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Abstract: This review explores the application of the conservative management model for pain to
sports-related concussions (SRCs), framing concussions as a distinct form of pain syndrome with a
pathophysiological foundation in central sensitization. Drawing parallels with proven pain manage-
ment models, we underscore the significance of a proactive approach to concussion management.
Recognizing concussions as a pain syndrome allows for the tailoring of interventions in alignment
with conservative principles. This review first covers the epidemiology and controversies surround-
ing prolonged concussion recovery and persistent post-concussion symptoms (PPCS). Next, the
pathophysiology of concussions is presented within the central sensitization framework, empha-
sizing the need for early intervention to mitigate the neuroplastic changes that lead to heightened
pain sensitivity. Five components of the central sensitization process specific to concussion injuries
are highlighted as targets for conservative interventions in the acute period: peripheral sensitiza-
tion, cerebral metabolic dysfunction, neuroinflammation, glymphatic system dysfunction, and pain
catastrophizing. These proactive interventions are emphasized as pivotal in accelerating concussion
recovery and reducing the risk of prolonged symptoms and PPCS, in line with the philosophy of
conservative management.

Keywords: concussion; mild traumatic brain injury (mTBI); central sensitization; sports-related
concussion; peripheral sensitization; glymphatic system; neuroinflammation; pain catastrophizing

1. Introduction
1.1. Conservative Management Is Proactive in Nature

While conservative management paradigm starts with the Hippocratic principle of
“first do no harm”, its mandate in sport medicine is much broader. Conservative man-
agement has evolved from mere avoidance strategies to ones that promote preventative
interventions for sports-related injuries according to “the philosophy of active conservative
care” [1]. In other words, conservative management in sports medicine is fundamen-
tally proactive.

1.2. Conservative Principles in Pain Management

The conservative paradigm is applicable to pain management for sports injuries. While
pain is an injury symptom in the acute period, it can become uncoupled in the sub-acute
phase from the injury that first caused it, evolving into its own distinct disease state [2].
Classic examples of this in sports are when acute neck or back injuries transition into
chronic low back pain (CLBP) or whiplash-associated disorders (WADs). The concept
of “pain as a disease” is acknowledged in the 2017 International Olympic Committee
consensus statement on the treatment of pain in elite athletes. The Committee notes
that pain management should address “all contributors to pain including underlying
pathophysiology, biomechanical abnormalities and psychosocial issues” [3]. This is in
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accordance with the biopsychosocial model of pain, a multidimensional approach used to
understand and treat the complexities of chronic pain [4]. The consensus statement also
emphasizes prevention as a primary goal of pain management, in line with the conservative
care principles.

1.3. Central Sensitization and Conservative Management

Central sensitization describes the dynamics of chronic pain development, a process
where amplification of the perception of pain is ascribed to alterations in central nervous
system (CNS) sensory processing [5]. Woolf, one of the pioneers of the central sensitization
model, explains:

“Central sensitization is where the CNS can change, distort, or amplify pain,
increasing its degree, duration, and spatial extent in a manner that no longer
directly reflects the specific qualities of peripheral noxious stimuli, but rather the
particular functional states of circuits in the CNS. . . This does not mean that the
pain is not real, just that it is not activated by noxious stimuli”. [6]

In other words, central sensitization is the process by which pain transitions from a
symptom of injury to a disease state.

To further characterize this phenomenon, the IASP introduced the term nociplastic
pain, a distinct category of pain that arises from altered pain perception despite “no clear
evidence of actual or threatened tissue damage causing the activation of peripheral noci-
ceptors or evidence for disease or lesion of the somatosensory system causing the pain” [7].

The central sensitization framework can be used to guide conservative interventions,
and clinical researchers have used it to guide treatment in several areas of sports medicine,
including chronic low back pain [8–10], shoulder pain [11], knee pain [12], chronic myofas-
cial pain [13], tendinopathy [14,15], temporomandibular disorders [16], migraines [17], and
post-traumatic headaches [18]. The key insight of the central sensitization model is that
chronic pain syndromes can be prevented through early proactive interventions, using the
biopsychosocial model of pain as a guide.

Here, we argue that persistent post-concussion symptoms (PPCS) are a manifestation
of central sensitization, and, because of this, early proactive interventions in accordance
with conservative management principles should help reduce the incidence of PPCS.

1.4. Applying the Conservate Care Paradigm in Concussion Injuries

Concussions, or mild traumatic brain injuries (mTBIs), are a concerning problem
for sports medicine. Approximately 3.8 million sports and recreational concussions are
reported annually in the USA, with the number potentially being much larger since approx-
imately 50% of concussions are not reported [19]. In 2022, the International Conference on
Concussions in Sport—Amsterdam released its refined definition of concussion:

“Sport-related concussion is a traumatic brain injury caused by a direct blow
to the head, neck or body resulting in an impulsive force being transmitted to
the brain that occurs in sports and exercise-related activities. This initiates a
neurotransmitter and metabolic cascade, with possible axonal injury, blood flow
change, and inflammation affecting the brain. Symptoms and signs may present
immediately, or evolve over minutes or hours, and commonly resolve within
days, but may be prolonged”. [20]

Importantly, prolonged concussion symptoms are one of the primary complications
of concussion injuries, and the prevention of prolonged symptoms should be seen as a
primary goal of conservative management of concussions.

The trend of current research is to recognize prolonged concussion symptoms as a
form of nociplastic pain (i.e., pain secondary to central sensitization) [18,21–23]. PPCS
follows the typical dynamic sequence of central sensitization: peripheral insult to peripheral
sensitization, to prolonged neuroinflammation and neuroplasticity, to centrally-mediated
chronic pain [24]. Recognizing PPCS as a nociplastic pain syndrome allows for the tailoring
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of conservative, biopsychosocial interventions that, when applied promptly after injury,
may prevent its development.

Multiple studies now demonstrate that early, proactive care significantly improves
concussion outcomes (Table 1) [25]. This goal of this paper is to first outline the central
sensitization model of pain chronification as it pertains to concussions, and to then explore
how early, proactive interventions, targeting specific steps in the central sensitization
process, can improve outcomes.

Table 1. Studies documenting the impact of early intervention for concussion outcomes.

Author Study Design * Summary of Findings

Bock, et al. (2015) [26] RS, n = 366 Treatment in <7 days results in significantly
shorter recovery time (p < 0.05).

Cassimatis, et al. (2021) [27] RS, n = 341

Late treatment (>28 days) results in 3×
longer recovery time compared to early
treatment (<14 days) (148 vs. 39 days, 95% CI:
30.7–46.7).

Eagle, et al. (2020) [28] RS, n = 218
Prolonged recovery is 10× greater (OR = 9.8)
when seen 8–20 days after recovery vs.
<7 days.

Kontos, et al. (2020) [29] RS, n = 162
An early treatment (<7 days) group
recovered 20 days sooner than those seen late
(8–20 days).

Pratile, et al. (2022) [30] CS, n = 1213
Treatment in <10 days recovered in 23.5 days
vs. 37.1 days for those assessed in
10–30 days.

* RS = retrospective study, CS = cohort study.

2. Persistent Post-Concussive Symptoms (PPCS) and Prolonged Recovery
2.1. Defining PPCS

Formerly referred to as “post-concussion syndrome”, the term PPCS was forwarded
in the Berlin Consensus Statement on Concussion in Sport (2016), in part due to the stigma
surrounding the term “syndrome” [31]. This was loosely defined as concussion symptoms
lasting longer than 2 weeks in children and 4 weeks in adults, a definition later adopted
by the American Medical Society for Sports Medicine (AMSSM) in 2019 [32]. In the latest
Amsterdam consensus statement, the PPCS definition was updated to denote symptoms
lasting for >4 weeks in all age groups.

Adding to the confusion, the term “post-concussion syndrome” was removed from
the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5),
referred to instead as “neurocognitive symptoms associated with traumatic brain injury”.
Meanwhile, the 2024 International Classification of Diseases—Tenth Revision (ICD-10)
diagnosis code F07.81 still describes the condition as “post concussional syndrome” [33].
The ICD-10 criteria is applied loosely in many studies, with the original descriptor, “Head
injury usually sufficiently severe to result in loss of consciousness and then development
within four weeks of at least three of the eight following symptoms: headache, dizziness,
fatigue, irritability, sleep problems, concentration problems, memory disorders and emotion
perturbations” [34–36]. The notation that concussions are “usually sufficiently severe to
result in loss of consciousness” is largely ignored, as less than 10% of concussions result in
a loss of consciousness [37].

2.2. The Epidemiology of PCSS

Epidemiological studies on the prevalence of PPCS are conflicting due to shifting
definitions of the condition itself. A typical estimate of the prevalence of PPCS repeated
in the literature is 15–30% [38], but this number can change dramatically depending on
the criteria and timing used. For instance, one study showed that 64% of mTBIs were
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positive for PPCS at the three month mark by ICD-10 criteria vs. 11% when using the old
DSM-IV criteria [34]. Furthermore, several large prospective studies now show that mTBI
symptoms can persist for over a year in around 50% of cases [39,40].

2.3. The Epidemiology of Prolonged Symptoms

In sports medicine, the prevalence of prolonged single symptoms is arguably of more
importance than the prevalence of PPCS. This is because return-to-play (RTP) criteria, by
consensus (and in some cases by law), calls for the complete resolution of concussion-related
symptoms [20]. Importantly, the relatively low PPCS prevalence reported in numerous
publications may distort expectations on how long it should take for athletes to return
to sports.

For high-quality evidence on single prolonged symptoms, the Transforming Research
and Clinical Knowledge in TBI (TRACK-TBI), a multi-center prospective cohort study, is
an excellent resource. In this study, participants were evaluated at the 2-week mark, and
then 3-, 6-, and 12-months post-injury. In this cohort of over 2000 patients, the percentage
of participants who reported at least one new or worsened symptom after mTBI was 90%
at 2 weeks, 78% at 3 months, 74% at 6 months, and 71% at 12 months. If the ICD-10 criteria
of 3 or more symptoms was applied to this data set, 53% would be diagnostically positive
at the one-year mark [41]. One problem with these numbers is that the TRACK-TBI cohort
includes roughly 15% moderate to severe TBI cases, the 85% balance being mTBI cases.

Another source of data is the prospective, multicenter Predicting and Preventing
Post-concussive Problems in Pediatrics (5P) cohort study of 3063 children 5–17 years of age,
presenting within 48 h of a concussion injury. In this study, 50% of participants still had
at least one symptom at the 28-day mark. Fatigue and headaches were the most common
complaints. Notably, 68% of the concussions in this study were sports-related [42].

2.4. Controversies in the Prevalence of Prolonged Symptoms in Athletes vs. Non-Athletes

The above findings conflict with the clinical literature on collegiate sports-related
concussions (SRCs), which reports a much faster recovery rate. For instance, in one cohort
study of 1974 SRCs in college and club sport members, only 11.7% had symptoms lasting
beyond 35 days [43]. Another source of data, the Concussion Assessment, Research, and
Education (CARE) Consortium, is a 30-site study with 1751 collegiate athlete participants
with SRCs. In this study, 80% of athletes were asymptomatic within 14 days of recovery,
with a median time to recovery of 6.4 days and median RTP time of 12.8 days. Only 22.8%
experienced “slow recovery”, which was defined in the study as symptoms lasting beyond
14 days or a RTP longer than 24 days [44].

There are several possible explanations for this conflicting data. When considering
SRCs, is must be recognized that athletes form a unique population with distinct character-
istics, such as the following:

• Age: Athletes tend to be younger than the general population.
• Health: The physical and mental health of athletes tends to be better than the gen-

eral population.
• Access to care: Most athletes have access to athletic professionals who have basic

training in concussion treatment.
• Supplements: Many athletes take supplements that may be neuroprotective, such

as creatine.
• Severity of injury: SRCs tend to be less severe than injuries that involve polytrauma,

such as in motor vehicle accidents.

On the other hand, non-sports concussions may take longer to recover than SRCs
due to factors like age or mechanism of injury [45]. Further, litigation intent in non-SRCs
may influence the rate of concussion symptom resolution, and studies have documented
attenuated symptom improvement in those involved in litigation vs. controls [46].

In addition, SRCs in competitive sports are known to be subject to significant under-
reporting, with one study showing that 68% of college football players had at least one
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concussion they did not disclose [47]. The high rate of misreporting and underreporting in
competitive-level sports most certainly distorts the data on symptom recovery time. We
argue that this controversy deserves more attention in future research.

2.5. Risk Factors of Prolonged Recovery

Understanding risk factors for PPCS can alert practitioners to be particularly vigilant
and proactive in the acute period for at-risk athletes. A variety of risk factors have been
identified in the clinical literature, some of which are not always consistent. The most
commonly reported preinjury risk factors are having prior concussions, female gender,
mood disorders, learning disorders, attention deficit hyperactivity disorder (ADHD), and a
personal or family history of migraines [48–51]. When looking at post-injury risk factors, the
commonly cited factors include injury severity, retrograde amnesia, a high symptom score,
“feeling in a fog”, delayed reporting, and the presence of sleep disturbances [40,47,52,53].

The issue of multiple concussions as a risk factor warrants further discussion. While
several studies have documented that prior concussions are both a risk factor for future
concussions and for prolonged recovery, others have failed to substantiate this connec-
tion [54]. While neuroprotective strategies for concussion (such as certain supplements like
creatine or omega oils) are outside of the scope of this article, we generally recommend
them for athletes after their first concussion.

2.6. The Time-Course Pattern of Symptom Recovery

The time-course of mTBI symptom resolution underscores the importance of early
intervention. There is a definitive “hockey-stick” pattern in the resolution of symptoms,
with rapid resolution happening in the first weeks after concussion, followed by very little
resolution after this period.

In a prospective study of PPCS, it was found that being symptomatic at one month
was significantly predictive of being symptomatic at one year [55]. This is in line with
the findings of the TRACK-TBI study, where there was only a 7% drop in those with
one symptom from the 3-month to 12-month mark. Expressed another way, symptoms
decreased steadily at ~1.7 symptom score points per month in the first 3 months but then
only 0.2 points per month for the rest of the year [41].

This distinctive time-course pattern correlates with the development of nociplastic pain
and the phenomenon of central sensitization. When symptoms linger, central neuroplastic
changes occur, and the symptoms become chronic. This underscores the notion that a
therapeutic window for conservative interventions exists in the early period, but this closes
once the deleterious neuroplastic changes in central sensitization become established.

3. Central Sensitization and Symptom Chronification in Concussions
3.1. The Neurobiological Sequence of Central Sensitization

In the central sensitization, the neurobiological sequence begins when an insult to
peripheral tissues triggers “peripheral sensitization”, a state marked by the heightened
responsiveness and excitability of nociceptors, an increased signaling rate, and strength-
ened synaptic transmission. When this is sustained, glial cells, activated by calcitonin
gene-related peptide (CGRP) and other neuropeptides, propagate a neuroinflammatory re-
sponse, enhancing sensitization in higher order neurons and initiating neuroplasticity [56].
Descending facilitation from the brainstem amplifies pain signals, and cortical plasticity
in higher brain centers contributes to heightened and prolonged pain perception. Stress,
anxiety, and pain catastrophizing intensify and stabilize neural pain signaling pathways
through the neuroendocrine system [57] and the “nociceptive amygdala” [58]. The cumula-
tive result is CNS remodeling (neuroplasticity), leading to pathologically elevated pain and
sensory hypersensitivity, independent of the original source of peripheral injury.
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3.2. Central Sensitization and Chronic Pain

Importantly, when central sensitization has occurred, susceptibility to other chronic
pain conditions is elevated. Animal mTBI models clearly demonstrate that the neurogenic
inflammation following traumatic brain injury is coincident with measurable indicators of
chronic pain, both histologically and behaviorally, consistent with the central sensitization
model of pain chronification [59]. This phenomenon is seen in humans with concussion
injuries, where more than 50% of people report developing issues with chronic pain [60],
and there is a nearly 5-time increased risk of experiencing persistent pain [61]. Again,
litigation intent is an important factor to remember in this context.

The clinical hallmarks of central sensitization are noted in mTBI patients [62], including
heightened sensitivity to painful stimuli (hyperalgesia), pain from usually nonpainful
stimuli (allodynia), and increased sensitivity to both external and internal stimuli (global
sensory hyperresponsiveness) [63]. Importantly, chronic central sensitization-related pain is
also associated with an increased risk of opioid abuse [64]. Along these lines, clinical studies
show that the odds of prescription opioid abuse are 1.5–2.9 times higher in previously
concussed adolescents [65,66].

3.3. Central Sensitivity Syndromes

Central sensitization can become syndromic, extending beyond the perception of
pain. People with central sensitization syndromes often present with multiple overlap-
ping symptoms, including physical and cognitive fatigue, mood disorders, dysautonomia,
sensory hypersensitivity, and sleep disorder. Terms like Central Sensitivity Syndrome
(CSS) and Chronic Overlapping Pain Conditions (COPCs) have been introduced to de-
scribe this [67]. Importantly, PPCS follows this syndromic pattern, with typical symptoms
extending beyond physical pain.

4. Potential Targets for Conservative Interventions for Acute Concussions

By viewing PPCS as a form of nociplastic pain secondary to central sensitization, it
reveals a time-dependent process that can potentially be interrupted. Recognizing this
temporal dimension is key, as it points to a critical therapeutic window for early inter-
vention. The strategic goal is to prevent the neuroplastic changes that are responsible for
pain chronification, in line with the International Olympic Committee consensus statement
referred to above [3].

Here, we cover five components of the central sensitization process specific to concus-
sions that can be targeted with conservative treatments in the acute period:

• Peripheral sensitization;
• Cerebral metabolic dysfunction;
• Neuroinflammation;
• Glymphatic system dysfunction;
• Pain catastrophizing.

As will become clear, certain interventions can potentially positively affect multiple
central sensitization-related targets. This supports a clinical intervention strategy that is
multimodal in nature, consistent with conservative management principles. In Table 2, selected
interventions that address two or more of the five targets described above are presented.

Table 2. Selected interventions that address multiple CS-related targets.

Intervention Target * Author, Study Details ** Summary of Findings

Early Exercise PS, CN, NI, GO, PC Leddy, et al. (2023) [68];
MA (n = 9432)

Early physical activity and prescribed exercise
improved recovery by a mean of −4.64 days (95% CI
−6.69, –2.59).
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Table 2. Cont.

Intervention Target * Author, Study Details ** Summary of Findings

Grool, et al. (2016) [69];
CS (n = 2413)

Early participation (<7 days) in physical activity
compared with no physical activity was associated
with lower risk of PPCS (413 [24.6%] patients vs. 320
[43.5%] patients; RR, 0.75 [95% CI, 0.70–0.80]).

Deep Breathing CN, NI, GO, PC Cook et al. (2021) [70];
P (n = 15)

Following deep breathing exercises, participants
reported significant reduction in stress (r = 0.57),
tension (r = 0.73), fatigue (r = 0.73), and confusion
(r = 0.67), with large effect sizes.

Cold Therapy PS, CN Al-Husseini, et al. (2022) [71],
RCT (n = 132)

The proportion of players with prolonged symptoms
(>14 days) was 24.7% in the cold therapy
intervention group and 43.7% in controls (p < 0.05)

Mindfulness NI, PC Acabchuk, et al. (2021) [72],
MA (n = 532)

Meditation, yoga, and mindfulness-based
interventions lead to significant improvement of
overall symptoms compared to controls (d = 0.41;
95% CI [0.04, 0.77]; τ2 = 0.06).

Melatonin NI, GO Barlow, et al. (2019) [73],
MA (n = 15)

Meta-analysis of pre-clinical data showed a positive
effect of melatonin on neurobehavioral outcome
(SMD = 1.51 (95% CI: 1.06–1.96)), neurological status
(SMD = 1.35 (95% CI: 0.83–1.88)), and cognition
(SMD = 1.16 (95% CI: 0.4–1.92)) after TBI.

Cassimatis, et al. (2022) [74],
MA (n = 251)

Eight of nine mTBI studies reported positive sleep
outcomes after melatonin treatment, with significant
improvements in subjective sleep quality, objective
sleep efficiency, and total sleep, and reductions in
self-reported fatigue, anxiety, and depressive
symptoms.

Omega oils NI, GO Miller, et al. (2022) [75],
RCT (n = 40)

In SRCs, the treatment group took 2 g of
docosahexaenoic acid (DHA) daily for 12 weeks.
The DHA group were symptom-free earlier than the
placebo group (11.0 vs. 16.0 days, p = 0.08) and had a
shorter RTP time (14.0 vs. 19.5 days, p = 0.12).

Vitamin D CN, NI Sharma, et al. (2020) [76],
RCT (n = 35)

In moderate to severe TBI, Vitamin D bolus in the
acute period showed significant improvements in
cognitive and physiological outcomes. Inflammatory
markers were also significantly decreased in the
treatment group (IL-6 p = 0.08, TNF-α p = 0.02).

* PS = peripheral sensitization, CN = cerebral neurometabolism, NI = neuroinflammation, GO = glymphatic
optimization, PC = pain catastrophizing. ** CS = cohort study, MA = meta-analysis, RCT = randomized clinical
trial, P = pilot study.

4.1. Reducing Peripheral Sensitization

Sustained peripheral pain signaling and peripheral sensitization are the initiating
mechanisms of the central sensitization process. Animal models of central sensitization
highlight the need for ongoing nociceptive input to drive this phenomenon, suggesting
a therapeutic benefit in aggressively reducing such input in the acute period. This ap-
proach, particularly in perioperative medicine, has shown promise in mitigating central
sensitization-related chronic pain [67].

Since the peripheral source of pain in concussion occurs primarily through the oph-
thalmic branches of the trigeminal nerve (V1) that innervate the meninges and cranial
periosteum [77] and secondarily through CGRP-mediated activation of the trigeminal gan-
glion and trigeminocervical nucleus, the treatment of peripheral trigeminal hypersensitivity
may help abort the development of PPCS [78–80].
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4.1.1. Exercise

Clinical data on early exercise in the past decade have revolutionized the treatment
of concussion injuries, with high quality evidence supporting this intervention [68,81].
For most studies, early exercise describes the initiation of physical activity in the first
48–72 h after injury. One of the many benefits of exercise is that it reduces peripheral sensi-
tization through mechanisms such as endorphin release and changes in pain modulation
systems [82]. Importantly, symptom-limited exercise should be prescribed, as overexertion
may lead to symptom exacerbation and the worsening of peripheral sensitization [83].

4.1.2. Analgesics

Analgesic therapy can be effective at decreasing peripheral sensitization. Non-steroidal
anti-inflammatory drugs (NSAIDs) normalize the heightened pain threshold linked to
inflammation by inhibiting prostaglandin formation at peripheral and central sites [84].
Acetaminophen achieves peripheral prostaglandin inhibition and can positively affect
several central anti-nociception processes [85]. The perioperative use of preventative
analgesia with these and other drugs successfully reduces central sensitization-related
chronic pain after surgery [86,87].

In the concussion literature, a randomized clinical trial found that a combination of
NSAIDs and acetaminophen showed the most promising results in terms of reducing the
number of headache days and return to school time [88]. On the other hand, the 5P cohort
study (referenced above) showed that emergency room administration of the OTC oral
analgesics had no impact on the presence of headaches at the 7-day follow up. There was
no mention of whether it was a one-time dose or if treatment was continued at home [89].

4.1.3. Cold Therapy

Cold therapy to the head and neck may potentially reduce peripheral sensitization.
Cold compresses alleviate pain by slowing pain signal transmission to the central nervous
system and cell metabolism. Additionally, cold reduces inflammation, constricts vessels,
and decreases the release of chemical pain mediators, leading to an increased pain threshold
and reduced pain [90].

In concussions, branches of the trigeminal nerve that innervate the cranial periosteum
show an acute inflammatory response after closed head trauma [78], suggesting that topical
cooling may mediate acute trigeminal hypersensitivity in the cutaneous nerves of the scalp
and neck. In the clinical literature, one study found that concussed subjects self-reported
temporary relief from physical symptoms after head cooling [91]. In another group of
studies, players receiving head–neck cooling have shorter return-to-play times than controls
in several studies [71,92].

4.1.4. Physical Therapy

Physical therapy can help reduce hypersensitivity of the balance system. Vestibular
therapy has shown promising results when instituted early in cases where there are balance
issues. In vertiginous states, there is hypersensitivity in the balance organs, just as there
is with other sensory inputs. Just like with exercise, the goal of vestibular therapy is to
engage in symptom-limited movements to challenge and reset hypersensitivity in the
balance system. Cervical therapy has also been shown to be beneficial in select cases
when started early. Importantly, the neck has cross-signaling from trigeminal inputs in the
cervicotrigeminal nucleus.

4.1.5. Sensory Protection

Photophobia is common in the acute period after concussion [93], reflecting underlying
trigeminal sensory nerve hypersensitivity. Because intrinsically photosensitive retinal
ganglion cells (ipRGCs) are sensitive to 480 nm light, FL-41 glasses and other tinted
lenses are applied in cases of post-concussive photophobia [94,95]. The use of ear plugs in
phonophobia may be helpful in the short term, but there are no data to support this. For
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sensory hypersensitivity, treatment involves gradual and systematic sound desensitization
rather than total deprivation [96].

4.2. Addressing Cerebral Metabolic Dysfunction

The neurometabolic consequences of concussion drive central sensitization-related
changes by amplifying peripheral sensitization and secondary injury in the brain. Numer-
ous ionic, metabolic, and physiological changes occur acutely after concussions, which
contribute to migraine-phenotype symptoms [97]. Cortical spreading depolarization, like
those seen in migraines, may represent the initiating event in this cascading metabolic
dysfunction [98]. Depolarization results in excess glutamate, which in turn triggers an
ionic imbalance that leads to the overactivity of sodium–potassium pumps, causing an
increase in energy demand in the form of adenosine triphosphate (ATP). This intensifies
the need for glucose metabolism and oxygen at a time when cerebral blood flow (CBF)
is impaired [24]. These changes overload mitochondria, altering their membrane perme-
ability and triggering oxidative stress through the production of reactive oxygen species
(ROS) [97,99]. This neurometabolic cascade coincides with the first week after injury, the
window of time when clinical symptoms are the most severe after concussions and when
central sensitization-related changes begin to occur.

4.2.1. Mitochondrial Support

Interventions for acute mitochondrial dysfunction in concussions are a promising and
exciting area of study. Because early mitochondrial dysfunction is seen in acute mTBI [100],
addressing mitochondrial impairment may enhance mTBI outcomes [101].

Creatine supplementation may help with the metabolic crisis after concussions, with
preclinical evidence supporting both preventative effects of symptoms when taken before
injury and recovery effects when taken after injury [102]. In addition to its role in sustaining
ATP concentrations and cellular bioenergetics [103], creatine is believed to contribute to
preserving mitochondrial membrane potential and reducing intramitochondrial reactive
oxygen species and calcium [104]. There are only limited human trial data on creatine in
TBI patients, but the results were uniformly positive [105,106]. The prevalence of creatine
supplementation in athletes is unknown. It is not a banned supplement, but high-school
athletic professionals are prohibited from recommending it in certain states. As more data
on the benefits of creatine supplementation for concussion treatment (both before and after
injury) become clear, this prohibition may be revised.

Ketogenic diets are also being explored for their ability to mitigate mTBI-related
glucose hypometabolism [107], with pilot clinical trials in PPCS patients showing promising
results [107,108]. Like creatine, ketone bodies serve as an energy substrate, bypassing
glycolysis to undergo direct metabolism via the tricarboxylic acid cycle. This process
enhances oxygen metabolism, supports mitochondrial function, and reduces oxidative
stress and glutamate-induced injury [109].

Another compound of interest is ubiquinol (coenzyme Q-10), which has been shown
to preserve mitochondria and reduce oxidative stress in animal TBI models [110].

Vitamin D is now known to be a critical mitochondrial transcription factor, and,
in preclinical models of neurodegenerative disease, it rescues mitochondria from oxida-
tive stress [111,112].

4.2.2. Exercise

Exercise is a powerful intervention for the post-concussion metabolic crisis because it
increases CBF, which in turn increases oxygen and glucose delivery [113]. Multiple studies
have documented that CBF is decreased in the acute and subacute periods after SRCs [114].
While not quantified in any studies, the beneficial effects seen with early post-concussion
exercise may be related to its ability to increase CBF.
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4.2.3. Deep Breathing

Clinical evidence shows that regular deep breathing exercises significantly increase
blood oxygen levels [115]. Furthermore, breathing exercises have been shown to decrease
mitochondrial-related biomarkers of oxidative stress in a variety of clinical contexts [116].

4.2.4. Cold Therapy

Vigorous exercise may lead to hyperthermia, which can exacerbate concussion-related
glucose hypometabolism. Therefore, cooling after exercise may improve outcomes in this
regard by reducing hyperthermia-related neurometabolic burden [117].

4.3. Decreasing Neuroinflammation

Neuroinflammation is a pivotal component in the initiation of nociplastic pain af-
ter concussions because inflammatory mediators and cytokines drive the sensitization of
neurons within the CNS [118]. In traumatic brain injuries, CGRP is an integral player
in this process by amplifying the microglial response and priming neurons for neuro-
plastic changes in the trigeminal system [119]. CGRP levels increase after concussions
due to an increased expression in trigeminal nociceptors and in response to post-injury
cortical spreading depolarization [120]. In animal models, CGRP inhibitors prevent the
development of PPCS-like hypersensitivity when delivered in the first two weeks after
injury, but not after this period [22]. Clinically, there is evidence that CGRP polymorphism
can partially explain clinical outcomes after concussions [121]. Another study found that
an intravenous infusion of CGRP triggers migraine-like headaches in people with PPCS,
highlighting the significant role of CGRP in the genesis of post-traumatic headaches [122].
These connections suggest that targeting neuroinflammation early after concussion injuries
may disrupt the cascade of events, potentially preventing PPCS development [123].

4.3.1. Nutraceuticals

Several nutraceuticals may be beneficial for reducing concussion-induced neuroin-
flammation. For instance, Vitamin D may reduce neuroinflammatory and secondary
injury effects after concussions [124]. Preclinical studies demonstrate that Vitamin D im-
proves post-mTBI neuroinflammation and oxidative stress [125,126]. Vitamin D has also
been shown to decrease CGRP levels in migraineurs [127]. Importantly, TBI patients’ low
Vitamin D levels are noted to have significantly worse cognitive impairment and poor
functional outcomes [76,128], whereas early vitamin D supplementation in deficient pa-
tients leads to significant improvement in clinical outcomes [129]. Ubiquinol (coenzyme
Q-10) has been shown to decrease oxidative stress and neurodegeneration in TBI animal
models [130]. It also has been shown to decrease CGRP and neuroinflammatory markers in
migraineurs [131,132]. Other nutraceuticals that have been shown to significantly decrease
CGRP in human trials for migraines include melatonin [133] and curcumin (turmeric) [134].
Preclinical data show that omega oils prevent the neuroinflammatory changes in microglia
to a pro-inflammatory phenotype, activate neuroprotective cytokines, and mitigate TBI-
related blood–brain barrier disruption [135,136].

4.3.2. Dietary Changes

There is an increasing interest in the impact of diet on concussion outcomes [108,137,138].
Diets rich in red meat, saturated and trans fats, refined sugars, and carbohydrates are
associated with neuroinflammation, while neuroprotective and anti-inflammatory effects
are linked to diets high in unsaturated, polyunsaturated, and monounsaturated fats, as
well as ketogenic and Mediterranean diets, and intermittent fasting [139]. The effects
on anti-neuroinflammatory (ANI) diets on TBI outcomes are being worked out in both
preclinical [140] and clinical studies [108,141]. Specific supplements have been extensive
studied, most notably the use of omega oils [142–144]. There is also interest in the impact
of TBI on the gut microbiome [145]. Other recommendations include a low glutamate, low
tyramine, and low histamine diet combined with the elimination of caffeine from the diet.



Healthcare 2024, 12, 289 11 of 21

4.3.3. Exercise

Regular moderate-intensity exercise is associated with anti-inflammatory effects [146].
Animal models of TBI support that early exercise reduces markers of neuroinflammation
and nociceptive sensitization [147,148]. Further research is being proposed on the role of
exercise immunology in TBI outcomes [149].

4.3.4. Stress Reduction

There is a direct association between psychological stress and neuroinflammation [150].
Stress-reducing interventions like deep breathing and mindfulness-based stress reduction
(MBSR) have been shown to decrease biomarkers of neuroinflammation in clinical tri-
als of central sensitization-related symptoms [151]. Multiple clinical trials suggest that
mindfulness-based interventions are supportive of mTBI recovery [152].

4.4. Optimizing Glymphatic System Functioning

The prolonged presence of neuroinflammation in concussions may be associated with
dysfunction in the glymphatic system during the acute phase following the injury [153].
The glymphatic system, a waste clearance pathway in the central nervous system, plays a
crucial role in removing metabolic byproducts and cellular debris after concussion [154].
Damage-associated molecular patterns (DAMPs) are due to normally intracellular proteins
that, when released into the extracellular space after trauma, elicit an immune response. The
release of DAMPs is linked to adverse post-TBI outcomes, including diminished memory,
altered motor coordination, and cognitive impairments [99]. This debris is normally cleared
by the glymphatic system, but, in the aftermath of a concussion, the glymphatic system
functioning is decreased by up to 60% [155]. This compromised waste removal process con-
tributes to the sustained inflammatory response to neurotoxic proteins (like tau), which, in
turn, is permissive of central sensitization-related neuroplasticity [156]. This is concerning,
as cumulative tau deposition around intracerebral vessels is the histological definition of
chronic traumatic encephalopathy (CTE) [157]. Therefore, optimizing glymphatic function
in the acute period after concussions is an important therapeutic goal [18].

4.4.1. Circadian Therapy

The glymphatic system is linked to sleep and the circadian system, with over 80% of
glymphatic system clearance occurring during deep sleep [158–160]. Because sleep is also
pathologically disturbed after concussion injuries [161,162], circadian therapy interventions
are important early interventions. Melatonin has been extensively studied as an adjuvant
therapy for concussions, with a meta-analysis showing positive sleep-related outcomes
in 8 of 9 studies [74]. Limiting blue light via screen-time restriction positively impacts
concussion recovery time [163]. Morning blue light therapy is associated with improvement
in multiple concussion outcomes in patients with established PPCS [164]. Finally, because
sleep apnea significantly disrupts glymphatic function [165] and is associated with poor
outcomes in concussion [166], screening for and treatment of sleep apnea is recommended in
concussion injuries. Other interventions along these lines include sleep hygiene, cognitive
behavioral therapy (CBT), and prescribed exercise [18].

4.4.2. Omega Oils

Numerous studies demonstrate the positive impact of omega oils on sleep quality
and their influence on circadian variations in blood pressure, potentially through direct
effects on melatonin release and norepinephrine regulation [167,168]. Additionally, in
a TBI animal model, omega oils were found to enhance glymphatic drainage, reducing
neurological impairment after simulated injury; this effect was directly related to improved
glymphatic clearance [136].
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4.4.3. Exercise and Deep Breathing

Because exercise increases blood pressure and CSF flow, it has a positive effect on glym-
phatic functioning [169,170]. Similarly, deep breathing influences glymphatic clearance by
increasing the flow magnitude of CSF [171].

4.5. Pain Catastrophizing

Another possible target to prevent the central sensitization process after concussion
is pain catastrophizing in the acute period [172]. Pain catastrophizing is the putative link
between trait anxiety and post-concussion symptoms [173]. Pain catastrophizing involves
an exaggerated negative mental outlook toward pain, magnifying its threat, fostering
feelings of helplessness, and contributing to increased distress and disability. Several
orthopedic studies have linked pain catastrophizing with the development of nociplastic
pain and central sensitization [174–176].

In concussion research, pain catastrophizing subscales (rumination, magnification,
and helplessness) show significant correlations with pain severity, the number of reported
post-concussion symptoms, psychological distress, and functional levels [177]. These
findings are related to studies on the relationship between trait resilience (arguably the
opposite of pain catastrophizing) and concussion outcomes. Reduced resilience is linked to
increased symptoms and a prolonged recovery from SRCs, whereas high resilience shows
the opposite [178,179].

4.5.1. Mindfulness, Meditation, and Deep Breathing

There is significant clinical evidence that trait mindfulness is negatively associated
with pain catastrophizing [180,181] and that mindfulness exercises may help abort pain
catastrophizing [151,182,183]. A recent meta-analysis examining the impact of post-mTBI
interventions like mindfulness, meditation, and yoga revealed substantial improvement in
overall symptoms when compared to control groups, including improvements in mental
health, physical well-being, cognitive performance, and overall quality of life [72]. In a
pilot study, deep breathing exercises in concussion patients was associated with decreased
stress and tension [70].

4.5.2. Coaching

The use of coaching in pain management is gaining interest. Clinical trials of health
coaching to aid with stress management and goal-setting in chronic pain patients show
reduced psychological stress and improved resilience [184]. In the concussion litera-
ture, web-based resources combined with weekly coaching sessions produced improved
outcomes and high patient satisfaction rates [185]. In a randomized trial, collaborative
care, where coping skills, relaxation strategies, sleep hygiene, and positive thinking
techniques were coached, showed significantly improved results in PPCS patients [186].
In another randomized trial, the addition of weekly motivational interviewing and CBT
significantly improved multiple mTBI outcome measures [187]. Another randomized
trial showed that regular telephonic follow-up using motivational and behavioral acti-
vation approaches resulted in significantly lower depression scores, including in those
with preexisting depression [188].

4.5.3. Exercise

There is evidence that exercise can improve pain catastrophizing by influencing the
fear center of the brain. Voluntary exercise stimulates neurons in the mesolimbic system,
including in the amygdala. This has been suggested as the mechanism by which exercise
aids in overcoming fear-avoidance behaviors associated with chronic pain conditions [189].

5. Conclusions

Sports-related concussions are of increasing concern to the athletic and medical com-
munities. Athletes form a unique class of population in terms of demographics, and the
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mechanism of injury of SRCs tends to be milder than is seen in polytrauma contexts (like
motor vehicle accidents). Because athletes have access to basic care by athletic profession-
als, there is the potential to introduce proactive protocols that can prevent the onset of
prolonged concussion symptoms. What is lacking is a framework that integrates these
interventions into a logical treatment plan. We argue that framing PPCS as a form of central
sensitization accomplishes this.

In outlining PPCS as a form of chronic pain, and by examining the mechanisms for
how chronic pain develops using the central sensitization model, several interventions for
the prevention of prolonged symptoms and PPCS emerge. These include methods designed
to reduce peripheral sensitization, address cerebral metabolic dysfunction, mitigate post-
concussion neuroinflammation, optimize glymphatic system functioning, and reduce pain
catastrophizing. This proactive program is in line with the principles of conservative
management in sports medicine.

There are several inherent limitations in this current review. First, any review of this
type is limited by the author’s awareness of all potentially relevant research. In addition,
apart from exercise, there is a shortage of high-quality evidence-based research supporting
many of the potentially promising interventions mentioned above.

Despite these limitations, theory-informed treatments and insights from preclinical
studies, particularly those grounded in the central sensitization model, can still play a
pivotal role in developing a program for proactive conservative care. Our hope is that
this review contributes meaningfully to addressing empirical and knowledge gaps in the
concussion literature and guiding strategic interventions in concussion management.
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