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Abstract

Role of Radiation Treatment on Bone Strength and Fracture Risk
By
Shannon R. Emerzian
Doctor of Philosophy in Engineering — Mechanical Engineering
University of California, Berkeley
Professor Tony M. Keaveny, Chair

While bones are highly adaptable and regulated by external and internal stimuli, their structural
integrity can be compromised by aging, diseases such as osteoporosis, and treatments such as
radiation therapy. Thus, understanding of the fundamental connection between the effect of
treatment on bone strength and fracture risk is critical to understanding the etiology of bone
fractures as well as the mechanisms by which aging, disease, and treatments can alter the
mechanical performance of bone. However, the connection between treatment effects on changes
in bone strength, and bone strength changes on fracture risk, is not completely understood. First,
it is unclear how much treatment-induced changes in bone strength are due to changes in bone
mass versus in microstructure versus in tissue material. Second, it is unknown why small
treatment-induced changes in bone strength are associated with large changes in fracture risk. To
address this, we conducted two studies exploring the connection between treatment effects on bone
strength and fracture risk. The overall goal of this dissertation was to develop a better
understanding of the relative treatment effects on bone strength and to elucidate how small changes
in bone strength can be associated with large changes in fracture risk. Together, the work in this
dissertation will lead to improved understanding of radiation and osteoporosis treatments and
provide new insight into how small changes in bone strength influence fracture risk.

First, using the latest advances in microcomputed tomography and high-resolution finite element
modeling combined with biomechanical characterization, we investigated the effect of radiation
treatment on bone strength in a rat model of localized irradiation. Changes in material accounted
for 24% of the overall observed biomechanical effect, while changes in mass and microstructure
together accounted for about 76% of the observed reduction in vertebral strength (~60% and 16%,
respectively). For the first time we have directly quantified the contribution of tissue material
changes to whole bone strength following irradiation treatment. If the observed material effect is
present clinically, it may help to explain the increased fracture risk for patients undergoing
radiation therapy despite the inconclusive correlation between irradiation and decreased bone
mass. Importantly, we have presented a useful evaluation tool in any application where the effects
of mass, microstructure, and material on bone strength are at play, including aging, disease, or pre-
clinical evaluation of therapies. This work expands our understanding of the radiosensitivity of



bone tissue and emphasizes the complex nature of bone strength loss following exposure to
radiation.

Next, we developed a theoretical framework to mechanistically evaluate how changes in bone
strength are linked to changes in fracture risk. As there are no clinical bone strength data available
to develop a relevant model for radiation therapy-induced fracture risk, we utilized a better
characterized treatment—osteoporosis antiresorptive drugs. Through a Monte Carlo approach with
conditional probability and data from placebo-controlled osteoporosis trials, we replicated a
clinically observed treatment efficacy of 41% using simulated treatment-induced changes in bone
strength. Our results demonstrated the sensitivity of fracture risk reduction to the net difference in
treatment-induced bone strength changes, the baseline bone strength, and the eligibility criteria
bounding the population. Importantly, by incorporating bone strength changes into the model, we
were able to duplicate the risk reduction in a clinical trial and provide a mechanistic explanation
for the observed large changes in fracture risk—a relatively low number of fractures with an
inordinately large weight on efficacy calculations. While the results are specific to hip fracture risk
reduction due to osteoporotic treatments in post-menopausal women, this model can be easily
adapted to explore the influence of other treatments on fracture risk. For example, the current
model has provided important understanding and may help to explain the increased fracture risk
for patients undergoing radiation therapy despite the inconclusive correlation between irradiation
and decreased bone mass.

Together, the resulting insight from these studies can aid in understanding the underlying
mechanisms influencing changes in bone strength and their connection to fracture risk, which may
help to improve pre-clinical evaluation of therapies and their potential for fracture risk.
Specifically, this dissertation provided insight into the effect of treatment on bone strength and
fracture risk, especially the role of radiation and osteoporosis drug therapies. Collectively, this
dissertation answered fundamental open questions regarding treatment effects on bone strength
and fracture risk and highlighted areas in need of further research.
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1 Introduction

Bones are remarkable organs that serve both a reservoir function — as a storehouse for essential
minerals — and a structural function — providing mobility, support, and protection for the body.
Maintaining strong and healthy bones requires a complex and dynamic balance of bone adaptation
and remodeling, all modulated by hormones within the body and external loads. However, the
structural integrity of bones can be compromised by aging, treatments such as radiation therapy,
diseases such as osteoporosis.

Radiation therapy plays a key role in the treatment strategy for more than half of those diagnosed
with cancer [1], and has helped lead to an increase in the number of cancer survivors who are now
living long enough to experience treatment-related long-term complications. In particular,
radiation therapy has been shown to increase the risk of fracture for otherwise healthy bones within
the radiation field [2]-[14].

Osteoporosis is one of the most prevalent skeletal diseases in the world. It is characterized by
reduced bone mass and associated structural deterioration of bone tissue, which collectively lead
to bone fragility and an increased risk of fracture [15]. It is estimated that approximately 50% of
women and 13% of men will suffer an osteoporosis-related fracture in their lifetime, with an
estimated nine million osteoporotic fractures occurring annually [16]. Regardless of the cause,
fractures of the hip in particular are costly and debilitating, with up to 20% mortality in the year
following such a fracture [17].

Irrespective of the mechanism of action, modifications to bone strength can influence the risk of
fracture. However, the connection between treatment effects on changes in bone strength, and bone
strength changes on fracture risk, is not completely understood. First, it is unclear how much
treatment-induced changes in bone strength are due to changes in bone mass versus microstructure
versus tissue material. In particular, small-animal models of localized irradiation have
demonstrated decreases in bone strength that are accompanied by changes in bone structure and
composition, suggesting that modifications to both structure and material may contribute to overall
reduction in strength following treatment [18]-[22]. However, the exact mechanisms leading to
reduced bone strength are unclear, particularly in terms of how much of this weakening effect is
due to changes in mass and microstructure versus tissue material. Second, it is unknown why small
treatment-induced changes in bone strength are associated with large changes in fracture risk. For
example, patients with osteoporosis are treated with a variety of pharmaceutical drugs which have
been shown to reduce the incidence of osteoporotic fracture by up to 50% [23]-[25]. However,
neither the associated small increase in bone mineral density (BMD) as evaluated by DEXA—
about 2-6% [26]—nor the small increase in bone strength—about 2-8% [27]-[30]—appear to fully
explain this reported reduction in fracture risk.

Thus, the overall goal of this dissertation was to develop a better understanding of the relative
treatment effects on bone strength and to elucidate how small changes in bone strength can be
associated with large changes in fracture risk. Together, the work in this dissertation will lead to
improved understanding of osteoporosis and radiation treatments and provide new insight into how
these treatments influence bone strength and fracture risk.
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First, we quantified the relative effects of treatment-induced changes in bone mass, microstructure,
and tissue material behavior on bone strength with a unique combination of experimentation and
microcomputed tomography-based nonlinear finite element analysis using a murine model of
localized irradiation (Chapter 2). Next, we developed a theoretical framework to mechanistically
evaluate how changes in bone strength are linked to changes in fracture risk using reported data
from osteoporosis treatments (Chapter 3). Together, the resulting insight from these studies can
aid in understanding the underlying mechanisms influencing changes in bone strength and their
connection to fracture risk, which may help to improve pre-clinical evaluation of therapies and
their potential for fracture risk.

The remainder of this chapter will establish a foundation in bone biology, biomechanics, and
radiobiology as it relates to the material presented in subsequent chapters of this dissertation.



1.1 Bone

Bone is a specialized connective tissue with a complex hierarchical structure that comprises the
skeletal system. The skeleton’s primary functions are to provide structural support and protection,
maintain mineral homeostasis, produce blood cells, and replace old or microdamaged bone to
maintain structural integrity under normal loading conditions. Thus, throughout its life, each bone
constantly adapts to changing biomechanical forces, and remodels to replace microdamaged bone
with new stronger bone, all in an effort to preserve bone strength or stiffness [31], [32]. In general,
bone structure is directly related to these functions.

1.1.1 Composition and Structure?

Bone tissue itself is a composite material consisting of organic and inorganic components, as well
as a small amount of water. By mass, bone tissue is approximately 60% inorganic, 30% organic,
and 10% water. The inorganic phase, which is a form of hydroxyapatite (Cai0(PO4)s(OH)2)
mineral, gives bone its stiffness and strength. The organic phase, which is comprised of collagen
(90% type 1) along with non-collagenase proteins, gives bone its ductility and toughness.
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Figure 1-1: Hierarchical structures of bone from the sub-micron length scale to the centimeter length scale. Image adapted from
[33].

! This section was adapted, in part, from [44], [168]



These constituents of bone are organized in a hierarchical manner (Figure 1-1). At the nanoscale,
three collagen molecules are wound into a triple helix structure known as tropocollagen. From
there, tropocollagen molecules align in a parallel in quarter-stagger arrangement to make collagen
fibrils. Hydroxyapatite mineral crystals adhere to the collagen fibrils, mineralizing them. The
mineralized fibrils are then staggered together in layers to make fibers, which are aligned in sheets
called lamellae, which can take various forms at the next hierarchical level.
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Figure 1-2: Cross-sections of a human vertebral body (left) and proximal femur (right) showing typical arrangements of cortical
and trabecular bone. Image adapted from [34].

At its highest hierarchical level, there two types of bone—cortical and trabecular (Figure 1-2). The
skeleton is composed of 80% cortical bone and 20% trabecular bone by mass [31]. The primary
difference between cortical and trabecular bone is porosity—while the porosity of cortical bone is
less than 5-10%, the porosity of trabecular bone is 75-95% [35].

Cortical bone, also called compact bone, is extremely dense. Here, tightly packed lamellae are
organized into concentric cylinders in primary lamellar, Haversian, laminar, and woven bone. In
general, cortical bone is found in the shafts of long bones and the cortex or shell at the ends of
joints and vertebral bodies. It forms the dense outer shell of all bones, providing substantial
mechanical strength.

Trabecular bone is an open cell porous network organized in a honeycomb-like structure. In
contrast to highly dense and organized cortical bone, in trabecular bone the lamellae are less
organized and formed into rods and plates. Trabecular bone is always surrounded by cortical bone,
although the thickness of the cortical bone depends on location. Typically, trabecular bone is found
near the ends of long bones (such as the femur) and in the interior of irregular bones (such as the
vertebral body and pelvis). In trabecular bone, the microstructure is generally aligned in the
direction of greatest mechanical stiffness and strength [36]. The trabecular struts support the outer
cortical structure, like how the struts of the Eiffel Tower support its outer framework.



Different bones have differing ratios between cortical and trabecular bone. For example, in the
femoral head, the ratio is 1:1, while in the radius the ratio is 95:5 [31]. For the purpose of this
dissertation, there are several bones of significant interest: the vertebrae, the pelvis, and sacrum.
The vertebral body is the load-bearing part of the vertebrae is called the vertebral body. In humans,
the vertebral body consists of a central trabecular network surrounded by a cortical shell, with a
ratio of 3:1 trabecular to cortical tissue [31], [37]. Similarly, the pelvis and sacrum both mainly
consist of trabecular bone surrounded by a thin layer of cortical bone [38]. In contrast, the main
shaft of the femur is primarily a thick layer of cortical bone, while the femoral head and neck
contain trabecular bone surrounded by a thin layer of cortical bone.

1.1.2 Bone modeling and remodeling

The adaptation, growth, repair, and maintenance of bone are carried out by four main types of bone
cells: osteoclasts, osteoblasts, bone lining-cells, and osteocytes. Osteocytes are the most numerous,
making up to 90-95% of all bone cells, while osteoclasts and osteoblasts make up only 1-2% and
4-5%, respectively [39], [40].

Bone cells

Osteoclasts are the large multinucleated bone cells responsible for bone resorption [41]. Mature
osteoclasts are formed by the fusion of bone marrow precursor cells in the monocyte-macrophage
family [31], [42]. Once mature, osteoclasts are found on the surface of the bone mineral, where
they dissolve bone mineral in acid [41]. Upon completion of bone resorption, osteoclasts undergo
programmed cell death [43]

Osteoblasts are the cells responsible for bone formation. Cuboidal in shape, osteoblasts are
mononuclear cells that derive from mesenchymal stem cells [31], [40]. These cells are found in a
single layer adjacent to the bone surface [40]. During bone formation, osteoblasts secrete bone
matrix protein on the surface of the bone, which is then mineralized [43], [44]. Upon completion
of bone formation, some mature osteoblasts remain trapped in the bone as osteocytes, some flatten
to cover quiescent surfaces as bone lining cells, and the remainder (approximately 60-80%) die by
programmed cell death [40], [43].

Flat bone-lining cells cover 90% of trabecular bone surfaces where no active modeling or
remodeling is occurring [40], [44]. Although the specific function of bone-lining cells is not fully
understood. They have been shown to prevent osteoclasts from interacting with the bone matrix in
locations where bone resorption should not occur [40]. Additionally, recent work suggests bone-
lining cells may be a source of osteogenic precursors [43]. Importantly, bone-lining cells may also
participate in calcium regulation [43].

Osteocytes are terminally differentiated osteoblasts entombed within the bone matrix after
production of new tissue [44]. While not directly involved in bone synthesis or resorption,
osteocytes coordinate the response of osteoclasts and osteoblasts to mechanical and chemical cues
[43]. Each osteocyte body is located within a lacuna, with cytoplasmic processes extending
through canaliculi to neighboring osteocytes through gap junctions [40]. Through this
lacunocanalicular system, osteocytes are able to maintain connection with each other and the bone
surface, acting as mechanosensors and stimulating bone adaptation to daily forces [31], [40]. In
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this way, osteocytes are thought to initiate bone modeling and remodeling, although the
mechanisms by which these cells convert mechanical stimuli to biochemical signals are not well
known [40].

Bone adaptation

The main functions of bone remodeling are its role in adaptation to changing biomechanical forces
to preserve bone strength or stiffness as well as mineral homeostasis [31], [32], [45]. First,
remodeling allows bone to alter its shape, size, and/or matrix properties in response to mechanical
stimulation [46]. By adapting to their mechanical environment, bones are able to produce
structures that are optimized for their function [44]. This concept is described by Wolff’s law,
which postulated that bone shape and architecture is altered to accommodate the mechanical loads
it experiences. Additionally, the skeleton contains nearly all of the body’s calcium and resorption
of bone mineral is crucial for maintaining extracellular levels of calcium in order to maintain life
[47].
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Figure 1-3: A representation of the bone remodeling process, shown in two dimensions. Image adapted from [48].

Regardless of the goal of remodeling, it is achieved by the coordinated action of osteoclasts and
osteoblasts, and follows a cycle of four sequential phases: activation, resorption, reversal, and
fo