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Purpose: This study investigates forced localization of targets in simulated images with statistical
properties similar to trans-axial sections of x-ray computed tomography (CT) volumes. A total of 24
imaging conditions are considered, comprising two target sizes, three levels of background variabil-
ity, and four levels of frequency apodization. The goal of the study is to better understand how human
observers perform forced-localization tasks in images with CT-like statistical properties.
Methods: The transfer properties of CT systems are modeled by a shift-invariant transfer function in
addition to apodization filters that modulate high spatial frequencies. The images contain noise that
is the combination of a ramp-spectrum component, simulating the effect of acquisition noise in CT,
and a power-law component, simulating the effect of normal anatomy in the background, which are
modulated by the apodization filter as well. Observer performance is characterized using two psy-
chophysical techniques: efficiency analysis and classification image analysis. Observer efficiency
quantifies how much diagnostic information is being used by observers to perform a task, and classi-
fication images show how that information is being accessed in the form of a perceptual filter.
Results: Psychophysical studies from five subjects form the basis of the results. Observer efficiency
ranges from 29% to 77% across the different conditions. The lowest efficiency is observed in condi-
tions with uniform backgrounds, where significant effects of apodization are found. The classifica-
tion images, estimated using smoothing windows, suggest that human observers use center-surround
filters to perform the task, and these are subjected to a number of subsequent analyses. When imple-
mented as a scanning linear filter, the classification images appear to capture most of the observer
variability in efficiency (r2 = 0.86). The frequency spectra of the classification images show that fre-
quency weights generally appear bandpass in nature, with peak frequency and bandwidth that vary
with statistical properties of the images.
Conclusions: In these experiments, the classification images appear to capture important features of
human-observer performance. Frequency apodization only appears to have a significant effect on per-
formance in the absence of anatomical variability, where the observers appear to underweight low
spatial frequencies that have relatively little noise. Frequency weights derived from the classification
images generally have a bandpass structure, with adaptation to different conditions seen in the peak
frequency and bandwidth. The classification image spectra show relatively modest changes in
response to different levels of apodization, with some evidence that observers are attempting to rebal-
ance the apodized spectrum presented to them. © 2018 American Association of Physicists in Medi-
cine [https://doi.org/10.1002/mp.12857]
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1. INTRODUCTION

X-ray computed tomography (CT) has become a mainstay of
diagnostic imaging in many areas of medicine because of its
ability to render internal structures of the body with high

accuracy. A cross-sectional image of a tomographic recon-
struction synthesizes information across multiple angular
views to resolve the superposition of structures in “raw” pro-
jection data. Another result of the reconstruction process is
that acquisition noise — quantum noise in x-ray production
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and electronic detector noise — adopts a characteristic tex-
ture in which noise power increases approximately linearly
with frequency, if left unchecked.1–3 The result is so-called
ramp-spectrum noise, and it presents a challenge to the pre-
sentation of high-frequency information in CT images. Tradi-
tionally, in standard filtered-backprojection reconstructions,
noise is controlled by the use of apodization filters that mod-
ulate high spatial frequencies.2,4 These filters suppress high-
frequency noise, but at the cost of limiting the resolution of
the resulting images to some extent as well.

The presumption of apodization filters is that they help the
end-user — typically a radiologist — most efficiently access
the diagnostic information in the image. However, relatively lit-
tle is known about how image readers actually extract this infor-
mation to perform even simple tasks in ramp-spectrum noise,
with or without apodization. This is the motivation for this
work, which applies psychophysical methods derived from
vision science to directly assess mechanisms of task perfor-
mance. We see this goal as related to, but somewhat distinct
from, a substantial effort in the field to develop model
observers,5–10 which have also been applied to tomographic
images with ramp-spectrum noise.11–16 At a fundamental level,
model observers are predictive in nature rather than explana-
tory, with a goal of comparing and optimizing imaging systems
without time-consuming and costly observer performance stud-
ies. While we hope that our results may be used to inform the
development of anthropomorphic model observers, the focus of
this study is to investigate human observers.

Our studies analyze observer performance in terms of
classification images,17–20 a technique that utilizes the noise
fields of the image stimuli along with decision outcomes to
directly estimate perceptual filters underlying task perfor-
mance. We also use the concept of task efficiency with
respect to the ideal observer20–27 as a way to quantify how
well observers are able to utilize the relevant information in
the images to perform the task. This combination allows us to
assess how much information is lost due to errors in the tun-
ing of perceptual filters, and how much is lost from other
effects like internal noise or inefficient search. The task we
investigate is forced localization, which requires the observer
to localize (by a pointer-click) the most likely position of the
target within an image. Thus, the task forces the subject to
search the image and discriminate the target from a variable
background that includes effects of ramp-spectrum noise and
background variability with a power-law spectrum that simu-
lates the effect of normal anatomy in the image.28,29 A total
of 24 different imaging conditions are considered that com-
prise two target sizes, three levels of background variability,
and four levels of apodization.

The classification image technique and the ideal observer
analysis used here have recently been developed for forced-
localization tasks.20 In order to meet the Gaussian assumptions
needed for both of these, we use simulation images drawn from
stationary Gaussian random processes with statistical properties
that simulate ramp-spectrum of CT acquisition noise, the
power-law spectrum of background variability in CT images,
and effects of different apodization filters. From the forced-

localization experiments for these images, we show how the
various imaging conditions affect task efficiency and the per-
ceptual tuning of observer localization filters.

2. IMAGE STIMULI

The images used in these forced-localization tasks consist
of a target profile embedded in a stationary Gaussian random
field as a background. Both the target and the background have
properties that are qualitatively similar to components of axial
CT images. Target profiles include effects of blurring due
apodization and an intrinsic system transfer function, while
the backgrounds include ramp-spectrum noise and power-law-
spectrum background variability — so-called anatomical
noise— that are both impacted by apodization filters.

We simulate images as 256 9 256 pixel arrays that are
12.8 cm on a side, with a 128 9 128 region in the center of
the image that serves as potential locations for the target. The
putative pixel size, D = 0.5 mm, is roughly consistent with
clinical CT scanners that are often used to discretize a 24-cm
square axial field of view into a 512 9 512 array. The use of
a Gaussian process to generate the image backgrounds allows
us compute the ideal observer for forced-localization tasks
and, therefore, to derive efficiency of the human observer.
The Gaussian process is also an assumption of prior work
using the classification image technique in forced-localization
tasks.20

2.A. Target profiles

The target profiles are derived from one of two disks of
higher intensity, meant to simulate a “lesion” of increased x-
ray attenuation in CT. We investigate a smaller disk with a
diameter of 1 mm, and a larger disk with a diameter of
4 mm. The 1 mm disk is relatively small for lesions detected
by CT, but this size was chosen to put more emphasis on
higher spatial frequencies in the task. The disk object is cre-
ated at 4 9 4 oversampling, and then down-sampled to the
image size by averaging. This allows for partial volume
effects and reduces aliasing.

The disk may be thought of as the underlying object being
imaged. In the process of becoming a target profile in the
image domain, the disk is smoothed by filters representing
the intrinsic modulation-transfer function of the imaging sys-
tem and by the apodization kernel implemented in the CT
reconstruction. We model the system MTF by a cosine roll-
off function that goes from 1 at DC to 0 at the Nyquist fre-
quency (fNyq = 1/2D = 1.0 cyc/mm),

MTFðf Þ ¼
1
2 1þ cos p f

fNyq

� �� �
f � fNyq

0 fNyq\f

(
; (1)

where f represents the 2D radial frequency, f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x þ f 2y

q
,

for fx and fy representing spatial frequencies in the horizontal
and vertical imaging directions, respectively. In a typical
axial display, the horizontal direction is lateral in the body
(right to left), and the vertical direction is anterior–posterior.
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Apodization is implemented using a so-called Shepp–
Logan filter4 with different frequency cutoffs. For a given fre-
quency cutoff, fC, the functional form of the filter is

Aðf Þ ¼ Sinc p f
fC

� �
f � fC

0 fNyq\f

(
: (2)

The four apodization levels tested consist of no apodization
(Apodization Level 1), fC = 2fNyq (Apodization Level 2),
fC = fNyq (Apodization Level 3), fC = 0.75fNyq (Apodization
Level 4). These apodization parameters range from nothing
(Level 1) to a fairly aggressive filtering (Level 4) that cuts off
the spectrum well below Nyquist. Figure 1(a) plots the
apodization various apodization functions used (no apodiza-
tion is plotted as a constant). The total filtering of the disk
object is the product of the system MTF and the apodization
function. Plots of total signal filters are shown in Fig. 1(b).
Figure 2 illustrates a panel of target profiles, showing both
target sizes and the four levels of apodization.

2.B. Noise power spectra

All noise fields used in this work are samples from station-
ary Gaussian random fields that are generated by filtering
white noise. The statistical properties of the noise fields are,
therefore, characterized by their noise power spectra (NPS).
Each NPS, in turn, is determined by three components: An
acquisition noise component, a background variability com-
ponent, and the apodization level applied to the images.

Acquisition noise in tomographic reconstructions arising
from Poisson nature of x-ray production and attenuation as
well as electronic noise in the x-ray detector30,31 are well
known to approximate a “ramp” spectrum in which noise
power is directly proportional to radial frequency.1–3 We use a
ramp function over the frequency range out to the Nyquist fre-
quency, except at the lowest frequencies where we prevent
noise power from going to zero using a quadratic tail. This tail
is parameterized by the low-frequency transition point,
f0 = 0.05fNyq. The acquisition noise power spectra is given by

SAqðf Þ ¼
CAq f0=2þ f 2=2f0ð Þ 0� f � f0
CAqf f0 � f � fNyq
0 fNyq\f

8<
: (3)

The acquisition noise normalization constant, CAq, is set
so that unapodized acquisition noise will lead to a pixel

FIG. 1. Signal transfer components. The four levels of frequency apodization
are shown (a) and the total system MTF (b), composed of the product of the
apodization function and the intrinsic system MTF. Note that the plot of
MTF1 represents the intrinsic system MTF since apodization is constant at
this level.

FIG. 2. Target panel. The panel shows the two target sizes (1 mm and 4 mm
diameter) at the four levels of apodization used in the experiments at 100%
object contrast. Note that for the smaller target, partial volume effects reduce
the target contrast, particularly at higher levels of apodization.
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standard deviation (SD) of 20 Hounsfield Units (HU), which
is in the range of clinical scanning.

Background variability, describing variability due to the
arrangement of normal anatomy in the field of view, is typically
characterized by a power-law spectrum.28,32–34 We use a power-
law with an exponent of �2, which is consistent with some of
the limited data available for CT imaging.29,35 A small constant,
ɛ = 1/ND, is added to the radial frequency to prevent instability
at low spatial frequencies. The resulting functional form of the
spectrum of background variability is given by

SBckðf Þ ¼ CBckðf þ eÞ�2 0� f � fNyq
0 fNyq\f

�
: (4)

The normalization constant, CBck, is set to one of three
possible values, which determines the level of background
variability. For uniform backgrounds (i.e., no background
variability), CBck = 0. We define a low level of back-
ground variability to occur when the image pixel SD due
to background variability is 50% of the SD due to (unapo-
dized) acquisition noise. We define a high level of back-
ground variability to occur when SD due to the
background variability is 100% of the SD due to acquisi-
tion noise.

The total power spectrum of a set of images includes the
effects of apodization as well, resulting in a functional form of

STotðf Þ ¼ jAðf Þj2 SAqðf Þ þ SBckðf Þ
� �

: (5)

Figure 3(a) shows plots of noise power spectra for condi-
tions with a uniform background (i.e., SBck(f) = 0). These
plots show the influence of apodization on the acquisition
noise power spectrum. Figure 3(b) shows power spectra from
unapodized noise fields at the three levels of background
variability. Note the log-scale y-axis of this plot, which is
needed to effectively convey the large range of image power
across these conditions. Figure 4 shows a panel of the 12
noise textures used in the experiments here.

2.C. Forced-localization stimuli

The targets and noise fields described above are used to gen-
erate the forced-localization stimuli. Each combination consists
of a target size (2 possible), apodization level (4 possible), and
level of background variability (3 possible), for a total of 24
experimental conditions. A 256 9 256 pixel stimulus is gener-
ated by adding a randomly shifted target to a sample noise field.
A target is generated from a sampled disk object, as described
above, that has been scaled to have a given amplitude in HU.
The disk is then filtered by the system MTF described in
Eq. (1), and the apodization function described in Eq. (2).

Let the array, T[n, m] with n = 0, ���, 255 and
m = 0, ���, 255, represent the resulting target for a given
experimental condition. And let N[n, m] represent the noise
field. A stimulus in trial t is given by

Gt½n;m� ¼ T n� nTruet ;m� mTrue
t

� 	þ Nt½n;m� (6)

where nTruet and mTrue
t are the horizontal and vertical positions

of the target in the trial. When n� nTruet or m� mTrue
t are neg-

ative in Eq. (6), we add 256 to this difference thereby wrap-
ping around to the other side of the image. The true locations
are sampled independently from a uniform distribution over
the central 128 pixels of the horizontal and vertical dimen-
sions (i.e., nTruet and mTrue

t �Uf64 : 191g).
The first step in the generation of a noise field is making

the noise filter in the frequency domain. Let k and l represent
the discrete frequency indices corresponding to n and m, and
let vx,k and vy,l be the corresponding spatial-frequency vari-
ables defined by

vx;k ¼
k

D256 0� k� 128
k�256
D256

129\k� 255

(
; (7)

where D is the pixel size. There is a corresponding definition
for vy,l, with the resulting radial frequency for the indices k
and l being qk;l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x;k þ v2y;l

q
. The discrete filter, FStim[k, l],

used to generate the image stimuli for an experimental condi-
tion is given by

FStim½k; l� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
STotðqk;lÞ

q
: (8)

FIG. 3. Noise components. The effect of apodization on the Ramp-noise
power spectrum is shown (a), along with unapodized (level 1) power spectra
showing the effect of background variability in addition to noise (b).
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The noise field is generated by sampling an array of zero-
mean unit-variance white noise. This initial sample is input to
a 2D FFT, algorithm, multiplied by FStim[k, l] from Eq. (8),
and then inverse transformed back to the spatial domain to
generate Nt[n, m] in Eq. (6). Example noise textures from the
procedure may be seen in Fig. 4.

3. PSYCHOPHYSICAL METHODS

All psychophysical studies were carried out under an IRB
approved human subject protocol at UC Santa Barbara.

3.A. Display procedure

Noisy stimuli, generated according to Eq. (6), are used in
a display procedure to acquire the localization response data.
One of the important roles of the display procedure is to
window and level the stimuli so that they are displayed

within the dynamic range of the monitor used. The window
and level setting were based in the noise field and set so that
the mean background level of the stimuli is 100 gray levels
(GL) on the display, and the pixel standard deviation is
20 GL. In order to make the localization response less sus-
ceptible to localization errors, the image is magnified by a
factor of 2 on the monitor, giving it an effective isotropic
display pixel size of 0.66 mm on the monitor used for the
experiments.

The display program renders the stimuli in the center of a
full-screen window, with the mean background set to
100 GL. For reference, an image of the noiseless target is also
displayed above the stimuli. Finally, hash marks indicating
the region of possible locations are added to the image to
focus the reader on the appropriate part of the image. Fig-
ure 5 shows a part of the display window, cropped around
the stimulus, with a high-amplitude large target (right side of
image at 4 o’clock) for illustration.

FIG. 4. Image background panel. The panel shows the various background image textures used in the experiments, which are affected by the amount of back-
ground variability as well as the level of apodization.
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To respond, a subject makes a pointer-click on the location
believed to be the center of the target. The localization
response is correct if it falls within a tolerance region of five
pixels or less from the target center. This somewhat generous
tolerance region (larger than the targets) was chosen based on
prior publications showing little effect of larger regions,36,37

and our intention that incorrect localizations used to generate
the classification images not be impacted by the target pro-
file. The display briefly gives feedback indicating whether
the localization was correct or not.

The display procedure is used in two ways for each experi-
mental condition. It is first used to estimate the threshold tar-
get amplitude needed to get a proportion of correct responses
(PC) that is approximately 80%, similar to previous work
using this methodology.20,38 The target amplitude is then
fixed at this amplitude for the remainder of the study, which
forms the basis for estimating the classification image. A
threshold of PC near 80% ensures that the task is hard enough
that subjects will have some incorrect responses, which are
essential for the classification image procedure we use, with-
out being so difficult that subjects become unstable in their
decision making. The staircase procedure we use also gives
subjects some experience and training with the localization
task in each condition.

Threshold amplitudes are estimated using a 3-down-1-up
adaptive staircase procedure. In this procedure, the target
amplitude starts at a high contrast, similar to Fig. 5. After

three correct responses, the target amplitude is reduced by
15%. When a single incorrect decision is made, target ampli-
tude is increased by 15%. After an initial “burn-in” period,
this process will cause the chain of target amplitudes to fluc-
tuate around the 80% correct level.39 The staircase terminates
after 12 reversals (i.e., when the chain goes from decreasing
to increasing or vice versa). The 80% correct threshold is
estimated from the geometric mean of the staircase ampli-
tudes from the 4th reversal (to account for burn-in) to the ter-
mination point. The staircase procedure is repeated six times,
with the first run considered a practice run, and the threshold
estimates from the remaining five runs averaged as the final
estimate of threshold amplitude.

The adaptive staircase runs are followed by a total of 40
runs of 50 trials each (2,000 trials total) at the threshold
amplitude. We refer to these as the template runs, with each
subject completing a template run in each of the 24 imaging
conditions. Each subject contributed a total of 48,000 trials
across all conditions, with 240,000 trials across the five sub-
jects. These data are the basis for the estimation of efficiency
and the classification images we report below. In principle,
PC should be 80% as a result of the threshold estimation pro-
cedure. We shall see below that observed PC values are usu-
ally close to 80%, but there are some residual differences.

3.B. Ideal observer and efficiency

Task efficiency is computed for each subject in each
experimental condition using the subject’s threshold ampli-
tude and the observed PC for the template runs. Let ASub rep-
resent the threshold amplitude for a given subject. Let AIO be
the target amplitude that causes the ideal observer to perform
the forced-localization task with the same PC as the subject.
We briefly describe how this threshold is obtained below.
Task efficiency for the subject is estimated by the ratio22,40

gSub ¼
AIO

ASub


 �2

: (9)

This is an estimate since PC is an estimate of proportion
correct. Note that a 95% confidence interval on efficiency is
obtained by transforming a 95% confidence integral on PC

for the subject, which is determined from the standard error
over 40 runs of 50 trials each.

The ideal observer PC is determined from Monte-Carlo
studies as described previously,20 which we will summarize
briefly here. For a sample image, the ideal observer computes
the posterior probability of the target being located at each
point in the search region. This is accomplished by convolv-
ing the image with a prewhitened match filter and exponenti-
ating the result. The posterior probability is then convolved
with a disk profile that is five pixels in radius representing
the criterion for a correct response. The location of the maxi-
mum point from this convolution is the ideal observer’s local-
ization response for the image.

Ideal observer PC is compiled into a look-up table at sev-
eral target amplitudes for the same 2,000 stimuli used in the
psychophysical study. For an input PC value, the threshold

FIG. 5. Stimulus display. This image shows the central portion of the image
display window that subjects use in the psychophysical experiments. The ref-
erence image of the noiseless target can be seen at the top of the figure, as
well as hash marks indicating the search region. The gray border extends out
further in the actual display.
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amplitude is found using linear interpolation between points
on the table.

3.C. Classification image procedure

The classification image procedure used here is similar to
a previous study.20 For a given subject in a given experimen-
tal condition, noise fields from stimuli in the template runs
that are incorrectly localized (i.e., localization response is
more than five pixels from the target location) are used to
generate the classification image. We expect approximately
400 such trials for an 80% correct amplitude threshold. Let
NInc
i n;m½ � represent the noise field of the ith incorrect trial in

an experiment (i = 1, . . ., I). The first step in generating a
classification image is filtering these noise fields with the
inverse of the noise power spectrum

qi½n;m� ¼ FFT�1 N̂Inc
i ½k; l�

STot½k; l� þ e


 �
; (10)

where N̂Inc
i ½k; l� is the FFT of NInc

i ½n;m�, and ɛ is a small con-
stant (less than 0.131% of max STot) that prevents instability
errors when STot k; l½ � is near zero. The estimated classification
image, w[n, m], is obtained by aligning the qi to the localiza-
tion response nLoci ;mLoc

i

� 	
for the subject and averaging,

w½n;m� ¼ 1
I

XI

i¼1

qi n� nLoci ;m� mLoc
i

� 	
; (11)

where it is understood that negative values of n� nLoci or
m� mLoc

i “wrap around” to the other side of the array.
We are also interested in the frequency weighting of obser-

ver localization templates. Since target and noise spectra are
radially symmetric, we represent these by a radial average.
Let Q̂i½k; l� be the FFT of qi½n� nLoci ;m� mLoc

i �, and let qk,l
represent the radial distance from the origin defined in Sec-
tion 2.C. We define the radial average, R̂i½v� as the average of
Q̂i½k; l�, for all points in which |qk,l � v|<ɛ with ɛ being half
the frequency sampling of the stimuli. Note that because of
conjugate symmetry of the FFT, this average will always be
real valued. We estimate the average frequency weighting
across incorrect images as

Rw½v� ¼ 1
I

XI

i¼1

Ri½v�: (12)

Uncertainty in the average is estimated by the standard
error of this average.

3.D. Localization error correction

A potential difficulty with fine-grain localization studies
of the sort we use here is the potential for distortions from
subjects’ motor errors in response. We would like for the
localization response to indicate the perceived location of the
target center, and the subjects are instructed to exercise care
selecting this point. However, it is known that localization
responses are subject to positioning errors.41,42 Piloting

studies (data not shown) suggest that these errors are rela-
tively small, typically with a root-mean-squared error less
than two pixels. However, given that the alignment step in
Eq. (11) is an important part of the classification image tech-
nique, we use a two-part scheme to adjust for motor error in
the localization responses.

We begin by generating a classification image using
uncorrected responses in Eq. (11). This initial classification
image has a spatial window applied to it that extends out to
just over twice the radius of the target (HWHM 1.05 mm for
the small target and 4.2 mm for the large target with cosine
roll-off). After spatial windowing, the classification image is
smoothed by applying a window in the frequency domain
(HWHM of 0.4 cyc/mm for the small target and 0.17 cyc/
mm for the large target with cosine roll-off). In addition, the
imaginary component of the FFT is set to zero, which sym-
metrizes the classification image about the origin.

This initial, highly filtered classification image is then
applied to each location within two pixels of the subject’s
response. The adjusted localization response is taken to be
the location with the maximum filter value. This process can
be iterated, using the updated localization responses to gener-
ate the initial classification image. As we shall see below,
analysis of correct localizations show that the adjusted local-
izations are generally closer to the actual target centers, but
there is little difference after the first adjustment. Hence, a
single iteration is used for classification image results.

4. RESULTS

Subjects performed the 24 experimental conditions in
order of signal size and background variability and random-
ized over the level of apodization. For each condition, sub-
jects ran the adaptive staircase procedure six times, with the
average of the final five runs used to obtain the fixed ampli-
tude threshold for the classification image runs, which were
started immediately afterward. The classification image was
broken into 40 runs of 50 trials each for a total of 2,000 trials
total in each condition.

As we shall see below, the threshold estimation procedure
generally produced results close to 80% correct. However, in
one case, a subject made several early mistakes in the adap-
tive threshold runs for one condition, leading to a substantial
overestimate of the threshold amplitude. This in turn led to
the subject getting 99.5% correct in the template runs. In this
one case, the subject re-ran the condition (at a later time)
achieving a more reasonable threshold and subsequent local-
ization performance. The second run for that subject in that
condition is reported here.

4.A. Performance results

Performance results for the forced-localization experi-
ments are shown in Fig. 6 as a function of the experimental
conditions (signal size, level of background variability, and
level of apodization) averaged across the five subjects (and
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95% confidence intervals derived from the standard error
across subjects). The amplitude thresholds [Fig. 6(a)] deter-
mined from the adaptive staircase procedure vary consider-
ably across signal size and background variability. For a
given signal size and level of background variability, less
variability is seen across apodization levels. But it should be
noted that a logarithmic scaling is used in this plot which
may compresses smaller differences.

Figure 6(b) shows the proportion of correct localizations
in the subsequent classification image studies using the
fixed target amplitudes from the staircase runs. This serves
as a check that the adaptive staircase is producing a target
amplitude threshold that is approximately 80% correct. The
figure suggests that most scores are close to this targeted

level, although there appears to be some tendency for higher
performance. The average PC across subjects and conditions
is 83.2% and ranges from 74% to 94% for individuals. We
expect observer task efficiency and performance mecha-
nisms to be relatively stable to small changes in target
amplitude. As a result, we do not expect the relatively small
differences between observed PC and the targeted 80% cor-
rect threshold seen in Fig. 6(b) to have a significant effect
on our results. For example, if we observe a PC of 87%
from a given subject for a given condition, we expect that
the task efficiency of the subject and the classification
image will be similar to what we would observe if we had
used a slightly lower target amplitude that resulted in 80%
correct.

FIG. 6. Task performance data. Performance data from the 24 experimental conditions are shown with 95% confidence intervals across subjects, as a function of
target size, amount of background variability, and level of apodization. The target amplitude data (a) are the result of the threshold estimation procedure. The task
performance data (b) show that the observed proportion of correct localizations was reasonably close to the 80% threshold (dotted line) used for threshold estima-
tion. Task efficiency with respect to the ideal observer (c) shows a considerable dependence across conditions with notably large confidence intervals due to
inter-subject variability.
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Task efficiency, our primary endpoint of task perfor-
mance, is plotted in Fig. 6(c). Here, we find considerable
variation across signal size and background variability, par-
ticularly between uniform-background conditions and the
conditions with some background variability. We also see
some variability across apodization levels. Of interest, here is
that variability due to different levels of apodization appears
to be most pronounced in the uniform-background condi-
tions.

This observation is confirmed by ANOVA modeling of
efficiency for each of the five subjects at each of the six com-
binations of signal size and background variability, as shown
in Table I. Each cell of the table is the P-value from a one-
way ANOVA with four apodization levels as the main effects
and the five blocks of 400 trials as replications. A total of
nine P-values remain significant after a Bonferroni correc-
tion, and these are all found in cells corresponding to a uni-
form background.

4.B. Localization accuracy

Since the localization response is fundamental to the clas-
sification image procedure in these tasks, we begin by exam-
ining the accuracy of localization responses for correct trials
(i.e., within the 5-pixel tolerance range). This allows us to see
how the refinement procedure changes the response relative
to the actual target center. We can evaluate bias in the local-
ization response in x and y from the average positional error
between the response and the true signal location in each
dimension, lx and ly. We take the magnitude of both terms as
the bias magnitude, MBias ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2x þ l2y

q
. We evaluate variance

of the localization responses, r2x and r2y , and use these to
define the magnitude of localization variability,
MVar ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

q
. The total error in the localization

responses is characterized by the root-mean-squared error
(RMSE), defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Bias þM2
Var

q
:

Plots of average RMSE are shown in Fig. 7. We expect
that it may be harder to localize a larger target, so we
have separated the experimental condition into 12 small-
target conditions and 12 large-target conditions. For each

subject, the RMSE values from the 12 experimental condi-
tions in each group are averaged. Subject averages are
plotted as a function of the number of passes in the local-
ization correction algorithm (0 passes is the original
unmodified data). Consistent with our expectations, the lar-
ger target conditions have a larger RMSE in the unmodi-
fied localization data. In both cases, the RMSE drops with
the first pass of the correction procedure. Additional
passes seem to have little effect.

The plotted RMSE values are mostly due to variability
rather than bias. The magnitude of variability explains 83%
of the mean-squared error (RMSE2) for the small target, and
97% of mean-squared error for the large target. Our results
suggest that the correction procedure is reducing the effects
of pointing errors by the subjects, and so, we use one pass of
the procedure for our classification image results.

4.C. Classification images

The experiments generated a total of 120 classification
images (five subjects, 24 conditions) in this work. In the
interest of brevity, we will summarize the classification image
results by presenting averages across subjects here. This is
consistent with our interest in average subject performance at
this stage, rather than individual differences between sub-
jects. Individual differences in previous works involving clas-
sification images have been found to be fairly substantial,43–
45 and may explain some of the individual differences in per-
formance, but we consider this topic to be the subject of
future work.

Average classification image results are shown in Fig. 8.
The classification images themselves are estimated for each
subject from incorrect localization noise fields using
Eq. (11), with one pass of localization correction. To reduce
the effects of estimation error, the classification image esti-
mates include windowing and filtering steps. The small-target
classification images are shown after applying a spatial win-
dow that is constant out to four pixels (2 mm), with a cosine
roll-off out to eight pixels. The result is then smoothed using
a filter that is constant out to 0.5 cyc/mm with a cosine roll-
off out to 1.0 cyc/mm (Nyquist). The resulting classification
images (averaged across subjects) are shown in Fig. 8(a). The
large-target classification images are shown after applying a

TABLE I. Significance of apodization on efficiency.

Sm. Sig.
BV = 0%

Lg. Sig.
BV = 0%

Sm. Sig.
BV = 25%

Lg. Sig.
BV = 25%

Sm. Sig.
BV = 100%

Lg. Sig.
BV = 100%

Subject 1 <0.0001* 0.0286 0.02320 0.05341 0.44533 0.00482

Subject 2 <0.0001* <0.0001* 0.09308 0.42095 0.00415 0.08555

Subject 3 <0.0001* <0.0001* 0.04256 0.17757 0.01812 0.00671

Subject 4 <0.0001* <0.0001* 0.06389 0.09195 0.02334 0.01535

Subject 5 0.0014* <0.0001* 0.22903 0.47279 0.09309 0.40386

P-values for the significance of an apodization effect from a one-way ANOVA for each signal size and level of background variability and for each subject. The asterisk (*)
indicates results that are significant after Bonferroni correction for a familywise error rate of 5%.
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spatial window that is constant out to 10 pixels (5 mm), with
a cosine roll-off out to 20 pixels. The result is then smoothed
using a frequency filter that is constant out to 0.2 cyc/mm
with a cosine roll-off out to 0.4 cyc/mm. The resulting classi-
fication images (averaged across subjects) are shown in
Fig. 8(b).

The classification images in the panel generally show a
region of central positive weights with varying degrees of
negative weights in the nearby surrounding areas. The pat-
terns clearly scale with target size, and the magnitude of
the negative surround appears to be getting stronger as the
background variability increases (across columns). It is less
clear what the differences are across the different levels of
apodization, although careful inspection seems to indicate
that there is some estimation error in the higher apodiza-
tion levels. This is consistent with the fact that apodization
reduces high spatial frequencies, making the classification
image estimates noisier at these frequencies. Further assess-
ments of the classification images are described in the next
section.

5. DISCUSSION

The efficiency and classification image results shown in
the previous section give some indications of how subjects
perform the localization task. Here, we explore some of the
implications of these results. Specifically, we are interested in
better understanding how much of the variance in task effi-
ciency can be explained by the observed classification
images, how to characterize spatial weighting in the localiza-
tion tasks, and to what extent any changes in the template
with different apodization levels represents undoing the
smoothing applied by the apodization filter. Each of these
questions is treated below, with an additional sub-section
reviewing the limitations of this study.

5.A. Explaining variance in task efficiency

Figure 6(c) shows that there is considerable variability in
efficiency across tasks in this study, with average efficiencies
ranging from 29% to 77% across the different conditions. It
is of interest to know how much of this efficiency can be
explained by the estimated classification images. To address
this question, we have implemented each of the classification
images in Fig. 8 as the kernel of a scanning linear model.
The model chooses a location based on the maximum
response of the kernel. The location is considered correct if it
is within the same five-pixel distance of the target center that
was used for the human-observer experiments. Since we seek
to isolate the role of the classification images, we have not
added any source of internal noise or any limitation of the
search process, which are almost surely present in the
human-observer data to some extent. So we might expect the
efficiency of the scanning models to be somewhat higher
than for humans. We have evaluated scanning template mod-
els on all 24 experimental conditions using a set of 2,000
images in each condition that are independent from those
used in the human-observer experiment (and subsequently
used in the construction of the classification images). Target
amplitude has been adjusted to match the average proportion
correct of the subjects plotted in Fig. 6(b). Efficiency is com-
puted in the same way as human-observer efficiency.

A scatterplot of average human-observer efficiency and
classification image efficiency is shown in Fig. 9. There is a
clear association between the average classification image
efficiency and human-observer efficiency. A linear regression
of classification image efficiency as the independent variable
and human-observer efficiency as the dependent variable has
a highly significant slope (P < 10�6) and a significant inter-
cept (P = 0.01) as well. The estimated slope is 1.09 with
standard error of 0.09, so the slope is not significantly differ-
ent from 1. Thus, these data are well described by a simple
offset model in which efficiency of the human observers is
modeled as the efficiency of the classification image minus
12.8%. The R2 value of the offset model is 0.86 showing that
it explains most of the variance in the average human-obser-
ver efficiency data.

This strong association leads us to believe that the classifi-
cation images are capturing most of the observer performance
effects of the different statistical properties across these tasks.
Other effects, such as internal noise or visual search patterns,
have a relatively small consistent influence on efficiency.

5.B. Characterizing subject classification images

Models of observer performance are often based on fea-
tures derived from the spatial-frequency domain. This moti-
vates us to consider the spectral components of the
classification images as a way to characterize them. In
Fig. 10, we plot radial averages of the Discrete Fourier Trans-
form of the classification images, implemented via the Fast
Fourier Transform (FFT), normalized so that the peak value

FIG. 7. Pointing errors. The average RMSE across subjects is plotted as a
function of the number of localization refinement passes (0 passes represent
the original unmodified localization responses). The experimental conditions
are separated into two groups based on the size of the target. Confidence
intervals (95%) are derived from the standard error across subjects.
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is 1. We can think of these plots as representing the spatial-
frequency weights used by subjects (on average) in the small-
target (Fig. 10a) and large-target (Fig. 10b) tasks. Even

though FFTs are generally a complex quantity, these plots are
real since the conjugate property of the FFT will cancel any
imaginary component in the radial average. The data used for
these plots have been subjected to spatial windowing as
described in Section 4.C (which smooths the spectrum), but
they have not had the frequency window applied. Each plot
shows the spectra for all four apodization levels at a given
level of background variability and target size.

It is clear from these plots that the frequency weights gen-
erally form a bandpass structure. In the conditions involving
a uniform object, the band falls off only modestly on the low-
frequency side of the peak. As the level of background vari-
ability increases, there is more low-frequency suppression.
This low-frequency suppression is related to the negative
peripheral weights in Fig. 8. For the small-target conditions
[Fig. 10(a)], there is also some evidence of a shift to higher
spatial frequencies with increased apodization. This shift is
most apparent in the two conditions with background vari-
ability, where the band moves to higher frequency at the
higher apodization levels.

As a way to quantify these observations, we plot the frac-
tional bandwidth of the classification image frequency
weights as a function of the peak frequency in Fig. 11. The
peak frequency is found from the argmax of a parabola fit by

FIG. 8. Classification images averaged across subjects. Subject averaged classification images for large (a) and small (b) targets, estimated according to the proce-
dure in Eq. (11), are shown for each of the 24 tasks.

FIG. 9. Scatterplot of observer efficiency and template efficiency. The aver-
age efficiency of human observers in each task is plotted against efficiency
of the average template in each condition. Note the legend indicates the signal
size (Sm. or Lg.) and the relative magnitude of background variability
(BV = 0%, 50% or 100%). The data are reasonably well fit (r2 = 0.86) by an
offset of 12.4% in efficiency (gray line).

Medical Physics, 45 (5), May 2018

1980 Abbey et al.: Classification images in ramp-noise 1980



least-squares to the points greater than 0.95 on each plot. The
bandwidth is the frequency range for values of 0.5 or more
on each plot (i.e., full-width at half-max). Each plotted line
represents a given target size and apodization level over the 3
levels of background variability.

For all plots, increasing background variability also
increases the peak frequency of the classification images. For
the large targets, peak frequencies increase by an average of
51% over the range of background variability. For the small
targets, peak frequencies increase by 85% with the most sub-
stantial increases in the two highest apodization levels. Band-
widths remain relatively constant, changing by 20% or less as
background variability increases. For the large targets, the dif-
ferent levels of apodization seem to have little effect, except for
uniform backgrounds where there appears to be some variation
in fractional bandwidth. Both Figs. 10 and 11 would suggest
that apodization does not have much effect on spatial weight-
ing for the large target. This is perhaps not surprising since the
signal energy of the large target is not impacted much by the
various levels of apodization. For small targets, which have
more energy in the spatial frequencies affected by apodization,
increasing apodization leads to higher peak frequencies with
relatively little effect on bandwidth.

FIG. 10. Classification image spectra. The plots show radial averages of the classification images for large (a) and small (b) targets and for each level of back-
ground variability. These use the same data as was used to generate the spatial profiles shown in Figure 8, except that no frequency window is applied.

FIG. 11. Peak frequency vs bandwidth plots. For each combination of target
size (Small, Large) and apodization level (A1–A4), a plot shows template
bandwidth as a function peak spatial frequency, plotted across the three levels
of background variability. Increasing background variability generally leads
to higher peak frequency and lower bandwidth. Error bars represent �1SE
derived from bootstrapping across subjects (200 resamples).
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5.C. Effect of apodization

Figures 10 and 11 suggest that as high spatial frequencies
of the target are suppressed through apodization, human
observers show signs of increasing their weights for these fre-
quencies, potentially undoing the apodization to some
degree. To focus on this possibility, more generally, we inves-
tigate a different approach to the classification images.

We evaluate classification images using subject localiza-
tion responses to the apodized images in each condition, but
when creating the classification images, we use unapodized
images in Eq. (10) (along with the power spectrum of the
unapodized images as STot). This makes any apodization
effect akin to a perceptual effect, since the observer responses
have effects of apodization in them, but the images do not.
An observer that is invariant to apodization (i.e., is able to
“undo” the effects of apodization) should give the same
response (up to internal noise and pointing errors), and there-
fore generate approximately the same classification image for
any level of apodization. Alternatively, if the observer cannot
undo the effects of apodization, we would expect these classi-
fication images to differ.

In contrast, the standard classification image technique
(using apodized noise fields) would predict the opposite. If
the observer is able to undo the effects of apodization (by
increasing weights of high spatial frequencies as the apodiza-
tion level increases), then the standard classification image
technique should be able to capture this, since it gives weights
for the apodized stimuli. For the standard classification image
technique, an observer that does not adapt to apodization
should produce the same weights across apodization levels.

These two descriptions represent the extremes of perfect
undoing of apodization compared with no undoing of
apodization. The reality will likely be somewhere in the mid-
dle. One way to get at partial effects is to evaluate the differ-
ences between spatial templates across different levels of
apodization. We use a measure of difference between spatial
weights that is based on the difference between normalized
classification images. Let wA1 ½n;m� and wA2 ½n;m� be two clas-
sification images from different levels of apodization. Our
measure of difference between wA1 and wA2 is given by

D wA1 ;wA2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n;m

wA1 n;m½ �
wA1k k � wA2 n;m½ �

wA2k k

 �2

vuut ; (13)

where ‖L‖ represents the standard Euclidean norm.
We have evaluated Eq. (13) for each subject, using the

standard classification images estimated using apodized noise
fields (Fig. 8) and with unapodized noise fields (data not
shown). Spatial windowing and frequency filtering were
applied as described in Section 4.C. Apodization has such a
small effect on the large-target conditions that the templates
are virtually identical regardless of whether apodized or una-
podized noise fields are used. This is consistent with Figs. 10
and 11, where very little effect of apodization is seen for the
large targets. As a result, we will focus on results for the small
target, as shown in Fig. 12.

These plots show the template difference averaged across
levels of background variability and across subjects for each
of the six possible comparisons of the four apodization levels.
Normalized differences are generally smaller between the
classification images generated from unapodized noise fields.
Paired comparisons across subjects find significant differ-
ences in five of the six comparisons, which persist with a
Bonferroni correction for multiple (i.e., a total of six) com-
parisons. This result suggests that in the small-target task,
part of what the subjects are doing is adapting to the apodiza-
tion applied to the images.

5.D. Limitations of the study

We believe that the results we have presented are useful
for understanding how human observers perform tasks that
are limited by noisy stimuli with statistical properties similar
to CT images. However, we have made a number of assump-
tions and simplifications that may limit the generality of our
results for practical purposes. Our task, which involves forced
localization of a fixed target profile embedded in stationary
Gaussian noise, is considerably simplified relative to practice
in radiology or other specializations. The basic assumption
here is that these simplifications, which allow us to compute
task efficiency and subject classification images, reveal basic
observer processes that are at work in more complex applica-
tions as well. We also have used non-clinical subjects as our
readers, under the assumption that this sort of simple task is
not heavily dependent on clinical training.

6. CONCLUSIONS

The classification image approach used in these experi-
ments allows a closer look at how our human subjects per-
form forced-localization tasks in images with statistical

FIG. 12. Template Similarity. Normalized template differences are plotted for
six possible comparisons of the four apodization levels. Results are averaged
across background variability in the small-target conditions and across sub-
jects. Error bars are the standard error across subjects. Significant differences
(paired t-test) after correction for multiple comparisons are indicated with an
asterisk (*).

Medical Physics, 45 (5), May 2018

1982 Abbey et al.: Classification images in ramp-noise 1982



properties that resemble axial CT images. We find that the
average statistical efficiency of subject performance in our
experiments varies substantially (29% to 77%) depending on
components of the images (target size, background variabil-
ity, and apodization). The lowest efficiencies were observed
in the uniform-background conditions. These were the only
conditions in which apodization appeared to have an effect
on performance. When the tasks included background vari-
ability, efficiency increased with a loss of any significant
dependency on apodization.

We find that classification images consistently adopt “cen-
ter-surround” profiles where positive central weights are bor-
dered by more peripheral negative weights. This results in a
bandpass structure to the classification images in the spatial-
frequency domain. The classification images explain most of
the variance in efficiency (86%) using a simple constant-off-
set model, which suggests a relatively modest and predictable
role for other components of task performance such as inter-
nal noise and visual search. Within the confines of bandpass
center-surround profiles, the classification images do appear
to be changing. These changes appear, to some extent, to
undo the effects of apodization.

At a broader level, our results are consistent with the idea
that human observers are able to partially adapt to the statisti-
cal structure of images in performing the forced-localization
task. They also suggest that bandpass filters may be a produc-
tive direction for modeling spatial weighting by human
observers, where the center frequency and bandwidth of the
filter are determined by statistical properties of the images.
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