
UCSF
UC San Francisco Previously Published Works

Title
Cortical Synchrony and Information Flow during Transition from Wakefulness to Light 
Non-Rapid Eye Movement Sleep

Permalink
https://escholarship.org/uc/item/1w97w97q

Journal
Journal of Neuroscience, 43(48)

ISSN
0270-6474

Authors
Fan, Joline M
Kudo, Kiwamu
Verma, Parul
et al.

Publication Date
2023-11-29

DOI
10.1523/jneurosci.0197-23.2023
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1w97w97q
https://escholarship.org/uc/item/1w97w97q#author
https://escholarship.org
http://www.cdlib.org/


Systems/Circuits

Cortical Synchrony and Information Flow during Transition
fromWakefulness to Light Non-Rapid Eye Movement Sleep

Joline M. Fan,1 Kiwamu Kudo,2,3 Parul Verma,2 Kamalini G. Ranasinghe,1 Hirofumi Morise,2,3

Anne M. Findlay,2 Keith Vossel,1,5 Heidi E. Kirsch,1,2 Ashish Raj,2 Andrew D. Krystal,4 and
Srikantan S. Nagarajan2

1Department of Neurology, University of California–San Francisco, San Francisco, California 94143, 2Department of Radiology and Biomedical Imaging,
University of California–San Francisco, San Francisco, California 94143, 3Medical Imaging Center, Ricoh Company, Ltd., Kanazawa, Japan 243-0460,
4Department of Psychiatry, University of California–San Francisco, San Francisco, California 94143, and 5Mary S. Easton Center for Alzheimer’s Disease
Research, Department of Neurology, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California 90095

Sleep is a highly stereotyped phenomenon, requiring robust spatiotemporal coordination of neural activity. Understanding how the
brain coordinates neural activity with sleep onset can provide insights into the physiological functions subserved by sleep and the
pathologic phenomena associated with sleep onset. We quantified whole-brain network changes in synchrony and information flow
during the transition from wakefulness to light non-rapid eye movement (NREM) sleep, using MEG imaging in a convenient sample
of 14 healthy human participants (11 female; mean 63.4 years [SD 11.8 years]). We furthermore performed computational modeling
to infer excitatory and inhibitory properties of local neural activity. The transition from wakefulness to light NREM was identified to
be encoded in spatially and temporally specific patterns of long-range synchrony. Within the delta band, there was a global increase
in connectivity from wakefulness to light NREM, which was highest in frontoparietal regions. Within the theta band, there was an
increase in connectivity in fronto-parieto-occipital regions and a decrease in temporal regions from wakefulness to Stage 1 sleep.
Patterns of information flow revealed that mesial frontal regions receive hierarchically organized inputs from broad cortical regions
upon sleep onset, including direct inflow from occipital regions and indirect inflow via parieto-temporal regions within the delta fre-
quency band. Finally, biophysical neural mass modeling demonstrated changes in the anterior-to-posterior distribution of cortical exci-
tation-to-inhibition with increased excitation-to-inhibition model parameters in anterior regions in light NREM compared with
wakefulness. Together, these findings uncover whole-brain corticocortical structure and the orchestration of local and long-range, fre-
quency-specific cortical interactions in the sleep-wake transition.

Key words: functional connectivity; information flow; MEG; neural mass modeling; NREM; sleep

Significance Statement

Our work uncovers spatiotemporal cortical structure of neural synchrony and information flow upon the transition from
wakefulness to light non-rapid eye movement sleep. Mesial frontal regions were identified to receive hierarchically organized
inputs from broad cortical regions, including both direct inputs from occipital regions and indirect inputs via the parieto-
temporal regions within the delta frequency range. Biophysical neural mass modeling revealed a spatially heterogeneous,
anterior-posterior distribution of cortical excitation-to-inhibition. Our findings shed light on the orchestration of local and
long-range cortical neural structure that is fundamental to sleep onset, and support an emerging view of cortically driven
regulation of sleep homeostasis.
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Introduction
The transition to sleep involves a set of neural processes that
reliably promotes a behavioral state-change and sets the stage
for essential functions of sleep. Classical lesion and stimulation-
based studies have identified that the sleep-wake transition is
modulated by distributed circuits originating in the brainstem
and extending to the hypothalamus, thalamus, and basal fore-
brain (Brown et al., 2012; Saper and Fuller, 2017). Such bot-
tom-up regulation of sleep and wake has led to a model
whereby cortical structures are globally activated by subcortical
structures during state transitions. More recent studies, how-
ever, have identified the presence of local cortical dynamics
during sleep (Huber et al., 2004; Krueger and Tononi, 2012;
Siclari and Tononi, 2017; Bernardi et al., 2018; Kringelbach and
Deco, 2020) and furthermore have suggested that the neocortex
may even play a top-down role in sleep-wake regulation (Thomas
et al., 2020; Krone et al., 2021). To this end, we pose the questions:
Is there a structured coordination between local and long-range
cortical dynamics during the transition from wake to light non-
rapid eye movement (NREM)? If so, what are putative mecha-
nisms mediating the local cortical dynamics? The elucidation of
coordinated local and long-range cortical structure may ulti-
mately shed light on cortically based physiologic phenomena,
such as emotional regulation (Palmer and Alfano, 2017), mem-
ory consolidation (Klinzing et al., 2019), and recovery (Hobson
and Pace-Schott, 2002), and pathologic phenomena of sleep
onset, such as state-dependent epileptic spiking (Herman et al.,
2001) or insomnia.

For many decades, sleep electrophysiology has been charac-
terized by recordings from a limited number of scalp electrodes,
as traditionally used in polysomnography. Meanwhile, fMRI/
PET (Horovitz et al., 2008, 2009; Larson-Prior et al., 2009) stud-
ies have provided key anatomical insights on whole-brain neural
activation patterns of sleep. Large-scale network analyses primar-
ily using fMRI have revealed widespread increases in corticocort-
ical connectivity and decreases in thalamocortical connectivity
with the transition from wakefulness to light NREM (Liu et al.,
2010a; Spoormaker et al., 2010; Tagliazucchi and Laufs, 2014);
deep NREM has been associated with widespread decreases in
functional connectivity (FC) and partial restoration of thalamo-
cortical connectivity (Spoormaker et al., 2010; Tagliazucchi and
Laufs, 2014). The diffuse increase in corticocortical FC from wake-
fulness to light NREM has been hypothesized to lead to reduced in-
formation integration, underpinning the loss of consciousness with
sleep (Spoormaker et al., 2010, 2011). While fMRI/PET offer key
insights on the relative activation of neuroanatomical sites with the
transition to sleep, these imaging modalities are limited by low tem-
poral resolution and their indirect nature of probing neural activity
(e.g., fMRI measures blood flow and PET measures neural meta-
bolic rate).

Complementing prior fMRI methods, several key MEG/EEG
(De Gennaro et al., 2001, 2005; Ioannides et al., 2017) studies
have elucidated frequency-specific patterns with sleep onset,
including the robust increase in low-frequency oscillations in
midline anterior brain regions, which later propagate posteriorly
(De Gennaro et al., 2005). The increased corticocortical connec-
tivity with sleep onset has been furthermore observed across
multiple frequency bands using band-limited power correlations
of MEG/EEG sensor time series (Liu et al., 2010b). To date, how-
ever, MEG/high-density EEG studies have been limited by the
lack of a comprehensive assessment of simultaneous local and
long-range neuronal synchrony and information flow with the
transition from wakefulness to sleep. In addition, amidst findings

of global changes in FC, distinct long-range cortical interactions
have not previously been observed, which may reflect prior meth-
odological limitations, including the following: limited measures
of connectivity due to the lack of source reconstruction (Liu et al.,
2010b); temporal blurring due to the lack of simultaneous EEG
for sleep-scoring in MEG studies; and correlational connectivity
methods that may introduce effects of volume conduction or
other sources of spurious connectivity.

The cortical network electrophysiology across sleep-wake
states not only dictates behavior, but also reflects the underlying
homeostatic process (Tononi and Cirelli, 2006; Vyazovskiy et
al., 2009). Sleep homeostasis has been measured using a variety
of EEG indicators, including spectral power, estimated excita-
tion-to-inhibition ratios, global synchrony, amplitudes of evoked
responses, among others. Estimates of the excitatory-to-inhibi-
tory balance, for example, have been demonstrated to increase
with prolonged wakefulness and decrease with sleep, as well as
fluctuate with other factors, such as circadian rhythm and medi-
cations (Meisel et al., 2015; Ly et al., 2016). Prior literature has
provided evidence that the excitatory-to-inhibitory balance has
sleep-state specificity, including increasing in NREM and decreas-
ing in REM, as measured in humans by magnetic resonance spec-
troscopy (MRS) (Tamaki et al., 2020). Other studies suggest that
the excitatory-to-inhibitory balance of deep NREM or slow-wave
sleep may be distinct from light NREM and reduced compared
with wakefulness (Niethard et al., 2016). The extent to which exci-
tatory-to-inhibitory changes occur as a function of sleep-wake
states remains an open question (Niethard et al., 2016), in part
limited by the challenges of directly measuring excitation and inhi-
bition in sleeping humans. Thus, computational methods based
on electrophysiology have the potential to further elucidate such
underlying mechanisms (Lombardi et al., 2017; Sukenik et al.,
2021; Verma et al., 2022).

In this study, we analyzed data from a convenient sample of
older adults to identify local and long-range cortical structure
that underlie global state transitions from wakefulness to light
NREM. We note that we evaluate a convenient sample of healthy
adults who are older in age (mean age, 63.4 years [SD 11.8 years]).
While quantitative age-related differences in network connectiv-
ity have been shown within sleep-wake states (Ujma et al., 2019;
Bouchard et al., 2020, 2021), the overall patterns of FC also share
significant similarities across age when comparing between
sleep-wake states (Daneault et al., 2021). To this extent, we aim to
provide a comprehensive assessment of simultaneous local and
long-range neural synchrony and information flow across sleep-
wake in a manner that has not previously been performed in the
literature, while acknowledging that this study was performed in a
convenient sample of older individuals.

Specifically, we pursued three aims: (1) to determine
which cortical areas are preferentially activated by local
synchronization during sleep onset using MEG imaging; (2)
to simultaneously determine what cortical regions facilitate
long-range synchronization upon the transition to sleep; and
(3) to infer mechanisms underlying the observed network phys-
iology using biophysical models. We hypothesized that there
are frequency-specific, spatial patterns of corticocortical syn-
chronization and information flow upon the transition from
wakefulness to NREM. Furthermore, we hypothesized that spa-
tially specific cortical patterns of neural synchronization reflect
spatially heterogeneous excitatory-to-inhibitory activity during
light NREM. To test these hypotheses, we leveraged the high
spatiotemporal sensitivity of MEG imaging combined with si-
multaneous surface EEG to quantify spatiotemporal patterns of
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local and long-range neural synchrony and information flow
upon sleep onset in a cohort of healthy individuals.

Materials and Methods
Study cohort. MEG and simultaneously obtained scalp EEG data

were obtained from a convenient sample of 14 healthy older individuals
(age, mean 63.4 years [SD 11.8 years]; gender, female 11 of 14 [78.6%]).
All participants were evaluated for any existing neurologic disorders by
history and underwent a screening neurologic examination. While we
recognize that older adults are known to have more variable sleep com-
pared with younger adults (see limitations) (Mander et al., 2017; Li et al.,
2018), the effects of aging are outside of the scope of this study, and all
findings are reported based on group statistics. Exclusion criteria for this
healthy cohort included any neurologic disorders by history or abnormal
neurologic findings by examination. In addition, exclusion criteria included
the use of any chronic or acute neuroactive medications, including neuro-
leptics, benzodiazepines, selective serotonin reuptake inhibitors/selective se-
rotonin-norepinephrine reuptake inhibitors, or sedatives. Inclusion criteria
included achieving at least an aggregate of 60 s within each sleep-wake state
(W, Stage 1 [N1], and Stage 2 [N2], segmented into 15 s epochs, see below)
during the EEG/MEG study. In all subjects, the use of these data for
research was approved by the University of California San Francisco
Institutional Review Board, and all subjects provided written informed
consent prior to data collection.

Experimental design, data acquisition, and preprocessing.MEG scans
were obtained using a whole-head biomagnetometer system (275 axial
gradiometers; MISL), acquired in the supine position. MEG and simulta-
neous EEG data were obtained for a period of 50-70 min, recorded at a
sampling rate of 600 Hz. Before the start of the recording, subjects were
instructed to close their eyes and attempt to sleep. Subjects did not
engage in any tasks during the recording. Raw EEG/MEG traces were
chunked into 15 s epochs. Each epoch was visually inspected and rejected
if there was presence of movement artifacts. In a subset of subjects with
metallic artifacts from noncranial implants, a dual signal subspace projec-
tion algorithm was used for denoising (Cai et al., 2019). Epochs were
scored into the appropriate sleep states based on scalp EEG criteria and
using two-person validation according to the American Academy of Sleep
Medicine criteria. The 15 s epochs of MEG data were then concatenated
together to achieve at minimum, a 60 second time series representing
each behavioral state. A maximum of the first eight artifact-free epochs
(e.g., 120 s) were utilized in this analysis. Prior work demonstrated that
60 s of resting wake state is an adequate duration to reliably achieve sta-
tionarity for MEG time series analyses (Guggisberg et al., 2008).

Atlas-based source reconstruction was performed at the subject level
to generate 14,125 isotropic voxels (each 5 mm in width) across a tem-
plate MRI brain. Using individual MRIs and the nasion and tragus loca-
tions, the generated voxels were then warped onto each subject’s brain.
Magnetic lead-field vectors were computed for each voxel using a single-
shell model approximation (Nolte, 2003) and indexed into the 210 corti-
cal parcellations, defined by the Brainnetome atlas (Fan et al., 2016). We
then used an array-gain scalar beamformer (Sekihara et al., 2004) applied
to each 15 s sensor-based time series to obtain voxel-level time series.
During the beamforming process, we normalized lead-field vectors to
avoid artifact from the center-of-the-head. We then solved a generalized
eigenvalue problem to determine the optimum source orientation
(Sekihara and Nagarajan, 2008). Beamformer weights were computed in
the time domain, and the sample covariance matrix of the sensors was
computed from the sensor time series data. Truncated singular value
decomposition techniques were used to invert the sensor covariance ma-
trix with a truncation threshold of 10�6 �maximum singular value. The
time series for each Brainnetome atlas-based cortical parcellation or ROI
was subsequently determined by performing principal components anal-
ysis across the voxels level time series of each region and assigning the
first principal component to each parcellation. Preprocessing and source
reconstruction were performed using custom MATLAB scripts (version
R2019a) integrated into the Fieldtrip toolbox (Oostenveld et al., 2011).

Data analysis and neural mass model (NMM). Time series data were
bandpass filtered into the following frequency bands: delta (1-4 Hz), theta

(4-8 Hz), alpha (8-12 Hz), sigma (12-15 Hz), and beta (15-30 Hz). Local
neural synchrony was quantified by the normalized spectral power of the
canonical frequency bands within a given ROI. Normalized spectral power
was determined by dividing the power spectra by the total power.

Long-range synchrony was computed using imaginary coherence, an
established spectral coherence measure of neural synchrony that is robust
to volume conduction effects (Sanchez Bornot et al., 2018). Imaginary co-
herence was computed for all pairwise cortical parcellations. To evaluate
the spatial patterns of connectivity (see regional-level statistics methods
below), long-range synchrony associated with each cortical parcellation
was computed by averaging all imaginary coherence values associated
with each ROI (i.e., averaging the pairwise imaginary coherence matrix
along one axis). The global mean of long-range synchrony was computed
as the estimated mean across of all regions (see global-level statistics
methods). We note that imaginary coherence is a shrinkage estimator of
true synchrony that includes both real and imaginary components of co-
herence. Although near-zero lag can be observed in large-scale oscillatory
networks (Rajagovindan and Ding, 2008; Viriyopase et al., 2012), imagi-
nary coherence is favored given the concern for additional nonbiological
synchrony that may be captured in zero-lag synchrony.

To capture information flow characteristics, phase transfer entropy
(PTE) was first computed to assess the pairwise directional interactions
between ROI time courses (Lobier et al., 2014). The strength of the direc-
tionality of information flow was then computed using a directionality
index (i.e., directional PTE [dPTE]), a connectivity measure for quantify-
ing information flow directionality that is robust to noise and linear signal
mixing (Hillebrand et al., 2016; Kudo et al., 2021). The methods in which
dPTE were computed are detailed in Kudo et al. (2021). Specifically, dPTE
captures the relative strength of the directionality of information flow, as
computed below (i.e., from ROI i to j) whereby the PTE represented below
is normalized and dPTE is bound by [–1, 1]:

dPTEi!j ¼ PTEi!j fð Þ � PTEj!i fð Þ
PTEi!j fð Þ1PTEj!i fð Þ (1)

The dPTE matrices are represented by an asymmetric matrix. Data
analysis was performed using the FieldTrip Matlab Toolbox (Oostenveld
et al., 2011) and custom-made MATLAB code (version R2019a).

In addition, we utilized a linear, deterministic NMM (David and
Friston, 2003; Moran et al., 2013; Raj et al., 2020; Verma et al., 2022) to
gain mechanistic insights on the relative balance of excitatory and inhibi-
tory inputs based on the observed spectra. This NMM captures the local
neural activity, as measured by the power spectral density (PSD) across
each ROI and sleep-wake state. In this implementation of the NMM,
whole-brain dynamics are deterministically modeled in closed form
within the Fourier domain, using a canonical rate model that considers
local cortical neural activity (Raj et al., 2020; Verma et al., 2022).
Specifically, we modeled a local signal as the summation of excitatory
signals, xe(t), and inhibitory signals, xi(t), for every ROI, based on the
Brainnetome cortical parcellation (Fan et al., 2016). We modeled the
evolution of xe(t) and xi(t) by the following processes: (1) the decay of
the individual signals with fixed neural gain parameters (gee, gii), (2)
incoming signals from coupled excitatory and inhibitory populations
(i.e., feedback interactions), and (3) a Gaussian white noise source (Eqs.
2, 3). The decay and the feedback interactions are regulated by character-
istic time constants (t e, t i) to account for the rate of local circuit delays.
With fe(t) and fi(t) as the ensemble-average neural response function, the
signals xe(t) and xi(t) are modeled as the following:

dxe tð Þ
dt

¼ � fe tð Þ
t e

� geexe tð Þ � geifi tð Þ � xi tð Þ
� �

1 p tð Þ (2)

dxi tð Þ
dt

¼ � fi tð Þ
t i

� giixi tð Þ1 geife tð Þ � xe tð Þ
� �

1 p tð Þ (3)

Here, the input white noise term represented by p(t); the neural gains
are gee, gii, gei; the characteristic time constants are given by t e, t i; and �

Fan et al. · Cortical Synchrony and Information Flow in NREM J. Neurosci., November 29, 2023 • 43(48):8157–8171 • 8159



stands for convolution. For optimization, gei was fixed at 1. The ensem-
ble-average neural response function, fe(t) and fi(t), are assumed to be
gamma-shaped (see Raj et al., 2020b, their Fig. 1b) and modeled as the
following:

fe tð Þ ¼ t
t 2
e

e
�t
te (4)

fi tð Þ ¼ t
t 2
i

e
�t
t i (5)

We assume that the signals xe(t) and xi(t) are presynaptic, and
we incorporate the neural response functions (fe(t) and fi(t)) to
model the postsynaptic signals. Thus, the neural response func-
tions are designed to represent both synaptic membrane capaci-
tance and the distribution of dendritic/axonal delays introduced
by the arborization. The key idea is that a neural signal cannot
influence another population unless it passes through the neural
response function. Similarly, the self-decay process of a neural ele-
ment can only influence itself through the self-impulse response.
This model is further described in Verma et al. (2023), Raj et al.
(2020b), and Ranasinghe et al. (2022).

By taking the Fourier transform of Equations 1 and 2, xe(t) and xi(t)
are then transformed into the Fourier domain and are expressed by
Xe(v ) and Xi(v), respectively, in which v is the frequency:

jvXe vð Þ ¼ � Fe vð Þ
t e

geeXe vð Þ � geiFi vð ÞXi vð Þð Þ1 P vð Þ (6)

jvXi vð Þ ¼ � Fi vð Þ
t i

giiXi vð Þ1geiFe vð ÞXe vð Þð Þ1 P vð Þ (7)

Where j is the imaginary unit. Similarly, P(v) represents the Fourier
transform of p(t), and Fe(v ) and Fi(v ) represent the Fourier transform
of fe(t) and fi(t) and are expressed by the following:

Fe vð Þ ¼
1
t 2
e

jv1
1
t e

� �2 (8)

Fi vð Þ ¼
1
t 2
i

jv1
1
t i

� �2 (9)

Thus, the closed form solution of Xe(v ) and Xi(v ) is as follows:

Xe vð Þ ¼

11

gei
t e

Fe vð ÞFi vð Þ

jv 1
gii
t i
Fi vð Þ

0
BB@

1
CCAP vð Þ

jv 1
gee
t e

Fe vð Þ1 geiFe vð ÞFi vð Þð Þ2

t et i jv1
gii
t i
Fi vð Þ

� �
(10)

Xi vð Þ ¼

1�
gei
t i

Fe vð ÞFi vð Þ

jv 1
gee
t e

Fe vð Þ

0
BB@

1
CCAP vð Þ

jv 1
gii
t i
Fi vð Þ1 geiFe vð ÞFi vð Þð Þ2

t et i jv 1
gee
t e

Fe vð Þ
� �

(11)

The simulated spectra, X(v ), is comprised of the excitatory and inhibi-
tory components summed together, for example, Xe(v )1 Xi(v ). Using the
transfer functions, He(v ) and Hi(v ), and P(v ) as the driving function,
Xe(v ) and Xi(v ) can be re-expressed as He(v )P(v ) and Hi(v )P(v ), and
thus, X vð Þ ¼ He vð Þ1Hi vð Þð ÞP vð Þ. From here, the PSD is represented

Figure 1. Spatial maps of local synchrony across sleep-wake states. A, Mean local synchrony, as measured by normalized spectral power, averaged across regions and participants in wake
(purple), N1 (green), and N2 (orange). Light shading represents the SE across participants. B, Spatial maps of mean regional local synchrony across sleep-wake states.
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byEðjXðvÞj2Þ. Recall that P(v) represents Gaussian noise and thus has a
flat power spectrum. Therefore, EðjX vð Þj2Þ / jHe vð Þ1Hi vð Þj2;which
is subsequently converted to dB scale by log-transformation:
10log10ðjHe vð Þ1Hi vð Þj2Þ.

For each ROI, gee, gii, t e, and t i were estimated. The spectra was
modeled across frequencies 1-30 Hz, and the fit of the model was deter-
mined by calculating the mean squared error (MSE) between the simu-
lated model PSD and the observed, source-localized MEG PSD in dB
(with MEG dB spectra scaled by 2.5 to match the modeled spectra mag-
nitude) across all frequencies. The minimization of the MSE for parame-
ter optimization was then performed using the basin hopping global
optimization algorithm in Python (Wales and Doye, 1997). The model
parameter initialization value, upper-boundary, and lower-boundary
were specified as 17, 5, and 30 ms, respectively, for t e, and t i; and 5, 0.1,
and 10, respectively, for gee and gii. In addition, hyperparameters, includ-
ing the number of iterations, step size, and temperature, were 2000, 4,
and 0.1, respectively. If boundary values were hit during the parameter
optimization, the step size was augmented to 6 for that specific ROI. The
parameters leading to the lower MSE were then selected. This optimiza-
tion procedure was performed for each Brainnetome topographical cort-
ical parcellation for each subject and sleep-wake state. Model parameters
whose fits were poor, defined by MSE .2 SDs above the mean MSE,
were excluded from the analysis.

Statistical analysis. For all statistical comparisons, the 210 topo-
graphical cortical parcellations of the Brainnetome atlas were configured
to 40 regions (modules), specified in Brainnetome atlas (Fan et al.,
2016). The regional representations give rise to 820 functional connec-
tions, which include the averaged measure within each region.

In order to evaluate both sleep-wake state effects, we first per-
formed “global” level statistics for each metric (e.g., connectivity, in-
formation flow, and model parameters). Specifically, we estimated
the global mean of spectral power, imaginary coherence, and
model parameters as a function of state, region, and subject using a
linear mixed-effects model, for example, lm(imaginary_coherence
; subject 1 region 1 state) or lm(XeXi ; subject 1 region 1
state). We then ran a one-way ANOVA model with state as a fac-
tor. We report the estimated least-square means (LS-means; df
1675) and 95% CIs for each sleep-wake state. Pairwise contrasts to
compare across sleep-wake states were adjusted for multiple com-
parisons across state using the Tukey–Kramer test. Statistical tests
were performed in MATLAB (version R2019a) and R version 3.6.3.

We subsequently evaluated regional-level statistics (i.e., assessing
connectivity, information flow, and model parameters within individual
regions or pairs of regions) for the comparison across sleep-wake states.
Here, we quantified the differences in regional-regional connectivity
(i.e., region pairs) and information flow using a two-tailed, paired t tests
to compare across sleep-wake states (i.e., between N1-N2, N1-W, N2-W).
Topographical cortical parcellation pairs within each region pair were
used as repeated measures. Post hoc corrections were performed to
account for multiple comparison testing across all state and region pairs
with a 5% false discovery rate (FDR). To compute differences in exci-
tation-to-inhibition model parameters for each region, a two-tailed,
paired t test was again performed across sleep-wake state compari-
sons. Topographical cortical parcellations within each region were
used as repeated measures, and a post hoc correction was performed
to account for multiple comparison testing (FDR 5%) across all state
pairs and regions. To create spatial maps, regional measures (e.g.,
connectivity measures, model parameters, and thresholded T scores)
were visualized on the brain using BrainNet Viewer (Xia et al., 2013).

To assess the relationship between mean regional local and
long-range synchrony, regional spectral power and imaginary co-
herence were averaged across patients to represent the mean spec-
tral power and imaginary coherence values for each region. The
Pearson’s correlation coefficient was then computed across all
regions (i.e., each point represents one of 40 modules) within and
across sleep-wake states.

Data availability. Anonymized summary data and relevant code
will be made available for noncommercial research purposes upon
request.

Results
Local neural synchrony across sleep states
Normalized spectral power, interpreted as local neural synchrony
(Buzsáki and Watson, 2012; Buzsáki et al., 2012), was averaged
across all regions and revealed an expected alpha peak during
wakefulness and a shift toward delta frequencies with the transi-
tion from wakefulness to N1 and N2 (Fig. 1A). The source recon-
structions of the mean normalized spectral power demonstrated
an increase in delta power predominantly over the bilateral pre-
frontal cortices (Fig. 1B). The anterior-posterior gradient in the
alpha frequency band, as well as the elevated beta power over the
central regions, attenuated with the transition from wakefulness
to light NREM (Fig. 1B). The spectral reconstructions are con-
sistent with prior findings (Brancaccio et al., 2020) and demon-
strate the accurate acquisition of sleep-wake states.

Long-range neural synchrony maps across sleep states
To evaluate the effect of sleep-wake state on local and long-range
synchrony, we first performed a one-way ANOVA test assessing
state as a factor. Within the delta frequency range, we identified
statistically significant differences across sleep-wake states in
local synchrony (F ¼ 1675.1, p � 0.0001) and in long-range syn-
chrony (F ¼ 164.9, p , 0.0001). The global mean of local syn-
chrony (i.e., relative spectral power averaged across all regions)
monotonically increased from W to N1 and N2 (Fig. 2A). In
contrast, the global mean of long-range synchrony increased
fromW to N1 (Fig. 2B; t¼ 17.3, p, 0.001, df¼ 1675) and W to
N2 (t¼ 13.5, p, 0.001) and decreased from N1 to N2 (t¼ –3.8,
p , 0.001) in the delta band. The relationship between mean re-
gional local and long-range synchrony revealed no correlation
within each sleep-wake state (Fig. 2C, purple, green, and red
lines; W, r ¼ 0.219, p ¼ 0.174; N1, r ¼ 0.199, p ¼ 0.220; N2, r ¼
0.159, p ¼ 0.328, respectively; Pearson’s correlation). On the
other hand, there was a high correlation across sleep-wake states
between mean regional local and long-range synchrony (black
line, r¼ 0.839, p, 0.001). These findings suggest that the spatial
patterns of local synchrony do not strongly reflect that of long-
range synchrony within classical stages of light NREM; how-
ever, regional local and long-range synchrony track across state
changes. We next evaluated the spatial patterns of long-range
synchrony across sleep-wake states. Mean imaginary coherence
was computed for each region, revealing frequency-specific
spatial patterns in wakefulness and light NREM (Figs. 2D, 3D,
4D,J,P). Within the delta band, long-range synchrony diffusely
increased with highest connections within and across the bilat-
eral frontal regions (i.e., superior frontal gyrus, middle frontal
gyrus, precentral gyrus) and between the bilateral frontoparie-
tal regions (i.e., between middle frontal gyrus, superior fron-
tal gyrus and inferior parietal lobule, superior parietal lobule;
Fig. 2E,F).

Within the theta frequency band, we again observed statisti-
cally significant differences across sleep-wake state in local syn-
chrony (F ¼ 86.4, p , 0.0001) and long-range synchrony (F ¼
31.6, p , 0.0001). Specifically, we observed the global mean of
spectral power increased from W to N1 (Fig. 3A; t ¼ 11.8, p ,
0.001) andW to N2 (t¼ 10.9, p, 0.001); there was no statistical
difference between N1 and N2 (t ¼ –1.0, p ¼ 0.573). The global
mean of imaginary coherence was again observed to increase
from W to N1 (Fig. 3B; t ¼ 6.1, p , 0.001) and decrease from
N1 to N2 (t ¼ –7.5, p , 0.001) (i.e., as with the delta band), the
peak long-range synchrony was in N1 within the theta band. The
global mean of imaginary coherence was not statistically different
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between W and N2 (t ¼ –1.4, p ¼ 0.333). The relationship
between mean regional local and long-range synchrony revealed
a positive correlation within sleep-wake states (Fig. 3C, purple,
green, and red; W, r ¼ 0.640, p , 0.001; N1, r ¼ 0.407, p ¼
0.009; N2, r ¼ 0.375, p ¼ 0.017, respectively), as well as when
comparing across sleep-wake states (r ¼ 0.478, p , 0.001).
Furthermore, regional spatial maps revealed that the bilateral
fronto-parieto-occipital regions (e.g., middle frontal gyrus, infe-
rior frontal gyrus, medioventral occipital cortex, lateral occipital
cortex, and precuneus) exhibited increased connectivity, while
bilateral temporal regions revealed reduced intrahemispheric
and interhemispheric connectivity (i.e., superior temporal gyrus,
inferior temporal gyrus, middle temporal gyrus, hippocampus,
and amygdala) in N1 compared with wake (Fig. 3D–F).

In addition, sleep-wake state effects were significant in both
local and long-range synchrony measures in the alpha (Fig. 4A,B;

local: F ¼ 522.4, p , 0.0001; long-range: F ¼ 40.2, p , 0.0001),
sigma (Fig. 4G,H; local: F ¼ 137.8, p , 0.0001; long-range: F ¼
98.1, p , 0.0001), and beta (Fig. 4M,N; local: F ¼ 613.7, p ,
0.0001; long-range: F ¼ 36.1, p , 0.0001) frequency bands. In
the alpha frequency band, the correlation between mean regional
local and long-range synchrony was strongest within the wake
state (Fig. 4C; r ¼ 0.773, p, 0.001), lower in N1 (r ¼ 0.608, p,
0.001), and further reduced in N2 (r¼ 0.428, p¼ 0.006); the cor-
relation remained strong across states (r ¼ 0.750, p , 0.001).
Furthermore, upon the transition from wakefulness to N1, the
alpha band yielded an increase in long-range synchrony among
interhemispheric fronto-temporal connections and a decrease
within bilateral parieto-occipital regions (Fig. 4D–F). An asym-
metry was also observed, characterized by an increase in long-
range synchrony within the left frontal region and a diffuse
decrease throughout the right hemisphere (Fig. 4E,F). Signifying

Figure 2. Spatial maps of long-range synchrony between sleep-wake states and the relationship between local and long-range synchrony in the delta frequency band. A, Global mean of
spectral power (local synchrony) for each sleep-wake state (W, N1, and N2) in the delta frequency band, as represented by LS-means and 95% CI. B, Global mean of imaginary coherence
(long-range synchrony) for each sleep-wake state, as represented by LS-means and 95% CI. C, Association between mean regional long-range and local synchrony in the delta band. Each point
represents an individual region within the spatial map. Linear regression and Pearson’s correlations of the mean regional long-range and local synchrony measures are provided for within and
across sleep-wake states. D, Spatial maps of mean regional long-range synchrony, as measured by imaginary coherence, within the delta band across sleep-wake states. E, T-score map of dif-
ferences in long-range synchrony between W and N1 for region pairs within the delta band. Right-hand legend represents regions within each lobar segment, as represented on the x and y
axes. F, Top 50 highest positive functional connections, favoring N1.
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the relevance of long-range versus local synchrony in the sigma
band, long-range synchrony increased while local synchrony
decreased upon transition from wakefulness to light NREM (Fig.
4G,H). As such, there was a negative correlation between the
mean regional local and long-range synchrony across sleep-wake
states (Fig. 4I; r ¼ –0.474, p , 0.001), while there remained a
positive correlation within W and N1 (W, r ¼ 0.406, p ¼ 0.009;
N1, r ¼ 0.413, p ¼ 0.008) and no correlation in N2 (r ¼ 0.248,
p ¼ 0.123). Spatial maps in the sigma band revealed a diffuse
increase in connectivity from W to N1 with the strongest con-
nections over the bilateral frontal regions (Fig. 4K,L). Within the
beta band, a moderate positive correlation between the mean re-
gional local and long-range synchrony was observed within the
wake state (Fig. 4O; r ¼ 0.493, p ¼ 0.001), which was reduced in

N1 (r ¼ 0.351, p ¼ 0.027) and absent in N2 (r ¼ –0.044, p ¼
0.786). In addition, the beta band demonstrated relatively
increased synchrony in interhemispheric connectivity and ante-
rior temporal regions in N1 compared with W (Fig. 4P–R). The
frequency-specific activation patterns in N1 and N2 were similar;
however, N1 overall demonstrated an increase in long-range
neural synchrony compared with N2.

Directional information flow across sleep-wake states
Directional information flow, as measured by dPTE (Lobier et
al., 2014; Kudo et al., 2021), provides insight into the regional
inputs and outputs that may influence local activity and syn-
chronization. Within the delta band, aggregated inflow target-
ing bilateral frontal regions increased in magnitude when

Figure 3. Spatial maps of mean long-range synchrony between sleep-wake states and the relationship between local and long-range synchrony in the theta frequency band. A, Global
mean of spectral power (local synchrony) for each sleep-wake state in the theta frequency band, as represented by LS-means and 95% CI. B, Global mean of imaginary coherence (long-range
synchrony) for each sleep-wake state, as represented by LS-means and 95% CI. C, Association between mean regional local and long-range synchrony in the theta band. D, Spatial maps of
mean regional long-range synchrony in W, N1, and N2 within the theta band. E, T-score map of differences in regional long-range synchrony between W and N1 within the theta band. F, Top
50 highest positive and negative functional connections, favoring N1 (red) and W (blue), respectively.
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transitioning from W to N1 and from N1 to N2 (Fig. 5).
Outflow from the bilateral occipital cortices (e.g., bilateral
occipital polar cortex, lingual gyrus, inferior occipital gyrus,
middle occipital gyrus, and ventromedial parieto-occipital
sulcus) directly flowed to the orbital frontal cortices during
wakefulness and more broadly to bilateral frontal regions
and temporo-parietal regions during light NREM (Fig. 5B,
C). With the transition from N1 to N2, the organization of
information flow became more structured (Fig. 5B,C).
Strikingly, as seen best in N2, the bilateral frontal regions
were observed to receive inputs not only directly from the
bilateral occipital regions, but also indirectly from the bilat-
eral occipital regions via inputs to the bilateral temporal
lobe, insula, and parietal regions (Fig. 5C,F,H). The serial
flow of information, in which the bilateral frontal regions
receive both direct and indirect inputs from broad cortical
regions, reflects a hierarchical organization of information
flow within the delta frequency band. Given the observed
spatial patterns during light NREM, we speculate that the
prominent anterior delta power seen at sleep onset may be

enabled through the inputs of broadly distributed and hier-
archically organized cortical activity.

In the theta frequency band, we observed a reduction in
temporo-occipital outflow to frontal regions and a relative
increase in posterior temporo-parietal outflow to frontal
regions with the transition from wakefulness to light NREM
(Fig. 6A). In the alpha frequency band, there was an overall
reduction in the occipital to frontal information flow, as well
as a reduction of outflow from the precuneus and superior
parietal lobule with the transition from wakefulness to light
NREM (Fig. 6B). Within the sigma frequency band, there
was a loss of outflow from insula-parieto-occipital regions to
anterior temporal regions (Fig. 6C); whereas, in the beta fre-
quency, there was also a reduction in outflow broadly from
temporo-parieto-occipital regions to frontal regions (Fig.
6D). These findings suggest that with sleep onset, the poste-
rior-anterior information flow most prominently observed
in the alpha frequency band during wakefulness does not
cease, but rather, shifts to lower frequencies during light
NREM.

Figure 4. Spatial maps of mean long-range synchrony between sleep-wake states and the relationship between local and long-range synchrony in the alpha, sigma, and beta frequency
bands. A, G, M, Global mean of spectral power (local synchrony) for each sleep-wake state in the alpha, sigma, and beta frequency bands, respectively, as represented by LS-means and 95%
CI. B, H, N, Global mean of imaginary coherence (long-range synchrony) for each sleep-wake state, as represented by LS-means and 95% CI. C, I, O, Association between mean regional local
and long-range synchrony in the alpha, sigma, and beta bands, respectively. D, J, P, Spatial maps of mean regional long-range synchrony in W, N1, and N2 within the alpha, sigma, and beta
bands, respectively. E, K, Q, T-score map of differences in regional long-range synchrony between W and N1 within the alpha, sigma, and beta bands, respectively. F, L, R, Top 50 highest posi-
tive and negative functional connections, favoring N1 (red) and W (blue), within the alpha, sigma, and beta bands, respectively.
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Neural mass modeling of cortical excitation-to-inhibition
parameters across sleep states
Finally, we utilized the observed physiology as inputs into bio-
physical NMMs to infer underlying mechanisms. Parameters
of cortical excitation and inhibition were determined by mod-
eling the observed regional spectral power using a determinis-
tic NMM that captures local oscillatory dynamics (Fig. 7A).
The two indices of the NMM that were optimized to fit local
electrophysiology included the characteristic time constants
(t e, t i), representing the time course of the underlying inhibi-
tory and excitatory drive, and the gain (gee, gii), representing
the strength of recurrent local circuits. From wakefulness to
light NREM, both the gee/gii and the t e/t i ratio was observed
to increase; differences between N1 to N2 were not statistically
significant (Fig. 7B). The mean excitation-to-inhibition ratio
(Xe/Xi), averaged across all regions, revealed an increase in ex-
citation-to-inhibition from wake to light NREM (Fig. 7C; N1-
W, t ¼ 4.3, p, 0.001; N2-W, t ¼ 4.4, p, 0.001); there was no
significant difference between N1 and N2 (t ¼ –0.1, p ¼ 0.99).
These findings suggest that the transitional period to sleep

may comprise a complex excitation-to-inhibition balance, in
which local excitability-to-inhibition increases with the transi-
tion to light NREM.

By modeling local dynamics, the excitation-to-inhibition
ratio was furthermore demonstrated to be spatially distinct
across the cortical surface within sleep-wake states (Fig. 7D).
The excitation-to-inhibition balance was highest over the
bilateral frontal lobes during N1, while relatively reduced
during wakefulness (Fig. 7E). Furthermore, the bilateral
precuneus and posterior-cingulate exhibited relatively increased
cortical excitation-to-inhibition during wakefulness, compared
with light NREM (Fig. 7E). Comparison of the observed
spectra to the model spectra (Fig. 7F) revealed an overall
similarity in the profile of the spectra and peak frequencies.
As homeostatic regulation during sleep has been thought to
be achieved through tuning synaptic strengths to alter the
excitation-to-inhibition balance (Tononi and Cirelli, 2006),
our computational modeling suggests that the sleep transi-
tion may comprise of a spatially heterogeneous homeostatic
cortical process.

Figure 5. Directional information flow of sleep-wake states in the delta frequency band. A–C, Directional information flow as measured by dPTE across W, N1, and N2. From W to N1 and
N2, the bilateral frontal regions exhibited an increase in direct and indirect information flow. D–F, Alternate visualization of directional information flow colored by orange (outflow) and purple
arrow (inflow). The visualization represents the top 10% of information flow streams across sleep-wake states in the delta frequency. G–I, Circle visualizations of T scores depicting the highest
magnitude changes between specified states (accounting for FDR level 0.5 and T-score thresholding of 4).
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Discussion
The characterization of whole-brain neural oscillations is essential
to advancing our understanding of distributed network interac-
tions underlying the transition to sleep. Descriptions of large-scale
brain networks have relied chiefly on fMRI/PET imaging, which
lack the temporal resolution and access to electrophysiology, and
on EEG, which traditionally has limited spatial coverage and
sensor-level analysis. By using MEG imaging, a whole-brain,
high-density imaging methodology, to simultaneously evaluate
spectral power, FC, and information flow, we identified local
and long-range cortical structure that underlie the transition
from waking to light NREM sleep. Our findings suggest that the
transition from wakefulness to light NREM is accompanied by
specific cortical patterns of neural synchrony that are coordinated

in frequency and spatial extent with relatively increased bilat-
eral frontoparietal connections in the delta frequency band and
decreased bilateral temporal and increased fronto-parieto-occi-
pital connections in the theta band. Using directional measures
of information flow, we furthermore identified a hierarchical
flow of information to the bilateral frontal regions with sleep
onset, characterized by both direct inputs from occipital regions
and indirect inputs via the parieto-temporal regions. Finally, by
using an NMM, we demonstrated spatially heterogeneous, an-
terior-posterior distribution of excitatory-to-inhibitory param-
eters upon the transition to sleep, potentially suggestive of local
homeostatic processes. As a simultaneous evaluation of local
and long-range synchrony and information flow has not yet
been performed during sleep onset, we review the literature in

Figure 6. Directional information flow of sleep-wake states in the theta, alpha, sigma, and beta frequency bands. Directional information flow as measured by dPTE across W, N1, and N2
within the (A) theta, (B) alpha, (C) sigma, and (D) beta frequency bands. The color bar scales are adjusted for each frequency to enable comparison of spatial patterns and organization across
sleep-wake states. Right-hand circle plots provide an alternate visualization of the top 10% of information flow streams for each frequency band computed across sleep-wake states; directional
information flow is colored by orange (outflow) and purple arrow (inflow). The rightmost circle visualizations depict top T-score differences in directional information flow (thresholded by mul-
tiple comparison testing and T-score thresholding of 4).
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each of these domains in the context of our findings and then
elaborate on how our NMM modeling fits in with experimental
techniques.

Studies from the past decade have revealed that sleep onset is
not a homogeneous process (Werth et al., 1997; Marzano et al.,
2013; Siclari et al., 2014; Bernardi et al., 2018; Fernandez
Guerrero and Achermann, 2019). Seminal PET studies provided
the initial evidence of differential deactivation of cortical associa-
tion regions with the transition from wakefulness to NREM,
including in the PFC, anterior cingulate, precuneus, and mesial
temporal structures, in addition to the deactivation of subcortical
structures (Braun et al., 1997; Maquet, 2000). Slow-wave activity
using EEG/MEG has been identified to originate in anterior
medial regions (Marzano et al., 2010; Siclari et al., 2014), later
involving parietal, temporal, and occipital regions in an anterior
to posterior direction (Siclari et al., 2014). The onset of slow-
wave activity coincides with an early rise in delta power in the
frontal regions (De Gennaro et al., 2001; Marzano et al., 2010;
Ioannides et al., 2017) and an increase in theta synchrony in the

occipital region (Marzano et al., 2010; Fernandez Guerrero and
Achermann, 2019). These findings are similarly recapitulated in
our data (Fig. 1B), in which prominent delta power is repre-
sented in the mesial frontal regions. Across all frequency groups,
regional local and long-range synchrony were poorly correlated
(e.g., Figs. 2F, 3F), suggesting that the degree of long-range con-
nectivity has minimal bearing on the observed local syn-
chrony, for a given state. Similar findings in resting state
between relative power and mean phase locking index in spe-
cific bands have been previously identified (Hillebrand et al.,
2012), reaffirming the need to simultaneously evaluate both
local and long-range synchrony measures. In contrast, we did
identify a strong correlation between regional local and long-
range synchrony across sleep-wake states, suggesting that a
global factor related to state-change impacts both local and
long-range synchrony. A possible physiologic interpretation
includes an increase in global mean spiking rates, elicited
from subcortical inputs, leading to increases in both local and
long-range synchrony (Chawla et al., 1999).

Figure 7. Biophysical NMM across sleep-wake states demonstrates spatially distinct excitation-to-inhibition patterns with the transition to sleep. A, Depiction of NMM, comprised of both
excitatory and inhibitory inputs and modeled with time constants (t ) and gain (g) parameters. B, LS-means and 95% CI of global t e/t i and gee/gii parameters (i.e., computed across all regions
and individuals as factors), comparing sleep-wake states. C, LS-means and 95% CI of global excitatory-to-inhibitory ratios (Xe/Xi) across sleep-wake states, revealing an increased excitation-to-
inhibition with the transition from wake to light NREM. D, Spatial maps of mean regional log(Xe/Xi) across sleep-wake states, revealing cortical heterogeneity in excitation-to-inhibition. E,
Spatial maps of T scores reflecting changes in log(Xe/Xi) between N1 versus W (left) and N2 versus W (right) at each anatomic region. Depicted T scores are thresholded across regions and
sleep-wake state pairs to account for multiple comparison testing (FDR level 0.05). F, Actual (top) and modeled (bottom) PSD curves across sleep-wake states averaged across all regions.
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Large-scale FC studies using fMRI (Spoormaker et al., 2010,
2011; Tagliazucchi and Laufs, 2014) and MEG (Liu et al., 2010b)
have demonstrated widespread increases in long-range syn-
chrony from W to N1 and N1 to N2, and a subsequent decrease
in long-range synchrony with the transition to N3 (Spoormaker
et al., 2010; Tagliazucchi et al., 2012; Tagliazucchi and Laufs,
2014). The widespread synchronization has been associated with
a decrease in global integration (Boly et al., 2012) and theorized
to account for the loss of consciousness with the transition to
sleep. While we also demonstrate an increase in mean long-range
synchrony fromW to light NREM in delta/theta bands, our find-
ings further reveal distinct long-range interactions during light
NREM, such as relatively increased bilateral frontoparietal inter-
actions in the delta band (Fig. 2B,C) and relatively decreased
bilateral temporal and increased fronto-parieto-occipital interac-
tions in the theta band (Fig. 3B,C). These findings differ from
prior MEG studies (Liu et al., 2010b), which revealed homogene-
ous increases in coherence, possibly due to limitations of sensor-
based FC mappings. Compared with spectral power, the mean
long-range synchrony of N1 in the delta/theta band was identi-
fied to be higher than bothW and N2, consistent with prior liter-
ature (Liu et al., 2010b; Spoormaker et al., 2010; Tagliazucchi
and Laufs, 2014; Nguyen et al., 2018). These findings suggest
that N1 represents a unique state that is not a transitional
or ill-defined state between wakefulness and sleep, which
has previously been suggested due to the relatively low
interrater reliability of identifying N1 based on transitional
PSG features (Rosenberg and Van Hout, 2013). Rather, the
distinctly elevated global mean of long-range synchrony
speaks to the complexity of the N1 state, which has been
characterized by unique behavioral observations, including
sleep mentation, responsiveness to sensory stimuli, or lucid
dreaming (Goupil and Bekinschtein, 2012; Siclari and Tononi,
2017). In addition, an intriguing finding in the expanded evalua-
tion of higher-frequency bands was the increased connectivity in
the sigma band with an associated decrease in relative spectral
power, upon the transition from wakefulness to sleep. Specifically,
the increase in connectivity in both N1 and N2 remains unclear
and cannot be fully accounted for by synchronized spindle activity,
which emerges in N2 (Andrade et al., 2011). Prior studies suggest
that graph characteristics within the sigma band, such as charac-
teristic path length, a proxy for connectivity, tracks across light
and deep NREM (Ferri et al., 2008), suggesting increased state-
specific, resting-state connectivity within this frequency band,
not specifically reflective of spindle activity. Furthermore,
another possible contribution may be any ambient auditory
stimuli heard while in the subject is resting MEG scanner,
which has been demonstrated to increase sigma activity in
both N1 and N2 (Wislowska et al., 2022). To this end, there
may be ecological considerations to the neural data of sleep-
ing in the MEG scanner versus a naturalistic, home envi-
ronment (Iber et al., 2004; Bunford et al., 2018).

Complementing the evaluation of local and long-range syn-
chrony across regions, we also assessed the directionality of re-
gional interactions, as measured by directional information flow.
Dominant posterior to anterior patterns of information flow of
alpha frequencies have previously been identified during resting
state (Hillebrand et al., 2016). Our findings recapitulated the pos-
terior-to-anterior patterns of information flow during resting
state for higher frequencies, and newly demonstrate increased
organization of information flow within the delta frequency upon
the transition to sleep. Specifically, information flow within the
delta frequency is composed of (1) a direct posterior-to-anterior

pattern (i.e., flow from parieto-occipital regions to frontal
regions), and (2) an indirect pattern (i.e., flow from occipi-
tal regions to bilateral parieto-temporal regions, which then
flow to the bilateral frontal lobes; Fig. 4C,F) with the transi-
tion to light NREM (Hillebrand et al., 2016; Adamantidis et
al., 2019). In contrast to prior EEG-based studies revealing
an inversion of directionality from occipital-to-frontal to
frontal-to-occipital during sleep onset (De Gennaro et al.,
2004, 2005; Vecchio et al., 2017), our findings suggest a
spectral shift in the prominent organizational pattern, while
maintaining the posterior-to-anterior information flow. In
addition to the increased number of sensors for source
reconstruction approaches, MEG provides a reference free
methodology for computing information flow, thereby pre-
venting the potential bias associated with referenced based
methods, such as EEG.

Finally, we investigated whether the observed neural oscilla-
tory patterns may give rise to spatially heterogeneous model pa-
rameters of cortical excitation-to-inhibition. While it remains a
challenge to directly measure neurotransmitter concentrations in
human subjects, various methods to approximate excitation and
inhibition balance have been used during sleep, including trans-
cranial magnetic stimulation (TMS)/EEG, MRS, intracranial
EEG with evoked responses (Meisel et al., 2015), and computa-
tional modeling (Ly et al., 2016). Cortical excitability has been
demonstrated to increase with time awake and sleep deprivation
(Huber et al., 2013; Meisel et al., 2015; Ly et al., 2016) and
decrease during sleep and the circadian cycle (Ly et al., 2016;
Miyawaki and Diba, 2016), as measured by neuronal firing rates,
synchronization, and propagation of TMS (Massimini et al.,
2005; Ly et al., 2016). Our NMM modeling suggests that the
transition from wakefulness to light NREM is accompanied by a
global increase in local cortical excitation-to-inhibition activity,
consistent with prior methods using TMS (Massimini et al.,
2005). Specifically, prior TMS findings revealed an enhancement
of early or local TMS-EEG responses during sleep, followed by
a global attenuation reflecting an overall global breakdown in
effective cortical connectivity (Massimini et al., 2005). The
amplified early or local TMS-EEG response has been hypothe-
sized to relate to an increased drive of postsynaptic excitatory
neurons, synchronization of local cortical populations, or acti-
vation of thalamocortical circuits. These findings are further
consistent with methods using MRS to measure GABA and glu-
tamate/glutamine concentrations to infer the excitatory-to-in-
hibitory balance, which identified an increase in NREM and a
decrease in REM with visual learning (Pereira and Lewis, 2020;
Tamaki et al., 2020). Importantly, the sleep-wake states cap-
tured in this study are limited to light NREM. As such, it
remains consistent and possible that the transition to sleep is
accompanied by a transient increase in the excitatory-to-inhibitory
balance (i.e., during light NREM), which then decreases in
deeper stages of NREM. Specifically, other studies have identi-
fied a reduced excitatory-to-inhibitory balance in slow-wave
sleep (Niethard et al., 2016), which together with REM would
support the synaptic homeostasis hypothesis associated with a
global reduction in excitation across the night (Meisel et al.,
2015; Ly et al., 2016; Niethard et al., 2017). These findings in
healthy individuals based on computational modeling may be
further supportive of sleep-wake observational patterns of epi-
leptiform activity in epilepsy patients, as a clinical biomarker of
excitability, in which light NREM has the highest state of epi-
leptiform interictal and ictal activity, particularly in frontotem-
poral seizure onset localizations compared with wakefulness
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(Herman et al., 2001; Ng and Pavlova, 2013; Peter-Derex et al.,
2020).

By using local NMM modeling and leveraging whole-brain
local field potential, cortical spatial maps of excitation-to-inhibi-
tion parameters can be elucidated, in contrast to seeded proc-
esses, for example, TMS impulses (Massimini M et al., 2005; Ly
et al., 2016; Cardone et al., 2021), MRS (Tamaki et al., 2020), or
direct measurements of excitatory and inhibitory neurotrans-
mitters (Bridi et al., 2020). As such, we demonstrate that the
modeled ratio of excitation-to-inhibition across the cortex is
nonuniform (Fig. 5D,E), exhibiting an anterior-to-posterior gra-
dient with the highest excitation-to-inhibition over bilateral
frontal lobes during light NREM. In contrast, the highest excita-
tion-to-inhibition during wakefulness is within the parietal-occi-
pital regions, as commensurate with prior modeling (Bruining et
al., 2020). Our findings support the view that sleep is composed
of spatially heterogeneous network dynamics, which may reflect
complex homeostatic patterns across the cortex.

This work has limitations. Due to the noisy environment and
time limitations of a recording session within the MEG scanner,
the sleep quality in the healthy participants was at times frag-
mented. In addition, deep NREM was not obtained across all
participants and thus not included in the analysis. To address the
sleep fragmentation, shortened epochs of high-quality 15 s were
utilized and concatenated together to formulate the most faithful
representations of sleep-wake states. Future efforts may benefit
from overnight or sleep-deprived recording sessions to obtain
longer, continuous periods of sleep-wake states. This study also
incorporates a modest sample size of 14 healthy participants,
who are also older in age. Indeed, older individuals have been
described to have more variable sleep compared with younger
adults (Mander et al., 2017; Li et al., 2018), yet the findings
reported here are statistically significant across the cohort stud-
ied. Furthermore, FC, as measured by fMRI and EEG, has been
demonstrated to be variable across ages, including lower overall
connectivity in N2 in older individuals compared with younger
participants (Ujma et al., 2019; Bouchard et al., 2020, 2021).
Thus, we acknowledge that these reported findings should be
taken in the context of the older mean age. Given prior findings
that also reveal strong similarities across age (Daneault et al.,
2021), additional future studies are necessary to comprehensively
study aging effects and are of significant future interest. In addi-
tion, a fundamental limitation of current human electrophysiol-
ogy recordings is the lack of simultaneous recordings from both
whole-coverage cortical areas and subcortical structures,
including the thalamus. Thus, the contributions of subcort-
ical structures to the observed cortical synchrony patterns
remain an open question. Finally, although the linear NMM
captures the frequency spectra directly through a closed
form solution, a primary limitation of the NMM used in
this study includes its inability to capture nonlinear com-
plexities of the brain. In addition, by design, the current
model is capable of capturing two peaks, situated at or
below the beta frequency range; current limitations of our
NMM modeling include the inability to incorporate addi-
tional higher-frequency peaks under biologically plausible
parameter conditions (Verma et al., 2022). While NMMmodel-
ing remains an exciting area of ongoing research, with several
prior efforts demonstrating meaningful associations of model
parameters with TMS-EEG outputs (Chellappa et al., 2016),
there remain open questions with ongoing efforts to refine the
parameter space and establish the robustness of NMMs. Future
efforts are required to validate these models for establishing the

biological accuracy of modeled excitatory-to-inhibitory param-
eters (Verma et al., 2022, 2023; Cooray et al., 2023).

In conclusion, our work identifies cortical oscillations struc-
tured across multiple spatial scales and hierarchically organized
across time (e.g., frequency-specific interactions) with the transi-
tion from wakefulness to light NREM sleep. Serial information
flow from broad cortical regions is directed to the mesial frontal
regions in the delta frequency, which may contribute to the syn-
chronization of local oscillations. Finally, our observed electro-
physiology gives rise to spatially heterogeneous parameters of
cortical excitation-to-inhibition with the transition to sleep.
Together, our findings suggest that the transition to sleep is
accompanied by distinct, whole-brain frequency and spatially
specific neural patterns that underlie spatially heterogeneous
excitatory and inhibitory activity.
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