θ‖2 V1

Zn,d − ‖θ‖2
2 /d

)]
= E

[
|V1| tanh

(
‖θ‖2 |V1|

Zn,d − ‖θ‖2
2 /d

)]

≤ E [|V1|] =

√
2

π

where the second inequality is due to the basic inequality tanh(x) ≤ 1 for all x ∈ R. The
inequality in the above display implies that regardless of the initialization θ0, we always have∥∥∥M̃n,d(θ)

∥∥∥
2
≤
√

2/π, as claimed.

G.7 Wasserstein Distance

In Figures 8.1 and 8.3, we use EM to estimate all the parameters of the fitted Gaussian mix-
ture (e.g., the parameters {wi, µi,Σi, i ∈ [k]} if the fitted mixture were G =

∑k
i=1 wiN (µi,Σi))

and use first-order Wasserstein distance between the fitted model and the true model to mea-
sure the quality of the estimate. Here we briefly summarize the definition of the first-order
Wasserstein distance and refer the readers to the book [244] and the paper [113] for more
details. Given two Gaussian mixture distributions of the form

G =
k∑

i=1

wiN (µi,Σi) and G ′ =
k′∑

j=1

wjN (µ′j,Σj),
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the first-order Wasserstein distance between the two is given by

W1(G,G ′) = inf
q∈Q

k∑

i=1

k′∑

j=1

qij

(∥∥θi − θ′j
∥∥

2
+ |||Σi − Σ′j|||fro

)
, (G.40)

where |||A|||fro denotes the Frobenius norm of the matrix A (which in turn is defined as√∑
ij A

2
ij). Moreover, Q denotes the set of all couplings on [k]× [k′] such that

qij ∈ [0, 1],
k∑

i=1

qij = w′j and
k′∑

j=1

qij = wi for all i ∈ [k], j ∈ [k′].

We note that the optimization problem (G.40) is a linear program in the k× k′ dimensional
variable q and standard linear program solvers can be used for solving it. Also, we remark
that here we have abused the notation slightly since the the definition of the Wasserstein dis-
tance above is typically used for the mixing measures which only depends on the parameters
of the Gaussian mixture (and not the Gaussian density). Finally, applying definition (G.40),
we can directly conclude that for the symmetric fit (8.1), we have

W1

(
1

2
N (θ, σ2Id) +

1

2
N (−θ, σ2Id),N (θ?, σ

2
?Id)

)
= ‖θ − θ?‖2 +

√
d
√
|σ2 − σ2

?|, (G.41)

where we have assumed that min {‖θ − θ?‖2 , ‖−θ − θ?‖2} = ‖θ − θ?‖2.



378

Appendix H

Content Deferred From Chapter 9

In this chapter, we collect some tables deferred from the main text, derive the variance
formula in Appendix H.1 that we used earlier to define the t-statistics (9.11a), and discuss
several data cleaning details in Appendix H.2.

H.1 Derivation of variance formula in t-statistic

In this section, we derive a formula for the variance of τ̂G − τ̂ATE, thereby justifying the
formula for the plug-in estimator used in the definition of the t-statistic, which we repeat
here for convenience.

TG :=
τ̂G − τ̂ATE√

V̂ar(τ̂G − τ̂ATE)

, (H.1)

We first group terms to get

τ̂G − τ̂ATE =

(
1

abs G ∩T

∑

i∈G∩T

Yi(1)− 1

abs G ∩C

∑

i∈G∩C

Yi(0)

)
−
(

1

abs T

∑

i∈T

Yi(1)− 1

abs C

∑

i∈C

Yi(0)

)

= α1

∑

i∈G∩T

Yi(1) + α0

∑

i∈G∩C

Yi(0) + β1

∑

i∈Gc∩T

Yi(1) + β0

∑

i∈Gc∩C

Yi(0)

where

α1 =

(
1

abs G ∩T
− 1

abs T

)
, α0 = −

(
1

abs G ∩C
− 1

abs C

)
, β1 = − 1

abs T
, and β0 =

1

abs C
.

Next, observe that even after we condition on F , the collection of random variables {Yi(1), Yi(0) : 1 ≤
i ≤ N} are fully independent, and furthermore, the terms within each sum are identically
distributed. Applying the linearity of variance thus gives us

Var [τ̂G − τ̂ATE | F ] = α2
1 abs G ∩T · Var

[
Y (1)

∣∣ G ∩T
]

+ α2
0 abs G ∩C · Var

[
Y (0)

∣∣ G ∩C
]

+ β2
1 abs Gc ∩T · Var

[
Y (1)

∣∣ Gc ∩T
]

+ β2
0 abs Gc ∩C · Var

[
Y (0)

∣∣ Gc ∩C
]
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Estimator M A1,2 A2,3 A3,4 A4,5 A1,min

t logistic 1.00 0.67 0.83 0.25 1.00
causal forest 2 1.00 0.50 0.83 0.17 1.00
x lasso 1.00 0.50 0.58 0.67 1.00
x rf 1.00 0.42 0.42 0.67 1.00
t lasso 1.00 0.42 0.50 0.58 0.92
x logistic 1.00 0.33 0.50 0.75 0.92
s xgb 1.00 0.67 0.58 0.58 0.92
r lassolasso 0.92 0.42 0.42 0.92 0.92
r rfrf 0.92 0.50 0.42 0.50 0.92
r lassorf 0.92 0.42 0.42 0.42 0.92
causal forest 1 0.92 0.67 0.75 0.50 0.83
x xgb 0.92 0.33 0.50 0.83 0.83
t xgb 0.92 0.42 0.67 0.17 0.83
t rf 0.92 0.75 0.50 0.33 0.83
causal tree 2 0.92 0.75 0.25 0.42 0.75
s rf 0.83 0.58 0.67 0.42 0.75
causal tree 1 0.83 0.58 0.17 0.67 0.67

Estimator M A1,2 A2,3 A3,4 A4,5 A5,max

t lasso 0.33 0.42 0.42 1.00 1.00
x xgb 0.33 0.50 0.58 0.92 0.92
x logistic 0.50 0.50 0.42 0.92 0.92
r rfrf 0.25 0.42 0.50 0.92 0.83
s rf 0.42 0.42 0.42 0.92 0.83
x lasso 0.50 0.33 0.50 0.83 0.75
t rf 0.33 0.25 0.67 0.83 0.75
x rf 0.50 0.33 0.58 0.83 0.75
t logistic 0.33 0.25 0.58 0.83 0.75
r lassorf 0.17 0.42 0.42 0.92 0.75
causal forest 1 0.67 0.33 0.67 0.92 0.75
causal forest 2 0.50 0.08 0.33 0.92 0.75
r lassolasso 0.17 0.75 0.50 0.75 0.67
causal tree 2 0.25 0.08 0.33 0.83 0.25
t xgb 0.08 0.08 0.25 0.75 0.08

(a) GI Event (b) CVT Event

Table H.1: Estimator-wise values of the mean scores Aj,j+1 (9.8a) for j = 1, 2, 3, 4 for both
GI and CVT events, A1,min (9.8b) for the GI event, and A5,max (9.8c) for the CVT event,
where the mean was taken over the 12 validation folds, 4 each from the 3 random CV
splits {cv orig,cv 0,cv 1}. In each column the maximum score is highlighted in bold. The
estimators are listed in the order sorted by the value in last column. Recall that each column
was plotted earlier as a boxplot in Fig. 9.4(a).

where Var
[
Y (1)

∣∣ G ∩T
]

denotes the variance of Y (1) when conditioned on X ∈ G (recall
our abuse of notation described in Section 9.3) and T = 1, with the other terms defined
similarly. Simplifying this formula leads to

Var [τ̂G − τ̂ATE | F ]

=

(
1− abs G ∩C

abs C

)2

· Var
[
Y (0)

∣∣ G ∩C
]

abs G ∩C
+

(
1− abs G ∩T

abs T

)2

· Var
[
Y (1)

∣∣ G ∩T
]

abs G ∩T

+

(
abs Gc ∩C

abs C

)2

· Var
[
Y (0)

∣∣ Gc ∩C
]

abs Gc ∩C
+

(
abs Gc ∩T

abs T

)2

· Var
[
Y (1)

∣∣ Gc ∩T
]

abs Gc ∩T

=

(
abs Gc ∩C

abs C

)2

·
(

Var
[
Y (0)

∣∣ G ∩C
]

abs G ∩C
+

Var
[
Y (0)

∣∣ Gc ∩C
]

abs Gc ∩C

)

+

(
abs Gc ∩T

abs T

)2

·
(

Var
[
Y (1)

∣∣ G ∩T
]

abs G ∩T
+

Var
[
Y (1)

∣∣ Gc ∩T
]

abs Gc ∩T

)
.
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Stab(C)-score in %

with Gtop = G̃q

Cell C for GI event q = 0.2 q = 0.3 Mean

{PPH=1} 92 92 92
{PSTRDS=1, HYPGRP=1} 36 54 45
{PSTRDS=1, ELDERLY=1} 37 48 42
{PNAPRXN=0, PSTRDS=1, ELDERLY=1} 23 18 21
{PNAPRXN=0, HYPGRP=1, PSTRDS=1} 25 8 17
{PSTRDS=1, PNSAIDS=0} 8 23 15
{WHITE=0, PSTRDS=1, ELDERLY=1} 18 3 11
{CHLGRP=1, HYPGRP=1} 17 2 10
{OBESE=1, WHITE=0, PSTRDS=1} 10 8 9
{PNAPRXN=0, ELDERLY=1} 0 18 9
{OBESE=1, WHITE=0} 0 17 8
{HYPGRP=1, PNSAIDS=0} 16 0 8
{WHITE=0, PNSAIDS=0} 14 0 7
{OBESE=1, WHITE=0, PNAPRXN=0} 3 10 7
{OBESE=1, PSTRDS=1, HYPGRP=1} 5 8 7
{PSTRDS=1, HYPGRP=1, ELDERLY=1} 12 0 6
{WHITE=0, PSTRDS=1, PNSAIDS=0} 10 2 6
{CHLGRP=1} 0 11 6
{PNAPRXN=0, HYPGRP=1} 0 10 5
{OBESE=1, PNSAIDS=0} 4 6 5

Stab(C)-score in %

with Gtop = G̃c
q

Cell C for CVT event q = 0.9 q = 0.8 Mean

{ASPFDA=1} 82 50 66
{MALE=1, ELDERLY=1} 70 57 64
{ASCGRP=1} 32 54 43
{MALE=1} 0 62 31
{ELDERLY=1, SMOKE=1} 22 27 25
{MALE=1, ELDERLY=1, US=1} 30 0 15
{MALE=1, US=1} 0 26 13
{OBESE=1, ELDERLY=1} 0 21 10
{MALE=1, WHITE=1, ELDERLY=1} 20 0 10
{MALE=1, ASCGRP=1} 18 0 9
{WHITE=1, OBESE=1, ELDERLY=1} 0 15 8
{MALE=1, PPH=0, ELDERLY=1} 13 0 7
{MALE=1, WHITE=1} 0 12 6
{PPH=0, US=1, ASCGRP=1} 2 8 5
{WHITE=1, ELDERLY=1, SMOKE=1} 7 3 5
{ELDERLY=1, US=1, SMOKE=1} 7 3 5
{MALE=1, PPH=0} 0 9 4
{ELDERLY=1, US=1, CHLGRP=1} 0 8 4
{CHLGRP=1, ASCGRP=1} 8 0 4
{MALE=1, ELDERLY=1, SMOKE=1} 7 0 3

(a) GI Event (b) CVT Event

Table H.2: Stab(C)-scores (in % rounded to nearest integer) for the top 20 cells C found
by CellSearch-methodology for quantile-based top subgroups Gtop of the ensemble CATE
estimator. The cells are sorted by the “Mean” column of Stab(C)-scores, which in turn
denote the average of the the scores in second and third columns. For each score column,
cells corresponding to top-3 scores are displayed in bold. The choices q = 0.2, 0.3 for the GI
event in panel (a), and q = 0.8, 0.9 for the CVT event in panel (b) were made based on the
results reported in Table 9.3 and the discussion around it.

H.2 Details on data cleaning with VIGOR and

APPROVe

Here we collect additional details deferred from the main paper. First, we provide the details
on how we identified the patients with prior history of GI event (PPH=1) for the VIGOR
study. Although this subgroup was analyzed in the original study, the data files we had did
not contain a membership indicator, not were there specific constructions on how to construct
this subgroup. We applied a similar procedure to determine the patients with PPH=1 for the
APPROVe study. Following that we describe the steps we followed to impute the GI ouctome
as well as the features {ASPFDA, ASCGRP, HYPGRP, PSTRDS} for the APPROVe study.
We also note that the other features, namely MALE and ELDERLY, reported in Table 9.6
could be readily identified from the demographics dataset for the APPROVe study, where
the ELDERLY feature uses normalized age as detailed in Section 9.2.2.
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Covariate (ABBRV) Control No. (%) Treatment No. (%)

Overall population 1300 (50.3) 1287 (49.7)

Demographics

Whether gender is male (MALE=1) 805 (61.9) 804 (62.4)

Whether adjusted age† > 65 (ELDERLY=1) 338 (26.0) 329 (25.6)

Prior medical history

of GI PUB events∗ (PPH=1) 93 (7.2) 91 (7.1)

of hypertension (HYPGRP=1) 446 (34.3) 463 (36.0)

of atherosclerotic cardiovascular disease (ASCGRP=1) 121 (9.3) 129 (10.0)

indicating use of aspirin under FDA guidelines (ASPFDA=1) 70 (5.4) 81 (6.3)

Prior usage of drugs

Whether used glucocorticoids/steroids (PSTRDS=1) 40 (3.1) 34 (2.6)

Outcomes

Whether GI event occurred (GI=1) 6 (0.46) 27 (2.1)

Whether CVT event occurred (CVT=1) 32 (2.5) 57 (4.4)

Table H.3: Overview of the selected baseline covariates in the control and treatment arm of
the APPROVe study. The treatment arm was given Vioxx, while the control arm was given
placebo. †Adjusted age denotes age multiplied by the ratio of the life expectancy in the US
to that in the individual’s country of residence. ∗PUB stands for perforations, ulcers and
bleeding.

PPH for both studies: To identify patients with a history of GI events, we identified a
list of medical terms associated with such events, namely gastroduodenal perforation, ob-
struction, ulcer, or upper GI bleeding, from the medical history file. (We used REPTTERM
field for this part as PREFTERM was not available in the medical history file for the VIGOR
dataset.) Using this procedure, we identified 313 patients in the control arm, and 317 pa-
tients in the treatment arm who had a prior history of GI events (identified as PPH = 1).
These number are off by 1 when compared to the 314 and 316 patients reported with PPH
= 1 for the control and treatment arms respectively, by Bombardier et al in their paper on
the VIGOR study [23].

To identify the patients with PPH = 1 for the APPROVe study, we used the medical
terms identified above, with some adjustment for different spellings. Doing this gives us a
subgroup of 184 patients. For this dataset, we used the PREFTERM in the medical history
file for identification (since PREFTERM uses standardized terminology). Note that the
paper on APPROVe study by Baron et al [12] does not report any information about the
PPH feature.

GI outcome and other features for APPROVe study: On the VIGOR dataset,
we identified all possible medical terms (PREFTERM field in the adverse event file) that
were relevant and possibly associated with GI events during the treatment period. To be
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consistent with our procedure on VIGOR dataset, we excluded pre-treatment events, and
included events that occurred during the treatment and post-study periods. A confirmed
CVT event was a designated end point of the study, so these labels were directly provided
to us in the study’s data files. Such a process, i.e., using only a relevant list of medical terms
in the adverse event file, correctly identified 166 out of 177 patients with GI events. Despite
our best efforts, this procedure also falsely identified 12 out of the remaining 7899 patients
who did not have a confirmed GI event. Next, we found that 33 patients in APPROVe had
recorded adverse events with PREFTERM contained in the list of terms identified above
(with some adjustment of different spellings) during the treatment or the post-study periods.
We declared these 33 patients to have had a GI event. Because the APPROVe study did
not aim to study GI toxicity, the paper on the study by Baron et al [12] does not report any
information about the GI event as well as the risk factor features that we discuss next.

We followed a similar strategy to develop a mapping using the medical terms from the
medical history file to the risk factor indicators for {ASPFDA, ASCGRP, HYPGRP} for
the VIGOR study. Doing so, we correctly identified (i) 320/321 patients with ASPFDA = 1
(indication of aspirin usage by FDA due to their medical history), (ii) 453/454 patients with
ASCGRP = 1 (history of atherosclerosis), and (iii) all 2385/2385 patients with HYPGRP =
1 (history of hypertension). For all three features ({ASPFD, ASCGRP, HYPGRP}), we did
not have any false inclusion, i.e., using just the selected list of medical terms did not incor-
rectly impute a value of 1 for any patient. Finally to identify the patients with prior usage
of glucortocoids (PSTRDS=1), we developed a mapping between the information from the
concomitant therapy file and the PSTRDS indicator from the risk factor file. Our mapping
correctly identified all 4479/4479 patients with PSTRDS = 1 but also falsely identified an
additional 248 (out of the remaining 3597) patients.

The mappings described above were then used to impute the GI outcome and relevant
missing features in the APPROVe study, thereby allowing us to report the “transfer” results
for the subgroups found by StaDISC on the VIGOR study (Tables 9.4 and 9.5) to the
APPROVe study (Table 9.6).




