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Abstract

We investigate people’s use of strategies for sampling data
in an active learning task. In the spirit of resource-rational
analysis, we argue that people may often use effective heuris-
tics to guide sampling in lieu of more computationally expen-
sive optimization strategies, but that when they encounter ev-
idence that their heuristics are now ineffective they flexibly
shift to new strategies. When the function family changed,
participants quickly updated their beliefs about the likely func-
tion family on subsequent trials. By clustering participants’
sampling behaviour, we show that people can employ varied
sampling strategies, shifting strategies more often when en-
countering unusual function families that are more adversar-
ial to generic sampling strategies. Not all new strategies im-
proved participants’ performance on a subsequent prediction
task; nonetheless, people’s ability to dynamically shift their ac-
tive learning behaviour may help them understand the abstract
features of complex relationships.

Keywords: active learning; function learning; sampling

Introduction

Imagine that you have decided to plant a vegetable garden.
Although many guides exist to help you determine what kinds
of tools you might need (e.g., a sunny location, soil, fertil-
izer, a watering can), finding the most successful combina-
tion of these ingredients may require you to try out differ-
ent amounts. Too little fertilizer and your plants may not
grow, while too much fertilizer may cause your plants to over-
grow and lead to less nutritious vegetables. Trying different
amounts of fertilizer and waiting for the vegetables to grow
is costly, so choosing the right amount of fertilizer requires
adapting your strategy for how much to use as you learn more.

The notion that human learning benefits from being active
or self-directed has a long history in the fields of psychology,
cognitive science, and education (e.g., Bruner et al., 1966;
Gopnik & Wellman, 2012; Hirsh-Pasek et al., 2009; Inhelder
& Piaget, 1958; Prince, 2004) and analyses and implemen-
tations of computational models of active learning have em-
phasized the enhanced learning provided by active selection
(Cohn et al., 1996; Gureckis & Markant, 2012; Settles, 2012).

At its most basic level, active learning involves selec-
tion, or sampling, of the data one would like to learn about.
By allowing an individual to test their own hypotheses, ac-
tive learning provides an opportunity to learn above and be-
yond characteristics inherent to the data points being sampled
(Markant & Gureckis, 2014). Active learning has also been
shown to enhance memory for the data (Markant et al., 2016).2
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These advantages notwithstanding, the opportunity to learn
actively can be limited. To the extent that one can sample
one’s own data, we may still find ourselves constrained by
a lack of time, opportunity, or the high amount of effort re-
quired to obtain the data; in this situation, we should be ju-
dicious about how we use our limited samples. To that end,
people may seek out techniques or strategies that optimize
their limited cognitive resources to ensure that their opportu-
nities for learning are not wasted.

Nevertheless, optimal active learning strategies also come
with costs of their own. Since the data must be actively se-
lected, people must engage in potentially effortful search for
the optimal points to sample. Computational models of opti-
mal sampling strategies in active learning environments typ-
ically select points or causal interventions that aim to min-
imize uncertainty, maximize expected information gain, or
both (e.g., Bramley et al., 2015; Coenen et al., 2015; Gureckis
& Markant, 2012; Jones et al., 2018; Kruschke, 2008; Oaks-
ford & Chater, 1994).

Traditional algorithmic implementations of optimal learn-
ing for statistical models in active learning situations often
make the assumption that data sampling is myopic (Cohn et
al., 1996; Roy & McCallum, 2001); that is, rather than pick-
ing the most jointly informative combination of data points
to sample, each successive sampled point is treated as if it
will be the last sample. For example, Cohn et al. (1996) de-
veloped a myopically optimal algorithm for sampling in su-
pervised learning contexts, in order to minimize the number
of samples necessary for effective learning—operationalized
as minimizing expected future error. Recent work in cogni-
tive science has also argued that human active learning is also
best characterized by myopic strategies, rather than engag-
ing in globally optimal search or advance planning (Bram-
ley et al., 2015; Meder et al., 2019). Given the computa-
tional intractability of picking a sample by conditioning on
all possible yet to be seen data, which would require esti-
mation of all possible values of that data, relying on myopic
sampling is understandable. However, it also means that my-
opic active learning strategies are potentially suboptimal, be-
cause they are only resolving uncertainty at the next sampled
point, rather than considering in advance how multiple sam-
ples might jointly reduce uncertainty.

As a result, simple heuristic strategies for sampling data

may sometimes be as good or better at maximizing informa-
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tion gain than myopic active learning policies. For example,
low-cost strategies such as sampling a domain evenly (Gelpi
et al., 2021) may be broadly applicable and effective strate-
gies to reduce uncertainty at a rate comparable to more ex-
pensive myopically optimal policies. Nevertheless, generic
heuristics can also be a poor match for some problems. For
example, Box and Draper (1987) describe an example of test-
ing the effect of two variables by collecting data at evenly-
spaced values. However, for some kinds of underlying rela-
tionships, e.g., y = % these heuristics are not an efficient way
to gather information.

One way to address the tension between the prohibitive
cost of fully computing even myopically optimal active learn-
ing strategies and the potential pitfalls of heuristic policies
is to dynamically shift between different strategies as one
encounters situations where one’s current strategy is unsuc-
cessful. For example, both children and adults often tackle
problem-solving tasks by staying with a current strategy as
long as it is successful, and switching to a new strategy if
it fails, consistent with implementing a Win-Stay-Lose-Shift
heuristic (e.g., Bonawitz et al., 2014; Chierchia et al., 2022;
Giron et al., 2022; Yi et al., 2009). In addition, a body of work
in children’s mathematical problem-solving has argued that
children develop and test multiple problem-solving strategies
at once as they are learning (Shrager & Siegler, 1998; Siegler
& Shipley, 1995).

People may therefore develop meta-reasoning for when
different candidate strategies are appropriate for solving a
given task, and shift between strategies given the task de-
mands. Although heuristic strategies are not globally opti-
mal, people may effectively deploy them in situations where
they are most effective, maximizing the performance of the
heuristics while reducing the cognitive cost of solving the task
(Gigerenzer & Gaissmaier, 2011; Lieder & Griffiths, 2017).
These findings fit within a larger body of work arguing that
we engage in resource-rational computations to trade off the
expected benefits of a particular strategy against the cognitive
costs of engaging in it (Lieder & Griffiths, 2020).

Here, we use the general framework of function learning to
evaluate shifts in people’s active learning strategies. Our task
has been formalized using the general framework of Gaus-
sian processes (Lucas et al., 2015; Schulz et al., 2018), which
capture important elements of learning and inference in func-
tional domains. Wu et al. (2018) argue that generic Gaussian
process priors shape sampling behaviour and generalization
using a task with an explore-exploit dilemma.

However, the structure of more unconventional function
families may—in addition to being a priori less likely—be
much more challenging to represent in terms of a Gaussian
process. For example, standard Gaussian processes cannot
extrapolate functions with non-stationary kernels, such as
sawtooth and step functions (see e.g., Wilson et al., 2015). In
these cases, learning about the structure of unusual function
families may involve inferences about data above and beyond
what is expressible within a Gaussian process framework.

If people can use inductively learned properties of the fam-
ily of functional relationships they are learning about in a
given context, they may be able to adapt their sampling strate-
gies to effectively learn about the exact parameterization of
the function they are learning. This could involve changing
from a general-purpose heuristic, such as sampling the do-
main equidistantly, to using a more cognitively costly strategy
such as myopically maximizing information gain, perhaps be-
cause the cost of the information is outweighed by one’s cu-
riosity or the perceived value of the information (e.g., Dubey
& Griffiths, 2020), or changing between multiple different
heuristics when a heuristic is observed to be sub-optimal
(Lieder & Griffiths, 2017).

To test whether and how people can exploit information
about the class of functional relationships they are learning
about to change their sampling strategies, we introduce an
active function learning task in which participants encounter
multiple different blocks of functions, some of which are de-
signed to be relatively adversarial to a generic heuristic sam-
pling policy: namely, equidistant sampling. We hypothesize
that participants will use information about the function fam-
ilies they encounter to shift their sampling strategies away
from generic “one-size-fits-all” heuristics more often when
they are faced with function families for which these heuris-
tics are poorly adapted. If participants are able to learn ab-
stract features of the function families they anticipate encoun-
tering, this could result in the use of more well-adapted sam-
pling strategies, and subsequently more accurate representa-
tions of the functions.

Experimental Design
Participants and Design

Ninety-seven adult participants (Mage = 37.36, SDyge = 12.08)
were recruited through Prolific and paid £1.75 for their par-
ticipation. One participant’s data was not recorded due to a
technical error, leaving 96 participants in the final analysis.

Procedure

Familiarization and Exposure Participants were told they
would play the role of a scientist on an alien planet whose
goal was to map the distribution of an element in various
(linear) regions through collecting measurements. They were
also told that the detector for the element consumed a large
amount of energy to generate each measurement, so they
could only choose eight locations to measure the quantity
of the element. Participants were randomly presented with
one of two slightly different cover stories. They were either
a geologist searching for underground Unobtanium (a rare
earth element) along several coastlines, or a nuclear physicist
searching for Ethereum (a radioactive element) along several
fissures.

Participants practiced collecting measurements and graph-
ing the distribution of the element in a region (i.e., a coastline
or fissure) through a warm-up trial. Participants first saw an
empty coordinate grid, with its x and y axes representing the
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Figure 1: Example task setup for a trial where a participant
had to learn one of the cyclic functions. Participants sample
(grey dots) areas along the X axis, learning the corresponding
Y value (quantity of element at the given location). After
drawing 8 samples, participants must draw their estimate of
the distribution (black line). After completing the drawing,
participants are provided feedback in the form of the ground
truth function (red line).

location along a linear region and the element quantity, re-
spectively. To sample a location, participants could click on
a spot on the x-axis, and a dot reflecting the quantity of the
element would appear and remain on the grid. Participants
then chose the next location to sample. After sampling the
allocated number of locations (two in the warm-up trial for
brevity), participants graphed the distribution of the element
by free drawing a curve through the sampled dots, using their
mouse. Lastly, participants learned about the true distribution
pattern, which was it was superimposed on the participants’
drawing in red.

Experimental Task Participants completed three task
blocks. Each block included four mapping trials that showed
different parameterizations of the same function family. As
we aimed to create a task in which some trials would be
adversarial to generic heuristic sampling policies, such as
evenly sampling across the entire domain, two of the blocks
involved functions with unusual patterns.

The first was a function we termed a “hurricane” func-
tion. This function contained a sharp, narrow local minimum
at a particular point near the middle of the sampling region
(Equation 1; see also Figure 5, right). The second, a cyclic
function based on a sinusoidal curve of varying wavelengths
and amplitudes (Equation 2; see also Figure 1), was simi-
larly intended to pose a challenge to evenly-spaced samples.
To provide a baseline against these unusual function families,
one block consisted of a parameterization of a more common
function: quadratic (Equation 3; see also Figure 5, left). Each
function family had three free parameters, u, A, and 1, which
were varied on each trial. The following equations were used
for the three function blocks:

1.25A

) e—1100r—p)| 4 o= 1% | 4 o—12.5(c—00))| 4 1
a=2m u<0.5 M
where 1
0= oy M> 0.5
@) = Asin(x— ) +1 @)
FO) =Ax—p)* +1 (3)

As we anticipated that participants might be more likely
to change their sampling strategy when moving between less
and more adversarial functions, the order of block presen-
tation was partially counterbalanced in 4 conditions: the
quadratic block always appeared first or last, and the order
of the two unusual blocks were randomized. Critically, par-
ticipants were unaware of the blocking, as the trials were pre-
sented without breaks between blocks.

In each of the 12 trials, participants followed the same pro-
cedure as in the warm-up trial, in which they chose eight loca-
tions to sample one-by-one, drew the distribution graph, and
learned about the true graph.

Results
Sampling Task

Strategy Clustering To characterize participants’ sam-
pling strategies, we employed Gaussian mixture modelling
(GMM). GMMs assume that observed features are drawn
from a set of K Gaussian distributions, with the probability
of an observation belonging to a particular distribution corre-
sponding to:

K
p(x) =Y oy AL(x|u;, %) 4)
i=1

where y;, X; are the mean and covariance matrix for the ith
Gaussian, respectively, and ; is the probability that x belongs
to the ith Gaussian.

We implemented a nonparametric GMM using the package
mclust in R (Scrucca et al., 2016). This model used indi-
vidual participants’ ordered samples to simultaneously infer
the cluster that best matched each participants’ sampling be-
haviour and the number of total strategies. The analysis re-
vealed that a model with 8 clusters of participant sampling
strategies outperformed all others, including models with 9
(ABIC =-127.4) and 7 (ABIC =-219.7) clusters.

Subjectively, we observed that the 8 clusters tended to fall
into five main categories (Figure 2). One category (clusters
2 and 7) involved participants evenly sampling the domain
space in a monotonically increasing fashion, while a second
group of clusters (3 and 5) involved omitting later points in
order to sample earlier points more densely. A third category
(clusters 6 and 8) involved participants selecting the lowest
and highest values, and then sampling remaining points in the
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Figure 2: Sampling strategy clusters revealed by nonparamet-
ric GMM. The X axis indicates the location of the sample
chosen, while the Y axis indicates the sample number, i.e.,
the first, second, third, fourth sample chosen, and so on. Most
participants began by sampling relatively evenly along the X
axis from left to right—sampling steadily higher X values on
later samples—or sampling the lowest and highest points first
before partitioning the remaining search space. Some partici-
pants (Cluster 4) began to sample evenly, but then returned to
earlier points, possibly to re-sample areas of high uncertainty.

space between, either by partitioning the space into smaller
areas or sampling evenly in the remaining area. Participants
in Cluster 4 evenly sampled for most of the domain, before
returning to sample earlier areas further. Finally, Cluster 1
included the remainder of participants who engaged in less
consistent strategies that varied more broadly. Due to the
similarity between these clusters, we collapse the clusters we
identify into these 5 categories in subsequent analyses.

To understand how participants may have shifted their
strategy across trials, we analyzed the frequency of strat-
egy shifting between trials, using a generalized linear mixed
model. We considered a shift to have occurred if a partici-
pant used a strategy from one strategy cluster on trial #, and a
strategy from a different cluster on trial # + 1. We considered
the function family of the trial, the counterbalanced order in
which function families were presented, and the presentation
order of the trials in the model.

Change in strategy use was high overall, with participants
switching strategies between trials 40.9% of the time. Shift-
ing did not increase or decrease significantly across trials
within blocks, x?(1) = 2.64, p = .10, and including trial order
as a factor did not improve model fit, ABIC = 6.5, so it was
not included in the subsequent analysis.

Participants showed different patterns of strategy switching
across function families, x?(2) = 11.25, p = .004. As we
predicted, participants were more likely to shift their strategy
after trials in the cyclic block than in the quadratic block, b =
0.46, SE =0.18, z =2.60, p = .025. Participants were also
less likely to switch overall when the quadratic function block
was presented before the cyclic and hurricane blocks, b =

o o
= >

Probability of shifting strategy
°
o

T

Cyclic Hurricane Quadratic

CHQ HCQ QCH QHC CHQ HCQ QCH QHC CHQ HCQ QCH QHC
Counterbalance order

Function family Cyclic [ Hurricane [ Quadratic

Figure 3: Probability of switching samples by counterbal-
ance order; each bar on the x axis reflects a particular order
in which the function families were presented, e.g. “CHQ”
meant that participants encountered the cyclic functions, then
hurricane functions, then quadratic functions. Participants
were most likely to switch sampling strategies when encoun-
tering the cyclic function (red bars), and were least likely to
switch when the quadratic function was encountered first (two
rightmost bars of each colour).

0.4
03

0.2

Mean prediction error

0.0

Cyclic Hurricane Quadratic
Function family

Figure 4: Average prediction error for the cyclic (red), hurri-
cane (green) and quadratic (blue) function families.

—0.87, SE =0.34, z = —-2.56, p = .01 (Figure 3).

Notably, including the random effects of individual par-
ticipants in the model substantially improved fit, ABIC =
47.9, x*(1) = 54.78, p < .001, suggesting that participants
also varied significantly in the degree to which they shifted.
Supporting this, some participants used the same strategy
throughout—11 participants did not change their strategy
throughout the experiment—while others shifted with much
more frequency. Although no participants shifted after every
single trial, 35 participants shifted on more than 50% of trials.

Prediction Task

To measure participants’ predictions as well as their sam-
pling behaviour, we calculated the mean-squared error (MSE)
of participants’ prediction lines relative to the ground truth
functions. As participants’ errors were positively skewed
(skew = 2.24), errors were log transformed before analysis.
Using a linear mixed-effects regression with random in-
tercepts per participant, we tested participants’ performance
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Figure 5: Individual prediction drawings (black lines) made
by participants for two sample functions (left: quadratic,
right: hurricane), with mean learned function (blue) and
ground truth function (red dashed) overlaid. Participants
who encountered a hurricane or cyclic function right be-
fore they encountered the first quadratic function (left) were
more likely to predict the presence of a sinusoidal relation-
ship. Conversely, some participants failed to sample in the
region of the local minimum of the hurricane function (right),
leading them to infer a function that was a closer fit for the
quadratic function family.

across individual trials and specific function families. As we
were also interested in analyzing whether particular strategies
were more effective in improving participants’ predictions,
we included the cluster characterizing the participants’ sam-
pling strategy for each trial as a predictor of their accuracy.

Participants’ prediction accuracy varied significantly
across functions, F(2,1018) = 564.27, p < .001. Specifi-
cally, participants were more inaccurate on the cyclic func-
tions than both the hurricane functions (b = 0.88, SE =
0.05, ¢(1006) = 16.59, p < .001) and quadratic functions
(b=1.99, SE =0.05, t(1009) = 37.94, p < .001; partici-
pants were also more inaccurate on the hurricane functions
than the quadratic functions, b = 1.11, SE = 0.05,#(1009) =
21.94,p < .001. There were no significant improvements
across all trials, F(1,1002) = 1.11, p = .29. Although sam-
pling strategy did not directly predict performance on the
task, F(4,985) = 0.61, p = .65, the analysis revealed a two-
way interaction between the effect of strategy use and func-
tion family on prediction error, F(8,1031) = 3.09, p = .002.

To investigate this interaction, we computed pairwise con-
trasts comparing prediction accuracy between all pairs of
strategies within each function family. We found that par-
ticipants who sampled more densely in the earlier portion of
the domain (Clusters 3 and 5) on quadratic functions had a
lower average error than those whose sampling strategy was
more diffuse (Cluster 1), b = —0.29, SE = 0.09,7(1081) =
—3.33, p=.008. This may have been the result of more
careful or vigilant sampling by participants who had previ-
ously encountered unusual or adversarial functions; by sam-
pling points more closely together, such participants might
have been able to more conclusively determine that the func-
tion did not belong to one of these adversarial functions. This

60
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»
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Function Family

Optimized function Cyclic 5 Hurricane Quadratic

Figure 6: Optimization values for participant predictions by
true function family. Lower values indicate predictions are a
better fit for the optimized function family.

could have contrasted with participants who, having previ-
ously seen an adversarial function, may have continued to
infer an incorrect underlying function. For example, many
participants interpolated a cyclic or hurricane function rather
than quadratic, for the first function in the quadratic block
(Figure 5, left).

Lastly, we aimed to understand whether participants, re-
gardless of the accuracy of their predictions, were more likely
to correctly draw predictions that matched the correct func-
tion family. For example, a participant who had inferred that
the functions being learned were cyclic in nature could infer
a cyclic function with an incorrect or out-of-sync wavelength,
relative to the ground truth function. This could lead to high
prediction errors, but nevertheless reflect real learning about
the abstract function family.

To investigate this, we investigated whether participants’
predictions were best fit by a function from the correct func-
tion family. We used Nelder-Mead optimization to find the
best fitting parameter values of all participant predictions
for all three function families, for each individual partici-
pant prediction line. Our implementation of this algorithm
searched for parameter values of each function family (cyclic,
hurricane, quadratic) that minimized the mean squared error
(MSE) between the computed y value and the participant’s ac-
tual predictions. The optimization value for a particular func-
tion family reflected this difference after having searched for
the best-fitting parameter values.

Thus, when participants’ predictions included abstract
characteristics of the correct function family (e.g., multiple
waves for a cyclic function, a sharp local minimum for a hur-
ricane function), the optimization algorithm typically resulted
in a lower value for the correct function family, indicating a
better fit, and higher values for the incorrect function families.
Conversely, if a participant’s prediction more closely resem-
bled an incorrect function family on a particular trial (e.g.,
drawing a sharp local minimum for a quadratic function, or
omitting this feature for a hurricane function, as in Figure 5),
then the optimization value for an incorrect function family
would be lower.

2381



Consistent with participants learning the appropriate func-
tion family, optimization values were significantly lower for
the true function family than for others across all three func-
tion families. A linear mixed-effects regression testing the
effect of the true function family and the optimized func-
tion revealed significant interactions across all terms (all b >
—14.41, all t > 13.8, all p < .001), suggesting that partic-
ipants’ drawings were overall a much better fit for the true
function family (Figure 6).

Nevertheless, we found that on some functions, partici-
pants’ drawings were more consistent with a different func-
tion. For example, in the third hurricane function (Figure 5,
right), 48 participants were best fit by a quadratic rather than a
hurricane function, and one participant was best fit by a cyclic
function. This pattern was most common across the hurricane
function family; when participants’ samples did not reveal the
trough in the centre of the function, this may have led some
participants to infer a smooth function throughout.

Discussion

Across three function families, including two highly unusual
function families designed to be adversarial to simple heuris-
tics, people deployed a number of different strategies and
strategy types. Many of the strategies appear expressly de-
signed for their ability to sample the entire domain at a rela-
tively low cost, with both the evenly-spaced sampling strate-
gies and the binary-partition strategies resulting in relatively
equally spaced samples after all eight were chosen. Other
participants reserved one or two remaining samples to resolve
points of high uncertainty in the middle of the function.

Participants were most likely to change their strategies for
the cyclic function, which also proved to be the most dif-
ficult; although not significantly so, we also observed that
participants shifted their strategies slightly more often on tri-
als when they were learning about the hurricane functions as
well. This may be the result of “default” sampling strategies
being relatively well-suited to the quadratic function, a rela-
tively smooth function that could be captured by many com-
mon Gaussian process kernels (Duvenaud, 2014). The sharp
discontinuity of the hurricane function and the short period
of many of the cyclic functions may have posed a larger chal-
lenge to participants; in this case, the unexpected value of
some of the collected samples might have prompted people
to search for alternative strategies.

Perhaps due to the difficulty of the functions themselves,
we did not find evidence that any strategies improved partic-
ipants’ subsequent performance on the adversarial functions.
This may suggest that the task of searching for strategies that
are well-suited for particular unusual function families may
be too challenging to resolve in a short time frame, or that
stronger incentives (e.g. providing larger rewards to partici-
pants with lower prediction errors) may be necessary to mo-
tivate participants to discover more effective strategies.

Similarly to Villagrd et al. (2018), we observed that across
most trials, where participants’ extrapolations were shaped

by previously observed functions, most participants’ inter-
polated predictions best fit by a parameterization from the
same family, even when their predictions were inaccurate for
the specific function. This suggests that participants made
broadly appropriate inferences about the high-level abstract
characteristics of the function.

A limitation of our approach with Gaussian mixture mod-
els is that strategies that may have involved a highly vari-
able choice of points could not be definitively clustered. As
GMMs rely on the assumption that clusters have a speci-
fied mean and variance, highly variable data points can be
clustered into a single, highly diffuse cluster, a phenomenon
we observed in our analysis. Conversely, clusters with very
low variance can be clustered separately, even when they dis-
play high subjective similarity. The presence of grid lines on
our tasks could have led different participants to consistently
align their responses to slightly different points, leading to
low variance in some sampled points. Abstract labels such as
tick marks can improve participants’ performance on passive
function learning tasks (e.g. Kalish, 2013); such labels might
have also facilitated learning in our active learning task by
prompting participants to anchor their responses to a partic-
ular grid line, albeit resulting in multiple subjectively similar
clusters. Nevertheless, we plan to consider alternative meth-
ods for clustering participants’ sampling strategies.

For example, although we preserved the order of partic-
ipants’ samples, some participants may still have sampled
evenly across the domain, but simply did so in an unusual
order. Conversely, some participants may have lingered on or
returned to resample a point of higher uncertainty, resulting
in a final distribution of sampled points similar to the strat-
egy we observed in Cluster 4, but in a different order. Alter-
nately, samples could be considered based on their normal-
ized distance from previous samples: if one could potentially
sample a distant point, but samples a nearby point instead,
this could reflect a belief that there is substantial uncertainty
about a point in the vicinity of another. This could be helpful
in some scenarios—for example, finding the trough of a hur-
ricane function—but unhelpful in others. In future work, we
plan to consider other contingencies between samples, such
as their relationship to each other spatially independent of or-
der or how they partition the remaining area to be sampled, to
allow for a more nuanced understanding of people’s ability to
dynamically shift between strategies in active learning tasks.
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