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Geometric quantum thermodynamics1

Fabio Anza* and James P. Crutchfield †
2

Complexity Sciences Center and Physics Department, University of California at Davis,3

One Shields Avenue, Davis, California 95616, USA4

(Received 29 May 2022; accepted 3 October 2022; published xxxxxxxxxx)5

Building on parallels between geometric quantum mechanics and classical mechanics, we explore an6

alternative basis for quantum thermodynamics that exploits the differential geometry of the underlying state7

space. We focus on microcanonical and canonical ensembles, looking at the geometric counterpart of Gibbs8

ensembles for distributions on the space of quantum states. We show that one can define quantum heat and9

work in an intrinsic way, including single-trajectory work. We reformulate thermodynamic entropy in a way that10

accords with classical, quantum, and information-theoretic entropies. We give both the first and second laws11

of thermodynamics and Jarzynki’s fluctuation theorem. Overall, this results in a more transparent physics than12

conventionally available. The mathematical structure and physical intuitions underlying classical and quantum13

dynamics are seen to be closely aligned. The experimental relevance is brought out via a stochastic model for14

chiral molecules (in the two-state approximation) and Josephson junctions. Numerically, we demonstrate this15

invariably leads to the emergence of the geometric canonical ensemble.16

DOI: 10.1103/PhysRevE.00.00410017

I. INTRODUCTION18

Geometric quantum mechanics (GQM) exploits the tools19

of differential geometry to analyze the phenomenology of20

quantum systems. It does so by focusing on the interplay21

between statistics and geometry of quantum state space.22

For finite-dimensional quantum systems, that we consider23

here, the state space H is isomorphic to a complex projective24

space CPn of dimension n = D − 1, where D := dim H. Our25

goal is to explore the statistical and thermodynamic conse-26

quences of the geometric approach. In particular, structural27

and informational properties can be properly formulated. And,28

the close parallels in the mathematical foundations of classical29

and quantum dynamics become clear.30

To the best of our knowledge, the development of the geo-31

metric formalisms started with early insights from Strocchi32

[1] and then work by Kibble [2], Marsden [3], Heslot [4],33

Gibbons [5], Ashtekar and Shilling [6,7], and a host of others34

[8–18]. Although geometric tools for quantum mechanics are35

an interesting topic in their own right, the following explores36

their consequences for statistical mechanics and nonequilib-37

rium thermodynamics.38

As one example in this direction, Brody and Hughston39

[19–21] showed that a statistical mechanics treatment of quan-40

tum systems based on the geometric formulation differs from41

standard quantum statistical mechanics: The former can de-42

scribe phase transitions away from the thermodynamic limit,43

the latter not [22]. This arises, most directly, since the geomet-44

ric formulation puts quantum mechanics on the same footing45

as the classical mechanics of phase space [1,4], bringing to46

*fanza@ucdavis.edu
†chaos@ucdavis.edu

light the symplectic geometry of quantum state space. It is 47

then straightforward to build on the principles of classical 48

statistical mechanics to lay out a version of quantum statistical 49

mechanics that takes advantage of such state-space features. 50

That said, these insights do not come for free. The conun- 51

drum of a consistent foundation of thermodynamic behavior 52

arises. On the one hand, we have quantum statistical me- 53

chanics, a description of macroscopic behavior that, despite 54

limitations, has proven to be remarkably successful. On the 55

other, transitioning from microphysics to macrophysics via 56

quantum mechanics is conceptually different than via classical 57

mechanics. Consistency between these approaches begs for 58

a conceptually unique route from microphysics to macro- 59

physics. 60

With this broad perspective in mind, unifying the two 61

coexisting statistical mechanics of quantum systems, though 62

challenging, deserves further attention. To address the chal- 63

lenge, the following advocates a geometric development of 64

a practical, macroscopic companion of geometric quantum 65

statistical mechanics: a geometric quantum thermodynamics. 66

Beyond foundations, geometric quantum thermodynamics 67

is all the more timely due to recent success in driving ther- 68

modynamics down to the mesoscopic scale. There statistical 69

fluctuations, quantum fluctuations, and collective behavior not 70

only cannot be neglected, but are essential. Largely, this push 71

is articulated in two research thrusts: stochastic thermody- 72

namics [23,24] and quantum thermodynamics [25,26]. The 73

following draws ideas and tools from both, in effect showing 74

that geometric tools provide a robust and conceptually incisive 75

crossover between them. 76

Our development unfolds as follows. First, it recalls the 77

basic elements of geometric quantum mechanics. Second, it 78

shows how this formalism emerges naturally in a thermody- 79

namic context. Third, it describes our version of the statistical 80
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treatment of geometric quantum mechanics, what we refer to81

as geometric quantum statistical mechanics. Fourth, it builds82

on this to establish two fundamental equations of geomet-83

ric quantum thermodynamics. The first is a unique version1 84

of the first law of quantum thermodynamics, with its def-85

inition of quantum heat and quantum work. The second is86

a quantum version of Jarzynski’s inequality, one that does87

not require a two-time measurement scheme. Fifth, the de-88

velopment proposes an experiment that highlights geometric89

quantum thermodynamics’ practical relevance. Finally, it ex-90

pands on the geometric approach’s increasing relevance to the91

thermodynamics of quantum information and computing.92

II. GEOMETRIC QUANTUM MECHANICS93

Geometric quantum mechanics arose from efforts to ex-94

ploit differential geometry to probe the often-counterintuitive95

behaviors of quantum systems. This section summarizes the96

relevant concepts, adapting them to our needs. Detailed ex-97

positions are found in the original literature [1–18]. Here,98

we present the main ideas in a constructive way, focusing99

on the aspects that are of direct relevance to thermodynamic100

behavior.101

Any statistical mechanics requires an appropriate, work-102

able concept of ensemble. To do this, one identifies ensembles103

with coordinate-invariant measures on the space of quantum104

states, a treatment first introduced in Ref. [19]. We call these105

distributions geometric quantum states and in Ref. [27] we106

give a generic procedure to compute them in a quantum ther-107

modynamic setting of a small system interacting with a large108

environment.109

Achieving this, though, requires a series of technical steps.110

The first identifies the manifold of pure states and defines111

their observables. The second introduces a suitable metric,112

scalar product, and coordinate-invariant volume element for113

the pure-state manifold. From these, the third step derives114

the evolution operator and equations of motion. Finally, states115

are described via functionals that map observables to scalar116

values. This is done so that the associated ensembles are117

coordinate-invariant measures.118

Our quantum system of interest has Hilbert space H of119

finite dimension D. The space of pure states is therefore the120

complex projective space P (H) ∼ CPD−1 [10]. Given an ar-121

bitrary basis {|eα〉}D−1
α=0 a generic pure state is parametrized by122

D complex homogeneous coordinates Zα , up to normalization123

and an overall phase:124

|ψ〉 =
D−1∑
α=0

Zα |eα〉 ,

where Z ∈ CD, Z ∼ λZ , and λ ∈ C/{0}.125

For example, the pure state Zqubit of a single qubit can be126

given real coordinates: Zqubit = (
√

p,
√

1 − peiν ). An observ-127

able O is a quadratic real function of the state. It associates128

to each point of the pure-state manifold P (H) the expectation129

value 〈ψ |O |ψ〉 of the corresponding operator O on that state:130

O(Z ) =
∑
α,β

Oα,βZαZ
β

(1)

and Oβ,α = Oα,β . And so, O(Z ) ∈ R.131

These complex projective spaces are Kahler spaces. This 132

means there is a function K , which in our case is K = ln Z · Z , 133

from which one obtains both a metric g: 134

gαβ = 1
2∂α∂β ln Z · Z,

with gαβ = gβα , and a symplectic two-form: 135

� = 2igαβdZα ∧ dZ
β
,

using shorthand ∂α := ∂/∂Z
α
. It is not too hard to see that 136

these two structures are parts of the Hermitian form that 137

defines the scalar product 〈ψ1〉 ψ2 in H. Indeed, using the 138

standard notation, one has [5] 139

〈ψ1〉 ψ2 = g(Z1, Z2) + i�(Z1, Z2).

Each geometric term provides an independent volume ele- 140

ment. 141

Agreement between these volumes, together with in- 142

variance under unitary transformations, selects a unique 143

coordinate-invariant volume element dVFS [19], based on the 144

Fubini-Study metric on CPD−1: 145

dVFS = 1

(D − 1)!

(
�

2

)
∧

(
�

2

)
∧ · · · ∧

(
�

2

)
(2a)

=
√

det g(Z, Z )dZ dZ. (2b)

(See also Ref. [10] for a textbook treatment.) Equipped 146

with this unique volume element, the total volume of the 147

pure-state manifold CPD−1 is [5,10] 148

Vol(CPn) = πD−1

(D − 1)!
.

Since symplectic geometry is the correct environment in 149

which to formulate classical mechanics, one can see how the 150

geometric formalism brings classical and quantum mechanics 151

closer together, a point previously raised by Strocchi [1] and 152

made particularly clear by Heslot [4]. Indeed, as in classical 153

mechanics, the symplectic two-form � is an antisymmetric 154

tensor with two indices that provides Poisson brackets, Hamil- 155

tonian vector fields, and the respective dynamical evolution. 156

Given two functions A and B on manifold P (H) we have 157

�(A, B) = ∂αA∂βB�αβ

= {A, B},
where we used � = 1

2�αβdZα ∧ dZ
β

and �αβ = (�−1)αβ is 158

the inverse: �αγ �γβ = δα
β . Using the symplectic two-form 159

one can show that Schrödinger’s unitary evolution under op- 160

erator H is generated by a Killing vector field VH as follows: 161

V α
H = �αβ∂βh(Z ), (3a)

dF

dt
= {F, h}, (3b)

where h(Z ) = ∑
αβ HαβZαZ

β
and F : P (H) → R is a real 162

but otherwise arbitrary function. Indeed, it can be shown that 163

Schrödinger’s equation is nothing other than Hamilton’s equa- 164

tions of motion in disguise [4,10]: 165

d |ψt 〉
dt

= −iH |ψt 〉 ⇐⇒ dF

dt
= {F, h}, (4)

004100-2
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for all F . Here, we use units in which h̄ = 1.166

This framework naturally views a quantum system’s states167

as the functional encoding that associates expectation values168

with observables, as done in the C∗-algebra formulation of169

quantum mechanics [28]. Thus, states are described via func-170

tionals P[O] from the algebra A of observables to the reals:171

P[O] =
∫
P (H)

p(Z )O(Z )dVFS ∈ R,

for p(Z ) � 0 and all O ∈ A. Here, p is the distribution as-172

sociated to the functional P. It is important to note here that173

dVFS and O(Z ) are both invariant under coordinate changes.174

Thus, for P[O] to be a scalar, p(Z ) must be a scalar itself. A175

pure state |ψ〉 ∈ H is represented by a Dirac-delta functional176

concentrated on a single point of P (H). However, Dirac delta177

functions δ(·) are not invariant under coordinate changes: they178

transform with the inverse of the Jacobian δ → δ/detJ .179

To build an invariant quantity, then, we divide it by180

the square root
√

g of the metric’s determinant. This trans-181

forms in the same way, making their ratio δ̃ = δ/
√

g an182

invariant quantity. This is a standard rescaling that turns183

coordinate-dependent measures, such as Cartesian measure,184

into coordinate-invariant ones. And, this is how the Fubini-185

Study measure (2) is defined from the Cartesian product186

measure. Thus,187

Pψ0 [O] =
∫
P (H)

δ̃[Z − Z0]O(Z )dVFS

= O(Z0)

= 〈ψ0|O |ψ0〉 , (5)

where188

δ̃[Z − Z0] = 1√
g

∏
α

δ
(
Zα − Zα

0

)
and189

δ
(
Zα − Zα

0

) = δ
(
Re[Zα] − Re

[
Zα

0

])
δ
(
Im[Zα] − Im

[
Zα

0

])
.

This extends by linearity to ensembles ρ = ∑M
k=1 pk |ψk〉 〈ψk|190

as191

Pρ[O] =
M∑

h=1

pk

∫
P (H)

δ̃[Z − Zk]O(Z )dVFS

=
M∑

h=1

pkO(Zk )

=
M∑

h=1

pk 〈ψk|O |ψk〉 .

It is now quite natural to consider generalized ensembles192

that correspond to functionals with a continuous measure on193

the pure-state manifold. Such ensembles have appeared pre-194

viously in Refs. [9,19–21] and elsewhere, where aspects of195

their properties have been investigated extensively. For our196

purposes, it will be useful to look at them from the following197

point of view.198

Consider a probability measure on the natural numbers:199

{pk} such that pk � 0 and
∑

k pk = 1. Now let Zk be a200

countable collection of points in P (H), then δk (dZ ) is the 201

Dirac measure concentrated on the point Zk . Then, given {pk} 202

one can define the measure μ(dZ ) on P (H) as 203

μ(dZ ) =
∞∑

k=1

pkδk (dZ ), (6)

which gives precise meaning to the notion of a geometric 204

quantum state with support on a countably infinite number 205

of points. Indeed, with the measure in Eq. (6) and arbitrary 206

observable function O(Z ) one has that 207

P∞[O] =
∫
P (H)

O(Z )μ(dZ )

=
∞∑

k=1

pkO(Zk ).

In more general terms, calling B the Borel σ algebra of the 208

open sets of P (H), then, this procedure defines a measure μ 209

on P (H) such that for a set S ∈ B one has 210

μ(S) =
∫

S
μ(dZ )

=
∞∑

k=1

pkI (Zk ∈ S),

where I (Zk ∈ S) is the indicator function which is 1 if Zk ∈ S 211

and zero otherwise. 212

The resulting geometric quantum state has all the prop- 213

erties desired of an appropriately generalized pure-state 214

ensemble: It preserves normalization and convexity of linear 215

combinations, each of its elements are invariant under coor- 216

dinate changes, and the entire functional P∞ is also invariant 217

under unitary transformations. With some abuse of language, 218

we will often refer to both the functional P and its underlying 219

measure μ as geometric quantum states. 220

III. GEOMETRIC QUANTUM STATE AND THE 221

THERMODYNAMIC LIMIT 222

We are now equipped to address how the geometric formal- 223

ism arises quite naturally for subsystems of a larger system 224

in a pure state, in particular, in a quantum thermodynamic 225

setting. 226

If we have a bipartite system HAB = HA ⊗ HB and 227

|ψAB〉 = ∑
α,i ψ

αi
AB |aα〉 |bi〉 ∈ HAB, the partial trace over the 228

subsystem B is 229

ρA =
dA∑

α,β=1

ρA
αβ |aα〉〈aβ |,

where 230

ρA
αβ =

dB∑
i=1

ψαiψ
βi

= (ψψ†)αβ.

004100-3



QX10041E PRE October 26, 2022 18:20

FABIO ANZA AND JAMES P. CRUTCHFIELD PHYSICAL REVIEW E 00, 004100 (2022)

dA and dB are A’s and B’s dimensions, respectively. Hence, we231

can write the partial trace as232

ρA =
dB∑
j=1

|v j〉〈v j |,

with |vi〉 ∈ HA given as233

|vi〉 :=
dA∑

α=1

ψαi |aα〉 .

However, |v j〉 is not normalized. To address this, we notice234

that235

〈v j〉 vk = (ψ†ψ ) jk

= ρB
jk

= 〈b j | ρB |bk〉 .

This gives236

pB
k = ρB

kk

=
dA∑

α=1

|ψαk|2.

We see that 〈v j〉 vk is a Gramian matrix of vectors |v j〉 ∈ HA237

that conveys the information about the reduced state ρB on the238

subspace HA. Although the vectors |vk〉 are not normalized,239

we readily define their normalized counterpart:240

|χk〉 := |vk〉√〈vk〉 vk

=
dA∑

α=1

ψαk√∑dA
β=1 |ψβk|2

|aα〉 .

And, eventually, we obtain241

ρA =
dB∑

k=1

pA
k

∣∣χA
k

〉〈
χA

k

∣∣, (7)

where {|χ j〉}dB
j=1 is a set of dB pure states on HA which, usually,242

are nonorthogonal. This provides the following geometric243

quantum state, at fixed dB:244

μA
dB

(dZ ) :=
dB∑

k=1

pB
k δχk (dZ ),

where δχk is the Dirac measure with support only on the point245

χk ∈ P (HA) corresponding to the ket |χk〉.246

While it is possible to track all information about {pA
k }dB

k=1247

for small dB, in the thermodynamic limit this rapidly be-248

comes infeasible. A probabilistic description becomes more249

appropriate. One could object that this is not a concern since,250

at each step in the limit, the spectral decomposition ρA =251 ∑dA
i=1 λi |λi〉 〈λi|, where the λi are the Schmidt coefficients of252

|ψAB〉, is always available. However, this retains only ρA’s253

matrix elements, erasing the information contained in the254

vectors |v j〉 =
√

pA
j |χA

j 〉. That is, ρB has been erased from the255

description.256

However, this information can be crucial to understanding 257

A’s behavior. The geometric formalism resolves this issue 258

as it naturally keeps the “relevant” information by handling 259

measures and probability distributions. In the limit of a large 260

“environment” B, despite the fact that storing all information 261

about the environment’s details is exponential in B’s size, the 262

geometric quantum state’s form (convex sum of Dirac deltas) 263

facilitates working with smooth approximations of increasing 264

accuracy. It does so by retaining the information about its 265

“purifying environment.” 266

Since we are interested here in the thermodynamics, one 267

needs to operationally define the thermodynamic-limit proce- 268

dure. We do so by confining ourselves to modular systems and 269

defining an iterative procedure. Modular systems are those 270

made by identical subsystems, each described by a Hilbert 271

space Hd of dimension d . Thus, we imagine our system to 272

contain NA such repetitive units, while the environment con- 273

tains NB � NA. This means HA = H⊗NA
d and HB = H⊗NB

d , so 274

that dA = dNA and dB = dNB . At any given iteration, the joint 275

system will always be in a pure state |ψAB(NB)〉 ∈ HA ⊗ HB. 276

We also imagine that the system’s global dynamics has a 277

Hamiltonian HAB of fixed functional form: for example, the 278

XXZ model. Starting with NB = NA, at each step we add one 279

repetitive unit NB → NB + 1 and choose a series of pure states 280

{|ψAB(NB)〉}NB with the required property that the limit of the 281

average energy has to be finite: 282

lim
NB→∞

〈ψAB(NB)| HAB |ψAB(NB)〉
NA + NB

= ε.

For example, one can decide to consistently pick the ground 283

state of the Hamiltonian HAB. In general, though, there is 284

no unique way of performing the procedure. However, with 285

any specific choice of the series {|ψAB(NB)〉}NB satisfying the 286

constraint on average energy, the procedure is well defined, 287

physical, and meaningful. It provides an operational way to 288

study the thermodynamic limit of the geometric quantum state 289

μA
dB

. 290

That said, by no means does this guarantee the limit always 291

exists. However, it does allow exploring it in a physically 292

meaningful way. In particular, given this operational imple- 293

mentation of the thermodynamic limit, we say that 294

lim
dB→∞

μA
dB

= μA
∞.

This requires a geometric quantum state μA
∞ on P (HA) 295

such that, for any ε > 0 arbitrarily small, one can always 296

find some finite dB such that for any dB � dB one has 297

that D(μA
dB

, μA
∞) � ε. Here, D(μ, ν) is a notion of distance 298

between geometric quantum states that we take to be the 299

measure-theoretic counterpart of the total variation distance: 300

D(μ, ν) := supS∈B |μ(S) − ν(S)|, where B is σ algebra of 301

P (H)’s Borel sets. 302

When the limit exists, we say that the thermodynamic limit 303

of the geometric quantum state is μA
∞ or, equivalently, PA

∞: 304

PA
∞[O] =

∫
P (HA )

μA
∞(dZ )O(Z )

=
∞∑

k=1

pA
kO(χA

k ).
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PA
∞ is a functional whose operational meaning is understood305

in terms of ensemble theory, as explained above. Geometric306

quantum states describe ensembles of independent and non-307

interacting instances of the same quantum system whose pure308

states are distributed according to a given probability distribu-309

tion. Loosely speaking, if we pick a random pure state out of310

the ensemble described by PA
∞, the probability of finding it in311

a small region around Z is dPZ = μA
∞(dZ ).312

IV. FROM GEOMETRY TO STATISTICS313

Several observations serve to motivate defining statistical314

mechanics using the geometric formalism. Consider a large315

system consisting of a macroscopic number M of qubits from316

which we extract, one by one, N qubit states. Describing317

small subsystems of a macroscopic quantum system places318

us in the realm of quantum statistical mechanics. It is there-319

fore reasonable to assume that the qubit states are distributed320

according to Gibbs’ canonical state γβ = e−βH/Zβ . This is321

statistically meaningful by means of ensemble theory and,322

thus, interpreted as a collection of identical noninteracting323

systems, each in an energy eigenstate, with relative frequency324

given by Boltzmann rule.325

However, one can see how the assumption that all systems326

must be in one of the energy eigenstates can be relaxed. After327

we extract the kth sample from the macroscopic system, that328

sample’s state is supposed to be an energy eigenstate |E (k)
i 〉329

with probability p(Z (|E (k)
i 〉)) ∝ e−βE (k)

i . A priori, however,330

there is no reason to assume that the Hamiltonians Hk of all the331

samples are identical to each other. In fact, |Eh
i 〉 �= |Ek

i 〉 and332

Eh
i �= Ek

i . Even if they are, in principle there is no reason why333

the qubits should be in their energy eigenstates. This point was334

originally made by Khinchin [29] and Schrödinger [30], who335

advocated for the use of ensembles of wave functions.336

To address this, a description of the system’s state that337

does not contain this assumption is provided by the contin-338

uous counterpart of Gibbs canonical state, first introduced in339

Ref. [19], written as the following functional:340

Pβ[A] = 1

Qβ[h]

∫
P (H)

e−βh(Z )A(Z )dVFS,

where341

Qβ[h] =
∫
P (H)

e−βh(Z )dVFS,

with h(Z ) = ∑
αβ HαβZβZ

α
. While this distribution retains a342

characteristic feature of the canonical Gibbs ensemble343

pβ (Z (|En〉))
pβ (Z (|Em〉))

= e−β(En−Em ),

it also extends this “Boltzmann” rule to arbitrary states:344

− ln

[
pβ (Z (|ψ〉))
pβ (Z (|φ〉))

]
= β[h(Z (ψ )) − h(Z (φ))].

Therefore, formulating the statistical mechanics of quantum345

states via the geometric formalism differs from the standard346

development, based on an algebraic formalism. This becomes347

obvious when we write the Gibbs canonical density matrix γβ348

in the geometric formalism 349

pGibbs(Z ) =
D−1∑
k=0

e−βEk

Tre−βH
δ[Z − Z (|Ek〉)]

�= e−βh(Z )

Qβ[h]
.

This makes explicit the standard formalism’s assumption that 350

the measure is Dirac like: peaked on energy eigenstates. 351

Despite quantum statistical mechanics’ undeniable suc- 352

cesses, this assumption is not, in general, justified. In point 353

of fact, it is the origin of the missing environmental infor- 354

mation noted above. These arguments motivate an alternative 355

formulation of the statistical mechanics of quantum systems, 356

first introduced in Ref. [19], one based on geometric quantum 357

states rather than on the familiar density matrices. 358

V. STATISTICAL TREATMENT OF GEOMETRIC 359

QUANTUM MECHANICS 360

Representing a quantum system’s state as a continuous 361

mixed state was first broached, to our knowledge, by Brody 362

and Hughston [19,20]. Our goal here is to advance the idea, 363

going from statistical mechanics to thermodynamics. To set 364

the stage for a geometric quantum thermodynamics, the fol- 365

lowing first presents our version of their results, derived via 366

the formalism defined in Sec. III, and then expands on them. 367

We begin with the fundamental postulate of classical statisti- 368

cal mechanics and its adaptation to quantum mechanics: the 369

microcanonical and canonical ensembles. 370

A. Classical microcanonical ensemble: A priori 371

equal probability 372

At its most basic level, the fundamental postulate of classi- 373

cal statistical mechanics is that, in an isolated system’s phase 374

space, microstates with equal energy have the same chance of 375

being populated. Calling �q and �p generalized velocities and 376

positions, which provide a coordinate frame for the classical 377

phase space, the postulate corresponds to assuming that the 378

microcanonical probability distribution Pmc of finding the sys- 379

tem in a microstate ( �p, �q) is, at equilibrium, 380

Pmc(�q, �p) =
{

1/W (E ) if E (�q, �p) ∈ [E, E + δE],
0 otherwise.

Here, W (E ) is the number of microstates (�q, �p) belonging to 381

energy shell Imc := [E, E + δE]: 382

W (E ) =
∫

E (�q, �p)∈Imc

d �q ∧ d �p,

with
∫

d �q ∧ d �p Pmc(�q, �p) = 1. 383

B. Quantum microcanonical ensemble: A priori 384

equal probability 385

Quantum statistical mechanics relies on the quantum ver- 386

sion of the Gibbs ensemble. For macroscopic isolated systems 387

this is usually interpreted as the quantum system having equal 388

chance pmc to be in any one of the energy eigenstates |En〉, as 389
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long as En ∈ Imc:390

pmc(En) =
{

1/Wmc if En ∈ [E, E + δE],
0 otherwise.

Here, Wmc = ∑
En∈Imc

1 is the number of energy eigenstates391

that belong to the microcanonical window Imc. Thus, the392

equal-probability postulate provides the following definition393

for the microcanonical density matrix:394

ρmc = 1

Wmc

∑
En∈Imc

|En〉 〈En| .

Geometric quantum mechanics gives an alternative way to ex-395

tend equal probability to quantum systems, which we discuss396

now.397

C. Geometric quantum microcanonical ensemble: A priori398

equal probability399

The following summarizes an approach to the statis-400

tical mechanics of quantum systems first presented in401

Refs. [19,20,22]. In geometric quantum mechanics the role of402

the Hamiltonian operator as the generator of unitary dynamics403

is played by the real quadratic function404

h(Z ) =
∑
αβ

HαβZαZ
β
,

where Hαβ are the matrix elements of the Hamiltonian oper-405

ator in a reference basis [see Eq. (3)]. As h is the generator406

of Liouville dynamics on the pure-state manifold P (H), it is407

easy to see that there is a straightforward geometric imple-408

mentation of the a priori equal-probability postulate in the409

quantum setting:410

pmc(Z ) =
{

1/�(E ) h(Z ) ∈ Imc for all Z ∈ P (H),
0 otherwise.

Due to normalization, �(E ) is the volume of the quantum-411

state manifold enclosed by the microcanonical energy shell412

Imc:413

�(E ) =
∫

h(Z )∈Imc

dVFS,

where dVFS is the Fubini-Study volume element introduced in414

Sec. II. In probability-and-phase coordinate Zα = √
pαeiνα the415

volume element has the explicit form416

dVFS =
n∏

α=1

d pαdνα

2
.

Following Heslot [4], we introduce dimensional coordi-417

nates via418

Zα = X α + iY α

√
h̄

,

where X α and Y α are real numbers with dimensions419

[X ] = [
√

h̄] = length
√

mass/time and [Y ] = [
√

h̄] =420

momentum
√

time/mass. The ratio X/Y is a pure number,421

while their product XY has the dimension h̄ of an action.422

Note that d pαdνα/2 = dXαdYα/h̄. This allows us to write the423

Fubini-Study measure in a classical fashion: 424

dVFS =
D−1∏
α=1

dX αdY α

h̄

= d �X d �Y
h̄D−1 ,

where the X α play the role of generalized coordinates and 425

Y α that of generalized momenta. However, it is worth noting 426

that the global geometry of the classical phase space differs 427

substantially from that of P (H). 428

Given these definitions, it is now possible to calculate the 429

number of states �(E ) ≈ ω(E )δE , where δE is the size of the 430

microcanonical energy shell and ω(E ) is the density of states: 431

ω(E ) =
∫

h(Z )=E
dVFS

= πD−1

(D − 1)!

D−1∑
k=0

D−1∏
j �=k, j=0

(E − Ek )+
(Ej − Ek )

,

where (x)+ := max(0, x). Since E ∈ [E0, Emax], there exists 432

an n such that E ∈]En, En+1[. This means that we can stop the 433

sum at k = n(E ) since for all k > n we have (E − Ek )+ = 0. 434

This gives 435

ω(E ) = πD−1

(D − 1)!

n(E )∑
k=0

(D − 1)(E − Ek )D−2∏D−1
j �=k, j=0(Ej − Ek )

. (8)

This is in agreement with Eq. (5) of Ref. [20]. Appendix B 3 436

provides a detailed proof, using a convenient mathematical 437

result by Ref. [31]. 438

D. Quantum canonical ensemble: Statistical physics 439

of quantum states 440

The geometric approach to microcanonical ensembles ex- 441

tends straightforwardly to the canonical case, defining the 442

continuous canonical ensemble as 443

pβ (Z ) = e−βh(Z )

Qβ[h]
, (9)

where 444

Qβ[h] =
∫
P (H)

e−βh(Z )dVFS.

Reference [19] first proposed the general form of the canon- 445

ical partition function Qβ[h], working it out explicitly in 446

several low-dimensional cases. Follow-on work provided an 447

exact formula valid for arbitrary finite-dimensional Hilbert 448

spaces [20]. Appendix B 3 provides an alternative proof and 449

explicit examples of 450

Qβ[h] =
D−1∑
k=0

e−βEk∏n
j=0, j �=k (βEk − βEj )

. (10)

This is in full agreement with Eq. (6) of Ref. [20]. 451

With the ensembles laid out we can now see the emergence 452

of geometric quantum thermodynamics, with its fundamental 453

laws. 454
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VI. GEOMETRIC QUANTUM THERMODYNAMICS455

With a consistent statistical geometric quantum mechanics456

in hand, we can now formulate geometric quantum thermody-457

namics. This is modeled via the geometric canonical state (9).458

Notice that, in this setting, an appropriate entropy definition459

has yet to be given. Paralleling early work by Gibbs, one can460

consider the functional461

Hq[p] = −kB

∫
P (H)

p(Z ) ln p(Z )dVFS.

An information-theoretic analysis of this quantity and its re-462

lation with the von Neumann entropy was done in Ref. [32].463

This functional allows properly evaluating p(Z )’s entropy if464

and only if the dimension of the support of p has the same real465

dimension of CPn. Reference [33] defined and explored the466

appropriate generalization to geometric quantum states with467

generic support, including fractal distributions.468

Let us consider Hq’s role, though, for the quantum foun-469

dations of thermodynamics. For Eq. (9)’s geometric canonical470

ensemble this gives471

Hq = β(U − F ),

where472

U :=
∫
P (H)

pβ (Z )h(Z )dVFS and

F := − 1

β
ln Qβ

are, respectively, the average energy and the free energy aris-473

ing from the geometric partition function Qβ .474

This means that we can directly import a series of funda-475

mental results from classical thermodynamics and statistical476

mechanics into the quantum setting, fully amortizing the effort477

invested to develop the geometric formalism.478

A. First law479

The first result is a straightforward derivation of the first480

law:481

dU =
∫
P (H)

dVFS p(Z )dh(Z ) +
∫
P (H)

dVFSd p(Z )h(Z )

= dW + dQ. (11)

We call the contribution dW work since it arises from a change482

in the Hamiltonian h(Z ) generated by an external control483

operating on the system. We call the contribution dQ heat,484

as it is associated with a change in entropy. Indeed, by direct485

computation one sees that486

dHq = βdQ and dF = dW.

This gives the standard form of the first law for isothermal,487

quasistatic processes:488

dU = T dHq + dF,

where T := (kBβ )−1. Conforming to the conventional statis-489

tical approach to thermodynamics, beyond energy conserva-490

tion, one can use the first law to extract phenomenological491

relations (e.g., Maxwell’s relation) that hold at thermo-492

dynamic equilibrium: ∂U/∂Hq = T . In this, the partial493

derivatives are intended as infinitesimal changes occurring 494

while maintaining the system at thermal equilibrium. 495

B. Second law 496

The second law follows from the Crooks [34] and Jarzynski 497

[35] fluctuation theorems [26,36,37]. Their treatment can be 498

straightforwardly exploited, thanks to the Hamiltonian nature 499

of Schrödinger’s equation when written on the quantum-state 500

manifold P (H). 501

As summarized in Eq. (3), given a Hamiltonian h(Z, λ) 502

on P (H) that depends on an externally controlled parame- 503

ter λ = λ(t ), the unitary evolution is given by the Liouville 504

equation (3) as in classical mechanics: 505

∂ p(Z )

∂t
= {p(Z ), h(Z, λ)}.

Notably, one can apply Jarzynski’s original argument [38] to 506

driven quantum systems, without the need to exploit the two- 507

times measurement scheme [26]. The setup is standard. 508

The ensemble of quantum systems starts in a geometric 509

canonical state defined by Eq. (9) and is then driven with 510

a Hamiltonian that depends on a parameter λ following the 511

time-dependent protocol λ = λ(t ) with t ∈ [0, 1]. This leads 512

directly to an ensemble of protocol realizations. That said, we 513

define the single-trajectory work as 514

W =
∫ 1

0
λ̇(t )

∂h

∂λ

(
Z (ψt ), λ(t )

)
dt,

where λ̇ = dλ/dt and Z (ψt ) are the homogeneous coordi- 515

nates on CPD−1 for |ψt 〉. Therefore, |ψt 〉 are the solutions of 516

Eq. (4). 517

With these premises, Jarzynski’s original argument applies 518

mutatis mutandis to give 519

〈e−βW 〉ens = Qβ[h(λ f )]

Qβ[h(λi)]

= e−�F , (12)

where λ(0) = λi and λ(1) = λ f and 〈x〉ens denotes the ensem- 520

ble average over many protocol realizations. From this, one 521

directly applies Jensen’s inequality 522

〈e−βW 〉ens � e−β〈W 〉
ens

to obtain the second law’s familiar form 523

〈W 〉ens � F. (13)

VII. GEOMETRIC THERMALIZATION IN A 524

PHENOMENOLOGICAL MODEL 525

The validity of geometric quantum thermodynamics, as 526

defined above, hinges on the assumption of (geometric) ther- 527

mal equilibrium. It therefore implicitly relies on a dynamical 528

mechanism driving the system towards the geometric canoni- 529

cal ensemble. This section shows that this occurs in at least 530

one model for the out-of-equilibrium dynamics of a single 531

qubit. 532

A quantum system interacting with its surroundings 533

evolves in a nonunitary fashion due to the fact that it ex- 534

changes energy (or other extensive quantities) and so becomes 535
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correlated with its environment. This can be modeled using536

the theory of open quantum systems and its dissipative dy-537

namics [39–42]. While most approaches focus on establishing538

an equation governing the dynamical evolution of the system’s539

density matrix, here we are interested in the thermodynamics540

of the geometric quantum state as the ensemble behind the541

density matrix. A principled description and modeling of the542

dynamics of an open quantum system within the geometric543

approach is beyond the present scope, although, its develop-544

ment is currently ongoing.545

Instead, the following shows how to represent dissipation546

within the geometric formalism for a stochastic model. This547

serves a twofold purpose. First, it provides simple examples548

of how geometric quantum mechanics evolves open quantum549

systems in a variety of cases. Second, it supports the theory550

developed above with a numeric analysis of an experimentally551

relevant scenario.552

While the emphasis is still on the geometric formalism,553

and its natural phase-space geometry, this approach is not far554

from “stochastic Schrödinger equations.” See, for example,555

Refs. [39,43–46] that import techniques from the classical556

theory of stochastic processes. The following exploits this557

idea, applying it to the geometric language and drawing from558

a variety of known approaches. It does so by examining a559

phenomenological model for dissipative dynamics that, as we560

show, exhibits thermalization towards the geometric canonical561

ensemble.562

It considers the stochastic dynamics of a two-level sys-563

tem with state space P (H) ∼ CP1. Generally, this results564

from a two-state approximation of a more complex system565

interacting with an environment. It gives a standard approxi-566

mation that provides sensible results in a variety of physical567

regimes. These include systems that inherently consist of568

two states, such as spin 1
2 , chiral molecules [47–53], and569

atoms at low temperature, considering only the two lowest570

states. They also include, though, continuous-variable sys-571

tems in a double-well potential, Josephson junctions [54],572

and effective descriptions of macroscopic condensates. As a573

related technical aside beyond quantum mechanics, we note574

that the proper analysis and simulation of stochastic dynam-575

ics on Riemannian manifolds is a topic of its own interest576

[55,56].577

Accounting for the nonisolated nature of the system in-578

volves modeling the environment and the latter’s effect on579

the effective qubit. This, therefore, depends on the specific580

case under study and leads to different effective equa-581

tions governing the qubit’s nonequilibrium behavior. From582

the system’s perspective, however, a general setup is avail-583

able in a regime in which coupling with the environment584

is weak and the environment is effectively large and dis-585

ordered. These approximations are expected to hold for586

large environments, where one can argue for the emer-587

gence of stochastic dynamics for the evolution of the open588

system.589

The prototypical case, in which a specific form of these590

equations can be derived by integrating out the environmental591

degrees of freedom, is given by the Caldeira-Leggett model592

[57–59] with an environment modeled by an infinite num-593

ber of noninteracting harmonic oscillators. Respecting these594

approximations’ validity, a generic model of Langevin-type595

dynamics on CP1 is 596

ṗ = −∂φE + Vp + Wp, (14)

φ̇ = ∂pE + Vφ + Wφ,

in (p, φ) coordinates. In this, E = E (p, φ) is an effective 597

Hamiltonian generating the deterministic part of the dynamics 598

[see Eq. (4)]. This is a renormalized version of the system’s 599

Hamiltonian. Vp and Vφ depend linearly on (p, φ) and ( ṗ, φ̇). 600

They describe (i) dissipative mechanisms such as friction, 601

modeled with a dependence on ṗ or φ̇, as in standard Langevin 602

equations, and (ii) unstable states, modeled with a dependence 603

Vp = −kp to allow for exponential decay pdecay(t ) ∼ p0e−kt , 604

as in a two-level atom decaying into its ground state. 605

Finally, Wp and Wφ are stochastic variables with no 606

drift that account for the environment’s mixing effect on 607

the system. When the environment is sufficiently large and 608

unstructured, they can be modeled as Gaussian processes 609

E[Wa(s + t )Wb(s)] = E[Wa(t )Wb(0)] ≈ δabγaδ(t ), with a, b ∈ 610

{p, φ} and γa ∝ kBT , with T the temperature of the environ- 611

ment. This is true in the Caldeira-Leggett model for Ohmic 612

baths. 613

As anticipated above, specific forms of these equa- 614

tions have successfully modeled the evolution of a variety 615

of two-level systems. We also note how, in several cases, 616

and also in Refs. [60–64], this approach to open quantum 617

systems is quite similar to GQM as it relies on canoni- 618

cal representations of the quantum state space. For chiral 619

molecules, for example, one has E (p, φ) = δ〈σx〉 + ε〈σz〉 = 620

δ2
√

p(1 − p) cos φ + ε(1 − 2p), Vp = −k ṗ, with k ∼ 10−1, 621

Wφ = Vφ = 0 and Wp(t ) white noise with strength γp ∝ kBT . 622

The thermodynamics arising from this set of dynamical equa- 623

tions has been studied in detail [47–53]. 624

The goal here is rather to showcase the experimental rel- 625

evance of the geometric canonical ensemble. The following 626

does so showing, numerically, that the evolution provided by 627

the stochastic equations above leads to the dynamical emer- 628

gence of the geometric canonical ensemble. This is directly 629

relevant to the out-of-equilibrium dynamics of an ensemble 630

of chiral molecules or of an ensemble of experiments with 631

Josephson junctions. 632

The specific stochastic equations under study are 633

ṗ = δ2
√

p(1 − p) sin φ − kd p − k f φ̇ + √
γ ξ (t ), (15)

φ̇ = −δ
1 − 2p√
p(1 − p)

cos φ + 2ε,

where kd and k f are coefficients accounting for dissipation 634

mechanisms, such as instability of a state and friction. Up 635

to simple redefinition of variables, that does not change the 636

physics, the model with kd = 0 is the same as in Refs. [49,50]. 637

Exploiting the Markovian character of Gaussian noise, the 638

statistics of many independent realizations of this stochastic 639

process on CP1 can be extracted by examining the time- 640

aggregated statistics of a single, very long, trajectory. We thus 641

simulate the long-time dynamics of a qubit initiated in a fully 642

out-of-equilibrium configuration q0(p, φ) = δ(p − p0)δ(φ − 643

φ0), corresponding to a pure state |p0, φ0〉 = √
1 − p0 |0〉 + 644√

p0eiφ0 |1〉, where |0〉 , |1〉 are the standard computational 645

basis. For chiral molecules, these are the (left and right) 646
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chiral eigenstates. Here, we show the results for p0 = 0.9 and647

φ = 4π/3 and checked that they do not depend on this choice.648

Results are shown for parameter values δ = ε = 1, γ = 0.2,649

and kd = 0. While these match the model in Refs. [49,50], the650

results are largely independent of this specific choice and hold651

for broad regimes in (δ, ε, kd , γ ) parameter space.652

The analysis was performed as follows. After generating653

a single long-time trajectory using the Milstein method, we654

collected statistics P̃nk . We then generated a histogram to ap-655

proximate the probability that, at any given time, the system is656

found in a small region of the state space P̃nk ≈ Pr[Z ∈ Ink] =657

limT →∞
∫ T

0

∫
Ink

qt (Z )dVFS. In this, {Ink}N
n,k=1 is a coarse658

graining of CP1 in which each region Ink = [pn, pn+1] ×659

[φk, φk+1] has the same Fubini-Study volume μFS(Ink ) =660

N−2, pk = n/N , and φk = 2πk/N . Reference [33] gives a661

detailed analysis of why this is an appropriate coarse graining,662

its information-theoretic relevance, and how to generalize it to663

arbitrary CPn.664

Concretely, the numerical analysis used N = 50. The dy-665

namics was generated setting T = 102 in units in which h̄ =666

δ = 1. This was chosen by numerically checking that the667

reconstructed histogram does not change significantly when668

increasing T . The time window [0, T ] was discretized to669

use the Milstein algorithm to generate Gaussian noise with670

dt = 10−4. These, again, are consistent with the choices in671

Refs. [49,50]. In short, the number of time steps NT = 106,672

with NT dt = T .673

To extract the inverse temperature β the collected statistics674

were used to perform a 2D least-square fit to the geometric675

canonical ensemble. The latter’s appropriateness was estab-676

lished by using the following figure of merit: f = ∑
n,k |P̃nk −677

qfit
nk|2 ∈ [0, 1], where qfit

nk = Q−1β∗ ∫
Ink

dVFSe−β∗E (Z ) and β∗ is678

the optimal value extracted from the least-square fit. This is679

the total variation distance between the coarse-grained geo-680

metric quantum states obtained from the data {P̃nk}n,k and the681

one obtained from the best fit to the geometric canonical en-682

semble {qfit
nk}n,k . It ranges from zero to one and is the classical683

analog of the well-known trace distance for density matrices.684

At selected parameters, f ≈ 5.6 × 10−4. This quantifies the685

visually excellent agreement seen in Fig. 2.
2

686

Before drawing broad conclusions, a few comments are in687

order regarding specific results. First, thermalization is ob-688

served even when changing parameter values. This is true for689

any of the Hamiltonian parameters δ and ε. Moreover, there690

are good numerical indications that this holds for any kd > 0.691

However, kd and γ do affect the effective (inverse) temper-692

ature β∗ the system reaches. Analyzing how this happens693

and the underlying mechanisms is beyond the present scope,694

which aimed only at establishing the predictive relevance of695

the geometric canonical ensemble in an experimentally realis-696

tic setting.697

Second, we ignored issues related to the timescale at which698

the aggregated geometric quantum state reaches the canonical699

form. These were bypassed by using a time window [0, T ]700

that guaranteed the aggregated data does not change when701

increasing T .702

Third, Eq. (15)’s model arises from a bath that is a set of703

noninteracting harmonic oscillators with Ohmic correlation704

functions and interactions linear in the phase difference φ,705

FIG. 1. Alternate ensembles in the geometric and standard 3
settings: differences are plainly evident. Canonical probability dis-
tributions on a qubit’s state manifold CP1 with coordinates Z =
(Z0, Z1) = (

√
1 − q,

√
qeiχ ) where q ∈ [0, 1] and χ ∈ [−π, π ].

CP1 discretized using a 100 × 100 grid on the (q, χ ) coordinates
exploiting the fact that, with these coordinates, the Fubini-Study
measure is directly proportional to the Cartesian volume element
dVFS = dq dχ/2. The Hamiltonian is H = σx + σy + σz, with h̄ =
1 and inverse temperature β = 5 (kB = 1). (Right) Gibbs ensem-
ble, where the measure is concentrated around coordinates of the
respective eigenvectors (q(|E0〉), χ (|E0〉)) = (0.789, −2.356) and
(q(|E1〉), χ (|E1〉)) = (0.211, 0.785). (Left) Geometric canonical en-
semble. Notice the difference in scale, due to the fact that the
geometric canonical ensemble has continuous support on the quan-
tum state space, not just on single points (energy eigenstates).

leading to a friction ∝φ̇. A different kind of interaction is 706

possible, linear in the population p, that leads to a friction term 707

ṗ. While not reported here, there are numerical indications 708

that this alternative exhibits thermalization to the geometric 709

canonical ensemble as well. This supports the intuition that 710

thermalization is mostly driven by the lack of memory of the 711

stochastic term, ultimately due to the Ohmic nature of the 712

bath’s correlation functions. 713

Fourth, the effective nature of the description makes the 714

model widely applicable. And so, a number of straightfor- 715

ward generalizations would be quite interesting to explore. 716

FIG. 2. Comparing time-aggregated data of a single trajec-
tory generated by Eq. (15)’s stochastic model (left) to the
fit to a geometric canonical ensemble with functional form
as in Eq. (9) (right). Here, h(Z ) = E (p, φ) = δ〈σx〉 + ε〈σz〉 =
δ2

√
p(1 − p) cos φ + ε(1 − 2p), with δ = ε = 1. The excellent

agreement is visually clear, and it is quantified by a total variation
distance between the two distributions of f ≈ 5.6 × 10−4.
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These include, for example, changing the noise structure to717

accommodate limited memory and allowing for competition718

between the different ways in which the system interacts with719

the harmonic bath and the decay in both p and φ. Of particu-720

lar interest, both conceptually and practically, is determining721

which terms lead to dynamical localization and what kinds722

of system-bath interactions are necessary for these terms to723

emerge by integrating out the bath degrees of freedom.724

VIII. SUMMARY AND CONCLUSION725

While historically quantum mechanics is firmly rooted in726

an algebraic formalism, an alternative based on the differential727

geometry of quantum state space P (H) ∼ CPD−1 is readily728

available.729

As previous works repeatedly emphasized [1,4,10], the730

geometric approach brings quantum and classical mechan-731

ics much closer, aiming to leverage the best of both. The732

space P (H) of quantum states is a Kähler space, with two733

intertwined notions of geometry: Riemannian and symplec-734

tic. It also sports a preferred notion of measure, selected by735

invariance under unitary transformations: the Fubini-Study736

measure. One can exploit this rich geometric structure to737

define generic probability measures on P (H). The result is a738

new kind of quantum state, the geometric quantum state [27],739

that generalizes the familiar density matrix but provides more740

information about a quantum system’s physical configuration.741

Essentially, it expresses the multitude of ensembles, induced742

by different environments, behind a density matrix.743

Leveraging parallels between the geometric formalism and744

classical mechanics, the statistical treatment of geometric745

quantum mechanics provides a continuous counterpart of746

Gibbs ensembles. Section VI laid out how to establish quan-747

tum thermodynamics on the basis of the geometric formalism.748

Building on Sec. V’s statistical treatment of geometric quan-749

tum mechanics, it derived the First and Second Laws of750

geometric quantum thermodynamics. Despite the two results751

appearing identical to the existing laws, derived within stan-752

dard quantum statistical mechanics, they involve quantities753

that are genuinely different. Understanding how Eqs. (11),754

(12), and (13) connect to their standard counterparts [26]755

is a challenge that we must leave for the future. We note756

Ref. [65] obtained a similar result that, lacking the geometric757

perspective, considered microcanonical and canonical ensem-758

bles of pure states, as first advocated by Khinchin [29] and759

Schrödinger [30].760

Remarkably, predictions from standard quantum statistical761

mechanics and its geometric counterpart differ. This poses762

a challenge: Which theory should one use? Ultimately, this763

problem does not have a generic solution. Answering the764

question requires understanding the details of the long-time765

dynamic of an open quantum system and, in general, this will766

be be model specific. Here, to showcase the relevance of the767

geometric approach, we showed that there is a class of known768

stochastic models, aimed at describing chiral molecules and769

Josephson’s junctions, that indeed does exhibit dynamical770

evolution towards the geometric canonical ensemble. One771

thus expects the predictions from geometric quantum thermo-772

dynamics to hold in the cases where the dynamical model in773

Eq. (15) is justified.774

The geometric approach to quantum thermodynamics 775

opens the door to new and interesting questions and novel 776

research avenues. Let us mention two. First, the ensem- 777

ble interpretation of geometric quantum mechanics suggests 778

employing the geometric formalism to describe the thermo- 779

dynamics of ensembles, rather than relying on that of density 780

matrices. The main advantage is that this delineates the en- 781

vironmental resources required to support a given density 782

matrix. Indeed, while two different experimental setups can 783

give rise to the same density matrix, their difference implicitly 784

lies in the distinct ways the density matrix is created. This is 785

directly relevant to the energetics of information processing 786

technologies built from quantum computers and quantum sen- 787

sors. 788

Second, from a conceptual perspective, geometric quantum 789

thermodynamics and statistical mechanics are as at least as 790

powerful as their standard counterpart. Yet, they can make 791

different predictions. Self-consistency of thermodynamic pre- 792

dictions suggests that this difference should be negligible in 793

a truly macroscopic regime in which both system and envi- 794

ronment are macroscopically large. This is, however, a highly 795

nontrivial statement whose proof requires a much better un- 796

derstanding of the emergence of thermodynamic predictions 797

from fully dynamical considerations. We believe the new re- 798

search avenues, together with the larger perspective provided 799

by geometric quantum mechanics, will greatly enrich our 800

understanding of the phenomenology of many-body quantum 801

systems. 802

The data that support the findings of this study are available 803

from the corresponding authors upon reasonable request. 804
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APPENDIX A: INDEPENDENT RESULT 817

For completeness, the following summarizes the Ref. [31] 818

result called on in calculating the density of states. Given the 819

n-simplex �n : {�x ∈ Rn
+ : �e · �x � 1}, where �e is the vector of 820

ones in Rn, a section of the simplex is defined by a vector �a ∈ 821

Sn and we want to compute the n-dimensional and (n − 1)- 822

dimensional volumes of the following sets: 823

�(�a, t ) := �n ∩ {�x ∈ Rn : �aT · �x � t} and

S(�a, t ) := �n ∩ {�x ∈ Rn : �aT · �x = t},

where �aT is the transpose of �a. The result assumes flat 824

geometry, which is obtained from the volume element 825
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d p1d p2 . . . d pn. Letting (x)+ := max(0, x) and a0 = 0, then826

Vol(�(�a, t )) = 1

n!

n∑
k=0

(t − ak )n
+∏n

j �=k, j=0(a j − ak )

= 1

n!

t n∏n
k=1 ak

+ 1

n!

n∑
k=1

(t − a j )n
+∏n

j �=k, j=0(a j − ak )

and827

Vol
(
S(�a, t )

) = 1

(n − 1)!

n∑
k=0

(t − ak )n−1
+∏n

j �=k, j=0(a j − ak )

= 1

(n − 1)!

t n−1∏n
k=1 ak

+ 1

(n − 1)!

n∑
k=1

(t − a j )n−1
+∏n

j �=k, j=0(a j − ak )
.

APPENDIX B: GEOMETRIC QUANTUM DENSITY828

OF STATES AND CANONICAL ENSEMBLE829

Again for completeness, we first recall the basic defini-830

tions, given in the main text, used in the two sections that831

follow to calculate the density of states and statistical physics832

of quantum states in the geometric formalism.833

1. Setup and notation834

Consider a Hilbert space H of finite dimension D. The835

manifold P (H) of states is the complex projective space836

CPD−1. A point Z on the manifold is a set of D homogeneous837

and complex coordinates {Zα}. A point corresponds to a pure838

state with the identification Z ↔ |ψ〉 = ∑D−1
α=0 Zα |eα〉, where839

{|eα〉}α is an arbitrary but fixed basis of H. This parametriza-840

tion underlies the choice of a reference basis that, however,841

is ultimately irrelevant. While concrete calculations of exper-842

imentally measurable quantities can be made easier or harder843

by an appropriate coordinate system, the overall result is844

independent on such choices. The quantum mechanical expec-845

tation value is a quadratic and real function on the manifold846

of the quantum states:847

a(Z ) := 〈ψ (Z )| A |ψ (Z )〉

=
D−1∑

α,β=0

Aα,βZαZ
β
.

When A = H is the system’s Hamiltonian, the function848

a(Z ) = h(Z ) generates the vector field VH on CPD−1. The849

associated Hamiltonian equations of motion become the850

Schrödinger equation (and its complex conjugate) when using851

the standard formalism with Hilbert spaces. In the geometric852

formalism, states are functionals from the algebra of observ-853

ables to the real numbers. Effectively, they are probability854

distributions, both discrete and continuous, on the quantum-855

state manifold CPD−1.856

2. Microcanonical density of states: Proof of Eq. (8) 857

We start with the a priori equal-probability postulate and 858

build the microcanonical shell as follows: 859

pmc(Z ) =
{

1/W (E ) if h(Z ) ∈ [E, E + δE],
0 otherwise.

Due to normalization we have 860

W (E ) =
∫

h(z)∈Imc

dVFS,

where dVFS is the volume element of the Fubini-Study metric: 861

dVFS = 1

2n
d p1d p2 . . . d pndν1 . . . dνn.

This gives the manifold volume 862

Vol(CPn) = πn

n!
.

For concrete calculations, normalize the measure so that 863

CPD−1’s total volume is unity, using 864

dμn = dVFS

Vol(CPn)

= n!

(2π )n

n∏
k=1

d pk

n∏
k=1

dνk .

This does not alter results in the main text. On the one hand, 865

calculations of measurable quantities are independent of this 866

value. On the other, here, at the calculation’s end, we reintro- 867

duce the appropriate normalization. 868

We can now compute W (E ) for a generic quantum sys- 869

tem. Assuming that δE � |Emax − Emin|, we have W (E ) = 870

�(E )δE and �(E ) is the area of the surface � defined by 871

h(Z ) = E : 872

�(E ) =
∫

�

dσ,

where dσ is the area element resulting from projecting both 873

the symplectic two-form and the metric tensor onto the sur- 874

face �. To compute this we choose an appropriate coordinate 875

system 876

Zα = 〈Eα〉 ψ (Z )

= nαeiνα

adapted to the surface �: 877

h(Z ) = 〈ψ (Z )| H |ψ (Z )〉

=
n∑

k=0

Ek| 〈ψ〉 Ek|2

=
n∑

k=0

Ekn2
k

= E .

On both sides we subtract the ground-state energy E0 878

and divide by Emax − E0 to obtain the following defining 879
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equation for � ⊂ CPn:880

F (n0, n1, . . . , nn, ν1, . . . , νn) =
n∑

k=0

εkn2
k − ε = 0,

with881

εk = Ek − E0

Emax − E0
∈ [0, 1] and

ε = E − E0

Emax − E0
∈ [0, 1].

We use octant coordinates for CPn:882

(Z0, Z1, . . . , Zn) = (n0, n1eiν1 , n2eiν2 . . . , nneiνn ),

where nk ∈ [0, 1] and νk ∈ [0, 2π [. With the transformation883

pk = n2
k the equation for � becomes884

n∑
k=0

pkεk − ε = 0.

a. Qubit case885

The state space of a single qubit is CP1. The latter’s886

parametrization887

pε0 + (1 − p)ε1 = 1 − p

means that h(Z ) � E is equivalent to 1 − p � ε. The volume888

is therefore given by889

Voln=1(E ) = 1

π

∫
h(φ)�E

dVFS

= 1

2π

∫ 1

1−ε

d p
∫ 2π

0
dν

= ε

= E − E0

E1 − E0
.

In turn, this gives890

Wn=1(E ) = Voln=1(E + δE ) − Voln=1(E )

= 1

E1 − E0
δE .

In other words,891

�n=1(E ) = 1

E1 − E0
,

which is a constant density of states.892

b. Qutrit case893

The state space of qutrits is CP2, with parametriza-894

tion Z = (Z0, Z1, Z2) = (1 − p − q, peiν1 , qeiν2 ). With these895

coordinates, the equation defining the constant-energy hyper-896

surface is897

(1 − p − q)ε0 + pε1 + qε2 = pε1 + q � ε.

And, it has volume898

Voln=2(E ) = 2

(2π )2

∫ ∫
dq dq

∫ ∫
dν1dν2

= 2
∫ ∫

S
d p dq.

In this, we have the surface S := {(p, q) ∈ R2 : p, q � 0, p + 899

q � 1, q � ε − pε1}. Examining the geometry we directly see 900

that the region’s area is 901

A(S) =
{

1
2 − 1

2
(1−ε)2

1−ε1
when ε � ε1,

ε2

2ε1
when ε < ε1

or 902

A(S) =
{

1
2 − 1

2
(E2−E )2

(E2−E1 )(E2−E0 ) when E � E1,
1
2

(E−E0 )2

(E1−E0 )(E2−E0 ) when E < E1.

One can check that the function A(S)[E] and its first derivative 903

are continuous. Eventually, we have 904

Wn=2(E ) = Voln=2(E + δE ) − Voln=2(E )

=
{ 2(E2−E )

(E2−E1 )(E2−E0 )δE when E � E1m
2(E−E0 )

(E2−E0 )(E1−E0 )δE when E < E1.

c. Generic qudit case: CPn
905

To use the Ref. [31] result, summarized in Appendix A, we 906

must change coordinates. Again, using “probability + phase” 907

coordinates 908

n∑
k=0

pkEk = E

means that 909

n∑
k=1

pkak = t (E ),

ak = a(Ek )

= Ek − E0

R
,

R =
√√√√ n∑

k=1

(Ek − E0)2, and

t (E ) = E − E0

R
.

In this way, we can apply the result, finding 910

Voln(E ) =
n∑

k=0

(t − ak )n
+∏n

j �=k, j=0(a j − ak )

=
n∑

k=0

(E − Ek )n
+∏n

j �=k, j=0(Ej − Ek )
.

Since E ∈ [E0, Emax], there exists an n such that E ∈ 911

]En, En+1[. This means that the sum in the second term stops 912

at k = n because after that (E − Ek )+ = 0. Hence, there exists 913

n(E ) such that for all k > n we have (E − Ek )+ = 0. This, in 914

turn, shows that 915

Voln(E ) =
n(E )∑
k=0

(E − Ek )n∏n
j �=k, j=0(Ej − Ek )

.
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This leads to the desired fraction of CPn microstates in a916

microcanonical energy shell [E, E + dE]:917

Wn(E ) = �n(E )dE

=
(

n(E )∑
k=0

n(E − Ek )n−1∏n
j �=k, j=0(Ej − Ek )

)
dE .

This allows defining the statistical entropy S(E ) of a quantum918

system with finite-dimensional Hilbert space of dimension919

D = n + 1 as920

S(E ) = ln WD−1(E ).

3. Statistical physics of quantum states: Canonical ensemble921

The continuous canonical ensemble is defined as922

ρβ (ψ ) = e−βh(ψ )

Qβ[h]
,

where923

Qβ[h] =
∫
CPD−1

e−βh(ψ )dVFS.

The following analyzes the simple qubit case and then moves924

to the general treatment of a finite-dimensional Hilbert space925

H.926

a. Single qubit927

The Hilbert space here is H while the pure-state manifold928

is CP1. And so, we have929

Qβ[h] = 1

4

∫ π

0
dθ sin θ

∫ 2π

0
dφ e−βh(θ,φ),

with h(θ, φ) = �γ · 〈�σ 〉 = �γ · �b(θ, φ).930

Since we consider a single qubit, whose state space is S2
931

embedded in R3, we can write �γ · �b(ψ ) = ||�γ || cos θ , where932

θ is the angle between �γ and �b(ψ ). Thus, we can use an933

appropriate coordinate h(φ, θ ) = ||�γ || cos θ aligned with �γ to934

find935

Qβ[h] = π
sinh β||�γ ||

β||�γ || .

Or, using “probability + phase” coordinates (p, ν) we can also936

write937

1

2

∫ 1

0
d p

∫ 2π

0
dν e−β[(1−p)E0+pE1] = π

e−βE0 − e−βE1

β(E1 − E0)
.

The change in coordinates is given by the result of diagonal-938

ization: E0 = −||�γ || and E1 = ||�γ ||. This yields the expected939

result940

Qβ[h] = π
e−βE0 − e−βE1

β(E1 − E0)

= π
sinh β||�γ ||

β||�γ || .

b. Generic treatment of CPn
941

We are now ready to address the general case of qudits:942

Qβ[h] =
∫
CPn

e−βh(Z )dVFS

= 1

2n

∫ n∏
k=0

e−βpk Ek

n∏
k=1

d pkdνk

= πn
∫

�n

n∏
k=0

e−βpkEk δ

(
n∑

k=0

pk − 1

)
d p1 . . . d pn.

To evaluate the integral we first take the Laplace transform 943

In(r) :=
∫

�n

n∏
k=0

e−βpk Ek δ

(
n∑

k=0

pk − r

)
d p1 . . . d pn

to get 944

Ĩn(z) :=
∫ ∞

0
e−zrI (r)dr.

Calculating, we find 945

Ĩn(z) =
n∏

k=0

(−1)k

(βEk + z)

= (−1)
n(n+1)

2

n∏
k=0

1

z − zk

with zk = −βEk ∈ R. 946

The function Ĩn(z) has n + 1 real and distinct poles: z = 947

zk = −βEk . Hence, we can exploit the partial fraction decom- 948

position of Ĩn(z), which is 949

(−1)
n(n+1)

2

n∏
k=0

1

z − zk
= (−1)

n(n+1)
2

n∑
k=0

Rk

z − zk
,

where 950

Rk = [
(z − zk )Ĩn(z)

]
z=zk

=
n∏

j=0, j �=k

(−1)
n(n+1)

2

zk − z j
.

The inverse Laplace transform’s linearity, coupled with the 951

basic result 952

L−1

[
1

s + a

]
(t ) = e−at�(t ),

where 953

�(t ) =
{

1, t � 0
0, t < 0

gives 954

In(r) = L−1[Ĩn(z)](r)

= �(r)
n∑

k=0

Rkezk r .

And so, we finally see that 955

Qβ[h] = In(1)

=
n∑

k=0

e−βEk∏n
j=0, j �=k (βEk − βEj )

.
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