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What I cannot create,

I do not understand.

—Richard P. Feynman
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high-throughput,

no-output biology.
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Constraint-based modeling of metabolism at the genome scale has existed as a

successful field for two decades. However, genome-scale modeling has entered a new

era, with models of ever-increasing size which account for every known reaction in

the metabolic and gene expression networks, known as ME models. These models are

able to integrate for both metabolic costs (operational expenses) and gene expression

costs (capital expenses) in a quasi-econometric model of growing bacterial cells. This

modeling type presents new challenges but also brings exciting novel capabilities to

constraint-based modeling.
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An initial challenge due to models of this size and scale is simply software.

Existing software tools for constraint-based modeling simply do not scale to handle

models at the size of ME models. Additionally, they make assumptions about the model

structure which prevent them from modeling the nonlinearities present in ME models.

To address this, a new software package, COBRApy was developed to meet these

needs. Unfortunately, interoperability between constraint-based modeling frameworks

was already difficult, often resulting in different modeling results. To address this

shortcoming, a web-based model validator was deployed to aid the constraint-based

modeling community in ensuring all models compute identically with different tools.

Finally, a new framework was written on top of COBRApy to build and simulate ME

models quickly, accurately, and reproducibly.

To exploit the descriptive nature of ME models, new algorithms were developed

to gain increased biological insight from modeling simulations. To improve the

understanding of the transcriptional regulatory network in E. coli, a method was

developed to predict transcription factor activity from ME simulations, which were

successfully used to guide experimental design in identifying novel transcription factor

binding sites. To improve the ability of the E. coli ME model to directly predict

differential gene expression, a novel method was developed to estimate ME model

parameters from high-throughput omics data. Finally, the ME model of the E. coli

K-12 MG1655 strain was extended to build strain-specific ME models for 40 different

E. coli strains.
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Chapter 1

COBRApy: COnstraints-Based

Reconstruction and Analysis for

Python

1.1 Abstract

1.1.1 Background

COnstraint-Based Reconstruction and Analysis (COBRA) methods are widely

used for genome-scale modeling of metabolic networks in both prokaryotes and eu-

karyotes. Due to the successes with metabolism, there is an increasing effort to apply

COBRA methods to reconstruct and analyze integrated models of cellular processes.

The COBRA Toolbox for MATLAB is a leading software package for genome-scale

analysis of metabolism; however, it was not designed to elegantly capture the com-

plexity inherent in integrated biological networks and lacks an integration framework

1
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for the multiomics data used in systems biology. The openCOBRA Project is a

community effort to promote constraints-based research through the distribution of

freely available software.

1.1.2 Results

Here, we describe COBRA for Python (COBRApy), a Python package that

provides support for basic COBRA methods. COBRApy is designed in an object-

oriented fashion that facilitates the representation of the complex biological processes

of metabolism and gene expression. COBRApy does not require MATLAB to function;

however, it includes an interface to the COBRA Toolbox for MATLAB to facilitate use

of legacy codes. For improved performance, COBRApy includes parallel processing

support for computationally intensive processes.

1.1.3 Conclusion

COBRApy is an object-oriented framework designed to meet the computational

challenges associated with the next generation of stoichiometric constraint-based

models and high-density omics data sets.

1.2 Background

Constraint based modeling approaches have been widely applied in the field

of microbial metabolic engineering [FP08, KRaSN12] and have been employed in the

analysis [LBY+03, HJT+07, THL10] and, to a lesser extent, modeling of transcrip-

tional [CP02, GJPP09, TJFP09] and signaling [HP10] networks. And, we’ve recently
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developed a method for integrated modeling of gene expression and metabolism on

the genome scale [LHL+12].

The popularity of these approaches is due, in part, to the fact that they

facilitate analysis of biological systems in the absence of a comprehensive set of param-

eters. Constraints-based approaches focus on employing data-driven physicochemical

and biological constraints to enumerate the set of feasible phenotypic states of a

reconstructed biological network in a given condition. These constraints include com-

partmentalization, mass conservation, molecular crowding [VBD+08], thermodynamic

directionality [HBH07], and transcription factor activity [GCJJPG+08]. More recently,

transcriptome data have been used to reduce the size of the set of computed feasible

states [CBZ+09, FZF+11, BMN+12, HLP13]. Because constraints-based models are

often underdetermined they may provide multiple mathematically-equivalent solutions

to a specific question – these equivalent solutions must be assessed with experimental

data for biological relevance [MS03].

We have previously published the COBRA Toolbox [SQF+11] for MATLAB

to provide systems biology researchers with a high-level interface to a variety of

methods for constraint-based modeling of genome-scale stoichiometric models of

cellular biochemistry. The COBRA Toolbox is being increasingly recognized as a

standard framework for constraint-based modeling of metabolism [MvRTB12]. While

the COBRA Toolbox has gained widespread use and become a powerful piece of

software, it was not designed to cope with modeling complex biological processes

outside of metabolism or for integrated analyses of omics data, and requires proprietary

software to function. To drive COBRA research through this avalanche of omics and

model increasingly complex biological processes [LHL+12], we have developed an



4

object-oriented implementation of core COBRA Toolbox functions using the Python

programming language. COBRA for Python (COBRApy) provides access to commonly

used COBRA methods in a MATLAB-free fashion.

1.3 Implementation

The core capabilities of COBRApy are enabled by a set of classes (Figure 1.1)

that represent organisms (Model), biochemical reactions (Reaction), and biomolecules

(Metabolite and Gene). The core code is accessible through either Python or Jython

(Python for Java). COBRApy contains: (1) cobra.io: an input/output package for

reading / writing SBML [HFB+04] models and reading / writing COBRA Toolbox

MATLAB structures. (2) cobra.flux analysis: a package for performing common

FBA operations, including gene deletion and flux variability analysis (refs). (3)

cobra.topology: a package for performing structural analysis – the current version

contains the reporter metabolites algorithm of Patil & Nielsen [PN05]. (4) cobra.test:

a suite of unit tests and test data. (5) cobra.solvers: interfaces to linear optimization

packages. And, (6) cobra.mlab: an interface to the COBRA Toolbox for MATLAB.

1.4 Results and discussion

COBRApy is a software package for constraints-based modeling that is designed

to accommodate the increasing complexity of biological processes represented with

COBRA methods. Like the COBRA Toolbox, COBRApy provides core COBRA

modeling capabilities in an extendible and accessible fashion. However, COBRApy

employs an object oriented programming approach that is more amenable to represent-
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outside of metabolism or for integrated analyses of omics
data, and requires proprietary software to function. To
drive COBRA research through this avalanche of omics
and model increasingly complex biological processes [10],
we have developed an object-oriented implementation
of core COBRA Toolbox functions using the Python
programming language. COBRA for Python (COBRApy)
provides access to commonly used COBRA methods in a
MATLAB-free fashion.

Implementation
The core capabilities of COBRApy are enabled by a set
of classes (Figure 1) that represent organisms (Model),
biochemical reactions (Reaction), and biomolecules
(Metabolite and Gene). The core code is accessible through
either Python or Jython (Python for Java). COBRApy con-
tains: (1) cobra.io: an input/output package for reading /
writing SBML [21] models and reading / writing COBRA
Toolbox MATLAB structures. (2) cobra.flux_analysis: a
package for performing common FBA operations, in-
cluding gene deletion and flux variability analysis [18].
(3) cobra.topology: a package for performing structural
analysis – the current version contains the reporter
metabolites algorithm of Patil & Nielsen [22]. (4) cobra.
test: a suite of unit tests and test data. (5) cobra.solvers:
interfaces to linear optimization packages. And, (6)
cobra.mlab: an interface to the COBRA Toolbox for
MATLAB.

Results and discussion
COBRApy is a software package for constraints-based
modeling that is designed to accommodate the increa-
sing complexity of biological processes represented with
COBRA methods. Like the COBRA Toolbox, COBRApy
provides core COBRA modeling capabilities in an ex-
tendible and accessible fashion. However, COBRApy
employs an object oriented programming approach that
is more amenable to representing increasingly complex
models of biological networks. Moreover, COBRApy
inherits numerous benefits from the Python language,
and allows the integration of models with databases and
other sources of high-throughput data. Additionally,
COBRApy does not require commercial software for
commonly used COBRA operations whereas the COBRA
Toolbox depends on MATLAB. As the COBRA Toolbox
is in wide use, it will likely be used as a development and
analysis platform for years to come. To take advantage of
legacy and future modules written for the COBRA
Toolbox, COBRApy includes a module for directly inter-
acting with the COBRA Toolbox (cobra.mlab) and sup-
port for reading and writing COBRA Toolbox MATLAB
structures (cobra.io.mat).
In recent years, a number of software packages have

been developed that employ stoichiometric constraint-
based modeling approaches [23], such as Cell Net Ana-
lyzer [24], FASIMU [25], PySCeS-CBM [26], the Raven
Toolbox [27], and the Systems Biology Research Tool [28].

id: str
notes: dict
annotation: dict

Object

add_reactions()
optimize()
remove_reactions()
to_array_based_model()

compartments: dict
description: str
genes: DictList
metabolites: DictList
reactions: DictList
solution: Solution

Model
elements: dict
formula: str
weight: float

Formula

get_model()
get_reaction()
remove_from_model()

charge: float
compartment: str
formula: Formula
name: str

Metabolite

add_metabolites()
check_mass_balance()
get_coefficients()
get_gene()
get_model()
get_products()
get_reactants()
remove_from_model()
subtract_metabolites()

gene_reaction_rule: str
lower_bound: float
name: str
objective_coefficient: float
reaction: str
upper_bound: float

Reaction
f: float
status: str
solver: str
x: numpy.array
x_dict: dict
y: numpy.array
y_dict: dict

Solution

update()

S: scipy.sparse
b: numpy.array
constraint_sense: list
lower_bounds: numpy.array
objective_coefficients: numpy.array
upper_bounds: numpy.array

ArrayBasedModel

functional: bool
locus_end: int
locus_start: int
strand: str

Gene

get_by_id()
query()

DictList(list)

Figure 1 Core classes in COBRA for Python with key attributes and methods listed. Additional attributes and methods are described in
the documentation.
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Figure 1.1: Core classes in COBRA for Python with key attributes and
methods listed. Additional attributes and methods are described in the
documentation.

ing increasingly complex models of biological networks. Moreover, COBRApy inherits

numerous benefits from the Python language, and allows the integration of models

with databases and other sources of high-throughput data. Additionally, COBRApy

does not require commercial software for commonly used COBRA operations whereas

the COBRA Toolbox depends on MATLAB. As the COBRA Toolbox is in wide use, it

will likely be used as a development and analysis platform for years to come. To take

advantage of legacy and future modules written for the COBRA Toolbox, COBRApy

includes a module for directly interacting with the COBRA Toolbox (cobra.mlab) and

support for reading and writing COBRA Toolbox MATLAB structures (cobra.io.mat).

In recent years, a number of software packages have been developed that employ

stoichiometric constraint-based modeling approaches [LKCL14], such as Cell Net
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Analyzer [KvK11], FASIMU [HHG+11], PySCeS-CBM [ORH05], the Raven Toolbox

[ALS+13], and the Systems Biology Research Tool [WW08]. While there is overlap in

functionality between some of packages and COBRApy (Table 1), the other packages

do not currently support the next generation models of metabolism and expression

(ME-Models) [LHL+12] nor integration with the COBRA Toolbox for MATLAB.

It is worth noting that the other software packages often contain a rich variety of

functionality that is targeted towards other research topics, such as modeling signaling

networks [KvK11]. COBRApy continues the COBRA Toolbox’s tradition of providing

an interactive / programmable framework for constraints-based modeling and is a new

initiative of The openCOBRA Project. Software downloads, tutorials, forums, and

detailed documentation are available at http://opencobra.github.io.

Table 1.1: Features of available constraints-based programming packages
Package GUI FBA FVA M ME SBML Design Language
Cell Net Analyzer + + + + + + MATLAB
COBRA toolbox + + + + + MATLAB
COBRApy + + + + + + Python
fasimu + + + + bash
PySCeS-CBM + + + + Python
Raven + + + + MATLAB
Sys Bio Res Tool + + + Java

1.4.1 Core classes: model, metabolite, reaction, & gene

The core classes of COBRApy are Model, Metabolite, Reaction, and Gene. The

Model class serves as a container for a set of chemical Reactions, including associated

Metabolites and Gene products (Figure 1.2a). Within a Model, Metabolites are

modified by one or more Reactions that may be spontaneous or catalyzed by one

or more Genes (Figure 2b). The underlying genetic requirements for a Reaction to

https://opencobra.github.io
http://opencobra.github.io
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be active in a Model are supplied as a Boolean relationship [19], where each gene is

referred to by a unique identifier. During the construction of a Model, the Model and

the Reactions, Metabolites, and Genes are explicitly aware of each other. For example,

given a Metabolite, it is possible to use the get reaction() method to determine in

which Reactions this Metabolite participates. Then the genes associated with these

Reactions may be accessed by the Reaction.get gene() method.

Because of the presence of equivalent alternative
optima in constraint based-simulations of metabolism
[18], many reactions may theoretically be able to carry a
wide range of flux for a given simulation objective. Flux
variability analysis (FVA) is often used to calculate the
amount of flux a reaction can carry while still simulating
the maximum flux through the objective function
subject to a specified tolerance. Flux variability analyses
can be used to identify problems in model structure [40]
or ‘pinch-points’ in a metabolic network. COBRApy
provides automated functions for FVA in the cobra.
flux_analysis.variability module.

Advanced capabilities
Because whole genome double deletion and FVA simula-
tions can be time intensive with a single CPU, we have
provided a function that uses Parallel Python [41] to
split the simulation across multiple CPUs for multicore
machines. Additionally, there are a wide range of legacy
operations that are present in the COBRA Toolbox that
can be accessed using mlabwrap [42]. MATLAB is only
necessary for accessing codes written in the COBRA
Toolbox for MATLAB; it is not necessary to run the ma-
jority of COBRApy functions.

Conclusions
COBRApy is a constraint-based modeling package that is
designed to accommodate the biological complexity of the
next generation of COBRA models [10] and provides
access to commonly used COBRA methods, such as flux
balance analysis [35], flux variability analysis [18], and gene
deletion analyses [43]. Through the mlabwrap module it is
possible to use COBRApy to call many additional COBRA
methods present in the COBRA Toolbox for MATLAB
[19]. As part of The openCOBRA Project, COBRApy
serves as an enabling framework for which the community
can develop and contribute application specific modules.

Availability and requirements
Project name: COBRApy version 0.2.1
Project home page: http://opencobra.sourceforge.net
Operating systems: Platform independent, including Java
Programming language: Python (≥2.6) / Jython (≥2.5)
Other requirements:
Python: libSBML ≥ 5.5.0 [32]. Currently supported linear
programming solvers: GLPK [44] through PyGLPK 0.3
[45], IBM ILOG/CPLEX Optimization Studio ≥ 12.4
(IBM Corporation, Armonk, New York), and Gurobi ≥ 5.0
(Gurobi Optimization, Inc., Houston, TX, USA).

Model

Metabolite GeneReaction

Contains Contains Contains

(a) (b)
Gene

Metabolite

Reaction

Catalyzes

Modifies

Figure 2 Entity relationship diagrams for core classes in COBRApy. (a) A Model contains Metabolites, Reactions, and Genes. (b) A Reaction
may be catalyzed by 0 or more Genes. Reactions catalyzed by 0 Genes are spontaneous. A Reaction may be catalyzed by different sets of Genes.
Reactions modify 1 or more Metabolites. A Reaction that modifies only 1 metabolite is an external boundary condition. A Metabolite may be
modified by many different Reactions.
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Figure 1.2: Entity relationship diagrams for core classes in COBRApy.
(a) A Model contains Metabolites, Reactions, and Genes. (b) A Reaction
may be catalyzed by 0 or more Genes. Reactions catalyzed by 0 Genes
are spontaneous. A Reaction may be catalyzed by different sets of Genes.
Reactions modify 1 or more Metabolites. A Reaction that modifies only 1
metabolite is an external boundary condition. A Metabolite may be modified
by many different Reactions.

The object-based design of COBRApy provides the user with the ability to
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directly access attributes for each object (Figure 1.1), whereas with the COBRA

Toolbox for MATLAB biological entities and their attributes are each contained within

separate lists. For example, with COBRApy, a Metabolite object provides information

about its chemical Formula and associated biochemical Reactions, whereas, with the

COBRA Toolbox for MATLAB, one must query multiple tables to access these values

and modify multiple tables to update these values.

1.4.2 Key capabilities

COBRApy comes with variants of the published metabolic network models (M-

Models) for Salmonella enterica Typhimurium LT2 [THS+11] and Escherichia coli K-12

MG1655 [OCN+11]. These models can be loaded with the cobra.test.create test model

function; with S. Typhimurium LT2 being the default model. Additionally, COBRApy

can read SBML-formatted models [BKJH08] downloaded from a variety of sources,

such as the Model SEED [HDB+10] and the BioModels database [LDR+10].

A common operation performed with M-Models is to optimize for the max-

imum flux through a specific reaction in a defined growth medium [OTP10]. The

S. Typhimurium LT2 model comes with a variety of media whose compositions

are specified in the model’s media compositions attribute. Here, we initialize the

Model’s boundary conditions to mimic the minimal MgM medium [BBD+99] and then

perform a linear optimization to calculate the maximal flux through the Reaction

biomass iRR1083 metals. Biomass iRR1083 metals is a reaction that approximates

the materials required to support S. Typhimurium LT2 growth in a minimal medium

where approximately 0.3 grams dry weight S. Typhimurium LT2 are produced per

hour. It is important to note that cellular composition can vary as a function of growth
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rate [SMK58], therefore, for biological accuracy it may be necessary to construct a

new biomass reaction if the simulated, or experimentally-observed, growth rate is

substantially different [LHL+12, PK97].

Flux balance analysis of M-Models has enjoyed substantial success in qualitative

analyses of gene essentiality [THS+11]. These studies used simulations to identify

which genes or synthetic lethal gene-pairs are essential for biomass production in

a given condition. The lists of essential genes and synthetic lethal gene-pairs may

then be targeted to inhibit microbial growth or excluded from manipulation when

constructing designer strains [BPM03]. COBRApy provides functions for automating

single and double gene deletion studies in the cobra.flux analysis module.

Because of the presence of equivalent alternative optima in constraint based-

simulations of metabolism [MS03], many reactions may theoretically be able to carry

a wide range of flux for a given simulation objective. Flux variability analysis (FVA)

is often used to calculate the amount of flux a reaction can carry while still simulating

the maximum flux through the objective function subject to a specified tolerance.

Flux variability analyses can be used to identify problems in model structure [SLP11]

or ‘pinch-points’ in a metabolic network. COBRApy provides automated functions

for FVA in the cobra.flux analysis.variability module.

1.4.3 Advanced capabilities

Because whole genome double deletion and FVA simulations can be time

intensive with a single CPU, we have provided a function that uses Parallel Python

to split the simulation across multiple CPUs for multicore machines. Additionally,

there are a wide range of legacy operations that are present in the COBRA Toolbox

http://\hskip \z@ \relax parallelpython.\hskip \z@ \relax com
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that can be accessed using mlabwrap. MATLAB is only necessary for accessing codes

written in the COBRA Toolbox for MATLAB; it is not necessary to run the majority

of COBRApy functions.

1.5 Conclusions

COBRApy is a constraint-based modeling package that is designed to accom-

modate the biological complexity of the next generation of COBRA models [LHL+12]

and provides access to commonly used COBRA methods, such as flux balance anal-

ysis [OTP10], flux variability analysis [MS03], and gene deletion analyses [LNP12].

Through the mlabwrap module it is possible to use COBRApy to call many additional

COBRA methods present in the COBRA Toolbox for MATLAB [SQF+11]. As part

of The openCOBRA Project, COBRApy serves as an enabling framework for which

the community can develop and contribute application specific modules.
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Chapter 2

Distribution and Portability of

Validated Genome-Scale

Constraint-Based Models

2.1 Introduction and Problem Statement

The number of genome-scale reconstructions has massively increased over the

past decade [MNP14], and the types of analyses done with these networks has rapidly

increased as well [LNP12]. However, it has remained challenging to distribute these

models between different research groups [RR15]. Different methods of parsing for a

large number of published models can lead to disputes of whether the models solve

or not [EAB+15]. Thus there is a clear need in this field for a unified and standard

method of distributing these models.

Traditionally, SBML has been the most widely used standard format for

distributing models in computational systems biology [HFS+03], However, it was

12
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originally written to support dynamic models, so many models were instead distributed

as ad-hoc spreadsheets. Eventually, many in the constraints-based modeling community

moved to using SBML. However, support for SBML models was implemented in various

incompatible ways by different software packages, thereby compromising the format’s

compatibility [DP14]. More insidiously, these various distribution schemes make

tacit assumptions about modeling conventions that can easily lead to non-unique

interpretations of the model when imported incorrectly. One particularly common

pitfall has been the encoding of reaction flux bounds (constrictions of minimal and

maximal reaction velocities), which evolved in several different ways. Additionally,

many gene-reaction rules (Boolean expressions for the relationships between the

genomic and metabolic network) are often incorrectly written and cannot be parsed.

Moreover, inconsistent use of metabolite formulas and charges makes validation of

model mass balances difficult. Finally, exchange, demand, and biomass reactions

are often encoded in different and inconsistent ways, and there is no unified way to

designate these reactions as such. These difficulties stemming from ambiguities in file

encoding often result in models that appear to be unable to simulate growth to other

users who may use slightly different tools. These issues have posed a large challenge to

reproducibility of model computations for the constraint-based modeling community,

until now.

2.2 A Potential Solution

Many of these problems can be addressed by releasing published reconstruc-

tions using newer standard formats, which were designed specifically for creation of

constraint-based models. For SBML, a new version of the flux balance constraints
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package has been created with a “strict” mode that specifically ensures there are

no ambiguities in how a file may be parsed into a model. For web-based tools, the

JSON format defined by COBRApy and Escher is based on a schema which forces

unambiguous creation of models as well [KDE+15]. However, while both of these

formats can be validated for syntactic compliance, further semantic validation is still

necessary to ensure the models produced are usable for computations.

Figure 2.1: Depiction of the validator website, taken as a screenshot from
http://bigg.ucsd.edu/validator. A successfully validated model has a check
mark appear on it, while an unsuccessful model has an icon of an x, along
with the error messages highlighted in red.

To this end, we have developed a validator (Figure 2.1) for metabolic network

reconstructions distributed as SBML and JSON files, hosted at http://bigg.ucsd.edu/

validator. This validator is free and open-source (under the MIT license) web-based

software, making its use by researchers and peer reviewers as simple as possible. In

addition to testing the file format syntax [BKJH08] and that a model can be correctly

read from the file, the validator also runs semantic tests on the model itself. The

http://bigg.ucsd.edu/validator
http://bigg.ucsd.edu/validator
http://bigg.ucsd.edu/validator
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validator ensures that all reactions are either mass balanced, or are correctly annotated

as a non-balanced reaction type, such as a demand, exchange, or biomass reaction

using the corresponding term from the systems biology ontology (SBO) [CJK+11]).

Additionally, it tests that a biomass reaction is correctly identified, and uses an exact

solver to determine if this biomass reaction can sustain a non-zero flux [ACDE07].

While automated validation is not a substitute for a quality-controlled reconstruction

process [TP10], the availability of this validator will help ensure published models

conform to this established set of quality metrics. If peer reviewers and model authors

alike ensure all published models pass validation by this tool and other ones like it,

the constraint-based modeling community can overcome the current challenges it faces

with model portability and computational reproducibility.
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Chapter 3

Model-driven elucidation of

transcriptional regulatory network

in bacteria

3.1 Abstract

A model-driven approach to experimental design was applied to elucidate

the transcriptional regulation by two major transcription factors (TFs), NtrC and

Nac, in nitrogen metabolism of Escherichia coli. Genome-wide measurements with

ChIP-exo and RNA-seq were performed using alternative nitrogen sources predicted

by genome-scale models to activate these responses and to make differential activation

of Nac. A total of 19, 249, 153, and 2171 binding sites for NtrC, Nac, RpoN and

RpoD, respectively were identified, and NtrC associates preferentially with RpoN-

dependent promoters, while Nac interacts with RpoD-dependent promoters. Functional

analysis of the two regulons showed that the NtrC regulon primarily responds to

16
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nitrogen limitation by attempting to increase nitrogen availability. Nac, on the

other hand, re-balances flux through carbon metabolism to accommodate the change

in the nitrogen source. A systems-biology computational approach was required to

reconcile the behavior of these two transcription factors into a detailed and quantitative

understanding of how the metabolic network responds to different nitrogen sources.

3.2 Introduction

Revealing the transcriptional regulatory network (TRN) in bacteria is important

to understand metabolic flexibility and robustness in response to environmental changes

[SIBG08]. A productive way to elucidate TRN at the systems level is by integrating

multiple ‘omics’ datasets, such as ChIP (chromatin immunoprecipitation), expression

profiling, and genome-scale TSS profiling. The first step of such an undertaking is

to determine the relevant growth conditions where a transcription factor (TF) of

interest is expected to be maximally active. Determining experimental conditions

for TF activation has been frequently based on information from the literature or

intuition. This approach has been used effectively, especially for specific or locally

working TFs, which have one or a few activation conditions. Regulon elucidation has

been performed for a number of subsets of bacterial metabolism including carbon

metabolism, aerobic/anaerobic metabolism [CKP06b, FKE+14, MYO+13, PAA+13],

iron metabolism [SKL+14], and other metabolism with nitrogen containing molecules,

such as Lrp [CBK+08], ArgR/TrpR [CFP+11], PurR [CFE+11], and RutR [SIBG08]

establishing the use of key experimental methods. However, in the most of these

genome-wide studies, it was assumed that the conditions chosen in those studies

represent the optimal conditions to study the TFs of interest, and it has been often
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ignored the possibility of differential activation or activity of those TFs under multiple

conditions. For instance, there could be multiple conditions that activate global TFs,

and choosing experimental conditions based on the literature could limit assessing

which experimental condition is better than another to stimulate the activity of TFs

in many cases.

The development of genome-scale network models, including recently devel-

oped models of the metabolic network [OCN+11] and of metabolism and expression

[OLC+13] for E. coli, enables in silico exploration of virtually every imaginable exper-

imental condition. Comparison of different network states computed under different

candidate experimental conditions can shed light on varying cellular responses to the

environmental changes and thus the regulatory requirements for the shift from one

condition to another. For instance, transcriptional change predicted with the ME

model can present a cellular response in the transcription level to the environmental

signal. Thus, combining model-based simulations with existing, but limited, regulon

information from the public database can assess the experimental conditions in silico,

and can result in the prediction of conditions where a TF could be activated. In

extension of this approach, it is possible to choose multiple conditions to render

possible differential activation of TFs that the conventional and non-systems approach

suggested to be activated in a similar fashion.

In order to exploit the use of this model-driven experimental design approach,

two major TFs in response to nitrogen limitation, NtrC, and Nac [CPGO98, MB98,

ZSL+00], were chosen to search optimal conditions to activate those TFs and to

produce possible differential activation of any TF under nitrogen limitation. Nitrogen

metabolism is one of key parts in E. coli metabolism; however the transcriptional
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regulation of nitrogen metabolism has been studied in a limited scope. For instance, in

vivo binding of NtrC and Nac has not been experimentally determined at the genome-

scale. Cutting-edge ChIP-exo (chromatin immunoprecipitation with exonuclease

treatment) [RP12b, SKL+14] and RNA-seq were performed to reconstruct the NtrC

and Nac regulons, and further model-based analysis was conducted to elucidate distinct

roles of NtrC and Nac regulons on nitrogen metabolism.

3.3 Results

3.3.1 Model-driven prediction of activation conditions for

TFs

E. coli has been experimentally confirmed to have the ability to utilize several

nitrogen sources [Rei03]. Glutamine has been repeated used as an alternative nitrogen

source for nitrogen limitation in multiple publications [CKK+14, CZQ+09, ZSL+00].

To comprehensively explorer the possibility of other nitrogen-containing molecules

being utilized by E. coli and being more effective to render nitrogen limitting conditions

thus to activate NtrC and Nac, a genome-scale model of metabolism (M model) in

E. coli [OCN+11] was used to determine viable candidate nitrogen sources. 93 nitrogen-

containing nutrients that have known transporters and support in-silico growth were

chosen and used for the further analysis (Figure S1A, Figure S1B). Then, a model

of metabolism and gene expression (ME model) in E. coli [OLC+13] was used to

simulate growth on glucose and those 93 viable nitrogen source candidates (detailed

description in Experimental Procedures). From simulated results, predicted gene

expression for each alternative nitrogen source was compared with predicted gene
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expression for growth on ammonia to find a set of predicted differentially expressed

genes (Figure S1C). Previously annotated TF binding information from EcoCyc

[KMPG+13] was used to calculate which TFs are enriched in the predicted set of

differentially expressed genes for each alternative nitrogen source (Figure S1D, Figure

3.1). For NtrC, glutamine, cytidine, and cytosine were predicted to be nitrogen sources

that would change the expression of genes in which NtrC regulons were statistically

enriched. Thus, NtrC activation was predicted under those conditions. However, Nac

was predicted to be active under cytosine, but not cytidine. Ammonia was used as a

negative control as it is known not to activate NtrC and Nac. Glutamine was used as

a positive control to activate the two TFs [ZSL+00]).

Based on the simulation results, cytidine and cytosine, which are not the favored

alternative nitrogen sources in the conventional experiment, were determined to be

best alternative nitrogen sources to activate NtrC, and to illustrate the differential

activation of Nac. Thus, E. coli was grown on 4 nitrogen sources, ammonia, glutamine,

cytidine, and cytosine, and a series of experiments including expression profiling and

ChIP measurements were performed to confirm the activation of TFs under those

conditions, and to experimentally measure expression change and in vivo TF binding

sites on the E. coli genome. From the experimental measurements, an expanded

definition of NtrC and Nac regulons was obtained, which was subsequently used with

flux simulation from the metabolic models to identify roles of NtrC and Nac regulons

in responding to nitrogen limitation (Figure 3.1).
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3.3.2 Experimental confirmation of predicted conditions

Activation of a TF results in a series of events including transcriptional activa-

tion of a gene encoding the TF, increasing translation from the transcript resulting

in more protein, and regulation of target genes by binding onto genomic locations.

First, to see if there is up-regulation of ntrC and nac transcription, RNA-seq was

performed with E. coli K-12 MG1655 cells grown on ammonium, glutamine, cytidine,

and cytosine up to mid-log phase. amtB, which encodes an ammonia transporter,

was reported to be up-regulated when glutamine was supplemented as a sole nitrogen

source [ZSL+00]. Therefore, transcription levels of amtB, ntrC, nac and 3 subunits

of RNA polymerase (RNAP), rpoN, rpoD, and rpoB, were compared between ammo-

nium and three alternative nitrogen sources (Figure S2). In all alternative nitrogen

sources, transcription of amtB, ntrC, and nac was significantly up-regulated, while

no significant change in the transcription level of RNAP subunits was observed. To

further the comparison, the transcription level of 4,595 annotated genes in the E. coli

genome was analyzed to see how broad the response to nitrogen limiting condition is in

terms of transcriptional change (Figure 3.2A, Figure 3.2B). Using alternative nitrogen

sources, glutamine, cytidine, and cytosine resulted in 667, 390, and 690 differentially

expressed genes respectively, and the expression of 1046 genes (22.8%) was changed

under at least one, leaving the expression of 3548 (77.2%) genes unchanged in all

conditions. Expression of 221 genes was changed under all conditions. This number of

differentially expressed genes is much larger than previously reported, where about

100 genes were determined to be of the nitrogen regulated (Ntr) response [Rei03].

To ascertain that up-regulation in the transcription of ntrC and nac resulted

in an increased amount of protein, western blotting was performed to investigate
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the protein level of NtrC, Nac, RpoN, and RpoD (Figure 3.2C). In agreement with

expression profiling with RNA-seq, the protein expression of NtrC and Nac increased

in glutamine, cytidine, and cytosine, although the amount of Nac protein on cytidine

was much lower than that on glutamine and cytosine. This lower level may explain

why the number of differentially expressed genes on cytidine was the lowest among

the three conditions (Figure 3.2B).

The final component of transcription factor activation is its binding to par-

ticular genomic locations resulting in the regulation of expression of target genes.

Experimental measurement of TF binding to the genome was performed with recently

developed ChIP-exo (Chromatin immunoprecipitation with exonuclease treatment) by

adopting the original protocol [RP12b], but modifying it for bacterial use [SKL+14]

(Detailed protocol in Experimental Procedures section). In total, 19, 249, 153, and

2171 binding sites across the four growth conditions were identified for NtrC, Nac,

RpoN, and RpoD respectively (Figure 3.2A, Figure S3). The number of binding sites

for two σ-factors, RpoN and RpoD, did not change much, whereas binding sites of

NtrC and Nac increased on 3 alternative nitrogen sources. For instance, the number

of binding sites for NtrC increased from 5 to 19, and Nac bindings increased from 15

to > 240.

In summary, transcriptional expression of key components in response to

nitrogen limiting conditions was significantly up-regulated, which was reflected in

an increase in protein abundance of those TFs. Direct measurement of TF binding

sites in vivo in a genome-scale manner showed increasing binding events of those two

TFs to the genome. Thus, alternative nitrogen sources, that were predicted from the

model-driven simulation, activated NtrC and Nac in transcriptional, translational,
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and binding activity leading to the discovery of 11 and 245 new binding sites for NtrC

and Nac respectively.

3.3.3 Confirmation of ChIP-exo binding sites with motif anal-

ysis and comparison to known sites

In brief, ChIP-exo applies a 5’-3’ strand-specific exonuclease to a chromatin

immunoprecipitated sample. Deep sequencing of an exonuclease-treated ChIP sample

enables the detection of exonuclease stop sites with near 1-bp resolution [RP12b,

SKL+14]. The ChIP-exo method is claimed to have a better resolution and sensitivity,

such that the detection of very narrow peaks and weak binding sites, which was

difficult with ChIP-chip or ChIP-seq. To illustrate the resolution improvement that

the ChIP-exo method presents, ChIP experiment results for RpoD from the same

condition with 3 different methods, ChIP-chip [CKK+14], ChIP-seq, and ChIP-exo,

were compared to show binding signals upstream of rpsU -dnaG-rpoD and ileX operons

(Figure S4). Binding detected with the three methods is aligned near the center of

the figure. ChIP-exo clearly presented the best resolution, and ChIP-seq showed a

better resolution than ChIP-chip (Text S1).

Since binding peaks detected with the ChIP-exo method were so narrow, it

became of interest to see if a sequence motif would be found from those peak regions,

and where the sequence motif lies inside the regions. To address these questions, MEME

software [BEO94] was used to retrieve sequence motifs. The sequence motifs from NtrC,

Nac, RpoN, and RpoD binding sites were GCaCcaaaAtgGtGC, tGGcacgattttTGCa,

ATAagnaaaanttAT, and ttgaca-15bp-gntAtaaT (lower-case characters indicate an

information content <1 bit). These motifs were identical to the known motifs [CKK+14,
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KMPG+13, NKR+13, PJB98]. Except for the RpoD motif, sequence motifs were

located near the center of and inside binding regions (Figure 3.2D). For RpoD, only

the -10 box, gntAtaaT, was found inside the binding regions. This observation conflicts

with the knowledge of RpoD, because RpoD is known to specifically recognize -10 and

-35 box sequences, which are expected to be covered and protected from exonuclease

activity. RpoD binding peaks align well with RpoB binding peaks (Figure S5) and

transcription start sites (TSSs) were dominantly located at the center of binding

regions; thus ChIP-exo might be capturing RpoB bindings that were associated with

RpoD.

From 19 and 249 total binding sites for NtrC and Nac, respectively, 16 and

247 binding sites were found upstream of genes, hence called regulatory binding

sites. These binding sites were compared to 4 and 3 known binding sites for NtrC

and Nac. For NtrC, all of the known sites upstream of glnL, glnA, glnH, and astC

[ABB+02, CMM91, NRM87, UNMRM84] were detected in the dataset of this study

(Figure 3.3A). Similarly, 2 of 3 known Nac binding sites, upstream of codB and ydcS

[MRB03, SHR13], were detected, however Nac binding upstream of nac [KMPG+13]

was not. The claim of Nac binding for nac was based on evidence from experiments

on K. aerogenes and sequence alignment nac promoter regions between E. coli and

K. aerogenes [MB98]. However, no binding was detected from the ChIP-exo dataset

(Figure S6), and nac does not have an RpoD promoter, thus it may be more likely

that Nac does not regulate nac in E. coli.

In summary, sequence motifs, which TFs presumably recognize and bind to,

were located near the middle of the binding regions and were identical to previously

reported motifs. NtrC and Nac binding sites identified in this study covered all
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known binding sites, while expanding the current knowledge by about 4 and 82 fold,

respectively (Figure 3.3A).

3.3.4 Reconstruction of NtrC and Nac regulons

Although post-translational regulation of glutamine synthetase (glnA) by GlnD,

GlnK, and GlnB have been extensively studied [ABN02, BN02, GR83, JSTM04,

LM95, vHWC+00, vHHM+96, VGD+94], limited information about regulation of

nitrogen metabolism at the transcriptional level has been available. To shed light

on transcriptional regulation by NtrC and Nac, their regulons were reconstructed by

associating TF bindings with transcription units [CKK+14, CZQ+09]. From 3181 TUs

covering 4485 genes (97.6% of annotated genes), 19 TUs were associated with NtrC

and 223 TUs were associated with Nac (Figure 3.3B).

An interesting property of the TUs found in these two regulons is that they

barely overlap with each other; they only have one TU in common, insH-3 (Figure

3.3B). In the latest definitions of TUs [CKK+14, CZQ+09, KMPG+13], transposon-

related insH-3 was annotated to make one TU on its own. However, RNA-seq

profiling with paired-end reads suggested that there might be a longer transcript

starting from insH-3, possibly including gltI -sroC -gltJKL (Figure 3.3C). Confirming

this possibility, 49.3% of sequence reads covering intergenic regions between insH-3

and gltI overlapped both with insH-3 and gltI, indicating contiguous transcription of

those two genes. A similar approach was applied to the 6 genes downstream, and it

seems there is a longer TU with at least 6 genes from insH-3 to gltL. Lack of promoter

upstream of sroC also supports this possibility [VBT+03]. Thus, two promoters for

RpoD and RpoN upstream of insH-3 are likely to contribute to the transcription
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of glutamate/aspartate ABC transporter (gltIJKL), and binding of NtrC and Nac

are associated with those σ-factors (Figure 3.3C). Transcriptomic expression of the

longer TU was up-regulated under nitrogen-limiting conditions by NtrC and/or Nac,

resulting in increased glutamate/aspartate transporters as a scavenging mechanism.

Transcriptomic comparison to the K. pneumoniae genome [KHQ+12] gives

more insight into TU organization and its conservation (Figure S7). In K. pneumoniae,

gltI -sroC -gltJKL and two upstream coding genes, lnt and ybeX, are all conserved, and

transcription starts upstream of gltI in both species. However, insH-3 is missing in

the K. pneumoniae MGH78578 genome. Thus, TU of gltI -sroC -gltJKL is conserved

in E. coli and K. pneumoniae, and possibly mostly in enterobacteria, but somehow

insH-3 got into 5’ UTR of this TU in E. coli K-12 MG1655.

Thus, the reconstruction of the NtrC and Nac regulons presented scant over-

lapping between the two, revealing distinct roles in response to nitrogen limiting

conditions and in regulating nitrogen metabolism.

3.3.5 Association of TF with σ-factors

The definition of two TF regulons raised the question of which σ-factor is

associated with each TU in regulons, because NtrC and Nac have been postulated

to interact with different σ-factors. NtrC belongs to the RpoN-dependent activator

family [SB00] and interacts with RpoN [HNY+06]. Nac is postulated to serve as an

adaptor between NtrC and final RpoD-dependent promoters [ZSL+00], but in vivo

genome-wide experimental evidence is still missing. Thus, NtrC and Nac binding

sites were combined with RpoN and RpoD binding sites to see how these TFs are

associated with σ-factors.
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From the ChIP-exo datasets and a calculation of closely located binding sites

from the dataset, NtrC binding was associated with RpoN binding, and Nac with

RpoD (Figure 3.3D). Out of 19 NtrC binding sites, 16 were found with RpoN binding

near them upstream of the same gene, 9 of which were from complicated promoters

with RpoD and RpoN binding sites. For instance, glnA has a distal RpoD-dependent

promoter (glnAp1) and a proximal RpoN-dependent promoter (glnAp2) [KMPG+13],

which were captured from the ChIP dataset (Figure S8). NtrC binding was found

upstream of the RpoN-dependent promoter, whereas no Nac binding was observed near

the RpoD-dependent promoter. The upstream regulatory region of insH-3 -gltI -sroC -

gltJKL gives another example of complicated promoters (Figure 3.3C). These results

reflect the previously reported extensive overlap between the RpoD and RpoN regulons

[CKK+14]. The majority of Nac bindings (167, 67.1%) adjoined RpoD bindings; while

15 binding sites were found in promoters having both RpoD and RpoN binding sites

(Figure 3.3C). NtrC works dominantly as a transcription activator on RpoN-dependent

promoters by binding upstream of the promoter in many cases (Figure 3.3E). Nac

works as a dual regulator on the RpoD-dependent promoter; it binds more upstream

of a promoter when up-regulating the downstream gene, while it binds downstream of

a promoter when down-regulating (Figure 3.3E).

Thus, NtrC binds in the vicinity of where RpoN binds, while Nac does so near

RpoD. There are multiple promoter regions that have RpoN and RpoD-dependent

promoters; however NtrC and Nac bind separately except for insH-3 -gltI -sroC -gltJKL,

implying distinct roles of two regulons.
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3.3.6 Contrasting functions of NtrC and Nac regulons

In addition to the observation that NtrC and Nac regulons barely overlap,

functional analysis of regulons sheds more light on the distinct functions of NtrC and

Nac in response to nitrogen limitation. NtrC up-regulated 41 genes (30 genes under

all alternative nitrogen sources, and 11 genes in some conditions), and down-regulated

2 genes (yeaE in all conditions, and mipA only in cytosine), leaving the expression

of 3 genes not changed or changed less than 2 fold (Figure 3.3F). The NtrC regulon

contains 18 transporters or their subunits, 3 TFs, 1 sRNA, and 28 other enzymes.

Transporters are mostly for nitrogen sources, including ammonia (amtB), glutamine

(glnHPQ), glutamate (gltIJKL), histidine (hisJ ), lysine/arginine (hisQMP, argT ),

xanthine/uracil (rutG), and others are less characterized (yhdWXYZ ). NtrC also

up-regulates regulatory proteins, including 3 TFs, ntrC itself, nac, and cbl and 2 post-

translational regulatory proteins (glnK, and glnL). While the role of cbl in nitrogen

response is still elusive, it is clear that NtrC regulates major regulatory enzymes

responding to nitrogen limitation. Metabolic enzymes that NtrC regulates catalyze

reactions for nitrogen-containing molecules, including glutamine (glnA), pyrimidine

(rutABCDEF ), arginine (astCADBE ), and D-alanyl-D-alanine (ddpXABCDF ).

While NtrC regulates a smaller set of genes and mostly activates the expression

of target genes, Nac regulates a larger group of genes and works as a dual regulator by

up-regulating 70 genes and down-regulating 79 genes (Figure 3.3F). Another difference

is that NtrC regulates mostly nitrogen-related regulatory proteins, transporters, and

metabolic enzymes, while Nac covers beyond nitrogen-related enzymes. For instance,

Nac binds upstream of gltP (glutamate/aspartate transporter) and codB (cytosine

transporter), but it also binds upstream of carbon source transporters such as mglBAC
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(galactose ABC transporter). The Nac regulon includes a number of mostly locally

acting TFs, some of which are known to be related carbon metabolism or in both

carbon/nitrogen metabolism (Text S2). Moreover, Nac interestingly regulates some

key genes in glycolysis and the TCA (Tricarboxylic acid cycle): phosphofructokinase

(pfkA, and pfkB), citrate synthase (gltA), succinate dehydrogenase (sdhCDAB), 2-

oxoglutarate dehydrogenase (sucAB), and succinyl-CoA synthetase (sucCD). COG

analysis of the NtrC and Nac regulons showed genes for amino acid metabolism and

signal transduction are more enriched in the NtrC regulon, while the Nac regulon has

genes functionally enriched in energy production, amino acid metabolism, and two

other categories (Figure S9).

In summary, NtrC with RpoN regulates TFs, transporters, and metabolic

enzymes required for responding to nitrogen-limiting conditions. However, Nac,

accompanied by RpoD, is responsible for regulating a broader set of genes beyond

those that are directly nitrogen-related. Thus, NtrC and Nac have different functions

in response to nitrogen-limitation; however the role of the Nac regulon in the response

seems less obvious than the NtrC regulon.

3.3.7 Primary response of the NtrC regulon

Glutamine is the central molecule with which E. coli cells sense nitrogen-

limiting conditions [ISK96]. The Ntr regulatory cascade is triggered by sensing the

low level of glutamine to activation of NRI with phosphorylation, which is followed by

a relay of post-translational regulation (Figure 3.4A). This Ntr regulatory cascade has

been extensively studied [Rei03]. In brief, low glutamine stimulates UTase (uridylyl-

transferase) activity of GlnD, which is a single peptide with UTase and UR (uridylyl-
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removing) activities, by binding to a single site on the enzyme [JPN98]. UTase activity

of GlnD uridylylates two functionally redundant proteins, PII and GlnK. Uridylylated

PII and GlnK fail to interact with NRII, which results in a net phosphorylation of

NRI [NA00]. Phosphorylated NRI is an active form, activating transcription of NtrC

regulon genes. Uridylylation of PII and possibly GlnK stimulates the deadenylylating

activity of ATase (glutamine synthetase adenylyltransferase/deadenylase, glnE ), and

GlnE deadenylates glutamine synthetase (glnA) making it an active form [FHSW99].

As a result of this cascade, the internal level of glutamine can increase.

Unlike post-translational regulation of the Ntr regulatory cascade, the tran-

scriptional level of this regulation has been less studied. In this regulatory cascade

consisting of 10 genes, 8 genes are regulated either by NtrC or Nac. 5 genes, ntrC,

nac, ntrB, glnA, and glnK, are up-regulated by NtrC, 1 gene, glnD, was up-regulated

by Nac, and 2 genes, gltB and gltD, were down-regulated by Nac, while 2 genes,

glnB and glnE, are not regulated by any of them (Figure 3.4A, Figure S10). Thus,

NtrC and Nac control the majority of regulatory components in this cascade, forming

multiple positive-forward loops. These loops make a complicated network with well-

characterized network motifs including a coherent type 1 feed-forward loop (C1-FFL)

and a positive auto-regulation (PAR). C1-FFL is a frequent motif found in E. coli

[MA03] and functions as a sign-sensitive delay element and a persistence detector

[MZA03], and PAR shows a slower response time than simple regulation, and may

lead to a bimodal distribution of protein levels [BSS01]. These properties may con-

tribute to the filtering out of short signals of nitrogen limitation, rendering a response

with a short delay for persistent signals, and quickly shutting off the output when a

nitrogen-limiting condition is relieved.
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In E. coli, cytoplasmic glutamine is either synthesized from glutamate by

glutamate synthetase (glnA) or is transported by the glutamine ABC transporter

(glnHPQ) (Figure 3.4B). Both operons were up-regulated by NtrC and its associated

RpoN-dependent promoters. Other than asparagine synthetase B (asnB), all genes

that consume glutamine was not changed (fold change < 2) or down-regulated (Figure

S11), indicating that E. coli cells change the abundance of metabolic machinery

towards increasing intracellular glutamine level. In E. coli, glutamate can be built up

from α-ketoglutarate in two reactions. One is by glutamate dehydrogenase, which is

encoded by gdhA, and the gene has an RpoD-dependent promoter for constitutive

expression and expression of gdhA did not change significantly with alternative nitrogen

sources. The other reaction is by glutamate synthase, which is encoded by gltBD, and

the operon also has an RpoD-dependent promoter; however Nac negatively regulates

expression of gltBD upon alternative nitrogen sources (Figure S11).

Thus, securing a glutamine pool under nitrogen limitation necessitates expres-

sion changes of regulatory and metabolic enzymes in the Ntr regulatory cascade, and

NtrC plays a central role in this complicated regulation. In addition to transcriptional

regulation in the cascade, NtrC also activates transporters for favorable nitrogen

sources as a scavenging mechanism, and induces expression of the other key TF, nac.

Moreover, it becomes of interest how E. coli cells manage production and consump-

tion of α-ketoglutarate under nitrogen limitation, because production of intracellular

glutamine requires the expense of α-ketoglutarate, which is one of the key molecules

in carbon metabolism.
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3.3.8 Carbon flux rebalancing by the Nac regulon

Since α-ketoglutarate is one of the main intermediates in the TCA cycle, glycol-

ysis and the TCA cycle pathways were analyzed in terms of TF and σ-factor bindings

and expression change (Figure 3.5A). Genes in those pathways were transcribed from

RpoD-dependent promoters, and surprisingly, 11 of them were regulated by Nac. Nac

repressed expression of genes in the TCA cycle, pck, sucAB, sucCD, and sdhBADC.

Nac also repressed glycolysis genes, pfkA, pfkB, fbaA, and ppc, but the expression fold

change was less than 2. Nac did not bind upstream of genes in the PPP (pentose

phosphate pathway), except for those that work in glycolysis and the PPP at the

same time.

Interestingly, among genes in the TCA cycle, those downstream of α-

ketoglutarate in the pathway were regulated by Nac, and those upstream were not. It

was postulated that genes encoding enzymes downstream of α-ketoglutarate would

be more repressed for two reasons. First, Nac works as a repressor on enzymes in

this pathway (Figure 3.5A). Second, cells are under nitrogen-limiting stress, which

directly constrains growth, and α-ketoglutarate is a precursor for glutamine synthesis.

As postulated, all downstream genes, sdhBADC, sucCD, lpd, and sucAB, were more

down-regulated than upstream genes, icd, acnAB, and gltA when on cytosine (Figure

3.5B). The degree of repression on glutamine and cytidine was less than on cytosine;

however two alternative nitrogen sources also showed the same regulatory pattern

(Figure S12).

In summary, the response to nitrogen limitation accompanies changes in gene

expression of enzymes in the TCA cycle and glycolysis to rebalance carbon flux towards

facilitating glutamine pool maintenance. In this process, Nac plays an important role
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by regulating genes in carbon metabolism.

3.3.9 Lower activation of Nac on cytidine

The NtrC regulon has a primary responsibility of responding to the nitrogen

limiting environment, while the Nac regulon has a subsidiary role of rebalancing carbon

metabolism for the nitrogen source shift. The remaining question is why protein

expression of Nac on cytidine was much less than that on glutamine and cytosine

(Figure 3.2C). Interestingly, the number of differentially expressed genes on cytidine

was significantly less than on the other alternative nitrogen sources (Figure 3.2B).

Similarly, expression change of metabolic genes in the TCA cycle on cytidine, which

include genes regulated by Nac, was the least among the three nitrogen sources (Figure

3.5A, Figure S12). These observations raise the question as to the molecular basis of

this lower activation of Nac on cytidine.

To explain observation, flux balance analysis (FBA) with the E. coli metabolic

model [OCN+11, OTP10] and experimentally measured glucose uptake rate was

performed to calculate internal flux states under different nitrogen sources (Figure

3.5C, Figure S13). On ammonia, the glucose uptake rate was 8.86 mmol/gDW/hr,

and 39% of g6p (glucose 6-phosphate) went into PPP, leaving 61% remaining in

the glycolysis pathway. Flux distribution through g6p on cytosine is the same as

ammonia, but with a lower glucose uptake rate of 6.54 mmol/gDW/hr. On cytidine,

7.04 mmol/gDW/hr flux into g6p was split differently, with more flux towards PPP

(49%) and less flux to downstream glycolysis (51%). Interestingly, however, most

fluxes through PPP increased, and as a result, flux from f5p (fructose 5 phosphate)

and all downstream fluxes increased. This increased flux in glycolysis resulted in more
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flux through the TCA cycle, as well (Figure 3.5C). Thus, compared to ammonia, there

is lower or no need, to repress activities through the TCA cycle on cytidine, which in

turn requires less repression of genes of enzymes. This means there is less need for

Nac to repress genes, which potentially explains why less protein level and activity of

Nac was observed on cytidine.

Further analysis gives insight into how increased flux through PPP was possible

on cytidine (Figure S14). Flux from cytidine uptake went into the cytidine deaminase

(cdd) reaction to make uridine and ammonium. Uridine breaks into uracil and ribose

1-phosphate (r1p) by uridine phosphorylase (udp). This r1p is converted to r5p,

which can go into PPP. To accommodate more r5p, there should be more xylulose

5-phosphate (xu5p), which explains more flux into PPP from g6p on cytidine. This

analysis also provides a better understanding of how differently uracil could be used

when cytidine or cytosine is a sole nitrogen source (Figure S14). Uracil still has 2

nitrogen molecules, however, in order to harvest them, 2 molecules of NADH and 1 of

NADPH are required. FBA showed cells could fully assimilate nitrogen from cytidine

by utilizing more energy, which could be a part of more activated glycolysis and TCA

cycle on cytidine. However, on cytosine, FBA predicted that cells would take one

nitrogen molecule from cytosine and export uracil out of the cell, which is less efficient

but requires less energy.

Estimating fluxes through a metabolic reaction using the E. coli model and FBA

analysis under different nitrogen sources helped explain the seemingly contradictory

observation of lower activation of Nac on cytidine. This lower activation was due to

a ribose part of cytidine could be utilized to make more energy and result in more

activated glycolysis and TCA cycle. FBA also gave insights into how cells could
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determine how many nitrogen molecules can be extracted from uracil depending on

the energy availability in the cell.

3.3.10 Coupling of nitrogen and carbon metabolism

Regulation by Nac on genes in glycolysis and the TCA cycle, and expression

and flux changes of reactions in those pathways on different nitrogen sources showed a

coupling between nitrogen and carbon metabolism under nitrogen limiting conditions.

In light of this observation, it was investigated whether other nitrogen sources would

have this same coupling. In order to further examine this possibility, a set of nitrogen

sources were chosen that was compatible with model-based simulation and are known

to support growth of E. coli. A viable set of nitrogen sources was collected by

compiling knowledge from literature [Rei03] and a public database [KBMCV+09],

and resulted in 44 nitrogen sources that have been tested for E. coli growth. These

viable nitrogen sources were matched up with computational predictions, and 27 of

them were predicted and experimentally confirmed to support E. coli growth, while

10 of them were predicted and experimentally verified not to support growth. 7 of

the sources were predicted to support growth but in silico growth was disproved by

experimental confirmation, resulting in an 84% prediction rate (Figure 3.6A). From 27

sources predicted and experimentally proven to support growth as a nitrogen source

with glucose for a carbon source, 25 of them, excluding ammonia and cytosine, were

predicted to support growth without any carbon source in simulation. This means

that most of the nitrogen sources that E. coli expects to utilize could work as carbon

sources as well. Cytosine was the only one organic nitrogen source that was predicted

not to allow growth in silico, but a growth experiment of E. coli in minimal media
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supplemented with cytosine confirmed growth.

To explore the effect of using nitrogen sources that can also be carbon sources,

FBA was performed for 27 nitrogen sources to see if using those nitrogen sources

would change fluxes through glycolysis and the TCA cycle. Most of reactions were

predicted to have increased fluxes when compared to ammonia on 25 nitrogen sources

that could support growth without any other carbon source (Figure 3.6B). Cytosine,

however, was predicted to have slightly lower fluxes through glycolysis and the TCA

cycle as postulated, while cytidine, which showed less activation of Nac activity, was

to have higher fluxes through those pathways in model simulation. Thus, Nac may

work in the coupling of nitrogen and carbon metabolism and become activated when

E. coli is exposed to non-favorable nitrogen sources and the TCA cycle is not active

enough to pump out enough α-ketoglutarate and energy molecules to harvest nitrogen

molecules.

To put this regulatory mechanism of nitrogen metabolism by NtrC and Nac in

a broader context, gene conservation analysis was performed on genes in transcrip-

tional regulation, post-translational regulation, and metabolic enzymes in glutamine

metabolism and the TCA cycle (Figure S15). Glutamine-related genes, particularly

glnA, are conserved in all range of bacteria and even in archaea. Genes in the TCA

cycle are less conserved than glutamine-related genes, but still well conserved in full

or in part. Interestingly, regulatory enzymes in nitrogen metabolism are significantly

less conserved. σ-factors, rpoD, and rpoN, seem ubiquitous in the bacteria kingdom.

However, ntrC and ntrB, which are located distant in E. coli, exist only in a subset of

proteobacteria, which agrees with previous reports [Fis99]. nac is the least conserved

regulator only found in some genera including Escherichia and Shigella. nac conser-
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vation in Salmonella is controversial because the protein identity is less than 35%,

and nac was not detected with southern blot [MB98]. Moreover, the nac orthologs

STM0692 in S. typhimurium LT2 is found right after fur, which is not its expected

location (Figure S16).

In summary, nitrogen sources that bacteria anticipate to utilize can activate

regulation not only on nitrogen metabolism, but also on carbon metabolism. This

regulation is mediated by altering intracellular requirements of α-ketoglutarate and by

directly using nitrogen sources as carbon sources. These in sum contribute to change in

activities in glycolysis and TCA cycle. Nac can control this coupling between nitrogen

and carbon metabolism, however there could be many other TFs that are involved

in this coupling. In addition, nac exists in a limited set of genera in enterobacteria,

which also suggests the existence of other mechanisms in this metabolism coupling.

3.4 Discussion

3.4.1 Selection of optimal experimental conditions by model-

driven experimental design

Computation with metabolic models systematizes biochemical, genetic, and

genomic knowledge into a mathematical framework that enables a mechanistic descrip-

tion of metabolic physiology. In this study, genome-scale models were leveraged to

improve our understanding of the regulation of nitrogen metabolism and its interplay

with carbon metabolism. First, an approach using the iOL1650-ME model was devel-

oped to predict transcription factor activity under a given condition. This approach

assumes that genes which are computed by the model to change in expression will
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in a cell change their expression in response to transcription factors which regulate

them. Based on this assumption, experimental conditions were chosen to activate two

important, yet relatively uncharacterized, transcription factors involved in responses

to nitrogen limitation, greatly increasing the sizes of their known regulons. We believe

this approach can be extended to biological regulators of metabolism in general.

This approach could be also exploited to investigate post-transcriptional regula-

tion, such as regulation by sRNA. To examine this possibility, regulatory information

for sRNA with experimental evidence was obtained from the public database BSRD

[LHC+13], and a hypergeometric test was performed with this information and differ-

ential expression from ME model simulation was predicted. Out of about 81 sRNAs

annotated in the E. coli K-12 MG1655 genome, 30 had regulatory information in

BSRD database. Among them, sgrS, ryhB, micA, and gcvB were predicted to account

for some differential expression under alternative nitrogen sources (Figure S17A). In

the previous study, gcvB was predicted to be involved in the regulation of amino acid

availability from a network biology approach [MCK+11], which is connected to nitro-

gen metabolism. Similarly, micA regulates the tsx membrane porin, that is responsible

for the uptake of nucleosides and deoxynucleosides [MBSB88], which are popular

alternative nitrogen sources. sgrS and ryhB are more involved in carbon metabolism,

such as the TCA cycle [DM12] and glucose transporters [KKMA06], which suggests

their possible role in rebalancing carbon fluxes that are induced from a nitrogen source

shift. In order to gain more insight on those sRNAs in nitrogen metabolism, their

expression changes on alternative nitrogen sources were investigated with RNA-seq

expression profiling (Figure S17B). gcvB was significantly down-regulated on experi-

mented nitrogen sources, while the other 3 sRNAs up-regulated at least one nitrogen
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source. Thus, expression of predicted sRNAs changed on unfavorable nitrogen sources,

which suggests their possible involvement in nitrogen response.

The model-driven experimental design approach used in this study provides a

method with which to generate hypotheses from systems computation and prediction.

As this approach successfully predicted experimental conditions to activate two major

regulons in nitrogen metabolism, it can be extended to other TFs or post-transcriptional

regulatory components in general.

3.4.2 Model-guided regulon elucidation and characterization

Genome-scale models have been previously used to analyze cellular responses

to environmental stimuli [CAK+13, FKE+14, MGK+14]. Therefore, in addition to

using modeling to guide experimental design, this previous work was built on to assess

the broader physiological role of NtrC and Nac regulons using the iJO1366 model.

Quantitative changes in flux through pathways associated with carbon metabolism were

determined from model-based simulation in response to alternative nitrogen source

usage, and it was found that fluxes through major pathways on carbon metabolism are

significantly different by which nitrogen sources were used. For example, higher flux

through glycolysis, the TCA cycle, and the pentose phosphate pathway with growth

on cytidine than with cytosine, which provided insight into the lower activity of Nac

on cytidine.

More broadly, computations with metabolic models predict that other organic

nitrogen sources which contain carbon as well can influence flux through carbon

metabolism, revealing the importance of the different roles of NtrC and Nac given

the interplay of carbon and nitrogen metabolism. This study with alternate nitrogen
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sources demonstrates the capabilities of genome-scale models for studying broad

systematic effects in general for both experimental design and data analysis, and the

approach is readily applicable to other transcriptional regulators as well.

3.4.3 Application of ChIP-exo method in bacterial studies

Since the advent of ChIP-exo method used in eukaryotic TF studies [RP11],

the method has been extensively deployed in eukaryotic studies [RP12b, SBCC13,

VP13, YVB+12], but it has been recently applied to bacterial studies on transcriptional

regulation [SKL+14]. The advantages of ChIP-exo methods over other long-established

ChIP methods provide for the more accurate identification of binding sites of DNA-

binding proteins in bacteria. Better resolution enables the detection of exact binding

regions and the identification of possible multiple bindings in the same regulatory

region, which was practically impossible with previous methods. In addition, the

ChIP-exo method made it possible to measure TF binding events upstream of genes

encoding small non-coding RNA products, such as sRNAs and tRNAs. Moreover,

ChIP-chip and ChIP-seq results for NAPs (nucleoid-associated proteins) produces

rather broad binding peaks [CKBP08, PKA+12], which made it difficult to distinguish

possible multiple bindings of NAPs onto genomic DNA. For instance, NAPs with a

wrapping function are expected to interact with genomic DNA on multiple contact

points; however it is not easy to study this feature of NAPs with previous methods. The

application of ChIP-exo method to NAPs is expected to produce more details about

the nature of NAP bindings. It could also contribute to more accurate investigations

into transcription termination factors, which were studied with ChIP-chip method

[MDP+09]. Thus, ChIP-exo method allows more accurate measurements of in vivo
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binding of DNA-binding proteins including TFs and NAPs in bacteria, which will

contribute to a better understanding of components in broad categories including

transcription initiation, transcription termination, post-transcriptional regulation, and

epigenetic regulation.

3.4.4 TF binding sites in non-regulatory regions

One of the unexpected findings resulting from the ChIP-exo method is the

binding of TFs and σ-factors in non-regulatory regions. Given the function of those

proteins in gene regulation, they are expected to bind onto regulatory regions mostly

near promoters to regulate the gene expression of target genes. However, it has been

continuously reported that TFs bind on non-regulatory regions including those inside

coding regions. Similarly, an unexpected large number of bindings for NtrC, Nac,

RpoN, and RpoD were observed in so-called non-regulatory regions. 4 (21%), 281

(113%), 232 (152%), and 461 (21%) binding sites were identified for them, respectively

(Figure S18A). Interestingly, Nac and RpoN showed more bindings on non-regulatory

regions than on regulatory regions. Thus, it seems non-regulatory bindings of TFs and

σ-factors are common. Non-regulatory bindings also have identical sequence motifs

(Figure S18C); however they have significantly weaker binding intensities (Figure

S18B, rank sum test p-value < 0.05).

The function or consequence of those bindings is still elusive. Possible explana-

tions include that these bindings are happening because the sequence of binding motifs

have been built during the course of evolution [SIBG08], some of them are involved in

regulation of non-annotated genes such as anti-sense transcripts, some of TFs could

work as NAPs such as lrp [DD10] or there are more possible binding sites for TFs but
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regulatory bindings are most stable by interaction with neighboring proteins and are

to be detected by experimental methods. For σ-factors, some cases were observed

where their bindings in coding region were associated with weaker transcription on

the opposite strand, indicating possible involvement in anti-sense transcription. It

is harder to understand the high number of binding sites of Nac on non-regulatory

regions. It could be simply evolutionary effect, or maybe Nac may work as NAP as

well.

3.4.5 Nitrogen starvation is coupled to other responses

Coupling between nitrogen and carbon metabolism has been investigated at

different levels. Change of glucose uptake and α-ketoglutarate accumulation according

to availability of nitrogen is one mechanism to block glucose uptake in nitrogen limita-

tion [DSWR11]. A quantitative physiological approach showed that the expression

of carbon catabolic genes changes upon limitation of nitrogen [YOH+13]. This study

revealed one molecular mechanism as to how coupling between nitrogen and carbon

metabolism is implemented in the mediation of Nac and α-ketoglutarate. Moreover,

model-based analysis provided more insight into how Nac-mediated metabolic coupling

can respond differently on different nitrogen sources.

In addition to the coupling of nitrogen and carbon metabolism, response to

nitrogen limitation can induce a much larger stress response by increasing the ppGpp

level in E. coli [BBP+14]. relA encodes GDP pyrophosphokinase which can produce

ppGpp (Figure S19A), and NtrC binds upstream of relA (Figure S19B). Under the

experimented nitrogen sources, expression of relA increased (Figure S18C).

Response to nitrogen limitation requires not only a response in nitrogen
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metabolism, which is essentially regulated by NtrC, but also a response in car-

bon metabolism to accommodate the flux shift in glycolysis and the TCA cycle on

alternative nitrogen sources, which is, in part, regulated by Nac. In addition, nitrogen

limitation can also induce a broader ppGpp stress response mediated with NtrC. Thus,

nitrogen starvation is coupled to multiple other responses.

In conclusion, model-driven experimental design proved effective in determining

activation conditions for regulatory TFs in nitrogen metabolism, and this approach

can be extended to study other aspects of regulatory networks in general. The re-

cently developed ChIP-exo method provides advantages over previous ChIP methods,

and contributes to more accurate measurements of TFs and σ-factors in nitrogen

metabolism. The definition of NtrC and Nac regulons with flux prediction from a

bacterial metabolic network model illuminated contrasting roles of those regulons,

emphasizing the unexpected role of Nac on the coupling of nitrogen and carbon

metabolism. These results reveal a new dimension of systems approaches on tran-

scriptional regulatory network such that integration of model-based simulation and

genome-wide experimental measurements can facilitate a better understanding of

bacterial transcription regulation, which may be limited with just one approach.

3.5 Materials and Methods

The prediction of activation conditions for transcription factors was performed

with simulating ME model [OLC+13] under 93 candidate nitrogen sources and by

calculating hypergeometric enrichment of TF bindings from the public database

[KMPG+13]. E. coli K-12 MG1655 and its derivatives were grown on ammonia,

glutamine, cytidine, and cytosine to perform RNA-seq expression profiling and ChIP-
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exo experiments by modifying the original protocol [RP11, SKL+14]. Calculation of

differentially expressed genes was conducted by using bowtie [LTPS09] and Cuffdiff

[TWP+10]). ChIP-exo reads were processed with MACE software (https://code.google.

com/p/chip-exo/). Flux analysis to calculate fluxes through metabolic reactions

under different nitrogen sources was performed with E. coli M model [OCN+11] and

COBRApy [ELPH13]. More detailed procedures are described in Supplementary

Experimental Procedures section.
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Figure 3.1: Workflow of model-driven experimental design, regu-
lon definition from experimental measurement, and model-based
interpretation of regulon role. Model-driven experimental design was
achieved using a genome-scale model (GEM) of the metabolic network in
E. coli K-12 MG1655, with a list of viable nitrogen sources, and known TF
binding sites. Alternative nitrogen sources, glutamine, cytidine, and cytosine,
were predicted to best activate NtrC and/or Nac. ChIP-exo and RNA-seq
experiments were performed to obtain in vivo measurements of TF binding
sites and gene expression. From experimental data, the definition of NtrC
and Nac regulons were expanded. The expanded NtrC and Nac regulons were
combined with metabolic flux map calculations using the E. coli GEM to
elucidate the contrasting roles of these two regulons.
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Figure 3.2: Experimental measurement of gene expression changes
and TF binding sites using ChIP-exo. (A) Genome-wide experimental
measurement of gene expression changes and TF binding sites for NtrC, Nac,
RpoN, and RpoD on ammonia, glutamine, cytidine, and cytosine was achieved,
and differential gene expression, TF regulons, and TF-gene interaction was
calculated and interpreted from experimental measurement. (B) Alternative
nitrogen sources rendered genome-wide expression changes, and expression of
1046 genes (22.8%) changed on at least one condition, leaving the majority of
3548 genes (77.2%) unchanged. The number of differentially expressed genes
for glutamine, cytidine, and cytosine relative to ammonia was 667, 390, and
690, respectively. (C) Protein expression of two major nitrogen-responsive
TFs, NtrC and Nac, and two σ-factors, RpoD and RpoN, was measured
by western blotting. Expression of NtrC and Nac increased on alternative
nitrogen sources. However, Nac expression on cytidine increased significantly
less than on glutamine or cytosine. (D) Motif analysis on ChIP-exo binding
sites for NtrC, RpoN, Nac, and RpoD resulted in previously known sequence
motifs. Interestingly, sequence motifs were found near middle of binding sites.
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Figure 3.3: Reconstruction of NtrC and Nac regulons. (A) Binding
sites for NtrC and Nac from ChIP-exo data were compared to previously
reported binding sites. 19 NtrC binding sites included 4 known binding sites,
and 249 Nac binding sites included 2 of 3 known ones, leaving only the nac
binding site undetected. (B) TF binding sites were combined with known
TU information, resulting in the definition of 19 and 223 TUs. NtrC and
Nac regulons share only 1 TU, which is insH-3. (C) Binding sites of NtrC
associated with RpoN, and Nac with RpoD were identified upstream of insH-3.
Analysis of paired-end reads from RNA-seq data suggests contiguous transcript
starting from insH-3 ranging to gltL. (D) Association of TF binding sites with
α-factor binding sites. 16 NtrC binding events out of 19 were accompanied
with RpoN binding. 167 Nac binding events associated with RpoD binding.
3 and 80 bindings of NtrC and Nac were not associated with neither of σ-
factors. Similarly, 125 and 2000 binding sites of RpoN and RpoD were neither
associated with NtrC nor Nac. (*9 NtrC bindings of the 16 were also identified
near RpoD binding sites. #15 Nac bindings of 167 were also detected near
RpoN binding sites. These 24 cases are complicated promoters with both
RpoD and RpoN binding sites.) (E) NtrC binds more upstream of target
genes when it up-regulates their expression. When up-regulating expression
of target genes, Nac tends to bind upstream from them, while it tends to bind
downstream of target genes when it down-regulates their expression. (F) NtrC
associates with RpoN-dependent promoters, and regulates 18 transporter
genes, 3 TF genes, 1 sRNA, and 28 other enzymes. NtrC mostly up-regulates
target genes. In contrast, Nac associates with RpoD-dependent promoters,
and regulates 47 transporter genes, 28 TF genes, 6 sRNAs, and 304 other
genes. Nac works as a dual-regulator.
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Figure 3.4: Regulation by NtrC in Ntr regulatory cascade and
glutamine-related enzymes. (A) Ntr regulatory cascade in post-
translational regulation is expanded with transcriptional regulation by NtrC
and Nac. A low level of cytoplasmic glutamine results in activation of existing
NtrC, and in turn NtrC activates itself and most of the regulatory components
in the Ntr regulatory cascade, which increases the intracellular amount of
glutamine. (B) When exposed to non-favorable nitrogen sources, E. coli
up-regulates genes in producing glutamine, and down-regulates or does not
change expression of genes in consuming glutamine. NtrC plays an important
role in up-regulation. In E. coli, increasing glutamine level necessitates the
expense of more glutamate and α-ketoglutarate. (Width of arrows between
molecules correlates expression level of genes.)
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Figure 3.5: Network-level regulation by Nac on glycolysis and TCA
cycle in carbon metabolism. (A) Nac regulates the expression of enzymes
in glycolysis and the TCA cycle, including pfkA, pfkB, fbaA, ppc, pck, sd-
hBADC, sucCD, and sucAB. (B) Expression of genes downstream from
α-ketoglutarate in the TCA cycle was more repressed than genes upstream.
(C) FBA analysis was performed on ammonia, cytidine, and cytosine with
experimentally measured glucose uptake rate. (There are genes and reactions
with minor flux that are omitted for clarity of figure. *The absolute flux
through the reaction was higher than the flux on cytidine; however the direc-
tion of the reaction was predicted to be reversed. Positive flux values mean
outflux, and negative flux values mean influx.) Abbreviation: glc: glucose,
g6p: glucose 6-phosphate, f6p: fructose 6-phosphate, g3p: glyceraldehyde
3-phosphate, pep: phosphoenolpyruvate, pyr: pyruvate, cit: citrate, akg: α-
ketoglutarate, succ: succinate, r5p: ribose 5-phosphate, TKT1: transketolase,
TKT2: transketolase, TALA: transaldolase.
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Figure 3.6: Coupling of nitrogen and carbon metabolism and con-
servation of enzymes in nitrogen-limiting response. (A) Comparing
in silico growth and experimental growth for 44 nitrogen sources that are
in the E. coli metabolic model and have experimental data available. 27
nitrogen sources with glucose for a carbon source support growth in silico
and in experiments. Of 27 nitrogen sources, 25 are predicted to support
growth without any other carbon source, leaving ammonia and cytosine not
supporting growth. (B) Flux through glycolysis and the TCA cycle was
calculated on 27 nitrogen sources with glucose for a carbon source. The flux
on cytosine was slightly less than the flux on ammonia, and other nitrogen
sources showed more flux on glycolysis and the TCA cycle, which explains
the fluctuation of carbon metabolism by nitrogen sources.



Chapter 4

Multi-omic data integration

enables discovery of hidden

biological regularities

4.1 Abstract

The rapid growth in size and complexity of biological data sets has led to a

grand challenge referred to as Big Data to Knowledge. Here we address a critical need

for the development of advanced data integration methods to enable multi-level analysis

of genomic, transcriptomic, ribosomal profiling, proteomic, and fluxomic data across

multiple experimental conditions. First, we show that pairwise integration of primary

omics data reveals biological regularities that tie certain cellular processes together in

Escherichia coli : the number of protein molecules made per mRNA transcript and

the number of ribosomes required per translated protein molecule. Second, we show

that genome-scale models, which are based on genomic and bibliomic data, enable the
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quantitative synchronization of disparate omics data types. Integrating omics data

with models enabled the discovery of two novel regularities: condition invariant in

vivo turnover rates of enzymes and the correlation of protein structural motifs and

translational pausing. How these regularities relate to one another mechanistically is

formally represented in a computable knowledge base, which allows for the coherent

interpretation and prediction of fitness and selection underlying cellular physiology.

4.2 Results and Discusssion

Progress of the biological sciences in the era of big data will depend on how we

address the following question: “How do we connect multiple disparate data types to

obtain a meaningful understanding of the biological functions of an organism?” Owing

to large-scale improvements in omics technologies, we can now quantitatively track

changes in biological processes in unprecedented detail [BPS13, JP06]. While such

measurements span a diverse range of cellular activities, developing an understanding

of how these data types quantitatively relate to one another and to the phenotypic

characteristics of the organism remains elusive. This issue is central to the so-called Big

Data to Knowledge (BD2K) grand challenge, which aims to integrate multiple disparate

data types into a biologically meaningful, multi-level structure [AM03, dGOC+08].

Interpretation of disparate data requires understanding how the primary mea-

surements of different omics data are quantitatively coupled to one another [CEL+14].

We approach this task by identifying regularities (relationships between biological data

types that remain relatively constant across conditions) between pairwise omics data

types. While some regularities can readily be discovered through direct pairwise omics

data comparisons, we find that other regularities emerge only through more intricate
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analysis leveraged by mechanistically-based network reconstructions [TP10]. Such

reconstructions can be used as a context for poly-omic data integration and analysis

[TP10, HLP13], and, when combined with constraint-based modeling approaches

[OTP10, OMP15], provide important links between omics data and phenotypic char-

acteristics of the organism.
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we can link specific data types (middle column) to explain each of these
biological processes. In this work, novel biological regularities that relate
these processes are discovered through: (i) primary omics data (top box, right
column) and (ii) integration with genome-scale models of metabolism (GEMs;
bottom box, right column).

As we will show, this approach leads to a comprehensive synchronization of poly-
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omic data with computed growth states. The approach directly addresses the BD2K

grand challenge and is made conceptually accessible by tracing the ‘information flow’

through the familiar ‘central dogma’ to establish relationships between measurements

and cell physiology (Figure 4.1).

First, we examine the information flow from transcription to translation to

protein production by identifying correlations across primary omics data types, such as

RNAseq [SBL+11], ribosome profiling [LBGW14, IGNW09, LST+15] and proteomics

[SKV+16], collected for batch growth on glucose, fumarate, pyruvate, and acetate

(Figure 4.1, “primary data box”). We found relatively poor correlations of mRNA

to protein across conditions (r2 < 0.4), consistent with previous studies [LVK+10,

GCWG03] Stronger correlations (r2 > 0.8) emerge when analyzing the ratio of protein

per mRNA (ρPM) on a per-gene basis (the difference between peptide abundance

and relative mRNA read counts per gene for multiple growth conditions; Figure

D.1(a)). Computing the median coefficient of variation shows that changes in ρPM

across conditions are relatively invariant. In addition, we find the number of ribosomes

required (ribosome occupancy of mRNA) per protein translated is also relatively

invariant across all four conditions (r2 > 0.7; Figure D.1(b)).

Second, we examined pairwise relationships between other omics data types,

such as ribosome profiling, proteomics and fluxomics, by integrating these data types

into next generation genome-scale models (Figure 4.1, “integration with GEMs box”).

Genome-scale models of metabolism (GEMs) are based on the annotated sequence and

analysis of the bibliome for functionally annotated gene products [TP10]. The most

recent generations of genome-scale models incorporate protein structural information

[CAK+13] and allow for the computation of the synthesis of the entire proteome of a
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cell in addition to the balanced use of its metabolic network [OLC+13]. These models

can integrate multiple layers of biological organization to balance the use of all cellular

components to achieve a cellular state. It can thus extend our understanding of how

information flows from translation to protein folding and catalysis, and its role in

producing whole cell functions.

We examined how information flows during protein translation, which includes

protein folding. Recent studies indicate a possible link between translation speed and

proper folding [IGNW09, LOW12]. Analysis of translational pausing has typically

been approached from a sequence-based viewpoint (19 ). Here, we approach this

analysis from a different perspective, by correlating the occurrence of translational

pausing on a transcript to the location of nearby protein secondary (2o) structure

motifs (Figure 4.2). The establishment of this correlation is based on; 1) ribosome

profiling [LBGW14, IGNW09, LST+15], which provides ample information on the

queuing of ribosomes along mRNA transcripts, and 2) a recent network reconstruction

that contains comprehensive protein structural information linked to the translated

protein at the proteome-scale [CAK+13].

Several striking regularities in translational pausing and protein structure are

consistently observed across multiple growth conditions. We find that pause sites are

enriched (pvalue < 0.01 using a hypergeometric test) downstream of specific secondary

structure motifs, such as α-helices and β-sheets (Figure 4.2(a), Figure D.2) but are

not significantly enriched at the termini of domains (See Supplementary Information).

On average, pausing becomes most substantial downstream of α-helices and β-sheets,

which, in the majority of cases, fall either on disordered regions of the protein or

on helical residues. Such instances account for more than 35–40% of pause sites in
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different conditions (see Figure D.2). In addition, we find that Shine-Dalgarno (SD)

like sequences equally account for 40% of pause sites (see Supplementary Methods),

consistent with previous studies [LOW12]. Pause sites are particularly enriched (pvalue

< 0.01 using a hypergeometric test) downstream SD-like sequences.

Do SD-like sequences drive co-translational pausing to ensure proper protein

folding? Of the pausing instances linked to SD-like sequences, we find that, on

average, nearly half of these pausing regions also fall in the nearby vicinity (five

to ten codons) of helices or sheets (Figure 4.2(b)). The link between pausing, SD-

like sequence and protein secondary structure becomes clear when comparing the

average occurence of SD-like sequence genome-wide (9%) with their occurrence directly

downstream of α-helices (35%) and β-sheets (18%). Together, these sequence and

structure motifs account for the majority of pause sites (60%) or nearly half of the total

ribosome occupancy (Figure D.4). These findings provide a mechanistic understanding

of translational pausing and support the potential role of SD-like codons to drive

cotranslational pausing to ensure proper protein folding (Figure 4.2(c)).

How does information flow between an individual enzyme’s catalytic activity

and the activity of an entire network? To evaluate the effective turnover rate of

enzymes, reaction flux per enzyme can be directly computed using experimental values

for both flux (the rate of reactions) and enzyme abundance [AVP+12] on a small scale

(mainly for central carbon metabolism). To assess enzyme turnover on a genome-scale,

we computed the ratio of an enzyme’s abundance (measured from proteomics data) and

its corresponding flux derived from network-based analyses (Figure 4.3). These ratios

quantitatively couple experimentally-derived flux estimates and protein abundances

to make a quantitative connection between data types.
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Estimates of enzyme turnover rates (keff), which represent coupling coefficients

between the fluxome and the proteome, were analyzed across four nutrient conditions

to understand the effect that carbon uptake has on metabolic enzyme turnover rates.

We find that these parameters show considerable regularity in relating flux to protein

abundance, which suggests that in vivo turnover rate for most enzymes does not

strongly depend on growth in diverse batch culture settings. For high-flux metabolic

reactions, the estimated turnover rates were consistent across all four conditions (a total

of 284 keffs; Figure 4.3b), with high correlation between any two conditions (Figure

4.3c and Figure D.5). The computed keff were averaged across experimental conditions

to give the largest set of flux-per-enzyme parameters estimated computationally to

date under in vivo conditions. It is important to note that these estimated keff do

not have a direct relationship with fundamental enzyme kinetic parameters obtained

in vitro but can be viewed as an in vivo data-driven estimate of the enzyme turnover

rate.

While these correlations provide information about relationships between

biological components and, in some cases, take on predictive value (Figure 4.4a),

understanding their collective influence on cell physiology is harder to decipher. This

issue can be addressed using a genome-scale model that assesses cost-benefit tradeoffs

from a cell-centric perspective [OMP15, BMKP14]. Genome-scale models compute the

value of cellular components relative to the function of all other cellular components.

To this end, keff values provide the minimum ‘capital expenditure’ for protein synthesis

required to achieve a unit of flux through a given reaction. Thus as a group, the

keffs provide coupling between proteome allocation and achievement of a physiological

state.
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The knowledge of the biological regularities identified in this work enables the

parameterization of coupling constraints used in a genome-scale model. A parame-

terized model allows for prediction of responses to environmental perturbations. We

tested the predictive capacity of a model containing parameter values derived from

multiple conditions described above (see Supplementary Information for parameteri-

zation method) to compute optimal cellular composition under new environmental

conditions. We perturbed a reference growth state through the addition of nutrients

to the medium: batch growth on glucose was supplemented with adenine, glycine,

tryptophan or threonine. We collected omics data sets under these four perturbed

conditions to compare gene expression changes to the computated responses.

Using the parameterized model, we predicted differential gene expression

(Figure 4.4(b)). We find high predictive accuracies of significant changes in gene

expression (p-values ranging 0.04 to 4e-6 using a hypergeometric test). Using the

parameterized model, we are able to predict the regulation of genes that accompany

changes in supplementation to a new growth environment. Such environmental changes

oftentimes causes non-intuitive shifts in what precursors the cell uses to synthesize

amino acid molecules (Figure 4.4(c); Supplementary Discussion).

Taken together, we demonstrate an ability to systematically integrate multi-

omic data to enable discovery of multiple hidden biological regularities. These regular-

ities take on biological meaning when put into the context of a network reconstruction

that is comprised of fundamentally structured relationships between cellular compo-

nents. We have shown that this contextualization leads to: (i) insights into underlying

biological mechanisms during protein translation and (ii) predictive computations

based on cellular-econometric cost-benefit ratios associated with the function of the
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cell as a whole. Thus both multi-omic data analysis and genome-scale models will

play an important role in establishing big data analysis frameworks to explain and

predict cellular physiology.
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Figure 4.2: Effective enzyme turnover rates (keff) as regularities emerging
from coupling quantitative in vivo proteomic data with genome scale model-
ing. (a) Iterative workflow for generating keff values from different nutrient
conditions. This panel is a schematic of the overall workflow. A detailed
version is found in the Supplement. (b) Venn diagram of keff shows all four
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94% are within one order of magnitude. The upper inset show the parameter
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values that deviate from one another within an order of magnitude. A more
detailed version is found in Figure D.5.
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Figure 4.4: Predicting the results of perturbation from a parameterized
homeostatic state. (a) Using a cross-validation approach, protein abundance
is predicted by mRNA levels using information (ρPM) obtained from other
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Chapter 5

Construction of Genome-scale

models of Metabolism and Gene

Expression for the Escherichia coli

family

5.1 Abstract

Although they have only existed for two organisms, genome-scale models of

Metabolism and gene Expression (ME) have brought exciting new capabilities to the

genome scale modeling field. We reformulated and expanded the previous ME models

of E. coli K12 MG1655 into a new iLE1683-ME model, greatly improving the model

and adding predictive capabilities. Furthermore, we use this iLE1683-ME model to

create strain-specific ME models for 40 enterobacterial strains. These models predicted

flux states and proteome allocation strategies which match experiments reported in

64
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the literature, and segment the differing phenotypes of the different strain families.

The availability of this set of multi-strain ME models opens up new possibilities in

performing multi-strain comparative analyses.

5.2 Introduction

Genome-scale Metabolic models (M-models) have shown significant success

predicting the metabolic capabilities of a cell by integrating all of the experi-

mentally determined enzymatic reactions taking place in an organism of interest

[BMKP14, OMP15, LNP12, MPF13]. These predictions are enabled based on the

stoichiometric constraints of the organism and metabolic interactions with the environ-

ment. Metabolic models, though useful, have the limitation of computing metabolic

flux states and directly related properties. Therefore,focus of research in this field has

been to increase the scope and capabilities of M models [KSM+12]. Recently, M models

have been extended to include the synthesis of the gene expression machinery and its

use to compute the entire metabolic proteome [OLC+13, LOBL+14, LHL+12]. These

models integrate Metabolism and Expression on the genome-scale, termed ME models,

and they are capable of explicitly computing a large fraction of the proteome. ME

models enables a wide range of new biological questions to be investigated including

direct calculations of proteome allocation [LSO+15], metabolic pathway usage and the

effects of membrane and volume constraints [LOBL+14]. Furthermore, their ability to

compute the optimal proteome abundances for a given condition make them ideal for

mechanistically integrating transcriptomics and proteomics data.

However, in spite of increased predictive capabilities ME models bring, up until

now, ME models have been constructed for only two organisms (Thermotoga maritima
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[LHL+12] and Eshcerichia coli K12 MG1655 [OLC+13, LOBL+14]). The lack of

model proliferation can be attributed to the additional challenges which ME modeling

brings. Firstly, ME models are much slower to solve than M model; it takes 5 orders

of magnitude more CPU time to solve iOL1650-ME than it does the corresponding

iJO1366 M model. As a result, while M models can be solved on personal computers,

ME models require large clusters or supercomputers. While increased computing

power is generally becoming more readily available, other challenges that come with

ME models are not as easily addressed. M models can used generalized software tools

[SQF+11, GDDFL13, ALS+13, ELPH13, KDE+15], but each organism’s ME model

has required its own dedicated codebase and database schema, which makes advances

for one organism’s model difficult to apply to another organism. Moreover, the large

model sizes and complex structure have made analysis of the model difficult and time

consuming. Therefore, each organism’s ME model has required dedicated person-years

of effort.

Generally, ME models have a larger parameter space than ME models. How-

ever, even M models have critical critical global parameters are to account for energy

demands which are not directly modeled. These are usually divided into two separate

parameters: GAM (growth-associated maintenance) and NGAM (non-growth asso-

ciated maintenance). In M models, GAM forces additional ATP hydrolysis flux to

account for energy which must be expended by the cell on processes necessary for

growth, such as transcription, translation, and cell division. However, ME models

directly account for so many of these processes, and even account for the expression

cost of “non-ME functions” by accounting for unmodeled protein; therefore, the

general GAM requirements in the model can be greatly reduced [OLC+13]. On the
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other hand, NGAM accounts for energy demands which do not scale with growth rate.

As these processes are generally also not directly accounted for in the ME model, the

nature of this parameter changes less between M and ME models.

5.3 Results and Discussion

5.3.1 The “miniME” Reformulation of ME models

The starting point for the strain-specific model-building processes were the

network reconstructions built in the previous ME models: the iOL1650-ME [OLC+13]

and iJL1678-ME [LOBL+14]. Those reconstructions were updated to reflect biological

discoveries since the original models were published, and some new content was added

as well. However, the ME models built from these reconstructions were done in a

manner which was very specific to Eshcerichia coli K-12 MG1655. Additionally, the

formulation used by iOL1650-ME was unoptimized for newer generations of high-

precision numeric simplex solvers, such as SoPlex. As a result, a new more generalized

formulation was required which could be used as a basis for modeling other bacterial

strains as well. The end result of this process is the latest version of the Eshcerichia

coli K12 MG1655 ME model, iLE1683-ME.

We reformulated the iOL1650-ME model (Figure 5.1) to allow for rapid building

and solving of models for other bacterial strains. A major goal of the reformulation was

to greatly reduce the ME-model matrix size and complexity to make the new ME model

more amenable to high-precision numeric solvers; therefore, the reformulation has

therefore been dubbed “miniME.” The biggest mathematical difference between the

original ME formulation [OLC+13] and miniME is the elimination of most inequality
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constraints, which greatly reduces the polytope of feasible fluxes at suboptimal growth

rates. At the optimum, the model will not waste resources, and as a result, all the

computed values are pushed up against their inequality constraints anyways, rendering

them as equalities. Therefore, reformulating the model with equalities alone will

compute the same optimal flux state, but results in a much simpler problem from a

numerical point of view.

As a consequence of using only equality constraints, in the miniME formulation,

reactions which occur in a number of individual steps or sub-reactions (i.e., ribosome

formation, translation, etc.) can be lumped into a single reaction. Lumping the

formation of major macromolecules as described above makes the ME-model much more

modular in nature, which greatly simplified the process of adding in new processes such

as DNA replication. This process also removes the majority of “coupling constraints”

and associated variables in the original formulation, which makes the models much

smaller. The iLE1683-ME model has a matrix with 80% fewer columns than iOL1650-

ME. This dramatically speeds up the solving procedure, and allows processes such

as iterative refinement, which uses rational arithmetic and is unsuited for fast vector

SIMD operations, to become feasible for fast and accurate solutions. Perhaps more

importantly, this formulation and reduced size makes the models more understandable

to its human users by making it amenable to visualization tools like escher [KDE+15].

Unlike the replacement of inequalities, some of the changes made in the miniME

formulation purposefully changed the model in a nonequivalent way. One of the most

significant differences was assigning a “dummy protein” with a representative amino

acid composition as the enzymes for “orphan” reactions. These are non-spontaneous

reactions which do not have a known enzymatic catalyst. The previous formulation
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therefore resulted in a slight bias towards using these reactions, which did not have

an associated protein expression cost, which is no longer present in the miniME

formulation. Additionally, in miniME, protein carriers (i.e., acyl carrier protein)

are assigned as catalysts to their transfer reactions, as that is what the carriers are

effectively doing. Therefore, the miniME formulation will require translation of these

carriers in order for them to participate in reactions.

5.3.2 Global Parameter Characterization

The miniME formulation allows for direct investigation to investigate the

effects of many global model parameters. Many of these parameters are inferred

from experimental data, which requires assumptions about consistent behavior across

experimental conditions, and even in many cases with M models, across organisms

[MNP14]. However, because ME models directly represent more of the constraints

experienced by a cell, they can exhibit different and more nuanced responses to some

of these global parameters.

In M models, increasing GAM and NGAM linearly decreases the maximum

possible computed growth rate. This linear relationship is used to estimate these

parameters from data. However, in proteome-limited ME models modeled on rich

media, this relationship between these energy requirements and maximum possible

growth rate is no longer strictly linear. For both GAM and NGAM, we observe that past

a cutoff, the effect of increasing the energy requirement on growth decreases (Figure

5.2a). This demonstrates how the assumptions made for M models (which assume

nutrient limitation), are not necessarily applicable to proteome-limited situations.

Moreover, the NGAM parameter has a significant effect on flux distributions throughout
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the cell, and is a significant determinant of the ratio of carbon flux through glycolysis

and the pentose phosphate pathway.

Another critical global ME-model parameter is the unused protein fraction,

which represents the fraction of the total modeled proteome by mass which is allocated

to a dummy protein with a representative amino acid sequence. Because it effectively

increases the cost of each protein linearly, it is unsurprising that increasing this

parameter causes a nearly linear decrease in maximum modeled growth rate (Figure

5.2b). Even on rich nutrient excess media, ME models are infeasible beyond a 95%

fraction unused protein. This parameter sweep gives a production envelope for the

model of the cost of every extra unit of “non-ME” proteome.

5.3.3 Extending from E. coli K12 MG1655 to 40 related

strains

A workflow was used to map genetic content and reconstructed metabolic

models [MCA+13] from 40 related E. coli and Shigella strains onto iLE1683-ME

to generate 40 strain-specific ME models. These models contain a subset of the

expression machinery in the original reconstruction [OLC+13, LOBL+14, TJFP09]

as identified by gene homology, which is integrated with each organism’s specific

metabolic capabilities [MCA+13]. This procedure relies on the assumption that the

expression machinery is generally well-conserved between the other strain and E. coli

K12 MG1655, which generally holds for these enterobacterial strains [VDTR97].

ME models represent the core set of gene functions which are required for

growth of a strain [YTO+15]. From this point of view, missing gene functions from

this core set of required functions in these annotated genomes represent targets for
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annotation improvement. The core set of required genes for the iLE1683-ME model

was determined by identifying singly essential genes for simulated growth in rich

media above 0.1 hr-1, but which are not essential in M models. Missing homologs to

these essential genes represent gaps in the E reconstruction for each strain, analogous

to “orphaned” metabolic functions which are known to occur in an organism but

without an identified gene [BCP, OP12, GUN+15, RPC+06]. These missing genes

were identified for each strain (Figure 5.3), and were substituted with the appropriate

gene from E. coli K12 MG1655 for modeling purposes to require a cost for performing

the respective functions.

When simulated under batch rich media, some of the strain types clustered by

flux state (Figure 5.4). A principal component analysis reveals several major modes

of differentiation. The primary mode accounts for 67% of the observed variation, and

includes reactions representative of oxidative phosphorylation, while the secondary

mode (which accounts for 14% of the variation) has reaction which correspond to

fermentation pathways. The tertiary mode accounts for 11% of the observed variation,

and represents a difference between ethanol and acetate fermentation. The E. coli

pathogens (both intestinal and extraintestinal) all cluster together, near the more

varied commensal strains. The Shigella strains, however, exhibit much more variation.

Two strains in particular, Shigella boydii CDC 3083-94 (iSbBS512-ME) and Shigella

sonnei Ss046 (iSSON-ME) cluster with the rest of the E. coli strains, separate from

the other Shigella strains. This is consistent with classification of the strains by

sequence homology, which have even suggested Shigella sonnei strains are a part of

Eshcerichia coli [PLR00]. One thing all of these modeled Shigella strains have in

common, however, is a statistically significant high acetate secretion flux through
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the phosphotransacetylase (PTAr) and acetate kinase (ACKr) reactions (p ¡ 2.2E-4),

which also matches in vivo experimental observations [KMC+14]. A major difference

between the outlying Shigella strains and the rest of the strains is a lack of flux

through the TCA cycle (specifically through citrate synthase (CS), α-ketoglutarate

dehydrogenase (AKGDH), and isocitrate dehydrogenase (ICDHyr)), which is consistent

with experimental 13C fluxomics of pathogenic Shigella flexneri [KMC+14]. The ME

models for Shigella predict flux states which match physiological observations and

Shigella’s pathogenic lifestyle of intracellular infection.

5.3.4 Conclusions

The miniME formulation used in the new iLE1683-ME mode the 40 related

strain-specific ME models greatly improves the versatility of ME models. The formula-

tion and methods here make ME modeling much more approachable and significantly

less time intensive. The process presented here is a first step, which will hopefully

continue to a proliferation of ME models across the tree of life in the future to mirror

the progress made with M models over the past two decades.

5.4 Materials and Methods

5.4.1 Optimization Procedure

The resulting stoichiometric matrix for each ME-model consists of both reac-

tion coefficients for each metabolite as well as growth rate (μ) dependant coupling

constraints for the macromolecules (Figure 5.1). This ME-matrix is nonlinear only

in the variable μ, but remains quasi-convex [Lau], implying that for any feasible μ,
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all smaller values must be similarly feasible. Therefore, these nonlinear problems

can be solved for the maximal possible μ by a binary search solving successive linear

programs at different values of μ to find the largest value of μ which gives a feasible

flux state, as done in the iOL1650-ME [OLC+13]. While searching for the maximal

μ, each individual linear program is maximizing for a representative dummy-protein.

Because of the model reformulation, this allows for the same algorithm to be used

for both batch and nutrient limited growth, which required different procedures in

iOL1650-ME [OLC+13].

To perform the binary search, the following procedure was implemented in

cobrapy [ELPH13]. First, each symbolic coefficient or reaction bound was compiled

into a function by sympy [JvMG12]. Then, a linear program was created for the linear

programming solver, with all of these symbolic functions evaluated at 0. While the

model will always be feasible at 0, starting with a known feasible point results in a

basis which can be used to speed up the next run. Afterwards, for each instance of

the binary search in mu, values in the linear program were replaced by recomputed

ones, and the problem was resolved using the last feasible basis.

While any linear programming solver supported by cobrapy could technically

have been used, unlike M-models [EAB+15], ME models are very ill-scaled [OLC+13].

Therefore, the SoPlex solver (version 2.2) was integrated with cobrapy and used

[Wun97]. This solver supports 80-bit (“long double”) numerical precision with x87

instructions as well as iterative refinement in rational arithmetic to reduce numerical

error. To prevent the solver from stalling when using the previous feasible basis (which

corresponds to a slightly different problem), each solve with a previous basis was

limited to 20,000 iterations, after which the basis was removed and a cold solve was
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performed.

5.4.2 Multiple ME Model Construction

To construct these ME models, the M reconstructions [MCA+13] were obtained

from BiGG [KLD+15]. Additionally, a homology table between each strain and E. coli

K12 MG1655 was generated using the same method used in the M reconstruction

process [MCA+13]. A “full” model of iLE1683-ME was constructed, which produced

every single annotated ORF in E. coli K12 MG1655. The TU architecture was then

removed, and each individual ORF was assigned its own transcription unit [CZQ+09].

All MG1655 genes which had no homologs in the particular strain were then removed,

except for ones which were judged to be “E” essential. For the remaining homologous

genes, the transcription and translation reactions were updated to use sequences from

the new strain. Transcription and translation reactions were added for all remaining

genes in the strain (which had no homologs in MG1655).

To add in the extra metabolic content for each strain specific model, the

additional reactions between that strain’s M model and the MG1655 model it was

built from [OCN+11] were computed by a set difference. Exchanges. demands, and

spontaneous reactions were added freely, and orphan reactions were also assigned a

dummy protein. For all other reactions, the boolean gene reaction rule was converted to

disjunctive normal form by sympy [JvMG12]. In this form, AND represents members

of a complex, and OR represents separate complexes which can perform the same task,

giving a list of pseudo-complexes. These were created, assuming a stoichiometry of

each component of 1, and assigned to the newly added reactions. Manual curation was

necessary to map between M-specific versions of some proteins used in the M-models.
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For example acyl carrier protein, which is represented as the metabolite “acp c” in the

M reconstructions, but is a protein (b1094) which must be translated in ME models

[EV68].

To cluster strains by expression type, flux states for each model were gen-

erated under batch growth for rich media, which means effectively infinite (1000

mmol/gDw/hr) bounds were set on all uptake rates. The high flux reactions for

water exchange and transport were removed from the flux states, followed by principal

component analysis performed using scikit-learn [PVG+11].
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Appendix A

Documentation for COBRApy

The source code for this documentation can be found at https://github.com/

opencobra/cobrapy.

A.1 Getting Started

To begin with, cobrapy comes with bundled models for Salmonella and E. coli,

as well as a “textbook” model of E. coli core metabolism. To load a test model, type

In [1]: from __future__ import print_function

import cobra.test

# "ecoli" and "salmonella" are also valid arguments

model = cobra.test.create_test_model("textbook")

The reactions, metabolites, and genes attributes of the cobrapy model are a

special type of list called a DictList, and each one is made up of Reaction, Metabolite

and Gene objects respectively.

In [2]: print(len(model.reactions))

print(len(model.metabolites))

print(len(model.genes))

79

https://github.com/opencobra/cobrapy
https://github.com/opencobra/cobrapy
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95

72

137

Just like a regular list, objects in the DictList can be retrived by index. For

example, to get the 30th reaction in the model (at index 29 because of 0-indexing):

In [3]: model.reactions[29]

Out[3]: <Reaction EX glu L e at 0x7f56b0ea3198>

Addictionally, items can be retrived by their id using the get by id() function.

For example, to get the cytosolic atp metabolite object (the id is “atp c”), we can do

the following:

In [4]: model.metabolites.get_by_id("atp_c")

Out[4]: <Metabolite atp c at 0x7f56b0ed7cc0>

As an added bonus, users with an interactive shell such as IPython will be able

to tab-complete to list elements inside a list. While this is not recommended behavior

for most code because of the possibility for characters like “-” inside ids, this is very

useful while in an interactive prompt:

In [5]: model.reactions.EX_glc__D_e.lower_bound

Out[5]: -10.0

A.1.1 Reactions

We will consider the reaction glucose 6-phosphate isomerase, which interconverts

glucose 6-phosphate and fructose 6-phosphate. The reaction id for this reaction in our

test model is PGI.

In [6]: pgi = model.reactions.get_by_id("PGI")

pgi

https://en.wikipedia.org/wiki/Zero-based_numbering
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Out[6]: <Reaction PGI at 0x7f56b0e396d8>

We can view the full name and reaction catalyzed as strings

In [7]: print(pgi.name)

print(pgi.reaction)

glucose-6-phosphate isomerase

g6p c <=> f6p c

We can also view reaction upper and lower bounds. Because the pgi.lower bound

< 0, and pgi.upper bound > 0, pgi is reversible

In [8]: print(pgi.lower_bound, "< pgi <", pgi.upper_bound)

print(pgi.reversibility)

-1000.0 < pgi < 1000.0

True

We can also ensure the reaction is mass balanced. This function will return

elements which violate mass balance. If it comes back empty, then the reaction is

mass balanced.

In [9]: pgi.check_mass_balance()

Out[9]: {}

In order to add a metabolite, we pass in a dict with the metabolite object and

its coefficient

In [10]: pgi.add_metabolites({model.metabolites.get_by_id("h_c"): -1})

pgi.reaction

Out[10]: ’g6p c + h c <=> f6p c’

The reaction is no longer mass balanced

In [11]: pgi.check_mass_balance()

Out[11]: {’H’: -1.0, ’charge’: -1.0}
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We can remove the metabolite, and the reaction will be balanced once again.

In [12]: pgi.pop(model.metabolites.get_by_id("h_c"))

print(pgi.reaction)

print(pgi.check_mass_balance())

g6p c <=> f6p c

{}

It is also possible to build the reaction from a string. However, care must be

taken when doing this to ensure reaction id’s match those in the model. The direction

of the arrow is also used to update the upper and lower bounds.

In [13]: pgi.reaction = "g6p_c --> f6p_c + h_c + green_eggs + ham"

unknown metabolite ’green eggs’ created

unknown metabolite ’ham’ created

In [14]: pgi.reaction

Out[14]: ’g6p c --> f6p c + green eggs + h c + ham’

In [15]: pgi.reaction = "g6p_c <=> f6p_c"

pgi.reaction

Out[15]: ’g6p c <=> f6p c’

A.1.2 Metabolites

We will consider cytosolic atp as our metabolite, which has the id atp c in our

test model.

In [16]: atp = model.metabolites.get_by_id("atp_c")

atp

Out[16]: <Metabolite atp c at 0x7f56b0ed7cc0>

We can print out the metabolite name and compartment (cytosol in this case).

In [17]: print(atp.name)

print(atp.compartment)
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ATP

c

We can see that ATP is a charged molecule in our model.

In [18]: atp.charge

Out[18]: -4

We can see the chemical formula for the metabolite as well.

In [19]: print(atp.formula)

C10H12N5O13P3

The reactions attribute gives a frozenset of all reactions using the given metabo-

lite. We can use this to count the number of reactions which use atp.

In [20]: len(atp.reactions)

Out[20]: 13

A metabolite like glucose 6-phosphate will participate in fewer reactions.

In [21]: model.metabolites.get_by_id("g6p_c").reactions

Out[21]: frozenset({<Reaction GLCpts at 0x7f56b0eabcc0>,

<Reaction Biomass Ecoli core at 0x7f56b0e9e358>,

<Reaction G6PDH2r at 0x7f56b0eab9e8>,

<Reaction PGI at 0x7f56b0e396d8>})

A.1.3 Genes

The gene reaction rule is a boolean representation of the gene requirements for

this reaction to be active as described in Schellenberger et al 2011 Nature Protocols

6(9):1290-307.

The GPR is stored as the gene reaction rule for a Reaction object as a string.

http://dx.doi.org/doi:10.1038/nprot.2011.308
http://dx.doi.org/doi:10.1038/nprot.2011.308
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In [22]: gpr = pgi.gene_reaction_rule

gpr

Out[22]: ’b4025’

Corresponding gene objects also exist. These objects are tracked by the

reactions itself, as well as by the model

In [23]: pgi.genes

Out[23]: frozenset({<Gene b4025 at 0x7f56b0e8fac8>})

In [24]: pgi_gene = model.genes.get_by_id("b4025")

pgi_gene

Out[24]: <Gene b4025 at 0x7f56b0e8fac8>

Each gene keeps track of the reactions it catalyzes

In [25]: pgi_gene.reactions

Out[25]: frozenset({<Reaction PGI at 0x7f56b0e396d8>})

Altering the gene reaction rule will create new gene objects if necessary and

update all relationships.

In [26]: pgi.gene_reaction_rule = "(spam or eggs)"

pgi.genes

Out[26]: frozenset({<Gene eggs at 0x7f56b0e35ba8>, <Gene spam at 0x7f56b0e390f0>})

In [27]: pgi_gene.reactions

Out[27]: frozenset()

Newly created genes are also added to the model

In [28]: model.genes.get_by_id("spam")

Out[28]: <Gene spam at 0x7f56b0e390f0>
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The delete model genes function will evaluate the gpr and set the upper and

lower bounds to 0 if the reaction is knocked out. This function can preserve existing

deletions or reset them using the cumulative deletions flag.

In [29]: cobra.manipulation.delete_model_genes(model, ["spam"],

cumulative_deletions=True)

print("after 1 KO: %4d < flux_PGI < %4d" %

(pgi.lower_bound, pgi.upper_bound))

cobra.manipulation.delete_model_genes(model, ["eggs"],

cumulative_deletions=True)

print("after 2 KO: %4d < flux_PGI < %4d" %

(pgi.lower_bound, pgi.upper_bound))

after 1 KO: -1000 < flux PGI < 1000

after 2 KO: 0 < flux PGI < 0

The undelete model genes can be used to reset a gene deletion

In [30]: cobra.manipulation.undelete_model_genes(model)

print(pgi.lower_bound, "< pgi <", pgi.upper_bound)

-1000 < pgi < 1000

A.2 Building a Model

This simple example demonstrates how to create a model, create a reaction,

and then add the reaction to the model.

We’ll use the ‘3OAS140’ reaction from the STM 1.0 model:

1.0 malACP[c] + 1.0 h[c] + 1.0 ddcaACP[c] → 1.0 co2[c] + 1.0 ACP[c] + 1.0

3omrsACP[c]

First, create the model and reaction.

In [1]: from cobra import Model, Reaction, Metabolite

# Best practise: SBML compliant IDs

cobra_model = Model(’example_cobra_model’)
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reaction = Reaction(’3OAS140’)

reaction.name = ’3 oxoacyl acyl carrier protein synthase n C140 ’

reaction.subsystem = ’Cell Envelope Biosynthesis’

reaction.lower_bound = 0. # This is the default

reaction.upper_bound = 1000. # This is the default

reaction.objective_coefficient = 0. # this is the default

We need to create metabolites as well. If we were using an existing model, we

could use get by id to get the apporpriate Metabolite objects instead.

In [2]: ACP_c = Metabolite(

’ACP_c’,

formula=’C11H21N2O7PRS’,

name=’acyl-carrier-protein’,

compartment=’c’)

omrsACP_c = Metabolite(

’3omrsACP_c’,

formula=’C25H45N2O9PRS’,

name=’3-Oxotetradecanoyl-acyl-carrier-protein’,

compartment=’c’)

co2_c = Metabolite(

’co2_c’,

formula=’CO2’,

name=’CO2’,

compartment=’c’)

malACP_c = Metabolite(

’malACP_c’,

formula=’C14H22N2O10PRS’,

name=’Malonyl-acyl-carrier-protein’,

compartment=’c’)

h_c = Metabolite(

’h_c’,

formula=’H’,

name=’H’,

compartment=’c’)

ddcaACP_c = Metabolite(

’ddcaACP_c’,

formula=’C23H43N2O8PRS’,

name=’Dodecanoyl-ACP-n-C120ACP’,

compartment=’c’)

Adding metabolites to a reaction requires using a dictionary of the metabolites

and their stoichiometric coefficients. A group of metabolites can be added all at once,
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or they can be added one at a time.

In [3]: reaction.add_metabolites({malACP_c: -1.0,

h_c: -1.0,

ddcaACP_c: -1.0,

co2_c: 1.0,

ACP_c: 1.0,

omrsACP_c: 1.0})

reaction.reaction # This gives a string representation of the reaction

Out[3]: ’ddcaACP c + h c + malACP c --> 3omrsACP c + ACP c + co2 c’

The gene reaction rule is a boolean representation of the gene requirements for

this reaction to be active as described in Schellenberger et al 2011 Nature Protocols

6(9):1290-307. We will assign the gene reaction rule string, which will automatically

create the corresponding gene objects.

In [4]: reaction.gene_reaction_rule = ’( STM2378 or STM1197 )’

reaction.genes

Out[4]: frozenset({<Gene STM2378 at 0x7fada4592908>, <Gene STM1197 at

0x7fada45927f0>})

At this point in time, the model is still empty

In [5]: print(’%i reactions initially’ % len(cobra_model.reactions))

print(’%i metabolites initially’ % len(cobra_model.metabolites))

print(’%i genes initially’ % len(cobra_model.genes))

0 reactions initially

0 metabolites initially

0 genes initially

We will add the reaction to the model, which will also add all associated

metabolites and genes

In [6]: cobra_model.add_reaction(reaction)

# Now there are things in the model

print(’%i reaction’ % len(cobra_model.reactions))

print(’%i metabolites’ % len(cobra_model.metabolites))

print(’%i genes’ % len(cobra_model.genes))

http://dx.doi.org/doi:10.1038/nprot.2011.308
http://dx.doi.org/doi:10.1038/nprot.2011.308
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1 reaction

6 metabolites

2 genes

We can iterate through the model objects to observe the contents

In [7]: # Iterate through the the objects in the model

print("Reactions")

print("---------")

for x in cobra_model.reactions:

print("%s : %s" % (x.id, x.reaction))

print("")

print("Metabolites")

print("-----------")

for x in cobra_model.metabolites:

print(’%9s : %s’ % (x.id, x.formula))

print("")

print("Genes")

print("-----")

for x in cobra_model.genes:

associated_ids = (i.id for i in x.reactions)

print("%s is associated with reactions: %s" %

(x.id, "{" + ", ".join(associated_ids) + "}"))

Reactions

---------

3OAS140 : ddcaACP c + h c + malACP c --> 3omrsACP c + ACP c + co2 c

Metabolites

-----------

3omrsACP c : C25H45N2O9PRS

ddcaACP c : C23H43N2O8PRS

ACP c : C11H21N2O7PRS

co2 c : CO2

malACP c : C14H22N2O10PRS

h c : H

Genes

-----

STM2378 is associated with reactions: {3OAS140}
STM1197 is associated with reactions: {3OAS140}
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A.3 Reading and Writing Models

Cobrapy supports reading and writing models in SBML (with and without

FBC), JSON, MAT, and pickle formats. Generally, SBML with FBC version 2 is

the preferred format for general use. The JSON format may be more useful for

cobrapy-specific functionality.

The package also ships with test models in various formats for testing purposes.

In [1]: import cobra.test

import os

from os.path import join

data_dir = cobra.test.data_directory

print("mini test files: ")

print(", ".join(i for i in os.listdir(data_dir)

if i.startswith("mini")))

textbook_model = cobra.test.create_test_model("textbook")

ecoli_model = cobra.test.create_test_model("ecoli")

salmonella_model = cobra.test.create_test_model("salmonella")

mini test files:

mini.mat, mini cobra.xml, mini.json, mini fbc2.xml.gz, mini fbc2.xml.bz2,

mini fbc2.xml, mini fbc1.xml, mini.pickle

A.3.1 SBML

The Systems Biology Markup Language is an XML-based standard format for

distributing models which has support for COBRA models through the FBC extension

version 2.

Cobrapy has native support for reading and writing SBML with FBCv2. Please

note that all id’s in the model must conform to the SBML SID requirements in order

to generate a valid SBML file.

http://sbml.org
http://sbml.org/Documents/Specifications/SBML_Level_3/Packages/Flux_Balance_Constraints_%28flux%29
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In [2]: cobra.io.read_sbml_model(join(data_dir, "mini_fbc2.xml"))

Out[2]: <Model mini textbook at 0x7fa5e44d1a58>

In [3]: cobra.io.write_sbml_model(textbook_model, "test_fbc2.xml")

There are other dialects of SBML prior to FBC 2 which have previously been

use to encode COBRA models. The primary ones is the “COBRA” dialect which used

the “notes” fields in SBML files.

Cobrapy can use libsbml, which must be installed separately (see installation

instructions) to read and write these files. When reading in a model, it will automati-

cally detect whether fbc was used or not. When writing a model, the use fbc package

flag can be used can be used to write files in this legacy “cobra” format.

In [4]: cobra.io.read_sbml_model(join(data_dir, "mini_cobra.xml"))

Out[4]: <Model mini textbook at 0x7fa5ba4d12e8>

In [5]: cobra.io.write_sbml_model(textbook_model, "test_cobra.xml",

use_fbc_package=False)

A.3.2 JSON

cobrapy models have a JSON (JavaScript Object Notation) representation.

This format was crated for interoperability with escher.

In [6]: cobra.io.load_json_model(join(data_dir, "mini.json"))

Out[6]: <Model mini textbook at 0x7fa5ba4a3128>

In [7]: cobra.io.save_json_model(textbook_model, "test.json")

http://sbml.org/Software/libSBML
https://en.wikipedia.org/wiki/JSON
https://escher.github.io
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A.3.3 MATLAB

Often, models may be imported and exported soley for the purposes of working

with the same models in cobrapy and the MATLAB cobra toolbox. MATLAB has its

own “.mat” format for storing variables. Reading and writing to these mat files from

python requires scipy.

A mat file can contain multiple MATLAB variables. Therefore, the variable

name of the model in the MATLAB file can be passed into the reading function:

In [8]: cobra.io.load_matlab_model(join(data_dir, "mini.mat"),

variable_name="mini_textbook")

Out[8]: <Model mini textbook at 0x7fa5ba483198>

If the mat file contains only a single model, cobra can figure out which variable

to read from, and the variable name paramter is unnecessary.

In [9]: cobra.io.load_matlab_model(join(data_dir, "mini.mat"))

Out[9]: <Model mini textbook at 0x7fa5ba4a3f28>

Saving models to mat files is also relatively straightforward

In [10]: cobra.io.save_matlab_model(textbook_model, "test.mat")

A.3.4 Pickle

Cobra models can be serialized using the python serialization format, pickle.

Please note that use of the pickle format is generally not recommended for

most use cases. JSON, SBML, and MAT are generally the preferred formats.

http://opencobra.github.io/cobratoolbox/
https://docs.python.org/2/library/pickle.html
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A.4 Simulating with FBA

Simulations using flux balance analysis can be solved using Model.optimize().

This will maximize or minimize (maximizing is the default) flux through the objective

reactions.

In [1]: import pandas

pandas.options.display.max_rows = 100

import cobra.test

model = cobra.test.create_test_model("textbook")

A.4.1 Running FBA

In [2]: model.optimize()

Out[2]: <Solution 0.87 at 0x10ddd0080>

The Model.optimize() function will return a Solution object, which will also be

stored at model.solution. A solution object has several attributes:

• f: the objective value

• status: the status from the linear programming solver

• x dict: a dictionary of {reaction id: flux value} (also called “primal”)

• x: a list for x dict

• y dict: a dictionary of {metabolite id: dual value}.

• y: a list for y dict

For example, after the last call to model.optimize(), the status should be

‘optimal’ if the solver returned no errors, and f should be the objective value

In [3]: model.solution.status

Out[3]: ’optimal’

In [4]: model.solution.f

Out[4]: 0.8739215069684305
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Analyzing FBA solutions

Models solved using FBA can be further analyzed by using summary methods,

which output printed text to give a quick representation of model behavior. Calling

the summary method on the entire model displays information on the input and

output behavior of the model, along with the optimized objective.

In [5]: model.summary()

IN FLUXES OUT FLUXES OBJECTIVES

o2 e -21.80 h2o e 29.18

Biomass Ecoli core 0.874

glc D e -10.00 co2 e 22.81

nh4 e -4.77 h e 17.53

pi e -3.21

In addition, the input-output behavior of individual metabolites can also be

inspected using summary methods. For instance, the following commands can be used

to examine the overall redox balance of the model

In [6]: model.metabolites.nadh_c.summary()

PRODUCING REACTIONS -- Nicotinamide adenine dinucleotide - reduced

------------------------------------------------------------------

% FLUX RXN ID REACTION

41.6% 16 GAPD g3p c + nad c + pi c <=> 13dpg c + h c +

nadh c

24.1% 9.3 PDH coa c + nad c + pyr c --> accoa c + co2 c +

nadh c

13.1% 5.1 AKGDH akg c + coa c + nad c --> co2 c + nadh c +

succoa c

13.1% 5.1 MDH mal L c + nad c <=> h c + nadh c +

oaa c

8.0% 3.1 Bioma... 1.496 3pg c + 3.7478 accoa c + 59.81 atp c +

0.36...

CONSUMING REACTIONS -- Nicotinamide adenine dinucleotide - reduced

------------------------------------------------------------------

% FLUX RXN ID REACTION

100.0% -39 NADH16 4.0 h c + nadh c + q8 c --> 3.0 h e + nad c +

q8h2 c
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Or to get a sense of the main energy production and consumption reactions

In [7]: model.metabolites.atp_c.summary()

PRODUCING REACTIONS -- ATP

--------------------------

% FLUX RXN ID REACTION

66.6% 46 ATPS4r adp c + 4.0 h e + pi c <=> atp c + h2o c + 3.0

h c

23.4% 16 PGK 3pg c + atp c <=> 13dpg c +

adp c

7.4% 5.1 SUCOAS atp c + coa c + succ c <=> adp c + pi c +

succoa c

2.6% 1.8 PYK adp c + h c + pep c --> atp c +

pyr c

CONSUMING REACTIONS -- ATP

--------------------------

% FLUX RXN ID REACTION

76.5% -52 Bioma... 1.496 3pg c + 3.7478 accoa c + 59.81 atp c +

0.36...

12.3% -8.4 ATPM atp c + h2o c --> adp c + h c +

pi c

10.9% -7.5 PFK atp c + f6p c --> adp c + fdp c +

h c

A.4.2 Changing the Objectives

The objective function is determined from the objective coefficient attribute

of the objective reaction(s). Generally, a “biomass” function which describes the

composition of metabolites which make up a cell is used.

In [8]: biomass_rxn = model.reactions.get_by_id("Biomass_Ecoli_core")

Currently in the model, there is only one objective reaction (the biomass

reaction), with an objective coefficient of 1.

In [9]: model.objective

Out[9]: {<Reaction Biomass Ecoli core at 0x116510828>: 1.0}
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The objective function can be changed by assigning Model.objective, which can

be a reaction object (or just it’s name), or a dict of {Reaction: objective coefficient}.

In [10]: # change the objective to ATPM

model.objective = "ATPM"

# The upper bound should be 1000, so that we get

# the actual optimal value

model.reactions.get_by_id("ATPM").upper_bound = 1000.

model.objective

Out[10]: {<Reaction ATPM at 0x1165107b8>: 1}

In [11]: model.optimize().f

Out[11]: 174.99999999999997

The objective function can also be changed by setting Reac-

tion.objective coefficient directly.

In [12]: model.reactions.get_by_id("ATPM").objective_coefficient = 0.

biomass_rxn.objective_coefficient = 1.

model.objective

Out[12]: {<Reaction Biomass Ecoli core at 0x116510828>: 1.0}

A.4.3 Running FVA

FBA will not give always give unique solution, because multiple flux states can

achieve the same optimum. FVA (or flux variability analysis) finds the ranges of each

metabolic flux at the optimum.

In [13]: fva_result = cobra.flux_analysis.flux_variability_analysis(

model, model.reactions[:20])

pandas.DataFrame.from_dict(fva_result).T.round(5)

Out[13]: maximum minimum

ACALD 0.00000 0.00000

ACALDt -0.00000 0.00000

ACKr -0.00000 0.00000
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ACONTa 6.00725 6.00725

ACONTb 6.00725 6.00725

ACt2r 0.00000 0.00000

ADK1 -0.00000 0.00000

AKGDH 5.06438 5.06438

AKGt2r 0.00000 0.00000

ALCD2x 0.00000 0.00000

ATPM 8.39000 8.39000

ATPS4r 45.51401 45.51401

Biomass Ecoli core 0.87392 0.87392

CO2t -22.80983 -22.80983

CS 6.00725 6.00725

CYTBD 43.59899 43.59899

D LACt2 0.00000 0.00000

ENO 14.71614 14.71614

ETOHt2r 0.00000 0.00000

EX ac e -0.00000 0.00000

Setting parameter fraction of optimium=0.90 would give the flux ranges for

reactions at 90% optimality.

In [14]: fva_result = cobra.flux_analysis.flux_variability_analysis(

model, model.reactions[:20], fraction_of_optimum=0.9)

pandas.DataFrame.from_dict(fva_result).T.round(5)

Out[14]: maximum minimum

ACALD 0.00000 -2.54237

ACALDt -0.00000 -2.54237

ACKr -0.00000 -3.81356

ACONTa 8.89452 0.84859

ACONTb 8.89452 0.84859

ACt2r 0.00000 -3.81356

ADK1 17.16100 0.00000

AKGDH 8.04593 0.00000

AKGt2r 0.00000 -1.43008

ALCD2x 0.00000 -2.21432

ATPM 25.55100 8.39000

ATPS4r 59.38106 34.82562

Biomass Ecoli core 0.87392 0.78653

CO2t -15.20653 -26.52885

CS 8.89452 0.84859

CYTBD 51.23909 35.98486

D LACt2 0.00000 -2.14512

ENO 16.73252 8.68659

ETOHt2r 0.00000 -2.21432

EX ac e 3.81356 0.00000
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Running FVA in summary methods

Flux variability analysis can also be embedded in calls to summary methods.

For instance, the expected variability in substrate consumption and product formation

can be quickly found by

In [15]: model.optimize()

model.summary(fva=0.95)

IN FLUXES OUT FLUXES OBJECTIVES

o2 e -21.80 ± 1.91 h2o e 27.86 ± 2.86

Biomass Ecoli core 0.874

glc D e -9.76 ± 0.24 co2 e 21.81 ± 2.86

nh4 e -4.84 ± 0.32 h e 19.51 ± 2.86

pi e -3.13 ± 0.08 for e 2.86 ± 2.86

ac e 0.95 ± 0.95

acald e 0.64 ± 0.64

pyr e 0.64 ± 0.64

etoh e 0.55 ± 0.55

lac D e 0.54 ± 0.54

succ e 0.42 ± 0.42

akg e 0.36 ± 0.36

glu L e 0.32 ± 0.32

Similarly, variability in metabolite mass balances can also be checked with flux

variability analysis

In [16]: model.metabolites.pyr_c.summary(fva=0.95)

PRODUCING REACTIONS -- Pyruvate

-------------------------------

% FLUX RXN ID REACTION

85.0% 9.76 ± 0.24 GLCpts glc D e + pep c -->

g6p c + pyr c

15.0% 6.13 ± 6.13 PYK adp c + h c + pep c -->

atp c + pyr c

CONSUMING REACTIONS -- Pyruvate

-------------------------------

% FLUX RXN ID REACTION

78.9% 11.34 ± 7.43 PDH coa c + nad c + pyr c --> accoa c + co2 c

+ nadh c

21.1% 0.85 ± 0.02 Bioma... 1.496 3pg c + 3.7478 accoa c + 59.81 atp c

+ 0.36...
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In these summary methods, the values are reported as a the center point +/-

the range of the FVA solution, calculated from the maximum and minimum values.

A.4.4 Running pFBA

Parsimonious FBA (often written pFBA) finds a flux distribution which gives

the optimal growth rate, but minimizes the total sum of flux. This involves solving

two sequential linear programs, but is handled transparently by cobrapy. For more

details on pFBA, please see Lewis et al. (2010).

In [17]: FBA_sol = model.optimize()

pFBA_sol = cobra.flux_analysis.optimize_minimal_flux(model)

These functions should give approximately the same objective value

In [18]: abs(FBA_sol.f - pFBA_sol.f)

Out[18]: 1.1102230246251565e-16

A.5 Simulating Deletions

In [1]: import pandas

from time import time

import cobra.test

from cobra.flux_analysis import \

single_gene_deletion, single_reaction_deletion, \

double_gene_deletion, double_reaction_deletion

cobra_model = cobra.test.create_test_model("textbook")

ecoli_model = cobra.test.create_test_model("ecoli")

A.5.1 Single Deletions

Perform all single gene deletions on a model

http://dx.doi.org/10.1038/msb.2010.47
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In [2]: growth_rates, statuses = single_gene_deletion(cobra_model)

These can also be done for only a subset of genes

In [3]: gr, st = single_gene_deletion(cobra_model,

cobra_model.genes[:20])

pandas.DataFrame.from_dict({"growth_rates": gr,

"status": st})

Out[3]: growth rates status

b0116 0.782351 optimal

b0118 0.873922 optimal

b0351 0.873922 optimal

b0356 0.873922 optimal

b0474 0.873922 optimal

b0726 0.858307 optimal

b0727 0.858307 optimal

b1241 0.873922 optimal

b1276 0.873922 optimal

b1478 0.873922 optimal

b1849 0.873922 optimal

b2296 0.873922 optimal

b2587 0.873922 optimal

b3115 0.873922 optimal

b3732 0.374230 optimal

b3733 0.374230 optimal

b3734 0.374230 optimal

b3735 0.374230 optimal

b3736 0.374230 optimal

s0001 0.211141 optimal

This can also be done for reactions

In [4]: gr, st = single_reaction_deletion(cobra_model,

cobra_model.reactions[:20])

pandas.DataFrame.from_dict({"growth_rates": gr,

"status": st}).round(4)

Out[4]: growth rates status

ACALD 0.8739 optimal

ACALDt 0.8739 optimal

ACKr 0.8739 optimal

ACONTa 0.0000 optimal

ACONTb 0.0000 optimal

ACt2r 0.8739 optimal
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ADK1 0.8739 optimal

AKGDH 0.8583 optimal

AKGt2r 0.8739 optimal

ALCD2x 0.8739 optimal

ATPM 0.9166 optimal

ATPS4r 0.3742 optimal

Biomass Ecoli core 0.0000 optimal

CO2t 0.4617 optimal

CS -0.0000 optimal

CYTBD 0.2117 optimal

D LACt2 0.8739 optimal

ENO -0.0000 optimal

ETOHt2r 0.8739 optimal

EX ac e 0.8739 optimal

A.5.2 Double Deletions

Double deletions run in a similar way. Passing in return frame=True will cause

them to format the results as a pandas Dataframe

In [5]: double_gene_deletion(cobra_model, cobra_model.genes[-5:],

return_frame=True).round(4)

Out[5]: b2464 b0008 b2935 b2465 b3919

b2464 0.8739 0.8648 0.8739 0.8739 0.704

b0008 0.8648 0.8739 0.8739 0.8739 0.704

b2935 0.8739 0.8739 0.8739 0.0000 0.704

b2465 0.8739 0.8739 0.0000 0.8739 0.704

b3919 0.7040 0.7040 0.7040 0.7040 0.704

By default, the double deletion function will automatically use multiprocessing,

splitting the task over up to 4 cores if they are available. The number of cores can

be manually sepcified as well. Setting use of a single core will disable use of the

multiprocessing library, which often aids debuggging.

In [6]: start = time() # start timer()

double_gene_deletion(ecoli_model, ecoli_model.genes[:300],

number_of_processes=2)

t1 = time() - start

print("Double gene deletions for 200 genes completed in "



101

"%.2f sec with 2 cores" % t1)

start = time() # start timer()

double_gene_deletion(ecoli_model, ecoli_model.genes[:300],

number_of_processes=1)

t2 = time() - start

print("Double gene deletions for 200 genes completed in "

"%.2f sec with 1 core" % t2)

print("Speedup of %.2fx" % (t2 / t1))

Double gene deletions for 200 genes completed in 27.03 sec with 2 cores

Double gene deletions for 200 genes completed in 40.73 sec with 1 core

Speedup of 1.51x

Double deletions can also be run for reactions

In [7]: double_reaction_deletion(cobra_model,

cobra_model.reactions[2:7],

return_frame=True).round(4)

Out[7]: ACKr ACONTa ACONTb ACt2r ADK1

ACKr 0.8739 0.0 0.0 0.8739 0.8739

ACONTa 0.0000 0.0 0.0 0.0000 0.0000

ACONTb 0.0000 0.0 0.0 0.0000 0.0000

ACt2r 0.8739 0.0 0.0 0.8739 0.8739

ADK1 0.8739 0.0 0.0 0.8739 0.8739

A.6 Phenotype Phase Plane

Phenotype phase planes will show distinct phases of optimal growth with

different use of two different substrates. For more information, see Edwards et al.

Cobrapy supports calculating and plotting (using matplotlib) these phenotype

phase planes. Here, we will make one for the “textbook” E. coli core model.

In [1]: %matplotlib inline

from IPython.display import set_matplotlib_formats

set_matplotlib_formats(’png’, ’pdf’)

http://dx.doi.org/10.1002/bit.10047
http://matplotlib.org
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from time import time

import cobra.test

from cobra.flux_analysis import calculate_phenotype_phase_plane

model = cobra.test.create_test_model("textbook")

We want to make a phenotype phase plane to evaluate uptakes of Glucose and

Oxygen.

In [2]: data = calculate_phenotype_phase_plane(

model, "EX_glc__D_e", "EX_o2_e")

data.plot_matplotlib();
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If palettable is installed, other color schemes can be used as well

In [3]: data.plot_matplotlib("Pastel1")

data.plot_matplotlib("Dark2");

https://github.com/jiffyclub/palettable
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The number of points which are plotted in each dimension can also be changed

In [4]: data = calculate_phenotype_phase_plane(

model, "EX_glc__D_e", "EX_o2_e",

reaction1_npoints=20, reaction2_npoints=20)

data.plot_matplotlib();
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The code can also use multiple processes to speed up calculations

In [5]: start_time = time()

calculate_phenotype_phase_plane(

model, "EX_glc__D_e", "EX_o2_e",

reaction1_npoints=100, reaction2_npoints=100,

n_processes=1)

print("took %.2f seconds with 1 process" % (time() - start_time))

start_time = time()

calculate_phenotype_phase_plane(

model, "EX_glc__D_e", "EX_o2_e",

reaction1_npoints=100, reaction2_npoints=100,

n_processes=4)

print("took %.2f seconds with 4 process" % (time() - start_time))

took 0.44 seconds with 1 process

took 0.25 seconds with 4 process
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A.7 Mixed-Integer Linear Programming

A.7.1 Ice Cream

This example was originally contributed by Joshua Lerman.

An ice cream stand sells cones and popsicles. It wants to maximize its profit,

but is subject to a budget.

We can write this problem as a linear program:

max cone · cone margin + popsicle · popsicle margin

subject to

cone · cone cost + popsicle · popsicle cost ≤ budget

In [1]: cone_selling_price = 7.

cone_production_cost = 3.

popsicle_selling_price = 2.

popsicle_production_cost = 1.

starting_budget = 100.

This problem can be written as a cobra.Model

In [2]: from cobra import Model, Metabolite, Reaction

cone = Reaction("cone")

popsicle = Reaction("popsicle")

# constrainted to a budget

budget = Metabolite("budget")

budget._constraint_sense = "L"

budget._bound = starting_budget

cone.add_metabolites({budget: cone_production_cost})

popsicle.add_metabolites({budget: popsicle_production_cost})

# objective coefficient is the profit to be made from each unit

cone.objective_coefficient = \

cone_selling_price - cone_production_cost

popsicle.objective_coefficient = \

popsicle_selling_price - popsicle_production_cost
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m = Model("lerman_ice_cream_co")

m.add_reactions((cone, popsicle))

m.optimize().x_dict

Out[2]: {’cone’: 33.333333333333336, ’popsicle’: 0.0}

In reality, cones and popsicles can only be sold in integer amounts. We can use

the variable kind attribute of a cobra.Reaction to enforce this.

In [3]: cone.variable_kind = "integer"

popsicle.variable_kind = "integer"

m.optimize().x_dict

Out[3]: {’cone’: 33.0, ’popsicle’: 1.0}

Now the model makes both popsicles and cones.

A.7.2 Restaurant Order

To tackle the less immediately obvious problem from the following XKCD

comic:

In [4]: from IPython.display import Image

Image(url=r"http://imgs.xkcd.com/comics/np_complete.png")

Out[4]: <IPython.core.display.Image object>

We want a solution satisfying the following constraints:(
2.15 2.75 3.35 3.55 4.20 5.80

)
· ~v = 15.05

~vi ≥ 0

~vi ∈ Z

This problem can be written as a COBRA model as well.

http://xkcd.com/287/
http://xkcd.com/287/
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In [5]: total_cost = Metabolite("constraint")

total_cost._bound = 15.05

costs = {"mixed_fruit": 2.15, "french_fries": 2.75,

"side_salad": 3.35, "hot_wings": 3.55,

"mozarella_sticks": 4.20, "sampler_plate": 5.80}

m = Model("appetizers")

for item, cost in costs.items():

r = Reaction(item)

r.add_metabolites({total_cost: cost})

r.variable_kind = "integer"

m.add_reaction(r)

# To add to the problem, suppose we want to

# eat as little mixed fruit as possible.

m.reactions.mixed_fruit.objective_coefficient = 1

m.optimize(objective_sense="minimize").x_dict

Out[5]: {’french fries’: 0.0,

’hot wings’: 2.0,

’mixed fruit’: 1.0,

’mozarella sticks’: 0.0,

’sampler plate’: 1.0,

’side salad’: 0.0}

There is another solution to this problem, which would have been obtained if

we had maximized for mixed fruit instead of minimizing.

In [6]: m.optimize(objective_sense="maximize").x_dict

Out[6]: {’french fries’: 0.0,

’hot wings’: 0.0,

’mixed fruit’: 7.0,

’mozarella sticks’: 0.0,

’sampler plate’: 0.0,

’side salad’: 0.0}

A.7.3 Boolean Indicators

To give a COBRA-related example, we can create boolean variables as integers,

which can serve as indicators for a reaction being active in a model. For a reaction
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flux v with lower bound -1000 and upper bound 1000, we can create a binary variable

b with the following constraints:

b ∈ {0, 1}

−1000 · b ≤ v ≤ 1000 · b

To introduce the above constraints into a cobra model, we can rewrite them as

follows

v ≤ b · 1000⇒ v − 1000 · b ≤ 0

−1000 · b ≤ v ⇒ v + 1000 · b ≥ 0

In [7]: import cobra.test

model = cobra.test.create_test_model("textbook")

# an indicator for pgi

pgi = model.reactions.get_by_id("PGI")

# make a boolean variable

pgi_indicator = Reaction("indicator_PGI")

pgi_indicator.lower_bound = 0

pgi_indicator.upper_bound = 1

pgi_indicator.variable_kind = "integer"

# create constraint for v - 1000 b <= 0

pgi_plus = Metabolite("PGI_plus")

pgi_plus._constraint_sense = "L"

# create constraint for v + 1000 b >= 0

pgi_minus = Metabolite("PGI_minus")

pgi_minus._constraint_sense = "G"

pgi_indicator.add_metabolites({pgi_plus: -1000,

pgi_minus: 1000})

pgi.add_metabolites({pgi_plus: 1, pgi_minus: 1})

model.add_reaction(pgi_indicator)

# an indicator for zwf

zwf = model.reactions.get_by_id("G6PDH2r")

zwf_indicator = Reaction("indicator_ZWF")

zwf_indicator.lower_bound = 0

zwf_indicator.upper_bound = 1

zwf_indicator.variable_kind = "integer"

# create constraint for v - 1000 b <= 0

zwf_plus = Metabolite("ZWF_plus")
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zwf_plus._constraint_sense = "L"

# create constraint for v + 1000 b >= 0

zwf_minus = Metabolite("ZWF_minus")

zwf_minus._constraint_sense = "G"

zwf_indicator.add_metabolites({zwf_plus: -1000,

zwf_minus: 1000})

zwf.add_metabolites({zwf_plus: 1, zwf_minus: 1})

# add the indicator reactions to the model

model.add_reaction(zwf_indicator)

In a model with both these reactions active, the indicators will also be active

In [8]: solution = model.optimize()

print("PGI indicator = %d" % solution.x_dict["indicator_PGI"])

print("ZWF indicator = %d" % solution.x_dict["indicator_ZWF"])

print("PGI flux = %.2f" % solution.x_dict["PGI"])

print("ZWF flux = %.2f" % solution.x_dict["G6PDH2r"])

PGI indicator = 1

ZWF indicator = 1

PGI flux = 4.86

ZWF flux = 4.96

Because these boolean indicators are in the model, additional constraints can

be applied on them. For example, we can prevent both reactions from being active at

the same time by adding the following constraint:

bpgi + bzwf = 1

In [9]: or_constraint = Metabolite("or")

or_constraint._bound = 1

zwf_indicator.add_metabolites({or_constraint: 1})

pgi_indicator.add_metabolites({or_constraint: 1})

solution = model.optimize()

print("PGI indicator = %d" % solution.x_dict["indicator_PGI"])

print("ZWF indicator = %d" % solution.x_dict["indicator_ZWF"])

print("PGI flux = %.2f" % solution.x_dict["PGI"])

print("ZWF flux = %.2f" % solution.x_dict["G6PDH2r"])

PGI indicator = 1

ZWF indicator = 0

PGI flux = 9.82

ZWF flux = 0.00
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A.8 Quadratic Programming

Suppose we want to minimize the Euclidean distance of the solution to the

origin while subject to linear constraints. This will require a quadratic objective

function. Consider this example problem:

min 1
2

(x2 + y2)

subject to

x+ y = 2

x ≥ 0

y ≥ 0

This problem can be visualized graphically:

In [1]: %matplotlib inline

import plot_helper

plot_helper.plot_qp1()

1.0 2.0

1.0

2.0

1.0 2.0

1.0

2.0
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The objective can be rewritten as 1
2
vT ·Q · v, where v =

x
y

 and Q =

1 0

0 1


The matrix Q can be passed into a cobra model as the quadratic objective.

In [2]: import scipy

from cobra import Reaction, Metabolite, Model, solvers

The quadratic objective Q should be formatted as a scipy sparse matrix.

In [3]: Q = scipy.sparse.eye(2).todok()

Q

Out[3]: <2x2 sparse matrix of type ’<class ’numpy.float64’>’

with 2 stored elements in Dictionary Of Keys format>

In this case, the quadratic objective is simply the identity matrix

In [4]: Q.todense()

Out[4]: matrix([[ 1., 0.],

[ 0., 1.]])

We need to use a solver that supports quadratic programming, such as gurobi

or cplex. If a solver which supports quadratic programming is installed, this function

will return its name.

In [5]: print(solvers.get_solver_name(qp=True))

cplex

In [6]: c = Metabolite("c")

c._bound = 2

x = Reaction("x")

y = Reaction("y")

x.add_metabolites({c: 1})

y.add_metabolites({c: 1})

m = Model()

m.add_reactions([x, y])

sol = m.optimize(quadratic_component=Q, objective_sense="minimize")

sol.x_dict
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Out[6]: {’x’: 1.0, ’y’: 1.0}

Suppose we change the problem to have a mixed linear and quadratic objective.

min 1
2

(x2 + y2)− y

subject to

x+ y = 2

x ≥ 0

y ≥ 0

Graphically, this would be

In [7]: plot_helper.plot_qp2()

1.0 2.0

1.0

2.0

1.0 2.0

1.0

2.0

QP solvers in cobrapy will combine linear and quadratic coefficients. The linear

portion will be obtained from the same objective coefficient attribute used with LP’s.
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In [8]: y.objective_coefficient = -1

sol = m.optimize(quadratic_component=Q, objective_sense="minimize")

sol.x_dict

Out[8]: {’x’: 0.5, ’y’: 1.5}

A.9 Loopless FBA

The goal of this procedure is identification of a thermodynamically consistent

flux state without loops, as implied by the name.

Usually, the model has the following constraints.

S · v = 0

lb ≤ v ≤ ub

However, this will allow for thermodynamically infeasible loops (referred to as

type 3 loops) to occur, where flux flows around a cycle without any net change of

metabolites. For most cases, this is not a major issue, as solutions with these loops

can usually be converted to equivalent solutions without them. However, if a flux

state is desired which does not exhibit any of these loops, loopless FBA can be used.

The formulation used here is modified from Schellenberger et al.

We can make the model irreversible, so that all reactions will satisfy

0 ≤ lb ≤ v ≤ ub ≤ max(ub)

http://dx.doi.org/10.1016/j.bpj.2010.12.3707
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We will add in boolean indicators as well, such that

max(ub) · i ≥ v

i ∈ {0, 1}

We also want to ensure that an entry in the row space of S also exists with

negative values wherever v is nonzero. In this expression, 1− i acts as a not to indicate

inactivity of a reaction.

STx− (1− i)(max(ub) + 1) ≤ −1

We will construct an LP integrating both constraints.


S 0 0

−I max(ub)I 0

0 (max(ub) + 1)I ST

 ·

v

i

x


= 0

≥ 0

≤ max(ub)

Note that these extra constraints are not applied to boundary reactions which

bring metabolites in and out of the system.

In [1]: %matplotlib inline

import plot_helper

import cobra.test

from cobra import Reaction, Metabolite, Model

from cobra.flux_analysis.loopless import construct_loopless_model

from cobra.flux_analysis import optimize_minimal_flux

from cobra.solvers import get_solver_name

We will demonstrate with a toy model which has a simple loop cycling A -> B

-> C -> A, with A allowed to enter the system and C allowed to leave. A graphical
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view of the system is drawn below:

In [2]: plot_helper.plot_loop()

EX_A

v1 v2

v3

DM_C

A

B

C

In [3]: test_model = Model()

test_model.add_metabolites([Metabolite(i) for i in "ABC"])

test_model.add_reactions([Reaction(i) for i in

["EX_A", "DM_C", "v1", "v2", "v3"]])

test_model.reactions.EX_A.add_metabolites({"A": 1})

test_model.reactions.DM_C.add_metabolites({"C": -1})

test_model.reactions.DM_C.objective_coefficient = 1

test_model.reactions.v1.add_metabolites({"A": -1, "B": 1})

test_model.reactions.v2.add_metabolites({"B": -1, "C": 1})

test_model.reactions.v3.add_metabolites({"C": -1, "A": 1})

While this model contains a loop, a flux state exists which has no flux through

reaction v3, and is identified by loopless FBA.

In [4]: solution = construct_loopless_model(test_model).optimize()

print("loopless solution: status = " + solution.status)

print("loopless solution: v3 = %.1f" % solution.x_dict["v3"])

loopless solution: status = optimal

loopless solution: v3 = 0.0
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If there there is no forced flux through a loopless reaction, parsimonious FBA

will also have no flux through the loop.

In [5]: solution = optimize_minimal_flux(test_model)

print("parsimonious solution: status = " + solution.status)

print("parsimonious solution: v3 = %.1f" % solution.x_dict["v3"])

parsimonious solution: status = optimal

parsimonious solution: v3 = 0.0

However, if flux is forced through v3, then there is no longer a feasible loopless

solution, but the parsimonious solution will still exist.

In [6]: test_model.reactions.v3.lower_bound = 1

solution = construct_loopless_model(test_model).optimize()

print("loopless solution: status = " + solution.status)

loopless solution: status = infeasible

In [7]: solution = optimize_minimal_flux(test_model)

print("parsimonious solution: status = " + solution.status)

print("parsimonious solution: v3 = %.1f" % solution.x_dict["v3"])

parsimonious solution: status = optimal

parsimonious solution: v3 = 1.0

Loopless FBA is also possible on genome scale models, but it requires a capable

MILP solver. If one is installed, cobrapy can detect it automatically using the

get solver name function

In [8]: mip_solver = get_solver_name(mip=True)

print(mip_solver)

cplex

In [9]: salmonella = cobra.test.create_test_model("salmonella")

construct_loopless_model(salmonella).optimize(solver=mip_solver)

Out[9]: <Solution 0.38 at 0x7f9285d7ffd0>

In [10]: ecoli = cobra.test.create_test_model("ecoli")

construct_loopless_model(ecoli).optimize(solver=mip_solver)

Out[10]: <Solution 0.98 at 0x7f9285c89470>
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A.10 Gapfillling

GrowMatch and SMILEY are gap-filling algorithms, which try to to make the

minimal number of changes to a model and allow it to simulate growth. For more

information, see Kumar et al.. Please note that these algorithms are Mixed-Integer

Linear Programs, which need solvers such as gurobi or cplex to function correctly.

In [1]: import cobra.test

model = cobra.test.create_test_model("salmonella")

In this model D-Fructose-6-phosphate is an essential metabolite. We will

remove all the reactions using it, and at them to a separate model.

In [2]: # remove some reactions and add them to the universal reactions

Universal = cobra.Model("Universal_Reactions")

for i in [i.id for i in model.metabolites.f6p_c.reactions]:

reaction = model.reactions.get_by_id(i)

Universal.add_reaction(reaction.copy())

reaction.remove_from_model()

Now, because of these gaps, the model won’t grow.

In [3]: model.optimize().f

Out[3]: 2.821531499799383e-12

A.10.1 GrowMatch

We will use GrowMatch to add back the minimal number of reactions from this

set of “universal” reactions (in this case just the ones we removed) to allow it to grow.

In [4]: r = cobra.flux_analysis.growMatch(model, Universal)

for e in r[0]:

print(e.id)

http://dx.doi.org/10.1371/journal.pcbi.1000308
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GF6PTA

FBP

MAN6PI reverse

TKT2 reverse

PGI reverse

We can obtain multiple possible reaction sets by having the algorithm go

through multiple iterations.

In [5]: result = cobra.flux_analysis.growMatch(model, Universal,

iterations=4)

for i, entries in enumerate(result):

print("---- Run %d ----" % (i + 1))

for e in entries:

print(e.id)

---- Run 1 ----

GF6PTA

FBP

MAN6PI reverse

TKT2 reverse

PGI reverse

---- Run 2 ----

F6PP

GF6PTA

TALA

MAN6PI reverse

F6PA reverse

---- Run 3 ----

GF6PTA

MAN6PI reverse

TKT2 reverse

F6PA reverse

PGI reverse

---- Run 4 ----

F6PP

GF6PTA

FBP

TALA

MAN6PI reverse
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A.10.2 SMILEY

SMILEY is very similar to growMatch, only instead of setting growth as the

objective, it sets production of a specific metabolite

In [6]: r = cobra.flux_analysis.gapfilling.SMILEY(model, "ac_e",

Universal)

for e in r[0]:

print(e.id)

GF6PTA

MAN6PI reverse

TKT2 reverse

F6PA reverse

PGI reverse

A.11 Solver Interface

Each cobrapy solver must expose the following API. The solvers all will have

their own distinct LP object types, but each can be manipulated by these functions.

This API can be used directly when implementing algorithms efficiently on linear

programs because it has 2 primary benefits:

1. Avoid the overhead of creating and destroying LP’s for each operation

2. Many solver objects preserve the basis between subsequent LP’s, making each

subsequent LP solve faster

We will walk though the API with the cglpk solver, which links the cobrapy

solver API with GLPK’s C API.

In [1]: import cobra.test

model = cobra.test.create_test_model("textbook")

solver = cobra.solvers.cglpk

http://www.gnu.org/software/glpk/
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A.11.1 Attributes and functions

Each solver has some attributes:

solver name

The name of the solver. This is the name which will be used to select the solver

in cobrapy functions.

In [2]: solver.solver_name

Out[2]: ’cglpk’

In [3]: model.optimize(solver="cglpk")

Out[3]: <Solution 0.87 at 0x7fd42ad90c18>

SUPPORTS MILP

The presence of this attribute tells cobrapy that the solver supports mixed-

integer linear programming

In [4]: solver._SUPPORTS_MILP

Out[4]: True

solve

Model.optimize is a wrapper for each solver’s solve function. It takes in a cobra

model and returns a solution

In [5]: solver.solve(model)

Out[5]: <Solution 0.87 at 0x7fd42ad90908>
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create problem

This creates the LP object for the solver.

In [6]: lp = solver.create_problem(model, objective_sense="maximize")

lp

Out[6]: <cobra.solvers.cglpk.GLP at 0x3e846e8>

solve problem

Solve the LP object and return the solution status

In [7]: solver.solve_problem(lp)

Out[7]: ’optimal’

format solution

Extract a cobra.Solution object from a solved LP object

In [8]: solver.format_solution(lp, model)

Out[8]: <Solution 0.87 at 0x7fd42ad90668>

get objective value

Extract the objective value from a solved LP object

In [9]: solver.get_objective_value(lp)

Out[9]: 0.8739215069684909

get status

Get the solution status of a solved LP object

In [10]: solver.get_status(lp)

Out[10]: ’optimal’
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change variable objective

change the objective coefficient a reaction at a particular index. This does not

change any of the other objectives which have already been set. This example will

double and then revert the biomass coefficient.

In [11]: model.reactions.index("Biomass_Ecoli_core")

Out[11]: 12

In [12]: solver.change_variable_objective(lp, 12, 2)

solver.solve_problem(lp)

solver.get_objective_value(lp)

Out[12]: 1.7478430139369818

In [13]: solver.change_variable_objective(lp, 12, 1)

solver.solve_problem(lp)

solver.get_objective_value(lp)

Out[13]: 0.8739215069684909

change variable bounds

change the lower and upper bounds of a reaction at a particular index. This

example will set the lower bound of the biomass to an infeasible value, then revert it.

In [14]: solver.change_variable_bounds(lp, 12, 1000, 1000)

solver.solve_problem(lp)

Out[14]: ’infeasible’

In [15]: solver.change_variable_bounds(lp, 12, 0, 1000)

solver.solve_problem(lp)

Out[15]: ’optimal’
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change coefficient

Change a coefficient in the stoichiometric matrix. In this example, we will set

the entry for ADP in the ATMP reaction to in infeasible value, then reset it.

In [16]: model.metabolites.index("atp_c")

Out[16]: 16

In [17]: model.reactions.index("ATPM")

Out[17]: 10

In [18]: solver.change_coefficient(lp, 16, 10, -10)

solver.solve_problem(lp)

Out[18]: ’infeasible’

In [19]: solver.change_coefficient(lp, 16, 10, -1)

solver.solve_problem(lp)

Out[19]: ’optimal’

set parameter

Set a solver parameter. Each solver will have its own particular set of unique

paramters. However, some have unified names. For example, all solvers should accept

“tolerance feasibility.”

In [20]: solver.set_parameter(lp, "tolerance_feasibility", 1e-9)

In [21]: solver.set_parameter(lp, "objective_sense", "minimize")

solver.solve_problem(lp)

solver.get_objective_value(lp)

Out[21]: 0.0

In [22]: solver.set_parameter(lp, "objective_sense", "maximize")

solver.solve_problem(lp)

solver.get_objective_value(lp)

Out[22]: 0.8739215069684912
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A.11.2 Example with FVA

Consider flux variability analysis (FVA), which requires maximizing and mini-

mizing every reaction with the original biomass value fixed at its optimal value. If we

used the cobra Model API in a naive implementation, we would do the following:

In [23]: %%time

# work on a copy of the model so the original is not changed

m = model.copy()

# set the lower bound on the objective to be the optimal value

f = m.optimize().f

for objective_reaction, coefficient in m.objective.items():

objective_reaction.lower_bound = coefficient * f

# now maximize and minimze every reaction to find its bounds

fva_result = {}

for r in m.reactions:

m.change_objective(r)

fva_result[r.id] = {

"maximum": m.optimize(objective_sense="maximize").f,

"minimum": m.optimize(objective_sense="minimize").f

}

CPU times: user 171 ms, sys: 0 ns, total: 171 ms

Wall time: 171 ms

Instead, we could use the solver API to do this more efficiently. This is roughly

how cobrapy implementes FVA. It keeps uses the same LP object and repeatedly

maximizes and minimizes it. This allows the solver to preserve the basis, and is much

faster. The speed increase is even more noticeable the larger the model gets.

In [24]: %%time

# create the LP object

lp = solver.create_problem(model)

# set the lower bound on the objective to be the optimal value

solver.solve_problem(lp)

f = solver.get_objective_value(lp)

for objective_reaction, coefficient in model.objective.items():

objective_index = model.reactions.index(objective_reaction)
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# old objective is no longer the objective

solver.change_variable_objective(lp, objective_index, 0.)

solver.change_variable_bounds(

lp, objective_index, f * coefficient,

objective_reaction.upper_bound)

# now maximize and minimze every reaction to find its bounds

fva_result = {}

for index, r in enumerate(model.reactions):

solver.change_variable_objective(lp, index, 1.)

result = {}

solver.solve_problem(lp, objective_sense="maximize")

result["maximum"] = solver.get_objective_value(lp)

solver.solve_problem(lp, objective_sense="minimize")

result["minimum"] = solver.get_objective_value(lp)

solver.change_variable_objective(lp, index, 0.)

fva_result[r.id] = result

CPU times: user 8.28 ms, sys: 25 µs, total: 8.31 ms

Wall time: 8.14 ms

A.12 Using the COBRA toolbox with cobrapy

This example demonstrates using COBRA toolbox commands in MATLAB

from python through pymatbridge.

In [1]: %load_ext pymatbridge

Starting MATLAB on ZMQ socket ipc:///tmp/pymatbridge-57ff5429-02d9-4e1a-

8ed0-44e391fb0df7

Send ’exit’ command to kill the server

...MATLAB started and connected!

In [2]: import cobra.test

m = cobra.test.create_test_model("textbook")

The model to pymatbridge function will send the model to the workspace with

the given variable name.

In [3]: from cobra.io.mat import model_to_pymatbridge

model_to_pymatbridge(m, variable_name="model")

http://arokem.github.io/python-matlab-bridge/
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Now in the MATLAB workspace, the variable name ‘model’ holds a COBRA

toolbox struct encoding the model.

In [4]: %%matlab

model

model =

rev: [95x1 double]

metNames: {72x1 cell}

b: [72x1 double]

metCharge: [72x1 double]

c: [95x1 double]

csense: [72x1 char]

genes: {137x1 cell}

metFormulas: {72x1 cell}

rxns: {95x1 cell}

grRules: {95x1 cell}

rxnNames: {95x1 cell}

description: [11x1 char]

S: [72x95 double]

ub: [95x1 double]

lb: [95x1 double]

mets: {72x1 cell}

subSystems: {95x1 cell}

First, we have to initialize the COBRA toolbox in MATLAB.

In [5]: %%matlab --silent

warning(’off’); % this works around a pymatbridge bug

addpath(genpath(’~/cobratoolbox/’));

initCobraToolbox();

Commands from the COBRA toolbox can now be run on the model

In [6]: %%matlab

optimizeCbModel(model)
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ans =

x: [95x1 double]

f: 0.8739

y: [71x1 double]

w: [95x1 double]

stat: 1

origStat: 5

solver: ’glpk’

time: 3.2911

FBA in the COBRA toolbox should give the same result as cobrapy (but maybe

just a little bit slower :))

In [7]: %time

m.optimize().f

CPU times: user 0 ns, sys: 0 ns, total: 0 ns

Wall time: 5.48 µs

Out[7]: 0.8739215069684909



Appendix B

Distributing Validated

Constraint-Based Models in SBML

This document gives a short overview of the most relevant SBML constructs and

related concepts to ensure unambiguous representations of constraint-based models.

Several source-code snippets of the recent FBC v2 standard are contrasted to the

various earlier non-standard approaches to point out specifically what must be changed.

It also describes appropriate use of the systems biology ontology (SBO) terms which

are relevant to COBRA models, and suggests a naming convention for metabolites,

genes, and reactions in these models.

B.1 Systems Biology Ontology Terms and CO-

BRA models

The Systems Biology Ontology (often abbreviated as SBO) allows any major

element in an SBML model can be annotated with a controlled vocabulary [CJK+11,

128
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HFS+03]. SBO terms generally are written as 7 digit numbers with a prefix (for

example, “SBO:0000632”). However, these terms are only useful as a standard

controlled vocabulary if they are used in a consistent manner. Most of the metabolic

models created up until now, even for different organisms and by different labs across

the world, share many common structural elements. Assigning and using SBO terms

to demarcate these similarities should therefore help with model interoperability.

In the context of COBRA models, the following SBO terms have been created

to be applied to certain classes of reactions. Most importantly, SBO terms have

been assigned to various pseudoreactions, which are modeling constructs and do not

represent in vivo chemical transformations. Use of these terms are important especially

when ensuring models are consistent and mass balanced, because they signal that

these particular reactions are purposefully imbalanced. Thus far, the following terms

have been assigned: sink reactions (SBO:0000632), exchange reactions (SBO:0000627),

demand reactions (SBO:0000628), and biomass production (SBO:0000629). Similarly,

an SBO term has been applied to the ATP maintenance (SBO:0000630), which is

a special reaction in that represents the non-growth associated maintenance energy

costs.

Finally, to distinguish the parameters used by COBRA models from other

types of models (such as Michaelis constants for kinetic modeling, for example), SBO

terms have been assigned to indicate parameters are used as upper and lower flux

bounds. Often, bounds are set to a large positive value, a large negative value, or 0

to indicate reaction directionality without a particular numeric constraint. For these

reactions, the SBO term default flux bound (SBO:0000626) is appropriate. Other

bounded fluxes should simply use flux bound (SBO:0000625).
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B.2 Strict Models

The fbc standard defines a “strict” mode, which is applicable to the common

formulation used by M models with flux balance analysis. This mode should always

be used when distributing genome-scale models. Most constraint-based modeling

tools (such as COBRApy) will assume that models passed into them fulfill the extra

requirements imposed as a consequence of using the strict flag. This flag is placed on

the model element.

<sbml xmlns= ... >

<model fbc:strict="true" id="demo_model">

...

</model>

</sbml>

B.3 Defining Flux Bounds

In FBC version 2, flux bounds are listed as parameters, and reactions

<listOfParameters >

<parameter id="lb" constant="true" value=" -1000"

... sboTerm="SBO :0000626"/>

<parameter id="ub" constant="true" value="1000"

... sboTerm="SBO :0000626"/>

</listOfParameters >

<listOfReactions >

<reaction id="R_ACKr" ... fbc:lowerFluxBound="lb" fbc:upperFluxBound="ub">

...

</reaction >
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</listOfReactions >

By contrast, previous versions of SBML (specifically L2V4) defined flux bounds

as kinetic laws, with the convention that the specific names be used for their identifiers.

However, these bounds were not always present, and did not always have the exact

correct identifier.

<!-- OLD WAY DON ’T DO THIS -->

<reaction id="R_DM_5DRIB" ...>

<listOfReactants >

...

</listOfReactants >

<kineticLaw >

<math xmlns="http :// www.w3.org /1998/ Math/MathML">

<ci > FLUX_VALUE </ci>

</math>

<listOfParameters >

<parameter id="LOWER_BOUND" value="0" units= ... />

<parameter id="UPPER_BOUND" value="999" units= ... />

<parameter id="OBJECTIVE_COEFFICIENT" value="0"/>

<!-- for some reason the solution was stored too -->

<parameter id="FLUX_VALUE" value= ... />

</listOfParameters >

</kineticLaw >

</reaction >

The short lived fbc1 specification also had its own way of defining flux bounds,

which is also deprecated and should no longer be used.

<!-- OLD WAY DON ’T DO THIS -->

<fbc:listOfFluxBounds >
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<fbc:fluxBound fbc:reaction="R_sink" fbc:operation="greaterEqual"

fbc:value="0"/>

<fbc:fluxBound fbc:reaction="R_sink" fbc:operation="lessEqual"

fbc:value="999999"/>

</fbc:listOfFluxBounds >

<listOfReactions >

<reaction id="R_sink" ... >

...

</reaction >

</listOfReactions >

B.4 Reaction Reversibility

It turns out that SBML and COBRA models have slightly different definitions

of reversibility, with a subtle difference. SBML defines an irreversible reaction as

one with strictly positive flux, while COBRA modelers tend to think of irreversible

reactions as only proceeding in one direction. The difference becomes apparent when

considering a reaction which proceeds only in reverse. In SBML, this would be

considered a reversible reaction. To handle this, the reversibility flag which is written

should use the SBML convention, and define reactions as reversible if they can carry

any negative flux. However, when reading in a model, the flux bounds should be used

to determine reversibility using the COBRA definitions, as using the reversibility flag

alone will result in an incorrect model [EAB+15]. Because strict fbc requires the flux

bound parameters (which take precedence) to be specified, the reversibility flag can

always be ignored.

<listOfParameters > ...
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<parameter id="lb" constant="true" value=" -1000" ... />

<parameter id="ub" constant="true" value="0" ... />

</listOfParameters >

<listOfReactions >

B.5 Gene Reaction Rules

The correct way to specify the relationship between genes and reactions in fbc v2

is with a tree which expresses the boolean relationship. Generally, AND relationships

are thought of as complexes, and relationships represent alternate complexes. Therefore,

expressing the boolean expression in disjunctive normal form is the most biologically

relevant, as it lists all the individual complexes which can catalyze the reaction.

However, this conversion is by no means required, and any boolean expression of AND

and OR operations with genes are allowed.

The method used to express this in SBML is analogous to how reactions refer

through metabolites through SBML species. Genes are listed in one part of the

document, and the gene reaction rule refers to them by id.

<fbc:listOfGeneProducts >

<fbc:geneProduct fbc:id="G_b2925"

fbc:label="b2925" fbc:name="fbaA"/>

<fbc:geneProduct fbc:id="G_b1773" ... />

<fbc:geneProduct fbc:id="G_b2097" ... />

</fbc:listOfGeneProducts >

<listOfReactions >

<reaction id="R_FBA"... >

<fbc:geneProductAssociation >
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<fbc:or >

<fbc:geneProductRef fbc:geneProduct="G_b1773"/>

<fbc:geneProductRef fbc:geneProduct="G_b2097"/>

<fbc:geneProductRef fbc:geneProduct="G_b2925"/>

</fbc:or>

</fbc:geneProductAssociation >

...

</reaction >

</listOfReactions >

The old way of doing this was simply to specify a text string encoding a boolean

expression in the notes section. There were several issues with this structure. Most

importantly, there was no validation of these boolean strings, which were frequently

malformed.

<!-- OLD WAY DON ’T DO THIS -->

<reaction id="R_13PPDHr" ...>

<notes >

<html:p>GENE_ASSOCIATION: ( Gmet_1046 or Gmet_1053 )</html:p>

<html:p>PROTEIN_ASSOCIATION: ( Adh1 ) or ( Adh2 )</html:p>

</notes>

...

</reaction >

B.6 Biomass Objective Reactions

While fbc v2 allows specification of multiple objectives, many software tools

do not in fact support this, so this feature should not be relied on. Additionally,

the format allows specification of multiple reactions with an objective. However, a
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well-formed model will only have a single active biomass reaction at any one time. By

comparison, the older format encoded the objective coefficient in the same place it

encoded flux bounds.

<fbc:listOfObjectives fbc:activeObjective="obj_max">

<fbc:objective fbc:type="maximize" fbc:id="obj_max">

<fbc:listOfFluxObjectives >

<fbc:fluxObjective fbc:coefficient="1"

fbc:reaction="Gm_biomass_GS15_WT_79p20M"/>

</fbc:listOfFluxObjectives >

</fbc:objective >

</fbc:listOfObjectives >

B.7 Conventions for Identifiers

Defining meaningful identifiers can be difficult because of the limited selection

of characters that can be used in SBML. Because identifiers cannot start with numbers,

all SBML id’s should have prefixes. The following convention is recommended: “G ”

for gene products, “M ” for species (metabolites), and “R ” for reactions. For example,

instead of “3PG” (which would be an invalid id in SBML), “M 3PG” should be

used for 3-phosphoglycerate. Metabolite and reaction id standardization remains a

general challenge for the field. However, in the case of genes, the problem already

been partially solved by the NCBI gene system. Therefore, in the case of genes,

more defined conventions can be defined. Gene identifiers should use the “G ” prefix

followed by the NCBI gene id. The NCBI gene id can contain “.” (which is invalid in

SBML), which should be escaped by “ SBML DOT ”.



Appendix C

Model-driven elucidation of

transcriptional regulatory network

in bacteria - Supplementary

Information

C.1 Advantages of ChIP-exo over previous meth-

ods

Binding peaks detected with ChIP-exo for NtrC, Nac, RpoN, and RpoD had

average widths of 57.2, 34.6, 33.7, and 50.1 bp, respectively, with low variations in

peak width (Figure S21). Another advantage of the ChIP-exo method is that strong

binding is reflected in an increased peak height (number of reads) while not broadening

the peak, while ChIP-chip and ChIP-seq methods have a tendency to show broader
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peaks for stronger binding sites. This property helps locate the genomic sequences

that a TF recognizes and binds to with improved resolution (Figure S4).

Notably, the sharpness of ChIP-exo binding peaks makes it possible, for the

first time, to detect binding sites upstream of sRNAs. In E. coli K-12 MG1655, there

are about 81 annotated sRNAs. Their sizes range from 53 to 436 bp with the average

of 137.1 bp. Binding peaks from two previous methods are much wider than the sRNA

length, and, in many cases, sRNAs are located close to neighboring genes. Thus, it

has been technically difficult to distinguish TF binding sites for sRNAs. With an

improved resolution, ChIP-exo overcomes this issue, enabling direct measurement of

TF binding upstream of sRNAs. For instance, spf is 109 bp long, and binding of Nac

and RpoD was identified by ChIP-exo method (Figure S22). The binding peak of

RpoD was found near the 5’ end of spf gene, and was clearly separated from Nac

binding peak. These observations were further supported with sequence motif analysis

(Figure S22).

Thus, ChIP-exo shows advantages over two established ChIP methods. Im-

proved resolution and sensitivity of this method contributed to more accurate anno-

tation of binding regions of TFs and σ-factors in this study, further distinguishing

spatial binding patterns between TF and associated σ-factors, which is discussed in

detail below.

C.2 Locally acting TFs regulated by Nac.

The Nac regulon includes a number of mostly locally acting TFs, some of which

are known to be related carbon metabolism or in both carbon/nitrogen metabolism,

such as cynR (cyanate binding transcriptional activator), csiR (carbon starvation
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induced regulator), sfsB (maltose metabolism related regulator), gutM (glucitol

regulator), ebgR (evolved β-galactosidase repressor), tdcA (threonine and serine tran-

scriptional regulator), deoR (deoxyribose regulator), allR (allantoin repressor), caiF

(carnitine regulator), lrp (leucine-responsive regulatory protein), lysR (lysine regulator),

feaR (phenylethylamine regulator), xapR (xanthosine/deoxyinosine transcriptional

regulator), asnC (asparagine regulator), and metR (methionine biosynthesis related

regulator).

C.3 Supplementary Experimental Procedures

C.3.1 Prediction of activation conditions for transcription

factor

In order to simulate ME model [OLC+13] for in silico E. coli growth under

various conditions, candidate nitrogen sources were chosen from simulation with M

model [OCN+11] which shares the same metabolites with ME model. There are 1039

cytoplasmic metabolites in iJO1366 M model, and among them, 620 cytoplasmic

metabolites have more than one nitrogen molecules. From those metabolites, 178

nitrogen containing cytoplasmic metabolites with exchange reaction in the model were

preserved. With glucose as sole carbon source with -10 mmol/gDW/hr uptake rate, and

each nitrogen-containing metabolite with exchange reaction with -10 mmol/gDW/hr

uptake rate, M model was used in simulation to decide if the nitrogen containing

molecule supports in silico growth (Figure S1A). From the set of in silico growth with

178 nitrogen containing metabolites, threshold 0.5 mmol/gDW/hr was used to decide

growth and non-growth (Figure S1B), which resulted in 93 candidate nitrogen sources,
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which support in silico growth with glucose.

The ME model was used to simulate expression of genes under 93 candidate

nitrogen sources with -10 mmol/gDW/hr and glucose for carbon source with -10

mmol/gDW/hr. For each simulation under an alternate nitrogen source, expression

was compared to simulated growth on ammonium, with a cutoff of a factor of 2 set to

identify predicted sets of genes. The hypergeometric enrichment of each known TF

regulon taken from Ecocyc [KMPG+13] in each of these differential gene sets was used

to predict the likelihood of transcription factor activity under each condition (Figure

S1C, Figure S1D). For NtrC and Nac, 24 conditions and 2 conditions respectively

resulted in predictions of TF activity. (Figure S1E).

C.3.2 Bacterial strains, media, and growth conditions

All strains used in this study are E. coli K-12 MG1655 and its derivatives

for tandem epitopes. The E. coli strains harboring ntrC -8myc and nac-8myc were

generated as described previously [CKP06a]. M9 minimal media [KHQ+12] was

used for ammonia and W2 minimal media [PCI+95] was used for nitrogen-limiting

conditions. For nitrogen-limiting conditions, 0.2% (w/v) glutamine, cytidine, and

cytosine were added for alternative nitrogen sources. M9 or W2 minimal media

was supplemented with 0.2% glucose (w/v) and 1 ml trace element solution (100X)

containing 1 g EDTA, 29 mg ZnSO4.7H2O, 198 mg MnCl2.4H2O, 254 mg CoCl2.6H2O,

13.4 mg CuCl2, and 147 mg CaCl2.

Glycerol stocks of E. coli strains were inoculated into M9 or W2 minimal

media and cultured overnight at 37oC with constant agitation. Cultures were then

diluted 1:100 into 50 mL of fresh minimal media and cultured at 37 oC to mid-log
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phase (OD600 ≈ 0.5 for ammonia, glutamine, and cytidine, and OD600 ≈ 0.25) before

harvest.

C.3.3 ChIP-exo experiment

To identify TF and σ-factor binding maps in vivo, we isolated the DNA bound

to NtrC, Nac, and RpoN and RpoD from formaldehyde cross-linked E. coli cells by

chromatin immunoprecipitation (ChIP) with the specific antibodies that specifically

recognizes myc tag (9E10, Santa Cruz Biotechnology) and RpoD (2G10, Neoclone)

and RpoN (6RN3, Neoclone) subunits of RNA polymerase complex, respectively,

and Dynabeads Pan Mouse IgG magnetic beads (Invitrogen) followed by stringent

washings as described previously [CKK+14]. ChIP materials (chromatin-beads) were

used to perform on-bead enzymatic reactions of the ChIP-exo method [RP12a] with

following modifications. Briefly, the sheared DNA of chromatin-beads was repaired by

the NEBNext End Repair Module (New England Biolabs) followed by the addition

of a single dA overhang and ligation of the first adaptor (5’-phosphorylated) using

dA-Tailing Module (New England Biolabs) and NEBNext Quick Ligation Module (New

England Biolabs), respectively. Nick repair was performed by using PreCR Repair

Mix (New England Biolabs). Lambda exonuclease- and RecJf exonuclease-treated

chromatin was eluted from the beads and the protein-DNA cross-link was reversed by

overnight incubation at 65oC. RNAs- and Proteins-removed DNA samples were used

to perform primer extension and second adaptor ligation with following modifications.

The DNA samples incubated for primer extension as described previously [RP12a]

were treated with dA-Tailing Module (New England Biolabs) and NEBNext Quick

Ligation Module (New England Biolabs) for second adaptor ligation. The DNA
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sample purified by GeneRead Size Selection Kit (Qiagen) was enriched by polymerase

chain reaction (PCR) using Phusion High-Fidelity DNA Polymerase (New England

Biolabs). The amplified DNA samples were purified again by GeneRead Size Selection

Kit (Qiagen) and quantified using Qubit dsDNA HS Assay Kit (Life Technologies).

Quality of the DNA sample was checked by running Agilent High Sensitivity DNA

Kit using Agilent 2100 Bioanalyzer (Agilent) before sequenced using MiSeq (Illumina)

in accordance with the manufacturer’s instructions. Each modified step was also

performed in accordance with the manufacturer’s instructions. ChIP-exo experiments

were performed in biological duplicate.

C.3.4 RNA-seq expression profiling

Three milliliters of cells from mid-log phase culture were mixed with 6 ml

RNAprotect Bacteria Reagent (Qiagen). Samples were mixed immediately by vortexing

for 5 seconds, incubated for 5 minutes at room temperature, and then centrifuged at

5000×gfor 10 minutes. The supernatant was decanted and any residual supernatant

was removed by inverting the tube once onto a paper towel. Total RNA samples

were then isolated using RNeasy Plus Mini kit (Qiagen) in accordance with the

manufacturer’s instruction. Samples were then quantified using a NanoDrop 1000

spectrophotometer (Thermo Scientific) and quality of the isolated RNA was checked

by running RNA 6000 Pico Kit using Agilent 2100 Bioanalyzer (Agilent).

Paired-end, strand-specific RNA-seq was performed using the dUTP method

[LYA+10] with the following modifications. The ribosomal RNAs were removed from 2

µg of isolated total RNA with Ribo-Zero rRNA Removal Kit (Epicentre) in accordance

with the manufacturer’s instruction. Subtracted RNA was fragmented for 2.5 min at
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70 oC with RNA Fragmentation Reagents (Ambion), and then fragmented RNA was

recovered with ethanol precipitation. Random primer (3 µg) and fragmented RNA

in 4 µl was incubated in 5 µl total volume at 70 oC for 10 minutes, and cDNA or

the first strand was synthesized using SuperScript III first-strand synthesis protocol

(Invitrogen). The cDNA was recovered by phenol-chloroform extraction followed by

ethanol precipitation. The second strand was synthesized from this cDNA with 20 µl

of fragmented cDNA:RNA, 4 µl of 5× first strand buffer, 30 µl of 5× second strand

buffer, 4 µl of 10 mM dNTP with dUTP instead of dTTP, 2 µl of 100 mM DTT, 4 µl

of E. coli DNA polymerase (Invitrogen), 1 µl of E. coli DNA ligase (Invitrogen), 1

µl of E. coli RNase H (Invitrogen) in 150 µl of total volume. This reaction mixture

was incubated at 16 oC for 2 hours, and fragmented DNA was recovered with PCR

clean-up kit (QIAGEN) and eluted in 30 µl of nuclease-free water. The fragmented

DNA was end-repaired with End Repair Kit (New England Biolabs), and dA-tailed

with dA-Tailing Kit (New England Biolabs), and then ligated with 7.5 µg of DNA

adaptor mixture with Quick Ligation Kit (New England Biolabs). The adaptor-ligated

DNA was size-selected to removed un-ligated adaptors with GeneRead Size Selection

Kit (QIAGEN), and treated with 1 U of USER enzyme (New England Biolabs) in

30 µl of total volume, and incubated at 37 oC for 15 minutes followed by 5 minutes

at 95 oC. The USER-treated DNA was amplified by PCR to generate sequencing

library for Illumina sequencing. The samples were sequenced using MiSeq (Illumina)

in accordance with the manufacturer’s instructions. All RNA-seq experiments were

performed in biological duplicate.
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C.3.5 Peak calling for ChIP-exo dataset

Sequence reads generated from ChIP-exo were mapped onto the reference

genome (NC 000913.2) using bowtie [LTPS09] with default options to generate SAM

output files. MACE program (https://code.google.com/p/chip-exo/) was used to

define peak candidates from biological duplicates for each experimental condition

with sequence depth normalization. To reduce false-positive peaks, peaks with signal-

to-noise (S/N) ratio less than 1.5 were removed. The noise level was set to the top

5% of signals at genomic positions because top 5% makes a background level in

plateau (Figure S20A) and top 5% intensities from each ChIP-exo replicates across

conditions correlate well with the total number of reads (Figure S20B). The calculation

of S/N ratio resembles the way to calculate ChIP-chip peak intensity where IP signal

was divided by Mock signal. Then, each peak was assigned to the nearest gene.

Genome-scale data were visualized using MetaScope (http://systemsbiology.ucsd.edu/

Downloads/MetaScope).

C.3.6 Classification of regulatory and non-regulatory bind-

ing sites

For binding sites of NtrC, Nac, RpoN and RpoD, a binding site was categorized

as regulatory if it is located with 300 bp upstream of a target gene, and as non-

regulatory if else. Non-regulatory regions cover intragenic region without downstream

genes and intergenic region without promoter nearby.

https://code.google.com/p/chip-exo/
http://systemsbiology.ucsd.edu/Downloads/MetaScope
http://systemsbiology.ucsd.edu/Downloads/MetaScope
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C.3.7 Motif search from ChIP-exo peaks

The sequence motif analysis for TFs and σ-factors was performed using the

MEME software suite [BBB+09]. For NtrC, Nac, and RpoN, sequences in binding re-

gions were extracted from the reference sequence (NC 000913.2). For RpoD, sequences

were extended by 20 bp away from target genes, because only -10 box was found

without that extension. MEME was run for regulatory bindings for all conditions,

regulatory bindings for at least one condition, and non-regulatory bindings of NtrC,

Nac, RpoN and RpoD.

C.3.8 Calculation of differentially expressed gene

Sequence reads generated from RNA-seq were mapped onto the reference

genome (NC 000913.2) using bowtie [LTPS09] with the maximum insert size of 1000

bp, and 2 maximum mismatches after trimming 3 bp at 3’ ends. SAM files generated

from bowtie, then, were then used for Cufflinks (http://cufflinks.cbcb.umd.edu/)

[TWP+10] to calculate fragments per kilobase of exon per million fragments (FPKM)

and Cuffdiff to calculate differential expression. Cufflinks and Cuffdiff were run with

default options with library type of dUTP RNA-seq with default normalization method

(classic-fpkm). From Cuffdiff output, genes with differential expression with log2 fold

change > 1.0 and q-value < 0.01 were considered as differentially expressed genes.

Genome-scale data were visualized using MetaScope (http://systemsbiology.ucsd.edu/

Downloads/MetaScope).

http://systemsbiology.ucsd.edu/Downloads/MetaScope
http://systemsbiology.ucsd.edu/Downloads/MetaScope
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C.3.9 COG functional enrichment

NtrC and Nac regulons were categorized according to their annotated clusters

of orthologous groups (COG) category. Functional enrichment of COG categories in

NtrC and Nac target genes was determined by performing hypergeometric test, and

p-value < 0.05 was considered significant.

C.3.10 Measuring growth rate and glucose uptake rates on

different nitrogen sources

M9 minimal media [KHQ+12] was used for ammonia and W2 minimal media

[PCI+95]) was used for glutamine, cytidine, and cytosine as nitrogen-limiting condi-

tions. For nitrogen-limiting conditions, 0.2% (w/v) glutamine, cytidine, and cytosine

were added. M9 or W2 minimal media was supplemented with 0.2% glucose (w/v)

and 1 ml trace element solution (100X) containing 1 g EDTA, 29 mg ZnSO4.7H2O,

198 mg MnCl2.4H2O, 254 mg CoCl2.6H2O, 13.4 mg CuCl2, and 147 mg CaCl2.

A glycerol stock of E. coli K-12 MG1655strain was inoculated into fresh M9 or

W2 minimal media and cultured overnight at 37oC with constant agitation. Cultures

were then diluted 1:200 into 100 mL of fresh minimal media and cultured at 37 oC to

late-log phase, and were sampled 6 or 7 time during early to mid-log phase. Optical

density at OD600was measured to get growth rates under different nitrogen sources,

and glucose uptake was measured by HPLC for each time point. Growth and glucose

uptake measurement was performed by biological triplicates. Measured growth rates

for ammonia, glutamine, cytidine, and cytosine were 0.860, 0.839, 0.828, and 0.650

mmol/gDW/hr, and measured glucose uptake rates were -8.86, -7.68, -7.04, and -6.55

mmol/gDW/hr.
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C.3.11 FBA analysis with glucose uptake rates

FBA analysis was performed with iJO1366 E. coli metabolic model [OCN+11]

and COBRApy [ELPH13]. For experimental nitrogen sources, the simulation was

executed with measured glucose uptake rates. For a parameter of nitrogen uptake

rate, an unspecified uptake rate with a lower bound of -10 mmol/gDW/hr was used

ammonia and cytosine, because they were all used less after optimization and this

parameter calculated close growth rates to measured rates. For cytidine, the uptake

rate was set to -2.982 mmol/gDW/hr to match in vivo growth rate to the measured

one, otherwise the model chose to uptake as much as cytidine available and to generate

much higher and unrealistic growth rate. This is because cytidine could be utilized

as a carbon and energy source. Simulated flux values were then normalized by the

growth rate for each condition.

For 27 nitrogen sources that have evidences of supporting growth in in silico

simulation and experiments, there was no measured growth rate or glucose uptake

rates for those nitrogen sources. Thus the uptake rate of -10 mmol/gDW/hr was used

for glucose uptake rate, and the uptake rates of -10 mmol/gDW/hr divided by the

number of nitrogen molecules for nitrogen sources were used for alternative nitrogen

sources. Similarly, all simulated flux values were then normalized by the growth rates

for each simulated condition.

C.3.12 Comparison of in silico growth with experimental ev-

idence

In order to compare in silico growth prediction with experimental evidences,

evidences were compiled from the literature and the public database [Rei03]. There
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were 23 nitrogen sources that were confirmed to support E. coli growth from the

literature. From the biology data from Ecocyc, there are growth test results for 95

nitrogen sources, 18 out of which were removed because of inconsistency in replicates.

The criteria was giving 1 for growth call, 0.5 for low growth call, and -1 for no growth,

summing scores from 4 biological replicates, and filtering out any case with a score

from summation for 4 replicates for each nitrogen source between, but not including,

-2 and 2. There were 77 nitrogen sources with consistent results from biology, and

33 of them were removed because they are not in iJO1633 model. The remaining 44

tested nitrogen sources included 23 nitrogen sources from the literature. Out of 44

nitrogen sources, 27 of them agreed in supporting growth in vivo and in experiments,

10 of them agreed in not supporting growth in both, and 7 of them were predicted to

support growth in simulation, but experimental proved otherwise.

C.3.13 Conservation analysis of nitrogen-related genes

Gene annotation of 286 species and strains ranging from Escherichia to archaea,

were obtained from the SEED server (http://theseed.org) and ortholog calculation

to E. coli K-12 MG1655 was performed on RAST (Rapid Annotation using Sub-

system Technology) server [ABB+08]. From RAST output, orthologous genes with

bi-directional hits were only retained. Conservation level of 6 genes in transcriptional

regulation, 3 genes in post-translational regulation, and 7 genes in metabolic enzymes

in TCA cycle were calculated from orthologs retained from RAST output.
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C.4 Supplementary Figures

Figure C.1: Flowchart of model-driven prediction for activation
conditions for nitrogen-responsive transcription factors. (A) 93 can-
didate nitrogen sources were selected from 1039 cytoplasmic metabolites from
iJO1366 model with simulation of in silico growth. (B) Histogram of in silico
growth rates for 178 nitrogen-containing metabolites. (C) Calculation of
activation conditions for TFs under different conditions with 93 candidate
nitrogen sources with hypergeometric test on differentially expressed gene
sets and known TF binding information. (D) Heatmap of p-values of hyper-
geometric tests for 93 nitrogen sources and TFs. (E) Heatmap of p-values
of hypergeometric tests for NtrC and Nac under different nitrogen sources.
NtrC was predicted to be active under 24 conditions, and Nac was predicted
to be active under 2 conditions. Abbreviations for metabolites are described
in Table S1.
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Figure C.2: Expression changes of amtB,nac, ntrC rpoN, rpoD,
and rpoB under glutamine, cytidine, and cytosine, compared to
ammonia.

Figure C.3: Number of binding sites (19, 249, 153, and 2171) for NtrC,
Nac, RpoN, and RpoD, respectively, identified under the four experimented
conditions. Binding sites for NtrC and Nac increased, indicating activation of
those TFs.
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Figure C.4: Comparison of ChIP methods: ChIP-chip, ChIP-seq,
and ChIP-exo. Regions upstream of rpsU -dnaG-rpoD and upstream of
ileX /mug are shown with binding peaks detected with ChIP-chip (two upper
lanes), with ChIP-seq (two middle lanes), and with ChIP-exo (two bottom
lanes).

Figure C.5: ChIP-exo bindings of RpoD and RpoB upstream of
rplM.
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Figure C.6: ChIP-exo bindings of NtrC and RpoN upstream of
nac, but no binding of Nac. Bindings of NtrC and associated RpoN were
detected where transcription of nac started. However, no Nac binding on nac
promoter region was observed. The RpoD binding shown seems associated
with transcription of asnV.

Figure C.7: Conservation comparison of gltIJKL between E. coli and
K. pneumoniae. Genomic regions near gltIJKL are well conserved between
E. coli and K. pneumoniae. Upstream regions, including lnt and ybeX, are
fairly conserved, except that one insertion element, insH-3, is located between
gltI and lnt only in E. coli. TSSs upstream of insH-3 in E. coli and upstream of
gltI in K. pneumoniae were observed [KHQ+12]. Based on analysis of paired-
end sequence reads in E. coli, it seems there is a longer transcript starting
from insH-3 at least to gltL, suggesting a new TU, insH-3-gltI-sroC-gltJKL.
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Figure C.8: ChIP-exo bindings of NtrC, RpoN, and RpoD up-
stream of glnA. Binding of RpoN accompanied with NtrC binding was
observed upstream TUs starting from glnA. Similarly, RpoD binding was
identified as well, however no Nac binding was found.

Figure C.9: COG analysis on NtrC and Nac regulons.NtrC regulon
has functions enriched in “Amino acid metabolism and transport” and “Signal
transduction” categories (Hypergeometric test p-value < 0.05). Nac regulon
has enriched functions in “Energy production and conversion”, “Amino acid
metabolism and transport”, “Cell wall/membrane/envelope biogenesis”, and
“Intracellular trafficking and secretion” categories (p-value < 0.05).
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Figure C.10: Gene expression in mRNA level (PFKM) of genes in
Ntr regulatory cascade under ammonia, glutamine, cytidine, and
cytosine. Expression of ntrC, nac, ntrB, glnK, glnD, glnE, and glnA was
up-regulated on alternative nitrogen sources, while expression of gltB, and
gltD was down-regulated.
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Figure C.11: Gene expression changes of glutamine-related enzy-
matic genes and TF binding upstream of those genes. Genes that
produce glutamine were up-regulated, whereas genes that consume glutamine
were not changed or down-regulated.
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Figure C.12: Gene expression changes in mRNA level of genes in
TCA cycle on glutamine, cytidine, and cytosine when compared to
gene expression on ammonia. Genes upstream of α-ketoglutarate in TCA
cycle, sdhDC, sdhAB, sucCD, lpd, and sucAB, were more repressed than genes
downstream of α-ketoglutarate, icd, acnA, acnB, and gltA.
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Figure C.13: Biomass objective function of different nitrogen
source uptake rate. Simulation with experimentally measured glucose
uptake rate and varying nitrogen source uptake rate was run (shown as
dots). Sample points for flux analysis were also denoted (shown as diamonds).
How these sample points were determined is described in more detail in
Supplementary Experimental Procedures.
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Figure C.14: Pathways to assimilate nitrogen molecules from cyti-
dine and cytosine when they are used as sole nitrogen sources. A
pathway to assimilate nitrogen from cytidine and cytosine was predicted from
FBA analysis. Simulation predicted that cytidine would result in the assimi-
lation of 3 ammonia molecules and ribose fed to pentose phosphate pathway.
Conversely, the model predicted that the cell would harvest 1 ammonium
from cytosine and export the remaining part when grown on cytosine.

Figure C.15: Conservation of enzymes in nitrogen response was cal-
culated in various groups of species ranging from Escherichia genus
to Archaea. Metabolic enzymes seem more conserved than transcription
factors.
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Figure C.16: Comparison of genomic regions surrounding E. coli
nac and S. typhimurium nac candidate (STM0692). S. typhimurium
nac ortholog was found at unexpected region. In E. coli, nac is located in
nac-cbl TU, which are surrounded by asnW, yeeO, and asnU on the left
flanking and erfK, cobT, cobS, and cobU on the right one. However, in S.
typhimurium str. LT2, genomic regions containing asnW, yeeO, and asnU,
and erfK, cobT, cobS, and cobU are conserved, but there is no gene between
asnU and erfK. Similarly, in E. coli K-12 MG1655, there is no gene between
ybfN and fur. However, in S. tythimurium, a genomic region containing citA,
citB, STM0691, and nac candidate (STM0692 ) is located in between.
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Figure C.17: Prediction of sRNA involvement in nitrogen-response.
(A) sRNA regulation information from the public database BSRD and simu-
lation of different 93 nitrogen sources with ME model was used to perform
hypergeometric test to identify possible sRNAs acting on alternative nitrogen
sources. 4 sRNAs, gcvB, micA, ryhB, and sgrS, were predicted to be involved.
Heatmap shows p-values of hypergeometric test. (B) Transcription expression
changes of those sRNAs on alternative nitrogen sources were calculated.
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Figure S18. Non-regulatory bindings of TFs and σ-factors. (A) Number of
bindings of NtrC, Nac, RpoN and RpoD in regulatory regions with occurrences in all
nitrogen sources, in regulatory regions at least in one condition, and in non-regulatory
regions. (B) Binding intensities of regulatory regions and non-regulatory regions were
calculated. Non-regulatory bindings have weaker intensities. (C) Motif analysis was

performed to each group of bindings, resulting in identical sequence motifs.

Figure C.18: Stringent response mediated by NtrC. (A) NtrC binds
upstream of relA, activating its target gene. Up-regulation of relA can result
in increase of ppGpp. (B) Based on ChIP-exo results for RpoD and RpoN,
relA has at least 2 promoters in the coding region of rlmD. The proximal
promoter is RpoD-dependent, while the distal one is RpoN-dependent. The
distal RpoN-dependent promoter is associated with NtrC binding. (C) As a
consequence of NtrC binding on RpoN-dependent promoter, transcription of
relA was moderately up-regulated on alternative nitrogen sources, compared
to ammonia.
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Figure C.19: Determination of noise level in ChIP-exo sequencing
reads. (A) Noise level was determined to be top 5% signal intensity from
every genomic position on forward and reverse strands. (B) Noise level
correlated well with the total number of reads.

Figure C.20: Width distribution of ChIP-exo binding sites for
NtrC, Nac, RpoN, and RpoD. The average binding widths for NtrC,
Nac, RpoN, and RpoD are 57.2, 34.6, 33.7 and 50.1 bp.
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Figure C.21: Examples of Nac/RpoD and NtrC/RpoN bindings
and associated gene expression. (A) ChIP-exo bindings for Nac and
RpoD in the genomic region near spf small RNA under ammonia and glu-
tamine conditions. Improved resolution of ChIP-exo method shows binding
of Nac and RpoD upstream of small RNA spf whose length is 109 bp. (B)
ChIP-exo bindings for NtrC and RpoN in the genomic region near glnHPQ,
which encodes glutamine ABC transporter subunits, and expression of those
genes under ammonia and cytidine conditions.
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D.1 Methods

D.1.1 mRNA seq methods

Cells were harvested at mid-log (OD600 ≈ 0.3) in biological duplicates for

each condition. From each sample, 3mL of culture were mixed with 6mL RNAprotect

Bacteria Reagent (Qiagen), incubated for 5 minutes, and then centrifuged at 5000g

for 10 minutes at room temperature. Total RNA samples were then isolated from

the pellet using the RNeasy Plus Mini kit (Qiagen). Samples were quantified using

163
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a NanoDrop 1000 (Thermo Scientific) and an Agilent RNA 6000 Nano Kit with an

Agilent 2100 Bioanalyzer. Strand-specific mRNA libraries were created using the

dUTP method, with ribosomal rRNA subtraction with the Ribo-Zero rRNA Removal

Kit (Epicentre). Libraries were run on a Miseq (Illumina, CA) multiplexed with 2

duplicates per run as per the manufacturer’s instructions. Expression values were

computed using the bowtie [LS12] and cufflinks [TWP+10] packages. The processed

data were uploaded to GEO under accession numbers GSE59759 and GSE59760.

D.1.2 Ribosome profiling

In order to compute the ribosome per protein ratios, E. coli MG1655 cells

were grown in glucose (5g/L), pyruate (sodium pyruvate 3.3g/L), fumarate (disodium

fumarate 2.8 g/L) and acetate (sodium acetate, 3.5 g/L). Ribosome profiling datasets

were generated and analyzed according to the procedure detailed in by Latif [LST+15].

100ug/mL chloramphenicol was added 2 min prior to harvest, cells were harvested at

mid-log (OD600 ≈ 0.4) by centrifugation at 5000xg for 3 minutes. Ice cold lysis buffer

(25 mM Tris pH 8.0, 25 mM NH4Cl, 10 mM MgOAc, 0.8 % Triton X-100, 100 U/mL

RNase-free DNase I, 0.3 U/µL Superase-In, 1.55 mM Chloramphenicol, and 17 µM

5-guanylyl imidodiphosphate (GMPPNP)) was added and the cells were resuspended

quickly followed by flash freezing in liquid nitrogen. Repeated freeze-thaw cycles were

used to lyse cells followed by addition of sodium deoxycholate to a concentration of

0.3%. Lysate was then clarified by centrifugation. 25AU of RNA was digested using

6000U of MNase for 2 hours at 25C, and quenched by adding 2.5uL of 500mM EGTA.

Monosomes were recovered using Sephacryl S400 Microspin columns, followed by

removal of ribosomal RNA using a Ribo-Zero-rRNA Removal Kit (Epicentre). 3’ ends



165

of the RNA fragments were desphosphorylated using T4 Polynucleotide Kinase for 30

minutes at 37C. The NEBNext Small RNA Library Prep Set for Illumina protocol was

carried out till the 5’ adapter ligation step. tRNA’s were removed using hybridization

to custom DNA oligo probes followed by RNAse H treatment as described by Latif

[LST+15]. The NEBNext protocol was then completed and sequencing was carried

out on a Illumina MiSeq.

As the MiSeq did not provide sufficient read depth for the in house ribosome

profiling datasets to confidently determine pause locations, ribosome profiling data was

obtained from Li [LBGW14] for MOPS Rich and glucose MOPS minimal media (GEO

Accession: GSE53767). Ribosome densities were derived using a similar protocol to Li

[LBGW14]. Adapters were trimmed using cutadapt version 1.8 [Mar11]. Reads were

mapped using bowtie version 1.0.0 [LS12] to E. coli MG1655 (NC000913), allowing for

a maximum of 1 mismatch. Reads mapping to tRNA, rRNA and other non-coding

RNA locations were discarded. There has been considerable discourse about the

location of the A and P site relative to the ends of the reads, and in order not to

bias our analysis based on the location, we chose to assign reads to the 3’ end, which

has been shown to be better conserved and aligned in prokaryotic ribosome profiling

datasets [MTH15, WGGB15]. Ribosome density across each gene was then dropoff

corrected by fitting to an exponential function as was done by Li [LBGW14].

D.1.3 Genome-wide Secondary Structure Annotations

The GEM-PRO reconstruction for E. coli (iJO1366 [OCN+11]) {Brunk, Mih

et. al. 2016 BMC Systems Biology} was used to provide structure-based annotations

for the most representative protein structures found in the publicly available PDB
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database [BWF+00]. PDB files were parsed using STRIDE [FA95] and Biopython

[CAC+09] to determine the location of secondary and tertiary structural elements

on a codon-specific basis. This resulted in high confidence secondary and tertiary

structure annotations for 623 non-transport (or membrane-bound) genes in E. coli.

Data Retrieval and Manipulation

Incorporating protein-related information into a GEM involves four stages of

semi-automated curation: (i) map the genes of the organism to available experimental

protein structures, found in publicly available databases, such as the Protein Data

Bank (PDB); (ii) determine genes with and without available protein structures and

perform homology modeling using the I-TASSER suite of programs [Zha09] to fill

in gaps where crystallographic or NMR structures are not available; (iii) perform

ranking and filtering of PDB structures for each gene based on a set selection criteria

(e.g., resolution, number of mutations, completeness); (iv) map GEM genes to other

databases (e.g., BRENDA [CSG+09, SCE+04], SwissProt [BBA+03], Pfam [FMT+10],

SCOP [MBHC95]) for complementary protein-structure derived data. The quality of

the reconstruction expansion process to include high confidence protein structures is

considered by carrying out a series of QC/QA verification steps during the ranking

and filtering stage. The GEM annotation of the organism of interest is stored in

SBML and Matlab formats and many organisms can be found in the BiGG database

[SPCP10, KLD+15]. Amino acid sequence of the proteins of interest are stored in

FASTA format. To map protein structural data to a GEM, we make use of Python

modules, ProDy [BMB11, McK12] and Biopython [CAC+09] to parse information

in the PDB files. The molecular visualization software VMD [HDS96] was used for
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viewing the 3D structure of the modeled protein and the predicted functional sites

and the creation of images. Installation of PfamScan and HMMER3 algorithms are

required for generating protein fold families for certain proteins [FMT+10, FBC+14].

Open source software for protein structural predictions are available and are used in

conjunction with the IPython framework.

D.1.4 Tertiary Structure/ Protein Domain annotations

Starting from the protein structures linked to metabolic genes in the GEM-PRO

model, we annotated tertiary domains for each protein using the SCOP knowledgebase

[MBHC95] and FATCAT [YG03] alignment tools. As a result of this analysis, the

fraction of the protein aligning to an annotated tertiary domain was recorded and

stored as an additional datatype in the GEM-PRO reconstruction. The starting and

ending amino acid of every domain within a protein were quality controlled and checked

by aligning the PDB sequence with the amino acid sequence (FASTA) from E. coli

MG1655 to fix offsets between the PDB residue numbering scheme and the actual

amino acid sequence numbers. Hypergeometric enrichment testing was performed to

determine codons upstream and/or downstream from the start and end of any tertiary

domain annotation that is enriched for pause sites.

D.1.5 Identification of Shine-Dalgarno-like codons

Similar to those defined in Li [LOW12], we considered the following Shine-

Dalgarno-like codons: ’AGG’,’GGA’,’GAG’,’GGG’,’GGT’,’GTG’. Nucleotide se-

quences from E. coli MG1655 (Genbank accession: NC000913 [BCC+13]), were

read in frame to identify SD-like codon positions. Hypergeometric enrichment testing
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was used to determine downstream codons enriched for pause sites.

D.1.6 Ribosome density/pause site accounting (Figures D.2-

D.3)

The ribosome density at each codon was summed across all three nucleotides,

and divided by the mean of the gene to get the normalized density. In an effort to

increase the signal in an inherently noisy datatype, pause sites were defined as codons

which had a normalized density of over 5, instead of on a per nucleotide basis as was

done in Li [LOW12].

Hypergeometric enrichment testing was used to determine enrichment for pause

sites at codon positions downstream from the ends of pause sites. p-values were

calculated based on the formula for the survival function (1 - cumulative distribution

function) shown below:

p(x) = 1−
x−1∑
i=0

(
m
i

)(
N−m
k−i

)(
N
k

)
where N refers to the total number of codons in the genes tested, m refers to the

number of secondary structures, k refers to the total number of pause sites, and x

refers to the number of pause sites which fell on a specific codon position downstream

of the secondary structure we are testing.

Codons downstream from αhelices, βsheets, and turn secondary structural

elements, as well as Shine-Dalgarno-like sequences were considered to be significantly

enriched for pausing if the hypergeometric enrichment tests indicated that the p-values

<0.01. To calculate the number of pause sites accounted for by sequence and/or
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structural elements, pause sites which did not align with secondary structure or SD-like

sequences were labeled “unaccounted”. The same procedure was used for determining

the proportion of pause sites accounted for by structural features and SD-like sequence

features.

D.1.7 Computational Method for Predicting keff parameters

As noted above, ME simulations require several parameters, one of which is

the effective catalytic rate of enzymes keff, which in turn affects the proteomic and

ribosomal cost of running each reaction. While using SASA as a first approximation

results in a correct overall prediction of 80% of the cell proteome by mass, improving

these parameters can greatly affect the predictive power of the model for specific genes.

We make use of the most extensive quantitative proteomic data in E. coli to date

which accounts for 55% of all ORF’s and 95% of the proteome [SKV+16]. Because of

the difficulty in simultaneously predicting effective catalytic rates and reaction flux

values, we developed an iterative workflow for updating the model parameters. This

workflow is described below, and each section corresponds to a panel in Figure D.6.

Part A: Iterative Simulation Procedure

These ME simulations had the overall goal of minimizing the difference between

the simulated proteome and the measured proteome for each experimental condition.

The growth rate µ was set to the experimentally determined values. To improve solution

times with the SoPlex linear programming solver [Wun96] with our formulation, we

collapsed linear pathways into single reactions using COBRApy [ELPH13], which were

detected by identifying metabolites present in exactly two reactions.
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In order to reconcile experimentally measured protein concentrations with the

simulations, we want to solve a linear program which will minimize the Manhattan

distance between the expressed and measured protein production at the fixed growth

rate. The Manhattan distance was used instead of the Euclidian distance because

it can be computed in the context of a linear program, while a Euclidian distance

minimization requires a quadratic objective, which the SoPlex solver can not handle.

To construct this problem, we added the following additional constraints to the ME

linear program in terms of the corresponding measured protein amounts yi for each

predicted gene translation flux variable xi (unmeasured proteins had no applied

constraints).

xi ≥ 0

s+i ≥ 0

s−i ≥ 0

xi + s+i ≥ yi

xi − s−i ≤ yi

This allowed us to minimize the error term
∑

i (s+i + s−i) , which is equivalent to

minimizing
∑

i |xi − yi| and gives the closest flux state to the experimental data while

satisfying the ME constraints when solving the linear program. If these parameters

resulted in an infeasible model that could not simulate growth at µ, the simulation

was halted. Otherwise, using the predicted fluxes predicted by this simulation, and

the experimentally measured proteomics data, we calculated the keff for each reaction
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enzyme which we used in the next iteration of this workflow. This simulation loop

was run a total of 3 times to allow the loops to converge to a set of keff values.

Part B: Sampling and Simulation

The iterative simulation procedure described above might give a flux state that

is dependent on the original set of keff parameters used in the first round. Therefore, the

keff‘s were randomly initialized within two orders of magnitude of the value computed

from SASA. The iterative sampling procedure was repeated repeated 300 times for

each experimental condition, and each time a new random keff parameter set was

generated in the manner described.

Part C: Result Aggregation and Filtering

For each experimental condition, the loop was started 300 times. However,

because some parameter sets were unable to simulate growth at µ, some subset of

those simulations failed before reaching 3 iterations. It was run successfully through 3

loops 148 times for glucose, 186 times for pyruvate, 97 times for fumarate, and 83 times

for acetate. Between these successful runs, there was a slight variation in reactions

used because of the different starting keff parameters. Therefore, only reactions that

were active for 90% of the successful runs were considered. These parameters were

averaged to give a consensus set of keff parameters for each condition.

Part D: Cross-condition parameter comparison

The intersection of these keff parameters under each condition was determined

between all 4 conditions (Figure 4.3b). The 284 parameters for reaction/catalyst pairs

that were in all conditions were averaged to get a consensus set of keff parameters
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which were used for ME computations. Additionally, the pairs in common between

each of the conditions were compared to give Pearson correlations, shown in the table

in Figure 4.3b.

D.1.8 Predictions of mRNA expression under identical con-

ditions to proteomic data

We sought to evaluate the effect of the estimated parameter values on predictions

of differential gene expression under identical experimental conditions as the proteomics

used to parameterize the model. We simulated a switch of the primary carbon

substrate from fumarate to acetate, and obtained mRNA sequencing data (GSE59759)

for E. coli K-12 BW25113 (obtained from the Coli Genetic Stock Center) cultivated

under identical experimental conditions to those of the proteomic data. Bach growth

simulations were then performed using 3 different sets of keff parameters: the initial

solvent-accessible-surface area parameters, keff parameters derived from fluxomics (set

A), and keff parameters derived from fluxomics and our proteomics-based algorithm

(set A + B). Predicted differential expression was compared to the set of genes

identified as differentially expressed by cufflinks [TWP+10] at a false discovery rate of

0.05. In order to account for accuracy on a level field with respect to sensitivity, we

varied the computational cutoff so that we would have a similar number of correct

predictions (as close to 20 as possible), allowing us to directly compare the number of

incorrect predictions. Using the the original iOL1650-ME model keff values obtained

from protein size based estimation, we observed a significant number of false positive

predictions due to incorrect pathway usage, with 17 false positives found out of 37 total

predictions. Using a consensus keff parameter set derived from both experimentally
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measured flux values [NSS06] (set A) and model-predicted values (set B) yielded only

6 false positives with the same number of correct predictions. Additionally, we were

able to improve predictions greatly using the 28 keff parameter values from set A alone

(Figure D.7), which only constrained parameters in central carbon metabolism. This

result suggests that the accuracy of a ME model is most sensitive to keff parameters

for reactions which lie along its high flux backbone.

D.1.9 Predicting Differential Gene Expression with iOL1650-

ME

Simulations were performed using the same procedure as in the iOL1650-ME

manuscript [OLC+13] for batch growth on D-Glucose with both keff parameter sets A

and A+B. For each supplementation simulation, the uptake reaction for that particular

metabolite was set to be unbounded. In the case of the Adenine supplementation,

the reactions HXAND, XAND, and URIC were blocked (Figure D.8). Genes which

changed by more than a factor of 16 (a log2 change of more than 4) were predicted to

be differentially expressed. This gives a stringent criterion which identifies genes which

are predicted to change by a significant enough magnitude to manifest experimentally

(by comparison, a log2 change of 2 is often used with microrray gene expression data to

filter out changes in expression, which, while statistically significant, are not of a high

enough magnitude to really be considered relevant). Predictions of gene differential

expression were considered correct if cufflinks obtained a false discovery rate of less

than 0.05 for that gene in the mRNA sequencing data and the gene expression changed

in the same direction (either both increase or both decrease) in both the predictions

and mRNA sequencing data. Hypergeometric enrichment p-values were calculated
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using the scipy statistics package using the survival function + 1
2

* probability mass

function of the distribution.

D.1.10 Sampling of M-model flux states in iJO1366

The optGpSampler [MHM14] software was used to sample flux states in the

iJO1366 M model using its python API. First, the model was reduced by removing

blocked reactions as identified by flux variability analysis in COBRApy [ELPH13].

For each simulation, the lower bound on the biomass reaction was set to 90% of its

optimal value. Additionally, the reactions HXAND, XAND, and URIC were blocked

(Figure D.8). The sampling algorithm was then run for 100 steps and generated 10000

points for each simulation. Afterwards, the fluxes were linearly scaled such that the

mean flux of the biomass reaction was 1. Sampling was run on the model with only

D-Glucose uptake, and also with 10 mmol/gDw/hr uptake allowed of each of the

supplements. Reactions that were unbounded (as determined by an FVA maximum

greater than 500 or an FVA minimum of less than -500) were excluded from the

subsequent analysis. For each of the supplements, predicted changed reaction fluxes

between the supplemented and unsupplemented samples were determined by finding

reaction fluxes where (1) the mean changed by more than a factor of 2 and (2) the

mean changed by more than the sum of the standard deviations for the supplemented

and unsupplemented fluxes. These reactions were converted to gene predictions by

assuming all genes in the gene reaction rule for the changing reaction were up or down

regulated. These gene predictions were validated against mRNA sequencing data in

the same manner as the ME gene differential expression predictions. This method

was used instead of the more traditional method comparing pairs of samples as done
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in some other studies [BNL+14] because it resulted in higher accuracy than those

methods with this data.

D.2 Structure of ME models

Here we briefly introduce key formulations of the ME model, and refer the

interested reader to a more complete supplementary information in O’Brien et. al.

2013 [OLC+13]. The ME model is a steady state growth model which accounts for

metabolism (M) and gene expression (E). Based on an input of available nutrients

to the cell such as carbon and nitrogen sources, it predicts: a) the cell’s maximum

growth rate in a specific condition, and at the maximum growth rate, b) metabolite

uptake and excretion rates, c) metabolic reaction fluxes, and d) gene expression fluxes

such as translation and transcription rates. This is achieved through formulating

transcription, translation, transport and metabolic fluxes into a quasi-linear problem

and solving for maximum growth rate, taking into account compartmentalization of

proteins and metabolites into the cytoplasm, periplasm, and extracellular region. This

is done as follows:

1. The metabolic network is described by a stoichiometric matrix, similar to those

used in M-models [OCN+11] where rows represent metabolites and columns represent

reactions. Coefficients represent the metabolites consumed (negative value) or produced

(positive value) in each reaction. At steady state, there is no change in metabolite

concentrations, hence we get:

S · ~v = 0

where S is the stoichiometric matrix, and ~v is the flux vector, allowing us to solve for
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~v.

2. In the ME model, translation is accounted for by enforcing that proteins have to be

produced for all enzyme-catalyzed reactions, proportional to the flux for that particular

reaction. Protein synthesis is balanced by protein dilution (due to cell division), which

is proportional to the amount of protein required to hold the predicted flux. Note that

in this case we disregard direct protein degradation as it has been shown to negligible

in a growing E. coli cell for most metabolic genes [Mau92, NK71]. While active

degradation is important for many signaling proteins such as transcription factors,

these proteins are a very small proportion of the whole proteome in rapidly growing

cell. The depletion of most of the modeled proteins is therefore mostly through dilution

caused by growth, and the depletion rate is simply the growth rate. Mathematically,

this is represented below:

vtranslation,i = vdiluation,i = µ[Ei]

vreaction,i = keff,i[Ei]

vtranslation,i =
µ

keff,i

vreaction,i

The above relationships link the required translation rate vtranslation,i to the

flux through the reaction vreaction,i as well as the predicted growth rate µ and the

proteins effective catalytic rate keff,i. Unlike traditional M models where biomass has

to be explicitly modeled, this inherently takes protein and macromolecule dilution

into account during growth, and allows prediction of optimal protein production, and

hence gene expression.

It is important to note that, in previous ME models [OLC+13], the effective
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catalytic rate was set to be proportional to the respective enzyme’s solvent accessible

surface area (SASA). Here, we make use of condition-specific proteomics data, which

vastly improves this parameter and the predictive scope of the model itself. More

details of this parameterization procedure is found in the following section.

Finally, translation of proteins are catalyzed by ribosomes, requiring tRNA

and its synthethases and the cost of production of these molecules are also explicitly

accounted for in the ME model. Analogous to metabolic enzymes, ribosome efficiency

kribo is a necessary parameter for coupling the ribosome production rate to the overall

proteome translation rates, and is shown below:

vsynthesis, ribosome = vdilution, ribosome =
∑
i

length (peptidei) ·
µ

kribo

· vtranslation,i

Because ribosomes are themselves partially made up of peptides which need to

be synthesized, this coupling creates an asymptotic relationship between ribosome

production and growth rate. Placing a limitation on cell size replicates the natural

phenomenon where growth rate is constrained by the balance between enzyme and

ribosome production even in the overabundance of nutrients.

3. In the ME model presented in this contribution, transcription is now achieved

through the production of mRNA from nucleotides, catalyzed by RNA polymerase.

This is also handled in a similar way to ribosomes and metabolic enzymes through

dilution of RNA polymerase, proportional to the total flux through all transcription

reactions.
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D.3 ME model coupling parameters

In addition to metabolic reactions, the ME model describes various biological

processes as biochemical reactions. For example, translation of a protein is described by

a reaction assembling the component amino acids into peptides. An enzyme complex is

then formed by a reactions which assemble together the various peptides and cofactors,

and more reactions which apply the necessary post-translational modifications. De-

pendent reactions are linked through what are termed “coupling constraints” because

they force a certain amount of flux through one of the reactions based on the level of

flux through the other, effectively coupling the processes. For example, flux through a

metabolic flux is coupled to production of the catalytic enzyme. A translation reaction

is coupled to both reactions which produce ribosomes and reactions which transcribe

the mRNA. In iOL1650-ME, these coupling constraints are expressed as inequalities

as functions of growth rate µ to reflect how the nature of many of these constraints

are nonlinear in growth. However, the constants in these functions are set for each

individual coupling constraint. A detailed description of all the processes and coupling

parameters in the iOL1650-ME model is available in the supplementary information

of that manuscript [OLC+13].

One of the most critical coupling constraints to the function of the ME model

is the keff, which describes the amount of enzyme required on average to sustain a

unit of flux under in vivo conditions. An example coupling constraint for a metabolic

reaction has the form:

vmetabolic ≤
keff

µ
venzyme
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This coupling constraint expresses both how as growth rate increases, more

enzyme must be made to pass on to each daughter cell, and how the amount of

enzyme production relates to its efficiency through the keff parameter. While the

keff parameter has units of 1/time like a kcat, it is strictly less than the kcat, as it is

describing the amount of enzyme that must be made to catalyze a unit of flux instead

of the maximal flux a particular enzyme can sustain. The reason this parameter is

critical to the function of the ME model is because it describes the relative cost of

each enzyme. An appropriate analogy is an econometric model. Where the reactions

themselves express operational costs, and the cost of the enzyme is the capital cost.

A good example of this the difference between the “expensive” but efficient pyruvate

dehydrogenase complex compared to pyruvate formate lyase (Figure D.11). Pyruvate

dehydrogenase (PDH) and pyruvate formate lyase (PFL) both convert pyruvate to

acetyl coA to allow carbon to flow through the TCA cycle. Flux through PFL will

result in secretion of formate, whereas flux through PDH will result in production

of CO2, which is the in vivo behavior. In E. coli, PDH is one of the most expensive

metabolic enzymes because it consists of 60 subunits. However, an optimally efficient

E. coli cell might still produce this enzyme over PFL because its catalytic rate is more

than commensurately higher, as it exploits phenomena such as substrate tunneling

and multiple catalytic sites, and will therefore have a lower protein cost per unit of

flux catalyzed. Therefore, in order for an ME model to correctly predict flux through

PDH, it must have keff parameters for PDH and PFL which represents this tradeoff

accurately. In a genome-scale ME model, these parameters affect the cost between all

the various alternate pathways and isozymes. Therefore, the accuracy of the model

predictions of protein expression and the physiological state of the cell will depend on
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reasonable relative values of these parameters.

D.4 Simulation of Batch Growth with ME

One of the advantages of the ME model over traditional M models is its ability

to account for proteome limitation. This gives the model the ability to correctly

simulate batch growth, where a cell has a surplus of nutrients around it, but is limited

by its ability to produce the proteins which are required to process these nutrients.

Unlike M models, which can predict growth rates given a specific substrate uptake

rate, a ME model can predict the maximal growth rate given an unbounded substrate

uptake (allowing the model to take up as much substrate as it wants). O’Brien et al.

investigated how proteome limitation begins to take effect as the substrate uptake rate

approaches the optimal value, eventually causing a maximal growth rate [OLC+13].

Beyond this optimal growth rate, the model is infeasible with any substrate uptake

rate because of the proteome limitation constraints. This optimal growth rate can be

computationally identified by doing a binary search. Because the experimental data

used in this study were all generated under batch growth conditions, the simulations

of growth used this batch growth procedure, which computes a proteome-limited state.

D.5 Simulating ME with estimated parameters

In the absence of in vivo experimental measurements, the original iOL1650-ME

model estimated keff values based on the solvent-accessible surface area (SASA), which

is a function of protein size [OLC+13, MLJC87]. We sought to evaluate the effect

of our new set of estimated parameters values on predictions of differential gene
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expression. We simulated a switch of the primary carbon substrate from fumarate

to acetate, which could be validated by the previously generated mRNA sequencing

data sets (GSE59759). Using the original keff values obtained from protein size

based estimation we observed a significant number of false positive predictions due

to incorrect pathway usage, with 17 false positives found out of 37 total predictions.

Using the consensus keff parameters derived from sets A + B yielded only 6 false

positives with the same number of correct predictions. Interestingly, almost all of

the improvement in prediction came from using parameter set A alone (Figure D.7),

which constrained parameters in central carbon metabolism. This result suggests that

the accuracy of a ME model is most sensitive to these key 28 keff parameters which lie

in its high flux backbone [AKV+04].

After showing that the set of estimated keff values gives better predictions

for previously examined nutrient shift, we generated new experimental data for

growth on dual substrates. We computed predicted differential gene expression after

media supplementation with four key nutrients: Adenine, Glycine, L-Threonine, or

L-Tryptophan, using 1) keff found in set A, and 2) keff found in both sets A and B

(Table D.1). Genes that were computed to change in expression by more than a factor

of 16 after supplementation were considered to be predictions of differential expression

(Figure 4.4). Prediction validation was performed using mRNA sequencing data, some

of which was taken from a previous study [BNL+14], to experimentally determine

differentially expressed genes. Predictions were made with a slightly modified iOL1650-

ME (Figure D.8). For all four supplementations, the accuracy of ME predictions (Table

D.1) was higher than those resulting from sampling M model flux states (Figure D.9).

Moreover, the accuracy increased when comparing parameter set A + B to parameter
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set A alone. Using parameter set A + B, the accuracy of predictions of ranged from 55

to 100%, and all predicted sets were significantly enriched for differentially expressed

genes (p < 0.05 using a hypergeometric distribution).

These results suggest that a parameterized genome-scale ME model, due to

its incorporation of enzyme biosynthetic costs, gives a significant improvement in

prediction of gene expression over existing methods using M models alone. For

example, the ME model correctly predicts the often non-intuitive shift of amino acid

precursors. Specifically, when supplementing with L-Threonine, the ME model will

produce L-Serine from L-Threonine directly, as observed experimentally. On the other

hand, the ME model predicts no significant up regulation of glyA to produce L-Serine

from Glycine supplementation, as seen in the expression profiling data. The iJO1366

M-model will incorrectly predict this change (Figure D.9), demonstrating how the

ability to account for protein expression costs improves the accuracy of the predicted

flux state. Moreover, as a result of its quantitative numerical predictions of gene

expression, ME models can also predict partial up and down regulation of genes, in

addition to binary responses when a gene goes from active to inactive. For example,

after supplementation with Adenine, the model correctly predicts downregulation of

purHD and purMN (Figure D.3).

D.6 Ribosome profiling pause site analysis

It has been established that translation rate is not constant along a gene. This

has been demonstrated in-vitro using proteins such as firefly luciferase [YDZ+15,

SDA+10] and epoxide hydrolases [HSLI15]. Various phenomena such as codon usage

[YDZ+15, GYY+14], mRNA secondary structure [SKP89], anti-Shine-Dalgarno-like
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sequences [LOW12], poly-proline stretches [WGGB15] as well as protein domains

[HSLI15, ZHI09] have been implicated in determining the locations of these pause

sites. Slower translation rate have been shown anecdotally to improve solubility of

heterologously expressed proteins [YDZ+15, HSLI15] as well as improve yield and

function [SDA+10, ZGC+13], and has been implied to be necessary for proper co-

translational folding [SD10, PBS+87, KLR99, SZO14], yet at the same time impose

a fitness cost on the cell [HG14]. Here we show a link between secondary structure

motifs, anti-Shine-Dalgarno-like sequences, and pausing locations along the length of

a transcript.

Hypergeometric enrichment testing of the pause sites downstream from the

end of each structure points towards the enrichment of pausing at certain codon

locations (Figure D.2A, C, E). At the same time, sequence analysis near the ends

of the secondary structures that have pause sites at these locations show increased

occurrences of anti-Shine-Dalgarno-like sequence, approximately 6 codons upstream

from the enriched pause site for each secondary structure motif (Figure D.2B, D, F).

This indicates that secondary structures tend to have pause sites downstream from

their ends, and anti-SD-like sequences might be used to induce the pausing. It is noted

here that in contrast to other studies which determine the pausing propensity with

relation to the assumed A site, assigning ribosome density to the 3’ end of the read

results in a pause site which is around 2-3 codons further downstream. For example,

Li et. al. [LOW12] found that anti-SD-like sequences were linked to pausing 8-11

nucleotides (≈ 3rd–4th codon) downstream, which in our analysis occurs on the 6th

codon downstream instead because of the different positional assignment of the read.

Overall, across both MOPS minimal and MOPS rich growth conditions, around
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50% of ribosomal density and 60% of pause sites can be attributed to either anti-SD-

like sequences or secondary structure motifs (Figure D.4). While this indicates that

these two factors play a major role in ribosome pausing locations, the overlap between

them is only between around 15% of all pause sites. This suggests that there are other

factors unaccounted for in this study, which either require, or induce pausing, and

should be the subject of further investigation.

D.7 Supplementary Figures
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Figure D.1: Protein per mRNA ratios (A) and ribosome per protein (B)
ratios across environments are highly conserved.
Ratios span several orders of magnitude across genes, but are highly conserved
across different experimental conditions
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Figure D.2: Pause site enrichment and percent SD-like sequence near ends
of secondary structures.
Hypergeometric enrichment testing was used to determine locations down-
stream of secondary structures which were enriched for pausing (A, C, E). Red
bars represent p-value of enrichment. Blue line indicates the per gene normal-
ized ribosome density at each codon position averaged across all occurrences
of the secondary structure, showing a matching increase in average ribosome
density. Based on the codon locations indicated by the enrichment test, all
occurrences of each secondary structure were divided into those with corre-
sponding pause sites (Pause) and those without (Non-Pause). The percentage
occurrence of Shine-Dalgarno-like sequences appearing near the ends of these
secondary structures is shown (B, D, E). The global average occurrence of
an SD-like sequence is 9.13%, but this increases greatly at certain codon
locations near the ends of secondary structures with corresponding pause sites
(Blue line).
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Figure D.3: Hypergeometric enrichment test of codons downstream from
annotated SCOP domains.
No enrichment was found when codons downstream from the ends of domains
were tested for pause site enrichment. Previous studies have found evidence
that show slow translating regions between domains might be important for
proper folding. However the location and even presence of pause sites might
only occur on a case by case basis specific to particular domains, and fail to
show enrichment when tested on the genome scale.
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Figure D.4: Percentage of ribosome density and pause sites linked to SD-like
sequences and/or Secondary Structure
Pie charts showing the distribution of pause sites linked to secondary structures
and/or Shine-Dalgarno-like codons. In both MOPS minimal and MOPS Rich
media, codons indicated to be pause-enriched for SD-like sequences accounted
for around 20% of ribosomal density (A, B) and 30% of pause sites (C, D),
while secondary structures accounted for 40% and 35% respectively. Of these,
around 20–25% of these codons are indicated by both SD-like sequences and
secondary structures. Around 50% of ribosomal density and 40% of all pause
sites were still unaccounted for, indicating that there are other factors linked
to pausing which were not included.



190

Figure D.5: Distribution of pairwise comparisons between computed keff.
Each of the 284 keff was compared between conditions (6 comparisons between
each of the 4 conditions). Plotted is the cumulative distribution of all these
pairwise comparisons in terms of the change in order of magnitude. We
observe that 94% of these comparisons remain within an order of magnitude.
For the comparisons which were not within an order of magnitude, proteins
associated with those complexes were more likely to catalyze multiple reactions
(42.5% catalyzing more than one reaction v.s. 27.8% catalyzing more than
one reaction).
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a) Iterative Simulation Procedure b) Sampling and Simulation

c) Result Aggregation and Filtering d) Cross-condition parameter comparison

keff parameters

proteomics

ME simulation
matching data

computed
flux/protein

Figure D.6: Overview of the keff fitting algorithm. This procedure was
used to estimate a set of keff parameters from four proteomics data sets, as
described in the methods section.

Figure D.7: Predicted Differential Expression between Fumarate and Acetate
The ME model was used to predict differential expression between growth
on fumarate and growth on acetate as the main carbon substrates. These
predictions were run with three different sets of keff and then validated using
mRNA sequencing. This is described in more detail in the “Predictions of
mRNA expression under identical conditions to proteomic data” section.
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Figure D.8: Updates to the Adenine Degradation Pathway in the E. coli
Metabolic Reconstruction.
As reconstructed in iJO1366 and iOL1650-ME, this pathway breaks down
intracellular adenine to glyoxylate. However, our expression-profiling data
with adenine supplementation suggests that the highlighted reactions do not
occur to break down adenine, even though the upstream reaction adenine
deaminase does occur. While these reactions were included in the model based
on their homology to adenine degradation pathways in other organisms, it is
likely that the pathway is latent or inactive in E. coli K-12. Therefore, the
reactions HXAND and XAND were disabled during simulations on Adenine.
Additionally, use of the unexpressed gene focB was also penalized.
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Figure D.9: Sampling iJO1366 Flux States Following Nutrient Supplemen-
tation.
To compare ME predictions of gene differential expression to that of the M
model, sampling was run on iJO1366 to identify reactions which changed
significantly in flux (colored red) after supplementation. For each of these four
conditions, the mean flux from sampling on glucose is plotted on the x axis, and
the mean flux from sampling on glucose with the nutrient supplementation is
plotted on the y axis. The model gene reaction rules were used to convert these
to gene expression predictions, which were compared to mRNA sequencing to
give the reported accuracies.
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Figure D.10: Opportunistic use of glyA by an M model.
In the iJO1366 metabolic model, glyA will catalyze the reversible conversion
of glycine to serine using tetrahydrofolate as a methyl carrier. (L-serine +
tetrahydrofolate⇔ methyltetrahydrofolate + h22o + glycine). When allowing
the model to uptake glycine, the optimal solution will (as determined by
flux variability analysis at 99.9% of the optimal biomass production) use this
reaction to convert glycine to serine, which is not observed in the ME model
nor in RNA-sequencing data.
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Figure D.11: An illustration of keff parameterization for a network model.
The enzymes pyruvate dehydrogenase (PDH) and pyruvate formate lyase
(PFL) both convert pyruvate to acetyl co-A to allow carbon to flow through
the TCA cycle. However, flux through PFL will result in secretion of formate,
whereas flux through PDH will result in production of CO2, which is the
in vivo behavior. In E. coli, PDH is one of the most expensive metabolic
enzymes because it consists of 60 subunits. However, an optimally efficient
E. coli cell might still produce this enzyme over PFL because its catalytic
rate is more than commensurately higher, as it exploits phenomena such as
substrate tunneling and multiple catalytic sites, and will therefore have a
lower protein cost per unit of flux catalyzed. Therefore, in order for an ME
model to correctly predict flux through PDH, it must have keff parameters
for PDH and PFL which represents this tradeoff accurately.
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Federowicz, Joshua A Lerman, Ali Ebrahim, Bernhard O Palsson,
and Nathan E Lewis. BiGG models: A platform for integrating,
standardizing and sharing genome-scale models. Nucleic Acids Res.,
17 October 2015.

[KLR99] A A Komar, T Lesnik, and C Reiss. Synonymous codon substitutions
affect ribosome traffic and protein folding during in vitro translation.
FEBS Lett., 462(3):387–391, 3 December 1999.

[KMC+14] David Kentner, Giuseppe Martano, Morgane Callon, Petra Chiquet,
Maj Brodmann, Olga Burton, Asa Wahlander, Paolo Nanni, Nathanaël
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Imke Schröder, Alexander G Shearer, Pallavi Subhraveti, Mike Travers,
Deepika Weerasinghe, Verena Weiss, Julio Collado-Vides, Robert P
Gunsalus, Ian Paulsen, and Peter D Karp. EcoCyc: fusing model organ-
ism databases with systems biology. Nucleic Acids Res., 41(Database
issue):D605–12, January 2013.

[KRaSN12] Il-Kwon Kim, António Roldão, Verena Siewers, and Jens Nielsen. A
systems-level approach for metabolic engineering of yeast cell factories.
FEMS Yeast Res., 12(2):228–248, March 2012.

[KSM+12] Jonathan R Karr, Jayodita C Sanghvi, Derek N Macklin, Miriam V
Gutschow, Jared M Jacobs, Benjamin Bolival, Nacyra Assad-Garcia,
John I Glass, and Markus W Covert. A Whole-Cell computational
model predicts phenotype from genotype. Cell, 150(2):389–401, July
2012.

[KvK11] Steffen Klamt and Axel von Kamp. An application programming
interface for CellNetAnalyzer. Biosystems., 105(2):162–168, August
2011.

[Lau] Laurence Yang, Ding Ma, Ali Ebrahim,Colton J. Lloyd, Michael A.
Saunders, Bernhard O. Palsson. solveME: fast and reliable solution of
nonlinear ME models. Under Review.

[LBGW14] Gene-Wei Li, David Burkhardt, Carol Gross, and Jonathan S Weiss-
man. Quantifying absolute protein synthesis rates reveals principles
underlying allocation of cellular resources. Cell, 157(3):624–635, April
2014.

[LBY+03] James C Liao, Riccardo Boscolo, Young-Lyeol Yang, Linh My Tran,
Chiara Sabatti, and Vwani P Roychowdhury. Network component
analysis: reconstruction of regulatory signals in biological systems.
Proc. Natl. Acad. Sci. U. S. A., 100(26):15522–15527, 23 December
2003.

[LDR+10] Chen Li, Marco Donizelli, Nicolas Rodriguez, Harish Dharuri, Lukas
Endler, Vijayalakshmi Chelliah, Lu Li, Enuo He, Arnaud Henry,
Melanie I Stefan, Jacky L Snoep, Michael Hucka, Nicolas Le Novère,
and Camille Laibe. BioModels database: An enhanced, curated and
annotated resource for published quantitative kinetic models. BMC
Syst. Biol., 4:92, 29 June 2010.



207

[LHC+13] Lei Li, Dandan Huang, Man Kit Cheung, Wenyan Nong, Qianli Huang,
and Hoi Shan Kwan. BSRD: a repository for bacterial small regulatory
RNA. Nucleic Acids Res., 41(Database issue):D233–8, January 2013.

[LHL+12] Joshua A Lerman, Daniel R Hyduke, Haythem Latif, Vasiliy A Portnoy,
Nathan E Lewis, Jeffrey D Orth, Alexandra C Schrimpe-Rutledge,
Richard D Smith, Joshua N Adkins, Karsten Zengler, and Bernhard O
Palsson. In silico method for modelling metabolism and gene product
expression at genome scale. Nat. Commun., 3:929, July 2012.

[LKCL14] Meiyappan Lakshmanan, Geoffrey Koh, Bevan K S Chung, and Dong-
Yup Lee. Software applications for flux balance analysis. Brief.
Bioinform., 15(1):108–122, January 2014.

[LM95] J Liu and B Magasanik. Activation of the dephosphorylation of nitrogen
regulator i-phosphate of escherichia coli. J. Bacteriol., 177(4):926–931,
February 1995.

[LNP12] Nathan E Lewis, Harish Nagarajan, and Bernhard O Palsson. Con-
straining the metabolic genotype–phenotype relationship using a phy-
logeny of in silico methods. Nat. Rev. Microbiol., 10(4):291–305, April
2012.

[LOBL+14] Joanne K Liu, Edward J O Brien, Joshua A Lerman, Karsten Zengler,
Bernhard O Palsson, and Adam M Feist. Reconstruction and modeling
protein translocation and compartmentalization in escherichia coli at
the genome-scale. BMC Syst. Biol., 8(1):110, 18 September 2014.

[LOW12] Gene-Wei Li, Eugene Oh, and Jonathan S Weissman. The anti-Shine-
Dalgarno sequence drives translational pausing and codon choice in
bacteria. Nature, March 2012.

[LS12] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment
with bowtie 2. Nat. Methods, 9(4):357–359, April 2012.

[LSO+15] Ryan A LaCroix, Troy E Sandberg, Edward J O’Brien, Jose Utrilla,
Ali Ebrahim, Gabriela I Guzman, Richard Szubin, Bernhard O Palsson,
and Adam M Feist. Use of adaptive laboratory evolution to discover
key mutations enabling rapid growth of escherichia coli K-12 MG1655
on glucose minimal medium. Appl. Environ. Microbiol., 81(1):17–30,
January 2015.

[LST+15] Haythem Latif, Richard Szubin, Justin Tan, Elizabeth Brunk, Anna
Lechner, Karsten Zengler, and Bernhard O Palsson. A streamlined
ribosome profiling protocol for the characterization of microorganisms.
Biotechniques, 58(6):329–332, June 2015.



208

[LTPS09] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg.
Ultrafast and memory-efficient alignment of short DNA sequences to
the human genome. Genome Biol., 10(3):R25, 2009.

[LVK+10] Jon M Laurent, Christine Vogel, Taejoon Kwon, Stephanie A Craig,
Daniel R Boutz, Holly K Huse, Kazunari Nozue, Harkamal Walia,
Marvin Whiteley, Pamela C Ronald, and Edward M Marcotte. Protein
abundances are more conserved than mRNA abundances across diverse
taxa. Proteomics, 10(23):4209–4212, December 2010.

[LYA+10] Joshua Z Levin, Moran Yassour, Xian Adiconis, Chad Nusbaum,
Dawn Anne Thompson, Nir Friedman, Andreas Gnirke, and Aviv
Regev. Comprehensive comparative analysis of strand-specific RNA
sequencing methods. Nat. Methods, 7(9):709–715, September 2010.

[MA03] S Mangan and U Alon. Structure and function of the feed-forward loop
network motif. Proc. Natl. Acad. Sci. U. S. A., 100(21):11980–11985,
14 October 2003.

[Mar11] Marcel Martin. Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet.journal, 17(1):10–12, 2 May
2011.

[Mau92] M R Maurizi. Proteases and protein degradation in escherichia coli.
Experientia, 48(2):178–201, 15 February 1992.

[MB98] W B Muse and R A Bender. The nac (nitrogen assimilation control)
gene from escherichia coli. J. Bacteriol., 180(5):1166–1173, March
1998.

[MBHC95] A G Murzin, S E Brenner, T Hubbard, and C Chothia. SCOP: a
structural classification of proteins database for the investigation of
sequences and structures. J. Mol. Biol., 247(4):536–540, 7 April 1995.

[MBSB88] C Maier, E Bremer, A Schmid, and R Benz. Pore-forming activity of the
tsx protein from the outer membrane of escherichia coli. demonstration
of a nucleoside-specific binding site. J. Biol. Chem., 263(5):2493–2499,
15 February 1988.

[MCA+13] Jonathan M Monk, Pep Charusanti, Ramy K Aziz, Joshua A Lerman,
Ned Premyodhin, Jeffrey D Orth, Adam M Feist, and Bernhard ØPals-
son. Genome-scale metabolic reconstructions of multiple escherichia
coli strains highlight strain-specific adaptations to nutritional envi-
ronments. Proceedings of the National Academy of Sciences, page
201307797, November 2013.



209

[MCK+11] Sheetal R Modi, Diogo M Camacho, Michael A Kohanski, Graham C
Walker, and James J Collins. Functional characterization of bacterial
sRNAs using a network biology approach. Proc. Natl. Acad. Sci. U. S.
A., 108(37):15522–15527, 13 September 2011.

[McK12] Wes McKinney. Python for data analysis: Data wrangling with
Pandas, NumPy, and IPython. “ O’Reilly Media, Inc.”, 2012.

[MDP+09] Rachel A Mooney, Sarah E Davis, Jason M Peters, Jennifer L Rowland,
Aseem Z Ansari, and Robert Landick. Regulator trafficking on bacterial
transcription units in vivo. Mol. Cell, 33(1):97–108, 16 January 2009.

[MGK+14] Douglas McCloskey, Jon A Gangoiti, Zachary A King, Robert K
Naviaux, Bruce A Barshop, Bernhard O Palsson, and Adam M Feist.
A model-driven quantitative metabolomics analysis of aerobic and
anaerobic metabolism in e. coli K-12 MG1655 that is biochemically
and thermodynamically consistent. Biotechnol. Bioeng., 111(4):803–
815, 2014.

[MHM14] Wout Megchelenbrink, Martijn Huynen, and Elena Marchiori. optGp-
Sampler: an improved tool for uniformly sampling the solution-space of
genome-scale metabolic networks. PLoS One, 9(2):e86587, 14 February
2014.

[MLJC87] Susan Miller, Arthur M Lesk, Joël Janin, and Cyrus Chothia. The
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Steinmann, Suresh Sudarsan, Neil Swainston, Inge M Thijs, Karsten
Zengler, Bernhard O Palsson, Joshua N Adkins, and Dirk Bumann. A
community effort towards a knowledge-base and mathematical model
of the human pathogen salmonella typhimurium LT2. BMC Syst. Biol.,
5:8, 18 January 2011.

[TJFP09] Ines Thiele, Neema Jamshidi, Ronan M T Fleming, and Bern-
hard ØPalsson. Genome-scale reconstruction of escherichia coli’s
transcriptional and translational machinery: a knowledge base, its



215

mathematical formulation, and its functional characterization. PLoS
Comput. Biol., 5(3):e1000312, March 2009.

[TP10] Ines Thiele and Bernhard ØPalsson. A protocol for generating a
high-quality genome-scale metabolic reconstruction. Nat. Protoc.,
5(1):93–121, January 2010.

[TWP+10] Cole Trapnell, Brian A Williams, Geo Pertea, Ali Mortazavi, Gordon
Kwan, Marijke J van Baren, Steven L Salzberg, Barbara J Wold,
and Lior Pachter. Transcript assembly and quantification by RNA-
Seq reveals unannotated transcripts and isoform switching during cell
differentiation. Nat. Biotechnol., 28(5):511–515, May 2010.

[UNMRM84] S Ueno-Nishio, S Mango, L J Reitzer, and B Magasanik. Identification
and regulation of the glnl operator-promoter of the complex glnALG
operon of escherichia coli. J. Bacteriol., 160(1):379–384, October 1984.

[VBD+08] Alexei Vazquez, Qasim K Beg, Marcio A Demenezes, Jason Ernst, Ziv
Bar-Joseph, Albert-László Barabási, László G Boros, and Zoltán N
Oltvai. Impact of the solvent capacity constraint on e. coli metabolism.
BMC Syst. Biol., 2(1):7, 23 January 2008.

[VBT+03] Jörg Vogel, Verena Bartels, Thean Hock Tang, Gennady Churakov,
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