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Abstract In the end of 2019, a new type of coron-
avirus first appeared in Wuhan. Through the real-data
of COVID-19 from January 23 to March 18, 2020,
this paper proposes a fractional SEIHDR model based
on the coupling effect of inter-city networks. At the
same time, the proposed model considers the mortality
rates (exposure, infection and hospitalization) and the
infectivity of individuals during the incubation period.
By applying the least squares method and prediction-
correction method, the proposed system is fitted and
predicted based on the real-data from January 23 to
March 18−m where m represents predict days. Com-
pared with the integer system, the non-network frac-
tional model has been verified and can better fit the data
of Beijing, Shanghai, Wuhan and Huanggang. Com-
pared with the no-network case, results show that the
proposed system with inter-city network may not be
able to better describe the spread of disease in China
due to the lock and isolation measures, but this may
have a significant impact on countries that has no clo-
suremeasures.Meanwhile, the proposedmodel ismore
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suitable for the data of Japan, the USA from January
22 and February 1 to April 16 and Italy from February
24 to March 31. Then, the proposed fractional model
can also predict the peak of diagnosis. Furthermore,
the existence, uniqueness and boundedness of a non-
negative solution are considered in the proposed sys-
tem. Afterward, the disease-free equilibrium point is
locally asymptotically stable when the basic reproduc-
tion number R0 ≤ 1, which provide a theoretical basis
for the future control of COVID-19.

Keywords Inter-city networked coupling effects ·
Fractional-order · SEIHDR epidemic model · COVID-
19

1 Introduction

A infectious disease caused by a new coronavirus was
discovered firstly in Wuhan, China, in the end of 2019.
Contrary to the initial report [1], it is indeed spread
from person to person through frequent interpersonal
communication [2]. Then, it quickly spread all over the
word. By 5 February, 2020, more than 24,550 had been
confirmed. Since January 23, 2020, theWuhan govern-
ment has gradually implemented city-wide quarantine,
which has greatly suppressed the spread of the virus.

As the main transportation hub in central China,
Wuhan has a large population movement during the
Spring Festival. During the transmission of the new
coronavirus, populationmigration caused bygeograph-
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ical factors has added fundamental difficulties for the
prevention and intervention of this epidemic, such as
the domestic passenger flow from Wuhan is estimated
at 5 million during the Spring Festival, which makes
it difficult for following the infected people. Prasse et
al. studied a discrete epidemic model with network to
describe this infectious disease and their work pointed
out that the epidemic model with network helped to
accurately predict the outbreak of epidemics [3]. Peng
et al. found that thefirst appearance ofCOVID-19 could
be dated back to the beginning of December 2019 in
China by a generalized SEIR model [4]. Furthermore,
the basic reproduction number R0 represents number
of cases in which an infected individual is expected to
have a second infection in a fully susceptible popula-
tion. If R0 ≤ 1, an infected person, on average, infects
fewer than one infection in its infectious period, and
the epidemic will not exist. Conversely, if R0 > 1,
each infected individual infects more than one infected
individual, and the disease will affect the entire popula-
tion [5]. At present, there are a large number of articles
that estimate the basic reproduction number R0 to fur-
ther determine whether COVID-19 will widespread in
the population [6–8]. Meanwhile, during the transmis-
sion of infectious diseases, susceptible people come
into contact with infected people and are infected with
a probability. A great deal of evidence shows that
incidence rates are an important method for describ-
ing infectious diseases [9–11]. Bilinear incidence rate
is often used in the modeling process of COVID-19
because of its high infectivity. The incubation period
of the infected person in the traditional SEIR model
is not infectious, but there is already evidence that for
COVID-19, the incubation period is very high infec-
tious [12]. Not only that, due to various conditions, all
patients infected with COVID-19 could not be sent to
the hospital, and infected individuals have a high mor-
tality rate before hospitalization.

It isworth noting that in the classic integer-order epi-
demic model, the state of the model does not depend
on the history. However, not only does the infectious
diseases depends on its current state, but also on its past
state in real life. At the same time, the fractional order
system can describe the change of the system whose
instantaneous rate of change depended on the past state.
This way of description is called the memory effect
[13]. And it is confirmed that the fractional model per-
fectly fits the test data of memory phenomena in differ-
ent disciplines by using numerical least square method.

That is, a physical meaning of the fractional-order is an
index of memory [14]. A large number of articles have
discussed the stability of fractional order systems in
different ways [15–17], such as Jan et al. concerned
with some stability properties of linear autonomous
fractional differential and difference systems involv-
ing derivative operators of the Riemann–Liouville type
and they showed discretizations based on backward
differences can retain the key qualitative properties
of underlying fractional differential systems [15], and
Deng et al. derived the sufficient conditions for the local
asymptotical stability of nonlinear fractional differen-
tial equations, including Riemann–Liouville fractional
order and Caputo fractional order derivative [16]. Fur-
thermore, Smethurst et al. found that the waiting time
for patients follows the power law model [18]. And
the power law distribution P[Jn > t] = Bx−α gen-
erates Caputo fractional-order derivative C

t0D
α
t of the

same order [19]. When dealing with practical prob-
lems, Caputo fractional order and integer order deriva-
tives have the same initial conditions, which has a spe-
cific physical meaning. At the same time, the Caputo
derivative of its constant is zero. More importantly, the
accuracy of Caputo derivative can supersede the integer
derivative caused by its change and non-local behavior.
Angstmann et al. derived a fractional-order infectivity
SIRmodel from a stochastic process and they found the
fractional derivative appears in the generalized master
equations of a continuous time random walk through
SIR compartments, with a power-law function in the
infectivity [20]. Khan et al. described the interaction
between bats and unknown hosts, people to people,
and the source of infection (seafood market), and their
work shown fractional model played an important role
in limiting the number of infected people [21]. Chen
et al. established a fractional delay dynamic system
(FTDD) to describe COVID-19, and they used recon-
struction coefficients to predict the spread of new coro-
naviruses COVID-19 [22]. Amjad et al. constructed the
fractional order COVID-19 model. In their work, the
effects of preventivemeasures, variousmitigationmea-
sures are estimated, and future outbreaks and poten-
tial control strategies are predicted [23]. A fractional
SEIQRD model is analyzed by Xu et al., which is of
guiding significance for predicting the possible out-
breaks of some epidemic diseases [24].

To incorporate the time fractional order and the cou-
pling effect between cities, a SEIHDR epidemic model
is established to study the dynamic behavior ofCOVID-
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19. Many studies on COVID-19 shown that not only
infected individuals are infectious, but people in the
incubation period have same infectivity with infected
individuals. Therefore, the infectivity of the incubation
period is considered here. Further, the mortality of dif-
ferent individuals (exposed, infected and hospitaliza-
tion) is considered in this model. Furthermore, during
the outbreak of COVID-19, due to the limitation of
various resources, the patients with infection cannot be
diagnosed immediately and the patients with diagno-
sis cannot be hospitalized immediately, all need wait-
ing time. Thus, from the analysis made above, a frac-
tional inter-city network SEIHDR model for COVID-
19 is established.Then, the fractional inter-city network
model is verified to be rational by several numerical
examples with the official data [25]. Compared with
the integer system, the non-network fractional model
has been verified to fit the data of Beijing, Shanghai,
Wuhan and Huanggang better. The analysis with inter-
city network shows that the proposed system may not
have a positive effect on the spread of viruses in China,
but may be important to other countries. Finally, the
stability of the proposed system is analyzed through
R0, which has theoretical significance for further inter-
vention and prevention of this infectious disease.

The rest of the article is organized as follows.
COVID-19’s SEIHDR fractional model is established
in Sect. 2. Then, some dynamic behaviors of the pro-
posed system are analyzed in Sect. 3. In Sect. 4, numer-
ical simulations are provided to illustrate the theoretical
results. Finally, the conclusion is held in Sect. 5.

2 Model development

It has been found that the fractional-order derivatives
have a wide range of applications in the modeling of
many asynchronous dynamic processes, such as engi-
neering, biology, medicine and many other fields [26–
30]. Before presenting the fractional epidemic model,
some necessary preliminaries are introduced.

2.1 Preliminaries

This section begins with some definitions and results.

Definition 2.1 [31] The Gamma function satisfies the
following equation:

Γ (α) =
∫ ∞

0
xα−1e−xdx .

Definition 2.2 [31] For ∀t > t0, the Caputo fractional-
order derivative of order α (n − 1 < α < n) for a
function g(t) ∈ R is defined by

C
t0D

α
t g (t) = dαg (t)

dtα
= 1

Γ (n − α)

∫ t

t0

g(n)

(t − s)α−n+1 ds.

Remark 2.1 If α = n,

C
t0D

α
t g (t) = g(n)(t).

Definition 2.3 [32] Consider the Caputo fractional
dynamical system:

C
t0D

α
t x(t) = g(t, x), x(t0) ≥ 0,

a constant x∗ is an equilibrium point of the above sys-
tem if and only if g(t, x∗) = 0.

Lemma 2.1 [33] The fractional-order system is con-
sidered as followed:

C
t0D

α
t x(t) = g(t, x), t0 > 0,

with the initial condition x(t0) = x0, where α ∈ (0, 1]
and g : [t0,∞)×Ω → R

n,Ω ∈ R
n. If g(t, x) satisfies

the Lipschitz condition on x, the above system has a
unique solution.

Lemma 2.2 [34] Consider the following fractional-
order system:

C
t0D

α
t x(t) = g(x), x(t0) = x0,

where 0 < α ≤ 1, x ∈ R. The equilibrium points are
locally asymptotically stable if and only if all eigen-
values λ of the Jacobian matrix J = ∂g

∂x satisfy the
following equation:

|arg(λ)| >
απ

2
.

2.2 System description

In December 2019, a new coronavirus was first dis-
covered in Wuhan, China. There are a large number of
epidemic models that describe the spread of this infec-
tious disease [35]. And the spread of COVID-19 started
during the Chinese New Year, and the massive popula-
tionmovement hadmade the connection between cities
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closer. Meanwhile, Wuhan, the most severely affected
area, as a major transportation hub in central China,
COVID-19 is mainly spread by means of transporta-
tion. Therefore, it is necessary to establish an inter-city
network to observe the transmission of this infectious
disease. Due to the limitation of medicine, latent indi-
viduals and infection individuals cannot be hospitalized
immediately, which will increase the mortality rate. In
addition, Tang et al. considered that the incubator of
COVID-19 infection is highly infectious [12]. From
the analysis made above, a fractional inter-city network
SEIHDR epidemic model is constructed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t Sk=Λk −

n∑
j=1

βα
k j

(
Sk I j
Nk

+ Sk E j
Nk

)
− μα

k Sk,

C
0 D

α
t Ek=

n∑
j=1

βα
k j

(
Sk I j
Nk

+ Sk E j
Nk

)
− μα

1k Ek − rα
k Ek,

C
0 D

α
t Ik=rα

k Ek − δα
k Ik − μα

2k Ik,
C
0 D

α
t Hk=δα

k Ik − λα
k (t)Hk − κα

k (t)Hk,
C
0 D

α
t Rk=λα

k (t)Hk,
C
0 D

α
t Dk = μα

k Sk + μα
1k Ek + μα

2k Ik + κα
k (t)Hk,

(1)

with the initial condition

Sk(0) = Sk(0) ≥ 0, Ek(0) = Ek(0) ≥ 0,

Ik(0) = Ik(0) ≥ 0, Hk(0) = Hk(0) ≥ 0,

Rk(0) = Rk(0) ≥ 0, Dk(0) = Dk(0) ≥ 0.

(2)

The city k’s total population is presented by Nk that
is classified into Sk(t), Ek(t), Ik(t), Hk(t), Dk(t)
and Rk(t) denoted the class of susceptible individu-
als, exposed individuals, infective individuals (infected
but not hospitalized), hospitalization individuals, death
individuals and recovered individuals, respectively.
The susceptible individual Sk contact with E j and I j
then infected by

∑n
j=1 βα

k j (
Sk I j
Nk

+ Sk E j
Nk

), where βα
k j

is the transmission coefficient. The dead individual
Dk includes death during susceptible μα

k Sk , exposure
μα
1k Ek , infection μα

2k Ik , and hospitalization κα
k (t)Hk ,

whereμk denotes the natural death rates,μα
ik (i = 1, 2)

and κα
k (t) imply the disease-related mortality. The

parameter Λk denotes the inflow number of suscep-
tible individuals; λα

k be the recovery rate; rα
k imply the

transit rate of the exposed class Ek ; δk denote hospi-
talization rate. Furthermore, βα

k j , μα
ik , δα

k and rα
k are

positive constants; bounded function λα
k (t) and κα

k (t)
satisfy |λα

k (t)| ≤ M1k and |κα
k (t)| ≤ M2k for ∀t ≥ 0,

whereM1k andM2k are positive constants.Without loss
of generality, βα

k j , μ
α
k , μ

α
ik , r

α
k , δ

α
k , κ

α
k and λα

k are still
denoted as βk j , μk , μik , rk , δk , κk and λk , respectively.

However, during the outbreak of COVID-19, indi-
vidual migration has been tightly controlled, especially
for the city of Wuhan to implement the closure mea-
sures, and the natural death rate of individuals is negli-
gible compared to the death caused by COVID-19. By
the above assumptions, the improved SEIHDR model
is given as followed:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t Sk = −

n∑
j=1

βk j

(
Sk I j
Nk

+ Sk E j
Nk

)
,

C
0 D

α
t Ek =

n∑
j=1

βk j

(
Sk I j
Nk

+ Sk E j
Nk

)
− μ1k Ek − rk Ek,

C
0 D

α
t Ik = rk Ek − δk Ik − μ2k Ik,

C
0 D

α
t Hk = δk Ik − λk(t)Hk − κk(t)Hk,

C
0 D

α
t Rk = λk(t)Hk,

C
0 D

α
t Dk = μ1k Ek + μ2k Ik + κk(t)Hk .

(3)

Then, the transmission diagram of a fractional SEI-
HDR model without inter-city network for COVID-19
is shown in Fig. 1.

3 Basic properties about the model

The dynamical analysis of the proposed system (1) is
studied in this section. Here, it can be seen that the
susceptible individual Sk , the exposed individual Ek ,
the infected individual Ik and the hospitalized individ-
ual Hk of system (1) are not effected by the recovered
individual Rk and the death class Dk , so the following
system is considered:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t Sk = Λk −

n∑
j=1

βk j

(
Sk I j
Nk

+ Sk E j
Nk

)
− μk Sk,

C
0 D

α
t Ek =

n∑
j=1

βk j

(
Sk I j
Nk

+ Sk E j
Nk

)
− μ1k Ek − rk Ek,

C
0 D

α
t Ik = rk Ek − δk Ik − μ2k Ik,

C
0 D

α
t Hk = δk Ik − λk(t)Hk − κk(t)Hk,

(4)

with the initial condition

Sk(0) = Sk(0) ≥ 0, Ek(0) = Ek(0) ≥ 0,

Ik(0) = Ik(0) ≥ 0, Hk(0) = Hk(0) ≥ 0.
(5)

123



A fractional-order SEIHDR model for COVID-19

(t)

1

2

(t)

Fig. 1 Transmission diagram for system (2)

3.1 Nonnegativity and boundedness

Before the numerical process, the existence, unique-
ness and boundedness of the nonnegative solution of
system (4) must be proved. Therefore, this subsection
discusses the above properties of system (4).

Theorem 3.1 Consider the following initial condition:

(Sk(0), Ek(0), Ik(0), Hk(0)) ≥ ( 	≡)(0, 0, 0, 0),

system (4) has a unique bounded and nonnegative
solution (S1(t), E1(t), I1(t), H1(t), . . . , Sn(t), En(t),
In(t), Hn(t)).

Proof Let Nk = Sk + Ek + Ik + Hk . Adding all equa-
tions of system (4) yields
C
0 D

α
t Nk ≤ Λk − μNk,

which μ = min{μk, μ1k, μ2k, M1k + M2k}, then one
has

Nk(t) ≤ (Nk(0) − Λk

μ
)Eα(−μtα) + Λk

μ
.

So one has Sk ≤ Λk
μ
, Ek ≤ Λk

μ
, Ik ≤ Λk

μ
and Hk ≤ Λk

μ
.

Let X1k = (Sk, Ek, Ik, Hk), X2k = (Sk, Ek, I k, Hk)

and Fk = ( f1k, f2k, f3k, f4k) where

f1k = Λk −
n∑
j=1

βk j

(
Sk I j
Nk

+ Sk E j

Nk

)
− μk Sk,

f2k =
n∑
j=1

βk j

(
Sk I j
Nk

+ Sk E j

Nk

)
− μ1k Ek − rk Ek,

f3k = rk Ek − δk Ik − μ2k Ik,

f4k = δk Ik − λk(t)Hk − κk(t)Hk .

(6)

Obviously, one has

||Fk(X1k) − Fk(X2k)|| ≤ || f1k(X1k) − f1k(X2k)||
+ || f2k(X1k) − f2k(X2k)||
+ || f3k(X1k) − f3k(X2k)||
+ || f4k(X1k) − f4k(X2k)||

≤ Lk ||X − X ||,
(7)

where Lk = max(L1k, L2k, L3k, L4k, L5k), L1k =
2βk j Mk

Nk
+μk , L2k = L1k+μ1k+rk , L3k = rk+μ2k+δk ,

L4k = M1k + M2k . So Fk satisfies the Lipschitz con-
dition on Xk . Then, system (4) has a unique bounded
solution (Sk, Ek, Ik, Hk)1≤k≤n .

Further, the auxiliary system is considered as fol-
lowed:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

α
t Sk = −

n∑
j=1

βk j (
Sk I j
Nk

+ Sk E j
Nk

) − μk Sk,

C
0 D

α
t Ek =

n∑
j=1

βk j (
Sk I j
Nk

+ Sk E j
Nk

) − μ1k Ek − rk Ek,

C
0 D

α
t I k = rk Ek − δk I k − μ2k I k,

C
0 D

α
t Hk = δk I k − λk Hk − κk Hk,

Sk = Ek = I k = Hk = 0.

Through the comparison theorem, it is found that

(Sk, Ek, Ik, Hk) ≥ (Sk, Ek, I k, Hk) = (0, 0, 0, 0).

Thus, it can be concluded that Sk ≥ 0, Ek ≥ 0, Ik ≥ 0
and Hk ≥ 0 for k = 1, 2, . . . , n. ��

3.2 Stability analysis

Now, exploring the stability of the system (4) through
the basic reproduction number R0. Obviously, the
disease-free equilibrium for system (4) is E0 =
(Λ1

μ1
, 0, 0, 0, . . . , Λn

μn
, 0, 0, 0).

Theorem 3.2 The basic reproduction number R0 of
system (4) is

R0 = ρ(F1(V21 − V20)(V21V10)
−1),

where F1 = (
βk jΛk
Nkμk

)1≤k, j≤n, V10 = diag(μ11 +
r1, . . . , μ1n + rn), V20 = diag(−r1, . . . ,−rn), V21 =
diag(δ1 + μ21, . . . , δn + μ2n) and the spectral radius
ρ(F1(V21 − V20)(V21V10)−1).
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Fig. 2 The number of recovered and confirmed for Beijing (m = 6)

Fig. 3 The number of recovered and confirmed for Shanghai (m = 6)

Table 1 Error with the real-data and the numerical solutions

Error (%) Different country
Beijing Shanghai Hubei Wuhan Huanggang

α = 1 23.6 34.3 21.8 19.2 78.3

α 	= 1 5.9 14.1 16.2 19.1 49.7

Proof Let F0 = (
∑n

j=1
βk j Sk (I j+E j )

Nk
),

V01 = ((μ1k + rk)Ek), V02 = (δk Ik + μ2k Ik − rk Ek)

and V03 = (λk Hk + κk Hk − δk Ik) (k = 1, 2, . . . , n).
Then, taking the derivative of F0, V01, V02 and V03 with
respect to Ek , Ik and Hk (k = 1, 2, . . . , n) at E0, it can
be concluded that

F =
⎛
⎝ F1 F1 0

0 0 0
0 0 0

⎞
⎠ ,

V = (V1, V2.V3),
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Fig. 4 The number of recovered and confirmed for Hubei (m = 6)

Fig. 5 The number of recovered and confirmed for Wuhan (m = 6)

where V1 = (V10, 0, 0), V2 = (V20, V21, 0), V3 =
(0, V30, V31), F1 = (

βk jΛk
Nkμk

)n×n , V10 = diag(μ11 +
r1, . . . , μ1n + rn), V20 = diag(−r1, . . . ,−rn), V21 =
diag(δ1+μ21, . . . , δn+μ2n),V30=diag(−δ1, . . . ,−δn)

and V31 = diag(λ1+κ1, . . . , λn+κn). Then, according
to [5], it can be yielded that

R0 = ρ(FV−1) = ρ(F1(V21 − V20)(V21V10)
−1).

��
It is obvious to get the following theorem:

Theorem 3.3 If the basic reproduction number R0 ≤
1, system (4) is locally stability at the disease-free equi-
librium point E0 = (Λ1

μ1
, 0, 0, 0, . . . , Λn

μn
, 0, 0, 0).

Table 2 Performance comparison with different city

Different country Different index
α R0

Beijing 1.1913 0.8855

Shanghai 0.9844 0.8833

Hubei 1.4343 0.9848

Wuhan 0.9995 1.2675

Huanggang 0.0332 0.9568

America 0.7945 1.1443

Japan 0.3279 1.6346

Italy 0.7056 1.3368 × 103
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Fig. 6 The number of recovered and confirmed for Huanggang (m = 6)

Proof Consider the following Jacobian matrix of sys-
tem (4) at E0

J 0 =

⎛
⎜⎜⎝
W −F1 −F1 0
0 F1 − V1 F1 0
0 −V20 −V21 0
0 0 −V30 −V31

⎞
⎟⎟⎠ ,

where W = diag(−μ1, . . . ,−μn). One can calculate
that the eigenvalues are s1k = −μk (k = 1, 2, . . . , n)

and s2 = −s(V31) and

s3 + s4 = s(F1 − V10 − V21),
s3s4 = s(F1(V20 − V21) + V21V10),

where s(V31), s(F1−V10−V21) and s(F1(V20−V21)+
V21V10) are all eigenvalues of thematrixV31, F1−V10−
V21 and F1(V20 − V21) + V20V21, respectively. Then,
if R0 ≤ 1, it can be yielded that |arg(s)| > π

2 > απ
2 .

Thus, system (4) is locally stability at the disease-free
equilibrium point E0 = (Λ1

μ1
, 0, 0, 0, .., Λn

μn
, 0, 0, 0). ��

Remark 3.1 When city k and city j have no commu-
nication (ie, city k is closed), the basic reproduction
number of city k can be expressed as followed:

Rk
0 = βkkΛk(δk + μ2k + rk)

(δk + μ2k)(μ1k + rk)μk Nk
.

So, E0
k is local stability when the basic reproduction

number Rk
0 ≤ 1.

Remark 3.2 It is evident that Rk
0 are dependent on λk

and κk . The sensitivity of Rk
0 to the other parameters

βkk , μ1k , rk , μ2k and δk is calculated as follows:

Aβkk=
βkk

R0

∂R0

∂βkk
= 1, Aμ1k=

μ1k

R0

∂R0

∂μ1k
= − μ1k

μ1k + rk
,

Aμ2k=
μ2k

R0

∂R0

∂μ2k
= − rk

(δk + μ2k)(δk + μ2k + rk)
,

Ark=
rk
R0

∂R0

∂rk
= rk(μ1k − μ2k − δk)

(δk + μ2k + rk)
,

Aδk=
δk

R0

∂R0

∂μ2k
= − rkδk

(δk + μ2k)(δk + μ2k + rk)
,

where Aβkk , Aμ1k , Aμ2k and Aδk represent the normal-
ized sensitivity on βkk ,μ1k ,μ2k and δk , respectively. It
is worth noting that the n times’ increase on βkk leads
to the n times’ increase on Rk

0, but the n times’ increase
on μ1k , μ2k , δk and rk leads to the n times’ decrease
on Rk

0.

4 Numerical analysis

It can be seen from the previous discussion that system
(1) has a unique bounded solution, and the disease-
free equilibrium point E0 is locally asymptotically sta-
ble, which can provide theoretical support for the fur-
ther control and prediction of COVID-19. Then, the
numerical solutions of system (1) are analyzed by least
squares method [36] and predictor-correctors scheme.
In order to predictions, it is possible to move the data
by a fixed date m before March 18. Determine pre-
dictions are made based on data of 18 − m from Jan-
uary 23 to March 18, 2020. Then, it can be predict the
number of people diagnosed on March 18 and m rep-
resents the predicted number of days. Like in [12], the
disease-related mortality κ(t) and the cure rates λ(t)
are time-varying functions as
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Fig. 7 The sensitivity of the basic reproduction number
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Fig. 8 Prediction of peak in Hubei province

Fig. 9 With and without inter-city network in Beijing and Shanghai

κ(t) = κ0e
−κ1t , λ(t) = λ0(1 − eλ1t ), (8)

where λ0 and κ0 are initial cure rate andmortality. Con-
sidering without the network, it can be seen that the fit-
ting effect of the fractional system (3) on the peak value
and the peak time is a little bit better than that of the inte-
ger system (ie α = 1) from Figs. 2, 3, 4, 5 and 6. And
the relative error between the real-date and the numer-
ical solutions of α = 1 and α 	= 1 can be seen from
Table 1. Particularly, corresponding the basic reproduc-
tion number R0

k and the fractional-order are shown in
Table 2. Then, consistent with Remark 3.2, Fig. 7 indi-
cates the sensitivity of Rk

0. Furthermore, according to
Fig. 8, it is observed that the peak time and the peak

value are given as the coefficient βkk and the hospi-
talization rate δk change. The numerical results show
that strict control of individual exposure and increased
detection of nucleic acid reagents play a vital role in
reducing confirmed cases and delaying the peak period.
However, from Fig. 8, it can also be found that the
peak time reaches earlier and the peak value becomes
larger as the disease coefficient βkk increases. So, the
non-closed policy adopted by many countries are also
reasonable

When considered Hubei and other cities interacting
with each other, the communication between cities is
not clear and can be identified from system (1). Then,
Figs. 9 and 10 describe the network coupling between

123



A fractional-order SEIHDR model for COVID-19

Fig. 10 With and without considering inter-city network in Wuhan and Huanggang

Fig. 11 American report and forecast from 22 January to 16 April

Beijing, Shanghai, Wuhan and Huanggang. It can be
seen that since China closed the city on January 23,
the epidemic model with network is no longer suitable
for China. However, regarding the population move-
ments in other countries, a network-based model can
be established to describe the spread of the virus, which
will show better performance, and this will also be the
focus of future research

Meanwhile, considering system (1) without the nat-
ural death rate μk , the short-term prediction for Amer-
ica and Japan is shown in Figs. 11, 12 when considered
the real-date dating from 22 January and 1 February to
16 April, 2020 [37], respectively. And it can be shown

from Figs. 11 and 12 that the number of confirmed and
recovery individuals will keep increasing for Amer-
ica and Japan. Finally, the prediction is considered in
Fig. 13, according to the Italian real-data of hospitaliza-
tion, death and recovery from February 24 to March 31
[38]. And it is obviously that the peak time of symp-
tomatic individuals and hospitalizations reach on 30
June and 20 April, respectively. Then, the basic repro-
duction number and the fractional order can be seen
from Table 2, which suggests that the epidemic model
of Italy, America and Japanwill not disappear in a short
time.
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Fig. 12 Japan report and forecast from 1 February to 16 April

Fig. 13 Italy report and forecast from 24 February to 31 March
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5 Discussion

Based on the coupling effects of inter-city network in
Beijing, Shanghai, Wuhan and Huanggang, this paper
proposes a fractional SEIHDR model. By applying the
method of least squares and prediction-correction, the
numerical solution of the system (3) is compared with
the actual value of Beijing, Shanghai, Hubei, Wuhan
and Huanggang from January 23 to March 18, 2020.
It can be found from this study that fractional systems
have a better fitting effect than integer systems.Besides,
based on the inter-city network, the analysis shows that
the systemwith inter-city network could not be a better
description of infectious transmission in China. At the
same time, system (1) fits the data of Japan, the USA
from January 22 to April 16 and Italy from February 24
to March 31, and predicts the peak value and the peak
time, respectively.Moreover, the existence, uniqueness
and boundedness of a nonnegative solution are estab-
lished. Further, the local stability at the disease-free
equilibrium point is studied by R0 ≤ 1. And the sensi-
tivity of Rk

0 without network are researched to provide
a theoretical basis for infectious disease control.

Although the above study may not be able to show
the impact of the inter-city network-based epidemic
model on disease transmission in China because of
strict locking measures, it may on the whole indicates
that the fractional epidemic model with network may
predict more accurate than independent. Although the
situation of COVID-19 can be effectively predicted in
China, this study raises some questions that require fur-
ther research: whether the network model can be used
to predict epidemics in other regions; how medical and
other factors affect the virus transmission trend. Fur-
ther study how to predict and intervene in the devel-
opment of epidemic situations in other countries when
the dynamic model includes network effects.
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